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In the empirical sciences, experiments are invariably conducted with the intent of

being used elsewhere (e.g., outside the laboratory), where conditions are likely to

be di↵erent. This practice is based on the premise that, owing to certain common-

alities between the source and target environments, causal claims will be valid

even where experiments have never been performed. Yet, despite the extensive

amount of empirical work relying on this premise, practically no formal treat-

ments have been attempted to reveal the conditions under which environments

can di↵er and still allow, in some formal sense, generalizations to be valid.

This work develops a theoretical framework for understanding, representing,

and algorithmizing the generalization problem described above and brings other

types of generalization problems, of both causal and statistical character, under

the same theoretical umbrella.

The generalization problems addressed in this thesis are as follows:

Problem 1. Transportability (generalizing experimental findings across set-

tings, populations, or domains). How to reuse causal information acquired by

experiments in one setting to answer causal queries in another, possibly di↵erent

setting where only passive observations can be collected? This question embraces
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several sub-problems treated informally in the literature under rubrics such as

“external validity,” “meta-analysis,” “quasi-experiments,” and “heterogeneity.”

Problem 2. Selection Bias (generalizing statistical findings across sampling

conditions (preferential exclusion of units from the sample)). How can knowledge

from a sampled subpopulation be generalized to the entire population when the

sampling process is not random, but determined by variables in the analysis?

Problem 3. Experimental identifiability (generalizing experimental find-

ings across experimental conditions in the same population). How can accessible

experiments be used as surrogates for other experiments that are too di�cult,

expensive, or unethical to be conducted in practice?

Building on the modern theory of causation, we provide algebraic, graph-

ical, and algorithmic conditions to support the inductive step required in the

corresponding task in each of these problems. This characterization delineates

the formal boundary between estimable and non-estimable e↵ects, and identifies

which pieces of scientific knowledge need to be collected in each study to con-

struct a bias-free estimate of the target query. The theory provided in this work

is general, in the sense that it takes as input any arbitrary set of generalizability

assumptions and decides whether this specific instance admits solution.

The problems discussed in this thesis have applications in several empirical

sciences such as bioinformatics, medicine, economics, social sciences as well as in

data-driven fields such as machine learning, artificial intelligence and statistics.
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CHAPTER 1

Introduction

Science is about generalization, and generalization requires an inductive leap from
an observed reality to one that has not been seen before. Informal discussions
concerning the di�culties of generalizing findings across populations have been
going on for at least half a century (Cox58; CS63; Hec92; HIM05; Man07) and
appear to accompany every textbook in experimental design. By and large, how-
ever, these discussions have not led to more than the obvious conclusions that
researchers should be extremely cautious about unwarranted generalization, that
many threats may await the unwary, and that extrapolation across di↵ering stud-
ies requires “some understanding of the reasons for the di↵erences” (Cox58, p.
10). Surprisingly, very few formal treatments have been attempted to reveal the
conditions under which such generalizations are indeed possible.

In contrast, the assumptions needed for generalizations in the specific con-
text of standard statistical analysis as well as in standard causal inference are
extensively studied and well-understood. In the former, both the sample and the
population are governed by the same probabilistic structure – the joint distri-
bution of the observed variables; based on this and perhaps other assumptions,
statistical theory provides guarantees on the inductive step of going from a sam-
pled subpopulation to the entire population (e.g., law of large numbers, central
limit theorem). In the latter, both the passive (observational) and experimental
regimes are considered over the same population, share a data-generating mecha-
nisms, and di↵er only in a local modification of the treatment assignment; based
on certain assumptions, causal theory provides guarantees on the inductive step
of going from a population in a passive pre-interventional regime to conclusions
about the same population under an interventional regime.

The generalizability problems analyzed in this work are fundamentally di↵er-
ent from those two accounts. In transportability, for example, we deal with two
distinct populations that di↵er both in their inherent causal characteristics and
the regimes under which they are studied. Interestingly enough, we will show
that even when experiments cannot be conducted in the target population, and
despite glaring di↵erences between the two populations, it might still be possible
to compute causal e↵ects by borrowing experimental knowledge from the source
environments.
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The standard literature on this topic, falling under rubrics such as “external
validity,”1 “quasi-experiments,” “meta-analysis,” and “heterogeneity,” consists
primarily of “threats,” namely, verbal narratives of what can go wrong when
we try to transport results from one study to another (e.g., (SCC02, Chapter
3; HGH10)). Rarely do we find an analysis of “licensing assumptions,” namely,
formal and transparent conditions under which the transport of results across
di↵ering environments or populations is licensed from first principles. 2

The reasons for this asymmetry are several. First, threats are safer to cite than
assumptions. He who cites “threats” appears prudent, cautious and thoughtful,
whereas he who seeks licensing assumptions is immediately accused of endorsing
those assumptions, thus legitimizing unwarranted transport, or of pretending to
know in advance when those assumptions hold true.

Second, assumptions are self-destructive in their honesty. The more explicit
the assumption, the more criticism it invites, for it tends to trigger a richer space
of alternative scenarios in which the assumption may fail. Researchers prefer
therefore to declare threats in public and make assumptions in private.

More importantly, whereas threats can be communicated in plain English,
supported by anecdotal pointers to familiar experiences, assumptions require a
formal language within which the notion “environment” (or “population,” “set-
ting,” “domain”) is given precise characterization, and di↵erences among envi-
ronments can be encoded and analyzed.

The advent of causal diagrams (Pea95; GPR99; SGS00; Pea09b) provides such
a language and renders the formalization of problems in causal generalizability
possible. Building on the theory of non-parametric structural equations, we tackle
three classes of problems related to the generalization of empirical findings. These
classes were mentioned briefly in the abstract, and will be realized below, together

1 (Man07) defines “external validity” as follows: “An experiment is said to have “external
validity” if the distribution of outcomes realized by a treatment group is the same as the dis-
tribution of outcome that would be realized in an actual program.” (CS63, p. 5) take a slightly
broader view: “‘External validity’ asks the question of generalizability: To what population,
settings, treatment variables, and measurement variables can this e↵ect be generalized?” To the
best of my knowledge no formal treatment of these problems was attempted by these authors.

2The machine learning literature, on the other hand, while seriously concerned about discrep-
ancies between training and test environments (DM06; Sto09), has focused almost exclusively
on predictive, or classification tasks as opposed to e↵ect-learning tasks. Moreover, even in clas-
sification tasks, machine learning researchers have rarely allowed apriori causal knowledge to
guide the learning process and, as a result, have not sought theoretical guarantees in the form of
su�cient conditions under which discrepancies between the training and test environments can
be circumvented, or necessary conditions without which bias will persist regardless of sample
size. Some recent work on anticausal learning leverages knowledge about invariances of the
data-generating model across domains (using representation equivalent to that discussed here),
moving the literature towards more general modalities of learning (SJP12; ZSM13).
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with examples and the chapters in which they are presented and analyzed.

Problem 1. Transportability (Chapters 3-4). Generalizing experimental
findings across settings, populations, or domains. How can one reuse causal infor-
mation acquired by experiments in one setting to answer causal queries in another,
possibly di↵erent setting where only passive observations can be collected?

For instance, a researcher may perform experiments on mice and aim to gen-
eralize the conclusions to human beings. What mathematical principles support
this leap of generalization? We show that one key ingredient necessary to for-
malize this type of questions is to identify areas of commonalities and disparities
between the two species. After having a coarse description of these areas, we can
formally decide what knowledge is or is not transportable across species.

Problem 2. Selection Bias (Chapter 5). Generalizing statistical findings
across sampling conditions (preferential exclusion of units). How can knowledge
from a sampled subpopulation be generalized to the entire population if the
sampling selection is not random, but is a↵ected by variables in the analysis?

For instance, one might have collected data in a specific hospital, and ask
whether (under what conditions) this data could be generalized to the population
as a whole, given that the hospital exercises a peculiar admission policy which
depends on applicants’ financial ability and symptoms.

Problem 3. Experimental Identifiability (Chapter 6). Generalizing ex-
perimental findings across experimental conditions in the same domain. How can
some experimental knowledge be used as a surrogate for other experiments that
are too di�cult, expensive, or unethical to perform in practice?

For instance, one can conduct an experiment by randomizing diet, and ask
whether (and under what conditions) the available data could help in establishing
the causal-e↵ects of cholesterol level on heart attack, when it is infeasible to
randomize cholesterol level in practice. The problem relates to that of finding
instrumental variables but, given the non-parametric setting, it is more involved.

These problems appear every time data is being collected and are pervasive in
the empirical sciences (e.g., economics, bioinformatics, public health) as well as in
machine learning and artificial intelligence (which are also data-oriented). Inter-
estingly, they appear to be disparate types of generalizations and, to the extent
that they have been addressed, they have evoked di↵erent tools and vocabulary
in the literature; this work puts them under the same theoretical umbrella.

This thesis provides a characterization in the form of algebraic, graphical,
and algorithmic conditions to support the inductive step in the corresponding
task. This characterization establishes a theoretical boundary between estimable
and non-estimable realities, and it goes further, for it identifies what pieces of
scientific knowledge need to be collected in each study, and how to cement them
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together, to achieve consistent estimates of the desired queries.

We list below the specific contributions achieved in this thesis by chapter and
include the publications in which they were presented:

• Chapter 3. Transportability (PB11a; PB11b; BP12c):

– introduces a formal language for expressing di↵erences and commonali-
ties between environments and reduces the problem of transportability
to an exercise in symbolic calculus;

– develops su�cient conditions for solving simple transportability prob-
lems such as when causal e↵ects are the same in both environments;

– constructs an intuitive algorithm for special transportability problems;

– derives a general graphical condition for deciding transportability of
causal e↵ects (i.e., transportability is feasible if and only if a certain
graph structure does not appear as an edge subgraph of the inputted
diagram);

– proves completeness of the do-calculus (Pea95) for recognizing trans-
portability (that is, if a causal e↵ect cannot be expressed in terms of
the available data by repeated application of the three rules of the
do-calculus, such an expression does not exist);

– constructs an e↵ective and complete algorithm for deciding experimen-
tal transportability of joint causal e↵ects and returning a transport
formula whenever those e↵ects are transportable.

• Chapter 4. Transportability from multiple domains with limited experi-
mental information (BP13a; BP13b; BLH13; BP14):

– formulates the transportability problem over multiple source domains;

– relaxes the requirement that all experiments be feasible in the same
source domain;

– derives a general graphical condition for deciding transportability of
causal e↵ects under these relaxed assumptions;

– proves completeness of the do-calculus for recognizing general trans-
portability (that is, shows that if a desired causal e↵ect cannot be
expressed in terms of the available (passive and experimental) distri-
butions by repeated application of the three rules of the do-calculus,
such an expression does not exist);

– constructs a complete algorithm for deciding general transportability
of causal e↵ects and allowing for generic weighting schemes, which gen-
eralizes standard statistical procedures and leads to the construction
of statistically more powerful estimators.
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• Chapter 5. Selection Bias (BP12b; BTP14):

– derives a general graphical condition for deciding whether conditional
distributions are recoverable from selection bias without resorting to
external information (from properly sampled data);

– derives a su�cient graphical condition for deciding whether condi-
tional distributions are recoverable from selection bias when external
information is available (e.g., census data);

– extends the back-door criterion to decide when sets of variables are
su�cient for eliminating both selection and confounding biases;

– derives a general graphical condition for deciding whether population
and covariate-specific odds ratios can be recovered from selection bias;

– constructs an e�cient and complete algorithm for deciding recover-
ability from selection bias and returning an unbiased estimand for the
odds ratio whenever such estimand exists;

– shows that for measures such as the risk di↵erence, when selection
and confounding biases are simultaneously present, the former can be
entirely removed with certain instrumental variables even when the
latter cannot;

– develops su�cient conditions for recovering from selection bias in com-
mon scenarios (complementing the back-door condition).

• Chapter 6. General (Experimental) Identification (BP12a):

– derives a necessary and su�cient graphical condition for the general
identification problem (that is, identification in terms of auxiliary ex-
periments);

– proves completeness of the do-calculus for recognizing general iden-
tifiability (that is, if a causal e↵ect cannot be expressed in terms of
the available data by repeated application of the three rules of the
do-calculus, such an expression does not exist);

– constructs an e�cient and complete algorithm for deciding general
identification of joint causal e↵ects and returning the correct estimand
whenever those e↵ects are computable from the available data.

Moreover, we start reviewing the basic notation and the main results used
throughout this thesis in Chapter 2, and conclude by summarizing the results
and pointing to new problems in Chapter 7.
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CHAPTER 2

Logical Foundations of Causal Inference

In this chapter, we review the basic semantical framework of our analysis that
rests in nonparametric Structural Equations Models (SEM), which unifies and
generalizes several approaches to Causal Inference (Rub74; Rob86; Daw02; SGS00).

2.1 Causal Models as Inference Engines

From a logical viewoint, causal analysis relies on causal assumptions that cannot
be deduced from (nonexperimental) data. Thus, every approach to causal infer-
ence must provide a systematic way of encoding, testing and combining these
assumptions with data. Accordingly, we view causal modeling as an inference
engine that takes three inputs and produces three outputs.

The inputs are:

I-1. A set A of qualitative causal assumptions which the investigator is prepared
to defend on scientific grounds, and a model MA that encodes these as-
sumptions mathematically. (In SEM, MA takes the form of a diagram or a
set of unspecified functions. A typical assumption is that no direct e↵ect
exists between a pair of variables, or that an omitted factor, represented by
an error term, is uncorrelated with some other factors.)

I-2. A set Q of queries concerning causal or counterfactual relationships among
variables of interest. In linear SEM, Q concerned the magnitudes of struc-
tural coe�cients but, in general, Q may address causal relations directly,
e.g.,

Q1 : What is the e↵ect of treatment X on outcome Y ?

Q2 : Is this employer guilty of gender discrimination?

In principle, each query Qi 2 Q should be computable from any fully spec-
ified model M compatible with A.

I-3. A set D of experimental or non-experimental data, governed by a probability
distribution presumably consistent with A.
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The outputs are:

O-1. A set A⇤ of statements which are the logical implications of A, separate
from the data at hand. For example, that X has no e↵ect on Y if we hold
Z constant, or that Z is an instrument relative to {X, Y }.

O-2. A set C of data-dependent claims concerning the magnitudes or likelihoods
of the target queries in Q, each contingent on A. C may contain, for
example, the estimated mean and variance of a given structural parameter,
or the expected e↵ect of a given intervention. Auxiliary to C, a causal model
should also yield an estimand Qi(D) for each query in Q, or a determination
that Qi is not computable from D (in this case, we would typically say that
Q is not identifiable form P ).

O-3. A list T of testable statistical implications of A, and the degree g(Ti), Ti 2
T , to which the data agrees with each of those implications. A typical
implication would be a conditional independence assertion, or an equal-
ity constraint between two probabilistic expressions. Testable constraints
should be read from the model MA (see Definition 3.), and used to confirm
or disconfirm the model against the data.

In this chapter, we deepen our discussion about the methodological issues; for a
more comprehensive review on this topic, see (Pea09a; Pea12a).

2.2 Causal Assumptions in Nonparametric Models

Structural equation modeling (SEM) has been the main vehicle for e↵ect analysis
in economics and the behavioral and social sciences (Gol72; Dun75; Bol89). How-
ever, the bulk of SEM methodology was developed for linear analysis and, until
recently, no comparable methodology has been devised to extend its capabilities
to models involving dichotomous variables or nonlinear dependencies. A cen-
tral requirement for any such extension is to detach the notion of “e↵ect” from
its algebraic representation as coe�cient in an equation, and redefine “e↵ect”
as a general capacity to transmit changes among variables. Such an extension,
based on simulating hypothetical interventions in the model, was proposed in
(Haa43; SW60; SGS93; Pea93b; Pea00; Hec00; Hec05; Mat07) and has led to
new ways of defining and estimating causal e↵ects in nonlinear and nonpara-
metric models (that is, models in which the functional form of the equation is
unknown). These observations lead to the following definition of SEM:
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Figure 2.1: The diagrams associated with (a) the structural model of equation
(2.1) and (b) the modified model of equation (2.4), representing the intervention
do(X = x0).

Definition 1 (Structural Equation Model). (Pea00, p. 203) A structural causal
model M is a tuple M = hU, V, F, P (u)i, where:

1. A set U of background or exogenous variables, representing factors outside
the model, which nevertheless a↵ect relationships within the model.

2. A set V = {V1, ..., Vn} of endogenous variables, assumed to be observable.
Each of these variables is functionally dependent on some subset PAi of
U [ V \ {Vi}.

3. A set F of functions {f1, ..., fn} such that each fi determines the value of
Vi 2 V , vi = fi(pai, u).

4. A joint probability distribution P (u) over U .

The central idea is to exploit the invariant characteristics of structural equa-
tions without committing to a specific functional form. For example, the non-
parametric interpretation of the diagram of Fig. 2.1(a) corresponds to a set of
three functions, each corresponding to one of the observed variables:

z = fZ(uZ)

x = fX(z, uX) (2.1)

y = fY (x, uY ),

where in this particular example, UZ , UX and UY are assumed to be jointly inde-
pendent but otherwise arbitrarily distributed. Conversely, every set of structural
equations like (2.1) corresponds to a unique diagram in which arrows are drawn
from the arguments of fi into the endogenous variable Vi.

Each of the functions represents a causal process (or mechanism) that de-
termines the value of the left variable (output) from the values on the right
variables (inputs), and is assumed to be invariant unless explicitly intervened on.
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The absence of a variable from the right-hand side of an equation encodes the
assumption that Nature ignores that variable in the process of determining the
value of the output variable. For example, the absence of variable Z from the
arguments of fY conveys the empirical claim that variations in Z will leave Y
unchanged, as long as variables UY and X remain constant. A system of such
functions are said to be structural if they are assumed to be autonomous, that is,
each funciton is invariant to possible changes in the form of the other functions
(Sim53; Koo53; Ald89).

Assuming that F has a unique solution for every variable, the distribution
over the exogenous variables P (u) together with F induce a distribution P (v)
over the endogenous variables V .1 Interestingly, certain topological patterns in
the diagram imply conditional independencies in the distribution over observables
P (v). To explain this relationship, we start with the simpler class of Markovian
models in which the graphs are acyclic (i.e., containing no directed cycles) and all
the exogenous variables are jointly independent. (Non-Markovian models, such as
those involving correlated errors (resulting from unmeasured confounders), can be
modelled similarly by introducing latent variables to account for the dependencies
among the exogenous variables, to be discussed later on.) In this class, the
relationship between distributions and graphs lies in the following theorem:

Theorem 1 (Causal Markov Condition (PV91)). Any distribution generated by
a Markovian model M can be factorized as:

P (v1, ..., vn) =
Y

i

P (vi|pai) (2.2)

We can now define the notion of compatibility between distributions and
graphs:

Definition 2. If a probability function P admits the factorization of (2.2) relative
to a diagram G, we say that G and P are compatible, or that P is Markov relative
to G.

For example, the distribution associated with the model in Fig. 2.1(a) can be
factorized as

P (z, y, x) = P (z)P (x|z)P (y|x) (2.3)

since X is the (endogenous) parent of Y , Z is the parent of X, and Z has no
parents. We also say that the distribution P (z, y, x) in eq. (2.3) is compatible
with the graph in Fig. 2.1(a).

1We will later define other distributions induced by the pair F, P (u), for example, post-
interventional distributions and counterfactuals.
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This factorization implies that regardless of the idiosyncrasies of the properties
of the distribution of exogenous P (u) and the functions F (e.g., monotonicity,
linearity, separability, continuity, di↵erentiability), separation in G (defined next)
unveils conditional independences constrains over P (v).2 The criterion for reading
these constraints is known as d-separation, which will be instrumental in our
analysis.

Definition 3 (d-separation (Pea88)).
A set S of nodes is said to block a path p if either

1. p contains at least one arrow-emitting node that is in S, or

2. p contains at least one collision node that is outside S and has no descendant
in S.

If S blocks all paths from set X to set Y , it is said to “d-separate X and Y,” and
then, it can be shown that variables X and Y are independent given S, written
(X ?? Y |S).3

Theorem 2 (Probabilistic Implications of d-separation (VP88; GVP90)). If X
and Y are d-separated by Z in a diagram G, then X is independent of Y condi-
tional on Z in every distribution compatible with G. Conversely, if X and Y are
not d-separated by Z in a diagram G, then X and Y are dependent conditional
on Z in at least one distribution compatible with G.

D-separation reflects conditional independencies that hold in any distribution
P (v) that is compatible with the causal assumptions A embedded in the diagram.
To illustrate, the path UZ ! Z ! X ! Y in Figure 2.1(a) is blocked by S = {Z}
and by S = {X}, since each emits an arrow along that path. Consequently we
can infer that the conditional independencies (UZ ?? Y |Z) and (UZ ?? Y |X) will
be satisfied in any probability function that this model can generate, regardless
of how we parametrize the arrows. Likewise, the path UZ ! Z ! X  UX is
blocked by the null set ;, but it is not blocked by S = {Y } since Y is a descendant
of the collision node X. Consequently, the marginal independence (UZ ?? UX)
will hold in the distribution, but (UZ ?? UX |Y ) may or may not hold. 4

2Constraints of this nature will also appear in the interventional distributions.
3See (HCS03), (Mul09), and (Pea09b), pp. 335 for a gentle introduction to d-separation.
4This special handling of collision nodes (or colliders, e.g., Z ! X  UX) reflects a general

phenomenon known as Berkson’s paradox (Ber46), whereby observations on a common conse-
quence of two independent causes render those causes dependent. For example, the outcomes
of two independent coins are rendered dependent by the testimony that at least one of them is
a tail. The colliders play a key role in the problem of selection bias as discussed in Chapter 4.
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Notice that with this tool one is able to enumerate all testable implications
entailed by a structural equation model, so test whether the data was generated
by the hypothesized model. Furthermore, one might use these constraints to
decide if two models are equivalent, or more ambitiously, one might use these
constraints to identify all models that are compatible with a given dataset.

2.3 Representing Causal E↵ects and Counterfactuals

Another feature that SEM provides is the ability to predict the e↵ect of inter-
ventions. 5 This is done through a mathematical operator called do(x), which
simulates physical interventions by deleting certain functions from the model,
replacing them with a constant X = x, while keeping the rest of the model
unchanged. For example, to emulate an intervention do(x0) that holds X con-
stant (at X = x0) in model M of Figure 2.1(a), we replace the equation for x in
equation (2.1) with x = x0, and obtain a new model, Mx0 ,

z = fZ(uZ)

x = x0 (2.4)

y = fY (x, uY ),

the graphical description of which is shown in Figure 2.1(b).

The joint distribution associated with the modified model is denoted by
P (z, y|do(x0)), which describes the post-intervention distribution of variables Y
and Z (also called “controlled” or “experimental” distribution), to be distin-
guished from the pre-interventional distribution, P (x, y, z), associated with the
original model of equation (2.1).6 For example, if X represents a treatment vari-
able, Y a response variable, and Z some covariate that a↵ects the amount of
treatment received, then the distribution P (z, y|do(x0)) gives the proportion of
individuals that would attain response level Y = y and covariate level Z = z
under the hypothetical situation in which treatment X = x0 is administered
uniformly to the population.7

In general, we can formally define the post-interventional distribution by the

5A completely specified model can also be used to compute counterfactuals and their prob-
abilities, but this lies beyond the scope of this work.

6This can be translated for the parametric setting, for instance linear, where the meaning
of @

@xP (y|do(X = x)) is equivalent to the � coe�cient in the respective structural equation.
7Equivalently, P (z, y|do(x0)) can be interpreted as the joint probability of (Z = z, Y = y)

under a randomized experiment among units receiving treatment level X = x0. Readers versed
in potential-outcome notations may interpret P (y|do(x), z) as the probability P (Yx = y|Zx =
z), where Yx is the potential outcome under treatment X = x.

11



equation
PM(y|do(x)) = PMx(y) (2.5)

In words, in the framework of model M , the post-intervention distribution of
outcome Y is defined as the probability that model Mx assigns to each outcome
level Y = y. From this distribution, which is readily computed from any fully
specified model M , we are able to assess treatment e�cacy by comparing aspects
of this distribution at di↵erent levels of x0.8

From this distribution, one is able to assess the treatment e�cacy by com-
paring aspects of this distribution at di↵erent levels of x0. A common measure
of treatment e�cacy is the average di↵erence

P (y|do(x00))� P (y|do(x0)) (2.6)

where x00 and x0 are two levels (or types) of treatment selected for comparison.

One might surmise that this definition requires that to predict the e↵ect of
interventions, one would need to literally simulate the intervention by mutilating
the model as in (2.4), which requires a fully specified model M . This is not the
case, and the definition encoded in equation (2.5) only represents the semantics
of the interventional operator; in the sequel, we show how to compute the e↵ect
of interventions based on this semantics in only partially specified models.

2.4 Identification in partially specified models: The emer-
gence of the Causal Calculus

A central question in causal analysis is the question of identification of causal
e↵ects in partially specified models: Given assumptions set A (as embodied in
the model), can the controlled (post-intervention) distribution, P (y|do(x)), be
estimated from data governed by the pre-interventional distribution P (z, x, y)?

The problem of identification of causal e↵ects has received considerable atten-
tion in econometrics (Hur50; Mar50; Koo53) and social science (Dun75; Bol89),
usually in linear parametric settings, were it reduces to asking whether some
model parameter, �, has a unique solution in terms of parameters of P (say
the population variance-covariance matrix). In the nonparametric, the notion of
“has a unique solution” does not directly apply since quantities such as Q(M) =
P (y|do(x)) have no parametric signature and are defined procedurally by simu-
lating an intervention in a causal model M , as in equation (2.4). The following
definition captures the requirement that Q be estimable from the data:

8Counterfactuals are defined similarly through the equation Yx(u) = YMx(u) (see (Pea09b,
Ch. 7)), but will not be needed for the discussions in this work.
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Definition 4 (Identifiability). A causal query Q(M) is identifiable, given a set
of assumptions A, if for any two (fully specified) causal models M1 and M2 that
satisfy A, we have

P (M1) = P (M2)) Q(M1) = Q(M2) (2.7)

In words, the functional details of M1 and M2 do not matter; what matters is
that the assumptions in A (e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equality of P ’s would entail
equality of Q’s. When this happens, Q depends on P only, and should therefore
be expressible in terms of the parameters of P .

For Markovian systems, all queries can be expressed in terms of the distribu-
tion of the observed variable, which follows from Theorem 1:

Corollary 1 (Truncated factorization9). For any Markovian model, the distribu-
tion generated by an intervention do(X = x0) on a set X of endogenous variables
is given by the truncated factorization

P (v1, v2, ..., vk|do(x0)) =
Y

i|Vi /2X

P (vi|pai)
���
X=x0

, (2.8)

where P (vi|pai) are the pre-intervention conditional probabilities.

When the system is non-Markovian, the problem of identifiability can be
decided systematically using an algebraic procedure known as the do-calculus
(Pea95), which is discussed next.

Do-calculus: The Algorithmization of Causal E↵ects10

Let us consider the problem of identifiability related to the century-old debate on
relation between smoking (X) and lung cancer (Y ). According to reports of the
time, the tobacco industry has managed to prevent anti-smoking legislation to
pass by arguing that the observed correlation between smoking and lung cancer
could be explained by some sort of carcinogenic genotype (U) that involves innate
dependency for nicotine. In other words, the claim was that smoking did not cause
cancer, but the same people that smoke were doomed to contract cancer given
that this was a deterministic genetic trait. Based on scientific grounds, one might

9A simple proof of the Causal Markov Theorem is given in (Pea00, pp. 30). This theorem
was first presented in (PV91), but it is implicit in the works of (KSC84) and others. Corollary
1 was named “Manipulation Theorem” in (SGS93), and is also implicit in Robin’s (1987) G-
computation formula. See (Lau01).

10For a more thorough discussion on the do-calculus and identifiability, see (Pea00, Ch. 3)
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Figure 2.2: (a) Causal graph where X and Y are confounded by U , and there is a
mediator Z such that all e↵ects of X on Y pass through Z (so called frontdoor).
The e↵ect P (y|do(x)) is computable from observational data. (b) Interventional
causal graph where X’s incoming edges were cut.

further hypothesize that the e↵ect of smoking on cancer is mediated through the
deposit of tar in the lungs, as depicted in the model in Fig. 2.2(a).

Remarkably, the dependence between Ux and Uy is represented by a latent
variable U , which turns the model into a Markovian model. This family of models
is called Semi-Markovian and all the machinery developed for Markovian mod-
els is applicable here as well, but with one provision: the U -nodes cannot be
manipulated nor condition on.

The policy question is whether the e↵ect of smoking on cancer is computable
from passive data, i.e., whether the query Q = P (y|do(x)) can be established
without resorting to a randomized experiment that is unethical in this case.11

To solve the identification problem, we rely on the data-generating model G
depicted in Fig. 2.2(a), and note that G factorizes accordingly to Theorem 1:

P (X, Y, Z, U) = P (X|U)P (Z|X)P (Y |Z, U)P (U), (2.9)

We can express Q “wiping out” the factor P (X|U) that accounts for the decision
of smoke based on the truncated factorization (Corollary 1), which yields:

Q =
X

Z=z,U=u

P (Z = z|x)P (y|Z = z, U = u)P (U = u) (2.10)

The challenge now is that not all factors necessary to compute Q are readily
available from the data collected over observables. In particular, it is not obvious
whether (and how) either P (y|Z = z, U = u) or P (U = u) is estimable from the
data collected over the observables P (X, Y, Z). Note that, at this point, there

11Note that this is a generalization question since the decision-maker needs to anticipate
whether the e↵ect Q is substantial before adopting the policy (which was never experienced
before), so she/he might suggest the implementation of such policy in the real world (in this
case, it could be to inhibit the commercializing of cigarettes).
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are no constraints imposed over neither the dimensionality, nor the form of the
unmeasured variable U , and our analysis will proceed in a non-parametric fashion.
Still, it is unclear whether Q is computable from the assumptions encoded in G
together with the pre-interventional distribution P (V ).12 This graphical structure
is known in the literature as the front-door graph.

The problem depicted above shows that a principled way to decide whether
there exists a mapping between the observational (available) and the interven-
tional distributions (target) is needed. The do-calculus consists of rules that per-
mit the transformation of expressions involving the do-operator into equivalent
expressions whenever certain conditions hold in G. The causal graph G licenses
transformations between expressions based on the underlying assumptions.

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in a causal diagram G.
We denote by GX the graph obtained by deleting from G all arrows pointing to
nodes in X. Likewise, we denote by GX the graph obtained by deleting from G
all arrows emerging from nodes in X. To represent the deletion of both incoming
and outgoing arrows, we use the notation GXZ .

Theorem 3 (Rules of do-calculus (Pea95)). Let G be a causal diagram generated
by a structural equation model (Definition 1), and let P (v) stand for the prob-
ability distribution induced by that model over the endogenous variables V . For
any disjoint subsets of endogenous variables X, Y, Z, and W , the following rules
are valid for every interventional distribution compatible with G.

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if (Y ?? Z|X, W )GX
(2.11)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ?? Z|X, W )GXZ
(2.12)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ?? Z|X, W )G
XZ(W )

, (2.13)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .

The first rule a�rms that the d-separation criterion also holds for graphs un-
der intervention. The second rule gives the condition for when observing and
intervening are equivalent (when the confounding can be controlled, or the “cri-
terion backdoor”). The third rule gives the conditions for when the do-operator

12Recall the provision for Semi-Markovian models that says that we cannot condition on U .
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can be completely removed from the expression, i.e., there is no causal e↵ect of
Z on Y whatsoever. 13 14

We will be try to remove the do-operator from the r.h.s. of the expression
since its absence represents the fact that the target relation (l.h.s.) is expressible
in terms of the observable variables, hence computable from the available data
(independently of the underlying functions and exogenous variables).

So, following this strategy to the smoking problem, it is clear that (X ??
Y ), (X ?? Y )GX , and (X ?? Y )GX

do not hold (Figs. 2.2(a), 2.3(a), 2.2(b),
respectively), so we cannot apply any of the rules of do-calculus. Still, we can
simply condition on Z, which yields:

P (y|do(x)) =
X

Z=z

P (y|do(x), Z = z)P (Z = z|do(x)) (2.14)

Considering the second term P (Z = z|do(x)), it is clear that only the second rule
is applicable since (Z ?? X)GX holds in Fig. 2.3(a) (intervening and observing
are equivalent), which allows us to rewrite equation (2.14) as:

P (y|do(x)) =
X

Z=z

P (y|do(x), Z = z)P (Z = z|x) (2.15)

Let us consider the first expression P (y|do(x), Z = z). Note that to replace
the do-operator with the see-operator (applying the second rule), we would need
(X ?? Y |Z)GX , which does not hold in Fig. 2.3(a). Alternatively, we could try to
fully remove the do-operator (applying the third rule), but (X ?? Y |Z)G

X(Z)
does

not hold since GX(Z) does not allow us to cut the edges incoming to X (since X
is ancestor of Z; the correct graph is Fig. 2.2(a)).

There is no clear way to proceed. Similarly to a derivation in infinitesimal
calculus which is non-monotonic, even though our goal is to remove the do-
operator, we may first add the do-operator to Z (since (Z ?? Y |X)GXZ

holds in

Fig. 2.3(d)), and see what happens. So, rewriting equation (2.15) yields:

P (y|do(x)) =
X

Z=z

P (y|do(x), do(Z = z))P (Z = z|x) (2.16)

The problem became apparently harder than the original one since there are
more do-operators in the expression than before (more experiments are required).

13Derivations illustrating the use of do-calculus can be find in (Pea09b, pp. 87).
14The do-calculus was proven to be complete to the identifiability of causal e↵ects (SP06a;

HV06b), which means that if a causal e↵ect P (y|do(x)) cannot be expressed in terms of the
probability of observables P (v) by repeated application of these three rules, such an expression
does not exist, and the e↵ect is called non-identifiable.
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Figure 2.3: Mutilated graphs representing the conditions that license the multiple
steps perfomed in do-calculus to derive P (y|do(x)) of Fig. 2.2(a).

However, the third rule of do-calculus can be applied in the first expression since
(X ?? Y |Z)G

X(Z)
holds in Fig. 3.3(b). So, we can express equation (2.16) as:

P (y|do(x)) =
X

Z=z

P (y|do(Z = z))P (Z = z|x) (2.17)

To solve the problem, it su�ces to remove the do-operator from the first expres-
sion. Again, there is no rule of the do-calculus that is directly applicable now, but
note that X block all directed paths with edges going towards Z, so we condition
on X:

P (y|do(x)) =
X

Z=z

P (Z = z|x)

✓ X

X0=x0

P (y|do(Z = z), x0)P (x0|do(Z = z))

◆
,(2.18)

and note that the second rule can be applied in P (y|do(Z = z), x0) since (Z ??
Y |X)GZ holds in Fig. 3.3(c), which yields:

P (y|do(x)) =
X

Z=z

P (Z = z|x)

✓ X

X0=x0

P (y|Z = z, x0)P (x0|do(Z = z))

◆
. (2.19)

Note that the third rule can be applied in the last factor since Z is not an ancestor
of X (or, (Z ?? X)G

Z(W )
holds in Fig. 3.3(a)), which yields:

P (y|do(x)) =
X

Z=z

P (Z = z|x)

✓ X

X0=x0

P (y|Z = z, x0)P (x0)

◆
. (2.20)

Finally, we note that the do-operator does not appear in the r.h.s. of equation
(2.20), so even though we do not possess any quantitative knowledge about the
unobservable variable U (neither its distribution nor its dimensionality), besides
the fact that it influences both {X, Y }, we are still able to compute Q purely from
the pre-interventional distribution P (V ) together with the assumption encoded
in G. The final expression is somehow intuitive and appealing, and it can be seen
as the causal e↵ect of X on Z and Z on Y , but non-parametrically.
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Remarkably, it follows immediately from the graphical interpretation of the
second rule of the do-calculus what is known as the “adjustment formula” (also
known as “conditional ignorability” (Rub74)). This represents the condition
present when observing and intervening are essentially the same. This operation
algebraically is equivalent to condition on a variable and take the average15 . This
provides the answer to the common question “what variables should we adjust
for.” The set of variables on which we need to adjust is none other but a set of
nodes that satisfies a criterion called “Back-Door” and is defined as follows:

Definition 5 (Back-Door). A set of variables Z satisfies the back-door criterion
relative to an ordered pair of variables (X, Y ) in a causal diagram G if:

1. no node in Z is a descendent of X; and

2. Z blocks every path between X and Y that contains an arrow into X.

And so, the following is immediate:

Theorem 4 (Back-Door Adjustment). If a set of variables Z satisfies the back-
door criterion relative to (X, Y ), then the causal e↵ect of X on Y is identifiable
and is given by the formula

P (y|do(x)) =
X

z

P (y|x, z)P (z) (2.21)

This criterion becomes especially useful when some variables in the graph are
unobservable. The name “back-door” echoes conditions (ii) since it requires that
only paths with arrow pointing to X be blocked; these paths can be viewed as
entering in X through the back door.

For instance, our goal is to estimate the e↵ect P (y|do(Z = z)) in Fig. 2.2.
Note that X blocks all backdoor paths from Z to Y , so P (y|do(Z = z)) =P

x0 P (y|z, x0)P (x0), which is precisely the result entailed by the steps from equa-
tions (2.17) to (2.20).

In the real world, it is not uncommon that some causal e↵ects are not identifi-
able from the observational data. For instance, consider the graph in Fig. 2.4(a)
known as the ‘bow-graph’ (named due to its format) that is the smallest possible
graph in which the e↵ect of X on Y is not identifiable from observational data.

There are complementary ways to understand the problem of non-identifiability
in this example. First, note that the correlation between X and Y can be ex-
pressed through P (Y |X), and graphically this can be seen as the flow of in-
fluence passing through all open paths between X and Y , including the ones

15The average is by the prior of the variable, as can be seen next.
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Figure 2.4: (a) Causal graph known as ‘bow-graph’ where X and Y are con-
founded by U and the e↵ect P (y|do(x)) is not computable from observational
data. (b) Extension of the bow-graph where Y is not confounded with X, but
one of its ancestors is, so P (y|do(x)) is not computable from passive data.

passing through the unobservable U – i.e., P (y|x) = ⇡1 + ⇡2. On the other
hand, the causal e↵ect of X on Y can be seen as the influence being transmitted
only through the directed edge from X to Y (assming a mutilated model) – i.e.,
P (y|x) = ⇡1 – which cannot be disentangle from the correlation coming from the
passively observed data (i.e., P (Y, X)).

We can note that none of the rules of the do-calculus is applicable here;
alternatively, we can write based on the truncated factorization (Corollary 1):

P (y|do(x)) =
X

U=u

P (y|x, u)P (u) (2.22)

Note that it is not possible to manipulate equation (2.22) in such a way that U
does not appear, given that the graph does not display any independence to be
exploited (all variables are connected). This indeed precludes identifiability.

More formally, the non-computability of a certain quantity from the data
means that two structural equation models (or, Nature) M1, M2 might be gener-
ating the same distribution over observables, P1(X, Y ) = P2(X, Y ), but each one
entails a di↵erent answer for the causal e↵ect, i.e., P1(y|do(x)) 6= P2(y|do(x)).

Example. Consider two causal processes M1 and M2 as defined next. All
variables are binary and the distribution over exogenous is P (U) = 1/2 in both
models. In M1, F1 = {X = U , Y = 0}, and in M2, F2 = {X = U , Y =
(U XOR X)}, where XOR stands for the exclusive-or function. Note that in both
models, P (X = x, Y = 0) = 1/2, for X = {0, 1}. However, P1(Y = 1|do(X =
1)) = 1/2, while P2(Y = 1|do(X = 1)) = 0, which show that P (Y |do(X)) is not
computable from the assumptions encoded in G and the available data P (v). 16

In the general case, it is not easy to establish whether a given quantity is or
is not computable from the combination of assumption in the form of the causal

16In this example, we just displayed one witness for the non-identifiability of the target
quantity Q, but it is the case that the e↵ect P (y|do(x)) will not be computable for almost all
valid parametrizations of G.
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diagram G and the observable data P (v). For instance, even though X and Y
are not confounded in the diagram G in Fig. 2.4(b), the causal e↵ect P (y|do(x))
is not identifiable in G. However, note that P (y|do(z)) is identifiable in G and
equals P (y|z), by the second rule of do-calculus. This exemplifies that in the non-
parametric settings, it might be the case that some quantities are computable
and others are not given the same causal diagram. The only di↵erence between
the front-door graph (Fig. 2.2(a)) and the diagram in Fig. 2.4(b) is that the
unobservable variable U confounds the {X, Y } relationship in the former while
it confounds the {X, Z} in the latter.

Throughout this thesis, the do-calculus will show to be instrumental in other
problems besides identification of causal e↵ects. For instance, in Chapter 3, we
shall see that, to establish transportability, the goal will be di↵erent; instead
of eliminating do-operators, we will need to separate them from a special set of
variables S that represent disparities between the mechanisms of the populations.

Furthermore, in Chapter 5, we shall see that, to establish z-identifiability,
the goal will also be di↵erent; instead of eliminating do-operators altogether, we
will need to replace a do-operator associated with the treatment X with a do-
operator associated with the set of variables Z that represent external auxiliary
experiments that are assumed to be available for use.
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CHAPTER 3

Transportability Across Studies

3.1 Introduction

The generalizability of empirical findings to new environments, settings or popu-
lations, often called “external validity,” is essential in most scientific explorations.
This chapter treats a particular problem of generalizability, called “transportabil-
ity”, defined as a license to transfer causal e↵ects learned in experimental studies
to a new population, in which only observational studies can be conducted. In
this chapter, we consider instances with only a pair of source and target domains
and assuming that any experiment can be conducted in the source domain.

We introduce a formal representation called “selection diagrams” for express-
ing knowledge about di↵erences and commonalities between populations of in-
terest and, using this representation, we reduce questions of transportability to
symbolic derivations in the do-calculus. This new representation also supports
graphical and algorithmic methods for deciding whether causal e↵ects in the tar-
get population can be inferred from experimental findings in the study population.
When the answer is a�rmative, the procedures identify what experimental and
observational findings need be obtained from the two populations, and how they
can be combined to ensure bias-free transport.

The chapter is organized as follows. In section 3.2, we motivate the question
of transportability through simple examples, and illustrate how the solution de-
pends on the causal story behind the problem. In section 3.3, we formally define
the notion of transportability and reduce it to a problem of symbolic transforma-
tions in do-calculus. In section 3.4, we provide an intuitive su�cient graphical
criterion for deciding transportability and estimating transported causal e↵ects.
In section 3.5, we provide a complete graphical criterion for deciding transporta-
bility and estimating transported causal e↵ects. In section 3.6, we construct an
algorithm based on the graphical criterion for deciding transportability without
relying on algebraic manipulations. We conclude in section 3.7 briefly connecting
transportability with other problems of generalizability that can benefit from the
analysis developed throughout this chapter (e.g., surrogate endpoints).
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3.2 Inference Across Populations: Motivating Examples

To motivate the formal treatment of Section 3.3, we first demonstrate some of
the subtle questions that transportability entails through three simple examples,
graphically depicted in Fig. 3.1.

Example 1. We conduct a randomized trial in Los Angeles (LA) and estimate
the causal e↵ect of exposure X on outcome Y for every age group Z = z as
depicted in Fig. 3.1(a). We now wish to generalize the results to the population
of New York City (NYC), but data alert us to the fact that the study distribution
P (x, y, z) in LA is significantly di↵erent from the one in NYC (call the latter
P ⇤(x, y, z)). In particular, we notice that the average age in NYC is significantly
higher than that in LA. How are we to estimate the causal e↵ect of X on Y in
NYC, denoted P ⇤(y|do(x)).

Our natural inclination would be to assume that age-specific e↵ects are in-
variant across cities and so, if the LA study provides us with (estimates of)
age-specific causal e↵ects P (y|do(x), Z = z), the overall causal e↵ect in NYC
should be

P ⇤(y|do(x)) =
X

z

P (y|do(x), z)P ⇤(z) (3.1)

This transport formula combines experimental results obtained in LA, P (y|do(x), z),
with observational aspects of NYC population, P ⇤(z), to obtain an experimental
claim P ⇤(y|do(x)) about NYC.1

Our first task will be to explicate the assumptions that renders this extrapo-
lation valid. We ask, for example, what must we assume about other confounding
variables beside age, both latent and observed, for Eq. (3.1) to be valid, or, would
the same transport formula hold if Z was not age, but some proxy for age, say, lan-
guage proficiency. More intricate yet, what if Z stood for an exposure-dependent
variable, say hyper-tension level, that stands between X and Y ?

Let us examine the proxy issue first.

Example 2. Let the variable Z in Example 1 stand for subjects language profi-
ciency, and let us assume that Z does not a↵ect exposure (X) or outcome (Y ),
yet it correlates with both, being a proxy for age which is not measured in either
study (see Fig. 3.1(b)). Given the observed disparity P (z) 6= P ⇤(z), how are we

1At first glance, Eq. (3.1) may be regarded as a routine application of “standardization” – a
statistical extrapolation method that can be traced back to a century-old tradition in demog-
raphy and political arithmetic (Wes16; Yul34; LN82; CS10). On a second thought it raises the
deeper question of why we consider age-specific e↵ects to be invariant across populations. See
discussion following Example 2.
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Figure 3.1: Causal diagrams depicting Examples 1–3. In (a) Z represents “age.”
In (b) Z represents “linguistic skills” while age (in hollow circle) is unmeasured.
In (c) Z represents a biological marker situated between the treatment (X) and
a disease (Y ).

to estimate the causal e↵ect P ⇤(y|do(x)) for the target population of NYC from
the z-specific causal e↵ect P (y|do(x), z) estimated at the study population of LA?

The inequality P (z) 6= P ⇤(z) in this example may reflect either age di↵erence
or di↵erences in the way that Z correlates with age. If the two cities enjoy
identical age distributions and NYC residents acquire linguistic skills at a younger
age, then, since Z has no e↵ect whatsoever on X and Y , the inequality P (z) 6=
P ⇤(z) can be ignored and, intuitively, the proper transport formula would be

P ⇤(y|do(x)) = P (y|do(x)) (3.2)

If, on the other hand, the conditional probabilities P (z|age) and P ⇤(z|age) are
the same in both cities, and the inequality P (z) 6= P ⇤(z) reflects genuine age
di↵erences, Eq. (3.2) is no longer valid, since the age di↵erence may be a critical
factor in determining how people react to X. We see, therefore, that the choice of
the proper transport formula depends on the causal context in which population
di↵erences are embedded.

This example also demonstrates why the invariance of Z-specific causal e↵ects
should not be taken for granted. While justified in Example 1, with Z = age, it
fails in Example 2, in which Z was equated with “language skills.” Indeed, using
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Fig. 3.1(b) for guidance, the Z-specific e↵ect of X on Y in NYC is given by:

P ⇤(y|do(x), z) =
X

age

P ⇤(y|do(x), z, age)P ⇤(age|do(x), z)

=
X

age

P ⇤(y|do(x), age)P ⇤(age|z)

=
X

age

P (y|do(x), age)P ⇤(age|z)

Thus, if the two populations di↵er in the relation between age and skill, i.e.,

P (age|z) 6= P ⇤(age|z)

the skill-specific causal e↵ect would di↵er as well.

The intuition is clear. A NYC person at skill level Z = z is likely to be in
a totally di↵erent age group from his skill-equals in Los Angeles and, since it is
age, not skill that shapes the way individuals respond to treatment, it is only
reasonable that Los Angeles residents would respond di↵erently to treatment
than their NYC counterparts at the very same skill level.

The essential di↵erence between Examples 1 and 2 is that age is normally
taken to be an exogenous variable (not assigned by other factors in the model)
while skills may be indicative of earlier factors (age, education, ethnicity) capable
of modifying the causal e↵ect. Therefore, conditional on skill, the e↵ect may be
di↵erent in the two populations.

Example 3. Examine the case where Z is a X-dependent variable, say a disease
bio-marker, standing on the causal pathways between X and Y as shown in Fig.
3.1(c). Assume further that the disparity P (z) 6= P ⇤(z) is discovered in each level
of X and that, again, both the average and the z-specific causal e↵ect P (y|do(x), z)
are estimated in the LA experiment, for all levels of X and Z. Can we, based on
information given, estimate the average (or z-specific) causal e↵ect in the target
population of NYC?2

Here, Eq. (3.1) is wrong for two reasons. First, as in the case of age-proxy, it
matters whether the disparity in P (z) represents di↵erences in susceptibility to
X or di↵erences in propensity to receiving X. In the latter case, Eq. (3.2) would
be valid, while in the former, more information is needed. Second, the overall

2This is precisely the problem that motivated the unsettled literature on “surrogate endpoint”
(Pre89; FGS92; FR02; Bak06; JG09; Pea11), that is, using the e↵ect of X on Z to predict the
e↵ect of X on Y in a population with potentially di↵ering characteristics. An initial solution
to this problem is o↵ered in (PB11a).
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causal e↵ect (in both LA and NYC) is no longer a simple average of the z-specific
causal e↵ects. To witness, consider an unconfounded Markov chain X ! Z ! Y ;
the z-specific causal e↵ect P (y|do(x), z) is P (y|z), independent of x, while the
overall causal e↵ect is P (y|do(x)) = P (y|x) which is clearly dependent on x. The
latter could not be obtained by averaging over the former. The correct weighing
rule is

P (y|do(x)) =
X

z

P (y, z|do(x)) (3.3)

=
X

z

P (y|do(x), z)P (z|do(x)) (3.4)

which reduces to (3.1) only in the special case where Z is una↵ected by X, as is the
case in Fig. 3.1(a). Thus, in general, both P (y|do(x), z) and P (z|do(x)) need be
measured in the experiment before we can transport results to populations with
di↵ering characteristics. In the Markov chain example, if the disparity in P (z)
stems only from a di↵erence in people’s susceptibility to X (say, due to preventive
measures taken in one city and not the other) then the correct transport formula
would be

P ⇤(y|do(x)) =
X

z

P (y|do(x), z)P ⇤(z|x) (3.5)

=
X

z

P (y|z)P ⇤(z|x) (3.6)

which is di↵erent from both (3.1) and (3.2), and hardly makes any use of exper-
imental findings.

In case X and Y are confounded and directly connected, as in Fig. 3.1(c),
it is Eq. (C.11) which provides the correct transport formula (to be proven in
Section 3.4), calling for the z-specific e↵ects to be weighted by the conditional
probabilities P ⇤(z|x), estimated at the target population.

3.3 Formalizing Transportability

3.3.1 Selection diagrams and selection variables

A few patterns emerge from the examples discussed in Section 3.2. First, trans-
portability is a causal, not statistical notion. In other words, the conditions that
license transport as well as the formulas through which results are transported
depend on the causal relations between the variables in the domain, not merely
on their statistics. When we asked, for instance (in Example 3), whether the
change in P (z) was due to di↵erences in P (x) or due to a change in the way
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Z is a↵ected by X, the answer cannot be determined by comparing P (x) and
P (z|x) to P ⇤(x) and P ⇤(z|x). If X and Z are confounded (e.g., Fig. 3.4(e)), it is
quite possible for the inequality P (z|x) 6= P ⇤(z|x) to hold, reflecting di↵erences
in confounding, while the way that Z is a↵ected by X, (i.e., P (z|do(x))) is the
same in the two populations.

Second, licensing transportability requires knowledge of the mechanisms, or
processes, through which population di↵erences come about; di↵erent localiza-
tion of these mechanisms yield di↵erent transport formulae. This can be seen
most vividly in Example 2 (Fig. 3.1(b)) where we reasoned that no weighing is
necessary if the disparity P (z) 6= P ⇤(z) originates with the way language profi-
ciency depends on age, while the age distribution itself remains the same. Yet,
because age is not measured, this condition cannot be detected in the probability
distribution P , and cannot be distinguished from an alternative condition,

P (age) 6= P ⇤(age) and P (z|age) = P ⇤(z|age)

one that may require weighting according to to Eq. (3.1). In other words, every
probability distribution P (x, y, z) that is compatible with the process of Fig.
3.1(b) is also compatible with that of Fig. 3.1(a) and, yet, the two processes
dictate di↵erent transport formulas.

Based on these observations, it is clear that if we are to represent formally
the di↵erences between populations (similarly, between experimental settings or
environments), we must resort to a representation in which the causal mechanisms
are explicitly encoded and in which di↵erences in populations are represented as
local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection
variables,” where each member of S corresponds to a mechanism by which the two
populations di↵er, and switching between the two populations will be represented
by conditioning on di↵erent values of these S variables.

Intuitively, if P (v|do(x)) stands for the distribution of a set V of variables in
the experimental study (with X randomized) then we designate by P ⇤(v|do(x))
the distribution of V if we were to conduct the study on population ⇧⇤ instead
of ⇧. We now attribute the di↵erence between the two to the action of a set S
of selection variables, and write3 4

P ⇤(v|do(x)) = P (v|do(x), s⇤).

3Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and
P (v|do(x), s⇤), respectively. The results, however, will be the same, since only the location of
S enters the analysis.

4Pearl ((Pea95; Pea09b, p. 71)) and (Daw02), for example, use conditioning on auxiliary
variables to switch between experimental and observational studies. (Daw02) further uses such
variables to represent changes in parameters of probability distributions.
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Remark. Similarly to the missing-links in Bayesian networks that encode the
probabilistic invariance in the form of conditional independences, the S-variables
that are missing encode the assumptions of invariance in structural models. For
instance, the absence of a S node pointing to Y in Fig. 3.2(a) is what entails the
age-specific e↵ects to be invariant across the two populations (see more below).

The selection variables in S may represent all factors by which populations
may di↵er or that may “threaten” the transport of conclusions between popula-
tions. For example, the age disparity P (z) 6= P ⇤(z) discussed in Example 1 will
be represented by the inequality

P (z) 6= P (z|s)

where S stands for all factors responsible for drawing subjects at age Z = z to
NYC rather than LA.

This graphical representation, which we will call “selection diagrams” is de-
fined as follows:5

Definition 6 (Selection Diagram). Let hM, M⇤i be a pair of structural causal
models (Definition 1) relative to domains h⇧, ⇧⇤i, sharing a causal diagram G.
hM, M⇤i is said to induce a selection diagram D if D is constructed as follows:

1. Every edge in G is also an edge in D;

2. D contains an extra edge Si ! Vi whenever there exists a discrepancy fi 6=
f ⇤i or P (Ui) 6= P ⇤(Ui) between M and M⇤.

In summary, the S-variables locate the mechanisms where structural discrep-
ancies between the two populations are suspected to take place. Alternatively,
the absence of a selection node pointing to a variable represents the assumption
that the mechanism responsible for assigning value to that variable is the same
in the two populations. In the extreme case, we could add selection nodes to all
variables, which means that we have no reason to believe that the populations
share any mechanism in common, and this, of course would inhibit any exchange
of information among the populations. The invariance assumptions between pop-
ulations, as we will see, will open the door for the transport of some experimental
findings.

For clarity, we will represent the S variables by squares, as in Fig. 3.2, which
uses selection diagrams to encode the three examples discussed in Section 3.2.

5The assumption that there are no structural changes between domains can be relaxed
starting with D = G

⇤ and adding S-nodes following the same procedure as in Def. 6, while
enforcing acyclicity.
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Figure 3.2: Selection diagrams depicting Examples 1–3. In (a) the two popula-
tions di↵er in age distributions. In (b) the populations di↵ers in how Z depends
on age (an unmeasured variable, represented by the hollow circle) and the age
distributions are the same. In (c) the populations di↵er in how Z depends on X.

In particular, Fig. 3.2(a) and 3.2(b) represent, respectively, two di↵erent mecha-
nisms responsible for the observed disparity P (z) 6= P ⇤(z). The first (Fig. 3.2(a))
dictates transport formula (1) while the second (Fig. 3.2(b)) calls for direct, un-
adjusted transport (2). Clearly, if the age distribution in the target is di↵erent
relative to that of the study population (Fig. 3.2(a)), we will represent this dif-
ference in the form of an unspecified influence that operates on the age variable
Z and results in the di↵erence between P ⇤(age) = P (age|S = s⇤) and P (age).

In this chapter, we will address the issue of transportability assuming that sci-
entific knowledge about invariance of certain mechanisms is available and encoded
in the selection diagram through the S nodes. Such knowledge is, admittedly,
more demanding than that which shapes the structure of each causal diagram
in isolation. It is, however, a prerequisite for any scientific extrapolation, and
constitutes therefore a worthy object of formal analysis.

3.3.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing
the concepts of intervention, do-calculus, and identifiability (Section 2.4), we can
now give the notion of transportability a formal definition.

Definition 7 (Transportability). Let D be a selection diagram relative to do-
mains h⇧, ⇧⇤i. Let hP, Ii be the pair of observational and interventional distri-
butions of ⇧, and P ⇤ be the observational distribution of ⇧⇤. The causal relation
R(⇧⇤) = P ⇤(y|do(x), z) is said to be transportable from ⇧ to ⇧⇤ in D if R(⇧⇤) is
uniquely computable from P, P ⇤, I in any model that induces D.
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Two interesting connections between identifiability and transportability are
worth noting. First, note that all identifiable causal relations in D are also
transportable, because they can be computed directly from P ⇤ and require no
experimental information from ⇧. Second, note that given causal diagram G,
one can produce a selection diagram D such that identifiability in G is equiv-
alent to transportability in D. First set D = G, and then add selection nodes
pointing to all variables in D, which represents that the target domain does not
share any mechanism with its counterpart – this is equivalent to the problem of
identifiability because the only way to achieve transportability is to identify R
from scratch in the target population.

While the problems of identifiability and transportability are related, proofs of
non-transportability are more involved than those of non-identifiability for they
require one to demonstrate the non-existence of two competing models compatible
with D, agreeing on {P, P ⇤, I}, and disagreeing on R(⇧⇤).

Definition 7 is declarative, and does not o↵er an e↵ective method of demon-
strating transportability even in simple models. Theorem 5 o↵ers such a method
using a sequence of derivations in do-calculus.

Theorem 5. Let D be the selection diagram characterizing two populations, ⇧
and ⇧⇤, and S a set of selection variables in D. The relation R = P ⇤(y|do(x), z) is
transportable from ⇧ to ⇧⇤ if the expression P (y|do(x), z, s) is reducible, using the
rules of do-calculus, to an expression in which S appears only as a conditioning
variable in do-free terms.

Proof. Every relation satisfying the condition of Theorem 5 can be written as an
algebraic combination of two kinds of terms, those that involve S and those that
do not. The formers can be written as P ⇤-terms and are estimable, therefore, from
observations on ⇧⇤, as required by Definition 7. All other terms, especially those
involving do-operators, do not contain S; they are experimentally identifiable
therefore in ⇧.

This criterion was proven to be both su�cient and necessary for causal e↵ects,
namely R = P (y|do(x)) (see section 3.6).

Theorem 5, though procedural, does not specify the sequence of rules leading
to the needed reduction when such a sequence exists. In the sequel (Theorem 7),
we establish a more e↵ective procedure of confirming transportability, which is
guided by two recognizable subgoals.

Definition 8. (Trivial Transportability)
A causal relation R is said to be trivially transportable from ⇧ to ⇧⇤, if R(⇧⇤)
is identifiable from (G⇤, P ⇤).
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This criterion amounts to an ordinary test of identifiability of causal relations
using graphs, as given by Definition 4. It permits us to estimate R(⇧⇤) directly
from observational studies on ⇧⇤, un-aided by causal information from ⇧.

Example 4. Let R be the causal e↵ect P (y|do(x)) and let the selection diagram
of ⇧ and ⇧⇤ be given by X ! Y  S, then R is trivially transportable, since
R(⇧⇤) = P ⇤(y|x).

Another special case of transportability occurs when a causal relation has
identical form in both domains – no recalibration is needed.

Definition 9. (Direct Transportability)
A causal relation R is said to be directly transportable from ⇧ to ⇧⇤, if R(⇧⇤) =
R(⇧).

A graphical test for direct transportability of R = P ⇤(y|do(x), z) follows from
do-calculus and reads: (S ?? Y |X, Z)GX

; in words, X blocks all paths from S
to Y once we remove all arrows pointing to X and condition on Z. As a concrete
example, this test is satisfied in Fig. 3.1(a), and therefore, the z-specific e↵ects
is the same in both populatons; it is directly transportable.

Remark. The notion of “external validity” as defined by (Man07) (footnote 1)
corresponds to Direct Transportability, for it requires that R retains its valid-
ity without adjustment, as in Eq. (3.2). Such conditions restrict us from using
information from ⇧⇤ to recalibrate R.

Example 5. Let R be the causal e↵ect of X on Y , and let D have a single S
node pointing to X, then R is directly transportable, because causal e↵ects are
independent of the selection mechanism (see Pea09b, pp. 72–73).

Example 6. Let R be the z-specific causal e↵ect of X on Y P ⇤(y|do(x), z) where
Z is a set of variables, and P and P ⇤ di↵er only in the conditional probabili-
ties P (z|pa(Z)) and P ⇤(z|pa(Z)) such that (Z ?? Y |pa(Z)), as shown in Fig.
3.2(b). Under these conditions, R is not directly transportable. However, the
pa(Z)-specific causal e↵ects P ⇤(y|do(x), pa(Z)) are directly transportable, and so
is P ⇤(y|do(x)). Note that, due to the confounding arcs, none of these quantities
is identifiable.

3.4 Transportability of Causal E↵ects - A Graphical Cri-
terion

We now state and prove two theorems that permit us to decide algorithmically,
given a selection diagram, whether a relation is transportable between two pop-
ulations, and what the transport formula should be.
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Figure 3.3: Selection diagrams illustrating S-admissibility. (a) has no S-
admissible set while in (b), W is S-admissible.

Theorem 6. Let D be the selection diagram characterizing two populations, ⇧
and ⇧⇤, and S the set of selection variables in D. The strata-specific causal e↵ect
P ⇤(y|do(x), z) is transportable from ⇧ to ⇧⇤ if Z d-separates Y from S in the
X-manipulated version of D, that is, Z satisfies (Y??S|Z, X)DX

.

Proof.
P ⇤(y|do(x), z) = P (y|do(x), z, s⇤)

From Rule-1 of do-calculus we have: P (y|do(x), z, s⇤) = P (y|do(x), z) whenever
Z satisfies (Y??S|Z) in DX . This proves Theorem 6.

Definition 10. (S-admissibility)
A set T of variables satisfying (Y??S|T,X) in DX will be called S-admissible
(with respect to the causal e↵ect of X on Y ).

Corollary 2. The average causal e↵ect P ⇤(y|do(x)) is transportable from ⇧ to ⇧⇤

if there exists a set Z of observed pre-treatment covariates that is S-admissible.
Moreover, the transport formula is given by the weighting of Eq. (3.1).

Example 7. The causal e↵ect is transportable in Fig. 3.2(a), since Z is S-
admissible, and in Fig. 3.2(b), where the empty set is S-admissible. It is also
transportable by the same criterion in Fig. 3.3(b), where W is S-admissible, but
not in Fig. 3.3(a) where no S-admissible set exists.

Corollary 3. Any S variable that is pointing directly into X as in Fig. 3.4(a),
or that is d-connected to Y only through X can be ignored.

This follows from the fact that the empty set is S-admissible relative to any
such S variable. Conceptually, the corollary reflects the understanding that dif-
ferences in propensity to receive treatment do not hinder the transportability of
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treatment e↵ects; the randomization used in the experimental study washes away
such di↵erences.

We now generalize Theorem 6 to cases involving treatment-dependent Z vari-
ables, as in Fig. 3.2(c).

Theorem 7. The average causal e↵ect P ⇤(y|do(x)) is transportable from ⇧ to
⇧⇤ if either one of the following conditions holds

1. P ⇤(y|do(x)) is trivially transportable

2. There exists a set of covariates, Z (possibly a↵ected by X) such that Z is
S-admissible and for which P ⇤(z|do(x)) is transportable

3. There exists a set of covariates, W that satisfy (X??Y |W,S)DX(W ) and for
which P ⇤(w|do(x)) is transportable.

Proof. 1. Condition (1) entails transportability.

2. If condition (2) holds, it implies

P ⇤(y|do(x)) = P (y|do(x), s) (3.7)

=
X

z

P (y|do(x), z, s)P (z|do(x), s) (3.8)

=
X

z

P (y|do(x), z)P ⇤(z|do(x)) (3.9)

We now note that the transportability of P (z|do(x)) should reduce P ⇤(z|do(x))
to a star-free expression and would render P (y|do(x)) transportable.

3. If condition (3) holds, it implies

P ⇤(y|do(x)) =P (y|do(x), s) (3.10)

=
X

w

P (y|do(x), w, s)P (w|do(x), s) (3.11)

=
X

w

P (y|w, s)P ⇤(w|do(x)) (3.12)

(by Rule-3 of do-calculus)

=
X

w

P ⇤(y|w)P ⇤(w|do(x)) (3.13)

We similarly note that the transportability of P ⇤(w|do(x)) should reduce
P (w|do(x), s) to a star-free expression and would render P ⇤(y|do(x)) trans-
portable. This proves Theorem 7.
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Figure 3.4: Selection diagrams illustrating transportability. The causal e↵ect
P (y|do(x)) is (trivially) transportable in (c) but not in (b) and (f). It is trans-
portable in (a), (d), and (e) (see Corollary 3).

Remark. The test entailed by Theorem 7 is recursive, since the transportability
of one causal e↵ect depends on that of another. However, given that the diagram
is finite and feedback-free, the sets Z and W needed in conditions 2 and 3 of
Theorem 7 would become closer and closer to X, and the iterative process will
terminate after a finite number of steps. This occurs because the causal e↵ects
P ⇤(z|do(x)) (likewise, P ⇤(w|do(x))) is trivially transportable and equals P (z) for
any Z node that is not a descendant of X. Thus, the need for reiteration applies
only to those members of Z that lie on the causal pathways from X to Y .

Example 8. Fig. 3.4(d) requires that we invoke both conditions of Theorem 7,
iteratively. To satisfy condition 2 we note that Z is S-admissible, and we need
to prove the transportability of P ⇤(z|do(x)). To do that, we invoke condition 3
and note that W d-separates X from Z in D. There remains to confirm the
transportability of P ⇤(w|do(x)), but this is guaranteed by the fact that the empty
set is S-admissible relative to W , since (W ?? S). Hence, by Theorem 6 (replac-
ing Y with W ) P ⇤(w|do(x)) is transportable, which bestows transportability on
P ⇤(y|do(x)). Thus, the final transport formula (derived formally in Appendix A)
is:

P ⇤(y|do(x)) =
X

z

P (y|do(x), z)
X

w

P (w|do(x))P ⇤(z|w) (3.14)

The first two factors on the right are estimable in the experimental study, and the
third through observational studies on the target population. Note that the joint
e↵ect P ⇤(y, w, z|do(x)) need not be estimated in the experiment; a decomposition
that results in improved estimation power.

A similar analysis proves the transportability of the causal e↵ect in Fig. 3.4(e)
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Figure 3.5: Selection diagram in which the causal e↵ect is shown to be trans-
portable in multiple iterations of Theorem 7 (see Appendix A).

X Z W V Y

Figure 8: Selection diagram demonstrating the incompleteness of Theorem 2.

Appendix 4

Incompleteness of theorem 2

Figure 8 presents an example in which the relation R = P ∗(Y |do(X)) is transportable using
the criterion of Lemma 1 and, yet, Theorem 2 is too weak to unveil its transportability.

Let us first check case by case the applicability of Theorem 2:

1. R is not trivially transportable (thm. 2/cond. 1) due to confounding X ↔ Z (Tian
and Pearl, 2002);

2. There is no S-admissible set (thm. 2/cond. 2) because the confounding V ↔ Y ;

3. There is no set W which make (X ⊥⊥ Y |W ), due to confounding X ↔ Y ;

However, this quantity is still transportable using the do-calculus, as the following deriva-
tion shows:
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Figure 3.6: Selection diagram in which the e↵ects P ⇤(y|do(x)) is transportable,
but Theorem 7 is incapable to determine it. (See Corollary 8 in Appendix A.)

(see (PB11a)). The model of Fig. 3.4(f) however does not allow for the trans-
portability of P (y|do(x)) because there is no S-admissible set in the diagram and,
furthermore, condition 3 of Theorem 7 cannot be invoked.

Example 9. To illustrate the power of Theorem 7 in discerning transportability
and deriving transport formulae, Fig. 3.5 represents a more intricate selection
diagram, which requires several iteration to discern transportability. The transport
formula for this diagram is given by (derived formally in Appendix A):

P ⇤(y|do(x)) =
X

z

P (y|do(x), z)
X

w

P ⇤(z|w)
X

t

P (w|do(x), t)P ⇤(t)(3.15)

The main power of this formula is to guide investigators in deciding what
measurements need be taken in both the experimental study and the target pop-
ulation. It asserts, for example, that variables U and V need not be measured.
It likewise asserts that the W -specific causal e↵ects need not be estimated in
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the experimental study and only the conditional probabilities P ⇤(z|w) and P ⇤(t)
need be estimated in the target population. The derivation of this formulae is
given in the Appendix A.

Despite its power, Theorem 7 in not complete, namely, it is not guaranteed to
approve all transportable relations or to disapprove all non-transportable ones.
An example of the former is shown in Fig. in 3.6, which motivates the need of an
alternative, perhaps complete (necessary and su�cient) conditions for transporta-
bility. Such conditions have been established in the next sections, where they are
given in a graphical and algorithmic form. Theorem 7 provides, nevertheless, a
simple and powerful method of establishing trasportability in practice.

3.5 Characterizing Transportable Relations

To characterize the class of transportable relations, we need to better understand
when a relationship is non-transportable, which is the main subject of this section.
The following lemma provides an auxiliary tool to prove non-transportability and
is based on refuting the uniqueness property required by Definition 7.

Lemma 1. Let X, Y be two sets of disjoint variables, in population ⇧ and ⇧⇤, and
let D be the selection diagram. P ⇤

x (y) is not transportable from ⇧ to ⇧⇤ if there
exist two causal models M1 and M2 compatible with D such that P1(V ) = P2(V ),
P ⇤

1 (V ) = P ⇤
2 (V ), P1(V \ W |do(W )) = P2(V \ W |do(W )), for any set W , all

families have positive distribution, and P ⇤
1 (y|do(x)) 6= P ⇤

2 (y|do(x)).

Proof. Let I be the set of interventional distributions P (V \W |do(W )), for any
set W . The latter inequality rules out the existence of a function from P, P ⇤, I
to P ⇤

x (y).

Lemma 1 explicitly indicates that proofs of non-transportability are more in-
volved than those of non-identifiability, showing that to prove non-transportability
one needs to construct two models agreeing on hP, I, P ⇤i, while to prove non-
identifiability is only required the models to agree on the distribution P .

The simplest non-transportable structure is an extension of the famous ‘bow
arc’ graph named here ‘s-bow arc’, see Fig. 3.7(a). The s-bow arc has two
endogenous nodes: X, and its child Y , sharing a hidden exogenous parent U , and
a S-node pointing to Y . This and similar structures that prevent transportability
will be useful in our proof of completeness, which requires a demonstration that
whenever a method fails to transport a causal relation, this relation is indeed
non-transportable.

Theorem 8. P ⇤
x (y) is not transportable in the s-bow arc graph.
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X YZ
(b)

S S

(a)
X Y

Figure 3.7: (a) Smallest selection diagram in which P (y|do(x)) is not trans-
portable (s-bow graph). (b) A selection diagram in which even though there is
no S-node pointing to Y , the e↵ect of X on Y is still not-transportable due to
the presence of a sC-tree (see Corollary 5).

Proof. The proof will show a counter-example to the transportability of P ⇤
x (Y )

through two models M1 and M2 that agree in hP, P ⇤, Ii and disagree in P ⇤
x (y).

Assume that all variables are binary. Let the model M1 be defined by the
following system of structural equations: X1 = U, Y1 = ((X � U) � S), P1(U) =
1/2, and M2 by the following one: X2 = U, Y2 = S_(X�U), P2(U) = 1/2, where
� represents the exclusive or function.

Lemma 2. The two models agree in the distributions hP, P ⇤, Ii.

Proof. We show that the following equations must hold for M1 and M2:
8
<

:

P1(X|S) = P2(X|S), S = {0, 1}
P1(Y |X, S) = P2(Y |X, S), S = {0, 1}
P1(Y |do(X), S = 0) = P2(Y |do(X), S = 0)

for all values of X, Y . The equality between Pi(X|S) is obvious since (S ?? X)
and X has the same structural form in both models. Second, let us construct the
truth table for Y :

X S U Y1 Y2

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

To show that the equality between Pi(Y = 1|X, S = 0), X = {0, 1} holds, we
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rewrite it as follows:

Pi(Y = 1|X, S = 0) =
Pi(Y = 1|X, S = 0, U = 1)Pi(X|U = 1)Pi(U = 1)

Pi(X)

+
Pi(Y = 1|X, S = 0, U = 0)Pi(X|U = 0)Pi(U = 0)

Pi(X)
(3.16)

In eq. (3.16), the expressions for X = {0, 1} are functions of the tuples {(X =
1, S = 0, U = 1), (X = 0, S = 0, U = 0)}, which evaluate to the same value in
both models. Similarly, the expressions Pi(Y = 1|X, S = 1) for X = {0, 1} are
functions of the tuples {(X = 1, S = 1, U = 1), (X = 0, S = 1, U = 0)}, which
also evaluate to the same value in both models.

We further assert the equality between the interventional distributions in ⇧,
which can be written using the do-calculus as

Pi(Y = 1|do(X), S = 0) =
X

U

Pi(Y |do(X), S = 0, U)Pi(U |do(X), S = 0)

= Pi(Y = 1|X, S = 0, U = 1)Pi(U = 1)

+ Pi(Y = 1|X, S = 0, U = 0)Pi(U = 0), X = {0, 1} (3.17)

Evaluating this expression points to the tuples {(X = 1, S = 0, U = 1), (X =
1, S = 0, U = 0)} and {(X = 0, S = 0, U = 1), (X = 0, S = 0, U = 0)}, which
map to the same value in both models.

Lemma 3. There exist values of X, Y such that P1(Y |do(X), S = 1) 6= P2(Y |do(X), S =
1).

Proof. Fix X = 1, Y = 1, and let us rewrite the desired quantity in ⇧⇤ as

Pi(Y = 1|do(X = 1), S = 1) =
X

U

Pi(Y |do(X = 1), S = 1, U)Pi(U |do(X = 1), S = 1)

= Pi(Y = 1|X = 1, S = 1, U = 1)Pi(U = 1)

+ Pi(Y = 1|X = 1, S = 1, U = 0)Pi(U = 0) (3.18)

Since Ri is a function of the tuples {(X = 1, S = 1, U = 1), (X = 1, S = 1, U =
0)}, it evaluates in M1 to {1, 1} and in M2 to {1, 0}.

Hence, together with the uniformity of P (U), it follows that R1 = 1 and
R2 = 1/2, which finishes the proof.

By Lemma 1, Lemmas 2 and 3 prove Theorem 8.
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The concept of confounded components (C-components) was introduced in
(TP02) to represent clusters of variables connected through bidirected edges,
and was instrumental in establishing a number of conditions for ordinary identifi-
cation. If G is not a C-component itself, it can be uniquely partitioned into a set
C(G) of C-components. We recast this concept in the context of transportability.6

Definition 11 (sC-component). Let G be a selection diagram such that a subset
of its bidirected arcs forms a spanning tree over all vertices in G. Then G is a
sC-component (selection confounded component).

A special subset of C-components that embraces the ancestral set of Y was
noted by (SP06b) to play an important role in deciding identifiability – this
observation can also be applied to transportability, as formulated next.

Definition 12 (sC-tree). Let G be a selection diagram such that C(G) = {G}, all
observable nodes have at most one child, there is a node Y , which is a descendent
of all nodes, and there is a selection node pointing to Y . Then G is called a
Y -rooted sC-tree (selection confounded tree).

The presence of this structure (and generalizations) will prove to be an obsta-
cle to transportability of causal e↵ects. For instance, the s-bow arc in Fig. 3.7(a)
is a Y -rooted sC-tree where we know P ⇤

x (y) is not transportable there.

In certain classes of problems, the absence of such structures will prove suf-
ficient for transportability. One such class is explored below, and consists of
models in which the set X coincides with the parents of Y .

Theorem 9. Let G be a selection diagram. For any node Y , the e↵ects P ⇤
Pa(Y )(y)

is transportable if there is no subgraph of G which forms a Y -rooted sC-tree.

Proof. See Appendix A.

Theorem 9 provides a tractable transportability condition for the Controlled
Direct E↵ect (CDE) – a key concept in modern mediation analysis, which permits
the decomposition of e↵ects into their direct and indirect components (Pea01;
Pea12b). CDE is defined as the e↵ect of X on Y when all other parents of Y are
held constant, and it is identifiable if and only if P ⇤

Pa(Y )(y) is identifiable (Pearl,
2009, pp. 128).

6Departing from results given in (SGS93; GP95; PR95; Hal98; KM99), the advent of C-
components complements the notion of inducing path, which was earlier introduced in (VP90),
and opened the path for several observations culminating in the results proving completeness
of the do-calculus for non-parametric identification of causal e↵ects by (HV06a; SP06b).
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X YA B C

Figure 3.8: Example of a selection diagram in which P (Y |do(X)) is not trans-
portable, there is no sC-tree but there is a sC-tree.

The selection diagram in Fig. 3.2(a) does not contain any Y -rooted sC-trees
as subgraphs, and therefore the direct e↵ects (causal e↵ects of Y ’s parents on Y )
is indeed transportable. In fact, the transportability of CDE can be determined
by a more visible criterion:

Corollary 4. Let G be a selection diagram. Then for any node Y , the direct
e↵ect P ⇤

Pa(Y )(y) is transportable if there is no S node pointing to Y .

Proof. See Appendix A.

Generalizing to arbitrary e↵ects, the following result provides a necessary
condition for transportability whenever the whole graph is a sC-tree.

Theorem 10. Let G be a Y -rooted sC-tree. Then the e↵ects of any set of nodes
in G on Y are not transportable.

Proof. See Appendix A.

The next corollary demonstrates that sC-trees are obstacles to the trans-
portability of P ⇤

x (y) even when they do not involve Y , i.e., transportability is
not a local problem – if there exists a node W that is an ancestor of Y but not
necessarily “near” it, transportability is still prohibited (see Fig. 3.7(b)). This
fact anticipates that transporting causal e↵ects for singletons is not necessarily
easier than the general problem of transportability.

Corollary 5. Let G be a selection diagram, and X and Y a set of variables. If
there exists a node W that is an ancestor of some node Y 2 Y such that there
exists a W -rooted sC-tree which contains any variables in X, then P ⇤

x (y) is not
transportable.

Proof. See Appendix A.
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We now generalize the definition of sC-trees (and Theorem 10) in two ways:
first, Y is augmented to represent a set of variables; second, S-nodes can point
to any variable within the sC-component, not necessarily to root nodes. For in-
stance, consider the graph G in Fig. 3.8. Note that there is no Y -rooted sC-tree
nor W -rooted sC-tree in G (where W is an ancestor of Y ), and so the previous
results cannot be applied even though the e↵ect of X on Y is not transportable
in G – still, there exists a Y -rooted sC-forest in G, which will prevent the trans-
portability of the causal e↵ect.

Definition 13 (sC-forest). Let G be a selection diagram, where Y is the maximal
root set. Then G is a Y -rooted sC-forest if G is a sC-component, all observable
nodes have at most one child, and there is a selection node pointing to some vertex
of G (not necessarily in Y ).

We next conveniently introduce a structure that witnesses non-transportability
characterized by a pair of sC-forests. Transportability will be shown impossible
whenever such structure exists as an edge subgraph of the given selection diagram.

Definition 14 (s-hedge). Let X, Y be set of variables in G. Let F, F 0 be R-rooted
sC-forests such that F \X 6= 0, F 0 \X = 0, F 0 ✓ F , R ⇢ An(Y )GX

. Then F
and F 0 form a s-hedge for P ⇤

x (y) in G.

For instance, in Fig. 3.8, the sC-forests F 0 = {C, Y }, and F = F 0[{X, A, B}
form a s-hedge to Px(y). 7 The idea here is similar to the hedge, and we can
see a s-hedge as a growing sC-forest F 0, which doesn’t intersect X, to a larger
sC-forest F that do intersect X.

We state below the formal connection between s-hedges and non-transportability.

Theorem 11. Assume there exist F, F 0 that form a s-hedge for P ⇤
x (y) in ⇧ and

⇧⇤. Then P ⇤
x (y) is not transportable from ⇧ to ⇧⇤.

Proof. See Appendix A.

To prove that the s-hedges characterize non-transportability in selection dia-
grams, we construct in the next section an algorithm which transport any causal
e↵ects that do not contain a s-hedge.

7 Note that, by definition, at least one S-node has to appear in both F
0
, F .

40



3.6 A Complete Algorithm For Transportability of Joint
E↵ects

The algorithm proposed to solve transportability is called sID (see Fig. 3.9)
and extends previous analysis and algorithms of identifiability given in (Pea95;
KM99; TP02; SP06b; HV06a), and we choose to start with the version called
ID (SP06b) since the hedge structure is explicitly employed, which will show to
be instrumental to prove completeness. We build on two observations developed
along the chapter:

1. Transportability: Causal relations can can be partitioned into trivially and
directly transportable.

2. Non-transportability: The existence of a s-hedge as an edge subgraph of
the inputted selection diagram can be used to prove non-transportability.

The algorithm sID first applies the typical c-component decomposition on top of
the inputted selection diagram D (which, by definition, is also a causal diagram
of ⇧⇤), partitioning the original problem into smaller blocks (call these blocks
sc-factors) until either the entire expression is transportable, or it runs into the
problematic s-hedge structure.

More specifically, for each sc-factor Q, sID tries to directly transport Q. If it
fails, sID tries to trivially transport Q, which is equivalent to solving an ordinary
identification problem. sID alternates between these two types of transportabil-
ity, and whenever it exhausts the possibility of applying these operations, it exits
with failure with a counterexample for transportability – that is, the graph local
to the faulty call witnesses the non-transportability of the causal query since it
contains a s-hedge as edge subgraph.

Before showing the more formal properties of sID, we demonstrate how sID
works through the transportability of Q = P ⇤(y|do(x)) in the graph in Fig. 1(c).

Since D = An(Y ) and C(D \ {X}) = (C0, C1, C2), where C0 = D({Z}),
C1 = D({W}), and C2 = D({V, Y }), we invoke line 4 and try to transport
respectively Q0 = P ⇤

x,w,v,y(z), Q1 = P ⇤
x,z,v,y(w), and Q2 = P ⇤

x,z,w(v, y). Thus the
original problem reduces to transporting

P
z,w,v P ⇤

x,w,v,y(z)P ⇤
x,z,v,y(w)P ⇤

x,z,w(v, y).

Evaluating the first expression, sID triggers line 2, noting that nodes that
are not ancestors of Z can be ignored. This implies that P ⇤

x,w,v,y(z) = P ⇤
x (z)

with induced subgraph G0 = {X ! Z, X  Uxz ! Z}, where Uxz stands for
the hidden variable between X and Z. sID goes to line 5, in which in the local
call C(D \ {X}) = {G0}. Note that in the ordinary identifiability problem the
procedure would fail at this point, but sID proceeds to line 6 testing whether
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function sID(y, x, P ⇤, I, D)
INPUT: x, y value assignments, P ⇤ observational distribution in ⇧⇤, I set of
interventional distributions in ⇧, D a selection diagram, S set of selection nodes.
OUTPUT: Expression for P ⇤

x (y) in terms of P ⇤, I or FAIL(F, F 0).

1 if x = ;, return
P

V \Y P ⇤(V )
2 if V \ An(Y )D 6= ;,

return sID(y, x \ An(Y )D,
P

V \An(Y )D
P ⇤, An(Y )D)

3 Set W = (V \X) \ An(Y )DX
.

if W 6= ;, return sID(y, x [ w, P ⇤, D)
4 if C(D \X) = {C0, C1, ..., Ck},

return
P

V \{Y,X}
Q

i sID(ci, V \ ci, P ⇤, D)
5 if C(D \X) = {C0}
6 if (S ?? Y | X)DX

, return P (y|do(x))
7 if C(D) = {D}, FAIL(D, C0)

8 if C0 2 C(D), return
P

C0\Y
Q

i|Vi2C0
P ⇤(vi|V (i�1)

D )
9 if (9C 0)C0 ⇢ C 0 2 C(D), return sID(y, x \ C 0,Q

i|Vi2C0 P ⇤(Vi|V (i�1)
D \ C 0, v(i�1)

D \ C 0), C 0).

Figure 3.9: Modified version of identification algorithm capable of recognizing
transportable relations.

(S ?? Z|X)DX
. The test comes true, which makes sID directly transport Q0

with data from the experimental population ⇧, i.e., P ⇤
x (z) = Px(z).

Evaluating the second expression, sID again triggers line 2, which implies
that P ⇤

x,z,v,y(w) = P ⇤
x,z(w) with induced subgraph G1 = {X ! Z, Z ! W,X  

Uxz ! Z}. sID goes to line 5, in which in the local call C(D\{X}) = {G1}. Thus
it proceeds to line 6 testing whether (S ?? W |X, Z)DX,Z

. The test comes true
again, which makes sID directly transport Q1 with data from the experimental
population ⇧, i.e., P ⇤

x,z(w) = Px,z(w).

Evaluating the third expression, sID goes to line 5 in which C(D\{X, Z, W}) =
{G2}, where G2 = {V ! Y, S ! V, V  Uvy ! Y }. It proceeds to line 6 testing
whether (S ?? W |X, Z)DX,Z

, which is false in this case. It tests the other con-
ditions until it reaches line 9, in which C 0 = G0 [ G2 [ {X  Uxy ! Y }. Thus
it tries to transport Q0

2 = P ⇤
x,z(v, y) over the induced graph C 0, which stands for

ordinary identification, and trivially yields
P

v P ⇤(v|w)P ⇤(y|v, w). The return of
these calls composed indeed coincide with the expression provided in the first
section.
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We prove next soundness and completeness of sID.

Theorem 12 (soundness). Whenever sID returns an expression for P ⇤
x (y), it is

correct.

Proof. See Appendix A.

Theorem 13. Assume sID fails to transport P ⇤
x (y) (executes line 7). Then

there exists X 0 ✓ X, Y 0 ✓ Y , such that the graph pair D, C0 returned by the fail
condition of sID contain as edge subgraphs sC-forests F , F 0 that form a s-hedge
for P ⇤

x0(y
0).

Proof. See Appendix A.

Corollary 6 (completeness). sID is complete.

Proof. See Appendix A.

Corollary 7. P ⇤
x (y) is transportable from ⇧ to ⇧⇤ in G if and only if there is

not s-hedge for Px0(y0) in G for any X 0 ✓ X and Y 0 ✓ Y .

Proof. See Appendix A.

Theorem 14. The rules of do-calculus, together with standard probability ma-
nipulations are complete for establishing transportability of all e↵ects of the form
P ⇤

x (y).

Proof. See Appendix A.

3.7 Conclusions

Given judgemental assessments of how target populations may di↵er from those
under study, the chapter o↵ers a formal representational language for making
these assessments precise and for deciding whether causal relations in the target
population can be inferred from those obtained in an experimental study.

This chapter introduces a set of intuitive conditions for deciding transporta-
bility. When such inference is possible, the criteria provided by Theorems 6 and 7
yield transport formulae, namely, principled ways of calibrating the transported
relations so as to properly account for di↵erences in the populations. These
transport formulae enable the investigator to select the essential measurements
in both the experimental and observational studies, and thus minimize measure-
ment costs and sample variability.
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Despite the power and intuitiveness of these results, they are only su�cient to
decide transportability, so we seek a complete characterization for the class of all
transportable relations. Accordingly, Theorem 7 provides the first step towards
this direction, introducing a necessary graphical condition for deciding trans-
portability. In the sequel, we provide complete (necessary and su�cient) algo-
rithmic (Corollary 5) and graphical (Corollary 6) conditions for deciding whether
causal e↵ects in the target population are estimable from both the statistical in-
formation available and the causal information transferred from the experiments.
Furthermore, the procedure known as sID (Fig. 3.9) not only decides, but also
returns a transport formula in case it exists, that is, a way of combining ob-
servational and experimental information to synthesize bias-free estimate of the
desired causal relation. Finally, Theorem 10 shows that the algebraic method of
the do-calculus is also complete for establishing transportability.

The inferences licensed hitherto represent the worst-case analysis, since we
have assumed, in the tradition of non-parametric modeling, that every variable
may potentially be an e↵ect-modifier (or moderator.) If one is willing to assume
that certain relationships are non-interactive (as in additive models), additional
transport licenses may be issued, beyond those sanctioned by these results.

While the results of this chapter concern the transfer of causal information
from experimental to observational studies, the method can also benefit in trans-
porting statistical findings from one observational study to another ((PB11a)).
The methodology described here is also applicable in the selection of surrogate
endpoints, namely, variables that would allow good predictability of an outcome
for both treatment and control. ((EH89)) Using the representational power of
“selection diagrams”, we have proposed a causally principled definition of “surro-
gate endpoint” and suggested how valid surrogates can be identified in a complex
network of cause-e↵ect relationships (PB11a).

Of course, our entire analysis is based on the assumption that the analyst is in
possession of su�cient background knowledge to determine, at least qualitatively,
where two populations may di↵er from one another. In practice, such knowledge
may only be partially available and, as is the case in every mathematical exercise,
the benefit of the analysis lies primarily in understanding what knowledge is
needed for the task to succeed and how sensitive conclusions are to knowledge
that we do not possess.

This chapter provides the semantics as well as a set of graphical and algo-
rithmic conditions for deciding transportability, which constitutes the blueprint
for any analysis of problems within the transportability family. In the sequel, we
build on these results and relax two assumptions made throughout this chapter:
we allow for many source domains (instead of only one) and we assume that only
a limited set of experiments are available for use (instead of all experiments).
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CHAPTER 4

Transportability from Multiple Studies with
Limited Experiments

4.1 Introduction

In this chapter, we consider the problem of transferring causal knowledge col-
lected in several heterogeneous domains to a target domain in which only pas-
sive observations and limited experimental data can be collected, which we call
mz-transportability. Specifically, the mz-transportability problem concerns the
transfer of causal knowledge from a heterogeneous collection of source domains
⇧ = {⇡1, ...,⇡n} to a target domain ⇡⇤. In each domain ⇡i 2 ⇧, experiments over
a set of variables Zi can be performed, and causal knowledge gathered. In ⇡⇤,
potentially di↵erent from ⇡i, only passive observations and limited experimen-
tal data over Z⇤ can be collected. This problem generalizes the one-dimensional
version of transportability with unrestricted experiments previously studied.

Interestingly, while certain e↵ects might not be individually transportable to
the target domain from the experiments in any of the available sources, combining
di↵erent pieces from the various sources may enable their estimation. Conversely,
it is also possible that e↵ects are not estimable from multiple experiments in
individual domains, but they are from experiments scattered throughout domains.

The goal of this chapter is to make sense of these intricacies, and more gener-
ally, to understand under what conditions a causal e↵ect is (non-parametrically)
estimable from the available data scattered throughout the di↵erent domains. We
provide graphical and algorithmic conditions for deciding mz-transportability.

The chapter is organized as follows. In section 4.2, we show relaxations of
the assumptions of transportability as encountered in practical settings in the
literature. First, we show examples in which a causal relation is not transporta-
bility from the individual domains but is transportable from multiple domains
combined. Second, we show examples of transportability in which only limited
experiments are available in the source domain. In section 4.4, we elaborate on
the combination of the previous relaxations noticing that it yields non-trivial in-
stances of transportability, which we call mz-transportability. Then, we formally
define mz-transportability and reduce it to a problem of symbolic transformations

45



(b)
X YZ

(a)
X YZ

Figure 4.1: Selection diagrams illustrating impossibility of obtaining P ⇤(y|do(x))
through individual transportability from ⇡a and ⇡b to ⇡⇤, yet a more elaborated
analysis yield the desired result combining di↵erent pieces from both domains.

in do-calculus. In section 4.5, we establish a necessary and su�cient condition for
deciding the feasibility of mz-transportability, i.e., whether causal e↵ects in the
target domain are estimable from the information available. In section 4.5, we
construct an algorithm based on the graphical criterion for deciding transporta-
bility without relying on algebraic manipulations. We show that the algorithm
for computing the transport formula is in fact complete, that is, failure of the
algorithm implies non-existence of a transport formula. Finally, we show that
the do-calculus is complete for the mz-transportability class.

4.2 Relaxations of Transportability

4.2.1 Transportability from Multiple Domains

Consider the problem of transporting causal relations when unrestricted experi-
ments are available in di↵erent source domains, which we call m-transportability.
One might surmise that multiple pairwise transportability, as studied in the pre-
vious chapter, would be su�cient to solve this problem, but this is not the
case. To witness, consider Fig. 4.1 which concerns the transference of experi-
mental results from two sources ({⇡a, ⇡b}) to infer the e↵ect of X on Y in ⇡⇤,
R(⇡⇤) = P ⇤(y|do(x)). In these graphs, X may represent the treatment (e.g.,
drug), Z represents an intermediate variable (e.g., biomarker), and Y represents
the outcome (e.g., survival).

If we try to directly transport R(⇡⇤) from each source domain separately,
this is not allowed since we can rewrite P ⇤(y|do(x)) = P (y|do(x), S), and the
condition for directly transporting this relation does not hold, i.e., it is not true
that (S ?? Y |X)Di

X
in ⇡i, for i = {a, b}.5 However, we can decompose the target

5Indeed, the impossibility follows more specifically from the completeness of the do-calculus
for ordinary transportability as shown in the previous chapter (Thm. 14).
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W3

W2

W1

W3

W2

W1

(b)

YZXZX

(a)

Y

Figure 4.2: Selection diagrams illustrating a more involved analysis that yields
an estimand (Eq. 4.5) for the target quantity which combines information from
three domains, the two sources ⇡a and ⇡b together with the target ⇡⇤.

relation recursively as follows:

R(⇡⇤) =
X

z

P ⇤(y|do(x), z)P ⇤(z|do(x)) (4.1)

=
X

z

P ⇤(y|do(x), do(z))P ⇤(z|do(x)) (4.2)

=
X

z

P ⇤(y|do(z))P ⇤(z|do(x)), (4.3)

where Eq. (4.1) follows by conditioning on Z, Eq. (4.2) follows by rule 2 of the
do-calculus since (Z ?? Y |X)DXZ

holds, and Eq. (4.3) follows from rule 3 of the

do-calculus since (X ?? Y |Z)DX,Z
holds, where D is the causal diagram of ⇡⇤

(despite the S-nodes).

Finally, we can now directly transport each of these pieces individually from
the source domains noticing that P ⇤(y|do(z)) is directly transportable from ⇡b giv-
ing that (S ?? Y |Z)

D
(b)

Z

, and P ⇤(z|do(x)) is directly transportable from ⇡a given

that (S ?? Z|X)
D

(a)

X

. These yields, respectively, P ⇤(y|do(z)) = P (b)(y|do(z)) and

P ⇤(z|do(x)) = P (a)(z|do(x)), and therefore the target relation can be written as,

R(⇡⇤) =
X

z

P (a)(z|do(x))P (b)(y|do(z)), (4.4)

which is a type of convolution, we combine over the entire support of Z the e↵ect
X on Z on ⇡a (P (a)(z|do(x))) with the e↵ect of Z on Y in ⇡b (P (b)(y|do(z))).
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(a) (b)

S

S

Figure 4.3: Collection of heterogeneous selection diagrams in which the target
relation P ⇤(y|do(x)) is not m-transportable from both domains.

For a somewhat more involved example, consider the selection diagrams in
Fig. 4.2, and the task of deciding whether there exists an unbiased estimand for
the relation R(⇡⇤) = P ⇤(y|do(x)). It is not di�cult to show that R(⇡⇤) is not
(individually) transportable from the domains ⇡a and ⇡b (Thm. 14), however, it
turns out that this relation is transportable from the domains when treated in
conjunction (i..e., m-transportable). A less trivial analysis is required in this case
though, which yields the following transport formula for R(⇡⇤):

X

w1,w2,w3,z

P ⇤(y|z)P (a)
x,w2,w3

(w1, z)P ⇤(w2|w1)P
(b)
x,w1,w2

(w3) (4.5)

In this case we have a witness showing that R(⇡⇤) is transportable from the
combination of the two sources together with the target domain, but the question
arises how to perform a systematic decomposition guided by a guarantee that
when it fails, there is no alternative way to decompose the target relation R(⇡⇤)
in order to transport it from the available data in the source domains.

Consider again the s-bow arc (Fig. 3.7(a)), which is the smallest graph where
R(⇡⇤) = P ⇤(y|do(x)) is not transportable (Thm. 8). This structure can be triv-
ially extended to the m-transportability case assuming that two domains have
selection diagrams identical to the s-bow arc. It is obvious that R(⇡⇤) cannot
be obtained from the available data; note that there is no possible alternative
decomposition for R, and R is neither trivially nor directly transportable from
any of the domains. The reduction of m-transportability to ordinary transporta-
bility can be justified for any causal relation and collection of domains where
(1) the selection diagrams coincide and (2) the target quantity is not pairwise-
transportable, which implies that the target relation is not m-transportable.

This, however, does not exhaust the possible cases of impossibility of m-
transportability. Consider Fig. 4.3 in which the source domains do not share
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selection diagrams and the target quantity is R(⇡⇤) = P ⇤(y|do(x)). If an oracle
claims that R(⇡⇤) is not m-transportable, it is still not trivial to show that this
claim is true. Formally, we need to display two models M1, M2 such that the
following relations hold:

8
>>>>><

>>>>>:

P (i)
M1

(X, Z, Y ) = P (i)
M2

(X, Z, Y ),

P (i)
M1

(X, Y |do(Z)) = P (i)
M2

(X, Y |do(Z)),

P (i)
M1

(X, Z|do(Y )) = P (i)
M2

(X, Z|do(Y )),

P (i)
M1

(Y |do(X), do(Z)) = P (i)
M2

(Y |do(X), do(Z)),
P ⇤

M1
(X, Z, Y ) = P ⇤

M2
(X, Z, Y ),

(4.6)

for i = {a, b} and all values of X, Y, Z, and also,

P ⇤
M1

(Y |do(X)) 6= P ⇤
M2

(Y |do(X)), (4.7)

for some value of X and Y . This is certainly a more involved task than proving
lack of ordinary transportability since there are more equalities and inequalities
constraints to maintain. We show how to construct such a certificate in Appendix
B, which will be useful for the completeness proof of the most general case.

4.2.2 Transportability with Limited Experiments

In real world applications, it may happen that certain controlled experiments
cannot be conducted in the source environment (for financial, ethical, or technical
reasons), so only a limited amount of experimental information can be gathered.
A natural question arises whether the investigator in possession of a limited set
of experiments would still be able to estimate the desired e↵ects at the target.
For simplicity, in this section, we consider the case when only one source domain
is available. We call this variant the z-transportability problem.

To illustrate z-transportability, consider Fig. 4.4(a) and assume we wish,
again, to estimate P ⇤(y|do(x)) but, now, X cannot be randomized in the source.
Instead, variable Z can be randomized, and we ask whether we can still estimate
P ⇤(y|do(x)) despite this constraint and despite the fact that the two populations
di↵er in the prior probabilities of Z (as indicated by the S-node). 1

Fortunately, in this case, the problem has a positive solution as can be seen
from the following derivation. First apply Rule 3 of the do-calculus to add do(z)
to the expression,

P ⇤(y|do(x)) = P ⇤(y|do(x), do(z)) since (Y ?? Z|X)GXZ

1A typical example is whether we can estimate the e↵ect of cholesterol (X) on heart failure
(Y ) by experiments on diet (Z) given that cholesterol levels cannot be randomized.
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Figure 4.4: Selection diagrams illustrating transportability with limited experi-
ments of the causal e↵ect R = P ⇤(y|x̂). R can be transported with experiments
on Z in model (a), but not in (b) and (c).

Then apply Rule 2 to exchange do(x) with x:

P ⇤(y|do(x), do(z)) = P ⇤(y|x, do(z)) since (Y ?? X|Z)GXZ

This last expression can be rewritten as,

P ⇤(y|x, do(z)) = P (y|x, do(z), s) =
P (y, x|do(z))

P (x|do(z))
, (4.8)

where the first equality follows from the definition of selection diagram and the
second using the separation of S from {X, Y } after intervening on Z. Therefore,
performing an experiment on Z in ⇧ su�ces to estimate the causal e↵ect of X
on Y in ⇧⇤ (without resorting to experimentation on X.)

There are subtle features of z-transportability that are worth illustrating.
Whereas the graph in Fig. 4.4(a) permits the e↵ect to be z-transported (with
experiments over Z), the graph in Fig. 4.4(b) does not. One is tempted to
explain this di↵erence by noting that in the mutilated graph from which the
edges incoming to Z are cut (to simulate intervention), the causal e↵ect of X on
Y is identifiable in Fig. 4.4(a) but not in (b). The fact that this is not the case
is shown in the graph in Fig. 4.4(c). The resulting mutilated graph in this case
entails both the identifiability and transportability of P ⇤(y|do(x)), but this e↵ect
is neither identifiable, nor transportable, nor z-transportable (see Appendix B).

In a more involved manner, one might surmise that the solution for the z-
identification problem (Chapter 6) could yield the solution for z-transportability
– z-identification asks for expressing the causal relation R = P (y|do(x)) in terms
of experiments on Z (in a fixed domain ⇧) – however, this turns out to not
be the case as well. To witness, consider the diagram G in Fig. 4.5(a), and
note that even though R is z-identifiable in ⇧, it is not the case that R is z-
transportable. (The reason is that the S-node pointing to W , which is in a
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Figure 4.5: Selection diagrams illustrating the non-trivial relationship among the
problems of z-identifiability, transportability, and restricted transportability.

confounded relationship with Y , disallows transportability, but is unrelated to
its identification counterpart.)

Furthermore, consider the same task in regard to Fig. 4.5(b), a simple analysis
for z-identification in the source would yield expression similar to the one in Fig.
4.4(a),

P (y|do(x)) =
P (y, x|do(z))

P (x|do(z))
, (4.9)

but in this case, the availability of the ratio in eq. (4.9) is not su�cient for
estimating the target quantity R = P ⇤(y|do(x)) in ⇧⇤. Interestingly enough, the
quantity R is z-transportable through the transport formula

P ⇤(y|do(x)) =
X

w

P (y|x, w, do(z))P ⇤(w|x, z), (4.10)

which combines experimental results over Z obtained in the source ⇧, P (y|x, w, do(z)),
with observational aspects of the target domain, P ⇤(w|x, z), to obtain an exper-
imental claim P ⇤(y|do(x)) about the target (see Appendix B).

One might further surmise that the s-hedge structure (Def. 14), which char-
acterizes the set of transportable relations, could lead to a characterization for
z-transportability as well, but this is not the case. To witness, note that there
is no s-hedge in Fig. 4.4(b) and 4.5(c), so the e↵ect R = P ⇤(y|do(x)) is trans-
portable in both scenarios, but R is not z-transportable in these cases. Specifi-
cally, there is no s-hedge in Fig. 4.4(b) because, even though there are s⇤-trees
F 0 = {Y }, F = {X, Z}[F 0, there is not a selection node pointing F 0. Clearly, if
a quantity R is not transportable, R is also not z-transportable. The converse is
obviously not true, when R is transportable, it is the case that R might be either
z-transportable (e.g., Fig. 4.5(b)) or not (e.g., Fig. 4.4(b) and 4.5(c)).
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In spite of these observations, it is clear that z-transportability reduces neither
to ordinary transportability nor to z-identifiability, which leaves open the question
of how to algorithmically characterize transportability with limited experiments.

4.3 Formalizing mz-Transportability

In practice, it is common that di↵erent experiments can be conducted in vari-
ous di↵erent domains, which can be seen as the combination of the relaxations
previously discussed and constitutes the so-called mz-transportability problem.

One might surmise that multiple pairwise z-transportability would be suf-
ficient to solve mz-transportability, but this is not the case. To witness, con-
sider Fig. 4.6(a,b) which concerns the transport of experimental results from two
sources ({⇡a, ⇡b}) to infer the e↵ect of X on Y in ⇡⇤, R = P ⇤(y|do(x)). In these
diagrams, X may represent the treatment (e.g., cholesterol level), Z1 represents
a pre-treatment variable (e.g., diet), Z2 represents an intermediate variable (e.g.,
biomarker), and Y represents the outcome (e.g., heart failure). We assume that
experimental studies randomizing {Z1, Z2} can be conducted in both domains.

A simple analysis can show that R cannot be z-transported from either source
alone (even with both experiments), but it turns out that combining the experi-
ments from both sources allows one to determine the e↵ect in the target. In order
to show how this is possible, we can conveniently decompose R as follows:

P ⇤(y|do(x)) = P ⇤(y|do(x), do(Z1)) (4.11)

=
X

z2

P ⇤(y|do(x), do(Z1), z2)P
⇤(z2|do(x), do(Z1)) (4.12)

=
X

z2

P ⇤(y|do(x), do(Z1), do(z2))P
⇤(z2|do(x), do(Z1)),(4.13)

where Eq. (4.11) follows by rule 3 of the do-calculus since (Z1 ?? Y |X)DX,Z1

holds, we condition on Z2 in Eq. (4.12), and Eq. (4.13) follows by rule 2 of the
do-calculus since (Z2 ?? Y |X, Z1)DX,Z1,Z2

, where D is the diagram in ⇡⇤ (despite

the location of the S-nodes). Now, we rewrite the first term of Eq. (4.13):

P ⇤(y|do(x), do(Z1), do(z2)) = P (y|do(x), do(Z1), do(z2), Sa, Sb) (4.14)

= P (y|do(x), do(Z1), do(z2), Sb) (4.15)

= P (y|do(z2), Sb) (4.16)

= P (a)(y|do(z2)), (4.17)

where Eq. (4.14) follows from the definition of selection diagram, Eq. (4.15)
follows from rule 1 of the do-calculus since (Sa ?? Y |Z1, Z2, X)

D
(a)

Z1,Z2,X

, Eq. (4.16)
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Figure 4.6: (a,b) Selection diagrams illustrating the impossibility of estimating
R through individual transportability from ⇡a and ⇡b when experiments over
{Z1, Z2} are available. If experiments over {Z2} is available in ⇡a and over {Z1}
in ⇡b, R is transportable. (c,d) Selection diagrams illustrating the opposite phe-
nomenon – transportability through multiple domains is not feasible, but if exper-
iments over Z = {Z1, Z2} is available in one domain, transportability is feasible.

follows from rule 3 of the do-calculus since (Z1, X ?? Y |Z2)D
(a)

Z1,Z2,X

, and Eq.

(4.17) follows from the definition of selection diagrams.

Now, we can rewrite the second term of Eq. (4.13) as follows:

P ⇤(z2|do(x), do(Z1)) = P (z2|do(x), do(Z1), Sa, Sb) (4.18)

= P (z2|do(x), do(Z1), Sa) (4.19)

= P (z2|x, do(Z1), Sa) (4.20)

= P (b)(z2|x, do(Z1)), (4.21)

where Eq. (4.18) follows from the definition of selection diagram, Eq. (4.19)
follows from rule 1 of the do-calculus since (Sb ?? Z2|Z1, X)

D
(b)

Z1,X

, Eq. (4.20)

follows from rule 2 of the do-calculus since (X ?? Z2|Z1)D
(b)

Z1X

, and Eq. (4.21)

follows from the definition of selection diagrams. Finally, we can substitute back
Eqs. (4.17) and (4.21) in Eq. (4.13),which yields the following transport formula

R =
X

z2

P (a)(y|do(z2))P
(b)(z2|x, do(Z1)) (4.22)

This transport formula is a mixture of the experimental result over {Z1} from ⇡b,
P (b)(z2|x, do(Z1)), with the result of the experiment over {Z2} in ⇡a, P (a)(y|do(z2)),
and constitute a consistent estimand of the target relation in ⇡⇤. Conversely, it is
the case that if the domains in which experiments were conducted were reversed
– i.e., {Z1} is randomized in ⇡a and {Z2} in ⇡b) – it will not be possible to trans-
port R by any method, the target relation is simply not computable given the
assumptions encoded in the diagrams (formally shown in the next section). 2

2 Despite the fact that the directed paths from Z2 to Y were not blocked by X, randomizing
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Further consider Fig. 4.6(c,d) which illustrates the opposite phenomenon. In
this case, if experiments over {Z2} are available in domain ⇡a and over {Z1} in
⇡b, R is not mz-transportable. However, if {Z1, Z2} are available in the same
domain, say ⇡a, R is mz-transportable. To witness,

P ⇤(y|do(x)) = P ⇤(y|do(x), do(z1), do(z2)) (4.23)

= P (y|do(x), do(z1), do(z2), Sa) (4.24)

= P (y|do(x), do(z1), do(z2)) (4.25)

= P (a)(y|do(x), do(z1), do(z2)) (4.26)

where Eq. (4.23) follows from rule 3 of the do-calculus since (Y ?? Z1, Z2|X)
D

(a)

X,Z1,Z2

,

Eq. (4.24) follows from the definition of selection diagram, Eq. (4.25) follows from
rule 1 of the do-calculus since (Sa ?? Y |X, Z1, Z2)D

(a)

X,Z1,Z2

, and Eq. (4.26) follows

from the definition of selection diagrams. 3

These results illustrate some of the subtle issues mz-transportability entails,
which cannot be immediately cast in terms of other variants of transportability.
In order to pursue a more systematic treatment of this problem, and using a
collection of selection diagrams as basic representational language, harnessing
the concepts of interventions, do-calculus, identifiability, and transportability, we
can formally define the mz-transportability problem as follows.

Definition 15 (mz-Transportability). Let D = {D(1), ..., D(n)} be a collection
of selection diagrams relative to source domains ⇧ = {⇡1, ...,⇡n}, and target
domain ⇡⇤, respectively, and Zi (and Z⇤) be the variables in which experiments
can be conducted in domain ⇡i (and ⇡⇤). Let hP i, I i

zi be the pair of observational
and interventional distributions of ⇡i, where I i

z =
S

Z0✓Zi
P i(v|do(z0)), and in an

analogous manner, hP ⇤, I⇤z i be the observational and interventional distributions
of ⇡⇤. The causal e↵ect R = P ⇤

x (y) is said to be mz-transportable from ⇧ to ⇡⇤ in
D if P ⇤

x (y) is uniquely computable from
S

i=1,...,nhP i, I i
zi [ hP ⇤, I⇤z i in any model

that induces the diagrams D.

While this definition might appear convoluted, it is nothing more than a
formalization of the statement “R needs to be uniquely computable from the
information set IS alone.” Naturally, when IS has many components (multiple
observational and interventional distributions), it becomes lengthy.

There are interesting connections between mz-transportability and the other
variants of transportability discussed so far. The mz-transportability problem

Z2 was instrumental to yield transportability in this case, which suggests how di↵erent this type
of transportability is from the z-identifiability problem.

3Despite the fact that the transport formula relies on experiments over Z1 and Z2, the
formula is independent of their specific values.
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can be reduced to m-transportability whenever Zi = V , for all i, and Z⇤ = ;.
Further, the mz-transportability problem can be reduced to z-transportability
whenever n = 1 and Z⇤ = ;. Also, the mz-transportability problem can be
reduced to transportability whenever n = 1, Zi = V , and Z⇤ = ;. 4

The requirement of computability from hP ⇤, I⇤z i and hP i, I i
zi from all sources

given in definition of mz-transportability has a syntactic image in the do-calculus,
which is captured by the following su�cient condition:

Theorem 15. Let D = {D(1), ..., D(n)} be a collection of selection diagrams rel-
ative to source domains ⇧ = {⇡1, ...,⇡n}, and target domain ⇡⇤, respectively,
and Si represents the collection of S-variables in the selection diagram D(i). Let
{hP i, I i

zi} and hP ⇤, I⇤z i be respectively the pairs of observational and interven-
tional distributions in the sources ⇧ and target ⇡⇤. The e↵ect R = P ⇤(y|do(x))
is mz-transportable from ⇧ to ⇡⇤ in D if the expression P (y|do(x), S1, ..., Sn) is
reducible, using the rules of the do-calculus, to an expression in which (1) do-
operators that apply to subsets of I i

z have no Si-variables or (2) do-operators
apply only to subsets of I⇤z .

Proof. See Appendix B.

This result provides a powerful way to syntactically establish mz-transporta-
bility, but it is not obvious whether a sequence of applications of the rules of the
do-calculus that achieves the reduction required by the theorem exists. If such
sequence does not exist, it is not immediately clear whether this would entail the
non-existence of a transport formula, so the infeasibility of estimating the target
relation (Sec. 4.4). On the other hand, even if such sequence does exist, it is not
obvious how to e�ciently obtain the eventual transport formula (Sec. 4.5).

4.4 Characterizing mz-Transportable Relations

The goal of this section is to demonstrate whether the non-existence of the reduc-
tion sequence in do-calculus as required by Theorem 15 entails the impossibility
of transport. We will collect di↵erent examples of non-transportability and try to
make sense whether there is a pattern in such cases and how to generalize them.

For instance, consider Fig. 4.7(a,b) and the goal of transporting the e↵ect
R = P ⇤(y|do(x)) when experiments over {X} are available in ⇡a and over {Z} are
available in ⇡b. It is not di�cult to see that there is no reducing sequence in this

4The requirement that the number of domains is equal to one (n = 1) can be seen as if all
other selection diagrams besides the one under consideration have selection nodes pointing to
all variables, which means that all other source domains are unrelated to the target domain.
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Figure 4.7: (a,b) Diagrams which is not possible to transport P ⇤(y|do(x)) with
experiments over {X} in ⇡a and {Z} in ⇡b. (c,d) Example of diagrams in which
some paths need to be extended for satisfying the definition of mz⇤-shedge.

case, which turns out to imply that the target relation is indeed not transportable.
This means that there exist two models that are equally compatible with the data
(i.e., both could generate the same dataset) while each model entails a di↵erent
answer for the e↵ect R (violating the uniqueness requirement of Def. 15). 5 To
demonstrate this fact explicitly, we show the existence of two models M1 and M2

such that the following equalities and inequality between distributions hold,
8
>>>>><

>>>>>:

P (a)
M1

(X, Z, Y ) = P (a)
M2

(X, Z, Y ),

P (b)
M1

(X, Z, Y ) = P (b)
M2

(X, Z, Y ),

P (a)
M1

(Z, Y |do(X)) = P (a)
M2

(Z, Y |do(X)),

P (b)
M1

(X, Y |do(Z)) = P (b)
M2

(X, Y |do(Z)),
P ⇤

M1
(X, Z, Y ) = P ⇤

M2
(X, Z, Y ),

(4.27)

for all values of X, Z, and Y , and

P ⇤
M1

(Y |do(X)) 6= P ⇤
M2

(Y |do(X)), (4.28)

for some value of X and Y .

Let V be the set of observable variables and U be the set of unobservable
variables in D. Let us assume that all variables are binary. Let U1, U2 2 U be
the common causes of X and Y and Z and Y , respectively; let U3, U4 2 U be
the random disturbances exclusive to Z and Y , respectively, and U5, U6 2 U be
extra random disturbances exclusive to Y . Let Sa and Sb index the model in the
following way: the tuples hSa = 1, Sb = 0i, hSa = 0, Sb = 1i, hSa = 0, Sb = 0i
represent domains ⇡a, ⇡b, and ⇡⇤, respectively. Define the two models as follows:

M1 =

8
<

:

X = U1

Z = U2 � (U3 ^ Sa)
Y = ((X � Z � U1 � U2 � (U4 ^ Sb)) ^ U5) + (¬U5 ^ U6),

5This is usually an indication that the current state of scientific knowledge about the phe-
nomenon under consideration (encoded in the form of a selection diagram) does not constraint
the observed distributions in such a way that an answer is entailed independently of the details
of the functions and probability distribution over the exogenous variables.
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and

M2 =

8
<

:

X = U1

Z = U2 � (U3 ^ Sa)
Y = ((Z � U2 � (U4 ^ Sb)) ^ U5)� (¬U5 ^ U6)

where � represents the exclusive or function. Both models agree in respect to
P (U), which is defined as P (Ui) = 1/2, i = 1, ..., 6. It is not di�cult to evaluate
these models and note that the constraints given in Eqs. (4.29) and (4.30) are
indeed satisfied (including positivity), the result follows. 6

Consider again the example given in Fig. 4.6(a,b). While it was almost
immediate to obtain a do-calculus sequence in which the target relation R =
P ⇤(y|do(x)) is transportable with experiments over {Z2} in ⇡a and over {Z1} in
⇡b (Eq. (4.22)), it is not the case that such a sequence exists when we exchange
the experiments and assume that interventional data is available over {Z1} in ⇡a

and over {Z2} in ⇡b. Similar to the previous case, to show this fact formally we
display two models M1, M2 such that the following relations hold (using Def. 15):

8
>>>>><

>>>>>:

P (a)
M1

(Z1, X, Z2, Y ) = P (a)
M2

(Z1, X, Z2, Y ),

P (b)
M1

(Z1, X, Z2, Y ) = P (b)
M2

(Z1, X, Z2, Y ),

P (a)
M1

(X, Z2, Y |do(Z1)) = P (a)
M2

(X, Z2, Y |do(Z1)),

P (b)
M1

(Z1, X, Y |do(Z2)) = P (b)
M2

(Z1, X, Y |do(Z2)),
P ⇤

M1
(Z1, X, Z2, Y ) = P ⇤

M2
(Z1, X, Z2, Y ),

(4.29)

for all values of Z1, X, Z2, and Y , and also,

P ⇤
M1

(Y |do(X)) 6= P ⇤
M2

(Y |do(X)), (4.30)

for some value of X and Y .

Let V be the set of observable variables and U be the set of unobservable
variables inD. Let us assume that all variables in U[V are binary. Let U1, U2 2 U
be the common causes of Z1 and X and Z2, respectively; let U3, U4, U5 2 U be
a random disturbance exclusive to Z1, Z2, and Y , respectively, and U6 2 U
be an extra random disturbance exclusive to Z2, and U7, U8 2 U to Y . Let
Sa and Sb index the model in the following way: the tuples hSa = 1, Sb = 0i,
hSa = 0, Sb = 1i, hSa = 0, Sb = 0i represent domains ⇡a, ⇡b, and ⇡⇤, respectively.
Define the two models as follows:

M1 =

8
>><

>>:

Z1 = U1 � U2 �
�
U3 ^ Sa

�

X = Z1 � U1

Z2 = (X � U2 � (U4 ^ Sa)) _ U6

Y = (Z2 ^ U5)� (U5 ^ U7)� (Sb ^ U8)

6See Appendix B for a more refined argument on how to evaluate these models.
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and

M2 =

8
>><

>>:

Z1 = U1 � U2 �
�
U3 ^ Sa

�

X = U1

Z2 =
�
U4 ^ Sa ^ U6

�
� U6

Y = (Z2 ^ U5)� (U5 ^ U7)� (Sb ^ U8)

Define in both models P (Ui) = 1/2, i = 1, ..., 8. It is not di�cult to evaluate
these models and note that the constraints given in Eqs. (4.29) and (4.30) are
satisfied (including positivity), which demonstrates that R is not transportable.

After accumulating positive and negative examples of mz-transportability, we
note that one syntactic subtask of mz-transportability is to determine whether
certain e↵ects are identifiable in some source domains where interventional data
is available. There are two fundamental results developed for identifiability that
will be relevant for mz-transportability as well. For completeness, we will re-
peat some definitions given in the previous chapter. First, we should consider
confounded components (or c-components), which were defined in (Tia02) and
stand for a cluster of variables connected through bidirected edges (which are not
separable through the observables in the system). One key result is that each
causal graph (and subgraphs) induces an unique C-component decomposition
((Tia02, Lemma 11)). This decomposition was indeed instrumental for a series
of conditions for ordinary identification (TP02) and the inability to recursively
decompose a certain graph was later used to prove completeness.

Definition 16 (C-component). Let G be a causal diagram such that a subset
of its bidirected arcs forms a spanning tree over all vertices in G. Then G is a
C-component (confounded component).

Subsequently, (SP06c) proposed an extension of C-components called C-forests,
essentially enforcing that each C-component has to be a spanning forest and
closed under ancestral relations (Tia02).

Definition 17 (C-forest). Let G be a causal diagram where Y is the maximal
root set. Then G is a Y -rooted C-forest if G is a C-component and all observable
nodes have at most one child.

For concreteness, consider Fig. 4.6(a) and note that there exists a C-forest
over nodes {Z1, X, Z2} and rooted in {Z2}. There exists another C-forest over
nodes {Z1, X, Z2, Y } rooted in {Y }. It is also the case that {Z2} and {Y } are
themselves trivial C-forests. When we have a pair of C-forests as {Z1, X, Z2}
and {Z2} or {Z1, X, Z2, Y } and {Y } – i.e., the root set does not intersect the
treatment variables; these structures are called hedges and identifiability was
shown to be infeasible whenever a hedge exists (SP06c). Clearly, despite the
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existence of hedges in Fig. 4.6(a,b), the e↵ects of interest were shown to be mz-
transportable. This example is an indication that hedges alone do not capture
the structure needed for characterizing mz-transportability – i.e., a graph might
be a hedge (or have a hedge as an edge sub–graph) but the target quantity might
still be mz-transportable.

Based on these observations, we propose the following definition that may
lead to the boundaries of the class of mz-transportable relations:

Definition 18 (mz⇤-shedge). Let D = (D(1), . . . , D(n)) be a collection of selection
diagrams relative to source domains ⇧ = (⇡1, . . . ,⇡n) and target domain ⇡⇤,
respectively, Si represents the collection of S-variables in the selection diagram
D(i), and let D(⇤) be the causal diagram of ⇡⇤. Let {hP i, I i

zi} be the collection
of pairs of observational and interventional distributions of {⇡i}, where I i

z =S
Z0✓Zi

P i(v|do(z0)), and in an analogous manner, hP ⇤, I⇤z i be the observational
and interventional distributions of ⇡⇤, for Zi the set of experimental variables
in ⇡i. Consider a pair of R-rooted C-forests F = hF, F 0i such that F 0 ⇢ F ,
F 0\X = ;, F\X 6= ;, and R ✓ An(Y )GX

(called hedge). We say that the induced

collection of pairs of R-rooted C-forests over each diagram, hF (⇤),F (1), ...,F (n)i, is
an mz-shedge for P ⇤

x (y) relative to experiments (I⇤z , I1
z , ..., In

z ) if they are all hedges
and one of the following conditions hold for each domain ⇡i, i = {⇤, 1, ..., n}:

1. There exists at least one variable of Si pointing to the induced diagram F 0(i),
or

2. (F (i) \ F 0(i)) \ Zi is an empty set, or

3. The collection of pairs of C-forests induced over diagrams, hF (⇤),F (1), . . . , F (i)\
Z⇤

i , . . . ,F (n)i, is also an mz-shedge relative to (I⇤z , I1
z , ..., I i

z\z⇤i
, ..., In

z ), where

Z⇤
i = (F (i) \ F 0(i)) \ Zi.

We call mz⇤-shedge the mz-shedge in which there exist one directed path from
R \ (R \De(X)F ) to (R \De(X)F ) not passing through X (see appendix B).

The definition of mz⇤-shedge might appear involved, but it is nothing more
than the articulation of the computability requirement of Def. 15 (and implicitly
the syntactic goal of Thm. 15) in a more explicit graphical fashion. Specifically,
for a certain factor Q⇤

i needed for the computation of the e↵ect Q⇤ = P ⇤(y|do(x)),
in at least one domain, (i) it should be enforced that the S-nodes are separable
from the inducing root set of the component in which Q⇤

i belongs, and further,
(ii) the experiments available in this domain are su�cient for solving Q⇤

i . For
instance, assuming we want to compute Q⇤ = P ⇤(y|do(x)) in Fig. 4.6(a, b), Q⇤

can be decomposed into factors Q⇤
1 = P ⇤

z1,x(z2) and Q⇤
2 = P ⇤

z1,x,z2
(y). It is the case
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that for Q⇤
1, (i) holds true in ⇡b and (ii) the experiments available over Z1 are

enough to guarantee the computability of this factor (similar analysis applies to
Q⇤

2) – i.e., there is no mz⇤-shedge and Q⇤ is computable from the available data.

Def. 18 also asks for the explicit existence of a path from the nodes in the root
set R\(R\De(X)F ) to (R\De(X)F ), a simple example can help to illustrate this
requirement. Consider Fig. 4.7(c) and the goal of computing Q = P ⇤(y|do(x))
without extra experimental information. There exists a hedge for Q induced over
{X, Z, Y } without the node W (note that {W} is a c-component itself) and the
induced graph G{X,Z,Y } indeed leads to a counter-example for the computability
of P ⇤(z, y|do(x)). Using this subgraph alone, however, it would not be possible to
construct a counter-example for the marginal e↵ect P ⇤(y|do(x)). Despite the fact
that P ⇤(z, y|do(x)) is not computable from P ⇤(x, z, y), the quantity P ⇤(y|do(x))
is identifiable in G{X,Z,Y }, and so any structural model compatible with this
subgraph will generate the same value under the marginalization over Z from
P ⇤(z, y|do(x)). Also, it might happen that the root set R must be augmented
(Fig. 4.7(d)), so we prefer to add this requirement explicitly to the definition.
(There are more involved scenarios that we prefer to omit for the sake of presen-
tation.) After adding the directed path from Z to Y that passes through W , we
can construct the following counter-example for Q:

M1 =

8
>><

>>:

X = U1

Z = U1 � U2

W = ((Z � U3) _B)� (B ^ (1� Z))
Y = ((X �W � U2) ^ A)� (A _ (1�X �W � U2)),

and

M2 =

8
>><

>>:

X = U1

Z = U2

W = ((Z � U3) _B)� (B ^ (1� Z))
Y = ((W � U2) ^ A)� (A _ (1�W � U2)),

with P (Ui) = 1/2,8i, P (A) = P (B) = 1/2. It is not immediate to show that the
two models produce the desired property, see Appendix B for a formal proof.

Given that the definition of mz⇤-shedge is justified and well-understood, we
can now state the connection between hedges and mz⇤-shedges more directly:

Theorem 16. If there is a hedge for P ⇤
x (y) in G and no experimental data is

available (i.e., I⇤z = {}), there exists an mz⇤-shedge for P ⇤
x (y) in G.

Proof. See Appendix B.

Whenever one domain is considered and no experimental data is available, this
result states that an mz⇤-shedge can always be constructed from a hedge, which
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implies that we can operate with mz⇤-shedges from now on (the converse holds
for Z = {}). Finally, we can concentrate on the most general case of mz⇤-shedges
with experimental data in multiple domains as stated in the sequel:

Theorem 17. Let D = {D(1), ..., D(n)} be a collection of selection diagrams rel-
ative to source domains ⇧ = {⇡1, ...,⇡n}, and target domain ⇡⇤, respectively,
and {I i

z}, for i = {⇤, 1, ..., n} defined appropriately. If there is an mz⇤-shedge
for the e↵ect R = P ⇤

x (y) relative to experiments (I⇤z , I1
z , ..., In

z ) in D, R is not
mz-transportable from ⇧ to ⇡⇤ in D.

Proof. See Appendix B.

This is a powerful result that states that the existence of a mz⇤-shedge pre-
cludes mz-transportability. For concreteness, consider the selection diagrams
D = (D(a), D(b)) relative to domains ⇡a and ⇡b in Fig. 4.7(a,b). Our goal is to
mz-transport Q = P ⇤(y|do(x)) with experiments over {X} in ⇡a and {Z} in ⇡b.
It is the case that there exists an mz⇤-shedge relative to the given experiments.
To witness, note that F 0 = {Y, Z} and F = F 0 [ {X}, and also that there exists
a selection variable S pointing to F 0 in both domains – the first condition of Def.
18 is satisfied. This is a trivial graph with 3 variables that can be solved by in-
spection, but it is somewhat involved to e�ciently evaluate the conditions of the
definition in more intricate structures, which motivates the search for a procedure
for recognizing mz⇤-shedges that can be coupled with the previous theorem.

4.5 A Complete Algorithm For mz-Transportability of Joint
E↵ects

In this section, we generalize the algorithm given in section 3.6 to obtain a me-
chanic procedure in which a collection of selection diagrams and experimental
data is inputted, and the procedure returns a transport formula whenever one
exists. The new algorithm is called TRmz (see Fig. 4.8) and is based on previous
results in transportability as well as identifiability (TP02; SP06c).

The main idea of the algorithm is to leverage the c-component factorization
(Tia02) and recursively decompose the target relation into manageable pieces
(line 4), so as to try to solve each of them separately. Whenever this standard
evaluation fails in the target domain ⇡⇤ (line 6), TRmz tries to use the experi-
mental information available from the target and source domains (line 10), which
essentially implements the declarative condition delineated in Theorem 15. Our
ultimate goal is to understand what happens when the algorithm returns an
expression and also when it exits with failure.
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PROCEDURE TRmz (y, x,P, I,S,W, D)
INPUT: x, y: value assignments; P: local distribution relative to domain S (S = 0
indexes ⇡

⇤) and active experiments I; W: weighting scheme; D: backbone of selection
diagram; Si: selection nodes in ⇡i (S0 = ; relative to ⇡

⇤); [The following set and
distributions are globally defined: Zi, P

⇤
, P

(i)
Zi

.]
OUTPUT: P

⇤
x (y) in terms of P

⇤
, P

⇤
Z , P

(i)
Zi

or FAIL(D,C0).
1 if x = ;, return

P
V \Y P.

2 if V \An(Y )D 6= ;, return TR
mz(y, x \An(Y )D,

P
V \An(Y )D

P, I,S,W, DAn(Y )).
3 set W = (V \X) \An(Y )DX

.
if W 6= ;, return TR

mz(y, x [ w,P, I,S,W, D).
4 if C(D \X) = {C0, C1, ..., Ck}, return

P
V \{Y,X}

Q
i TR

mz(ci, v \ ci,P, I,S,W, D).
5 if C(D \X) = {C0},
6 if C(D) 6= {D},
7 if C0 2 C(D), return

Q
i|Vi2C0

P
V \V (i)

D
P/
P

V \V (i�1)
D

P.
8 if (9C 0)C0 ⇢ C

0 2 C(D),
for {i|Vi 2 C

0}, set i = i [ v
(i�1)
D \ C

0.
return TR

mz(y, x \ C
0,
Q

i|Vi2C0 P(Vi|V (i�1)
D \ C

0
, i), I,S,W, C

0).
9 else,

10 if I = ;, for i = 0, ..., |D|,
if
�
(Si ?? Y | X)

D
(i)

X

^ (Zi \X 6= ;)
�
, Ei = TR

mz(y, x \ zi,P, Zi \X, i,W, D \ {Zi \X}).

11 if |E| > 0, return
P|E|

i=1 w
(j)
i Ei.

12 else, FAIL(D,C0).

Figure 4.8: Algorithm capable of recognizing mz-transportable relations.

Before showing the more formal properties of the algorithm, we demonstrate
how TRmz works through the transportability of Q = P ⇤(y|do(x)) in Fig. 4.9(a,b)
with Z⇤ = {Z1}, Za = {Z2}, and Zb = {Z1}.

Since (V \X)\An(Y )DX
= {Z2}, TRmz invokes line 3 with {Z2}[{X} as inter-

ventional set. The new call triggers line 4 and C(D \{X, Z2}) = {C0, C1, C2, C3},
where C0 = DZ1 , C1 = DZ3 , C2 = DU , and C3 = DW,Y , we invoke line 4 and try
to mz-transport individually Q0 = P ⇤

x,z2,z3,u,w,y(z1), Q1 = P ⇤
x,z1,z2,u,w,y(z3), Q2 =

P ⇤
x,z1,z2,z3,w,y(u), and Q3 = P ⇤

x,z1,z2,z3,u(w, y). Thus the original problem reduces to
try to evaluate the equivalent expression

P
z1,z3,u,w P ⇤

x,z2,z3,u,w,y(z1)P ⇤
x,z1,z2,u,w,y(z3)

P ⇤
x,z1,z2,z3,w,y(u)P ⇤

x,z1,z2,z3,u(w, y).

First, TRmz evaluates the expression Q0 and triggers line 2, noting that all
nodes can be ignored since they are not ancestors of {Z1}, which implies after
line 1 that P ⇤

x,z2,z3,u,w,y(z1) = P ⇤(z1).
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Figure 4.9: Selection diagrams illustrating how the procedure TRmz works when
transporting R = P ⇤(y|do(x)) with experiments Za = {Z2}, Zb = Z⇤ = {Z1}.

Second, TRmz evaluates the expression Q1 triggering line 2, which implies
that P ⇤

x,z1,z2,u,w,y(z3) = P ⇤
x,z1,z2

(z3) with induced subgraph D1 = DX,Z1,Z2,Z3 . TRmz

goes to line 5, in which in the local call C(D \ {X, Z1, Z2}) = {DZ3}. Thus it
proceeds to line 6 testing whether C(D \ {X, Z1, Z2}) is di↵erent from D1, which
is false. In this call, ordinary identifiability would fail, but TRmz proceeds to
line 9. The goal of this line is to test whether some experiment can help for
computing Q1. In this case, ⇡a fails immediately the test in line 10, but ⇡b

and ⇡⇤ succeed, which means experiments in these domains may eventually help;
the new call is P (i)

x,z2(z3)D\Z1 , for i = {b, ⇤} with induced graph D0
1 = DX,Z2,Z3 .

Finally, TRmz triggers line 8 since X is not part of Z3’s components in D0
1 (or,

Z3 2 C 0 = {Z2 L9999K Z3}), so line 2 is triggered since Z2 is no longer an ancestor
of Z3 in D0

1, and then line 1 is triggered since the interventional set is empty in

this local call, so P ⇤
x,z1,z2

(z3) =
P

Z0
2
P (i)

z1 (z3|x, Z 0
2)P

(i)
z1 (Z 0

2), for i = {b, ⇤}.
Third, evaluating the expression Q2, TRmz goes to line 2, which implies that

P ⇤
x,z1,z2,z3,w,y(u) = P ⇤

x,z1,z2,z3,w(u) with induced subgraph D2 = DX,Z1,Z2,Z3,W,U .
TRmz goes to line 5, and in this local call C(D \ {X, Z1, Z2, Z3, W}) = {DU},
and the test in 6 succeed, since there are more components in D. So, it trig-
gers line 8 since W is not part of U ’s component in D2. The algorithm makes
P ⇤

x,z1,z2,z3,w(u) = P ⇤
x,z1,z2,z3

(u)D2|W (and update the working distribution); note
that in this call, ordinary identifiability would fail since the nodes are in the
same C -component and the test in line 6 fails. But TRmz proceeds to line 9 try-
ing to find experiments that can help in Q2’s computation. In this case, ⇡b cannot
help but ⇡a and ⇡⇤ perhaps can, noting that new calls are launched for comput-
ing P (a)

x,z1,z3(u)D2\Z2|W relative to ⇡a, and P ⇤
x,z2,z3

(u)D2\Z1|W relative to ⇡⇤ with the
corresponding data structures set. In ⇡a, the algorithm triggers line 7, which
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yields P (a)
x,z1,z3(u)D2\Z2|W = P (a)

z2 (u|w, z3, x, z1), and a bit more involved analysis
for ⇡b yields (after simplification) P ⇤

x,z2,z3
(u)D2\Z1|W =

�P
Z0

2
P ⇤

z1
(u|w, z3, x, Z 0

2)

P ⇤
z1

(z3|x, Z 0
2)P

⇤
z1

(Z 0
2)
�
/
�P

Z00
2
P ⇤

z1
(z3|x, Z 00

2 )P ⇤
z1

(Z 00
2 )
�
.

Fourth, TRmz finally evaluates the expression Q3 and triggers line 5, C(D \
{X, Z1, Z2, Z3, U}) = DW,Y . In turn, both tests at lines 6 and 7 succeed, which
makes the procedure to return P ⇤

x,z1,z2,z3,u(w, y) = P ⇤(w|z3, x, z1, z2)P ⇤(y|w, x, z1, z2, z3, u).

The composition of the return of these calls generates the following expression:

P
⇤
x (y) =

X

z1,z3,w,u

P
⇤(z1)

 
w

(1)
1

X

Z0
2

P
⇤
z1

(z3|x, Z
0
2)P

⇤
z1

(Z 0
2) + w

(1)
2

X

Z0
2

P
(b)
z1

(z3|x, Z
0
2)P

(b)
z1

(Z 0
2)

!

 
w

(2)
1

✓X

Z0
2

P
⇤
z1

(u|w, z3, x, Z
0
2)P

⇤
z1

(z3|x, Z
0
2)P

⇤
z1

(Z 0
2)
◆

/

✓X

Z00
2

P
⇤
z1

(z3|x, Z
00
2 )P ⇤

z1
(Z 00

2 )
◆

+ w
(2)
2 P

(a)
z2

(u|w, z3, x, z1)

!
P
⇤(w|x, z1, z2, z3) P

⇤(y|x, z1, z2, z3, w, u) (4.31)

where w(k)
i represents the weight for each factor in estimand k (i = 1, ..., nk), and

nk is the number of feasible estimands of k.

Remarkably, the derived transport formula depicts a powerful way to esti-
mate P ⇤(y|do(x)) in the target domain, and depending on the weighting scheme
a di↵erent estimand will be entailed. For instance, one might use an analogous
to inverse-variance weighting, which sets the weights for the normalized inverse
of their variances (i.e., w(k)

i = ��2
i /

Pnk
j=1 ��2

j , where �2
j is the variance of the

jth component of estimand k). Our strategy resembles the approach taken in
meta-analysis (HO85), albeit the latter usually disregards the intricacies of the
relationships between variables, so producing a statistically less powerful esti-
mand. Our method leverages this non-trivial and highly structured relationships,
as exemplified in Eq. (4.31), which allows one to obtain an estimand with less
variance and statistically more powerful than standard ones.

Finally, we can formally consider the soundness of the algorithm.

Theorem 18 (soundness). Whenever TRmz returns an expression for P ⇤
x (y), it

is correct.

Proof. See Appendix B.

Theorem 19. Assume TRmz fails to transport the e↵ect P ⇤
x (y) (exits with failure

executing line 12). Then there exists X 0 ✓ X, Y 0 ✓ Y , such that the graph pair
D, C0 returned by the fail condition of TRmz contain as edge subgraphs sC-forests
F, F’ that spans a mz⇤-shedge for P ⇤

x0(y
0).
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Proof. Let D be the subgraph local to the call in which TRmz failed, and R be
the root set of D. It is possible to remove some directed arrows from D while
preserving R as root, which result in a R-rooted c-forest F . Since by construction
F 0 = F \C0 is closed under descendents and only directed arrows were removed,
both F, F 0 are c-forests. Also by construction R ⇢ An(Y )GX

together with the
fact that X and Y from the recursive call are clearly subsets of the original input.
Before failure, TRmz evaluated false consecutively at lines 6, 10, and 11, and it is
not di�cult to see that an S-node points to F 0 or the respective experiments were
not able to break the local hedge (lines 10 and 11). It remains to be shows that
this mz-shedge can be stretched to generate a mz⇤-shedge, but now the same
construction given in Thm. 16 can be applied (see also Appendix B).

In the sequel, we state the completeness of the algorithm and graphical con-
dition discussed in this section.

Corollary 8 (completeness). TRmz is complete.

Proof. See Appendix B.

Corollary 9 (mz⇤-shedge characterization). P ⇤
x (y) is mz-transportable from ⇧

to ⇡⇤ in D if and only if there is not mz⇤-shedge for Px0(y0) in D for any X 0 ✓ X
and Y 0 ✓ Y .

Proof. See Appendix B.

Furthermore, we show below that the do-calculus is complete for establishing
mz-transportability, which means that failure in the exhaustive application of its
rules implies the non-existence of a mapping from the available data to the target
relation (i.e., there is no mz-transport formula), independently of the method
used to obtain such mapping.

Corollary 10 (do-calculus characterization). The rules of do-calculus together
with standard probability manipulations are complete for establishing mz-trans-
portability of all causal e↵ects.

Proof. See Appendix B.

4.6 Conclusions

In this chapter, we introduced the most general variant of transportability known
to date in which experiments can be conducted over limited sets of variables in
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the various domains under study (source and target), and the goal is to (non-
parametrically) infer whether a certain e↵ect can be estimated in the target using
the information gathered through randomized experiments in all the domains.
Using the language of selection diagrams, the work developed in this chapter
puts in mathematical language, solves, and generalizes the problems of external
validity, meta-analysis, and fusion of causal knowledge that have been only semi-
formally discussed in the literature for at least half a century.

We provided a complete characterization for deciding transportability in the
form of graphical, algorithmic, and algebraic conditions. Specifically, we derived
a general graphical condition for deciding transportability of causal e↵ects, which
means that transportability is feasible if and only if a certain graph structure does
not appear as an edge subgraph of the inputted collection of selection diagrams.

Furthermore, we constructed a procedure for deciding transportability, that
is, generate a formula for fusing the available observational and experimental data
to synthesize an estimate of the desired causal e↵ects. We showed that this proce-
dure is complete, which means that the set of transportable instances identified by
the algorithm cannot be broadened without strengthening the assumptions. Our
algorithm also allows for generic weighting schemes, which generalizes standard
statistical procedures and leads to the construction of statistically more powerful
estimands. We further showed that the do-calculus is complete for this class of
problems, which means that finding a proof strategy in this language su�ces to
solve the problem.

While practical applications of these results are predicated on the availability
of problem-specific selection diagrams, the general understanding of why some
problems permit information transfer and others do not have scientific merit on
its own. It informs investigators what kind of disparities between environments
would make transportability theoretically impossible, and what disparities can
be circumvented by clever information fusion strategies. Even though the con-
struction of a selection diagram might be a demanding task, the completeness
result makes such construction unavoidable if one seeks theoretical guarantees for
a given method of information transfer. Fortunately, the knowledge necessary to
construct a diagram is not much di↵erent than that required for ordinary causal
diagrams as used, for example, to establish internal validity (i.e., identifiability).

The non-parametric characterization established in this chapter gives rise to
a new set of research questions. While our analysis aimed at achieving consistent
transport under asymptotic conditions, when no transport formula exists, approx-
imation techniques must be resorted to, for example, replacing the requirement of
non-parametric analysis with assumptions about linearity or monotonicity of cer-
tain relationships in the domains. The nonparametric characterization provided
in this chapter should serve as a guideline for such approximation schemes.
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CHAPTER 5

Controlling Selection Bias in Causal and
Statistical Inference

5.1 Introduction

Selection bias is caused by preferential exclusion of units from the samples and
represents a major obstacle to valid causal and statistical inferences; it cannot
be removed by randomized experiments and can rarely be detected in either
experimental or observational studies. This chapter provides methods to help to
understand, formalize, solve or alleviate this problem in a broad range of data-
intensive applications that appears in many disciplines.

The chapter is organized as follows. In section 5.2, we discuss the distinction
between selection and confounding biases, which are the most common biases
encountered in the literature. We then put our work in perspective and elabo-
rate on the di↵erent types of assumptions behind the current methods aiming
to solve the selection problem, namely, qualitative assumptions about the selec-
tion mechanism, parametric assumptions regarding the data-generating model,
and quantitative assumptions about the selection process. In section 5.3, we
provide complete graphical and algorithmic conditions for recovering conditional
probabilities from selection biased data. In section 5.4, we relax the previous
assumptions and provide graphical conditions for recoverability when unbiased
data is also available for use (e.g., census data). In section 5.5, we provide a
graphical condition that generalizes the backdoor criterion and serves to recover
causal e↵ects when the data is collected under preferential selection. In section
5.6, we relax the assumptions and introduce conditions for recoverability when
the target quantity is the odd ratio. We provide a complete graphical and al-
gorithmic criteria for recoverability of the population and conditions odds ratio.
We relate the odds ratio with other common measures such as risk di↵erences
and risk ratios. In section 5.7, we consider the challenging task of recovering
from selection when confounding bias is simultaneously present. Given that the
bounds obtained from the previous analysis is biased given the selection process,
we provide a graphical criterion for recoverability under general conditions.
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5.2 The Structure of the Selection Problem

Selection bias is induced by preferential selection of units for data analysis, usu-
ally governed by unknown factors including treatment, outcome, and their conse-
quences, and represents a major obstacle to valid causal and statistical inferences.
It cannot be removed by randomized experiments and can rarely be detected in
either experimental or observational studies.1 For instance, in a typical study
of the e↵ect of training program on earnings, subjects achieving higher incomes
tend to report their earnings more frequently than those who earn less. The data-
gathering process in this case will reflect this distortion in the sample proportions
and, since the sample is no longer a faithful representation of the population, bi-
ased estimates will be produced regardless of how many samples were collected.

This preferential selection challenges the validity of inferences in several tasks
in AI (Coo95; Elk01; Zad04; CMR08) and Statistics (Whi78; LR86; Jew91;
KC06) as well as in the empirical sciences (e.g., Genetics (PDS12; MW12), Eco-
nomics (Hec79; Ang97), and Epidemiology (Rob01; GG08)).

To illuminate the nature of preferential selection, consider the data-generating
model in Fig. 5.1(a) in which X represents an action, Y represents an outcome,
and S represents a binary indicator of entry into the data pool (S = 1 means
that the unit is in the sample, S = 0 otherwise). If our goal is to compute the
population-level conditional distribution P (y|x), and the samples available are
collected under selection, only P (y, x|S = 1) is accessible for use. 2 Given that in
principle these two distributions are just loosely connected, the natural question
to ask is under what conditions P (y|x) can be recovered from data coming from
P (y, x|S = 1). In this specific example, both action and outcome a↵ect the entry
in the data pool, which will be shown not to be recoverable (see Corollary 11)
– i.e., there is no method capable of unbiasedly estimating the population-level
distribution using data gathered under this selection process.

The bias arising from selection di↵ers fundamentally from the one due to con-
founding, though both constitute threats to the validity of causal inferences. The
former bias is due to treatment or outcome (or ancestors) a↵ecting the inclu-
sion of the subject in the sample (Fig. 5.1(a)), while the latter is the result of
treatment X and outcome Y being a↵ected by a common omitted variables U
(Fig. 5.1(b)). In both cases, we have unblocked extraneous “flow” of informa-
tion between treatment and outcome, which appear under the rubric of “spurious
correlation,” since it is not what we seek to estimate.

1Remarkably, there are special situations in which selection bias can be detected even from
observations, as in the form of a non-chordal undirected component (Zha08).

2In a typical AI task such as classification, we could have X being a collection of features
and Y the class to be predicted, and P (y|x) would be the classifier that needs to be trained.
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Figure 5.1: (a,b) Simplest examples of selection and confounding bias, respec-
tively. (c,d) Treatment-dependent and outcome-dependent studies under selec-
tion, Q = P (y|x) is recoverable in (c) but not in (d). (e,f) Treatment-dependent
study where selection is also a↵ected by driver of treatment Z (e.g., age); Q is
recoverable in (e) but not in (f).

It is instructive to understand selection graphically, as in Fig. 5.1(a). The
preferential selection that is encoded through conditioning on S creates spurious
association between X and Y through two mechanisms. First, given that S is a
collider, conditioning on it induces spurious association between its parents, X
and Y (Pea88). Second, S is also a descendant of a “virtual collider” Y , whose
parents are X and the error term UY (also called “hidden variable”) which is
always present, though often not shown in the diagram.3

5.2.1 Related work and Our contributions

There are three sets of assumptions that are enlightening to acknowledge if we
want to understand the procedures available in the literature for treating selec-
tion bias – qualitative assumptions about the selection mechanism, parametric
assumptions regarding the data-generating model, and quantitative assumptions
about the selection process.

In the data-generating model in Fig. 5.1(c), the selection of units to the
sample is treatment-dependent, which means that it is caused by X, but not
Y . This case has been studied in the literature and Q = P (y|x) is known to be

3See (Pea00, pp. 339-341) and (Pea13) for further explanations of this bias mechanism.
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non-parametrically recoverable from selection (GP11). Alternatively, in the data-
generating model in Fig. 1(d), the selection is caused by Y (outcome-dependent),
and Q is not recoverable from selection (formally shown later on), but is the
odds ratio (Cor51; Whi78; Gen92; DKK10). As mentioned earlier, Q is also not
recoverable in the graph in Fig. 5.1(a). By and large, the literature is concerned
with treatment-dependent or outcome-dependent selection, but selection might
be caused by multiple reasons and embedded in more intricate realities. For
instance, a driver of the treatment Z (e.g., age, sex, socio-economic status) may
also be causing selection, see Fig. 5.1(e,f). As it turns out, Q is recoverable in
Fig 5.1(e) but not in (f), so di↵erent qualitative assumptions need to be modelled
explicitly since each topology entails a di↵erent answer for recoverability.

The second assumption is related to the parametric form used by recoverabil-
ity procedures. For instance, one variation of the selection problem was studied
in Econometrics, and led to the celebrated method developed by James Heckman
(Hec79). His two-step procedure removes the bias by leveraging the assump-
tions of linearity and normality of the data-generating model. A graph-based
parametric analysis of selection bias is given in (Pea13).

The final assumption is about the probability of being selected into the sam-
ple. In many settings in Machine learning and Statistics (Elk01; Zad04; SE07;
Sto09; Hei09; CMR08), it is assumed that this probability, P (S = 1|Pas), can
be modelled explicitly, which often is an unattainable requirement for the prac-
titioner (e.g., it might be infeasible to assess the di↵erential rates of how salaries
are reported).

Our treatment di↵ers fundamentally from the current literature regarding
these assumptions. First, we do not constrain the type of data-generating model
as outcome- or treatment-dependent, but we take arbitrary models (including
these two) as input, in which a node S indicates selection for sampling. Second,
we do not make parametric assumptions (e.g. linearity, normality, monotonic-
ity) but operate non-parametrically based on causal graphical models (Pea00),
which is more robust, less prone to model misspecifications. Third, we do not
rely on having the selection’s probability P (S = 1|Pas), which is not always
available in practice. Our work hinges on exploiting the qualitative knowledge
encoded in the data-generating model for yielding recoverability. This knowledge
is admittedly a demanding requirement for the scientist, but we now understand
formally its necessity for any approach to recoverability – any procedure aiming
for recoverability, implicitly or explicitly, relies on this knowledge. 4

The analysis of selection bias requires a formal language within which the
notion of data-generating model is given precise characterization, and the qual-

4A trivial instance of this necessity is Fig. 5.1(c,d) where the odds ratio is recoverable, yet
P (y|x) is recoverable in 5.1(c) but not in (d).
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itative assumptions regarding how the variables a↵ect selection can be encoded
explicitly. The advent of causal diagrams (Pea95; SGS00; Pea00; KF09) provides
such a language and renders the formalization of the selection problem possible.

Using this language, we address the issue of recovering from selection bias
under di↵erent assumptions encountered in the literature:

1. Selection without external data (Sec. 5.3): The dataset is collected
under selection bias, P (v|S = 1); under which conditions is P (y|x) recov-
erable?

2. Selection with external data (Sec. 5.4): The dataset is collected under
selection bias, P (v|S = 1), but there are unbiased samples from P (t), for
T ✓ V ; under which conditions is P (y|x) recoverable?

3. Selection in causal inferences (Sec. 5.5): The dataset is collected under
selection bias, P (v|S = 1), but there are unbiased samples from P (t), for
T ✓ V ; under which conditions is the interventional distribution P (y|do(x))
estimable?

4. Selection of the odds ratio (Sec. 5.6): The dataset is collected under
selection bias, P (v|S = 1); under which conditions is OR(X, Y |C) recover-
able, for some set C?

5. Selection with confounding (Sec. 5.7): The dataset is collected under
selection bias, P (v|S = 1); under which conditions is the bounds for the
interventional distribution P (y|do(x)) recoverable from selection?

5.3 Recoverability without External Data

To address the selection problem formally, we need to model the selection mech-
anism explicitly, so we add a variable S to represent this mechanism, and as-
sume that S = 1 represents presence in the sample, and zero otherwise. In
this augmented representation, independence of a certain variable from S en-
codes the assumption that entry to the data pool is not a↵ected by this vari-
able (possibly conditioned in a third set). A similar representation was used in
(Coo95; LR08; GRB09; DKK10). We denote the set of all variables by V except
for the selection mechanism S.

We next introduce the formal notion of recoverability for conditional distri-
butions when the data is collected under selection bias.

Definition 19 (s-Recoverability). Given a causal graph Gs augmented with a
node S encoding the selection mechanism, the distribution Q = P (y | x) is said
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to be s-recoverable from selection biased data in Gs if the assumptions embedded in
the causal model renders Q expressible in terms of the distribution under selection
bias P (v | S = 1). Formally, for every two probability distributions P1 and P2

compatible with Gs, P1(v | S = 1) = P2(v | S = 1) > 0 implies P1(y | x) = P2(y |
x).

Consider the graph Gs in Fig. 5.1(c) and assume that our goal is to establish
s-recoverability of Q = P (y|x). Note that by d-separation (Pea88), X separates
Y from S, (or (Y ?? S|X)), so we can write P (y|x) = P (y|x, S = 1). This is
a very special situation since these two distributions can be arbitrarily distant
from each other, but in this specific case Gs constrains Q in such a way that
despite the fact that data was collected under selection and our goal is to answer
a query about the overall population, there is no need to resort to additional data
external to the biased study.

Now we want to establish whether Q is s-recoverable in the graph Gs in
Fig. 5.1(d). In this case, S is not d-separated from Y if we condition on X, so
(S ?? Y |X) does not hold in at least one distribution compatible with Gs, and the
identity P (y|x) = P (y|x, S = 1) is not true in general. One may wonder if there
is another way to s-recover Q in Gs, but this is not the case as formally shown
next. That is, the assumptions encoded in Gs imply a universal impossibility; no
matter how many samples of P (x, y|S = 1) are accumulated or how sophisticated
the estimation technique is, the estimator of P (y|x) will never converge to its true
value.

Lemma 4. P (y|x) is not s-recoverable in Fig. 5.1(d).

Proof. We construct two causal models such that P1 is compatible with the graph
Gs in Fig. 5.1(d) and P2 with the subgraph G2 = Gs \ {Y ! S}. We will set
the parameters of P1 through its factors and then computing the parameters
of P2 by enforcing P2(V | S = 1) = P1(V | S = 1). Since P2(V |S = 1) =
P2(V ), we will be enforcing P1(V |S = 1) = P2(V ). Recoverability should hold
for any parametrization, so we assume that all variables are binary. Given a
Markovian causal model (Pea00), P1 can be parametrized through its factors in
the decomposition over observables, P1(X), P1(Y |X), P1(S = 1|Y ), for all X, Y .

We can write the conditional distribution in the second causal model as fol-
lows:

P2(y|x) = P1(y|x, S = 1) =
P1(y, x, S = 1)

P1(x, S = 1)
(5.1)

=
P1(S = 1|y)P1(y|x)

P1(S = 1|y)P1(y|x) + P1(S = 1|y)P1(y|x)
, (5.2)
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where the first equality, by construction, should be enforced, and the second and
third by probability axioms. The other parameters of P2 are free and can be
chosen to match P1.

Finally, set the distribution of every family in P1 but selection variable equal to
1/2, and set the distribution P1(S = 1|y) = ↵, P1(S = 1|y) = �, for 0 < ↵, � < 1
and ↵ 6= �. This parametrization reduces eq. (2) to P2(y|x) = ↵/(↵ + �) and
P1(y|x) = 1/2, the result follows.

Corollary 11. P (y|x) is not s-recoverable in Fig. 5.1(a).

The corollary follows immediately noting that lack of s-recoverability with a
subgraph (Fig. 5.1(d)) precludes s-recoverability with the graph itself since the
extra edge can be inactive in a compatible parametrization (Pea88) (the converse
is obviously not true). Lemma 4 is significant because Fig. 5.1(d) can represent
a study design that is typically used in empirical fields known as case-control
studies. The result is also theoretically instructive since Fig. 5.1(d) represents
the smallest graph structure that is not s-recoverable, and its proof will set the
tone for more general and arbitrary structures that we will be interested in (see
Theorem 20).

Furthermore, consider the graph in Fig. 5.1(e) in which the independence
(S ?? Y |X) holds, so we can also recover Q from selection (P (y|x, S = 1) =
P (y|x)). However, (S ?? Y |X) does not hold in Fig. 5.1(f) – there is an open
path passing through X’s ancestor W (i.e. S  Z ! X  W ! Y ) – and the
natural question that arises is whether Q is recoverable in this case. It does not
look obvious whether the absence of an independence precludes s-recoverability
since there are other possible operators in probability theory that could be used
leading to the s-recoverability of Q. To illustrate this point, note that it is not the
case in causal inference that the inapplicability of the backdoor criterion (Pea00,
Ch. 3), which is also an independence constraint, implies the impossibility of
recovering certain e↵ects.

Remarkably, the next result states that the lack of this independence indeed
precludes s-recoverability, i.e., the probe of one separation test in the graph is
su�cient to evaluate whether a distribution is or is not s-recoverable.

Theorem 20. The distribution P (y|x) is s-recoverable from Gs if and only if
(S ?? Y |X).

Proof. See Appendix C.

In words, Theorem 20 provides a powerful test for s-recoverability without
external data, which means that when it disavows s-recoverability, there exists no
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procedure that would be capable of recovering the distribution from selection bias
(without adding assumptions). Its su�ciency part is immediate, but the proof
of necessity is somewhat involved since we need to show that for all graphical
structures in which the given d-separation test fails, each of these structures does
not allow for s-recoverability (i.e., a counter-example can always be produced
showing agreement on P (v|S = 1) and disagreement on P (y|x)).

The next corollary provides a test for s-recoverability of broader joint distri-
butions (including Y alone):

Corollary 12. Let Z = An(S) \An(Y ) including S, and A = Pa(Z)\ (An(Y ) \
{Y }). P (Y, An(Y ) \ (A \ {Y })|A) is s-recoverable if and only if Y is not an
ancestor of S.

This result can be embedded as a step reduction in an algorithm to s-recover
a collection of distributions in the form of the corollary. We show such algorithm
in Appendix C. 5. The main idea is to traverse the graph in a certain order s-
recovering all joint distributions with the form given in the corollary (updating S
along the way). If the algorithm exits with failure, it means that the distributions
of its predecessors are not s-recoverable.

5.4 Recoverability with External Data

A natural question that arises is whether additional measurements in the pop-
ulation level over certain variables can help recovering a given distribution. For
example, P (age) can be estimated from census data which is not under selection
bias.

To illustrate how this problem may arise in practice, consider Fig. 5.2 and
assume that our goal is to s-recover Q = P (y|x). It follows immediately from
Theorem 20 that Q cannot be s-recovered without additional assumptions. Note,
however, that the parents of the selection node Pas = {W1, W2} separates S
from all other nodes in the graph, which indicates that it would be su�cient for
recoverability to measure T = {W1, W2}[{X} from external sources. To witness,
note that after conditioning Q on W1 and W2, we obtain:

P (y|x) =
X

w1,w2

P (y|x, w1, w2)P (w1, w2|x)

=
X

w1,w2

P (y|x, w1, w2, S = 1)P (w1, w2|x), (5.3)

5This listing is useful when one needs to examine properties of the collection of distributions,
analogously to the list of all backdoor admissible sets by (TL11).
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Figure 5.2: Causal model in which Q = P (y|x) is not recoverable without external
data (Thm. 20), but it is recoverable if measurements on the set Pas = {W1, W2}
are taken (Thm. 21). Alternatively, even if not all parents of S are measured,
any set including {W2, Z3} would yield recoverability of Q.

where the last equality follows from (Y ?? S | X, W1, W2). That is, Q can be
s-recovered and is a combination of two di↵erent types of data; the first factor
comes from biased data under selection, and the second factor is available from
external data collected over the whole population.

Our goal is to understand the interplay between measurements taken over two
types of variables, M, T ✓ V , where M are variables collected under selection
bias, P (M |S = 1), and T are variables collected in the population-level, P (T ).
In other words, we want to understand when (and how) can this new piece of
evidence P (T ) together with the data under selection (P (M |S = 1)) help in
extending the treatment of the previous section for recovering the true underlying
distribution Q = P (y|x).6

Formally, we need to redefine s-recoverability for accommodating the avail-
ability of data from external sources.

Definition 20 (s-Recoverability). Given a causal graph Gs augmented with a
node S, the distribution Q = P (y | x) is said to be s-recoverable from selection
bias in Gs with external information over T ✓ V and selection biased data over
M ✓ V (for short, s-recoverable) if the assumptions embedded in the causal model
render Q expressible in terms of P (m | S = 1) and P (t), both positive. Formally,
for every two probability distributions P1 and P2 compatible with Gs, if they agree

6This problem subsumes the one given in the previous section since when T = ;, the two
problems coincide. We separate them since they come in di↵erent shades in the literature and
also just after solving the version without external data we can aim to solve its more general
version; we discuss more about this later on.
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on the available distributions, P1(m | S = 1) = P2(m | S = 1) > 0, P1(t) =
P2(t) > 0, they must agree on the query distribution, P1(y | x) = P2(y | x).

The observation leading to eq. (5.3) provides a simple condition for s-re-
coverability when we can choose the variables to be collected. Let Pas be the
parent set of S. If measurements on the set T = Pas [ {X} can be taken
without selection, we can write P (y|x) =

P
pas

P (y|x, pas, S = 1)P (pas|x), since
S is separated from all nodes in the graph given its parent set. This implies
s-recoverability where we have a mixture in which the first factor is obtainable
from the biased data and the second from external sources.

This solution is predicated on the assumption that Pas can be measured in the
overall population, which can be a strong requirement, and begs a generalization
to when part of Pas is not measured. For instance, what if in Fig. 5.2 W1 cannot
be measured? Would other measurements over a di↵erent set of variables also
entail s-recoverability?

This can be expressed as a requirement that subsets of T and M can be found
satisfying the following criterion:

Theorem 21. If there is a set C that is measured in the biased study with {X, Y }
and in the population level with X such that (Y ?? S|{C, X}), then P (y|x) is
s-recoverable as

P (y|x) =
X

c

P (y|x, c, S = 1)P (c|x). (5.4)

Proof. See Appendix C.

In the example in Fig. 5.2, it is trivial to confirm that any (pre-treatment) set
C containing W2 and Z3 would satisfy the conditions of the theorem. In particu-
lar, {W2, Z3} is such a set, and it allows us to s-recover Q without measuring W1

(W1 2 Pas) through eq. (C.11). Note, however, that the set C = {W2, Z1, Z2}
is not su�cient for s-recoverability. It fails to satisfy the separability condition
of the theorem since conditioning on {X, W2, Z1, Z2} leaves an unblocked path
between S and Y (i.e., S  W1 ! T1 ! X  Z3 ! Y ).

It can be computationally di�cult to find a set satisfying the conditions of the
theorem since this could imply a search over a potentially exponential number of
subsets. Remarkably, the next result shows that the existence of such a set can
be determined by a single d-separation test.

Theorem 22. There exists some set C ✓ T \M such that Y ?? S|{C, X} if and
only if the set (C 0 [X) d-separates S from Y where C 0 = [(T \M)\An(Y [S [
X)] \ (Y [ S [X).
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Proof. See Appendix C.

In practice, we can restrict ourselves to minimal separators, that is, looking
only for minimal set C ✓ T \M such that (Y ?? S|{C, X}). The algorithm for
finding minimal separators has been given in (AC96; TPP98).

Despite the computational advantages given by Thm. 22, Thm. 21 still
requires the existence of a separator C measured in both the biased study (M)
and in the overall population (T ), and it is natural to ask whether this condition
can be relaxed. Assume that all we have is a separator C ✓ M , but C (or some
of its elements) is not measured in T , and therefore P (c|x) in eq. (C.11) still
needs to be s-recovered. We could s-recover P (c|x) in the spirit of Thm. 21 as

P (c|x) =
X

c1

P (c|x, c1, S = 1)P (c1|x), (5.5)

if there exists a set C1 ✓M\T such that (S ?? C|X, C1). Now if this fails in that
we can only find a separator C1 ✓ M not measured in T , we can then attempt
to recover P (c1|x) in the spirit of Thm. 21 by looking for another separator C2,
and so on. At this point, it appears that Thm. 21 can be extended.

We further extend this idea by considering other possible probabilistic manip-
ulations and embed them in a recursive procedure. For W,Z ✓ M , consider the
problem of recovering P (w|z) from P (t) and P (m|S = 1), and define procedure
RC(w, z) as follows:

1. If W [ Z ✓ T , then P (w|z) is s-recoverable.

2. If (S ?? W |Z), then P (w | z) is s-recoverable as P (w | z) = P (w | z, S = 1).

3. For minimal C ✓M such that (S ?? W |(Z[C)), P (w|z) =
P

c P (w|z, c, S =
1)P (c|z). If C [ Z ✓ T , then P (w|z) is s-recoverable. Otherwise, call
RC(c, z).

4. For some W 0 ⇢ W , P (w|z) = P (w0|w \w0, z)P (w \w0|z). Call RC(w0, {w \
w0} [ z) and RC(w \ w0, z)).

5. Exit with FAIL (to s-recover P (w|z)) if for a singleton W , none of the above
operations are applicable.

Now, we define recoverability based on this procedure:

Definition 21. We say that P (w|z) is C-recoverable if and only if it is recovered
by the procedure RC(w, z).
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Remarkably, the manipulations considered in RC() are not actually more
powerful than Thm. 21, as shown next.

Theorem 23. For X ✓ T , Y /2 T , Q = P (y|x) is C-recoverable if and only if it
is recoverable by Theorem 21, that is, if and only if there exists a set C ✓ T \M
such that (Y ?? S|{C, X}) (where C could be empty). If s-recoverable, P (y|x) is
given by P (y|x) =

P
c P (y|x, c, S = 1)P (c|x).

Proof. See Appendix C.

This result suggests that the constraint between measurement sets cannot
be relaxed through ordinary decomposition and Thm. 21 captures the bulk of
s-recoverable relations. Importantly, this does not constitute a proof of necessity
of Thm. 21.

Now we turn our attention to some special cases that appear in practice. Note
that, so far, we assumed X being measured in the overall population, but in some
scenarios Y ’s prevalence might be available instead. So, assume Y 2 T but some
variables in X are not measured in the population-level. Let X0 = X \ T and
Xm = X \X0, we have

P (y|x) =
P (xm|y, x0)p(y|x0)P
y P (xm|y, x0)p(y|x0)

(5.6)

Therefore, P (y|x) is recoverable if P (xm|y, x0) is recoverable. We could use
the previous results to recover P (xm|y, x0). In particular, Theorems 21 and 22
lead to:

Corollary 13. P (y|x) is recoverable if there exists a set C ✓ T \M (C could
be empty) such that (Xm ?? S|{C [ Y [X0}). If recoverable, P (y|x) is given by
Eq. (5.6) where

P (xm|y, x0) =
X

c

P (xm|y, x0, c, S = 1)P (c|y, x0) (5.7)

Corollary 14. P (y|x) is recoverable via Corollary 13 if and only if the set (C 0 [
Y [X0) d-separates S from Xm where C 0 = [(T\M)\An(Y [S[X)]\(Y [S[X).

For example, in Fig. 5.2, assuming M = {X, Y, W1, W3, Z3} and T = {Y, W1, W3, Z3},
we have S ?? X|{Y, W1, W3, Z3}, therefore we can s-recover

P (x|y) =
X

w1,w3,z3

P (x|y, w1, w3, z3, S = 1)P (w1, w3, z3|y), (5.8)
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as well as P (y|x) by substituting back eq. (5.8) in eq. (5.6).

Furthermore, it is worth examining when no data is gathered over X or Y in
the population level. In this case, P (y|x) may be recoverable through P (x, y), as
shown in the sequel.

Corollary 15. P (y|x) is recoverable if there exists a set C ✓ T \M such that
({Y }[X ?? S|C). If recoverable, P (y, x) is given by P (y, x) =

P
c P (y, x|c, S =

1)P (c).

For instance, P (x, y) is s-recoverable in Fig. 5.2 if T \M contains {W2, T1, Z3}
or {W2, T1, Z1} (without {X, Y }) .

5.5 Recoverability of Causal E↵ects

We now turn our attention to the problem of estimating causal e↵ects from se-
lection biased data.

Our goal is to recover the e↵ect of X on Y , P (y|do(x)) given the structure
of Gs. Consider the graph Gs in Fig. 5.3(a), in which X and Y are not con-
founded, hence, P (y|do(x)) = P (y|x) and, based on Theorem 20, we conclude
that P (y|do(x)) is not recoverable in Gs. Fig. 5.3(b) and (c), on the other hand,
contains covariates W1 and W2 that may satisfy conditions similar to those in
Theorem 20 that would render P (y|do(x)) recoverable. These conditions, how-
ever, need to be strengthened significantly, to account for possible confounding
between X and Y which, even in the absence of selection bias, might require ad-
justment for admissible covariates, namely, covariates that satisfy the backdoor
condition (Pea93a). For example, {W2} satisfies the backdoor condition in both
Fig. 5.3(b) and (c), while {W1} satisfies this condition in (b) but not in (c).

Definition 22 below extends the backdoor condition to selection bias problems
by identifying a set of covariates Z that accomplishes two functions. Conditions
(i) and (ii) assure us that Z is backdoor admissible (PP10) 7, while conditions (iii)
and (iv) act to separate S from Y , so as to permit recoverability from selection
bias.

Definition 22 (Selection-backdoor criterion). Let a set Z of variables be parti-
tioned into Z+[Z� such that Z+ contains all non-descendants of X and Z� the
descendants of X. Z is said to satisfy the selection backdoor criterion (s-backdoor,
for short) relative to an ordered pairs of variables (X, Y ) and an ordered pair of
sets (M, T ) in a graph Gs if Z+ and Z� satisfy the following conditions:

7 These two conditions extend the usual backdoor criterion (Pea93a) to allow descendants
of X to be part of Z.
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Figure 5.3: (a) Causal diagram in which (S ?? Y |{X, W}) but P (y|do(x)) is not
s-backdoor admissible. (b) P (y|do(x)) is s-recoverable through T = {W2} but
not {W1}. (c) {W2} does not satisfy the s-backdoor criterion but P (y|do(x)) is
still recoverable.

(i) Z+ blocks all back door paths from X to Y ;

(ii) X and Z+ block all paths between Z� and Y , namely, (Z� ?? Y |X, Z+);

(iii) X and Z block all paths between S and Y , namely, (Y ?? S|X, Z);

(iv) Z [ {X, Y } ✓M , and Z ✓ T .

Consider Fig. 5.3(a) where Z� = {W}, Z+ = {} and Z� is not separated
from Y given {X}[Z+ in Gs, which means that condition (ii) of the s-backdoor
is violated. So, despite the fact that the relationship between X and Y is uncon-
founded and (Y ?? S|{W,X}), it is improper to adjust for {W} when computing
the target e↵ect.

For the admissible cases, we are ready to state a su�cient condition that
guarantees proper identifiability and recoverability of causal e↵ects under selec-
tion bias:

Theorem 24 (Selection-backdoor adjustment). If a set Z satisfies the s-backdoor
criterion relative to the pairs (X, Y ) and (M, T ) (as given in def. 20), then the
e↵ect of X on Y is identifiable and s-recoverable and is given by the formula

P (y|do(x)) =
X

z

P (y|x, z, S = 1)P (z) (5.9)

Proof. See Appendix C.

Interestingly, X does not need to be measured in the overall population when
the s-backdoor adjustment is applicable, which contrasts with the expression
given in Theorem 21 where both X and Z (equivalently C) are needed.
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Consider Fig. 5.3(b) and assume our goal is to establish Q = P (y|do(x))
when external data over {W2} is available in both studies. Then, Z = {W2} is
s-backdoor admissible and the s-backdoor adjustment is applicable in this case.
However, if T = {W1}, Z = {W1} is backdoor admissible, but it is not s-backdoor
admissible since condition (iii) is violated (i.e., (S ?? Y |{W1, X}) does not hold
in Gs). This is interesting since the two sets {W1} and {W2} are c-equivalent
(PP10), having the same potential for bias reduction in the general population.
To understand why c-equivalence is not su�cient for s-recoverability, note that
despite the equivalence for adjustment,

P
w1

P (y|x, w1)P (w1) =
P

w2
P (y|x, w2)P (w2),

the r.h.s. is obtainable from the data, while the l.h.s. is not.

Now we want to recover Q = P (y|do(x)) in Fig. 5.3(c) (U is a latent variable)
with T = {W2}. Condition (iii) of the s-backdoor fails since (S ?? Y |{X, W2})
does not hold. Alternatively, if we discard W2 and consider the null set for
adjustment (Z = {}), condition (i) fails since there is an open backdoor path
from X to Y (X  W2  U ! Y ). Despite the inapplicability of the s-
backdoor, P (y|do(x)) is still s-recoverable since, using do-calculus, we can show
that Q = P (y|do(x), S = 1), which reduces to

P
w2

P (y|x, w2, S = 1)P (w2|S =
1), both factors s-recoverable without the need for external information.

The reliance on the do-calculus in recovering causal e↵ects is expected since
even when selection bias is absent, there exist identifiability results beyond the
backdoor. Still, this criterion, which is generalized by the s-backdoor criterion,
is arguably the most used method for identifiability of causal e↵ects currently
available in the literature.

5.6 Recoverability of the Odds Ratio

In this section, we consider the measure of association known as the odds ratio
(OR) and show that exploring its functional form allows the recoverability of
more quantities than in the previous scenarios.

Consider the chain structure in Fig. 5.4(a) which might represent the quali-
tative assumptions of a study of the e↵ect of a training program (X) on earnings
after 5 years of completion (Y ) without confounding between treatment and out-
come. Assume that subjects achieving higher income tend to report their status
more frequently than those with lower income. Given that all available data is
obtained under selection bias, is the unbiased odds ratio recoverable?

The chain structure is the simplest structure exhibiting selection bias and
known to not be recoverable for conditional distributions by Thm. 20. The intu-
ition gained from analyzing the odds ratio in this example will serve as a basis
for treating more complicated structures.
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Figure 5.4: (a) Chain graph where X represents treatment, Y is the outcome,
and S an indicator variable for the selection mechanism. (b) Scenario where
there exists a blocking set from {X, Y } to S yet the OR is not G-recoverable. (c)
Example where the selection is outcome dependent and P (y|x) is not recoverable,
but is the OR. (d) Example where the C-specific OR is G-recoverable.

We define next some key concepts used along the chapter and state some
results that will support answering about the recoverability of the odds ratio.

Definition 23 (Odds ratio). Consider two variables X and Y and a set Z,
the conditional odds ratio OR(Y, X | Z = z) is given by the ratio:

�
Pr(y |

z, x0)/Pr(y0 | z, x0)
�
/
�
Pr(y | z, x)/Pr(y0 | z, x)

�
.

OR(Y, X | Z) measures the strength of association between X and Y condi-
tioned on Z and it is symmetric, i.e., OR(Y, X | Z) = OR(X, Y | Z).

Definition 24 (G-Recoverability). Given a graph G, OR(X, Y | Z) is said to
be G-recoverable from s-biased data if the assumptions embedded in G renders it
expressible in terms of the observable distribution P (Vxy | S = 1) where Vxy = V \
{S}. Formally, for every two probability distributions P1(.) and P2(.) compatible
with G, P1(vxy =| S = 1) = P2(vxy | S = 1) implies OR1(X, Y | Z) = OR2(X, Y |
Z).

Definition 25 (Collapsibility). Consider two variables X and Y and disjoint sets
Z and W . We say that the odds ratio OR(X, Y | Z, W ) is collapsible over W if
OR(X, Y | Z = z,W = w) = OR(X, Y | Z = z, W = w0) = OR(X, Y | Z = z),
for all w 6= w0.

Definition 25 and the following Lemma are stated in (DKK10) and are based
on long tradition in Epidemiology starting with (Cor51) and followed by (Whi78;
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Gen92).8

Lemma 5. For any two sets, Z and W , the conditional odds ratio OR(Y, X |
Z, W ) is collapsible over W (that is, OR(Y, X | Z, W ) = OR(Y, X | Z)), if either
(X ?? W | {Y, Z}) or (Y ?? W | {X, Z}).

The following Corollary provides a graphical test for G-recoverability (Def.
24) based on Lemma 5:

Corollary 16. Given a graph G in which node S represents selection, the OR(X, Y |
Z) is G-recoverable from s-biased data if Z is such that (X ?? S | {Y, Z})G or
(Y ?? S | {X, Z})G.

Corollary 16 conveys the main distinction between the types of recoverability
allowed in the OR case versus the other measures previously discussed. Note that
while Theorem 20 requires the independence of S from Y (given X), Corollary
16 allows recoverability through the independence of S from X (given Y ), which
follows directly from the symmetric form of the OR. More concretely, consider the
graph in Fig. 5.4(a) and note that X is d-separated from S by Y , which implies
that the odds ratio is recoverable in this case – this independence encodes the
assumption that entry to the data pool is determined by the outcome Y only,
not by X – while P (y|x) is not recoverable from selection in this case.

There is another important subtlety here. One might surmise that selection
bias of OR(X, Y ) can be removed if the condition of Corollary 16 holds, i.e., there
exists a separating set Z such that (X ?? S | {Y, Z})G or (Y ?? S | {X, Z})G,
but this is not the case. Consider Fig. 5.4(b) where the set Z d-separates {X, Y }
from S and therefore permits us to remove S by writing OR(X, Y | Z, S = 1)
as OR(X, Y | Z), yet the unconditional OR is not G-recoverable because we
cannot re-apply the condition of Corollary 16 to eliminate Z from OR(X, Y | Z).
Moreover, the resulting quantity, OR(X, Y | Z), though estimable for every
level Z = z, does not represent a meaningful relation for decision making or
interpretation, because it does not stand for a causal e↵ect in a stable subset
of individuals (see discussion about the causal OR at the end of this section).
Since Z is X-dependent in G, the class of units for which Z = z under do(X = 1)
is not the same as the class of units for which Z = z under do(X = 0). The
conditional odds ratio OR(X, Y | Z) would be meaningful only if Z is restricted
to pre-treatment covariates, which are X-invariant, hence stable.

We next introduce a criterion, followed by a procedure to decide whether it
is legitimate to replace Z with a set C of pre-treatment covariates, for which

8Cornfield’s result and some of its graphical ramifications were brought to our attention by
Sander Greenland. See also (GP11).
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OR(Y, X | C) is a meaningful c-specific causal e↵ect. Typical examples of c-
specific e↵ects would be C = {age, sex} or, when average behavior is desired,
C = {}.

Definition 26 (OR-admissibility). A set Z = {Z1, ..., Zn} is OR-admissible
relative to an ordered triplet (X, Y, C) whenever an ordering (Z1, ..., Zn) exists
such that for each Zk, either (X ?? Zk | C, Y, Z1, ..., Zk�1) or (Y ?? Zk |
C, X, Z1, ..., Zk�1).

Corollary 17 ((DKK10)). OR-admissibility of Z implies OR(Y, X | C, Z) =
OR(Y, X | C).

This Corollary follows by successive application of Lemma 5 to the elements
Z1, ..., Zn of Z.

Theorem 25 (OR G-recoverability). Let graph G contain the arrow X ! Y
and a set C of measured X-independent covariates. The c-specific odds ratio
OR(Y, X | C) is G-recoverable from s-biased data if and only if there exists an
additional set Z of measured variables such that the following conditions hold in
G:

1. (X ?? S | {Y, Z, C})G or (Y ?? S | {X, Z, C})G.

2. Z is OR-admissible relative to (X, Y, C).

Moreover, OR(Y, X | C) = OR(Y, X | C, Z, S = 1). 9

Proof. See Appendix C.

Note that unlike the control of confounding, which requires averaging over
the adjusted covariates, a single instantiation of the variables in Z is all that is
needed for removing selection bias.

Now consider the problem found in the medical literature reported in (HF78;
HHR04; GRB09) and depicted in Fig. 5.4(c) in which the e↵ect of Oestrogen (X)
on Endometrial Cancer (Y ) was noticed to be overestimated in the data studied.
One of the symptoms of the use of Oestrogen is vaginal bleeding (W ), and the
hypothesis was that women noticing bleeding are more likely to visit their doctors,

9This Theorem builds on and extends the results in (DKK10) which are summarized by
Definition 26 and Corollary 17. First, it supplements the su�cient condition with its necessary
counterpart. This is made possible by defining G-recoverability in terms of identifiability (Def.
24). Second, Theorem 25 explicitly avoid meaningless ORs (i.e., OR(X,Y | Z), where Z is
X-dependent). Finally, the proof of the su�ciency part prepares the ground for a procedure for
finding an admissible sequence if such exists, to be shown next.
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Figure 5.5: Scenario where OR is G-recoverable and Z = {W1, W2, W4} (a), and
it is not G-recoverable in (b).

causing women using Oestrogen to be overrepresented in the study. This problem
can be easily solved applying Theorem 25 with Z = {W} – we can immediately
verify that Z is OR-admissible relative to (X, Y, {}) (i.e., (W ?? Y | X)), and
(X ?? S | {Y, W}) holds. Thus, we can write OR(Y, X) = OR(Y, X | W ) =
OR(X, Y | W ) = OR(X, Y | W,S = 1), which shows a mapping from the target
(unbiased) quantity (without any S) to the s-biased data (conditioned on S = 1,
which was measured). (In the sequel we will drop G finding no need to distinguish
conditional independencies from d-separation statements.) 10

Theorem 25 defines the boundary that distinguishes the class of graphs that
permit G-recoverability of OR from those that do not. To show the power of
Theorem 25, let us consider the more intricate scenario of Fig. 5.5(a), in which
Z = {W1, W2, W4} satisfies the conditions of Theorem 25. This can be seen
through the following sequence of reductions verified by the graph: (X ?? S |
{Y, W1, W2, W4}) ! (Y ?? W2 | {X, W1, W4}) ! (X ?? W1 | {Y, W4}) ! (Y ??
W4 | X). The final result is

OR(Y, X) = OR(Y, X | W1, W2, W4, S = 1)

where the term on the left is our target quantity and the one on the right is
estimable from the s-biased data. Fig. 5.5(b) shows an example where OR is
not G-recoverable, because we must start with Z = {W1, W2, W3, W4} or Z =
{W1, W3, W4} to separate S from X or Y , respectively – these two sets are not
OR-admissible since each set contains the variable W3 which cannot be separated
from X or Y by any set.

10Furthermore, the graph symmetric to Fig. 5.4(c) where the positions of X and Y are
interchanged yields the same result. Similarly, another common variant of Fig. 5.4(c), with the
edge X !W reversed, is solvable as well.
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Theorem 25 relies on OR-admissibility, for which Definition 26 gives a declar-
ative, non-procedural criterion. Taken literally, it requires that we first find a
proper Z and then, out of the n! orderings of the elements in Z, find one that
will satisfy the d-separation tests specified in Definition 26. We will now sup-
plement Theorem 25 with a simple graphical condition, followed by an e↵ective
procedure for finding such a sequence if one exists.

Theorem 26. Let graph G contain the arrow X ! Y , a necessary condition
for G to permit the G-recoverability of OR(Y, X | C) for a given set C of pre-
treatment covariates is that S and every ancestor Ai of S that is also a descendant
of X have a separating set Ti that either d-separates Ai from X given Y , or d-
separates Ai from Y given X. 11

Proof. See Appendix C.

Theorem 27. Let G be a DAG containing the arrow X ! Y and two sets
of variables, measured V and unmeasured U . A necessary and su�cient condi-
tion for G to permit the G-recoverability of OR(Y, X | C) for a given set C of
pre-treatment variables is when the sink-procedure below terminates. Moreover,
OR(Y, X | C) = OR(Y, X | C, Z, T, S = 1), where Z =

�
An(S) \ An(Y )

�
\ V

and T is given by the sink-procedure.

Procedure (Sink reduction)

1. Set T = {}, and consider Z as previously defined. Remove V \ An(Y [ S)
from G, and name the new graph G⇤. Consider an ordering compatible
with G⇤ such that Zi < Zj whenever Zi is non-descendant of Zj.

2. Test if sink Zi of G⇤ satisfies the following condition: (Zi ?? X | C, T, Y, Z1, ..., Zi�1)
or (Zi ?? Y | C, T,X, Z1, ..., Zi�1). If so, go to step 4. Otherwise, continue.

3. Test if there exists a minimal set Ti of non-descendants of X that, if added
to T would render step 2 successful, if none exists, exit with failure.5 Else,
add Ti to T and continue with step 4.

4. Remove Zi from G⇤ and Z, and repeat step 2 recursively until Z is empty.
If so, go to step 5.

11A polynomial time algorithm for finding a minimal separating set in DAGs is given in
(TPP98). The restricted minimal separation version of that algorithm finds a minimal separator
in a DAG with latent variables (equivalently, semi-Markovian models). A fast test for the non-
separability of X and Ai is the existence of an inducing path between the two variables (VP90).
For example, the path X !W4 !W3 in Fig. 5.5(b).
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5. Test if (T ?? Y | C, X), if so, the sequence (Z1, Z2, ...Zm) with T constitutes
a witness for the OR-admissibility of Z relative to (X, Y, C), for a set C of
X-independent variables. Otherwise, exit with failure.

Proof. See Appendix C.

The algorithm exploits the graph structure to construct a mapping from the
observed s-biased data and the desired target OR. Since the OR is symmetric, it
is not necessary to separate S from X and Y simultaneously, but only from one
of them (given the other.) For simplicity, denote the expression “X given Y or Y
given X” by the symbol �xy. A separating set from S to �xy is first sought in step
2, starting with all observable ancestors of S that are non-ancestors of Y . If the
test succeeds and this set is a separator, the algorithm iterates trying to separate
�xy from the deepest node in the remaining set. In case of failure, the algorithm
attempts (step 3) to achieve separability using pre-treatment covariates Ti. In
case no separability can be found using these added covariates, the algorithm
fails. Otherwise, at the end, the algorithm further requires that all Ti added
along these iterations be separable from Y (step 5).

To illustrate, running the procedure on the graph of Fig. 5.5(b) with C = {},
the graph remaining after the removal of S has two sink nodes, W2 and W3.
Removing W2 leaves two other sinks, W3, and W1. Removing W1 leaves W3

as the only remaining sink node which fails the test of Step 3. Since no non-
descendant of X exists that yields separability, we must exit with failure. On
the other hand, if we are able to measure U , the hidden variable responsible
for the double arrow arc between W3 and W4, we would add this node to T ,
W3 will pass the test, followed by W4, and we will end up with U as the only
non-descendant of X remaining in T . In step 5 we remove U from T , yielding
OR(X, Y ) = OR(X, Y | W,U, S = 1).

Thus far, we assumed that the treatment X is unconfounded, therefore the OR
is identical to the causal OR defined as COR(X, Y ) = P (y|do(x))P (y0|do(x0))

P (y|do(x0))P (y0|do(x)) . In the
presence of confounding, it is not enough to recover OR in s-biased data, we need
to go further and assure that the recovered OR(X, Y | C) is such that C satisfies
the back-door criterion (2nd rule of do-calculus, observing and intervening are
equivalent), in which case OR(X, Y | C) will represent the c-specific causal OR.
For example, in Fig. 5.4(d) the COR(X, Y | C) will be G-recoverable because
once we condition on C all conditional independencies will be identical to those
of Fig. 5.4(c), and P (Y | do(X), C) = P (Y | X, C).

Note, however that although we can recover the c-specific causal OR, we
cannot recover the population COR(X, Y ). For such measure to be recoverable
we need to add assumptions which will make it possible to infer averageable
measures of causal e↵ects such as RD and RR, to be handle next.
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Figure 5.6: (a) Constant odds ratio curves for c =
{1.00, 1.01, 1.50, 2.00, 5.00, 10.00} and their inverses; Superimposed constant
odds ratio with constant risk ratio (b) and constant risk di↵erence curves (c).

5.6.1 The Relationship Between OR and Other E↵ects

Consider again the chain structure in Fig. 5.4(a) and define the causal e↵ect as
COR(X, Y ). The fact that X and Y are not confounded permits us to estimate
the causal e↵ect COR(X, Y ) by the odd ratio OR(X, Y ) which, by the results in
the previous section, will remain invariant to conditioning on S = 1. However, if
we define the causal e↵ect as ACE = Pr(y | do(x))� Pr(y | do(x0)) (also known
as the causal risk di↵erence), a bias will be introduced upon conditioning.

The invariance of OR can be represented in the following intuitive and picto-
rial way. We characterize the conditional distribution P (Y | X) by two indepen-
dent parameters p = P (y | x) and q = P (y | x0), which define a point (p, q) in the
unit square. The condition OR(X, Y ) = c describes a curve in the (p, q)�plane.
For c = 1, the curve is the unit slope line. For c > 1, this curve separate points
with OR(.) > c from those with OR(.) < c in the region below the unit slope line
(symmetrically for the inverses (c < 1) in the region above q = p). See Fig. 5.6.

Now, by conditioning on S = 1, we obtain a new conditional probability,
also characterized by two independent parameters ps = P (y | x, S = 1), qs =
P (y | x0, S = 1). The fact that OR(Y, X | S = 1) = OR(Y, X) means that
conditioning on S = 1 must shift the initial (p, q) point along a constant OR
curve, not anywhere else. We show these universal curves of constant OR for
c = {1.00, 1.01, 1.50, 2.00, 5.00, 10.00} and their respective inverses in Fig. 5.6(a).
Fig. 5.6(b) shows curves for constant risk ratio (RR: p

q = c), which are variable

slope lines going through the origin, and bounded by the slope 1
c . Similarly, Fig.

5.6(c) shows curves for constant risk di↵erence.
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Figure 5.7: Di↵erent scenarios in which Theorem 28 can be applied. (a) Typi-
cal study with randomization and non-compliance (IV as incentive-mechanism)
where selection and confounding are both present. (b) Selection bias in the back-
door case. (c) More complex study with an intermediary variable W between
treatment and selection. In this case, Y directly cause W and there is a common
cause between them (extension of Fig. 5.4(c), see Corollary 20.)

We see that even though RR does not remain constant (upon conditioning),
the constancy of OR constrains the behavior of the RR. This follows by noting
(after some algebra) that RR = c + (1 � c)p, i.e., RR has intercept c and slope
1� c. For instance, if OR is constant and c = 1, we have unit slope line for OR,
but RR does not move and is equal to one. For constant OR and 1

2 < c < 1, the
slope is positive but less than 1

2 , and the intercept is greater than c = 1
2 , which

implies that RR lies inside the interval [c, 1]. Similar bounds can be obtained for
other values of c.

5.7 Recoverability with Instrumental Variabless

In this section, we consider the problem of recoverability when confounding and
selection biases are simultaneously present, see Fig. 5.7(a) for an example.

Our goal is to infer the most accurate bounds for the causal e↵ect of X
on Y , knowing that there is no unbiased estimate for this quantity even when
selection bias is not present (i.e., S ?? V ). This scenario is usually presented
under the rubric of “randomization with non-compliance”, and it is pervasive in
the Economics literature, we defer to (Pea09b, Ch. 8) for a more comprehensive
discussion of the relevance of this setup, we focus here on the technical aspects
of the problem.

Generally, the bounding analysis assumes no selection bias, and the natural
question that arises is whether selection bias can be treated and under what
conditions bounds free from selection can be recovered.
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We show next that this problem can be solved assuming the existence of two
instrumental variables Z1 and Z2. 12 Noteworthy, the set of assumptions used in
our analysis are commonplace in daily Econometrics practice, and its convoluted
appearance is diluted when one observes them more vividly through the causal
graph depicted in Fig. 5.7(a). In a nutshell, they are the same assumptions
of randomization with non-compliance together with selection bias (such that
treatment and outcome a↵ect entry in the data pool).

Theorem 28. The joint distribution of P (X, Y, Z) is recoverable from s-biased
data whenever the following conditions hold: (i) the S node is a↵ected by the set Z
only through {X, Y }; (ii) the set Z is d-connected to {X, Y } (and combinations);
(iii) the dimensionality of Z matches the dimensionality of {X, Y }; (iv) the
marginal probability of Z is known. In other words, the distribution P (X, Y, Z)
is recoverable from s-biased data whenever (S ?? Z | X, Y ), (Z ??/ {X, Y }), (Z
??/ X | Y ),(Z ??/ Y | X), the dimensionality of Z and X [ Y matches, and the
marginal distribution of P (Z) is given.

Proof. See Appendix C.

Corollary 18. The bounds for P (y | do(x)) in the scenario of randomization
with non-compliance (Fig.5.7(a)) are recoverable from s-biased data whenever the
conditions of the Theorem 28 hold.

Proof. It follows directly from Theorem 28 together with the bounds in (BP97).

Corollary 19. The causal e↵ect P (y | do(x)) in the back-door scenario (Fig.
5.7(b)) is recoverable from s-biased data whenever the conditions of the Theorem
28 hold.

Proof. It follows directly from Theorem 28.

Corollary 20. The causal e↵ect of Oestrogen (X) on Endometrial Cancer (Y )
as studied in (HF78; HHR04) (Fig. 5.7(c)) is recoverable from s-biased data
whenever there is an IV set Z pointing to X, and the conditions of the Theorem
28 hold. Moreover, the same holds without relying on Z whenever the following
conditions hold: (i) X has the same dimensionality of {W,Y }; (ii) the marginal
distribution of P (X) is available.

Proof. See Appendix C.

12Call Z = Z1 [ Z2, or consider one IV with the same number of levels. Let us name both
cases by instrumental variable set.
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Figure 5.8: Scenario in which selection and confounding biases are present, en-
tangled, and thus not recoverable.

Some observations on the method

Methods that handle selection bias try to model the distribution of S, which is
unobservable and not always easy to estimate; we take a di↵erent approach and
avoid doing this explicit manipulation of the selection mechanism by exploiting
the topology of the causal graph and the underlying data-generating process. We
are not aware of other approaches trying to do so.

The main idea is to exploit the conditional independence of the IV set Z and
the selection mechanism S given the distribution of the treatment and outcome
– interestingly, the latter is what we seek to estimate. The method hinges on two
properties about the induced system, that it is linearizable and full rank – both
facts were not obvious nor expected a priori.

It is worth to make some additional remarks that follow the proof of Theorem
28. First note that the proposed method relies on a sample size approaching
infinity, which is di�cult to obtain in practice. As a possible improvement,
the problem could be cast as an optimization problem. The formulation goes
as follows. We associate error terms ✏z1z2,xy to each �z1z2,xy term, and proceed
the analysis minimizing the (square) mean error subject to constraints. The
constraints emerge naturally from the induced system of equations together with
the additional constraints of positivity and integrality. Our original goal was to
show feasibility of removing selection bias (identifiability) but not the estimation
per se, still, this should be an interesting exercise to pursue. Further investigation
is needed to check the applicability of this suggestion.

We envision our method being used as a first step in a pre-processing stage,
before the application of any bounding (BP97) or estimation procedure. The
method returns the same values of P (X, Y, Z) whenever the collected data is not
under selection bias, which means that its usage will not hurt and should be
considered as a “good practice.”

Finally, note that there are scenarios not solvable by our method or in which
our assumptions are not applicable. For instance, we show in Fig. 5.8 one of this
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kind, in which selection and confounding biases are entangled in such way that
it does not seem possible to detach one from another. We conjecture that this
case is not solvable in general without further assumptions. Notice that even if
we remove the edge U ! X, the example is still hard to resolve.

5.8 Conclusions

In this chapter, we provided conditions for recoverability from selection bias
in statistical and causal inferences applicable for arbitrary structures in non-
parametric settings. Theorem 20 provided a complete characterization of recov-
erability when no external information is available. Theorem 21 provided a su�-
cient condition for recoverability based on external information; it is optimized by
Theorem 22 and strengthened by Theorem 23. Verifying these conditions takes
polynomial time and could be used to decide what measurements are needed
for recoverability. Theorem 24 further gave a graphical condition for recovering
causal e↵ects, which generalized the back-door adjustment.

We further relaxed our requirements and considered recoverability of the odds
ratio (OR). Theorem 25 provided a complete graphical condition under which the
population OR and a covariate-specific causal OR can be recovered from selec-
tion. We then devised an e↵ective procedure for testing this condition (Theorems
26 and 27). These results, although motivated by causal considerations, are ap-
plicable to classification tasks as well, since the process of eliminating selection
bias is separated from that of controlling for confounding bias. We presented uni-
versal curves that show the behavior of OR as the distribution P (y|x) changes,
and how the risk ratio (RR) and risk di↵erence (RD) are related to OR.

Finally, we considered the problem of recovering from selection when con-
founding bias is also present (Fig. 5.7(a)); we showed the former can be entirely
removed with the help of instrumental variables (Theorem 28). This result is sur-
prising because bias removal in the presence of confounding is generally expected
to be a more challenging task than only under selection. We finally showed how
this result is applicable to scenarios where other structural assumptions hold, for
instance, when an instrument is not available but a certain back-door admissible
set can be identified (Corollary 19).

Given that selection bias is a common problem across many disciplines, the
methods developed in this chapter should help to understand, formalize, and
alleviate this problem in a broad range of data-intensive applications.
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CHAPTER 6

Causal Inference by Surrogate Experiments

We address the problem of estimating the e↵ect of intervening on a set of variables
X from experiments on a di↵erent set, Z, that is more accessible to manipulation.
This problem, which we call z-identifiability, reduces to ordinary identifiability
when Z = ; and, like the latter, can be given syntactic characterization using
the do-calculus. We provide a graphical necessary and su�cient condition for z-
identifiability for arbitrary sets X, Z, and Y (the outcomes). We further develop a
complete algorithm for computing the causal e↵ect of X on Y using information
provided by experiments on Z. Finally, we use our results to prove complete-
ness of do-calculus relative to z-identifiability, a result that does not follow from
completeness relative to ordinary identifiability.

6.1 Introduction

The relation between passive and experimental observations, and how they can
aid the estimation of causal e↵ects, is of central interest in the empirical sciences.

In this line of research, the identification problem (ID, for short) asks whether
causal e↵ects can be computed from the joint distribution P over the observed
variables, and theoretical knowledge encoded in the form of a causal diagram G.

This problem has been extensively studied in the literature, and (Pea95;
Pea00) gave it rigorous mathematical treatment based on the structural seman-
tics, and introduced several graphical conditions such as the “back-door” and
“front-door” criteria, which was later generalized by his do-calculus. In the
last decades, a number of conditions had emerged for non-parametric identifi-
ability such as the ones given by (SGS93; GP95; PR95; Hal98; KM99). In a
series of breakthrough results starting with the development of the concept of
C-component (TP02), the do-calculus was finally shown to be complete (HV06a;
SP06b). This result implies that there exists a finite sequence of applications
of the rules of do-calculus that derives the target causal e↵ect Q in terms of the
observational distribution P if (and only if) Q is identifiable. It was also provided
algorithms that return a mapping from P to Q whenever Q is identifiable.

In real world applications, it is not uncommon that the quantity Q is uniden-
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Figure 6.1: Causal diagrams illustrating zID of the causal e↵ect Q = P (y|x̂). Q
can be identified by experiments on Z in model (a), but not in (b) and (c).

tifiable, i.e., the distribution P together with the graph G are not able to unam-
biguously determine Q. A natural question arises whether the investigator could
perform some auxiliary experiments (not necessary spelled out in Q), which would
enable him/her to estimate the desired causal e↵ects.

For instance, consider the diagram G in Fig. 6.1(a). Suppose one is interested
in assessing the e↵ect Q of cholesterol levels (X) on heart disease (Y ), and data
about subjects’ diet (Z) is also collected. It is clear that Q is unidentifiable from
the assumptions embodied in G, but it is infeasible in reality to control subjects’
cholesterol level by intervention. Assume that an experiment can be conducted in
which the subjects’ diet (Z) is randomized; a natural question emerges whether
Q is computable given this additional piece of experimental information?

Surprisingly, this ubiquitous problem has not received a thorough formal treat-
ment. We introduce a variation of the ID problem to fill in this gap. Consider
a setting in which, in addition to the information available in an ordinary ID
instance (distribution P and graph G), further experiments can be performed
over a set of variables Z; decide whether the target causal e↵ects can be com-
puted from the available information at hand. This extension generalizes the
ID problem (when Z = ; the two problems coincide) and is called here the z-
identification problem (zID, for short). The Z is called surrogate experiments,
for obvious reasons.

Syntactically, the zID problem amounts to transforming P (y|x̂)1 into an
equivalent expressions in do-calculus such that only members of Z may con-
tain the hat symbol. Applying this rationale for the example above (Fig. 6.1(a))
entails the following reduction in do-calculus. First apply Rule 3 to add ẑ,

P (y|x̂) = P (y|x̂, ẑ) since (Y ?? Z|X)GXZ

1We will use P (y|x̂) interchangeably with Px(y) or P (y|do(x)). We also will call the inter-
ventional operator do() as the “hat” operator.
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Then apply Rule 2 to exchange x̂ with x:

P (y|x̂, ẑ) = P (y|x, ẑ) since (Y ?? X|Z)GXZ

This last expression can be rewritten as,

P (y|x, ẑ) =
P (y, x|ẑ)

P (x|ẑ)
(6.1)

This expression shows that performing an experiment on Z su�ces to yield “iden-
tifiability” of the causal e↵ect of X on Y without experimenting over X. 2

The subtlety of this problem can be illustrated by noting that in the graph in
Fig. 6.1(a) the e↵ect is z-identifiable from P (V ) and P (X, Y |Ẑ) in G, whereas in
the graph in Fig. 6.1(b) it is not (to be shown later). The only di↵erence between
these two graphs is the bidirected edge between the pairs (X, Z) and (X, Y ).

One might surmise that zID can be represented by a mutilated graph in
which the edges incoming to Z are cut, and the problem would then be solved
as ordinary identifiability. Unfortunately, this is not the case as shown in the
graph in Fig. 6.1(c) where Q = P (y|x̂). The option of manipulating Z does not
enable us to compute the Z-specific causal e↵ect of X on Y , P (y|x̂, z) which , if
available, would allow us to compute the overall causal e↵ect by averaging over
Z. Although Q0 = P (y|x̂, ẑ) can be established from the mutilated graph, it does
not help in establishing the Z-specific causal e↵ect, or Q.

The first formal treatment of this problem (Pea95) led to the following su�-
cient condition for admitting a surrogate variable Z for the causal e↵ect P (y|x̂):

(i) X intercepts all directed paths from Z to Y , and

(ii) P (y|x̂) is identifiable in GZ .

These conditions are satisfied indeed in the model of Fig. 6.1(a) but not in
6.1(b) or 6.1(c). Pearl’s criterion is su�cient but was not shown to be necessary.
Additionally, it was not extended to the case where Z and X are sets of variables.
At the same time, the syntactic condition above, which requires the existence of a
do-calculus transformation expression containing only do(z) terms is declarative,
but is not computationally e↵ective, since it does not specify the sequence of

2 The expression also shows that only one level of Z su�ces for the identification of P (y|x̂)
for any value of y and x. In other words, Z need not be varied at all; it can simply be held
constant by external means and, if the assumptions embodied in G are valid, the r.h.s. of eq.
(6.1) should attain the same value regardless of the (constant) level at which Z is being held
constant. In practice, however, several levels of Z will be needed to ensure that enough samples
are obtained for each desired value of X.
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rules leading to the needed transformation, nor does it tell us if such a sequence
exists. Even though do-calculus is complete for identifying causal e↵ects, it is
not immediately clear whether it is complete for zID.

This chapter provides a systematic study of z-identifiability building on Pearl’s
condition and the previous results from the identifiability literature; our contri-
butions are as follows:

• We provide a necessary and su�cient graphical condition for the problem
of z-identification when Z is a set of variables.

• We then construct a complete algorithm for deciding z-identification of joint
causal e↵ects and returning the correct formula whenever those e↵ects are
z-identifiable.

• We further show that do-calculus is complete for the task of z-identification.

6.2 Notation and Definitions

The basic semantical framework in our analysis rests on probabilistic causal
models as defined in Chapter 2. We build on the problem of identifiability, de-
fined below for convenience, which expresses the requirement that causal e↵ects
must be computable from a combination of passive data P and the assumptions
embodied in a causal graph G (without assuming any availability of additional
experimental information).

Definition 27 (Causal E↵ects Identifiability (Pearl)). Let X, Y be two sets of
disjoint variables, and let G be the causal diagram. The causal e↵ect of an action
do(X = x) on a set of variables Y is said to be identifiable from P in G if Px(y)
is (uniquely) computable from P (V ) in any model that induces G.

The following Lemma is the operational way to prove that a causal quantity
is not identifiable given the assumptions embedded in G.

Lemma 6. Let X, Y be two sets of disjoint variables, and let G be the causal
diagram. Px(y) is not identifiable in G if there exist two causal models M1 and
M2 compatible with G such that P1(V ) = P2(V ), and P1(y|do(x)) 6= P2(y|do(x)).

Proof. The latter inequality rules out the existence of a function from P to Px(y).

Next, we formally introduce the problem of z-identifiability that generalizes
the problem of identifiability whereas it is no longer assumed that experimental
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information is not available at all, but there exists a set of variable Z in which
experiments were performed and now is available for use. In other words, the
explicit acknowledgement of the existence of the set Z adds a degree of freedom
for the researcher, making the analysis more flexible and perhaps realistic.

Definition 28 (Causal E↵ects z-Identifiability). Let X, Y, Z be disjoint sets of
variables, and let G be the causal diagram. The causal e↵ect of an action do(X =
x) on a set of variables Y is said to be z-identifiable from P in G, if Px(y) is
(uniquely) computable from P (V ) together with the interventional distributions
P (V \ Z 0|do(Z 0)), for all Z 0 ✓ Z, in any model that induces G.

Armed with this new definition, we state next the su�ciency of the do-calculus
for zID that is analogous to (Pea00, Corol. 3.4.2) in respect to identification.

Theorem 29. Let X, Y, Z be disjoint sets of variables, let G be the causal dia-
gram, and Q = P (y|do(x)). Q is zID from P in G if the expression P (y|do(x)) is
reducible, using the rules of do-calculus, to an expression in which only elements
of Z may appear as interventional variables.

Proof. The result follows from soundness of do-calculus and the definition of z-
identifiability.

It is clear that if we have an e�cient procedure to establish zID , we can
immediately decide ID by setting Z = ;. On the other hand, to be able to
establish the converse of Theorem 29, we need to understand the conditions for
non-zID, and so, we state next the analogous of Lemma 7 in this context.

Lemma 7. Let X, Y, Z be disjoint sets of variables, and let G be the causal
diagram. Px(y) is not z-identifiable in G if there exist two causal models M1 and
M2 compatible with G such that P 1(V ) = P 2(V ), P 1(V \ Z 0|do(Z 0)) = P 2(V \
Z 0|do(Z 0)), for all Z 0 ✓ Z, and P 1

x (y) 6= P 2
x (y).

Proof. Let I be the set of interventional distributions P (V \ Z 0|do(Z 0)), for any
Z 0 ✓ Z. The latter inequality rules out the existence of a function from P, I to
Px(y).

While Lemma 7 might appear convoluted, it is nothing more than a formal-
ization of the statement “Q cannot be computed from information set S alone.”
Naturally, when S has two components, hP, Ii , the Lemma becomes lengthy.
Even though the problems of ID and zID are related, Lemma 7 indicates that
proofs of non-zID are at least as hard as the ones for non-ID, given that to prove
the former requires the construction of two models to agree on hP, Ii, while to
prove the latter it is only required the two models to agree on the distribution P .
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6.3 Characterizing zID Relations

The concept of confounded component (or C-component) was introduced in (TP02)
to represent clusters of variables connected through bidirected edges, and was in-
strumental in establishing a number of conditions for ordinary identification (Def.
27). If G is not a C-component itself, it can be uniquely partitioned into a set
C(G) of C-components. We state below this definition that will also play a key
role in the problem of zID.

Definition 29 (C-component). Let G be a causal diagram such that a subset
of its bidirected arcs forms a spanning tree over all vertices in G. Then G is a
C-component (confounded component).

A special subset of C-components that embraces the ancestral set of Y was
noted by (SP06b) to play an important role in deciding identifiability – this
observation can also be applied to z-identifiability, as formulated next.

Definition 30 (C-forest). Let G be a causal diagram, where Y is the maximal
root set. Then G is a Y -rooted C-forest if G is a C-component and all observable
nodes have at most one child.

We next introduce a structure based on C-forests that witnesses unidentifia-
bility characterized by a pair of C-forests. ID was shown by (SP06b) infeasible if
and only if such structure exists as an edge subgraph of the given causal diagram.

Definition 31 (hedge). Let X, Y be set of variables in G. Let F, F 0 be R-rooted
C-forests such that F \ X 6= 0, F 0 \ X = 0, F 0 ✓ F , R ⇢ An(Y )GX

. Then F
and F 0 form a hedge for Px(Y ) in G.

The presence of this structure will prove to be an obstacle to z-identifiability
of causal e↵ects in various scenarios. For instance, the p-graph in Fig. 6.1(b) is
a Y -rooted C-forest in which Px(y) will show not to be z-identifiable. However,
di↵erent than in the ID case, there is no sharp boundary here, since Fig. 6.1(a)
also contains a Y -rooted C-forest but Px(y) was already shown to be zID.

We formally show next that there is a variation of this structure that is able
to capture non-zID for a broad set of cases.

Theorem 30. Let X, Y , Z be disjoint sets of variables and let G be the causal
diagram. Then, the causal e↵ects Q = Px(y) is not zID if there exists a hedge
F = hF, F 0i for Q in GZ.

Proof. The result is immediate. The existence of the hedge F for Q in GZ implies
that Z cannot help in the (ordinary) identification of Q. Let us assume that Q is
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Figure 6.2: Graphs in which P (y|x̂) is non-zID from do(Z) and there is no hedge
in GZ .

zID. Note that Z does not participate in the hedge F since there is no bidirected
edge going towards any of its elements in GZ , which is required by the definition
of C-forest. Further, consider a parametrization such that all elements of Z are
simply fair coins and disconnected from V \ Z in G.

We can now use the same proof of non-ID based on F to prove non-zID in G.
The inequality of Q between the two models is obvious, and the agreement of the
interventional distributions do(Z) follows since Z is disconnected from V \ Z by
the chosen parametrization. This is a contradiction since zID has to be valid for
any parametrization compatible with G, which su�ces to prove the result.

Consider the next Corollary in regard to the p-graph, which is the smallest
example in which Z could aid in the z-identification of Q but Q is still not z-
identifiable from do(Z). This and similar structures that prevent zID will be one
of the base cases for our proof of completeness, which requires a demonstration
that whenever the algorithm fails to z-identify a causal relation, the relation is
indeed non-zID.

Corollary 21. Px(y) is not zID in the p-graph.

Proof. This follows directly from Theorem 30 since there exists a hedge in GZ .

The result of Theorem 30 still does not characterize the zID class, which
suggests that the machinery used to prove completeness in the ID class is not
immediately applicable to the zID class.

For instance, consider the graph in Fig. 5.2(a) (called here bv-graph), which
does not have a hedge for Q in GZ but is still non-zID. The bv-graph coincides as
an edge subgraph with Fig. 6.1(a) (note C-component induced over {X, Y, Z}),
which turns out to be zID.

This is an interesting case, since up to this point, in ordinary identification, it
was enough to locate a hedge for Q as an edge subgraph of the inputted diagram,

99



2

1X

Y

ZW

(b)

Y

W

Z

X

(f)

Y

W

XZ

(c)

Y

W

XZ

(g)
Y

Z

WX

(h)

W
W

(a)
Y

W

X

Z

(e)
Y

X

W
Z

(d)

X

Y

Z

Figure 6.3: P (y|x̂) is zID from hP, do(Z)i in the graphs in the first row (a–d), but not
in the the second row (e–h).

and all graphs sharing this substructure were equally unidentifiable (see Thm. 4
in (SP06b)) – this is no longer true here since Z needs to be taken into account.
Mainly, note that the directed edges outside a C-component play a very critical
role for the zID problem as the bv-graph demonstrates.

Finally, we expand Pearl’s condition (Pea00, pp. 87) in the following direc-
tions. We extend, in the intuitive way, his condition to consider when Z is a
set of variables and, in turn, we supplement the su�cient part with its necessary
counterpart. We finally have a complete characterization for the zID class as
shown below.

Theorem 31. Let X, Y , Z be disjoint sets of variables and let G be the causal
diagram. The causal e↵ect Q = P (y|do(x)) is zID in G if and only if one of the
following conditions hold:

a. Q is identifiable in G; or,

b. There exists Z 0 ✓ Z such that the following conditions hold,

(i) X intercepts all directed paths from Z 0 to Y , and

(ii) Q is identifiable in GZ0.3

Proof. See Appendix D.
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Let Q = P (y|x̂) be the e↵ect of interest and assume that experiments were
performed over {Z}. Q is zID from P and do(Z) in the graphs in Fig. 6.3(a-d),
while they are non-zID in the graphs in Fig. 6.3(e-h). Except for the trivial case,
Theorem 31 is existentially quantified and it is not immediately obvious how to
e�ciently select the covariates simultaneously satisfying both conditions of the
Theorem. Clearly, a naive approach could lead to an exponential number of tests.

For example, consider the graph in Fig. 6.3(a) that is a variation of the bv-
graph. In this graph, Q is zID using experiments from {Z}. In turn, consider
the graph in Fig. 6.3(e), which is the same as 6.3(a) but with the bidirected edge
W  ! X added. Now, Q is no longer zID for {Z} nor {Z, W}. If we further
consider the graph in Fig. 6.3(b) with the bidirected edge W  ! X removed
from 3(e), not only Q becomes zID for {Z} but also for {Z, W}. This is a border
case, note that if we input {Z, W} as the surrogate variables for Pearl’s criterion,
it will not recognize Q as zID given the existence of the directed path W ! Y .
Finally, if we consider the graph in Fig. 6.3(f) in which the directed edge W ! Z
is flipped from 6.3(b), Q is no longer zID for neither {Z, W} nor {Z}.

This example can be extended indefinitely but it is clear that finding a set
that satisfies both conditions of the Theorem (in structures more intricate than
the 4-node example) does not follow immediately. The subject of the next section
is about finding an e�cient (and complete) algorithm to solve this problem.

But for now, consider the following result that confirms our intuition that
surrogate experiments should not disturb the causal paths (non-descendents) of
the variables that are being analyzed.

Corollary 22. Let G be the causal diagram, X, Y ⇢ V be disjoint sets of vari-
ables, and Z ✓ De(X)GAn(Y )

. The causal e↵ect Q = P (y|do(x)) is not zID from
P and do(Z) in G, if Q is not ID from P in G.

Proof. The result follows directly from Theorem 31.

6.4 A Complete Algorithm for zID

In this section, we propose a simple extension of the ordinary identification algo-
rithms to solve the problem of z-identifiability, which we call IDz (Fig. 6.4).

We build on previous analysis of identifiability given in (Pea95; KM99; TP02;
SP06b; HV06a), and we choose to start with the version called ID (SP06b) since
the hedge structure is explicitly employed, which will show to be instrumental to
prove completeness.

3This condition can be rephrased graphically as “There exists no hedge for Q as an edge
subgraph in GZ0 .”
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Before considering the technical results, we explain our strategy and how our
version of the algorithm relates to the existent ones for ordinary identifiability.

(i) z-identifiability (su�ciency): Causal relations can be solved in our con-
text through ordinary identifiability or identifiability relying on the experiments
performed over Z. The current algorithms already operate on the first part, and
they proceed exploring a sequence of equalities in do-calculus based on the C-
component decomposition. (The idea is to apply a divide-and-conquer strategy
breaking the problem into smaller, more manageable pieces, and then to assem-
ble them back when it is possible.) It turns out that the equalities used by the
algorithm are all in the interventional space (between interventional distributions
except for the base cases), which is attractive for the zID problem since certain
interventional distributions Z are already available to use.

For instance, when steps 3 or 4 succeed in their tests and, at the same time,
have non-empty intersection with Z, we exploit the common variables, updating
the graph and respective data structures accordingly. We then continue solving
an ordinary ID instance but no longer have to identify these variables and they
possibly can help in the identifiability of others.

(ii) Non-z-identifiability (necessity): The algorithm proceeds until it is not
able to resolve a certain subproblem, which implies the existence of a certain
hedge. Note that the given hedge can be di↵erent than the one used for ID
in the same graph since the experiments over Z possibly destroyed the original
ones. Further, note that to use the given hedge to prove non-zID is not immediate
since, in the light of Lemma 7, more constraints need to be satisfied in order to
support such claim. Still, it is clear that if Z is not involved in the hedge, it
can be shown that the two problems coincide. The other cases in which Z has
non-empty intersection with the hedge have to be handled more carefully.

We prove next soundness and completeness of IDz.

Theorem 32 (soundness). Whenever IDz returns an expression for Px(y), it is
correct.

Proof. The result is immediate since the soundness of ID was already estab-
lished (SP06b, Thm. 5), which is inherited by IDz by construction. Note that
adding Z 0 ✓ Z as an interventional set and not trying to “identify” it later does
not represent a problem, in the zID sense, since by assumption we can use the
interventional distributions do(Z) in the final expression returned by the proce-
dure.

Note that the key di↵erence between IDz and the original ID implementation
is in steps 3 and 4 in which possibly some Z 0 ✓ Z is added as an interventional
set, and kept as so until the end of the execution. It is clear that these additions
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function IDz(y, x, Z, I,J , P, G)
INPUT: x, y: value assignments; Z: variables with interventions available; I,J :
see caption; P : current probability distribution do(I,J , x) (observational when
I = J = ;); G: causal graph.
OUTPUT: Expression for Px(y) in terms of P, Pz or FAIL(F, F 0).

1 if x = ;, return
P

v\y P (v).
2 if V \ An(Y )G 6= ;,

return IDz(y, x \ An(Y )G, Z,
I,J ,

P
v\An(Y )G

P, An(Y )G).
3 Set Zw = ((V \ (X [ I [ J )) \ An(Y )GX[I[J

) \ Z.
Set W = ((V \ (X [ I [ J )) \ An(Y )GX[I[J

) \ Z.
if (Zw [W ) 6= ;,
return IDz(y, x [ w, Z \ Zw, I [ zw,J , P, G).

4 if C(G \ (X [ I [ J )) = {S0, S1, ..., Sk},
return

P
v\{y,x,I}

Q
i IDz(si, (v \ si) \ Z,

Z \ (V \ Si), I,J [ (Z \ (v \ si)), P, G).
if C(G \ (X [ I [ J )) = {S},

5 if C(G) = {G}, FAIL(G, S).
6 if S 2 C(G),

return
P

s\y
Q

i|Vi2S P (vi|v(i�1)
G \ (I [ J )).

7 if (9S 0)S ⇢ S 0 2 C(G),
return IDz(y, x \ S 0, Z, I, J ,Q

i|Vi2C0 P (Vi|V (i�1)
G \ S 0, v(i�1)

G \ (S 0 [ I [ J )), S 0).

Figure 6.4: IDz: Algorithm capable of recognizing zID ; The variables I,J
represent indices for currently active Z-interventions introduced respectively by
steps 3 or 4. Note that P is sensitive to current instantiations of I,J .
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just can represent a benefit in computing the target Q since is always easier to
identify a quantity in a subgraph of the original input.

Theorem 33. Assume IDz fails to z-identify Px(y) from P and do(Z) in G
(executes line 5). Then there exists X 0 ✓ X, Y 0 ✓ Y , Z 0, Z 00 ✓ Z such that the
graph pair G, S returned by the fail condition of IDz contain as edge subgraphs
C-forests F , F 0 that form a hedge for Px0,z0(y0, z00).

Proof. This property is just partly inherited from the original ID since we can
add Z 0 ✓ Z as interventional nodes along the execution of IDz; we also keep
track of Z 00 ✓ Z that are related to An(Y ) during the execution of the procedure
(to be specified below).

Consider G, Yf , I and J local to the call in which IDz exited with failure
(line 5). It is true that the set Yf is such that Z 00 = Yf \Z and Y 0 = Yf \Y . Let
Z 0 ✓ Z be the active part of Z in the faulty call, which we kept track through
I [ J . The condition that triggered failure is that the whole graph was a single
C-component. Let R be the root set of G. We can remove a set of directed arrows
while keeping the root R such that the resulting F is an R-rooted C-forest.

Similarly to ID, note that since F 0 = F \ S is closed under descendent and
only single directed arrows were removed from S to obtain F 0, F 0 is also a C-
forest. Now, F 0 \ (X [ Z 0) = ; and F 0 \ (X [ Z 0) 6= ;, by construction. Also,
R ✓ An(Y 0, Z 00)G

X,Z0
and Z 00 ✓ An(Y )G

X,Z0
, by line 2 and 3 of the algorithm.

Theorem 34 (completeness). IDz is complete.

Proof. By Theorem 33, IDz failure implies the existence of X 0 ✓ X, Y 0 ✓ Y ,
Z 0, Z 00 ✓ Z, and C-forests F , F 0 that form a hedge for Px0,z0(y0, z00). Let us
proceed our analysis by cases:

Case Z 0 = ;, Z 00 = ;. The construction provided by (SP06b, Corollary 2) can
be used here since this case reduces to ordinary identifiability.

Case Z 0 = ;, Z 00 6= ;. Even though Z 00 is in the root set of the hedge, and not
related to the interventional part (F\F 0) where the asymmetry in the construction
usually resides (to generate inequality in Q), the previous construction have to
be used with certain caution, as given by case 1 of Thm. 31.

There is an interesting border subcase when Y 0 = ;. We need to keep track
of {I,J } since if the Z-interventions are added in step 3, we should not be
concerned with summing over the assignments of the variables added, but if the
Z-interventions are added in step 4, we do have to take care of this case. Note that
we would have some hedge in a do-equality in the form Q =

P
z00 Px0(z00)f(x, y, ...),

in which if f(.) is identifiable and uniformly distributed, Q would equate in both
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models and spoil the counter-example. The problem is not di�cult to fix, and
we just have to create a map for f() that is non-uniform. (See Thm. 31.)

Case Z 0 6= ;, Z 00 = ;. The construction provided in cases 2 and 3 of Thm.
31 were more involved since it was not know a priori which C-factor yielded the
“faulty” call. In the IDz case, we already located the hedge based on its trace,
then we can essentially use the same construction to provide a counterexample.

Case Z 0 6= ;, Z 00 6= ;. The construction in the two previous cases are not
incompatible and can be combined to provide a counter-example to this case.

Moreover, the previous constructions were given over the subgraph H of G,
and how to extend the counter-example to G is discussed in Theorem 31.

Corollary 23. The rules of do-calculus, together with standard probability ma-
nipulations are complete for determining z-identifiability of Px(y).

Proof. It was already shown (SP06b, Thm. 7) that the operations of ID corre-
spond to sequences of standard probability manipulations and application of the
rules of do-calculus, which is true by construction for IDz, the result follows.

6.5 Conclusions

This chapter was concerned with a variation of the identifiability problem in which
experiments can be conducted over a subset of the variables Z in addition to the
assumptions embodied in a causal digram G and the statistical knowledge given
as a probability distribution. (If Z is an empty set, the two problems coincide.)

We provide graphical and algorithmic conditions for the cases when the causal
e↵ect of an arbitrary set of variables on another arbitrary set can be determined
uniquely from the available information. Furthermore, we use our results to
prove completeness of do-calculus in respect to the z-identifiability class. Our
results were developed in a non-parametric setting in the tradition of the do-
calculus. For a future research direction, it would be interesting to explore how
experimental data can aid the identification in the linear case and its relationship
with instrumental variables.

This chapter complements the two previous chapters on generalizability in
transportability and selection bias. The problem of experimental transportability
deals with transferring causal information from an experimental to an observa-
tional environment, potentially di↵erent from the first. The problem of selection
bias deals with extrapolation between an environment in which samples are se-
lected preferentially and one in which no preferential sampling takes place. The
extrapolation involved in z-Identification problems takes place between two dif-
ferent regimes; one in which experiments are performed over Z, and one in which
future experiments are anticipated over X.
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CHAPTER 7

Concluding Remarks

As we approach the age of “big data,” researchers are becoming increasingly
aware of the fact that traditional statistical techniques, including those based on
machine learning, must be enriched with two additional ingredients:

1. the ability to integrate data from multiple, heterogeneous sources, and

2. the ability to distinguish causal from associational relationships.

The former becomes essential when mixing experimental and observational stud-
ies while the latter is necessary when constructing explanations for the data
observed. This thesis develops a formal theory for handling these two compo-
nents simultaneously. It builds on the modern theory of causation to develop a
theoretical framework for understanding, representing, and algorithmizing causal
generalizations in a mixture of experimental and observational studies.

The concepts and tools that emerge from this framework are applicable to a
broad range of common, yet seemingly disparate problems in both AI and the em-
pirical sciences. This thesis puts these problems under one theoretical umbrella,
which include: transportability, selection bias, and general identification.

7.1 Contributions

Techniques for data analysis are usually dichotomized into two categories, ex-
perimental and observational, which are studied in isolation. We have shown
that such dichotomy need not constrain the next generation of data science. Ex-
perimental studies (where interventions are feasible) and observational studies
(where interventions are not allowed) are but two extremes of a rich spectrum of
research designs that generate the bulk of the data available in practical, large
scale situations. In typical medical explorations, for example, data from multiple
observations and experiments are collected, coming from distinct experimental se-
tups, di↵erent sampling conditions, and heterogeneous populations. This thesis
develops a mathematical framework for handling such data-intensive explorations
and, in this way, should become an indispensable tool in meeting the challenges
presented by the “big data” generation.
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Next, we briefly describe the research questions addressed in this thesis, fol-
lowed by a summary of the technical solutions obtained.

Problem 1. Transportability (generalizing experimental findings across set-
tings, populations, or domains). How can one reuse causal information acquired
by experiments in one setting to answer causal queries in another, possibly dif-
ferent setting where only limited observations and experiments can be collected?

This problem has a long tradition in data-intensive fields, since experiments
are invariably conducted with the intent of being generalized to an environment
that is related to but di↵erent from the original experimental setup. Special
instances of this problem are known in the literature under rubrics such as “ex-
ternal validity,” “meta-analysis,” “quasi-experiments,” and “heterogeneity.” For
instance, a researcher may perform experiments on chimpanzees and aim to gen-
eralize the conclusions to human beings; or an engineer may train a robot in a
simulator with the hope that it will perform well in the field. We asked: what
mathematical principles support this leap of generalization? We showed that a
key ingredient necessary to formalize this type of question is to identify areas of
commonalities and disparities between the two settings (in the previous exam-
ples, species and environments). Given a coarse description of these areas, we
proved it is possible to formally decide what knowledge is or is not transportable
across settings, and if so, how. We then introduced a formal language for ex-
pressing qualitative di↵erences between settings and, using this representation,
we reduced the problem of transportability to an exercise in symbolic calculus.
We further developed complete syntactic, graphical, and algorithmic conditions
for deciding transportability and constructing the transported knowledge based
on the available pieces of empirical evidence.

Problem 2. Selection Bias (generalizing statistical findings across sampling
conditions). How can knowledge from a sampled subpopulation be generalized
to the entire population when the sampling process is not random but discrimi-
natory, depending on other variables in the analysis?

Selection bias is a threat to many data analyses and has been studied exten-
sively in both parametric and semi-parametric forms. A non-random sampling
process entails a distortion in the sample’s proportions, and since the sample is
no longer a faithful representation of the population, biased estimates will be
produced regardless of how many samples were collected. We derived general,
non-parametric conditions for deciding whether conditional distributions are re-
coverable from selection bias without resorting to external information. We then
considered the case in which some external information might be available (e.g., a
pilot study or census data), and derived su�cient conditions for deciding whether
conditional distributions can be recovered from selection bias. We further ana-
lyzed selection bias in causal settings, and augmented the backdoor criterion to
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recover causal e↵ects under both selection and confounding conditions.

3. General (Experimental) Identification (generalizing experimental
findings across experimental conditions in the same domain). How can some
experimental knowledge be used as substitute for other experiments that are too
di�cult, expensive, or unethical to execute in practice?

In many cases, the variable of interest is not amenable to manipulation, while
others (called auxiliary) are more easily accessible to experimentation. For in-
stance, one can conduct an experiment on diet to estimate the e↵ects of cholesterol
level on heart attacks since it is infeasible to control cholesterol level directly. This
setting generalizes the instrumental variable case, which relies on the parametric
nature of relationships to derive target e↵ects. This thesis considered a more
involved problem in which linearity (or monotonicity) is not assumed, and the
analysis is conducted in the most general non-parametric form. We derived a nec-
essary and su�cient graphical condition for identifying causal e↵ects in terms of
auxiliary experiments. We proved the completeness of do-calculus for recognizing
such identifiability conditions (i.e., if a causal e↵ect cannot be expressed in terms
of the auxiliary experiments by repeated application of the rules of do-calculus,
such an expression does not exist). We developed a procedure for deciding general
identification and for constructing a target estimator (whenever one exists).

Considering these three classes of problems, the theory developed in this thesis
is general, in the sense that it takes as input any arbitrary set of assumptions
and decides whether the specific instance admits solution. Moreover, the theory
of causal generalizability delineates the formal boundary between computable
and non-computable e↵ects, and it provides conditions (algebraic, graphical, and
algorithmic) for identifying which pieces of knowledge need to be collected in
each environment to achieve a consistent estimate of the desired e↵ects (when
computable).

7.2 Future Work

There are other generalization tasks that were not investigated in this thesis and
could benefit from the results obtained here. We next list a few of these tasks.

1. Automated Scientific Discovery. One of the challenges of our time is to
make the best possible use of the vast amounts of data that has been generated,
and ultimately we would like to automate the process of scientific discovery.
Currently, we have an understanding and a formal language for expressing the
causal and generalization principles pertaining to the core scientific method, so it
will be interesting to explore how these principles can be integrated into intelligent
systems to automate aspects of the process of scientific discovery. Eventually, we
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would like these systems to fully support scientific inquiry, i.e., they should be
able to help design and conduct experiments, collect and analyze data, test and
refine theories, and then propose new research directions and create knowledge.
This is a very challenging task, but it is reasonable to expect that with the
advent of a causal language endowed with generalization capabilities, progress
can be made towards this goal.

2. Domain Adaptation. The results developed in this work for transporting
causal e↵ect relationships across domains seems to have direct application to the
sub-field of machine learning known as domain adaptation. While the machine
learning literature is seriously concerned about discrepancies between training
and test environments (DM06; Sto09), it has focused almost exclusively on pre-
dictive or classification tasks as opposed to e↵ect-learning tasks. Even in these
tasks machine learning researchers have rarely allowed a priori causal knowledge
to guide the learning process and, as a result, have not sought theoretical guar-
antees in the form of su�cient conditions under which discrepancies between
the training and test environments can be circumvented, or necessary condi-
tions without which bias will persist regardless of sample size. Some work using
representation equivalent to the one introduced here has been initiated, lever-
aging knowledge about invariances of the data-generating model across domains
(SJP12; ZSM13), but additional work needs to be done to move the literature
towards more general modalities of learning.

3. Surrogate Endpoints. There is a growing and unsettled literature on
the problem of “surrogate endpoints” (Pre89; FGS92; BMB00), which considers
a randomized clinical trial where one seeks a variable that would allow good
predictability of an outcome for both treatment and control. In the words of
(EH89): “investigators use surrogate endpoints when the endpoint of interest is
too di�cult and/or expensive to measure routinely and when they can define some
other, more readily measurable, endpoint, which is su�ciently well correlated
with the first to justify its use as a substitute.” It is generally acknowledged
in the literature that strong correlation is not su�cient for surrogacy, and the
problem is still awaiting a formal characterization. There is a lot of interest in
this problem because, for instance, it is usually infeasible to conduct follow-ups
on subjects of a clinical trial for many years. We have initiated some exploration
of how the theory of transportability can assist in the identification of valid
surrogates in complex networks of cause-e↵ect relationships (PB11a).
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APPENDIX A

Proofs for Chapter 3

Theorem 9. Let G be a selection diagram. Then for any node Y , the direct
e↵ect P ⇤

Pa(Y )(y) is transportable if there is no subgraph of G which forms a Y -
rooted sC-tree.

Proof. We known from (Tia02, Theorem 22) that whenever there exists no sub-
graph GT of G satisfying all of the following: (i) Y 2 T ; (ii) GT has only one
c-component, T itself; (iii) All variables in T are ancestors of Y in GT , the di-
rect e↵ect on Y is identifiable, as sC-trees are structures of this type. Further
(SP06b, Theorem 2) showed that the same holds for C-trees, which also implies
the inexistence of a sC-trees. Since such structure does not show up in G, the
target quantity is identifiable, and hence transportable.

It remains to show that the same holds whenever there exists a subgraph
that is a C-tree and in which no S node points to Y , i.e., there is no Y -rooted
sC-tree at all. It is true that (S ?? Y |Pa(Y ))G

Pa(Y )
, given that all directed

paths from S to Y are closed. This follows from the following facts: 1) all paths
from S passing through Y ’s ancestors were cut in GPa(Y ); 2) all bidirected paths
were also closed given that the conditioning set contains only root nodes, and
a connection from S must pass through at least one collider; 3) transportability
does not depend on descendants of Y (by argument similar to (Tia02, Lemma
9)). Thus, it follows that we can write P ⇤

Pa(Y )(Y ) = PPa(Y )(Y |S) = PPa(Y )(Y ),
concluding the proof.

Corollary 4. Let G be a selection diagram. Then for any node Y , the direct
e↵ect P ⇤

Pa(Y )(y) is transportable if there is no S node pointing to Y .

Proof. Follows directly from Theorem 9.

Lemma 8. The exclusive OR (XOR) function is commutative and associative.

Proof. Follows directly from the definition of the XOR function.

Remark 1. The construction given below is a strict generalization of Theorem
8, and it is useful because it will provide a simplified construction of the same,
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and also set the tone for proofs of generic graph structures which will in the sequel
show to be instrumental in proving non-transportability in arbitrary structures.

Theorem 10. Let G be a Y -rooted sC-tree. Then the e↵ects of any set of nodes
in G on Y are not transportable.

Proof. The proof will proceed by constructing a family of counterexamples. For
any such G and any set X, we will construct two causal models M1 and M2 that
will agree on hP, P ⇤, Ii, but disagree on the interventional distribution P ⇤

x (y).

Let the two models M1, M2 agree on the following features. All variables
in U [ V are binary. All exogenous variables are distributed uniformly. All
endogenous variables except Y are set to the bit parity (sum mod 2) of the values
of their parents. The two models di↵er in respect to Y ’s definition. Consider the
function for Y , fY : U, Pa(Y )! Y to be defined as follows:

⇢
M1 : Y =

�
(pa(Y )� u)� s

�

M2 : Y =
�
(pa(Y )� u) _ s

�

Lemma 9. The two models agree in the distributions hP, P ⇤, Ii.

Proof. Since the two models agree on P (U) and all functions except fY , it su�ces
to show that fY maintains the same input/output behavior in both models for
each domains.

Subclaim 1: Let us show that both models agree in the observational and
interventional distributions relative to domain ⇧, i.e., the pair hP, Ii. The index
variable S is set to 0 in ⇧, and fY evaluates to (pa(Y )�u) in both models, which
proves the subclaim.

Subclaim 2: Let us show that both models agree in the observational distribu-
tion relative to ⇧⇤, i.e., P ⇤. The index variable S is set 1 in ⇧⇤, and fY evaluates
to ((pa(Y ) � u) � 1) in M1, and 1 in M2. Since the evaluation in M1 can be
rewritten as ¬((pa(Y )�u), it remains to show that (pa(Y )�u) always evaluates
to 0.

This fact is certainly true, consider the following observations: a) each variable
in U has exactly two endogenous children; b) the given tree has Y as the root;
c) all functions are XOR – these imply that Y is computing the bit parity of the
sum of all U nodes, which turns out to be even, and so evaluates to 0 and proves
the subclaim.

Lemma 10. For any set X, P1(Y |do(X), S = 1) 6= P2(Y |do(X), S = 1).
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Proof. Given the functional description and the discussion in the previous Lemma,
the function fY evaluates always to 1 in M2.

Now let us consider M1. Note that performing the intervention and cutting
the edges going toward X creates an asymmetry on the sum of the bidirected
edges departing from U , and consequently in the sum performed by Y . It will be
the case that some U 0 will appear only once in the expression of Y . Therefore,
depending on the assignment X = x, we will need to evaluate the sum (mod 2)
over U 0 in Y or its negation, which given the uniformity of the distribution of U
will yield P1(Y |do(X), S = 1) = 1/2 in both cases.

By Lemma 1, Lemmas 9 and 10 together prove Theorem 10.

Corollary 5. Let G be a selection diagram, let X and Y be set of variables. If
there exists a node W which is an ancestor of some node Y 2 Y and such that
there exists a W -rooted sC-tree which contains any variables in X, then P ⇤

x (y) is
not transportable.

Proof. Fix a W -rooted sC-tree T, and a path p from W to Y . Consider the
graph p [ T . Note that in this graph P ⇤

x (Y ) =
P

w P ⇤
x (w)P ⇤(Y |w). From the

last Theorem P ⇤
x (w) is not transportable, it is now easy to construct P ⇤(Y |W ) in

such a way that the mapping from Px(W ) to Px(Y ) is one to one, while making
sure all distributions are positive.

Remark 2. The previous results comprised cases in which there exist sC-trees
involved in the non-transportability of Y – i.e., Y or some of its ancestors were
roots of a given sC-tree. In the problem of identifiability, the counterpart of
sC-trees (i.e., C-trees) su�ces to characterize non-identifiability for singleton Y .
But transportability is more subtle and this is not the case here – it not only
depends on X and Y “locations” in the graph, but also the relative position of
the S-nodes. Consider Figures 3.8 and A.1(a) (called sp-graph). In these graphs
there is no sC-tree but the e↵ect of X on Y is still non-transportable.

The main technical subtlety here is that in sC-trees, a S-node combines its
e↵ect with a X-node intersecting in the root node (considering only the bidirected
edges), which is not the case for non-transportability in general. Note that in the
graphs in Figure 3.8, and the sp-graph, the nodes S and X intersect first through
ordinary edges and meet through bidirected edges only on the Y node. This
implies a certain “asynchrony” because, in the structural sense, the existence of
a S-node implies a di↵erence in the structural equations between domains, but
only this di↵erence does not imply non-transportability (for instance, P ⇤

x (z) is
transportable in the sp-graph even though the equations of Z being di↵erent in
both models).
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X Y
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X Y

(b)

Z

Z

S

S

Figure A.1: Selection diagrams in which P (y|do(x)) is not transportable, there is
no sC-tree but there is a sC-forest. These diagrams will be used as basis for the
general case; the first diagram is named sp-graph and the second one sb-graph.

The key idea to produce a proof for non-transportability in these cases is to
keep the e↵ect of S-nodes after intersecting with X “dormant” until they reach
the target Y , and then manifest. We implement this idea in the next two proofs,
which can be seen as base cases, and should pavement the way for the most
general problem.

Theorem 35. P ⇤
x (y) is not transportable in the sp-graph (Fig. A.1(a)).

Proof. We will construct two causal models M1 and M2 compatible with the sp-
graph that will agree on hP, P ⇤, Ii, but disagree on the interventional distribution
P ⇤

x (y).

Let us assume that all variables in U[V are binary, and let U1 be the common
cause of X and Y , U2 be the common cause of Z and Y , and U3 be the random
disturbance exclusive to Z. Let M1 and M2 be defined as follows:

M1 =

8
>><

>>:

X = U1

Z =

✓�
(X � U2 � 1)� U3

�
_ S

◆
�
✓

S ^ (X � U2)

◆

Y = Z � U1 � U2

and:

M2 =

8
>><

>>:

X = U1

Z =

✓�
(U2 � 1)� U3

�
_ S

◆
�
�
S ^ U2

�

Y = Z � U2

Both models agree in respect to P (U), which is defined as follows: P (U1) =
P (U2) = P (U3) = 1/2.

Lemma 11. The two models agree in the distributions hP, P ⇤, Ii.
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Proof. Subclaim 1: Let us show that both models agree in the observational
and interventional distributions relative to domain ⇧, i.e., the pair hP, Ii. In both
models X has the same expression, which entails the same (uniform) probabilistic
behavior in both cases. The index variable S is set to 0 in ⇧, and Z evaluates to
(X�U2�1�U3) in M1 and (U2�1�U3) in M2. Clearly, for any value of X = x,
since U is the same and uniformly distributed in both models, we obtain the same
(uniform) input/output probabilistic behavior in M1 and M2 (note that U2, U3 can
freely vary independently of X). In similar way, Y evaluates to (1 + U3) in both
models, which entails the same (uniform) input/output probabilistic behavior
in both models. In regard to do(X = x), it is clear that Z did not depend
(probabilistically) on the specific value of X, and so the equality between both
models follows. For the case when we have do(Z = z), Y evaluates to (Z�U1�U2)
in M1 and (Z�U2) in M2, and given the uniformity of U , they preserve the same
(uniform) input/output probabilistic behavior. (For a more elaborated argument,
see Theorem 5 below.)

Subclaim 2: Let us show that both models agree in the observational distri-
bution P ⇤ relative to ⇧⇤. The index variable S is set 1 in ⇧⇤, fZ evaluates to
(X�U2�1) in M1, and (U2�1) in M2. Again, for any value of X, together with
the uniformity of U , we obtain the same (uniform) input/output probabilistic
behavior in both models (note again that U2 can freely vary independently of
variations of X, and so Z). Further, fY evaluates to 1 in both models, which
yields the same (uniform) input/output behavior in both models. (To guarantee
positivity, we can apply the trick of making a new f 0Y () such that f 0Y () returns 0
half the time, and fY the other half (i.e., set f 0y() = [fy() ^ C], where C is a fair
coin.)

Lemma 12. There exist values of X, Y such that P1(Y |do(X), S = 1) 6= P2(Y |do(X),
S = 1).

Proof. Fix X = 1, Y = 1. First notice that fZ evaluates to U2 in M1 and (U2�1)
in M2. Given that U2 is uniformly distributed, both quantities coincide (and they
represent the e↵ect of X on Z, which is transportable in G). Now the evaluation
of fY in M1 reduces to U1, while it reduces to 1 in M2, which show disagreement
and finishes the proof of this Lemma.

By Lemma 1, Lemmas 11 and 12 together prove Theorem 35.

Remark 3. There exists a di↵erent sort of asymmetry in the case of Fig. A.1(b)
(called sb-graph), and the nodes X and S do not intersect before meeting Y –
i.e., they have disjoint paths and Y lies precisely in their intersection.
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Still, this case is not the same of having a sC-tree because in sb-graphs we need
to keep the equality from the S nodes to Y until S intersects X on Y . Employing
a similar construct as in the sp-graph, we keep the e↵ect of S dormant until it
reaches Y and then emerges.

Theorem 36. P ⇤
x (y) is not transportable in the sb-graph (Fig. A.1(b)).

Proof. We construct two causal models M1 and M2 compatible with the sb-graph
that will agree on hP, P ⇤, Ii, but disagree on the interventional distribution P ⇤

x (y).

Let us assume that all variables in U[V are binary, and let U1 be the common
cause of X and Y , U2 be the common cause of Z and Y , and U3 be the random
disturbance exclusive to X. Let M1 and M2 agree with the following definitions:

M1, M2 =

⇢
X = U1

Z =
�
(U3 � U2 � 1) _ S

�
�
�
S ^ U2)

�

and disagree in respect to Z as follows:
⇢

M1 : Y = Z � U2

M2 : Y = X � Z � U1 � U2

Both models also agree in respect to P (U), which is defined as follows: P (U1) =
P (U2) = P (U3) = 1/2.

Lemma 13. The two models agree in the distributions hP, P ⇤, Ii.

Proof. Subclaim 1: Let us show that both models agree in the observational
and interventional distributions relative to domain ⇧, i.e., the pair hP, Ii. The
index variable S is set to 0 in ⇧, and {X, Z} are defined in the same way in both
models, and so it su�ces to analyze Y , which in this case evaluates to (U3�1) in
both models, preserving the same (uniform) probabilistic behavior. Given that,
it is not di�cult to see that both models also evaluate in the same way when
considering the interventions in I.

Subclaim 2: Let us show that both models agree in the observational distribu-
tion P ⇤ relative to ⇧⇤. The index variable S is set 1 in ⇧⇤, given that {X, Z}
are defined in the same way in both models, together with the uniformity of U
make them evaluate in the same way in both models, and Y evaluates to 1 in
both models. (As in Lemma 11, the same trick to make the distribution positive
could be applied here.)

Lemma 14. There exist values of X, Y such that P1(Y |do(X), S = 1) 6= P2(Y |do(X),
S = 1).
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Proof. Fix X = 1, Y = 1. First notice that fZ evaluates to (U2 � 1) in both
models, and the evaluation of fY in M1 reduces to 1, while it reduces to U1 in
M2. It follows that in M1, fY evaluates to 1 with probability 1, while in M2

it evaluates to 1 with probability P (U1 = 1), which disagree by construction,
finishing the proof of this Lemma.

By Lemma 1, Lemmas 13 and 14 together prove Theorem 36.

Remark 4. There are two complementary components to forge a general scheme
to prove arbitrary non-transportability. First, the construct of Theorem 10 shows
how to prove non-transportability for general structures such as sC-trees. In the
sequel, the specific proofs of non-transportability for the sp-graph (Theorem 35)
and sb-graph (Theorem 36) partition the possible interactions between X, S and
Y . In the former, X and S intersect before meeting with Y , while in the latter
they have disjoint paths and Y lies in their intersection. In the sequel, the proof
for the general case combines these analyses, which we show below.

Theorem 11. Assume there exist F, F 0 that form a s-hedge for P ⇤
x (y) in ⇧ and

⇧⇤. Then P ⇤
x (y) is not transportable from ⇧ to ⇧⇤.

Proof sketch. We first consider counterexamples with the induced graph H =
De(F )G \ An(Y )GX

, and assume, without loss of generality, that H is a forest.
We construct two causal models M1 and M2 that will agree on hP, P ⇤, Ii, but
disagree on the interventional distribution P ⇤

x (y).

Let F be an R-rooted sC-forest, let V 0 be the set of observable variables and
U 0 be the set of unobservable variables in F . Let us assume that all variables in
U 0 [ V 0 are binary. Call W the set of variables pointed by S-nodes in F 0, which
by the definition of sC-forest is guaranteed to be non-empty.

In model 1, let each Vi 2 V 0 \W compute the bit parity of all its observable

and unobservable parents (i.e., f (1)
i = �(

S
Vj2Pai

Vj), where the xor is applied for
each element of the set and the result computed so far), while in model 2, let Vi

compute the bit parity of all its parents except that any node in F 0 disregards
the parents values if the parent is in F (i.e., f (2)

i = �(
S

Vj2Pai\F 0 Vj) if Vi is in

F 0, and f (2)
i = f (1)

i , otherwise).

Define W 2 W as follows:
8
>><

>>:

M1 : W =

✓�
f (1)

w � U⇤
w

�
_ S

◆
�
✓

S ^
�
1� f (1)

w

��

M2 : W =

✓�
f (2)

w � U⇤
w

�
_ S

◆
�
✓

S ^
�
1� f (2)

w

�◆
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where fw is constructed in similar way as fi in M1 and M2 above, and U⇤
w is an

additional fair coin exclusively pointing to W . Let us call Uw the collection of
such coins. Furthermore, let us assume that each Ui 2 {U 0 \ Uw} is also a fair
coin (i.e., P (Ui) = 1/2).

Lemma 15. The two models agree in the distribution of P ⇤ and there exists a
value assignment x for X such that P1(Y |do(x), S = 1) 6= P2(Y |do(x), S = 1).

Proof. For S = 1, the result follows directly since the systems of equations in
both models reduce to the construction given in Theorem 4 at (SP06b).

Lemma 16. The two models agree in the distributions hP, Ii.

Proof. Let us show that both models agree in the observational distribution P
relative to domain ⇧. The selection variable S is set to 0 in ⇧, and note that
both systems are the same as in ⇧⇤ except that now each variable W 2 W has
an extra variable U⇤

w pointing to it that should be taken into account in W ’s
evaluation, and in turn in the whole system.

We have a forest over the endogenous nodes and all functions compute the bit
parity of the value of their parents, and so we can view each node as computing
the sum mod 2 of its exogenous ancestors in H. We want to show that the
distribution of each family is equally likely for each possible assignment (i.e.,
P (vi|pai) = 1/2, for all vi, pai).

Let us partition the analysis in two cases. First consider the case of Vi 2 R
in which there exists a S-node in the respective sC-tree. Note that that the
evaluation of Vi relies only on the value of U⇤

w 2 Uw in its respective tree since
U 2 {U 0 \Uw} has an even number of endogenous children in F , and it is counted
twice, so evaluates to zero (i.e., it does not a↵ect Vi’s evaluation). For now, let
us assume that there is only one U⇤

w that a↵ects the evaluation of Vi. Given
the uniformity of U⇤

w, it su�ces to show that U⇤
w can vary independently for any

configuration of the parents of Vi.

For any configuration of U 0 = (U1 = u1, ..., U⇤
w = u⇤w, ...), consider the corre-

sponding evaluation of Pai = pai, and also Vi = u⇤w. We want to show that it
is possible to flip the current value of U⇤

w from u⇤w to ¬u⇤w while preserving the
parents’ evaluation pai. Assume this is not so. This implies that the evaluation
of Pai and Vi count the same U ’s, contradiction.

To see why, consider Pa⇤i ✓ Pai the set of parents of Vi that are descendents
of U⇤

w. Now, for each of these parents flip the minimum number of variables from
U \ Uw, and call this set U⇤. (Note that this is always possible since we need
at most one U for each parent, which should exist by construction of sC-forest.)
Now, make U⇤

w = ¬u⇤w, and note that Pai = pai since flipping the values of U⇤
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compensates the flip of U⇤
w. But it is also true now that Vi evaluates to ¬u⇤w since,

in the same way as before, all other variables in {U \ Uw} are cancelled out in
Vi’s evaluation, including the ones in U⇤. This proves the claim.

Consider the following two facts: Subclaim 1: Let X and Y be two binary
variables such that P (X = x) = p 6= 1/2 and P (Y = y) = q = 1/2. Then the
probabilistic input/output behavior of Z = XOR(X, Y ) is the same of Y . The
variable Z = 1 whenever {(X = 1, Y = 0), (X = 0, Y = 1)}, which happens
with probability pq + (1 � p)(1 � q). Since q = 1/2, the expression reduces
to p ⇤ 1/2 + (1 � p) ⇤ 1/2 = 1/2. Subclaim 2: Let X and Y be two binary
variables such that P (X = x) = P (Y = y) = p = 1/2. Then the probabilistic
input/output behavior of Z = XOR(X, Y ) is the same of X (or Y ). This follows
directly from Subclaim 1. It is clear that if there are multiple nodes from Uw in
the evaluation of Vi, the same construction is also valid given the subclaim above.
It is also not di�cult to generalize this argument to consider root set that are
not singleton, including roots in which there are not S-nodes as ancestors.

Finally, let us consider the case of Vi 2 {F \ R}. It su�ces to show that the
function from U 0 \ Uw to V 0 \ R is 1-1 when we fix Uw = uw. We use the same
argument as Shpitser. Assume this is not so, and fix two instantiations of U 0 \ Uw

that map to the same value of V 0\R, and di↵er by the set U⇤ = {U1, ..., Uk}. Since
the bidirected edges form a spanning tree, there exists V ⇤ with an odd number
of parents in U⇤ (and were not in R, by construction). Order them topologically
and let the topmost be called X. Note that if we flip all values in U⇤, the value
of X will also flip, contradiction. Given the uniformity of U 0, the claim follows.
We can put this together with the previous claim, and the result follows. We can
add fair coins as the input to all other variables outside F , which will imply the
claim for the whole graph G.

Regarding the equality between I, note that given that the equality of both
models holds for P , and removing edges due to interventions will just make some
nodes from U 0 \ Uw to have an odd number of children, it it not di�cult to see
based on the previous argument that this just creates more variables that are
free to vary, which will entail the same probabilistic uniform behavior in both
models. Another way to see this fact is to consider the new exogenous variables
from {U \Uw} that have only one children after the intervention as analogous to
U⇤

w, and so the same argument follows. (For more details, see Appendix B.)

Finally, Lemma 1 together with Lemmas 15 and 16 prove Theorem 11. ⇤

Theorem 12 (soundness). Whenever sID returns an expression for P ⇤
x (y), it is

correct.

Proof. Noting that the selection diagram inputted to sID is also a causal diagram
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over ⇧⇤, and trivial transportability is equivalent to identifiability in ⇧⇤, the
correctness of the identifiability calls were already established elsewhere (HV06a;
SP06b).

It remains to show the correctness of the test in line 6 of sID. First note that,
by construction, X 0 in each local call is always a set of pre-treatment covariates.
But now the correctness follows directly by S-admissibility of X 0 together with
Corollary 2. More specifically, note that the e↵ect Q⇤ in each local call that uses
line 6 can be expressed in its expanded form (using a typical C-component de-
composition), and given that the independence imposed by S-admissibility holds,
together with the fact that both populations share the same causal graph G,
allow that the functions of ⇧⇤ to be replaced with the respective functions in ⇧,
which implies the result.

Remark 5. The next results are similar to the identification counterparts given
in (TP02) and (SP06a).

Theorem 13. Assume sID fails to transport P ⇤
x (y) (executes line 7). Then

there exists X 0 ✓ X, Y 0 ✓ Y , such that the graph pair D, C0 returned by the fail
condition of sID contain as edge subgraphs sC-forests F , F 0 that form a s-hedge
for Px0(y0).

Proof. Before failure sID evaluated false consecutively at line 5 and 6, so D
local to this call is a sC-component, and let R be its root set. We can remove
some directed arrows from D while preserving R as root, yielding a R-rooted sC-
forests F . Since by construction F 0 = F\C0 is closed under descendants and only
directed arrows were removed, both F, F 0 are sC-forests. Also by construction,
R ⇢ An(Y )DX

together with the fact that X and Y from the recursive call are
clearly subsets of the original input, finish the proof.

Corollary 6 (completeness). sID is complete.

Proof. The result follows from Theorem 13 where Px0(y0) is not transportable in
H. But now, it is easy to add the remaining variables from G, making them
independent of H (e.g., as random coins). So, the models in the counterexample
induce G, and witness the non-transportability of Px(y).

Corollary 7. P ⇤
x (y) is transportable from ⇧ to ⇧⇤ in G if and only if there is

not s-hedge for Px0(y0) in G for any X 0 ✓ X and Y 0 ✓ Y .

Proof. Follows directly from the previous Corollary.
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Theorem 14. The rules of do-calculus, together with standard probability ma-
nipulations are complete for establishing transportability of all e↵ects of the form
P ⇤

x (y).

Proof. It was shown elsewhere (SP06a) that the steps of sID but line 6 correspond
to sequences of standard probability manipulations and applications of the rules
of do-calculus. The line 6 is constituted by a conditional independence judgement,
and standard probability operations for the replacement of the functions based
on the invariance allowed by the S-admissibility of the local X 0 in each recursive
call (as discussed above in the proof of correctness).

Corollary 8. Theorem 7 is not complete.

Proof. Figure 3.6(c) demonstrates a selection diagram in which the relation R =
P ⇤(y|do(x)) is transportable, but Theorem 7 is not capable of recognizing it.

Let us test the applicability of each of its conditions:

Step 1. R is not trivially transportable due to the confounding arc X $ Z due
to Tian’s identifiability criterion (TP02);

Step 2. There is no S-admissible set because the confounding arc V $ Y and
Verma’s inducing path condition (VP90);

Step 3. There is no set W which makes (X ?? Y |W ) to hold, this is due to the
confounding arc X $ Y ;

Since there is no remaining actions to be taken, the algorithm exits without
returning any expression.

Next, we derive the transport formula for the causal e↵ect in the model of
Fig. 3.4(d) based on Theorem 7 (i.e., eq. (3.14)),

P ⇤(y|do(x)) = P (y|do(x), s)

=
X

z

P (y|do(x), s, z)P (z|do(x), s)

=
X

z

P (y|do(x), z)P (z|do(x), s)

�
2nd cond. of Theorem 7, S-admissibility of

Z of CE(X, Y )
�
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=
X

z

P (y|do(x), z)
X

w

P (z|do(x), w, s)P (w|do(x), s)

=
X

z

P (y|do(x), z)
X

w

P (z|w, s)P (w|do(x), s)

�
3rd cond. of Theorem 7, (X ?? Z|S,W )

�

=
X

z

P (y|do(x), z)
X

w

P (z|w, s)P (w|do(x))

�
2nd cond. of Theorem 7, S-admissibility of

the empty set {} of CE(X, W )
�

=
X

z

P (y|do(x), z)
X

w

P ⇤(z|w)P (w|do(x)) (A.1)

In turn, we show the derivation of the transport formula for the causal e↵ect in
the model of Fig. 3.5 (Eq. (3.15)):

P ⇤(y|do(x)) = P (y|do(x), s, s0) =
X

z

P (y|do(x), s, s0, z)P (z|do(x), s, s0)

=
X

z

P (y|do(x), z)P (z|do(x), s, s0)

�
2nd cond. of Theorem 7,

S-admissibility of Z of CE(X, Z)
�

=
X

z

P (y|do(x), z)
X

w

P (z|do(x), s, s0, w)P (w|do(x), s, s0)

=
X

z

P (y|do(x), z)
X

w

P (z|s, s0, w)P (w|do(x), s, s0)

�
3rd cond. of Theorem 7, (X ?? Z|S, S 0, W )

�

=
X

z

P (y|do(x), z)
X

w

P (z|s, s0, w)
X

t

P (w|do(x), s, s0, t)P (t|do(x), s, s0)

=
X

z

P (y|do(x), z)
X

w

P (z|s, s0, w)
X

t

P (w|do(x), t)P (t|do(x), s, s0)

�
2nd condition of Theorem 7,

S-admissibility of T on CE(X, W )
�

=
X

z

P (y|do(x), z)
X

w

P (z|s, s0, w)
X

t

P (w|do(x), t)P (t|s, s0)
�
1st condition of Theorem 7,

3rd rule of do-calculus, (X ?? T |S, S 0)GX̄

�

=
X

z

P (y|do(x), z)
X

w

P ⇤(z|w)
X

t

P (w|do(x), t)P ⇤(t) (A.2)
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APPENDIX B

Proofs for Chapter 4

We first show the two models relative to Fig. 4.3 in which Eqs. 4.6 and 4.7 are
satisfied. Let V be the set of observable variables and U be the set of unobservable
variables inD. Let us assume that all variables in U[V are binary. Let U1, U2 2 U
be the common causes of X and Y and Z and Y , respectively; let U3, U4 2 U be
the random disturbances exclusive to Z and Y , respectively, and U5, U6 2 U be
extra random disturbances exclusive to Y . Let Sa and Sb index the model in the
following way: the tuples hSa = 1, Sb = 0i, hSa = 0, Sb = 1i, hSa = 0, Sb = 0i
represent domains ⇡a, ⇡b, and ⇡⇤, respectively. Define the two models as follows:

M1 =

8
>><

>>:

X = U1

Z = U2 � (U3 ^ Sa)
Y = ((X � Z � U1 � U2 � (U4 ^ Sb))

^U5) + (¬U5 ^ U6)

M2 =

8
>><

>>:

X = U1

Z = U2 � (U3 ^ Sa)
Y = ((Z � U2 � (U4 ^ Sb))

^U5)� (¬U5 ^ U6)

Both models agree in respect to P (U), which is defined as P (Ui) = 1/2, i =
1, ..., 6. It is not di�cult to evaluate these models and note that the constraints
given in Eqs. (4.29) and (4.30) are indeed satisfied (including positivity), the
result follows.

Theorem 15. Let D = {D(1), ..., D(n)} be a collection of selection diagrams rel-
ative to source domains ⇧ = {⇡1, ...,⇡n}, and target domain ⇡⇤, respectively,
and Si represents the collection of S-variables in the selection diagram D(i). Let
{hP i, I i

zi} and hP ⇤, I⇤z i be respectively the pairs of observational and interven-
tional distributions in the sources ⇧ and target ⇡⇤. The e↵ect R = P ⇤(y|do(x))
is mz-transportable from ⇧ to ⇡⇤ in D if the expression P (y|do(x), S1, ..., Sn) is
reducible, using the rules of the do-calculus, to an expression in which (1) do-
operators that apply to subsets of I i

z have no Si-variables or (2) do-operators
apply only to subsets of I⇤z .

Proof. Consider the following encoding for the domains. Let Si-variables be
an index corresponding to the source domain ⇡i 2 ⇧, and let the tuple hS1 =
0, ..., Si = 1, ..., Sn = 0i represent the distributions in this domain. Let the tuple
hS1 = 0, S2 = 0, ..., Sn = 0i represent the distributions in the target domain ⇡⇤.
The result is now direct since every relation satisfying the conditions of Theorem
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15 can be written as a combination of terms computable from the model. The
terms without Si-variables (or hS1 = 0, ..., Si = 1, ..., Sn = 0i) can be written as
an experimental distribution in ⇡i (I i

z). The terms containing Si-variables, for all
i (or, hS1 = 0, S2 = 0, ..., Sn = 0i ), are experimentally identifiable from ⇡⇤ (I⇤z );
all other terms can be written in terms of the observational distribution in ⇡⇤

and are estimable, therefore, from observations in ⇡⇤, the result follows.

We build on the positive and negative examples given in the section and
consider first mz⇤-shedges in the one dimensional case when no experimental
information is available.

Theorem 16. If there is a hedge for P ⇤
x (y) in G and no experimental data is

available (i.e., I⇤z = {}), there exists an mz⇤-shedge for P ⇤
x (y) in G.

Proof. Consider the hedge F = hF, F 0i for the e↵ect P ⇤
x (y) in G such that F, F 0

are the respective R-rooted C-forests, and let F⇤ be the structure relative to the
corresponding mz⇤-shedge. Then, consider the following operations:

(i) Initially, set F⇤ equal to F , so the root set R⇤ is the same as R;

(ii) Let Rx = R \ De(X)F . If there are directed paths from R \ Rx to some
element of Rx (not passing through X) in G, add the respective paths to
F 0⇤ (including all intermediate nodes); alternatively, find a root set R⇤ ✓
An(Y )GX

such that each node in R has a directed path to R⇤ or R⇤ \Y = ;;

(iii) Remove unnecessary directed paths from F ⇤ enforcing that each node has
at most one outgoing directed edge in F ⇤.

We need to show that a mz⇤-shedge can be obtained from a hedge given the
construction above, which entail three di↵erent scenarios based on condition (ii).
First, it might be possible to add to F ⇤ directed paths (not passing through X)
from each element of R \Rx to some element of Rx that is present in G. Second,
a legitimate root set R is part of An(Y )GX

, so the current set could be extended
until reaching some node such that R⇤ is descendent of R. Eventually, it might
be necessary to stretch the paths from the original set R until reaching Y itself.
If there are nodes with multiple outgoing edges, it is also possible to remove some
of them as needed. It remains to be shown that one of the conditions of Def. 5
is satisfied for the domain represented by G. But this is direct since there are is
experimental information to be used (I⇤z = ;), which necessarily satisfies cond. 2
of the definition, the result follows. ⇤

Remark 6. The graph G in Fig. 4.7(d) is an example in which the root set
needs to be relocated and ultimately stretched reaching Y itself. Also, if there
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is an additional edge Z ! U in G, an edge would need to be removed to satisfy
the requirement of one outgoing edge per node. More intricate scenarios can be
contrived but the construction above su�ces for this paper.

Theorem 17. Let D = {D(1), ..., D(n)} be a collection of selection diagrams rel-
ative to source domains ⇧ = {⇡1, ...,⇡n}, and target domain ⇡⇤, respectively,
and {I i

z}, for i = {⇤, 1, ..., n} defined appropriately. If there is an mz⇤-shedge
for the e↵ect R = P ⇤

x (y) relative to experiments (I⇤z , I1
z , ..., In

z ) in D, R is not
mz-transportable from ⇧ to ⇡⇤ in D (relative to all experiments I i

z).

Proof sketch. We first consider the case in which the mz⇤-shedge already satisfies
the condition relative to the root set and need not to be augmented. Let F be
the R-rooted C-forest (basis), let V 0 be the set of observable variables and U 0 be
the set of unobservable variables in F . We first consider counterexamples with
the induced graph H = De(F )D \ An(Y )D, and enforcing the conditions of the
definition. Assume, without loss of generality, that H is a forest. We construct
two causal models M1 and M2 that will agree on the collection of distributions
{hP i, I i

zi}, hP ⇤, I⇤z i, but disagree on the interventional distribution P ⇤
x (y).

We consider cases in which there are S-nodes in the inputted mz⇤-shedge,
otherwise the problem reduces to previously studied cases. Let us assume that
all variables in U 0[V 0 are binary. Call W the set of variables pointed by S-nodes
in F 0.

Consider the following encoding for the domains. Let Si be the index variable
corresponding to the source domain ⇡i 2 ⇧, and let the tuple hS1 = 0, ..., Si =
1, ..., Sn = 0i represent the index for the functional model relative to this domain.
Let the tuple hS1 = 0, S2 = 0, ..., Sn = 0i represent the index for functional model
relative to the target domain ⇡⇤.

In model 1, let each Vi 2 V 0 \W compute the bit parity of all its observable

and unobservable parents (i.e., f (M1)
i = �(

S
Vj2Pai

Vj). In model 2, let Vi compute
the bit parity of all its parents except that any node in F 0 disregards the parents
values if the parent is in F (i.e., f (M2)

i = �(
S

Vj2Pai\F 0 Vj) if Vi is in F 0, and

f (M2)
i = f (M1)

i , otherwise).

Finally, define W 2 W as follows:

W = f
(Mj)
w⇤ �

✓
U⇤

w ^ Si

◆
,

where f
(Mj)
w⇤ is constructed as in the previous case for the variables in V 0 \ W

(for both M1 and M2); U⇤
w is an additional fair coin pointing exclusively to W ,

and Si is the S-node relative to domain ⇡i. Let us call Uw the collection of such
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coins. Furthermore, let us assume that each Ui 2 {U 0 \ Uw} is also a fair coin
(i.e., P (Ui) = 1/2).

Lemma 17. The two models M1 and M2 are compatible with the selection dia-
grams D.

Proof. The result is immediate. Consider the functional model that generates
any domain ⇡i, in both models M1 and M2. By construction, the index tuple is
set to hS1 = 0, ..., Si = 1, ..., Sn = 0i in ⇡i, and hS1 = 0, ..., Si = 0, ..., Sn = 0i in
⇡⇤. So, it is obvious that in both models, the only structural di↵erences between
⇡i and ⇡⇤ are the equations of W 2 W in which Si appears. ⇤

Lemma 18. The two models agree in the distribution of P ⇤ and there exists an
assignment for X and Y such that PM1(Y |do(X), S = 1) 6= PM2(Y |do(X), S = 1).

Proof. The index tuple is set to hS1 = 0, ..., Sn = 0i in ⇡⇤, and the result follows
directly since in both models, the systems of equations reduce to the construction
given by Theorem 4 of (SP06c). ⇤

Lemma 19. The two models agree in the collection of observational distributions
({P i}) in the source domains ⇡i, i = 1, ..., n.

Proof. For the domains with selection diagrams without S-nodes, the result
follows directly from the previous lemma. Let us show that both models agree
in the observational distribution P i relative to source domain ⇡i with S-nodes.
The index tuple is set to hS1 = 0, ..., Si = 1, ..., Sn = 0i in ⇡i, and note that both
systems are the same as in ⇡⇤ except that now there exist some variables W 2 W
with an extra variable U⇤

w pointing to it that should be taken into account in W ’s
evaluation, and in turn in the whole system.

We have a forest over the endogenous nodes and all functions compute the bit
parity of the value of their parents, and so we can view each node as computing the
sum mod 2 of its exogenous ancestors in H. We want to show that the distribution
of each family is equally likely for each valid assignment (i.e., P (vi|pai) = 1/2,
for all valid vi, pai).

Let us partition the analysis in two cases. First consider the case of Vi 2 R
and when R is a singleton. Note that that the evaluation of Vi relies only on the
value of U⇤

w 2 Uw in its respective tree since U 2 {U 0 \Uw} has an even number of
endogenous children in F , which is counted twice, so evaluates to zero (i.e., does
not a↵ect Vi’s evaluation). Without loss of generality, assume that there is only
one U⇤

w that a↵ects the evaluation of Vi (see subclaim 2). Given the uniformity
of U⇤

w, it su�ces to show that U⇤
w can vary independently for any configuration

of Vi’s parents.
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For any configuration of U 0 = (U1 = u1, ..., U⇤
w = u⇤w, ...), consider the corre-

sponding evaluation of Pai = pai, and also Vi = u⇤w. We want to show that it
is possible to flip the current value of U⇤

w from u⇤w to ¬u⇤w while preserving the
parents’ evaluation pai. Assume this is not so. This implies that the evaluation
of Pai and Vi count the same U ’s, contradiction.

To see why, consider Pa⇤i ✓ Pai the set of parents of Vi that are descendents
of U⇤

w. Now, flip the minimum number of U \ Uw such that Pa⇤i flips while
Pai \ Pa⇤i ’s configuration is preserved, call this set U⇤. (Note that this is always
possible since we need at most one U for each parent, which should exist by
construction of C-forest.) Now, make U⇤

w = ¬u⇤w, and note that Pai = pai since
flipping the values of U⇤ was compensated by the flip of the value of U⇤

w. But
it is also true now that Vi evaluates to ¬u⇤w since the values of the variables in
{U \ Uw} are washed away in Vi’s evaluation, including the ones in U⇤, which
proves the subclaim.

Consider the following two facts: Subclaim 1: Let X and Y be two binary
variables such that P (X = x) = p 6= 1/2 and P (Y = y) = q = 1/2. Then the
probabilistic input/output behavior of Z = XOR(X, Y ) is the same of Y . The
variable Z = 1 whenever {(X = 1, Y = 0), (X = 0, Y = 1)}, which happens
with probability pq + (1 � p)(1 � q). Since q = 1/2, the expression reduces
to p ⇤ 1/2 + (1 � p) ⇤ 1/2 = 1/2. Subclaim 2: Let X and Y be two binary
variables such that P (X = x) = P (Y = y) = p = 1/2. Then the probabilistic
input/output behavior of Z = XOR(X, Y ) is the same of X (or Y ). This follows
directly from Subclaim 1. It is clear that if there are multiple nodes from Uw

in the evaluation of Vi, the same construction is also valid given the subclaim
above. It is not di�cult to generalize this argument to consider root set that are
not singleton, including roots in which there are not S-nodes as ancestors. The
main observation for this case is that the nodes outside R (i.e., F \ R) exhaust
the configurations of the preceding U -nodes (no degrees of freedom available to
change R), and the only U -variables that are free to vary are the ones in Uw and
bidirectedly connecting the elements of R. But these variables are present in the
same way in both models, so the induced distributions can be shown to be same.

Finally, let us consider the case of Vi 2 {F \ R}. It su�ces to show that the
function from U 0 \ Uw to V 0 \ R is 1-1 when we fix Uw = uw. We use essentially
the same argument as Shpitser. Assume this is not so, and fix two instantiations
of U 0 \ Uw that map to the same value of V 0 \ R, and di↵er by the set U⇤ =
{U1, ..., Uk}. Since the bidirected edges form a spanning forest, there exists V ⇤

with an odd number of parents in U⇤ (and were not in R, by construction). Order
them topologically and let the topmost be called X. Note that if we flip all values
in U⇤, the value of X will also flip, contradiction. Given the uniformity of U 0,
the claim follows. We can put this together with the previous subclaims, and the
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result follows. ⇤

Remark 7. The next lemma builds on the idea given above and is based on the
simple observation that more U-variables will be free to vary after an intervention
on Z.

Lemma 20. The two models agree in the collection of interventional distributions
({I i

z}) in the respective source domains ⇡i, i = 1, ..., n, and target domain ⇡⇤.

Proof. First consider a pair of domains (⇡a, ⇡b) such that Za, Zb \ (F \ F 0) 6= ;
and (i) condition 1 of Def. 5 does not hold in ⇡a but cond. 3 does hold, (ii)
condition 1 of the definition does hold in ⇡b but cond. 3 does not hold. It is not
possible that condition 1 will not hold for ⇡b in G \ (Za \ (F \ F 0)) since Sb still
points to F 0 in ⇡b. This implies that we can disregard the variables in Zi from
⇡i such that cond. 1 is false and 3 is true, and so we simply disconnect these
variables from F ; note that intervention on these variables will have no e↵ect on
the remaining variables in the system.

Let us show the equality between the interventional distributions I i
z in both

models for domains {⇡i} such that S-variables are not separable from F 0. We
first consider domains ⇡i in which Zi intersects with F 0 (and not F \ F 0). By
construction, the functional models of the nodes in F \ F 0 are the same, so the
induced distributions coincide (and do not change with interventions on F 0). Let
us consider Vi 2 F 0, and its respective function can be rewritten as

fi(.) = f 0(Pai \ F 0)� f 00(Pai \ F 0)�Mi, (B.1)

where f 0 and f 00 are the functions representing the application of the exclusive-
or for all elements in the argument, and Mi is an indicator such that if Vi is pointed
by a S-node, Mi = (U⇤

i ^ Si), otherwise, Mi = 0.

Consider the following procedure. For each Z 2 Z, add all its bidirected

neighbors Vj to queue L, i.e., each Vj such that Z
UzjL9999K Vj. While L 6= ;,

pick the element in front Vj 2 L, and do the following: (1) mark Uzj as Uj if

Z
UzjL9999K Vj, for some Z 2 Z; or, (2) mark Ukj as Uj, if Vk

UkjL9999K Vj and
Uk 99K Vk, for some Vk 6= Vj that was previously relabelled. In both cases, add
its unseen bidirected neighbors to L.

We want to show that each node in F 0 (1) has at least one incoming U -node
that was marked; and, (2) this node can freely vary independently of its parents
within the C-forest. In turn, consider the following subclaims:

Subclaim 3: The procedure finishes and reaches all vertices in F 0. This
follows directly from the fact that F 0 is a C-forest, which is finite and all nodes
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are bidirectedly connected, together with the construction of the algorithm that
implements a BFS-like search.

Subclaim 4: For each Vj 2 V (F 0), there exists at least one marked Uj

associated with it. We show the subclaim by induction in the depth of the search
induced by the given procedure. For d = 1, the claim is certainly true since
the respective nodes are directly connected to some Z 2 Z, so the marking
condition (1) is immediately triggered. Assume that the statement is true for
depth d = l� 1, and we show next that it holds for d = l. Let us call Vl the first
node at depth l that is not marked. By inductive hypothesis, all its neighbors at
level l� 1 were marked as well as its neighbors at level l (since it is the first node
in this level not marked). Therefore, by construction, we should mark Vl when
we test condition (2) of the procedure, so the result follows.

Subclaim 5: Consider a topological order over the nodes in F 0; it is true
that each V (i) 2 F 0 (i = 1, ..., |F 0|) is such that Pz(V (i)|pai) is equally likely, for
any configuration Pai = pai. Given that F 0 is a c-forest, we consider only the
parents within the component F 0, i.e., we evaluate only the first factor (f 0) in Eq.
(B.1) (the remaining parents relative to f 00 will be consider later on). Let us show
that it is possible to flip the value of V (i) from v(i) to ¬v(i) while preserving the
assignment Pai = pai. Assume that Ui is the U -node associated with V (i) given
by the previous subclaim, and further that U (i) = (u1, ..., ui) is an assignment of
the U -nodes previous to V (i) in the order that is compatible with the configuration
pai. If none of the parents of V (i) is connected to Ui, we are done. Assume that
this is not the case. Let Pa⇤i,1 be the parent of V (i) that is adjacent to Ui, and
let U⇤

1 be the U -node given by the previous subclaim associated with Pa⇤i,1. Let
Pa⇤i,j be defined similarly, the parent of V (i) that is possibly adjacent to U⇤

j�1, and
let U⇤

j be the U -node given by the previous subclaim exclusive to Pa⇤i,j. Now we
keep U (i) \ {Ui, U⇤

1 , U⇤
2 , ...} and flip the values of {Ui, U⇤

1 , U⇤
2 , ...}, contradiction,

the result follows within F 0. But note that if we add the parents that are in F \F 0

(i.e, f 00), the result follows by subclaim 2.

Remark 8. The previous subclaims are intuitive and also expected. First note
that previous to the intervention (i.e., in P i), there was an one-to-one relation
from U to V , and after the intervention on Z, the U -nodes that were adjacent
to Z are “hanging” (can vary independently of any other nodes). Given that
the U -nodes induce a spanning forest over the V (F 0), there is at least as many
U -nodes as V (F 0) nodes after the intervention. In other words, each variable
in F 0 (including Vi) has an U -node that is free to vary which together with fi

imply that Vi can freely vary independently of all other values in F 0. This same
intuition can be extended for di↵erent arrangements of the root set.

Consider now the case of interventions in which Zi intersects with F \ F 0.
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Note that the variables in F \ F 0 are the same in both models, so the equality
between the respective distributions follows. It is the case that similar argument
as the one given in the previous case can be applied here as well considering the
following two additional facts about the topology of F 0. First, there exists still a
bijection from UF 0 to V (F 0) \ R (disregarding the nodes S and in F \ F 0 in the
evaluation of f), and so the distribution of such families are all equally likely. If
we add the factors relative to f 00 (i.e., the vertices in F \F 0), the distributions are
the same by subclaim 2. Second, there are |R| � 1 bidirected edges connecting
the elements in the root set, which means that the value of one of the nodes (R⇤)
is implied by the others. But now we can use in both models the S-nodes in F 0

to make R⇤ to vary, and so the entire root set varies uniformly in both models,
which implies the result. ⇤

Lemmas 17–20 prove Theorem 17 for when there is no need to extend the
c-forests with paths from R \ Rx to Rx not passing through X. We outline a
simple extension on how to use the previous results for this specific case, which
will follow the ideas of Proposition ?? and Thm. 16.

Let T be the set of nodes added to make Rx accessible from R \ Rx, add for
each Ti 2 T two exogenous variables Bi and Ui, and define Ti in both models as
follows:

Ti =

✓�
� (Pai) � Ui

�
_Bi

◆
�
✓

Bi ^
�
(�(Pai)� 1

�◆
,

with P (Ui) = 1/2, P (B1 = 1, ..., B|T | = 1) = 1/2, and P (B1 = 0, ..., B|T | = 0) =
1/2. By the construction of the mz⇤-shedge, T is in F 0.

It is tedious but not di�cult to show that the result will follow based on
the following observation. If B = hB1 = 1, ..., B|T | = 1i, the two systems
will behave as given in the previous case, which will entail the desired equali-
ties and inequalities between the distributions across domains. Alternatively, if
B = hB1 = 0, ..., B|T | = 0i, randomness is being added to the systems to assure
positivity, and the two models will coincide. I.e., the properties of the previous
cases are essentially preserved for when the root set has to be stretched towards
Y , just extra attention is required to avoid determinism.

⇤

Theorem 18 (soundness). Whenever TRmz returns an expression for P ⇤
x (y), it

is correct.

Proof. First note that the selection diagrams inputted to TRmz can be viewed as
a causal diagram over ⇡⇤, and trivial mz-transportability is equivalent to identi-
fiability in ⇡⇤. The correctness of the identifiability calls were already established
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in (HV06a; SP06b). Following the encoding given in Theorem 17, note that the
process of identification of the target relation without the Z-nodes that were con-
sidered in lines 10-11 is sound since, by assumption, the distribution do(Z) can
be used after testing for direct transportability in the respective local call. ⇤

Corollary 8 (completeness). TRmz is complete.

Proof. Follows from Theorems 17,18, and 19. ⇤

Corollary 9 (mz⇤-shedge characterization). P ⇤
x (y) is mz-transportable from ⇧

to ⇡⇤ in D if and only if there is not mz⇤-shedge for P ⇤
x0(y

0) in D for any X 0 ✓ X
and Y 0 ✓ Y .

Proof. Follows directly from Corollary 8. ⇤

Corollary 10 (do-calculus characterization). The rules of do-calculus together
with standard probability manipulations are complete for establishing mz-transportability
of causal e↵ects.

Proof. It was shown elsewhere that the steps of the ID algorithm (HV06a; SP06c)
(based on (Tia02)) but lines 10 and 11 correspond to sequences of standard prob-
ability manipulations and applications of the rules of do-calculus. Line 10 is
constituted by a conditional independence test, and standard probability opera-
tions for the replacement of the functions based on the invariance allowed by the
S-admissibility of the local X 0 in each recursive call, the result follows. ⇤
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APPENDIX C

Proofs for Chapter 5

Theorem 20. The distribution P (y|x) is s-recoverable from Gs if and only if
(S ?? Y |X).

Proof sketch. (if) It is obvious that if X d-separates S from Y in Gs, P (y|x) is
s-recoverable.

(only if) We show that whenever there exists an open path between S and
Y that is not blocked by X, two distributions P1, P2 compatible with the causal
model can be constructed such that they agree in the probability distribution
under selection bias, P1(V | S = 1) = P2(V | S = 1), and disagree in the target
distribution Q = P (Y | X), i.e., P1(Y | X) 6= P2(Y | X).

Let P1 be compatible with the graph G1 = Gs, and P2 with the subgraph G2

where the edges pointing to S are removed (see (Tia02, Lemma 8)). Notice that
P2 harbors an additional independence relative (V ?? S)P2 , where V represents
all variables in Gs but the selection mechanism S. We will set the parameters
of P1 through its factors and then compute the parameters of P2 by enforcing
P2(V | S = 1) = P1(V | S = 1). Since P2(V |S = 1) = P2(V ), we will have
P1(V |S = 1) = P2(V ).

Given a Markovian data-generating model (Pea00), P1 can be parametrized
through its factors in the Markovian decomposition P1(S = 1 | Pas), P1(X |
Pax), . . ., more generally, P1(Vi | PAi) for each family in the graph. Recover-
ability should hold for any parametrization, so we assume that all variables are
binary. In turn, we examine the possible ways of how S is connected to Y while
conditioned on X.

Case 1. Firstly, let us consider the case in which Y 2 PaS, which implies that
S is not separable from Y in Gs. We follow the construction given in Lemma
1. Let U be the set of nodes that connect X to Y . The distribution of Y
is a function of the values of X if we sum out all variables in U , P1(Y |X) =P

U

Q
X,U,Y P1(Vi|Pai)), so without loss of generality we can parametrize this

distribution directly. Now, we can write the conditional distribution in the second
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causal model as follows:

P2(Y |X) = P1(Y |X, S = 1) =
P1(Y, X, S = 1)

P1(X, S = 1)
(C.1)

=
P1(S = 1|Y )P1(Y |X)

P1(S = 1|Y )P1(Y |X) + P1(S = 1|Y )P1(Y |X)
, (C.2)

where the first equality is enforced by construction, the second and third follow
from the axioms of probability.

Consider the subgraph G0 such that all V \{X, Y, U, S} are disconnected from
{X, Y, U, S}, where we can parametrize the complete model as in (Tia02, Lemma
8). Now we compare P2(Y |X) with P1(Y |X). The equality constraint imposed
over these quantities can be seen as a line in the parameter space of higher dimen-
sion, which has measure zero. This implies that for almost all parametrizations,
P1(Y |X) and eq. (2) will not be the same. For instance, we can set the dis-
tribution of every family in G0 but the selection node equal to 1/2, and set the
distribution P1(S = 1|Y ) = ↵, P1(S = 1|Y ) = �, for 0 < ↵, � < 1 and ↵ 6= �.
The result follows since the other parameters of P2 are free and can be chosen to
match P1, and P2(Y |X) = ↵/(↵ + �) and P1(Y |X) = 1/2.

Case 2. Let us consider the case in which there exists an open directed
path from Y to S, which means that it does not pass through X (i.e., only the
values of X will end up being used in the construction). Let Z be the immediate
child of Y in this path and assume the distance from Z to S is arbitrary. Let
W be the set of nodes that connect Z to S and U be the set of nodes that
connect X to Y . Consider the induced subgraph G0 such that all nodes in Gs

but V \ {X, U, Y, Z,W, S} are disconnected from {X, U, Y, Z,W, S}.
Following eq. (1), P2(Y |X) = P1(Y,X,S=1)

P1(X,S=1) , we can rewrite the numerator of
the r.h.s. in expanded form as

P1(Y, X, S = 1) =
X

U,Z,W

P1(X, U, Y,W, Z, S = 1)

=
X

U,Z,W

P1(X|Pax) ... P1(S = 1 | Pas)

=
X

U,Z,W

Y

V [S

P1(Vi | Pai)

=
X

U

Y

U

P1(Vi | Pai)
X

Z,W

Y

V [S\U

P1(Vi | Pai) (C.3)

Given a topological order compatible with G0, the families in U are functions of
X but not of Z, W, Y, S, and since the same value of X is instantiated in the
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numerator and the denominator in eq. (1), these factors cancel out. So, we
consider only the second sum in eq. (3). Now, we can rewrite

X

Z,W

Y

V [S\U

P1(Vi | Pai)

=
X

Z

Y

V \U[W

P1(Vi | Pai)
X

W

Y

W[S

P1(Vi | Pai) (C.4)

The sum over the factors relative to W in eq. (4) is a function of Z (since
Z 2 An(S)), so define f(Z) =

P
W

Q
S[W P1(Vi|Pai). The distribution of Y is a

function of the value of X since we sum out all values of U , let us call it P (Y |X̃).
Define ↵z(Y ) = P (Z|Y ), and since Y is not a↵ected by Z, we can rewrite eq. (4)
as P (Y |X̃)

P
Z ↵z(Y )f(Z). Given these observations, we rewrite P2(Y |X) (eq.

(1)) as follows

P1(Y |X̃)
P

Z ↵z(Y )f(Z)�
P1(Y |X̃)

P
Z ↵z(Y )f(Z)

�
+
�
P1(Y |X̃)

P
Z ↵z(Y )f(Z)

� ,

which we want to compare with P1(Y |X̃).

By construction of G0, f(Z) and ↵z(Y ) as a convolution, it is the case that the
expressions for Q1 and Q2 cannot be simplified in the general case. We explore
the fact that the equality constraint between these two quantities (for all values of
X and Y ) imposes weak constraints in the high dimensional parameter space and
valid parametrizations have Lebesgue mass zero; i.e., for almost all parameters
that we chose the equality between Q1 and Q2 will not hold, we chose explicitly
one of such parameters. So, first make P1(Y |X̃) = 1/2 for all values of Y, X̃,
which implies

P2(Y |X̃) =

P
Z ↵z(Y )f(Z)�P

Z ↵z(Y )f(Z)
�

+
�P

Z ↵z(Y )f(Z)
� (C.5)

We can compose the linear transformations encoded in f(Z), which is from
the parameter space of W [ S to Z, that is, [0, 1]2

|W |+1 ! [0, 1]|Z|. Consider
a topological order W1 < W2 < ... < W|W | < S relative to W [ S. We re-
arrange the product

P
W

Q
S[W P1(Vi|Pai) as 2 ⇥ 2 matrices relative to each

factor P (Wi|Wi+1) (each row sums to 1 satisfying the integrality constraint) and
P (S = 1|W|W |) is a column-vector 2⇥ 1 for each value of W|W |.

Let the matrix of the first distribution relative to W1 be M = [p, 1�p; 1�q, q],
for some 0 < p, q < 1, which will be instantiated below. We can decompose M
in its canonical form, i.e., in terms of its eigenvectors, [1,�(p� 1)/(q� 1)], [1, 1],
and eigenvalues [1, p + q � 1]. The product in f(Z) is a composition of linear
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transformations, which is also a linear transformation. We make each distribution
to follow the same form given by M , so this composition is equivalent to the
product of the matrix with the eigenvectors times the power to k = |W | of the
matrix with the eigenvalues in the diagonal times the inverse of the matrix with
the eigenvectors, let us call it Mc. After some trivial (but tedious) algebra, we
obtain:

Mc(1, 1) = 1�
(1� p)

�
(p + q � 1)k � 1

�

p + q � 2

Mc(1, 2) =
(1� p)

�
(p + q � 1)k � 1

�

p + q � 2

Mc(2, 1) =
(1� q)

�
(p + q � 1)k � 1

�

p + q � 2

Mc(2, 2) = 1�
(1� q)

�
(p + q � 1)k � 1

�

p + q � 2
(C.6)

Set (p = 3/5, 1� q = 2/5), it is not di�cult to check that this assignment yields
a valid parametrization for the distribution, we have

Mc(1, 1) = Mc(2, 2) = 1� 1

2
(1�

�1
5

�k
)

Mc(1, 2) = Mc(2, 1) =
1

2
(1�

�1
5

�k
)

(C.7)

Now, let (P (S = 1|W|W |) = 2/3, P (S = 1|W|W |) = 1/2), and we can see that
f(Z) = 7/12 + ✏, f(Z) = 7/12 � ✏, where ✏ = (1/5)k. We can chose ↵z(y) =
1/3, ↵z(y) = 3/4. Finally, we can evaluate eq. (5) and note that Q2 = 1/2 �
(2/7)✏, which is never equal to 1/2 (= Q1) given that the graph is finite.

Case 3. Let us consider the case in which the path from Y to S pass through
an ancestor of Y . Let us call A = An(Y ) \ {Y }. Since A \X is not d-separated
from Y given X in Gs, there is a path p from Z 2 A \X to Y that is not blocked
by X. Without loss of generality, let us consider the closest Z in this path. There
are two possible cases to consider: p might be a directed path from Z to Y that
does not contain X as an intermediate (e.g., Z ! . . .! Y ); or, p might contain
converging arrows into X (Z ! . . .! X  . . .! Y ).

Subcase 3a. We start with when p is a directed path. Let U be the set
of nodes that connect X to Y , W the nodes that connect Z to Y (given X),
and R the nodes that connect Z to S. Consider the induced subgraph G0 of
Gs such that all nodes except {X, U,Z,W, R, Y } are removed from Gs (i.e., V \
{X, U,Z,W, R, Y } can be parametrized as random coins, see (Tia02, Lemma 8)).
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Since Z 2 An(S), let us call p0 the path connecting Z to An(S) \ An(Y ) in Gs

(i.e., Z ! . . .! S). Add p0 with all its nodes to G0. Note that Z is such that it
blocks the concatenation of p and p0. Note that this concatenation is such that
it has two emanating arrows from Z (i.e., p Z ! p0). Now, we can transform
Gs while staying in the same equivalence class . In order to do so, reverse the
direction of all arrows in p such that Z is no longer in An(Y ). Now, the same
parametrization as discussed in case 2 is valid for this case.

Subcase 3b. Consider the case in which p contain converging arrows into X.
Let us consider the variables X, Y, Z, and let L be the common ancestor that,
together with Z, has converging arrows into X in p. The construction here will
be similar to the previous case except for two main di↵erences.

First, the path p can be seen as the concatenation of four segments p1, ..., p4

such that p1 is the segment L ! . . . ! Y , p2 is the segment L ! . . . ! X, p3

is the segment Z ! . . . ! X, and p4 the segment Z ! . . . ! S. Note that by
construction, there might exist only chains along each of these segments, so to
avoid algebraic clutter we assume that those are segments of length one, but it
is trivial to stretch those segments following the same structure given in case 2
for f(Z). When we have multiple X’s in p, we will have the concatenation of
several segments p3 and p4, and it will also be simple to extend the construction
given for f(Z) for this case. Remarkably, these segments capture precisely the
forbidden subgraph that precludes s-recoverability when p has converging arrows
to X. Second, no directed path between X and Y is used in the construction of
the counterexample and the induced subgraph G0 without these paths can also
be generated by the original model (Tia02, Lemma 8).

We follow similar structure as in case 2. Following eq. (1), P2(Y |X) =
P1(Y,X,S=1
P1(X,S=1) , we can rewrite the numerator as

X

L

P1(Y |L)P1(L)
X

Z

P1(X|Z, L)P1(Z)P1(S = 1|Z) (C.8)

Define ↵L(Y ) = P1(Y |L)P1(L) and note that the second sum is not a↵ected by
Y but it is a function of L, so define f(L) =

P
Z P1(X|Z, L)P1(Z)P1(S = 1|Z),

and write

P2(Y |X) =

P
L ↵L(Y )f(L)�P

L ↵L(Y )f(L)
�

+
�P

L ↵L(Y )f(L)
� (C.9)

Define another function of L that sums out S, g(L) =
P

Z P1(X|Z, L)P1(Z), and
note that P1(Y |X) is the same as eq. (9) with the function f replaced with
g. This expression cannot be simplified in general since there is a dependence
across the two functions. To see that, consider the following parametrization:
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↵L(Y ) = ↵L(Y ) = 1/3, ↵L(Y ) = 1/9, ↵L(Y ) = 2/9, P (Z) = 1/2; P1(X|Z, L) =
1/2 + ✏, P1(X|Z,L) = 1/2� ✏, P1(X|Z, L) = P1(X|Z,L) = 1/2, for 0 < ✏ < 1/2.
Call P (S = 1|Z) = ↵, P (S = 1|Z) = �, and pick any ↵, � such that ↵ > �. After
some trivial (but tedious) algebra, we have P1(Y |X) = 2/3 and

P2(Y |X) =
2

3

✓
↵ + � + ✏(↵� �)

↵ + � + 8
9✏(↵� �)

◆
, (C.10)

which are always di↵erent. ⇤

Remark 9. We considered Markovian models in Theorem 1, but the extension
for Semi-Markovians is straightforward. This is so because the latent variables
impose no constraints over the distribution of the observables, which means that
there are even more degrees of freedom that can be used to produce a parametriza-
tion following the lack of separability.

Theorem 21. If there is a set C that is measured in the biased study with {X, Y }
and in the population level with X such that (Y ?? S|{C, X}), then P (y|x) is
recoverable as

P (y|x) =
X

c

P (y|x, c, S = 1)P (c|x). (C.11)

Proof. We can condition P (y|x) on the set C and write

P (y|x) =
X

c

P (y|x, c)P (c|x) (C.12)

=
X

c

P (y|x, c, S = 1)P (c|x), (C.13)

where the last line follows since C is such that (Y ?? S|{C, X}). QED.

Lemma 21. If Y ?? S|(C, X), then Y ?? S|(C 0, X), where C 0 = C \ An(Y [
S [X) (AC96).

Lemma 22. Given three sets of nodes X, Y , and Z, and a set C ✓ An(X[Y [Z),
X ?? Y |(Z [ C) if and only if Z [ C separates X from Y in undirected graph
(GAn(X[Y [Z))m, the moral graph of GAn(X[Y [Z) (AC96).

Theorem 22. There exists some set C ✓ T \M such that Y ?? S|{C, X} if and
only if the set (C 0 [X) d-separates S from Y where C 0 = [(T \M)\An(Y [S [
X)] \ (Y [ S [X).
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Proof. The “if” part is trivial as it gives a set that d-separates S from Y .

(only if) If there exists a set C ✓ T\M (that is disjoint from Y, S, X) such that
Y ?? S|(C, X) then the set C 00 = C\An(Y [S[X) satisfies Y ?? S|(C 00, X) based
on Lemma 21. From Lemma 22 we have that C 00 [X separates S from Y in the
undirected graph (GAn(Y [S[X))m. In an undirected graph, if (C 00[X) ✓ (C 0[X),
is a separator, then C 0[X must be a separator. Using Lemma 22 again, we obtain
that (C 0 [X) d-separates S from Y in G.

Lemma 23. Let C1 be a minimal set satisfying Y ?? S|(C1, X), Co
1 be any

subset of C1 (including empty set), and Cm
1 = C1 \ Co

1 . If C2 is a minimal
set satisfying Cm

1 ?? S|(Co
1 , X, C2), then we must have Y ?? S|(C2, C1, X) and

Y ?? S|(C2, Co
1 , X).

Proof. Since C1 is minimal, by Lemma 21 we obtain C1 ✓ An(Y [ S [ X).
Similarly we have C2 ✓ An(S [ X [ C1), and therefore C2 ✓ An(Y [ S [ X).
Since Y ?? S|(C1, X), by Lemma 22 we have that C1 [X separates S from Y in
the undirected graph (GAn(Y [S[X))m. Since C2 ✓ An(Y [ S [X) we have that
C1 [X [ C2 separates S from Y in the undirected graph (GAn(Y [S[X))m. Then
by Lemma 22 we obtain Y ?? S|(C2, C1, X). Given Y ?? S|(C2, Cm

1 , Co
1 , X), and

Cm
1 ?? S|(Co

1 , X, C2), we obtain Y ?? S|(C2, Co
1 , X) by the contraction axiom.

Lemma 24. For sets W,X, let C1 be a nonempty minimal set satisfying W ??
S|(C1, X). Let Co

1 be any subset of C1, and Cm
1 = C1 \ Co

1 . We have

P (w|x) =
X

c1

P (w|x, c1, S = 1)P (c1|x). (C.14)

Then

1. C1 ?? S|X does not hold.

2. Let C2 ✓ M be a minimal set satisfying C1 ?? S|(X, C2). Then W ??
S|(C2, X). Therefore,

P (c1|x) =
X

c2

P (c1|x, c2, S = 1)P (c2|x). (C.15)

P (w|x) =
X

c2

P (w|x, c2, S = 1)P (c2|x). (C.16)

That is, if P (c1|x) is recovered via Theorem 21, then P (w|x) must be re-
covered via Theorem 21.

3. Cm
1 ?? S|(Co

1 , X) does not hold.
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4. Let C2 ✓ M be a minimal set satisfying Cm
1 ?? S|(Co

1 , X, C2). Then W ??
S|(C2, Co

1 , X). Therefore,

P (cm
1 |co

1, x) =
X

c2

P (cm
1 |co

1, x, c2, S = 1)P (c2|co
1, x). (C.17)

P (w|x) =
X

co
1,c2

P (w|co
1, x, c2, S = 1)P (c2, co

1|x). (C.18)

That is, if P (cm
1 |co

1, x) is recovered via Theorem 21, then P (w|x) must be
recovered via Theorem 21.

Proof. 1. If C1 ?? S|X, from W ?? S|(C1, X) and the contraction graphoid
axiom, we obtain W ?? S|X. This contradicts with C1 being minimal.

2. Given C2 ✓ M being a minimal set satisfying C1 ?? S|(X, C2), we obtain
W ?? S|(C2, X) by Lemma 23.

3. If Cm
1 ?? S|(Co

1 , X), from W ?? S|(Cm
1 , Co

1 , X) and the contraction graphoid
axiom, we obtain S ?? W |(Co

1 , X). This contradicts with C1 being minimal.

4. Given C2 ✓ M being a minimal set satisfying Cm
1 ?? S|(Co

1 , X, C2), we
obtain W ?? S|(C2, Co

1 , X) by Lemma 23.

Theorem 23. For X ✓ T , Y /2 T , Q = P (y|x) is C-recoverable if and only if it
is recoverable by Theorem 21, that is, if and only if there exists a set C ✓ T \M
such that (Y ?? S|C, X}) (where C could be empty). If s-recoverable, P (y|x) is
given by P (y|x) =

P
c P (y|x, c, S = 1)P (c|x).

Proof sketch. (if) If there exists a set C ✓ T \M such that Y ?? S|(C, X), then
it is clear RC(Y, X) will recover P (y|x).

(only if) Assume there exists no set C ✓ T \M such that Y ?? S|(C, X). If
there exists no set C ✓ M such that Y ?? S|(C, X), then RC(Y, X) will output
FAIL. Assume for every minimal set C1 ✓ M satisfying Y ?? S|(C1, X), there
exist some variables in C1 that are not in T . We need to prove RC(Y, X) will
not recover P (y|x).

The only way for RC(Y, X) to recover P (y|x) is by the following

P (y|x) =
X

c1

P (y|x, c1, S = 1)P (c1|x), (C.19)

such that R(C1, X) recovers P (c1|x) for some C1. By Lemma 24, the only way
for R(C1, X) to recover P (c1|x) is that there exists some Co

1 ⇢ C1 (Co
1 could
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be empty set) for which there exists a minimal set C2 ✓ M satisfying Cm
1 ??

S|(Co
1 , X, C2) where Cm

1 = C1 \ Co
1 , such that either C2 [ Co

1 [X ✓ T rendering
P (cm

1 |co
1, x) being recovered via Theorem 21 or R(C2, Co

1 [X) recovers P (c2|co
1, x)

(and R(Co
1 , X) recovers P (co

1|x)). But P (cm
1 |co

1, x) being recovered via Theorem 21
would contradict with our assumption since by Lemma 24 it means P (y|x) will
be recovered via Theorem 21.

These same arguments apply to R(C2, Co
1 [ X). By repeated application

of Lemma 24, we have that if RC(Y, X) succeeds in recovering P (y|x), then
there exist a sequence of function calls R(C1, X), R(C2, Co

1[X), . . . , R(Ck, Co
k�1[

. . . [ Co
1 [X) that ends with R(Ck, Co

k�1 [ . . . [ Co
1 [X) succeeding in comput-

ing R(Ck|Co
k�1 [ . . . [ Co

1 [ X) by recovering R(Cm
k |Co

k , C
o
k�1 [ . . . [ Co

1 [ X)
via Theorem 21. Then by reasoning backwards using Lemma 24, we have that
R(Cm

k�1|Co
k�1, C

o
k�2[ . . .[Co

1 [X) must be recovered via Theorem 21, and so on,
until we obtain P (cm

1 |co
1, x) must be recovered via Theorem 21 and finally P (y|x)

must be recovered via Theorem 21. This would contradict with our assumption.
Therefore RC(Y, X) will not recover P (y|x).

Theorem 24 (Selection-backdoor adjustment). If a set Z satisfies the s-backdoor
criterion relative to the pairs (X, Y ) and (M, T ) (as in def. 2), then the causal
e↵ect of X on Y is identifiable and recoverable and is given by the formula

P (y|do(x)) =
X

z+

P (y|x, z, S = 1)P (z) (C.20)

Proof. We first condition the e↵ect of X on Y on Z+ and write

P (y|do(x)) =
X

z+

P (y|do(x), z+)P (z+|do(x)) (C.21)

We can rewrite the e↵ect in eq. (C.21) as

P (y|do(x)) =
X

z+

P (y|do(x), z+)P (z+) (C.22)

=
X

z+

P (y|x, z+)P (z+), (C.23)

where eq. (C.22) follows by the third rule of the do-calculus together with the
fact that (Z+ ?? X)GX

(since by construction Z+ contains only non-descendants
of Y ), and eq. (C.23) follows by the second rule of the do-calculus together with
condition (i).

We can rewrite the second term in eq. (C.23) summing over Z� and pull the
sum out, which yield

P (y|do(x)) =
X

z+,z�

P (y|x, z+)P (z+, z�) (C.24)
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By the contraction graphoid axiom conditions (ii) and (iii) entail (Y ?? S, Z�|X, Z+),
so we can add {Z�, S} to the first term of eq. (C.24) and obtain

P (y|do(x)) =
X

z+,z�

P (y|x, z+, z�, S = 1)P (z+, z�). (C.25)

Note that eq. (C.25) is identifiable and its recoverability is given by condition 4.
⇤

In the sequel, we provide a procedure for listing all recoverable distributions
in the form of P (y, B|A). Note that P (y, B|A) being recoverable implies other
distributions such as P (y|A, D) is recoverable for all D ✓ B.

Procedure Sink-Recover(G, Y )

1. Remove V \ An(Y [ S) from G.

2. Eliminate S.

(a) If Y 2 PaS, exit with failure.

(b) Otherwise, P (Y, V \PaS \ {Y }|PaS) is s-recoverable, and remove S from G.

3. Eliminate non-ancestors of Y from the graph one by one. Given P (Y, B|A)
s-recoverable, iterate in reverse topological order, for each sink node Z.

(a) If Y /2 PaZ , P (Y, B \PaZ |A[PaZ \Z) is s-recoverable, and remove Z from
G.

(b) Otherwise, exit if no non-ancestors of Y can be removed.

4. Now all non-ancestors of Y have been removed and we have P (Y, B|A) s-
recoverable.

(a) For C ✓ An(Y ) \ {Y },
if (Y ?? A� C|C), then P (Y |C) s-recoverable.

The procedure operates traversing the graph and trying to recover distribu-
tions in the form P (y, B|A) until the current node can no longer be separated
from Y given its parents (and respective ancestors), or it ends listing all distribu-
tions and reaching Y itself. It is not di�cult to see that whenever the algorithm
exits with failure, one of the separability conditions discussed in the proof of
Theorem 1 is violated, which means that a counterexample for s-recoverability
can be produced.
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Interestingly, the Sink-Recover() can be easily modified to list odds ratios
(OR), extending the query-specific treatment given in (BP12b). Note that the
symmetry of the functional form of the OR can be exploited in this case so that
the separability test in the procedure can be relaxed. Under this relaxation the
current Z must be separated from X or Y rather than always Y .

Theorem 25 (OR G-recoverability). Let graph G contain the arrow X ! Y
and a set C of measured X-independent covariates. The c-specific odds ratio
OR(Y, X | C) is G-recoverable from s-biased data if and only if there exists an
additional set Z of measured variables such that the following conditions hold in
G:

1. (X ?? S | {Y, Z, C})G or (Y ?? S | {X, Z, C})G.

2. Z is OR-admissible relative to (X, Y, C).

Moreover, OR(Y, X | C) = OR(Y, X | C, Z, S = 1).

Proof. (if part) Our target quantity is OR(X, Y | C) and given that Z is OR-
admissible relative to (X, Y, C), Corollary 17 permits us to add Z and rewrite it as
OR(X, Y | C, Z). Given that the first condition of the theorem holds, Corollary
16 implies OR(X, Y | C, Z) = OR(X, Y | C, Z, S = 1). This establishes G-
recoverability since the r.h.s. is estimable from the available s-biased data.

(only if part) If the conditions of the theorem cannot be satisfied, then
OR(X, Y | C) is not G-recoverable, that is, there exist two distributions P1, P2

compatible with G such that they agree in the probability under selection, P1(V \
{S} | S = 1) = P2(V \ {S} | S = 1), and disagree in the odds ratio, OR1(X, Y |
C) 6= OR2(X, Y | C). We first consider the case when C = {}, and we will
construct two such distributions. Let P1 be compatible with the graph G1 = G,
and P2 with the subgraph G2 where all edges pointing to S are removed. Both
are compatible with G, since compatibility with a subgraph assures compatibility
with the graph itself (Pea88). Notice that P2 harbors an additional independence
(V \ {S} ?? S)P2 . By construction P1(X, Y | S = 1) = P2(X, Y | S = 1), but
since

P2(X, Y |S = 1) = P2(X, Y ),

we have:

P1(X, Y |S = 1) = P2(X, Y )

We can then simplify OR2 rewriting it as follows

OR2 =
P1(X, Y, S = 1)P1(X,Y , S = 1)

P1(X,Y, S = 1)P1(X, Y , S = 1)
, (C.26)
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and similarly for OR1,

OR1 =
P1(X, Y )P1(X,Y )

P1(X,Y )P1(X, Y )
(C.27)

We want to show that it is possible to produce a parametrization of P1 in such
way that OR1(X, Y ) 6= OR2(X, Y ). First, let us consider the class of Markovian
models. Accordingly, P1 can be parametrized through its factors in the Markov
decomposition P1(S = 1 | PAs), P1(X | PAx), . . ., or more generally, P1(Vi |
PAi) for each family in the graph. This choice of parameters induces a valid
parameterization for P2 as well. Firstly, let us consider the case in which condition
1 of the theorem fails, i.e., {X, Y } are not separable from S. Thus, eq. (C.26)
can be rewritten using the identity P1(X, Y, S = 1) = P1(S = 1 | X, Y )P1(X, Y ),
yielding:

OR2 = OR1

✓
P1(S = 1|X, Y )P1(S = 1 | X,Y )

P1(S = 1 | X,Y )P1(S = 1 | X, Y )

◆
(C.28)

Note that making the multiplier of OR1 in eq. (C.28) di↵erent than 1 entails
OR2 6= OR1, which will happen for almost all parametrizations of P1(S = 1 | .)
independently of the one chosen for P1(X, Y ). In case there are additional nodes
pointing to S, we can just make them independent of S in this new parametriza-
tion given that compatibility with the subgraph is enough to ensure compatibility
with G.

Now, let us consider the case in which condition 2 of the theorem fails,
i.e., there is no OR-admissible sequence in relation to (X, Y, {}). Let Z =
V \ {X, Y, S}, and expand P1(X, Y, S = 1) in the following way1:

P1(X, Y, S = 1) =
X

Z

P1(X, Y, S = 1, Z)

=
X

Z

P1(X | PAx) ... P1(S = 1 | PAs)

=
X

Z

Y

V \S=1

P1(Vi | PAi) (C.29)

Notice that each term in eq. (C.26) can be rearranged for each assignment of S’

1It clear that we should consider in the expression above (in respect to Z) just the nodes
that are somehow related to S, i.e., its ancestors, otherwise we could just sum these vertices
out because they do not o↵er any additional constraint over the distribution of interest related
to OR, and then in its respective parameterization.
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parents (i.e., PAs = pa(j)
s ), for instance, we can write based on eq. (C.29):

P1(X, Y, S = 1) =

P1(S = 1 | PAs = pa(1)
s , �)

✓ X

Z,PAs=pa
(1)
s

Y

V \S

P1(Vi | PAi)

◆
+

P1(S = 1 | PAs = pa(2)
s , �)

✓ X

Z,PAs=pa
(2)
s

Y

V \S

P1(Vi | PAi)

◆
+

. . .

P1(S = 1 | PAs = pa(k)
s , �)

✓ X

Z,PAs=pa
(k)
s

Y

V \S

P1(Vi | PAi)

◆

(C.30)

where k is the number of configurations of S’ parents, and � indexes configurations
of X or Y whenever one of them is a parent of S. Given eq. (C.30), let us call

P1(S = 1 | PAs = pa(1)
s , �) = ↵�

1 , P1(S = 1 | PAs = pa(2)
s , �) = ↵�

2 , . . .,
and also call

P
Z,PAs=pa

(j)
s

Q
V \S P1(Vi | PAi) = fj(x, y) for each configuration

X = x, Y = y, PAs = pa(j)
s . Then, we can write eq. (C.30) in the following

simplified manner:

P1(X, Y, S = 1) = ↵�
1f1(x, y) + ↵�

2f2(x, y) + . . . (C.31)

for all values of X and Y . We can then rewrite OR2 based on eq. (C.31) as

OR2 =
(↵�

1f1(x, y) + ↵�
2f2(x, y) + . . .)

(↵�
1f1(x, y) + ↵�

2f2(x, y) + . . .)

⇥ (↵�
1f1(x, y) + ↵�

2f2(x, y) + )

(↵�
1f1(x, y) + ↵�

2f2(x, y) + . . .)
(C.32)

and similarly for OR1:

OR1 =
(f1(x, y)) + f2(x, y) + . . .)(f1(x, y) + f2(x, y) + . . .)

(f1(x, y)) + f2(x, y) + . . .)(f1(x, y) + f2(x, y) + . . .)

(C.33)

There is an important observation here. Given that there is no admissible
sequence relative to (X, Y, {}), there exists a set W such that W is needed to
separate S from X or Y , but also (W ??/ {X, Y } | Z 0), for Z 0 non-descendents
of W and in Anc(S), otherwise there will exist an admissible sequence. If W
is di↵erent than {S}, it is the case that, by construction, W is contained in
the factor fi(x, y). Thus, we have an asymmetry given that W , and so fi(),
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change depending simultaneously on the specific instantiation of X and Y , and
consequently eq. (C.32) cannot be simplified in the general case. I.e., the linear
combinations encoded in fi()’s at eq. (C.32) do not deteriorate, factoring out
independently of the given parametrization given that there is a di↵erent element
in each one of them.

Now let us consider the following parametrization for P1: set P1(Vi | PAi) =
1/2 for all families except for the family of the S node (i.e., P (S = 1 | PAs)) and
the exclusive families included in the factor fi(x, y) (i.e., for when X = x, Y = y).
Thus, rewrite OR2 based on eq. (C.32):

OR2 =
(↵�

1f1(x, y) + ↵�
2f2(x, y) + . . .)

(1/2)l(↵�
1 + ↵�

2 + . . .)
(C.34)

where l is equal to k minus the number of summands in the respective expres-
sion (eq. (C.30)). Let us also rewrite eq. (C.33) accordingly with this given
parametrization, which yields:

OR1 =
(f1(x, y) + f2(x, y) + . . .)

k(1/2)l
(C.35)

After applying some simplifications on eqs. (C.34) and (C.35), we obtain, respec-
tively,

OR2 =
(↵�

1f1(x, y) + ↵�
2f2(x, y) + . . .)

(↵�
1 + ↵�

2 + . . .)
(C.36)

and

OR1 =
(f1(x, y) + f2(x, y) + . . .)

k
(C.37)

Notice that OR2 in eq. (C.36) is the weighted arithmetic mean of fi(.)’s aver-
aged by ↵�

i ’s, and OR1 in eq. (C.37) is the arithmetic mean of fi(.)’s. After
simplifications, the remaining parameters lie in the space [0, 1]m+k, where m is
the number of free parameters in fi(.)’s. Note that OR1 � OR2 = 0 adds a
constraint in this space, and in order to satisfy it we should choose any point in
a surface in [0, 1]m+k�1 inside [0, 1]m+k, i.e., which has Lebesgue measure zero.
Consequently, if we randomly choose parameters the equality will almost never
hold (and the inequality OR1 6= OR2 almost always), and then just randomly
draw the parameters from [0, 1]m+k until this is the case, which finishes this part
of the proof. The case of the conditional OR is similar, and we basically have to
write appropriately eqs. (C.26) and (C.27) considering C, and exactly the same
reasoning applies.
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For the case when the graph contains unobservable variables, the proof is
essentially the same except that an appropriate parametrization of the underlying
generating model should be used – for such, consider the factorization given in
(ER11).

Theorem 26. Let graph G contain the arrow X ! Y , a necessary condition
for G to permit the G-recoverability of OR(Y, X | C) for a given set C of pre-
treatment covariates is that S and every ancestor Ai of S that is also a descendant
of X have a separating set Ti that either d-separates Ai from X given Y , or d-
separates Ai from Y given X.

Proof. For the necessity of the condition, we need to show that the failure of
any ancestor Ai of S that is also a descendant of X (including S itself) to be
separated (from either X or Y ) prevents recoverability of OR(Y, X | C). Indeed,
Ai cannot be part of admissible sequence nor can any of its children be part of
an admissible sequence, because in order to separate any such child from either
X or Y we would need to condition on the father Ai, and then, the sequence
will become non-admissible. Proceeding by induction, we eventually reach S
itself, whose failure to enter an admissible sequence renders the existence of such
sequence impossible. By Theorem 25, the inexistence of admissible sequence
implies the not G-recoverability of OR(X, Y, C).

Theorem 27. Let G be a DAG containing the arrow X ! Y and two sets
of variables, measured V and unmeasured U . A necessary and su�cient condi-
tion for G to permit the G-recoverability of OR(Y, X | C) for a given set C of
pre-treatment variables is when the sink-procedure below terminates. Moreover,
OR(Y, X | C) = OR(Y, X | C, Z, T, S = 1), where Z =

�
An(S) \ An(Y )

�
\ V

and T is given by the sink-procedure (shown in the chapter).

Proof. We use along the proof some graphoid axioms and other DAG properties
as shown in (Pea88). Let us first consider the correctness of the algorithm. The
main idea of the reduction sequence is to use each conditional independence
(CI) in step 2 of the sink-procedure to substantiate an OR reduction, creating
a mapping starting from the s-biased data OR(X, Y | C, Z1, ..., Zk, S = 1) and
reaching the target (unbiased) expression OR(X, Y | C). If nodes are not added
in step 3 of the algorithm, it is obvious that the sequence induces a valid step-OR
reduction, which witnesses the OR G-recoverability. So, let us consider the case
when nodes have to be added to T along the execution of the algorithm. At
each step i, we reduce OR(X, Y | C, T, Z1, ..., Zi) to OR(X, Y | C, T, Z1, ..., Zi�1)
allowed by the CI in step 2. But given that Ti can be added to T along the
execution of the algorithm, we need to show that this operation is allowed, i.e., it
does not invalidate the construction of the desired mapping between the unbiased
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OR and the s-biased one. Towards contradiction, consider an arbitrary node Zj

such that

(Zj ?? X | C, T, Y, Z1, ..., Zj�1) or

(Zj ?? Y | C, T,X, Z1, ..., Zj�1) (C.38)

Now, consider the first Zk such that k < j and, in order to satisfy step 2 in the
sink-procedure, W has to be added to the conditioning set, then

(Zk ?? X | C, T, Y, Z1, ..., Zk�1, W ) or

(Zk ?? Y | C, T,X, Z1, ..., Zk�1, W ) (C.39)

but also

(Zj ?? X | C, T, Y, Z1, ..., Zj�1, W ) or

(Zj ?? Y | C, T,X, Z1, ..., Zj�1, W ) (C.40)

is false. If the sink-procedure ends, it is also true that

(T ?? Y | C, X) (C.41)

From eq. (C.38), all paths from Zj to X or Y (including the ones passing through
W ) are closed after conditioning on {C, T, Y, Z1, ..., Zj�1}. From eq. (C.39) and
the minimal choice of Ti in step 3, it must be the case that there is a path p
from Zk to X or Y such that p is blocked by some W 2 W . From eq. (C.40),
there exists a path p0 that has to be open after condition on W , and therefore
there exists a collider U such that U = W or W 2 Desc(U). Let us consider two
possible scenarios for p0, the first when it goes from Zj to Y , and the second when
it goes from Zj to X. In the former case, there is an open path from W to Y ,
which is a contradiction with eq. (C.41) given that W ✓ T . Then it must be the
case that W only blocks paths ending in X, so let us assume the case in which the
end node in p0 is X. From (C.39), p is such that Zk  ! ...�W� ...! ! X,
where we are condition on all intermediate converging arrows and W must be a
chain or a common cause (i.e., ! W ! or  W !). Split p into p1 : Zk . . . W ,
and p2 : W . . . X. From eq. (C.40), p0 is such that W opens a collider U , then
the path from Zj to X. Split p0 into p01 : Zj... ! U and p02 : U  ...X. Now
we have two possibilities. If p2 is such that W ! . . . X, we can concatenate

Zk
p01! U ! W

p2! X, which shows an open path from Zk to X even before
conditioning on W , contradiction. If p2 is such that W  . . . X, p1 must be
W ! . . . Zk, and we have two possibilities: (a) Zk can be a descendent of W ,
and in this case the collider in U is already open even without conditioning on
W , contradiction; (b) W is connected to Zk through some collider, for instance,
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p1 could be W ! . . . ! C  . . . Zk, but similarly as before, given that we
condition on C, which is a descendent of W , and so of U , the collider was already
conditioned as well as the path from Zk to X open, contradiction. Therefore,
it cannot be the case that after adding Tk ✓ NonDesc(X) to block paths from
Zk to X or Y , there is a node Zj such that k < j, and which previously had
its paths to X or Y blocked, turned to have them open after conditioning on
Tk. Thus, we are allowed to modify each CI obtained in step 2 before Zk in the
sequence adding Tk, and then based on the admissible sequence starting from
OR(X, Y | C, T, Z1, ..., Zn), we can reduce it through this new augmented CIs of
step 2 until reaching the desired expression OR(X, Y | C).

Now we consider the complexity of the algorithm, and we show that it runs in
polynomial time. Notice that only the step 3 of the algorithm could imply some
backtracking – i.e., when it chooses a (minimal) set Ti of non-descendants of X
that renders the equality in step 2 to be true. The choice of separating set per se
is polynomial, see footnote 11.

Consider that the choice of Ti implies failure in step 5 when it tests the validity
of (T ?? Y | X, C). Assume that it exists a sequence Q of ancestors of S and
not ancestors of X, (Z1, ..., Zk, ..., Zn) such that for each Zi there is a separating
set Ti which makes the independence test valid. Let T =

S
Ti, and assume

that (T ?? Y | X, C) holds. Assume now that in round k, the sink procedure
chooses a di↵erent (minimal) separating set than Tk, and call this new set T 0

k,
and subsequently (T 0

k+1, ..., T
0
n). We have the new sequence Q0 with additional

separators (T1, ..., Tk�1, T 0
k, ..., T

0
n). Call T 0 =

S
T 0

i , and � = T 0 \ (T \ T 0).

We have that (T 0 ??/ Y | X, C) holds, or just (� ??/ Y | X, C). (This
follows from (� ?? Y | X, C), which by composition yields (T 0 ?? Y | X, C),
contradiction. See also (PP10).) Let � 2 � be the first node such that that
Q and Q0 disagree and which make step 5 to fail. � blocks at least one path
from Zk to X (after condition on {C, Y, T, Z1, ..., Zk�1, Ti \ �}) or from Zk to
Y (after condition on {C, X, T, Z1, ..., Zk�1, Ti \ �}), otherwise the sequence will
not be admissible (pass in the test of step 2). By construction, it must be the
case that there is an open path from Zk to Y passing through � (after cond. on
{C, X, Q, Z1, ..., Zk�1, Ti \ �}).

Let p be part of this path from � to Y (or, � � ... � Y ). There must exist
in Q a vertex v which blocks this same path from Zk to {X, Y } or {Y } in the
test of step 2. But v is in p or connected through an open path p0 to � (i.e.,
p : �� ...�v� ...�Y or v� ...�p0� ...� �� ...�p� ...�Y ), otherwise we would
not need � in the first place, contradicting minimality. In both cases, there is
an open path from v to Y , which contradicts the assumption about Q validating
(T ?? Y | X, C) as true, and therefore it cannot exist such �. Applying the same
reasoning for the whole sequence Q0 inductively, we conclude that it cannot exist

147



M 1 2 3 4 5 6 7 8 9 10 11 12
1 (c1 � 1)b1 c1b2 c1b3 c1b4

2 c2b1 (c2 � 1)b2 c2b3 c2b4

3 c3b1 c3b2 (c3 � 1)b3 c3b4

4 (c4 � 1)b1 c4b2 c4b3 c4b4

5 c5b1 (c5 � 1)b2 c5b3 c5b4

6 c6b1 c6b2 (c6 � 1)b3 c6b4

7 (c7 � 1)b1 c7b2 c7b3 c7b4

8 c8b1 (c8 � 1)b2 c8b3 c8b4

9 c9b1 c9b2 (c9 � 1)b3 c9b4

10 (1� c10)b1 �c10b2 �c10b3 �c10b4 (1� c10)b1 �c10b2 �c10b3 �c10b4 (1� c10)b1 �c10b2 �c10b3 �c10b4

11 �c11b1 (1� c11)b2 �c11b3 �c11b4 �c11b1 (1� c11)b2 �c11b3 �c11b4 �c11b1 (1� c11)b2 �c11b3 �c11b4

12 �c12b1 �c12b2 (1� c12)b3 �c12b4 �c12b1 �c12b2 (1� c12)b3 �c12b4 �c12b1 �c12b2 (1� c12)b3 �c12b4

such sequence. Therefore, step 5 does not imply any backtracking.

Similarly, let us consider the case when the choice of Tj implies failure in
a subsequent step 2. In the sequence Q0, it is true that when the algorithm
chooses Tj to satisfy the admissibility of Zj, it blocks some paths from Zj to
X. Now, assume that for Zk, k < j, there is an open path through Tj, i.e.,
Zk  ! U  ! X, where U = Tj or Tj 2 Desc(U). But if you do not choose Tj

(or any other node that blocks this path), we would have an open path from Zk

to X through Tj, contradiction.

We now argue about the completeness of the procedure. Let us first consider
the case in which there is not X-independent variable in the admissible sequence,
the sink-procedure will return an admissible sequence whenever one exists. Notice
that the sink-procedure performs a search for an admissible sequence in reverse
topological order, and this only makes the conditional independence’s tests easier
than in any other order. This is so because in each step, we are adding all non-
descendents of Zk (are non-colliders for Zk), which completely disconnects Zk

from X or Y except for paths passing through non-descendents of X. (Also, non
step-wise reductions can be converted to step-wise one through the graphoids
decomposition and weak union.)

Assume that there is a sequence (A1, ..., Am) called A that does not follow
the order given by the sink-procedure and it is admissible. Now, let us call Q
the sequence (Z1, ..., Zn) given by the sink-procedure, and further assume that
Q is not admissible. It is true that the last element of both sequences is S, and
in Q we would have the blocking set {Z1, ..., Zn�1} while in A we would have
{A1, ..., Am�1}. It is true that {A1, ..., Am�1} ✓ {Z1, ..., Zn�1}, and this is an
invariant along the algorithm for all nodes in A. Recall two facts: (a) for now, we
are assuming that there are not disagreements between TQ and TA; (b) adding
descendents of Zk in each step can only open some paths and spoil separation.
It must be the case for the sink-procedure to fail, there exists Zk 2 Q such that
(Zk ?? X | Y, C, Z1, ..., Zk�1) and (Zk ?? Y | X, C, Z1, ..., Zk�1) are both false.
Thus, there is at least one path from Zk to X and from Zk to Y that are not
blocked by {Z1, ..., Zk�1} [ {C} (and respectively, {Y } and {X}); call the set of
these paths P1 and P2, respectively.

148



Assume that A also chooses Zk at some point along its execution, and Zk

is labeled there Am. It must be the case that all paths from Am to X or all
paths from Am to Y are blocked by {A1, ..., Am�1} [ {C} (and respectively, {Y }
and {X}). But if {A1, ..., Am�1} ✓ {Z1, ..., Zk�1}, this is a contradiction. Now
assume that A does not choose Zk along its execution. There are ancestors of
S which have to block P1 from S to X or P2 from S to Y , and we consider
without loss of generality the subset {A1, ..., Al} that renders this separation to
hold. Consider Aj the first descendant of Zk in G⇤ that is in {A1, ..., Al}. If
such node is S, we reach a contradiction. Assume that Aj is not S but some
of its ancestors. To separate Aj from X or Y , we need to block the paths from
it to X or Y , but there are unblockable paths P1 and P2 passing through Zk

(Aj  ... � Zk � P1 � X or Aj  ... � Zk � P2 � Y ), and therefore Aj cannot
be part of an admissible sequence, contradiction. Then, it is the case that if
both algorithms do not disagree in the choice of the non-descendents of X, there
is indeed not admissible sequence. For the case when we add X-independent
variables along the sequence, the result also follows, and this is so based on the
fact shown previously that there is no backtracking in the choice of Ti, and any
algorithm that chooses Ti consistently obtains the same outcome in terms of
separation. Each time that the sink-procedure does not return any sequence, we
can produce a counter-example for the G-recoverability of the triplet (X, Y, C)
based on the construction of Theorem 25.

Theorem 28. The joint distribution of P (X, Y, Z) is recoverable from s-biased
data whenever the following conditions hold: (i) the S node is a↵ected by the set Z
only through {X, Y }; (ii) the set Z is d-connected to {X, Y } (and combinations);
(iii) the dimensionality of Z matches the dimensionality of {X, Y }; (iv) the
marginal probability of Z is known. In other words, the distribution P (X, Y, Z)
is recoverable from s-biased data whenever (S ?? Z | X, Y ), (Z ??/ {X, Y }), (Z
??/ X | Y ),(Z ??/ Y | X), the dimensionality of Z and X [ Y matches, and the
marginal distribution of P (Z) is given.

Proof. Let us first show the result for the binary case. To match the dimension-
ality requirement, we assume that Z = Z1 [ Z2 and both Z1 and Z2 are binary
satisfying:

P (Z1, Z2 | X, Y, S) = P (Z1, Z2 | X, Y ) (C.42)

To simplify the notation, let us write:
• P (X = x, Y = y | Z1 = z1, Z2 = z2) = ↵xy,z1z2

• P (Z1 = z1, Z2 = z2) = �z1z2

• P (Z1 = z1, Z2 = z2 | X = x, Y = y) = �z1z2,xy
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Note that the parameters �z1z2,xy and �z1z2 impose constraints on the distribution
↵xy,z1z2 , which can be made explicit by the following equation,

�z1z2,xy =
↵xy,z1z2�z1z2P

z01,z02
↵xy,z01z02

�z01z02

(C.43)

Now, for a given assignment < X = 0, Y = 0 >, let us list all independent
parameters �z1z2,00,

�00,00 =
↵00,00�00P

z01,z02
↵00,z01z02

�z01z02

�01,00 =
↵00,01�01P

z01,z02
↵00,z01z02

�z01z02

�10,00 =
↵00,10�10P

z01,z02
↵00,z01z02

�z01z02

(C.44)

Note that �11,00 is not an independent parameter because it is completely deter-
mined by the other three equations in (C.44) given the integrality constraint. For
now, we have 3 equations and 4 unknown variables ({↵00,00, ↵00,01, ↵00,10, ↵00,11}.)

Similarly, we write the constraints for the assignments < X = 1, Y = 0 > and
< X = 0, Y = 1 >, respectively,

�00,10 =
↵10,00�00P

z01,z02
↵10,z01z02

�z01z02

, ... (C.45)

�00,01 =
↵01,00�00P

z01,z02
↵01,z01z02

�z01z02

, ... (C.46)

Now, we can write the equations for the constraints relative to the variables
↵11,z1z2 as a function of the previous variables {↵00,z1z2 , ↵01,z1z2 , ↵10,z1z2},

�00,11 =

✓
(1�

�
↵00,00+ ↵01,00+ ↵10,00

�
)�00

◆
/

✓ X

Z0
1,Z0

2

✓
1�
�
↵00,z01z02

+ ↵01,z01z02
+ ↵10,z01z02

�◆
�z01z02

◆
, ... (C.47)

Notice that the parameters �z1z2,11 are independent, and we have 12 equations
and 12 unknowns, but it remains to show that the equations are all independent
(notice that the last three constraints in eq. (C.47) involve variables of the other
constraints). Another fact to observe is that the system is indeed linear. We
show that the matrix M , induced by the eqs. (C.44, C.45, C.46, C.47), is linear
and (almost surely) invertible, and generates an unique solution. M is invertible
if and only if its determinant is non-zero. For convenience, let us display the
variables ↵xy,z1z2 column-wise, renaming �z1z2 as constants b1� b4, and �z1z2,xy as
constants c1 � c12. The matrix is shown on the top of page 86.
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In what follows, we exploit the block structure of M and apply the following
transformations to better visualize its determinant.

1. First note that all columns {1, 5, 9} are multiplied by b1, which can be fac-
tored out by the determinant property. Similarly for the other columns in
respect to {b2, b3, b4}, which can be expressed as det(M) = (b1b2b3b4)3det(M (1)),
where M (1) is the resultant matrix.

2. Let us sum lines {1, 4, 7} to line 10, lines {2, 5, 8} to line 11, and {3, 6, 9}
to line 12, which generate matrix M (2).

3. We now sum the columns of M (2), �1 times column 4 to column 1, �1
times column 4 to column 2, and �1 times column 4 to column 3 (similarly
for the other blocks), which yields M (3).

4. Sum the columns of M (3), c1 times column 1, c2 times column 2 and c3

times column 3 to column 4 (similarly for the other blocks), yielding M (4).
5. Now, reorder the columns, “pushing” column 4 and 8 towards the end, call

the resultant matrix M (5).

Now we are done, notice that the det(M) = (b1b2b3b4)3det(M (5)), and the de-
terminant of M (5) is the determinant of two block matrices, the square matrix
M (5)

1 from lines 1-9 multiplied by another square matrix M (5)
2 from lines 10-12.

Note that det(M (5)
1 ) = �1, and remains to show that det(M (5)

2 ) is almost always
di↵erent than zero. The parameters c1 to c12 are independent, and given the
form obtained to M (5)

2 where all entries are independent, this implies that M (5)
2

is non-singular almost surely, and so it is M (5) – coincidental cancellations will
occur with Lebesgue measure zero.

Therefore, we consider M as full rank, which can be solved algebraically with
standard techniques yielding the solution ↵ = M�1�. This result, together with
P (Z) yields the joint distribution P (Y, X, Z). The case for non-binary variables
follows in a straightforward way, just noticing the requirement for agreement
between the dimensions of the IV set Z and {X, Y }.

Corollary 20. The causal e↵ect of Oestrogen (X) on Endometrial Cancer (Y )
as studied in (HF78; HHR04) (Fig. 5.7(c)) is recoverable from s-biased data
whenever there is an IV set Z pointing to X, and the conditions of the Theorem
28 hold. Moreover, the same holds without relying on Z whenever the following
conditions hold: (i) X has the same dimensionality of {W,Y }; (ii) the marginal
distribution of P (X) is available.

Proof. First, apply Theorem 28 to the variables {W,Y } replacing X with W , and
obtain P (W,Y ). Further note that P (X | Y, W, S = 1) = P (X | Y, W ), which
together with the first observation finishes this part of proof. The proof for when
we do not rely on Z is essentially the same.
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APPENDIX D

Proofs for Chapter 6

Theorem 31. Let X, Y , Z be disjoint sets of variables and let G be the causal
diagram. The causal e↵ect Q = P (y|do(x)) is zID from do(Z) in G if and only
if one of the following conditions hold:

a. Q is identifiable in G; or,

b. There exists Z 0 ✓ Z such that the following conditions hold,

(i) X intercepts all directed paths from Z 0 to Y , and

(ii) Q is identifiable in GZ0.

Proof sketch. The su�ciency part is direct. If condition a. holds, the result
follows trivially. If condition b. holds, consider the set Z 0 ✓ Z that satisfies
both conditions of the Theorem. Using condition b.(i), we can apply Rule 3 of
do-calculus in Q since X intercepts all directed paths from Z 0 to Y , (Z 0 ?? X)GX

,
yielding P (Y |do(X)) = P (Y |do(X), do(Z 0)). It is not di�cult to see that this
last expression, together with the fact that Z 0 is a root set and b.(ii) hold, imply
the result.

It is more involved to prove necessity, and we consider its contrapositive.

Lemma 25. If conditions a. or b. of Theorem 31 do not hold for all Z 0 ✓ Z, Q
is not z-identifiable from G and do(Z).

Proof. Consider an arbitrary Z 0 ✓ Z and the following Lemmas.

Lemma 26. If conditions a. and b.(ii) of Theorem 31 do not hold for Z 0, Q is
not z-identifiable from G and do(Z 0).

Proof. The result follows from Theorem 30.

Lemma 27. If conditions a. and b.(i) of Theorem 31 do not hold, and condition
b.(ii) does hold for Z 0, Q is not z-identifiable from G and do(Z 0).
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Proof. Let I be the set of interventional distributions P (V \Z|do(Z)). The proof
will show a counter-example to the z-identifiability of Px(y) through two models
M1 and M2 that agree upon hP, Ii and disagree on Q = Px(y). We need to find
any two models where zID fails, and in particular, we are free to pick models
not faithful (SGS93).

Since condition a. does not hold, Q is not ID in G, and so there exists a
hedge F = hF, F 0i for Q⇤ = Px⇤(y⇤) in G, for X⇤ ✓ X, Y ⇤ ✓ Y (SP06b, Corol.
3).

The fact that condition b.(ii) holds implies that there exists no hedge for Q
in GZ0 . This, in turn, implies the existence of at least one bidirected edge in F
that is broken by the virtue of the mutilation do(Z 0). Therefore, it is clear that
Z 0 must be part of the R-rooted C-forest F , where R = An(Y ⇤)X⇤ . Without loss
of generality, we consider Z 0 that is related to the troublesome structure F in its
respective induced subgraph (to be defined next).

Since condition b.(i) does not hold, there exist directed paths from Z 0 to R
not blocked by X. Without loss of generality, let us consider the set of paths
⇡ together with the C-forest De(F )G \ An(Y ⇤)GX

, and call this structure H.
Note that the existence of ⇡ prevents us from adding to Q elements of Z 0 as
interventions using the 3rd rule of do-calculus, but the interventional distribution
of Z 0 will eventually appear based on the C-decomposition as shown next.

When a graph is not a C-component itself, it can be decomposed (uniquely)
into C-components (Tia02). Consider the decomposition C(H \X⇤) = {S⇤, S0},
where S0 is a shorthand for the C-components {S1, ..., Sk}, and F 0\S⇤ 6= 0. Based
on this decomposition, it is an equivalence in do-calculus Q = f(H, X⇤, S⇤, S0),
where f is the C-factorization. Rewriting in a convenient way the usual Tian’s
f(.), we have the following equality in do-calculus,

Q =
X

v\x[y

Pv\s⇤(s
⇤)
Y

Si2S0

Pv\si(si) (D.1)

Consider a partition of Z 0 such that Z⇤ = Z 0\S⇤ and Z0 = Z 0\S0. For simplicity,
we also use S0 as the union of the elements of the respective components, since
the context is clear.

Case 1. We first show that the Lemma is valid for Z0 = ;. We construct two
models to show non-zID as discussed above.

Let V be the set of observable variables and U be the set of unobservable
variables in F . Consider a parametrization in which all variables are boolean and
the exogenous variables are fair coins (i.e., distributed uniformly). In M1 each
variable computes the bit parity of its respective parent values (observables and
unobservables), while in M2 each variable does the same except for nodes in F 0
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that compute the bit parity but ignore the values of the parents in F .

Note that these two models are essentially the same as the ones used to
prove ordinary non-ID given by Shpitser. It is not di�cult to see that the two
requirements for non-ID hold in these models; we briefly outline the argument
in the sequel.

The equality of P between the two models follows since the variables in F \F 0

are equally computing the bit parity of the ancestral exogenous variables and
have identical functional and probabilistic form in both models. For each variable
Vi 2 (F 0\R), there is always at least one exogenous variable U 2 U that can freely
vary in the evaluation of fi(.), which together with the uniformity of U imply
that they are all uniformly distributed. For the elements of the root set Vi 2 R,
in both models, they compute their respective bit parity as even, which happens
with the same probability also given the uniformity of U . For these variables in
R, the same trick as shown in Theorem 3 in (SP06b) to yield positivity can be
applied here.

For the inequality of Q, it is clear that in M1, R continues varying uniformly
given the intervention on do(X⇤), while in M2 it is insensitive to what happens
in F \ F 0, and so it computes the bit parity as even independent of the value of
X⇤. Given space constraints and to avoid redundancy, we refer to Theorem 3 in
(SP06b) for a more detailed proof of these two facts.

It remains to show that both models agree on the distributions of I. Consider
the following subclaim that will help to establish this fact.

Subclaim. Let X and Y be two binary variables such that P (X = x) = p
and P (Y = y) = q = 1/2. Then the probabilistic input/output behavior of
Z = (X � Y ) is the same of Y and uniformly distributed. The variable Z = 1
whenever {(X = 1, Y = 0), (X = 0, Y = 1)}, which happens with probability
pq+(1�p)(1�q). Since q = 1/2, the expression reduces to p⇤1/2+(1�p)⇤1/2 =
1/2.

Note that Z 0 ⇢ S⇤, and so both models agree on the input/output functional
description in the C-forests F 0 except for some additional incoming bidirected
edges from F . It turns out that this does not a↵ect the distribution do(Z 0) since
there is always a free variable U in the evaluation of the function, and so by the
previous subclaim, both models induce the same distribution I in F 0, finishing
the proof of this case.

We consider now the complementary case when Z0 6= ;. There are two
subcases to consider here. By assumption Q is not ID , and we are trying to
evaluate whether the C-factor Q⇤ = Pv\s⇤(s⇤) is or is not ID when experiments
over Z 0 are available. Note that the original hedge is related to this factor Q⇤

since R ✓ F 0 and (SP06b)[Corol. 3].
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Case 2. Consider first the case in which Q⇤ is ID from do(Z 0). The idea is to find
a hedge F ⇤ (di↵erent than F ) relative to the elements of Z 0 that helped to yield
identifiability for Q (breaking the original F ), and show that the identification
of this new hedge is not recoverable using other elements of Z 0. The following
subclaim implements this strategy.

Subclaim. If the conditions of the Lemma hold, Z0 6= ;, and Q⇤ is ID from
do(Z 0), there exist a pair of R⇤-rooted C-forests F ⇤, F 0⇤ forming a hedge F ⇤ for
Q such that F ⇤ ⇢ F and (F ⇤ \ F 0⇤) \ Z0 = ;.

Since Q is ID in GZ0 , there is no hedge there. We have already argued that
Z0 participates in the hedge for this factor since the mutilation do(Z 0) was able
to destroy F . Since Z0 is non-empty, it is also the case that its elements (and
the other variables in the respective components) are not in the same component
of R in H \X⇤.

For simplicity, define Sz = {Sk|Z0 \ Sk 6= 0}, and we call Sz interchangeably
as the union of the elements of the respective components when the context is
clear. Define W = H \ X⇤ \ Sz, and then it is true that W is not in the same
component of Sz after do(X⇤). Since Q was non-ID in G but became ID in GZ0 ,
together with the fact that W and Sz are not bidirectely connected in HX⇤ , imply
the existence of a bidirected connection between Z0 and X⇤.

Note that Sz partition the C-components involving Z0, and we would be done
if there is a hedge F ⇤ for the C-factor Sz

0 2 Sz in eq. (D.1). Assume that this
is not the case. We can apply the same argument as before, and consider now
the most interesting case when we reach the last component Sz

m 2 Sz. Assume
that there is no hedge for the respective C-factor for Sz

m. But this implies that
there exists an outgoing directed edge in F connecting X to W , contradiction
since Q was not ID. So, we can certainly construct a hedge F ⇤ for Q⇤ removing
unnecessary bidirected edges from F while keeping the directed edges from X,
which proves the subclaim.

Finally, the existence of F ⇤ implies that Q⇤⇤ is not zID by similar reason of
case 1. And so, we can use the same construction in the respective induced graph
for Sz and X⇤.

Case 3. Consider the case in which Z0 6= ; and Q⇤ is not ID from do(Z 0). Recall
that we need to construct two models that agree on the distribution P , disagree
in Q, but also agree on I. It is not immediately clear how to use the construction
given case 1 since Z0 was not in F \ F 0, which we relied on to produce the two
models witnessing non-zID for Q.

The idea is to fix the original hedge F producing a new hedge F ⇤ that matches
the requirement of the construction of the case 1, which proved to be feasible given
the assumptions of this case. The following subclaim helps to solve this problem.
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Subclaim. If the conditions of the Lemma hold, Z0 6= ;, and Q⇤ is not ID given
do(Z 0), there exist a pair of R⇤-rooted C-forests F ⇤, F 0⇤ forming a hedge F ⇤ for
Q such that F ⇤ ⇢ F and (F ⇤ \ F 0⇤) \ Z0 = ;.

Similar observations as in the previous case apply here, but note that since
Q⇤ is not ID from do(Z 0) now, the hedge F contains also Z0 besides X⇤, Y ⇤;
without loss of generality, assume Z⇤ ✓ Z 0 is the relevant subset for this hedge.

By construction, Z0 and Y ⇤ are in di↵erent components in H \ X⇤, and so
there are no bidirected edges connecting them in HX⇤ . This implies again X⇤ is
in the same induced component of Y ⇤ after do(Z 0) since Q is not ID from do(Z 0).

Now set the graph F ⇤ as a copy of the C-forest F , and then remove from F ⇤

the components involving Z0, which are just some unnecessary edges and nodes
relative to them. Note that F ⇤ is still a R-rooted C-forest since R, W and X⇤

remain there; it is also true that there exists a directed path from X⇤ to R⇤

not passing through Z0 that was kept in F ⇤. Assume that this is not the case.
Then, we could remove X⇤ using the third rule of do-calculus in the first place,
but since Z0 is in a di↵erent component of Y ⇤, we would obtain ID from Z0.
Contradiction. The subclaim and the lemma follow.

Finally, there are just two remaining observations in regard to the function cre-
ated to generate the counter-example for the previous cases. First, if R\Y ⇤ = ;,
the sum in eq. (2) can degenerate when the other C-factors are identifiable, which
happens because the chosen parametrization induces the same uniform distribu-
tion over observables in both models. Note that these terms would be factored
out in the expression for Q, and since we are summing over all configurations of
Z⇤ (and all variables di↵erent than {X⇤, Y ⇤, Z⇤}), the target e↵ect will collapse
to the same value in M1 and M2, spoiling the counter-example. It is not di�cult
to solve this problem by equally perturbing the parameters in both models and
making the observational distributions agree (which is required by zID ), but
not uniformly distributed. The same reasoning applies when other C-factors are
non-identifiable, i.e., we also have to make sure that they do not map to the same
value.

The other observation is that the strategy employed induces a counter-example
over H, which need to be extended to the inputted diagram G. But this is also
not di�cult since by construction, X \ H = X⇤ , and we can just extend the
parametrization making the other variables independent of H. Now, we have a
witness for non-zID of Px(y) from hP, do(Z)i in G.

The Lemmas 26 and 27 can be combined to obtain Lemma 25.

Lemma 25 su�ces to prove necessity, completing the proof of Theorem 31.
⇤
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The following is a revision of some results presented in [1]. Section, definition,
theorem and lemma numbers match the manuscript in mention. Changes are
highlighted in red.

4 Transportability from Multiple Studies with
Limited Experiments

4.1 Characterizing mz-Transportable Relations

The following is a revised definition of mz⇤-shedge, a graphical structure that
witnesses the non-transportability of a causal distribution. The removal of con-
dition 3 of the original definition is not strictly needed but since it’s entailed by
conditions 1 and 2, we prefer to phrase in this way for the sake of clarity.

Definition 18 (mz⇤-shedge). Let D = (D(1), . . . , D(n)) be a collection of selec-
tion diagrams relative to source domains ⇧ = (⇡1, . . . ,⇡n) and target domain ⇡⇤,
respectively, Si represents the collection of S-variables in the selection diagram
D(i), and let D(⇤) be the causal diagram of ⇡⇤. Let {hP i, Iizi} be the collec-
tion of pairs of observational and interventional distributions of {⇡i}, where
Iiz =

S
Z0✓Zi

P i(v|do(z0)), and in an analogous manner, hP ⇤, I⇤z i be the obser-
vational and interventional distributions of ⇡⇤, for Zi the set of experimental
variables in ⇡i. Consider a pair of R-rooted C-forestscomponents F = hF, F 0i
such that F 0 ⇢ F , F 0 \ X = ;, F \ X 6= ;, and R ✓ An(Y)GX

(called
hedge). We say that the induced a collection of pairs of R-rooted C-forests
over each diagram, hF (⇤),F (1), . . . ,F (n)i, with F (i) =

⌦
F (i), F 0(i)↵, F (i) ✓ F ,

i = {⇤, 1, . . . , n},
S

i F
0(i) = F 0, is an mz⇤-shedge for P ⇤

x (y) relative to experi-
ments (I⇤z , I

1
z , . . . , I

n
z ) if they are all hedges for Px(y), and one of the following

conditions hold for each domain ⇡i, i = {⇤, 1, . . . , n}:

1. There exists at least one variable of Si pointing to the induced diagram
F 0(i), or
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2. (F (i) \ F 0(i)) \ Zi is an empty set.

3. The collection of pairs of C-forests induced over diagrams, hF (⇤),F (1), . . . , F (i) \ Z⇤
i , . . . ,F (n)i,

is also an mz-shedge relative to (I⇤z , I
1
z , . . . , I

i
z\z⇤

i
, . . . , Inz ), where Z

⇤
i = (F (i) \ F 0(i)) \ Zi.

We call mz⇤-shedge the mz-shedge in which there exist one directed path from
R \ (R \De(X)F ) to (R \De(X)F ) not passing through X.

With a revised definition, we provide a new proof for Theorem 17 and related
Lemmas 17, 18 and 19.

Theorem 17. Let D = {D(1), . . . , D(n)} be a collection of selection diagrams
relative to source domains ⇧ = {⇡1, . . . ,⇡n}, and target domain ⇡⇤, respectively,
and {Iiz}, for i = {⇤, 1, . . . , n} defined appropriately. If there is an mz⇤-shedge
for the e↵ect R = P ⇤

x (y) relative to experiments (I⇤z , I
1
z , . . . , I

n
z ) in D, R is not

mz-transportable from ⇧ to ⇡⇤ in D (relative to all experiments Iiz).

Proof sketch. Let F be the R-rooted C-component (basis). Without loss of
generality, we will consider a structure with a maximal root-set. That is, one
that when subjected to the following procedure remains unchanged:

1. let B = An(Y)GX
\ (F \X),

2. consider the subgraph F \X and let R0 be the set of variables in B that
are also in the same C-component as any element of R in that subgraph.

3. Then, remove from F the edges outgoing from R0 and let R = R [R0.

After the previous steps, we obtain a new mz⇤-shedge with a maximal root-
set, where the variables in F 0 are exactly those in the root-set R. To witness,
assume for the sake of contradiction there exists a variable V in F 0 not in R,
by definition F 0 is an R-rooted C-component containing no variables in X, and
since V belongs to F 0 it must fall into B in step one and also satisfied step two.
Hence, V can be added to the root-set as in step three, contradicting the fact
that F had maximal root-set.

Let T = F \R be the observable variables in F that are not in R. Let U0

be the set of unobservable variables in F and partition it into the sets:

• UT = {U 2 U0 | T1  U ! T2 and T1, T2 2 T},

• UR = {U 2 U0 | R1  U ! R2 and R1, R2 2 R}, and

• U⇥ = {U 2 U0 | T  U ! R and T 2 T, R 2 R}.

Let Ui
T = UT \ F (i),Ui

R = UR \ F (i) and Ui
⇥ = U⇥ \ F (i).

We construct two causal models M1 and M2 that will agree on the col-
lection of distributions {hP i, Iizi}, hP ⇤, I⇤z i, but disagree on the interventional
distribution P ⇤

x (y).
Let kt be the number of F (i)s in which a variable T 2 T appears. Then,

we will parametrize T as a kt-bit variable with T[i] representing the bit in T

2



corresponding to F (i). Similarly, define ku for U 2 UT[U⇥, then U is a ku-bit
variable where U[i] stands for the bit associated with F (i).

Call W the set of variables pointed by S-nodes in F 0 and consider the
following encoding for the domains: let Si be the index variable corresponding
to the source domain ⇡i 2 ⇧, and let the tuple hS1 = 0, . . . , Si = 1, . . . , Sn = 0i
represent the index for the functional model relative to this domain. Let the
tuple hS1 = 0, S2 = 0, . . . , Sn = 0i represent the index for functional model
relative to the target domain ⇡⇤.

Let Pav stand for the set of observable and unobservable parents of variable
V in F and Paiv for the set of parents of the same variable in F (i). For a set of
variables V, let Pav =

S
V 2V Pav and Paiv =

S
V 2V Paiv.

In both models, let each bit T[i] of T 2 T be governed by the function

ft[i] =
M

A2Pai
t

A[i]. (1)

Variables in R[UR are binary. Pick an arbitrary variable R⇤ 2 R. For any
R 2 R \W in model 1 and 2 except for R⇤ in model 2, let

fr =

0

@
^

⇡i2⇧,T2Pai
r\T

gi(T ) ^
^

⇡i2⇧,U2Pai
r\U⇥

U[i]

1

A ^
 

M

U2Par\UR

U

!
; (2)

where gi(.) is defined as follows:

gi(T ) =

8
><

>:

T[i] if |Pair \T| is odd and |Ui
⇥| is odd, or

if |Pair \T| is even and |Ui
⇥| is even and T = T (i).

T[i] otherwise.

(3)

Where T (i) is any variable chosen from the set Pair \T for each domain ⇡i.
For R⇤ in model 2:

fr⇤ =

0

@
^

T2Pai
r⇤\T

gi(T ) ^
^

U2Pai
r⇤\U⇥

U[i]

1

A ^

0

@
M

U2Par⇤\UR

U

1

A. (4)

For R 2 (R \W) let

R fr ^
^

Si|(Si!R)2D

Si, (5)

where fr is constructed as in the previous case and Si is an S-node pointing to
R, relative to domain ⇡i.

Every bit of the U-variables is set to behave as a fair coin.

Lemma 17. The two models M1 and M2 are compatible with the selection
diagrams D.
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Proof. The result is immediate. Consider the functional model that generates
any domain ⇡i, in both models M1 and M2. By construction, the index tuple is
set to hS1 = 0, . . . , Si = 1, . . . , Sn = 0i in ⇡i, and hS1 = 0, . . . , Si = 0, . . . , Sn =
0i in ⇡⇤. So, it is obvious that in both models, the only structural di↵erences
between ⇡i and ⇡⇤ are the equations of W 2W in which Si appears. ⇤

Lemma 18. The two models agree in the distribution of P i(t, r), i = {⇤, 1, . . . , n}
and there exists an assignment for X and Y such that P ⇤

M1
(Y|do(X)) 6= P ⇤

M2
(Y|do(X)).

Proof. (Matching observational distributions)
First consider any particular domain ⇡i and a particular assignment u of the
variables in U. We have that in both models the value of T has to be the same
since the functions are the same in those models (with fixed ⇡i all Si have the
same value).

Let R0 be the set of nodes in R for which the expression in the first paren-
thesis of equation (2) evaluates to 0 in both models. Note that the set R0 is
determined by the variables in UT [U⇥, because those determine the values
of T, and the variables in UR only appear in the second part of equation (2)
which is not taken into account in the definition of R0. We will show that R0

is not empty in the context of the non-intervened models corresponding to ⇡i.
Consider any U 2 Ui

⇥ such that U[i] = 0, then any R that is pointed by U will
have value 0 in both models due to the construction of fr, and we are done.
We continue with the situation where all such U have U[i] = 1. Consider the
quantity Ci defined as

Ci =
M

T2Pai
r\T

T[i], (6)

and note that due to the forestness of F (i) and the parametrization; Ci computes
the xor of all the unobservable variables in UT and U⇥, having those in UT

accounted twice. Together with the fact that for any U 2 Ui
⇥, U[i] = 1, it

follows that

Ci =
M

U2Ui
⇥

U[i] = |Ui
⇥| mod 2. (7)

Note that the set of parents of variables in R in T (i.e. Pair \ T) must be
non-empty for any given hedge, then consider each one of the following four
scenarios:

1. |Pair \T| is odd and |Ui
⇥| is odd: We have Ci = 1 which implies that at

least one of T[i] has to be 1. Since gi negates all T[i] in this case, we have
that at least one R (with T as a parent) will have 0 as value.

2. |Pair \T| is odd and |Ui
⇥| is even: We have Ci = 0 which implies that at

least one of T[i] has to be 0. Since gi leaves each T[i] the same, we have
that at least one R will have 0 as value.
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3. |Pair \T| is even and |Ui
⇥| is odd: We have Ci = 1 which implies that at

least one of T[i] has to be 0. As in the previous case gi leaves T[i] the same
so at least one R = 0 in both models.

4. |Pair\T| is even and |Ui
⇥| is even: We have Ci = 0, so for all combinations

but for all T[i] = 1, there are always at least two T[i] = 0. Since gi negates
only one T[i], it follows that there is always at least one gi(T ) = 0 and any
R pointed by T will have value 0.

Due to the previous analysis we have that R0 is non-empty. Pick R̂ 2 R0

that is closest to R⇤ in terms of the length of the bidirected path p made of
edges in UR between them (the length of the path is 0 if R⇤ 2 R0. Make u1 = u
(the considered assignment) and u2 equal to u for all U except those in p for
which their negation is taken. By definition p intersects with R0 only at the
endpoints. Also, for every intermediate node R of p, there are two parents in
UR being negated; from the parametrization of fr we can tell that the value
of R remains the same because this change does not a↵ect the parity being
computed by the xor. We have then that u1 corresponds to u2 and repeating
the reasoning for any other assignment of the u we get a bijective relationship
between assignments producing the same observation in both models, hence the
distributions over the observed variables is the same.

(Di↵erent interventional distribution)
For the second part of the claim, consider the distribution P (r|do(X = x̂)),
where x̂ is an assignment where each bit of X 2 X is given by

x̂[i] =

(
0 if X 2 F (i) and X /2 Pair,

gi(1) if X 2 Pair,
(8)

Start by noting when this intervention on X is performed, every F (i) is
a↵ected (because by definition every F (i) intersects X). We want to show that
under this circumstance, there exists at least one assignment u such that R0

is empty. Start with an assignment where u⇥ = 1, if every gi(T ) = 1 for
i = {⇤, 1, . . . , n}, T 2 Pair we are done. Otherwise, for every i, T such that
gi(T ) = 0 find a path p, in F (i), between T and a variable in An(X)F (i) (that
includes X) made of bidirected edges corresponding to variables in UT. Such
path must exists due to the fact that the mz⇤-shedge under consideration has a
maximal root-set and T is in An(Y)GX

(because it is a parent of some R 2 R).
We can flip the bit associated with ⇡i for all us in p, which preserve the

parity (hence the bit value) of every intermediate observable, while the value of
the observable in the endpoint is either fixed by intervention (if the path ends
in some X 2 X) or can change without a↵ecting any variable in Pair \ {T} (and
hence R as well) because it is an ancestor of X that has been intervened and
F (i) is a forest. Changing the unobservables in the path also changes the parity
of T and since gi(T ) = gi(T ) we have that now gi(T ) = 1.

This process only a↵ects bits associated with ⇡i, by repeating it for every
other T , i such that gi(T ) = 0, we get an assignment where R0 is empty. Under
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these circumstances, the value of variables in R is determined by the xor in the
second parenthesis of equation (2) that depends only on variables in UR, that
free so far. Then, in M1 we have

M

R2R

R =
M

R2R

M

U2Par\UR

U =
M

U2UR

(U � U) = 0, (9)

since every U 2 UR appears exactly twice. As for M2

M

R2R

R =

0

@
M

R2R,R 6=R⇤

M

U2Par\UR

U

1

A�

0

@
M

U2Par⇤\UR

U

1

A (10)

=

0

@
M

R2R,R 6=R⇤

M

U2Par\UR

U

1

A�

0

@1�
M

U2Par⇤\UR

U

1

A (11)

= 1�
M

R2R

M

U2Par\UR

U (12)

= 1�
 
M

U2UR

(U � U)

!
(13)

= 1. (14)

Then, from the first part of this proof we have that for any u for which R0 the
distributions both models produce the same observations, however, for the in-
tervention do(X = x̂) there are u for which R0 is empty and we have that model
2 produces more observations where

L
R = 1 hence the di↵erent observations

which implies P ⇤
M1

(
L

r = 1|do(x̂)) 6= P ⇤
M2

(
L

r = 1|do(x̂)).

(Mapping R to Y)
By definition, there is a directed path in G from every R 2 R to Y (could be
zero-length) not intersecting X. Augment M1 and M2 such that for any non-
zero-length path q from R to Y 2 Y, each variable except for R let the function
be an xor of its parents. If the path contains an intermediate variable R0 2 R in
q add an extra bit to it, such that the original bit computes the original function
and the new one the xor of its parents.

In this new models
L

Y =
L

R, then the second part of the lemma follows.

Lemma 19. The two models agree in the collection of interventional distribu-
tions ({Iiz}) in the respective source domains ⇡i, i = 1, . . . , n, and target domain
⇡⇤.

Proof. Consider a domain ⇡i and a set Z ✓ Zi. From the definition of mz⇤-
shedge we have that either condition 1 or 2 are true for F (i). In the former case
we have some indicator in Si pointing to a variable R 2 R that will be set to
0 in both models in domain ⇡i. In the latter case, and by the same argument
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used in the proof for lemma 18, we have that any variable R 2 R that is a child
of a variable T 2 T \ F (i) belongs to R0.

In any case R0 is not empty and as in the proof for lemma 18 this implies
that the observed distributions match in both models for the variables in F .
The mapping described in lemma 18 modifies both models in the same way and
may only change the functions of R by adding extra bits without changing the
fact that the observations match between distributions. ⇤

6 Causal Inference by Surrogate Experiments

6.1 Characterizing zID Relations

Theorem 31. Let X, Y, Z be disjoint sets of variables and let G be the causal
diagram. The causal e↵ect Q = P (y|do(x)) is zID in G if and only if one of
the following conditions hold:

a. Q is identifiable in G; or,

b. There is no hedge F = hF, F 0i for Q in G such that (F \ F 0) \ Z is empty.

(i) X intercepts all directed paths from Z0 to Y, and

(ii) Q is identifiable in GZ0 .6

Proof. (only if) Suppose there exists a hedge as described in condition b, Sup-
pose Q is not identifiable in G (condition a) and there is a hedge F as described
in condition b. Note that F satisfies the definition for mz⇤-shedge, hence by
Theorem 17 it follows that Q is not identifiable from P (v), {Pz0(v|do(z0))}Z0✓Z,
which equates to Q not being zID.

(if) Suppose Q is not zID, then it easy to see that Q is not identifiable from
P (v) (which is considered by zID) therefore condition a is not satisfied. Let
F = hF, F 0i be the hedge in G witnessing that some factor Q0 associated with
Q is not identifiable from P (v). Let Z0 = (F \ F 0) \ Z, if Z0 = ;, condition
b does not hold and we are done. Otherwise, we can consider the distribution
P (v|do(z0)) associated with Gz0 where F cannot be a hedge (every variable in
Z0 belongs to a di↵erent C-component in that graph). Then, Q0 is identifiable
from P (v|do(z0)) and there has to be another Q00 that is not identifiable from
P (v) else Q is zID. Let F 0 be the hedge associated with Q00 and by repeating
the reasoning above, we have that either we end up with a hedge as forbidden
by condition b or a contradiction. Therefore, Q being not zID implies that
both conditions a and b are false; which entails the forward direction of this
theorem.

The corollary below followed from the original condition in Theorem 31.

3This condition can be rephrased graphically as “There exists no hedge for Q as an edge
subgraph in G

Z0 .”
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W

X

Z

Y

Figure 1: Graph in which P (y|do(x)) is not ID from P (v) and G, but it is zID
with experiments on Z, that is in De(X)GAn(Y )

.

Corollary 22. Let G be the causal diagram, X, Y ⇢ V be disjoint sets of
variables, and Z ✓ De(X)GAn(Y)

. The causal e↵ect Q = P (y|do(x)) is not zID
from P and do(Z) in G, if Q is not ID from P in G.

This corollary is not valid. To understand the subtlety with this statement,
consider the graph in Fig. 1 where the query to be z-identified is Q = P (y|do(x))
and the available distributions are P (v) and P (y, x, w|do(z)). According with
the corollary, if Q is not identifiable from G and P (v), it would not be identi-
fiable even with experiments on Z because {Z} ✓ De(X)GAn(Y )

. However, the
following derivation follows:

P (y|do(x)) =
X

z

P (y|do(x), z)P (z|do(x)) (15)

=
X

z

P (y|do(x), do(z))P (z|do(x)) (16)

=
X

z

P (y|do(z))P (z|do(x)) (17)

=
X

z

P (y|do(z))
X

w

P (z|do(x), w)P (w|do(x)) (18)

=
X

z

P (y|do(z))
X

w

P (z|x,w)P (w|do(x)) (19)

=
X

z

P (y|do(z))
X

w

P (z|x,w)P (w), (20)

that certifies that Q is zID. The key point missed in Corollary 22 is that if Q is
decomposable into more than one factor, some of them could be identified from
the observational distribution and others from experimental distributions, fact
that cannot be captured in a non-recursive condition.

6.2 A Complete Algorithm for zID
Below the algorithm IDz is reestated to make some recursive calls more explicit.
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function IDz(y,x,Z, I,J , P,G)
INPUT: x,y: value assignments; Z: variables with interventions available;
I,J : see caption; P : current probability distribution do(I,J , x) (observational
when I = J = ;); G: causal graph.
OUTPUT: Expression for Px(y) in terms of P, Pz or FAIL(F, F 0).

1 if x = ;, return
P

v\y P (v).
2 if V \An(Y)G 6= ;,

return IDz(y,x \An(Y)G,Z,
I,J ,

P
v\An(Y)G

P,An(Y)G).
3 Set Zw = ((V \ (X [ I [ J )) \An(Y)GX[I[J

) \ Z.
Set W = ((V \ (X [ I [ J )) \An(Y)GX[I[J

) \ Z.
if (Zw [W) 6= ;,
return IDz(y,x [w,Z \ Zw, I [ zw,J , PI,zw,J , G\Zw).

4 if C(G \ (X [ I [ J )) = {S0, S1, ..., Sk},
return

P
v\{y,x,I}

Q
i ID

z(si, (v \ si) \ Z,
Z \ (V \ Si), I,J [ (Z \ (v \ si)), PI,J ,Z\(V\Si), G\(Z \ (V\Si))).

if C(G \ (X [ I [ J )) = {S},
5 if C(G) = {G}, FAIL(G,S).
6 if S 2 C(G),

return
P

s\y
Q

i|Vi2S P (vi|v(i�1)
G \ (I [ J )).

7 if (9S0)S ⇢ S0 2 C(G),
return IDz(y,x \ S0, Z, I, J ,Q

i|Vi2C0 P (Vi|V (i�1)
G \ S0, v(i�1)

G \ (S0 [ I [ J )), S0).

Figure 2: IDz: Algorithm capable of recognizing zID; The variables I,J repre-
sent indices for currently active Z-interventions introduced respectively by steps
3 or 4. Note that P is sensitive to current instantiations of I,J .
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