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Abstract

A fundamental problem in many sciences is the learning of causal structure under-
lying a system, typically through observation and experimentation. Commonly,
one even collects data across multiple domains, such as gene sequencing from
different labs, or neural recordings from different species. Although there exist
methods for learning the equivalence class of causal diagrams from observational
and experimental data, they are meant to operate in a single domain. In this paper,
we develop a fundamental approach to structure learning in non-Markovian systems
(i.e. when there exist latent confounders) leveraging observational and interven-
tional data collected from multiple domains. Specifically, we start by showing that
learning from observational data in multiple domains is equivalent to learning from
interventional data with unknown targets in a single domain. But there are also
subtleties when considering observational and experimental data. Using causal
invariances derived from do-calculus, we define a property called S-Markov that
connects interventional distributions from multiple-domains to graphical criterion
on a selection diagram. Leveraging the S-Markov property, we introduce a new
constraint-based causal discovery algorithm, S-FCI, that can learn from observa-
tional and interventional data from different domains. We prove that the algorithm
is sound and subsumes existing constraint-based causal discovery algorithms.

1 Introduction

Causal discovery is the process of learning cause-and-effect relationships between variables in a
given system, which is many times the final goal of the data scientist or a necessary step towards a
more refined causal analysis [ 1, 2]. The learning process typically leverages constraints from data
to infer the corresponding causal diagram. However, it is common that the data constraints do not
uniquely identify the full diagram. Therefore, the target of analysis is often an equivalence class (EC)
of causal diagrams that encodes constraints found in the data (implied by the underlying unknown
causal system).

An EC encodes invariances in the form of graphical constraints, and thus is used to represent all
causal diagrams that encode those constraints and invariances. Formal characterizations of ECs are
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important to understand the output of a learning algorithm and how it relates to the underlying causal
system the scientist aims to explain.

ECs are defined with respect to distributional invariances which are implied by the structure of
the graph. For example, conditional independences (CI) are implied by d-separations in the causal
graph. Hence, it is desirable to formally characterize the EC in the general setting where we have
interventional data from multiple domains. A complete graphical characterization would enable i) an
efficient representation of the distributional invariances in the data and ii) the ability to translate these
data-invariances to graphical constraints (e.g. d-separation).

An early example of an EC when only observational data is available in a single domain is the Markov
equivalence class (MEC). The MEC characterizes causal diagrams with the same set of d-separation
statements over observed nodes [2—5]. Given interventional (i.e. experimental) data, one can reduce
the size of the equivalence class [0, 7]. In the case of known interventional targets, the EC is known
as the Z-MEC [7-9] and in the case of unknown targets, it is called the ¥-MEC [6].

In prior research, domain-changes and interventions were treated similarly [10—14]. Nevertheless,
various examples across scientific disciplines highlight their distinction (see Table 1). For instance,
when extrapolating data-driven conclusions from bonobos to humans, consider Figure 1(b). Notably,
the environment/domain, represented by the S-node pointing to X, illustrates differences in kidney
function between the species. When applying a CRISPR intervention to a gene linked to kidney protein
production (X), researchers investigate the impact of medication (Y’) on fluid balance in the body
(Z). This intervention is explicitly different from the kidney-function differences between bonobos
and humans because the change-in-domain is there regardless of whether or not an intervention is
made. This differentiation between interventions and domains holds significance, especially in causal
discovery. By leveraging invariances across observational and interventional data from both bonobos
and humans, one can learn additional causal relationships. Moreover, conflating these qualitatively
distinct settings is generally invalid, as pointed out in transportability analysis [15]. Environmental
differences persist regardless of interventions like CRISPR, and kidney function interventions vary
between species. Pearl and Bareinboim (2011) introduced clear semantics for S-nodes (environments),
offering a unified representation.

In this paper, we investigate structure learning when mixtures of observational and interventional
data (known and unknown targets) across multiple domains are available. The multi-domain setting
has been analyzed from the lens of selection diagrams, where selection nodes (or S-nodes) encode
distributional changes in the mechanisms, or exogenous variables due to a change in domain [16—18].
We will show in this paper a characterization of the EC for selection diagrams. Generalizing the
structure learning setting to multiple domains requires a formal treatment because it is a common
scenario in the sciences [19-31]; see Table 1 for an example of different settings and related literature).
For example, in single-cell sequencing analysis, scientists are interested in analyzing the causal effects
of proteins on one another. However, they may typically collect observational and/or experimental
data from multiple labs (i.e. domains) and wish to combine them into one dataset. Also, scientists
may collect observational and experimental data over multiple species in order to learn more about
one specific species, or the relationships among species [25, 27, 32].

The celebrated FCI algorithm and its variants learn a partial ancestral graph (PAG), an MEC of causal
diagrams, given purely observational data [1, 2, 33]. The Z-FCI (with known targets) and W-FCI
(with unknown targets) generalize these results to interventional data, and further reduce the size of
the EC to an Z-PAG and W-PAG, respectively [0, 7]. However, these algorithms operate in a single
domain, or environment and do not account for combining known/unknown target interventions.

Various approaches have been proposed throughout the literature for causal discovery from multiple
domains. The works in [10, 13, 34-38] assume Markovianity, a functional model (e.g. linearity)
holds, and/or do not take into account arbitrary combinations of observational and interventional data
with known and unknown targets. Alternatively, JCI pools data together and performs learning on the
combined dataset [14]. Pooling data is an incomplete procedure when considering interventional data
within a single domain let alone multiple domains [6][Appendix D.2].

In this paper, we take a principled approach to the multi-domain structure learning problem and
formally characterize S-PAGs, the object of learning. This paper introduces the selection-diagram
FCI algorithm (S-FCI) that learns from a mixture of observational and interventional data from



Domain Obs. o Property FCI-variant Related Lit.

1 v X X Markov [39] [2, 33, 40-43] [30,31]

1 v VA I-Markov [7, 44] [7, 8, 44] [22, 30]

1 v X Vv W-Markov [6] [6, 13, 45] [22, 27, 46]

k v x X  W-Markov (Thm. 1) [6] (Cor. 5) [20, 21, 23, 24, 47, 48]
k v v' v S-Markov (Thm. 2)  S-FCI (Thm. 3) [20-25, 28-31, 46-50]

Table 1: Summary of Markov property results, and related algorithms that learn the ancestral graph
based on number of domains and types of interventional (interv.) data provided such as observational
(obs.), and known (K) and unknown (/) targets. The last column indicates a brief survey of different
fields in ecology, economics, genomics, neurosciences, neurology and medicine that attempt to
answer questions at each level. The rows highlighted in "red" are new concepts.

multiple domains to construct an EC of selection diagrams, an S-PAG. Specifically, we contribute the
following:

1. Generalization of standard Markov properties - We introduce the S-Markov property,
which extends and generalizes the normal Markov, I-Markov, and ¥-Markov properties to
the setting of multiple domains with arbitrary mixtures of observational and interventional
data with known and unknown targets.

2. Learning algorithm - We develop a sound learning algorithm for learning an Markev|
equivalence class of selection diagrams with observational and/or interventional data across
different domains.'

1.1 Preliminaries and Notation

Uppercase letters (X) represent random variables, lowercase letters (z) signify assignments, and bold
ones (X) indicate sets. The CI relation X being independent of Y given Z is denoted as X | Y|Z.
The d-separation (or m-separation) of X from Y given Z in graph G is expressed as (X L Y|Z)¢.
G~ depicts G with incoming edges to X removed, while G x omits all edges outgoing from X.
Conventionally, every variable is d-separated from the empty set, denoted as (X L {})¢. Superscripts
and subscripts will be dropped where feasible to simplify notation.

Causal Bayesian Network (CBN): Let P(V) be a probability distribution over a set of variables
V, and P« (V) denote the distribution resulting from the hard intervention do(X = x), which sets
X C V to constants x. Let P* denote the set of all interventional distributions Py (V), for all
X C V, including P(V). A directed acyclic graph (DAG) over V is said to be a causal Bayesian
network compatible with P* if and only if, for all X C 'V, P (v) = [[; v, ¢x; P(vilpay), forall v
consistent with x, and where Pa; is the set of parents of V; [41, 51, pp. 24]. Given that a subset of
the variables are unmeasured or latent, G(V U L, E) will represent the causal graph where V and
L denote the measured and latent variables, respectively, and E denotes the edges. Following the
convention in [4 1], for simplicity, a dashed bi-directed edge is used instead of the corresponding latent
variables. CI relations can be read from the graph using a graphical criterion known as d-separation.

Soft Interventions: Under this type of interventions, the original conditional distributions of the
intervened variables X are replaced with new ones, without completely eliminating the causal
effect of the parents. Accordingly, the interventional distribution Px (v) for X C V is such that
P*(X;|Pa;) # P(X;|Pa;), VX; € X, and factorizes as follows:

Px(v)=>_ [ Prwlpa) ][] P(lpay) (1

L {i|X;eX} 1T ¢X}

In this work, we assume no selection bias and solely consider soft interventions. In the presence of
multiple domains, a selection diagram captures commonalities and differences between domains [ 16,

, 53]. Represented as Gs = (VUL U S, E U Eg), it extends a causal diagram by incorporating
S-nodes and their edges. (];7 ) S-nodes, S%7, indicate distribution changes across pairs among N
domains, by pointing to nodes in V whose mechanism is altered between domains i and j. An example

'Our algorithm is implemented in open-source MIT-Licensed https://github.com/py-why/dodiscover.



is shown in Figure 1(a), where the S-node is pointing to X, indicating that the distribution of X
changes, or that of the latent variable of X is different across the two domains.? Similarly, "F-nodes"
are auxiliary nodes used in [ 1, 7, 54] to represent invariances with respect to interventions within the
same domain. F-nodes in this paper when written as F'y’ means it intervenes on X and compares
distributions from domains i and j. F% means it compares distributions within domain i. Unlike
interventions, domain-shifts potentially alter latent variable distributions or functional relationships
and persist irrespective of whether or not external intervention occurs. Distinguishing these concepts
enables S-node learning, vital for transportability analysis on ancestral graphs. Appendix Section D.4
elaborates on our distinctions from previous work [11, 13, 14, 36].

Let S = {S12, 812, ..., SN 1N} represent () S-nodes for distribution changes across domain
pairs. When i = j, S%J = ¢, indicating there is no S-node for a single domain.

Multi-domain setup The following objects are utilized repeatedly, and introduced here. Our
notation borrows from [6] and the transportability literature [55].

1. Domains: IT = {IT',I12, ..., IV } denotes a set of N domains.

2. Intervention targets: W' = (W1 Wl .. W) is an ordered tuple of sets of intervention targets,
with different sets of intervention targets occurring within each of the N domains for a total of M
intervention target sets. We will denote W* as the intervention targets associated with domain i.

3. Distributions: P! = (P! P}.... PIY) is an ordered tuple of probability distributions that are
available to learn from. Denote P* as the distributions associated with domain i. There is a
one-to-one correspondence between P and W, such that P} is the distribution associated with

targets W' in domain i.

4. Known target indices: C is a vector of 1’s and 0’s indicating, which sets of interventions are
known-targets. U := 1 — K represents therefore an index vector selecting the distributions and
interventions with unknown targets. Py and Wi denotes the set of distributions and intervention
targets corresponding to the known target interventions.

5. Causal diagram: G = (V UL, E), is a shared diagram over the N domains.

6. Selection diagram: G5 = (VUL U S, E UEg), extend G with the corresponding S-nodes and
their edges to represent each pair of domains. Let Vg:,; denote the set of nodes that S-node S*7
points to and Vg as the set of children for all S-nodes of G's.

X’ denotes the ith domain set of Varia_bles X, and X; € X indicates the ith variable within X.
When discussing intervention targets, X;’(k) refers to the jth variable with the kth mechanism change

in domain i. For instance, X i’(k), X560 represent two interventions with distinct mechanisms (k
and 1) on variable X in domain i. {}* € ¥ explicitly denotes the observational distribution for
domain i and is by convention a "known-target". For concreteness, say IT = {II*, TI?, II3} with
P = (P, P}, P} P}, ¥ = ({}' {X@V (X, Y} {}?),and K = [1,1,0,1]. In words, there
are three distributions available in domain 1: P} is observational, P4 is known-target on X with a
specific mechanism change and Pj is unknown-target that intervenes on X and Y simultaneously. In
domain 3, Pf’ is observational. There are no distributions for domain 2.

2 Multi-domain Markov Equivalence Class

Before designing a learning algorithm, one must characterize what can be learned from the given
causal graph and its corresponding selection diagram. This section explores ECs in a multi-domain
setting with arbitrary mixtures of observational and interventional data. The following assumptions
are made throughout the main paper:

Assumption (Shared causal structure). We assume that each environment shares the same causal
diagram. That is the S-nodes do not change the underlying causal diagram. O

*In the original selection diagram, each S-node points to a single node. Our adaptation simplifies it to a
single S-node with multiple connections. Theoretical properties remain unaffected, as shown in the appendix.



This means that the S-nodes do not represent structural changes such as when V; has a different
parent set across domains 3.

Assumption (Observational data is present across domains). We make the simplifying assumption
that {} € ¥’, Vi € [N], that is observational data is present in all domains.

This is a realistic assumption in many scientific applications highlighted in Table 1 *. Another
assumption we make is that all soft interventions across domains are distinct.

Assumption (Distinct interventions across domains). Assume that all interventions across different
domains have different mechanisms. That is if X € 4Il and X € J?, X is intervened with a different
mechanism. Notationally, we would write I' = {X*}! and J? = {X7}2.

This is a realistic assumption that precludes the possibility that any interventions that occur in different
domains result in the same exact mechanism. For example, even if medication is given to humans
and bonobos, it is unrealistic to expect the intervention has the same mechanism of action in each
domain. Next, we define an important operation when comparing two different intervention sets.

Definition 2.1 (Symmetrical Difference Operator A in Multiple Domains). For domain i and j,
given two sets of variables, I and J7, let I' AJ7 denote the symmetrical difference set such that
T'AY ={veTl|lvgJ’}if Vel and V ¢ J7 or vice versa. O

This operation will identify sets of variables with unique interventional mechanisms across two
interventional targets and also track the domain ids. For example, I' = {X! Y, Z}! and J? =
{X2)Y}?2 I'AJ? = {X, Z}12. Since selection diagrams are defined with respect to a pair of
domains, the causal graph we are actually interested in is a composition of all pairwise selection
diagrams between all combinations of domains. In this paper, unless explicitly stated that intervention
mechanisms are the same, it is assumed that they are different. For example, consider an intervention
on X in domain 1 and paired intervention on X and Y in domain 2. The intervention on X occurs with
different mechanism in both domains. Le. I' = {X} U {Y1} = {X,Y1}! and J? = {X, Y}, then
I'AJ? = {X,Y}}2. Denote {}'!A{}? = {}. For more details and discussion on the assumptions,
see the Appendix.

2.1 Multi-distributional invariances: interventions and change-of-domain

This section elaborates on exactly what type of distributional invariances we characterize in the so
called S-Markov EC (see Section 2).

When given only observational data, the celebrated FCI algorithm uses invariances of the form
P(Y|X, W) = P(Y|X) within the same probability distribution, P(V') to characterize the Markov
EC [2]. These invariances, or CI statements can be mapped to d-separation statements on the graphical
model. The result is the PAG, which is the EC when only observational data is given within a single
domain and distribution.

The works in [6—8, 44] build upon the Markov EC to characterize the so called I-Markov EC, which
uses distributional invariances of the form Pw (Y|X) = Pw (Y|X). Pw (V) is the distribution of V
under some intervention on variables W. Note W = ¢ would denote the observational distribution.
Importantly, this sort of invariance is markedly different from that of the CI statements when only
observational data is present because one is now comparing probabilities across different distributions.
These distributional invariances can be characterized graphically by the d-separation property when
using an augmented graph with "F-nodes" serving as graphical representations of the differences in
distributions due to interventions.

Within this work, we then further generalize the invariances one can consider to establish the S-Markov
EC, introduced in 2. These analyze distributional invariances of the form P, (Y|X) = P (Y|X).
Note now the distributions can stem either from a different domain i # j, or a different intervention
set, W # K. If P4, (Y|X) = P}j( (Y|X), then this means the distribution of Y|X is invariant
across domains i and j with interventions on W, K C V. When ¢ = j, these invariances reduce to

3The assumption that there are no structural changes between domains can be relaxed in the context of
inference, as specified in [16]. We do not explore this relaxation here in the context of structure learning.

“If one can collect experimental data in a domain, it is reasonable that they can also collect observational
data. We discuss this further in the Appendix.



the ones considered in the interventional Markov EC. From this perspective, it is clear that multi-
domain invariances generalize the invariances analyzed in observational and interventional data in a
single-domain.

2.2 S-Markov Property

Now, we are ready to generalize the standard Markov properties [2, 5—7, 41, 56] to the case when ob-
servational, and known/unknown-target interventional distributions in multiple domains are available.

Definition 2.2 (S-Markov Property). Consider the multi-domain setup in 1.1. For a fixed K, we say
P! satisfies the S-Markov property with respect to the tuple (G, ®!!, Vg) if the following holds for
disjoint X, Y, W, Z C V:

1. (Conditional Independences) - For each domain, IT¢ € I1, and intervention target set, ‘Il; € wll:
Pi(ylw, 2) = Pj(y|w) if (Y L Z|W,S)q

2. (Conditional Invariances) - For each TI*, Tl € TI and Wi, ¥/ € ¥', Pi(ylw) = P/ (y|w) if
(V L KW\Wi)gs, . where K = (ZLA¥]) U{S"7}, Wi = WNK, R = K\Wx
Wi , R(W

and R(W) C R are non-ancestors of W in Gg.

Denote S}g (Gs) as the set of distribution tuples that satisfy the S-Markov property with respect to
(G, v Vg). O

When there is only a single domain, IT = {II'}, the first constraint reduces to standard d-separation on
a causal diagram. The second condition is a generalization of the W-Markov property characterization
[6], extending conditional invariances to multiple domains. Note the characterization applies to a
given causal graph and its Vg nodes. A selection diagram provides Vg and the causal graph.

Example 1. Consider the selection diagram in Figure 1(a) with two domains IT = {IT', TI?}. Let
P = (P}, P}, P?) be the result of the interventions ¥ = ({}} {X}1 {}?), S = {SL2} be the set
of S-nodes and K = [1,0, 1]. Since (Y L S%!|W)¢ always return True by convention, the second
constraint is not applicable when comparing P, Py. Moreover, comparing Pl (y|x) and Ps (y|z),
note (Y L X)¢ does not hold, so P (y|z) = P (y|x) is not required. The same holds when

comparing PZ vs P} and P? vs Pj. Therefore, P satisfies the S-Markov property with respect to

(G, v Vg). O
Example 2. C0n51der the 3- tuple (G, 9" Vg), K and PY from Ex 1. Now let ¥'"
({3, {Y} {}%). K = ({}'A{Y}")u{} = {Y}'. In this setting, (X L Y)q_ implies the in-

variance P (X) = P; (X), but P} was generated from an intervention on X and the invariance is not
satisfied in P. Therefore P does not satisfy the S-Markov property with respect to (G, ¥’ H, Vg). O

The S-Markov property is a generalization of the Markov, I-Markov
and W-Markov properties as summarized in Table 1. When there . g2

is a single domain, the S-Markov property simplifies to the stan-
dard W-Markov or I-Markov property when comparing distributions  (x)—() —()—(2)

associated with unknown, or known intervention targets respectively.

Lemma 1 (S-Markov property generalizes the ¥-Markov property). F1? R £ !
Consider the multi-domain setup in 1.1 with T = {TI'}. If Cis 0 1/ \é)
for all non-observational interventions, if P! satisfies the S-Markov - - Q)—’
property with respect to (G, ¥, Vg), then it also satisfies the U- @ e

Markov property with respect to (G, ). O g gure 1: Example selec-

tion diagrams (a,b) and their
respective augmented graphs
(c,d).

Due to space constraints, all the proofs are provided in the Appendix.
Consider a few examples stemming from Figure 1.

Example 3 (Markov vs S-Markov property). Let G g be the selection

diagram in Figure 1(b). For an arbitrary set of interventions set ¥!! and domains IT, we have that
(X L Z|Y) implies that P}(Z|Y, X) = Pj(Z|Y) for all IT" € TI and distributions. Thus, the
S-Markov property includes the Markov property invariance. However, the Markov property does not
capture other invariances that are presented in Def. 2.2.



Example 4 (V-Markov vs S-Markov property). Let Gg be the selection diagram in Figure 1(b).
Let T = ({31 {32, {X}},{Y}!) and K = [1,1,0,0] for a corresponding P™. The S-Markov
property states that there is an invariance Pl (z|y) = P (z|y) = Ps (z|y). The I-Markov states the
equivalence between P (z|y) = P} (z|y) and the ¥-Markov property P (z|y) = P} (z|y). The
S-Markov property captures each of these invariances. O

2.3 Multi-domain observational data

S-nodes introduced through the lens of selection diagrams are augmentations of the causal graph to
represent different domains and changes in distributions that may occur [7, 15, 54, 57]. As part of
this augmented graph, S-nodes are graphically similar to F-nodes, which have been successfully used
to represent interventions [0, 7, 54]. F-nodes are utility nodes that are a parent to each element of the
symmetric difference of interventions. They are used to represent invariances between interventional
distributions. The significance of these F-nodes will be emphasized in Definition 2.3 and Proposition
1. S-nodes are useful to distinguish, since many causal inference tasks such as transportability rely
on knowing the S-node structure [15, 53]. Before developing the full learning algorithm for ECs of
selection diagrams, we first study the setting where there is only observational data across different
domains. We demonstrate that the S-nodes can be viewed as exactly F-nodes constructed from
interventions with unknown targets.

Theorem 1 (Equivalence of ¥ and S Markov property given multi-domain observational distributions).
Let G be a shared causal diagram among N domains, IT. Let Gg = (VUL U S, E U Eg) be the
corresponding selection diagram. Let ¥ = ({}! ... {}") and K = [1,1,...,1], such that for
each of the N domains, there is only observational data. Let P be an arbitrary set of distributions
generated by the corresponding interventions. P! satisfies the ¥-Markov property with respect to
(G, Vg), if and only if it satisfies the S-Markov property with respect to (G, ¥l Vg). O

Example 5. Let G be the selection diagram in Figure 1(b), among two domain IT = {II*, TI?}. Let
S™ = {512} and ¥ and K be defined with just observational distributions from domains 1 and 2.
Consider an arbitrary P that satisfies the W-Markov property with respect to (G, Vg). This implies
the distribution of Z is the same between domains 1 and 2 through the invariance P(Z) = P?(Z).
This is the only invariance that is required. Observe that is also the only invariance required by the
S-Markov property and thus P satisfies the S-Markov property with respect to (G, ¥1, Vg). O

When given observations collected from multiple domains, it is equivalent to collecting distributions
with unknown-target interventions. This coincides with other works, which treat different domains and
interventions as the same [10, 13]. In this setting, S-nodes have a correspondence to the augmented
graph’s F-nodes in [6]. However, this simplification is not warranted when we consider interventions
that occur in different domains.

2.4 Mixture of multi-domain observational and interventional data

Next, we analyze the general setting with multi-domain observational and interventional data. The
S-Markov property in Definition 2.2 may be quite challenging to evaluate in practice, since it involves
surgically altering the selection diagram. One can leverage a graphical approach that encodes the
symmetric differences of interventions as an F-node [7].

Definition 2.3 (Augmented graph). Consider the multi-domain setup 1.1. Let the multiset Z be
defined as such 7T = {K;,Ks,..K;} = {K|I},J7 € ! A (I'AJ/) U Vgi; = K}. The aug-
mented graph G g with respect to ¥!! and Vg is denoted Augy v (Gs) and constructed as follows:
Augy vs(Gs) = (VULUS U F,EUEg UE), where F = {F/"*}3+€IN] is the set of added
F-nodes and £ = {(Fljk, D) }iek, is the set of added F-node edges. Denote F,:l = F} as an F-node

representing the kth symmetric difference of intervention targets within domain i and F,ij as an
F-node from comparing targets between domain i and j. O

The F-nodes constructed consider the symmetrical difference between every possible pair of in-
terventions across different domains and also within the same domain, I*AJ?. The result is a
augmented selection diagram with the original causal structure augmented with F-nodes and their
additional edges. The F-nodes are a parent to each node in K, which is constructed by the symmetric
difference of the intervention targets and the children of the corresponding S-node (if comparing
targets in different domains). For example, Figure 1(c) shows an augmented graph with F-nodes



constructed comparing each distribution. This augmented graph is used to succinctly represent
S-Markov equivalence in a graph without graphical mutilations.

Proposition 1 (Graphical S-Markov Property). Consider the multi-domain setup 1.1.  Let
Augy vy (Gg) be the augmented graph of Gg, where e = {F} 1 is the set of added F-nodes.

Let K/ ** be the set of nodes adjacent to each F-node Ff o plus the S-node S7**. The following
equivalence relations hold for disjoint Y, Z, W C V:

Y L Z|W,S)q, — (Y L Z|W, Fg, S)Auy\p,vs(Gs) 2)
(Y L KFw\wy) = (Y L{FP* SPRUW, Fe\FP*, Sivpi) Auge s(@s) 3

GSWf,R(W)

where W/F = W N K% R = KI"M\W7F, O

This proposition allows one to map invariances present in the model to d-separation statements on a
graph, which provides an efficient representation.

Example 6. Consider the augmented graph in Figure 1(b) with intervention ¥ = ({}1,{Z}1, {}?).
By Prop. 1, we can directly test the S-Markov properties on the graph without surgically altering
the graph. For example, (Y L Z)Gj can be tested by (Y L F!, S)Aug\p,vs(Gs) to determine if
P{l} (y) = PL(y). In addition, we can also test if across-domain distributional invariances should
hold. Since (Y L F}?}X, Z,S) Augy v (cs) does not hold, then the invariance P} (Y|X, Z) =
P{Q} (Y|X, Z) is not required. The S-node’s effect is present through the added F-node, F}2. O

Maximal ancestral graphs (MAGs) are a compact and convenient way of representing the constraints
in augmented graphs represented by d-separation [58]. We formalize the corresponding ancestral
graph for causal graphs representing multiple domains in Def. 2.4, which encode the same constraints
as the ones presented in the S-Markov property.

Definition 2.4 (S-MAG). Given the multi-domain setup 1.1, a S-MAG is the MAG constructed from
Augy v (Gg). That is MAG(Augy v (Gs)). O
Example 7. Consider the selection diagram induced by the causal diagram and S-node structure
in Figure 1(a). Let T = ({}1, {X}!,{}2). The Augy v, (Gs) is the same causal diagram with
F}! — X, F}? — X. Then the corresponding S-MAG is M AG(Augy v, (Gs)) = {X «+ F} —
V, X+ F'? 5V, X+ S5V, X 5Y}h O

Next, we characterize when two S-MAGs are S-Markov equivalent using purely graphical criterion.
Theorem 2 (S-Markov Characterization). Let there be two causal graphs G! = (VULy, E;), G2 =
(VULg, Ey) with G5 = (VUL US, E;UEg, ) and G% = (VUL,US, E;UEs, ) the corresponding
selection diagrams and the intervention targets, \Illn, \IIZH. Let C be a fixed index vector of known
intervention targets that is shared by the two causal diagrams. Assume that the symmetrical difference
sets are indexed in both sets in the same pattern such that correspondence between F-nodes and
S-nodes are the same in M; and M. Then (G', 1™ Vg ) and (G2, ¥, Vg, ) are S-Markov
equivalent if and only if for M, = M AG(Augy, vs(GY)) and My = MAG(Augw, vs(G%)):

1. M, and M5 have the same skeleton
2. M;j and M5 have the same unshielded colliders

3. If a path p is a discriminating path for a node Y in both M; and M5, then Y is a collider on the
path in one graph if and only if it is a collider on the path in the other. O

Thm. 2 provides a graphical criterion for comparing now two sets of causal diagrams, intervention
targets, and S-node structure to determine if they are S-Markov equivalent.

Example 8. Consider the triplets (G, @™ Vg) from Ex. 1 and (G, """, Vg) from Ex. 2. In
M; = MAG(Augy vs(G)), the F-node F} from intervening on X will be adjacent to both X and Y
due to the inducing path. However, in My = M AG(Augy v, (G)), the F-node F,; from intervening
on Y will be adjacent to only Y. Therefore, M7 and M5 have differing skeletons and thus are not
S-Markov equivalent. O

As a result of this characterization, we can now turn our attention to learning the actual graphical
structure.



Algorithm 1 S-FCI: Algorithm for Learning a S-PAG - SepSet the separating sets, S is the S-node
set, F!I the F-node set, H maps each pair of known-targets symmetric diffs., and o maps each pair of
distributions to a pair of domains.

Input: Tuple of distributions P = (P}, ..., PN}, vector of known intervention targets K and W'I.
Output: S-PAG, P
SSF+—¢p,k+ 0,0 : N->NxNH<+ ¢
(S, F,H,0) < CreateAugmentedNodes(¥'!, V) (see Alg. D.2)
Phase I: Learn skeleton
for all pairs X, Y € VUF US do
SepSet(X,Y), SepFlag + GeneralizedDoConstraints(X, Y, F, S, o, ¥ I, V) (see Alg.
D.4)
if SepFlag = True then
Remove edge between X and Y
Phase IIa: Orient unshielded colliders
For every unshielded triple (X, Y, Z) in P orient it as a collider iff Z ¢ SepSet(X,Y)
Phase IIb: Apply logical orientation rules
R1-7: Apply 7 FCI rules from [39] and following two rules until none apply.
Rule 8’: For F}’ € F™ and for S%J € S, orient adjacent edges out of F;7 and S,
Rule 9’: For F,” € F! with X € H,”, that is adjacent to anode Y & H,”,if |H,’| = 1, then
orient X — Y.

3 Causal Discovery From Multiple Domains

We investigate in this section how to learn a EC from a mixture of observational and interventional
data generated from multiple domains (G, ¥, Vg). The graphical characterization of the S — M AG
object and the equivalent graphical characterization in Thm. 2 motivates us to define the S — PAG.

Definition 3.1 (S-PAG). Consider the multi-domain setup 1.1. Let M = M AG(Augy v, (G)) and

let [M] be the set of S-MAGs corresponding to all the triplets (G, ®'" V'g) that are S-Markov
equivalent to (G, !, Vg). The S-PAG for (G, ¥!! V), denoted P is a graph such that:

1. P has the same adjacencies as M and any member of [M] does and

2. every non-circle mark (tail or arrowhead) in P is an invariant mark in [M] (i.e. present in all
S-MAGsS). O

The S-PAG is a valid PAG by
construction, and it generalizes
PAG and ¥-PAGs in the single-
domain setting [6, 42]. The F-
nodes are not so much "random
variables" as they are graphi-
cal models that represent differ-
ent domains and interventional ~Figure 2: Example of S-FCI applied with ¥ = ({}!, {X}!, {}?)
distributions in this equivalence and K = [1, 1, 1]. The S-node representing domain-shift between
class. Next, we introduce a gen- domains 1 and 2 is the black square in (a).

eralization of c-faithfulness [6]

that enables causal discovery from multi-domain data.

(c) After Orienting
Unshielded Colliders

(a) Gy (b) Skeleton (d) Final S-PAG

Definition 3.2 (S-faithfulness). Consider a causal diagram G and its corresponding selection diagram
G s over N domains. A tuple of distributions (P1)reqgn € SH(G) is called s-faithful to G if the
converse of each of the S-Markov conditions (Definition 2.2) holds. O]

The new algorithm, called S-FCI is shown in Alg. 1. Due to space constraints, we only include
the high-level algorithm here. The algorithm proceeds by first constructing the augmented graph
using Alg. D.2, by adding S-nodes and F-nodes to represent every pair of distributions. Then it uses
hypothesis testing to learn invariances in the skeleton (Alg. D.3) and finally applies orientation rules
(Alg. D.5). S-FCI learns the skeleton by mapping pairs of distributions in P! to F-nodes, or S-nodes
by testing for the distributional invariances discussed in Section 2.1. Def. 2.2 and Prop. 1 connect



these invariances to graphical criterion, which allow us to reconstruct the skeleton of the causal
diagram. Interventional distributions across domains are used to learn F-node structure, and whereas
observational distributions across domains are used to learn S-node structure. Besides the standard
FCI rules that apply in the absence of selection bias, the algorithm also applies the following rules
R8’-9’.

Rule 8’ (Augmented Node Edges) - We orient edges out of F-nodes.
Rule 9’ (Identifiable Inducing Paths) - If Fw € Fisadjacenttoa ¢ Hj -7 known-target node

and we know that the intervention target is node X, one can orient X — Y because the F,i’] —Yis
only present due to an inducing path between X and Y.

In Figure 2, the different stages of the S-FCI algorithm are shown. Next we prove the proposed S-FCI
algorithm is sound.

Theorem 3 (S-FCI Soundness). Given K, let P! be generated by some unknown triplet (G, ¥, Vg)
from domains IT with a corresponding selection diagram G g and is s-faithful to the selection diagram
G's. S-FCI algorithm is sound (i.e. every adjacency and orientation in Pg_gcy, the S-PAG learned by
S-FCI, is common for M AG(Augy v, (G))). O

Next, we illustrate some subtleties between the S-FCI

and related algorithms that say pool observational ¢

and interventional distributions, ignoring the domain F
change. The example is motivated from biomedi- T

cal sciences, where interventions are commonly per- ®_,® @

formed in different domains and the goal is to lever-

age all datasets for learning. A group of scientists

are trying to determine the causal structure of a set of Figure 3: Causal diagrams related to exam-
proteins, but leverage data across the lab and hospital ~ples 9 - selection diagram with an intervention
setting. Different experiments are run in each setting at Y, and S-node pointing to X (a), the graph
and combined into a single dataset [29]. We provide after applying unsound rule from Z-FCI (b)
additional examples and commentary on the S-FCI  and the S-PAG learned by S-FCI (c).
subtleties in the Appendix.

1,2 Fl

Example 9. Let G5 be a selection diagram as shown in Figure 3(a). Let IT = (IT!, I12) be the
set of domains representing the lab (IT') and the hospital (IT?). These are a tuple of distributions
P = (P}, P?) with intervention targets ¥!I = ({}1,{Y}',{}?) and £ = [1,1,1], where X
represents some protein in the dataset.

In this example, let G g be the true selection diagram as shown in Figure 3(a). Given the interven-
tional and observational data, we may be tempted to use the Z-FCI algorithm and simply pool the
observational data, while ignoring the domain differences [7], but this would learn the graph in Figure
3(b) with an incorrect orientation (shown as the red edge). This I-PAG only contains one F-node
because there is only two distributions: i) the pooled observational data and ii) the data resulting from
intervention on Y. Applying R9 of the Z-FCI algorithm incorrectly orients the edge X < Y. Thus,
R9 of the Z-FCI algorithm is not sound when the domains are ignored [7, 44].

Figure 3(c) contains what S-FCI would recover. Intuitively, one should learn (c) instead of (b) because
even though there is a change in distribution among X and Y, one cannot ascertain whether there is
an inducing path from Fy1 to X, or a change in distribution due to the domain. O

4 Conclusions

In this paper, we introduced a generalized Markov property called S-Markov, which defines a new
equivalence class (EC), the S-PAG, representing the constraints found across observational and
experimental distributions collected from multiple domains. Building on this new characterization,
we develop a causal discovery algorithm called S-FCI, which subsumes FCI, Z-FCI and W-FCI, and
accepts as input a mixture of observational and interventional data from multiple domains. Future
interesting work would involve relaxing the assumptions made in this paper, and leveraging the
characterization of the EC for downstream causal ID and estimation tasks.
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D.1 Proofs

Here, we provide the detailed proofs of theoretical results in the main paper. First, we review some
fundamental definitions and results that guide the main results

D.1.1 Background results

In this section, we centralize theoretical results in relation to the theory presented in this paper.

Definition 4.1 ("Global" Markov property of DAGs [59]). Consider a joint probability distribution,
P over a set of variables V satisfies the Markov property with respect to a graph G = (V U L, E) if
the following holds for, (X, Y, Z) disjoint subsets of V:

P(ylz,z) = P(y|z) ifY L X|ZinG (thatis Y is d-separated from X given Z)
O
The global Markov property maps graphical structure in causal directed acyclic graphs (DAGs) to
conditional independence (CI) statements in the relevant probability distributions from data.
Definition 4.2 (Maximal Ancestral Graphs (MAGs) [60]). A mixed-edge graph is a maximal ancestral
graph (MAG) if:
1. there is no directed cycles

2. there are no almost directed cycles (ancestrality) and

3. there is no primitive inducing path between any two non-adjacent vertices (maximal)
O

Many DAGs may encode the same CI statements, and a MAG encodes an equivalence class of these
CI statements that has desirable properties such as maximality and ancestrality. To compare different
MAGs, one can leverage Definition 4.3.

Definition 4.3 (General Markov Equivalence from [61]). Two MAGs G; = (V, E1), Go = (V, E3)
are Markov equivalent if for any three disjoint sets of vertices, X, Y, Z, X and Y are m-separated by
Zin G if and only if X and Y are m-separated by Z in Gb. O

Checking Definition 4.3 is quite tedious because it involves explicitly comparing every single
m-separation statement possible in both graphs. An equivalent completely graphical criterion in
Proposition 2 can be instead used.

Proposition 2 (Graphical Criterion for Markov Equivalence from [61]). Two MAGs over the same
set of vertices are Markov equivalent if and only if

1. They have the same adjacencies
2. They have the same unshielded colliders

3. If a path p is a discriminating path for a vertex Y in both graphs, then Y is a collider on the
path in one graph if and only if it is a collider on the path in the other.

O

Unfortunately, a MAG is not uniquely identifiable (i.e. learnable) from observational data in general.
Therefore, a partial ancestral graph (PAG) is defined as the object of interest instead.

Definition 4.4 (Partial Ancestral Graph [60]). Let [M] be the MEC of an arbitrary MAG M. The
PAG for [M], P[5y is a partial mixed graph such that:

1. Par) has the same adjacencies as M (and any member of [M]) does
2. A mark of arrowhead is in P|, if and only if it is shared by all MAGs in [M]
3. A mark of tail is in P[5y if and only if it is shared by all MAGs in [M].
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O

We note that do-calculus is complete for learning PAGs [39]. As noted in [6], the FCI algorithm
really only leverages the inversion of R1 within a single domain. If we have access to interventional
distributions, the inversion of R2 and R3 enable one to further characterize and learn a more detailed
EC [6].

A final lemma due to [62] is useful for proving properties about distributions that satisfy certain graph
constraints, but not others. Meek uses the following result to show that set of unfaithful distributions
has Lebesgue measure zero.

Lemma 2 (Meek [62]). Let D = (V, E) be a causal DAG where (A £ B|C)p. Let Dy = (V, Es)
be the subgraph that contains all the nodes in the m-connecting path that induces (A [ B|C)p.
Then any distribution p over V; where every adjacent pair of variables are dependent satisfies
(A L B|C)p. O

As mentioned in 2, compared to a traditional selection diagram, we construct a selection diagram
across a set of domains slightly differently. It is a "joint" selection diagram that represents jointly a
set of domains and their corresponding S-nodes.

Definition 4.5 (Joint selection diagram). Given a set of domains IT = {I1', ..., 1IN} with shared
causal structure. For each possible pair of domains, (II*,II7) there is a selection diagram the
contains S-nodes S*7 that cause changes in the underlying mechanisms. A joint selection diagram is
G = (VULUS,EUEg), where S = Ui je(ny,izg S and Es = |J; ; Esu is the union of all
S-nodes and their edges from each pair of domain’s selection diagram. O

D.1.2 Multi-Domain Causal Bayesian Network Invariances

[63] developed an extension of Pearl’s do-calculus rules to soft interventions in SCMs. In [64], it
was shown that for the general problem of transportability, the generalized do-calculus rules are
complete. In this section, we take the do-calculus rules and extend them to invariances present
in a Causal Bayesian Network (CBN) that can apply across two arbitrary interventions and two
arbitrary domains. This is essential for motivating the S-Markov property characterization and the
corresponding equivalence class. This result leads to the Definition 2.2 presented in Section 2.

Lemma 3 (Generalized CBN Invariances Across Domains). Let G be a causal diagram and Gg =
(VULUS, E U Eg) be the corresponding causal selection diagram with latents and S-nodes defined
between two domains IT = {II!, IT*} of a CBN. Let P! be a tuple of interventional distributions
generated by G. Let Vg be the set of nodes that have an edge with respect to S. Then the following
distributional invariances hold for disjoint Y,Z, W C 'V

(a) For P} € P, we have P{(y|w, z) = P{(ylw)if Y L Z|W in G.
(b) For P{, P € P, we have P{(ylw) = Pj(ylw) if Y L K[W\Wx in Gy, 5y
K= (IAJ)uU ng7 Wk = WNK,R =K\Wg and R(W) C R are non-ancestors of W in G.

where

Proof. Whenever ¢ = j, for domain indicators i, j, then there is no S-node by definition, since the
S-node is added to select between different domains i and j. Therefore in constraint (a), because of the
shared causal structure assumption 2, P{(V) can just be written as P1(V) and factorized according
to the following equation:

Px(v) =Y [I Prlilpa) T P(t;lpay)

L i|X;eX §IT;¢X

which is also known as the truncated factorization formula [ 1], or the g-formula [65]. Then applying
d-separation criterion, constraint (a) follows [66].

Constraint (b) is proven in [67] Thm 4, when i = j. So we prove the case when ¢ # j. To prove
this, we take a similar strategy to the proof of the do-calculus rules [1]. We construct a hypothetical
CBN that models the selection of a domain on each variable with an endogenous root node/variable
along with the intervention on each variable. We assume the change in domain is not caused by any
variable in G. Moreover, we assume that soft interventions are triggered by exogenous variables and
not affected by any variable in G.
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Let I, J7 denote set of nodes in I and J that occur in domains i and j respectively. We can augment
G with 9 = {F;7|V; € I' UJ’} and edges £47 = {F}) — Vi |F}, € F}.
G's has an S-node S*7, representing the selection between domain i and j. The edges from S/ are

in Eg and their direct children are Vg;: ;. Thus, we constraint b) holds by definition of the selection
diagram, if we can remove the effect of the S-node, S*7.

The constructed augmented causal graph is G’. Let Pa; denote the parents of variable V; € V that
excludes nodes in S. Let Pa), denote the parents of variables V; € V that can include nodes in S. For
each variable V}, with F}”/, there are a new set of parents Pa; = Paj; U {F;”}. The distribution

of P(V;|Pal) is given as follows where P!(V;|Pa;) is a unique conditional probability for each
identifier . We have:

P(Vi|Pa}), ifF7 =

y 4
P'(Vi|Pal), ifF7 =1 @

P(Vi|Pay) = {

Furthermore, we can decompose each of those conditional probabilities into ones that are a function
of just the Pay.

P(Vi|Pa},) = P(Vi|Pay), ifS™ =V, & Eg 3)

and

PY(Vi|Pa}) = P'(Vi|Pay), if 8™ — Vi & Eg (6)

Thus, each F,zj has an arbitrary prior distribution over its domain, which induces a new distribution
P" over VUL US U F and P” factorizes according to G*. Then P}; (V) relates to P” as follows

where we condition on every F,zj € F such that 1) F,ij =0if Vi ¢ I' and 2) F,ij =1ifVl el

P(V)=> P'(VULUS|F’ =1,...)
L

We can similarly decompose P’ and relate it to P following the same logic for the S-node. In
this sense, we see that the S-nodes and the F-nodes play a similar graphical role in selecting the
distribution that applies based on the selection of the S-nodes and F-nodes.

We can repeat the logic for Py(V). Now, let Fy = {F}7|V}, € TAJ}. If ({Fk'’, 5"} L
Y |W)gr, then changing the conditioning values of Fx and S%7 is irrelevant to Y and we get

Pi(ylw) = P} (y|w). Thus we have successfully factorized the two distributions to show they are
equivalent when the corresponding graphical criterion holds. O

The result implies that d-separation from S-nodes and their corresponding direct children represent
invariances in the conditional probability distributions of observational data assuming the Markov
property. Since all S-nodes are source nodes, then to be d-separated from Vg is equivalent to
d-separation from the S-nodes S.

D.1.3 S-Markov Property Results

In this section, we prove some of the results in the main paper from Section 2. The first result proves
the statement in Lemma 1.

D.1.3.1 Proof of Main Text Lemma 1 [S-Markov property generalizes the V-Markov property]

Lemma (S-Markov property generalizes the ¥-Markov property). Let IT = {II'} and G = (V U
L, E). Say W' and P! be an arbitrary set of interventions and distributions with X = []. Given
K, P satisfies the S-Markov property with respect to (G, ¥, Vg), then P also satisfies the
W-Markov property with respect to (G, ¥'1).
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Proof. By assumption, we have only distributions with unknown intervention targets. Given C, P!
satisfies the S-Markov property, so we will show that it also simultaneously satisfies the W-Markov
property. Moreover, since there is only one domain Vg = ¢, the empty set.

ForT ¢ ¥ P/(ylw,2) = P/(ylw) ifY L Z|W inD

is satisfied by the first condition of the S-Markov property in Def. 2.2.

ForI;,1; € ¥:  Py(ylw,z) = Pj(ylw) ifY L ZIW\Wk in Gy, gz
is satisfied by the second condition of the S-Markov property. There is only a single domain, so there
is by definition no S-node, and thus the condition reduces to the ¥-Markov property condition two.
Therefore, P! satisfies the W-Markov property with respect to (G, ¥'1). O

Lemma 1 demonstrates that the S-Markov property generalizes the W-Markov property. Since the
W-Markov property itself has been shown to generalize the I-Markov and Global Markov property,
we have the following corollaries.

Corollary 1 (S-Markov property generalizes the I-Markov property). Let IT = {II'}, G = (VU
L, E), U be an arbitrary set of inteventions and P! an arbitrary set of distributions induced by Z'L.
Let /C be a vector of 1’s, such that all distributions have a known intervention target. If P satisfies
the S-Markov property with respect to (G, ¥, V), then it also satisfies the I-Markov property with
respect to G. O

Corollary 2 (S-Markov property generalizes the Markov property). Let IT = {II'}, G = (VUL, E),
P = ({}1) and P an arbitrary set of distributions. If P! satisfies the S-Markov property with
respect to (G, W', Vg), then it also satisfies the Markov property with respect to G. O

We defined a joint selection diagram in Definition 4.5. Here, we show that there is no information
loss when we construct the joint selection diagram, which is easier to analyze. The joint selection
diagram (as defined in Definition 4.5) is a valid representation of a collection of selection diagrams
stemming from different domains. Thus we refer to joint selection diagrams as selection diagrams in
the main paper.

Lemma 4 (Joint selection diagrams are valid representations). A joint selection diagram preserves
transportability phenomena. That is, if a causal effect is transportable in the non-joint selection
diagram if and only if it is transportable in the joint selection diagram.

Proof. Since S-nodes are defined as pointing out of S-nodes by construction, then in the joint selection
diagram they can act as "confounders" when viewed graphically. Define A as the node that an S-node
points to originally. An S-node by definition only has additional edges if there is an inducing path
between the A and another node B. If such a path exists, then there is an unblockable subpath from
A to B and conditioning on the S-node would not change the m-separation statements. O

In Definition 2.2, we define the Markov property for a (joint) selection diagram. The S-Markov
property generalizes the Markov property and extends the conditions of d-separation (condition i) and
distributional invariances (condition ii) to selection diagrams. Condition ii is no longer a conditional
independence statement, but rather a different type of invariance [68]. Note that compared to the
W-Markov property, there are some subtle differences. Namely, there is always the question of
whether or not nodes are d-separated with respect an S-node. D-separation with respect to an S-node
representing a pair of domains allows one to map invariances across those two domains.

To prove Thm. 1, we first prove a few useful lemmas. The first lemma relates m-separation statements
with a conditioning set of S-nodes to other m-separation statements that contain "more" S-nodes.

Lemma 5 (M-separation statements can arbitrarily add S-node singletons). Let G be the joint
selection diagram with respect to a causal Bayesian network with latents, G = (V U S, E'sup Ejs).
Consider m-separation statement with respect to G with X L Y|Z,S; where X, Y C V U S and
ZCV —{X,Y}and S; C S —{X,Y} (thatis S; is a set of S-nodes).

Forany S; € S — (SU{X,Y}), the following statements are equivalent:
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l. X LY|Z S inG
2. X 1LY|Z,5U{S;}inGand(S; LY|Z,S;0rS; L X|Z,5S;)

Proof. The first statement states that X and Y are d-separated given Z and the ith set of S-nodes in
the joint selection diagram.

The second statement states that if we augment the m-separation statement with a conditioning set of
the jth S-node, then either the jth S-node is m-separated from Y given Z and .S; or the jth S-node is
m-separated from X given Z and S;.

We show the equivalence of the m-separation statements by analyzing the paths that are m-connecting.

We are given that X,Y # S; and S; ¢ S;. Suppose that there is a m-connecting path between X
and Y given Z and S; (the converse of the first statement in the lemma). Either it passes through S;
S-node or it does not.

If it does not pass through .S}, then since all S; are oriented out of S;, then X Y Y'|Z,S; U{S,}in
G.

If it does pass through Sj, then there are two m-connecting paths that lead from X to .S; given Z and
S; and from S to Y given Z and S;.

If there are no m-connecting paths between X and Y given Z and S;, then all the paths have to be
m-separating. O

Next, we show that when there is a difference in m-separation statements between two selection
diagrams, these can be mapped to m-separation statements from U, O, or T, sets that are defined as
follows:

We define the following sets of m-separation statements:

U={(X1Y|Z,S¢ : X,)YeVUS,ZCV—-{X,Y}, SCS-{X,Y}
O={(X_1LY|Z,S)¢ : X, YeVUS,ZCV-{X,Y}, S=S-{X,Y}
T={(XL1LY|Z,S)¢ : XeV,YeVUS,ZCV-{X,Y}, S=S—-{X,Y}
Intuitively, U, O and T are m-separation statement sets that contain all possible sets of m-separation

statements inside a MAG.

Lemma 6 (Arbitrary differences in m-separation statements induce a difference in U, O, or T). Let
G1=(VUS,EiUEg}and Gy = (VUS, E; U Eg} be selection diagrams over the same sets of
variables V. Suppose X, Y, Z are disjoint subsets of V' U S.

X LY|Zin Gy, X L Y|Zin Go, then at least one of the following is true:

i) there exists X,Y,Z C Vsuchthat X 1 Y|Z,SinGyand X L Y|Z,S

ii) There exists A, B C V and S; € S such that (S; L A|B,S\S;) in G; and (S; L A|B,S\S;) in
Go

In other words: Any difference in m-separation statement from the set of statements U U O U T
between (G; and G5 can be stated as just a difference between m-separation statements in T between

G1 and GQ.

Proof. Given m-separation statement in U, we can write these as m-separation statements in O. This
is done by repeatedly applying Lemma 5 to m-separation statements in U until all m-separation
statements lie in O.

Now, we prove that all m-separation statements in O that are not in T can be mapped to T. First, note
that T is a subset of O, since there is the additional constraint that X € V/, rather than X € V U S.

Define W = T\O = {(X L Y|Z,S)¢ : X €8S, Y € S,Z CV —{X,Y} as the set of m-
separation statements that are in O, but not in T. These are m-separation statements then between

S-nodes of the selection diagram. We consider any m-separation statement where .S; 1. S;|Z, S —
{Si, SJ} in G, but .S; ,J/_ Sj|Z, S — {Su Sj} in Gs.
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S-nodes are by Definition 4.9 pointing out, there must be at least one collider along paths between
S;,S;. First we consider a path that is active in Go, but not in Gy. If S; L S;|Z,S — {S;, S}
in Gy, but S; L S;|Z,S — {S;,S;} in G, for some Z C V, then this can only happen if in
G, there exists a node in Z that is a descendent of both S; and S;. Thatis v € Z such that
v € Desc(S;) N Desc(S;), which makes the collider active in G5. In G1, we have simultaneously
that for all nodes in Z, there does not exist any descendants of both .S; and S;. Thatis Av € Z such
that v € Desc(S;) N Desc(S;). This then means that v is either not a descendant of S;, or it is not a
descendant of .S;. Suppose WLOG that v is not a descendant of S;.

Then this implies that S; L v|S — {S;} in Gy, and S; £ v|S — {S;} in Go.

Now, suppose (X L Y|Z)p, and (X f Y|Z)p,. Any m-separation statment belongs to one of the
sets O, U or T. Since G; and G5 share the same vertex set, V, then the m-separation statement would
be in the same set.

If this m-separation statement set belongs to T, then we are done.

If it belongs to O, then by our earlier result, any m-separation statement with differences imply an
m-separation statement difference in T and the result follows.

If it belongs to U, then by Lemma 5 and the above, the m-separation statement can be mapped to
m-separation statements in O. Then by the previous statement, the result follows.

This proves the lemma. O

D.1.4 Results from Section 2.3 on observational multi-environment Markov equivalence

In the following results leading up to Theorem 1, we assume that we only have access to observational
data across multiple domains. In this setting, the S-Markov property and the relevant graphical
S-Markov equivalence properties are much simpler. We show that there is a mapping at this point
between the S-Markov property and the W-Markov property [6]. We are ready to prove an equivalent
graphical condition for S-Markov equivalence.

Theorem 4 (Graphical S-Markov Equivalence Among Selection Diagrams With Only Observational
Data). Let G' and G? be two causal diagrams. Let Gy, = (V U L; U S, Ey) and G% = (V U
Ly U Sy, Es) be their corresponding selection diagrams over N environments with S-nodes Sy, Sa,
IT = {II', ..., TV}, with interventions ¥ = ({}1, {}2 ..., {}"V) and associated distributions P!,
Let K = [1,1, ..., 1] be the vector of known interventions.

We say (GL,%¥,S) and (G%,P,S) are S-Markov equivalent if and only if for M; =
MAG(Augy v (G') and My = M AG(Augy v, (G?):

1. M; and M5 have the same skeleton;
2. M, and M5 have the same unshielded colliders;

3. If a path p is a discriminating path for a node Y in both M; and M> then Y is a collider on
the path in one graph if and only if it is a collider on the path in the other.

Proof. (=>) Assuming that M AG(D;) and M AG (D) satisfy the three conditions, we will show
they are S-Markov equivalent. Then by Definition 4.3 and Proposition 2, the two MAGs have the
same m-separation statements and vice versa, thereby satisfying the S-Markov equivalence condition,
where both G} and G% impose the same constraints over the set of distributions defined in 4.3.

(<=) We prove this direction by contradiction. Suppose M AG(D;) and M AG (D) do not satisfy
the three conditions, then we want to show that the two graphs are not S-Markov equivalent.

By definition of a MAG, if the two MAGs have one of the conditions different, then there is at least
one different m-separation statement. Without loss of generality, we consider only m-separation
statements among pairs of singletons. If an m-separation statement holds between arbitrary sets of
nodes in one selection diagram, GG, but not G5, then there is at least one pair of singletons where the
m-separation statement differs between G and Gs.

Consider the sets U, O and T again of m-separation statements in Lemma 6. U, and O, are m-
separation statements between any two nodes given a strict subset of all remaining S-nodes, all
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remaining S-nodes. T is the set of m-separation statements between normal nodes and any other node
given all remaining S-nodes.

By Definition 2.2, an m-separation statement is in T if and only if it appears in the S-Markov
equivalence class of distributions for G.

By Lemma 6, we show that if the two MAGs of the selection diagram are not Markov equivalent,
then there is a m-separation statement in the definition of S-Markov equivalence that is different in
the two graphs. As a result, we are able to show that there is a tuple (G%, ¥, S) that contains tuples
of distributions P that is not S-Markov with respect to (G%, ¥, S).

Thus, graphically, the two selection diagrams over multiple domains of only observational data are
Markov-equivalent if the MAGs of their augmented diagrams fulfill certain similarity constraints.

D.1.4.1 Proof of Main Text Thm. 1 [Equivalence of U and S-Markov property given multi-
domain observational distributions] Next, we state an equivalence between the W-Markov char-
acterization in Theorem 1 of [6] and S-Markov characterization.

Theorem (Equivalence of ¥ and S-Markov property given multi-domain observational distributions).
Let G be a causal diagram and Gs = (VULUS, EUEg) the selection diagram over N domains IT =
{IT', 112, .11V }. Let S™ be set of S-nodes and Eg their set of edges. Let T = ({{}}!, ..., {{}}VV
and KL = [1,1, ..., 1], such that for each of the N domains, there is only observational data. Let P
be an arbitrary set of distributions. If P! satisfies the ¥-Markov property with respect to (G, ¥, S),
then it also satisfies the S-Markov property with respect to (G, ¥, S).

Proof. If P satisfies the W-Markov property, then for disjoint Y, Z, W C V the condition related to
d-separation of is held for each distribution in the joint selection diagram given the shared causal
structure assumption.

For the second condition relating pairs of distributions to each other in the ¥-Markov property,
we know that this is equivalent to d-separation in the augmented graph with the augmented graph
nodes added from pairs of different distributions given the Definition 2.3. In our case, each pair of
distibutions correspond to a pair of different domains, and thus the augmented F-node has a similar
meaning to the S-node.

Let Z be a S-node (that is represented by an F-node in the augmented graph) and Y L Z|W, Sin7\ (-
This then shows that if the ¥-Markov property holds, then the S-Markov property holds. Similarly if
the S-Markov property holds with respect to (G, ¥, S), then it implies the ¥-Markov property with
respect to (G, ¥). O

This proves the result stated in Thm. 1 and shows that the ¥-Markov property implies the S-Markov
property in the case where only observational data is present in multiple domains. This can be seen
conceptually that the domain change can be viewed as an intervention on the data distributions with
unknown targets (i.e. we do not know where the environment targets). In fact they are equivalent in
this setting.

Corollary 3 (An equivalence of S-Markov Equivalence and W-Markov Equivalence). Let G be
a causal diagram and Gg = (VUL U S,E U Eg) the selection diagram over N domains IT =
{IT', 112, .11V }. Let S™ be set of S-nodes and Eg their set of edges. Let ¥ = ({{}}!, ..., {{}}V
and K = [1,1, ..., 1], such that for each of the N domains, there is only observational data. Let P
be an arbitrary set of distributions. P! satisfies the W-Markov property with respect to (G, ¥, S), if
and only if it satisfies the S-Markov property with respect to (G, ¥, S).

Proof. The result follows from 1 and D.1.4.1. O

This proves an interesting equivalence mapping between multi-domain observational setting and
single-domain unknown interventional setting. One can view the change in domain as an unknown
intervention that occurs via nature. However, knowing the domain change is still import information
as not only does nature induce an intervention, but there may also be various interventional datasets
collected explicitly in the domain. Thus one would know that these interventions in this domain are
different from similar interventions in another domain. Note there are a few subtle differences that
one should be aware of.
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1. In the case of ¥-Markov equivalence, one works with an augmented graph with the symmet-
ric difference between all pairs of different intervention target sets. The sets of variables
from the symmetric difference of intervention targets form the "F-nodes" of the augmented
graph, which can then be viewed analagously to S-nodes. In S-Markov equivalence, one has
S-nodes on all variables that have differences between the source and target domains. These
S-nodes represent possible distribution differences between pairs of domains regardless of
whether or not the distributions are observational or interventional. Thus S-nodes can be
seen as "nature’s intervention" that is always present.

2. S-nodes represent a difference in distribution between the source and target domain at the
nodes it points to. An F-node represents a difference between a pair of distributions due to a
symmetric difference in intervention target. These are important subtleties, which allow the
user to utilize such qualitative information in downstream transportability ID tasks [17]. The
extra information that comes from the knowledge that each observational distribution comes
from a different environment manifests purely in the interpretation of the nodes. However,
transportability ID in an EC is still an open problem, and thus it is unclear how to leverage
the results of the learning algorithm.

Based on this equivalence of S-Markov and W-Markov property for multi-domain observational data,
the Algorithm S-FCI introduced in this paper is sound and complete. That is every adjacency and
orientation is common for all M AG(G’) where G’ is a selection diagram S-Markov equivalent to
G. Moreover the recovered graph is the most informative it can be (i.e. discovers as many tails and
arrowheads that can be oriented within a S-Markov equivalence class).

Corollary 4 (Modified W-FCI algorithm to learn an S-PAG). Define the modified W-FCI algorithm
with two modifications: i) represent S as the set of intervention targets and ii) take the graph learned
and remove all S-nodes that represent a pairing between distributions from two target domains. The
modified U-FCI algorithm is complete for learning an S-PAG given only observational data.

Proof. If we run W-FCI, with the S-nodes represented as our intervention targets, then we will learn
a supergraph of the graph of interest. The supergraph will contain extra F-nodes due to symmetric
differences among the combinations of source domains. By removing those, we have a ¥-PAG with
only F-nodes representing the source and target domain, which is the S-PAG. O

D.1.5 Results from Section 2.4 obs. + interv. data in multiple domains

In this section, we prove results related to causal discovery in the setting of multiple domains with
observational and interventional data. First, we show some equivalence relations when going from
the non-augmented graph to the augmented graph.

Proposition 3 (augmented graph Equivalence Relations). Let G = (VUL US, E U Eg) be a joint
selection diagram, with latent variables L and its augmented graph Auge s(G) = (VUL US U
F,EUEg U &) with respect to the intervention set across all N domains IT, where F = {FZJ f ee[[,i\]’ }.
Let A;; be the set of nodes adjacent to F for all i € [k] and all j € [N]. And denote B; as the set of
nodes adjacent to S»J € S. We have the following equivalence relations:

For disjoint Y, Z, W C V, we have:

(Y 1 Z|W)G <— (Y 1 Z|VV, F[k],[N])Augq,,s(G) (7)

For each A;; suppose Y, W C V\G,;, we have:
NIL
(Y L AgIW)a, <= (V L FyW, Ay, F) auge 5 (G) ®)

A (W)

Foreach A;j,letY, W C V,and let W;; = W N A;;, R = A;;\W,;, then:

YV LA WA\Wij)a,, <= (Y L Fi[W, Aij, Firg oy (80 (1)) Auga s (G) (10)
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Foreach S; € S,letY,W C V, then

(Y L 8%

W)e = (V L By|[Ww, SNIXINT) 40 o (@) (11)

Proof. Conditioning on a source node is equivalent to removing it from the graph in terms of the
graph separation statements. Hence, conditioning on Flz)\;s,(v]\ {5} in the right-hand side eliminates
them. Therefore, equations 7, 8, 9 and 11 follow from [[69], Proof of Th. 4.1] by Pearl.

Note that S; L F;; for all i € [k],j € [N] because S-nodes and F-nodes in this setting are source
nodes and thus will always have a collider due to the multi-domain intervention assumption.

The rest of the proof is exactly as it is in [Proposition 3 of [7]]. O

The proof for Prop. 1 follows.

D.1.5.1 Proof of Main Text Proposition 1 [Graphical S-Markov Property]

Proposition 4 (Graphical S-Markov Property). Consider the multi-domain setup 1.1. Let
M = MAG(Augy v,(G)) and let [M] be the set of S-MAGs corresponding to all the triplets
(G', @' V) that are S-Markov equivalent to (G, ®™, V). The S-PAG for (G, ¥™, Vg), denoted
‘P is a graph such that:

Y LZW)gs <= (Y L Z|W.Fe,S) augy v (G) (12)

(Y L {s7F KIHWA\W/ P, =

wik ROw)

(V LA{SP, MY W, S\SH, Fe\F™) pugy vy (13)
where W/ = W nK!* R = K \W/*,
Proof. The proof follows from Proposition 3. O

We see that graphical equivalence is nicely modular using the augmented graph framework, where
we add nodes indicating change in distributions due to domain, or interventions. Similarly, since
the augmented graph is still a DAG and the MAG of the augmented graph is a MAG, and the
corresponding PAG of the augmented graph is a PAG, we can leverage existing theory that analyzes
properties of those graphs. Next, we prove Thm. 2 showing a graphical criterion for determining the
S-Markov equivalence among two graphs.

D.1.5.2 Proof of Main Text Thm. 2 [S-Markov Characterization]

Theorem (S-Markov Characterization). Let there be two causal graphs G! = (V ULy, E;), G2 =
(V U Ly, Es) with G§ and G?% the selection diagrams and a corresponding set of intervention

targets, 'Illn, ‘Ilgn, a corresponding set of S-nodes set Sln, Sgn and a fixed index vector of
known intervention targets K. Assume that the symmetrical difference sets are indexed in both sets
in the same pattern such that correspondence between F-nodes and S-nodes are the same in M;
and M. Then (G}g, v, Slr[} and <G?9, P, S2H> are S-Markov equivalent if and only if for
M; = MAG(Augg, s, (G') and My = M AG(Augg, s,(G?):

1. M; and M5 have the same skeleton
2. M, and M5 have the same unshielded colliders

3. If a path p is a discriminating path for a node Y in both M; and M5, then Y i s a collider on the
path in one graph if and only if it is a collider on the path in the other.

Proof. We proved a similar version earlier in Thm. 4 for only multi-domain observational data.
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(<=) Suppose the two MAGs, M, M> satisfy the three conditions stated. Then, they induce the same
m-separation statements [01]. Therefore, by Prop. 1, G; and G5 impose the same constraints over
the distributions in the S-Markov property definition (Def. 2.2). Therefore, S{(G1) = S (G2).

(=>) Suppose by way of contradiction that the two MAGs do not satisfy the three conditions. Then at
least one different m-separation statement is present, since the MAGs encode m-separation statements.
With a different m-separation statement, we want to show they are also therefore not S-Markov
equivalent.

In Lemma 6, we demonstrated that any m-separation statement is included in the defined sets
U U O UT. Therefore, there is an m-separating path in one graph that is m-connecting in the other.
In the final step, we demonstrate that the distribution tuple of Def. 2.2 is different in Aug(G1) vs
Aug(Ga).

We do this by construction.

Suppose X, Y, Z C V suchthat (X L Y|Z,F,S)augc, and (X L Y|Z, F,S) augc,. Any tuple of
distributions (observational or interventional) across any domain obtained is faithful to the selection
diagram with latent variables will suffice to demonstrate the proof.

Suppose X = F for some i € [k] and Y € V. Therefore an F-node is m-connected to an
observed variable in Aug(G2) but not in Aug(G1). Now, consider Gpain = (Vpath, Epatn ), the
subgraph of G5 that includes all the variables that contribute to the m-connecting path of (X [
Y|Z, F,S) Aug(Gs)-

Consider now a jointly Gaussian distribution, ppatp, on Vpeep that is faithful to Gpeen. Thm. 7 of
[62] shows that this is possible.

We proceed now by considering two interventions I, J on the graph where IAJ = A;, where
the distributions py, p; from the same domain are responsible for the graphical separation of F’ f .
Different from the rest of the paper, for this proof we will treat sz as a regime variable that indicates
when we switch to p;y and when we switch to py. Note that we can do this since we only add
this single F node and no others in this domain j. Consider the distribution p+ defined as follows:

px ([F] =0)=pi(),p (|F] =1) = p.

We will now show that the variable Ff is dependent with Y given Z on the distribution p*. So, we
construct a SCM that induces an interventional distribution and the relevant graph in question.

Consider the following linear SCM: x = Ax + e, where A is a lower-triangular matrix that captures
the DAG structure and parent-child relationships in Gpq:p, and e € R< is an exogenous noise vector
and d is the number of observed variables in the graph. Let p; be the distribution obtained by adding
noise vector ey to the system. e is non-zero in the rows corresponding to the nodes that it perturbs.
Therefore p; is a valid soft-interventional distribution. Let e ; be the noise vector now for adding an
intervention on J.

Next, we show that every adjacent variable is dependent. The correlation of variables in Gpqzp, is
computed as:

x=Ax+tet+e; = I-A)x=e; = x=(I-A)'e;
x=Ax+tete; = I-A)x=e; = x=(I—-A) e,

withe; = e+e; and e; = e+e,. Note when e; and e are different, then the F-variable is dependent
with the variables in K := IAJ, since p(K|F = 0) # p(K|F = 1), implying (K £ F),.. We can
compute the correlation matrix between observed variables with respect to p * (.), since the binary
regime variable can be marginalizd out:

E[xxT] =051 - A) 'EleresT](I— A)™" + 05— A) " Elese T — A" (14)
=0.5A)"}(D; +D2)I-A)"Y (15)

where D, = E[eieiT] are the diagonal covariance matrices of the noise that is added due to the
interventions. Now, consider two adjacent variables x;, z; € Va4, Since x;, x; are jointly Gaussian,
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they are dependent if and only if they are correlated. Therefore, we want to show E|[x;z ;] # 0 for any
arbitrary adjacent pairs. By assumption, any pair of adjacent variables are dependent since the original
distribution is chosen to be faithful to the graph G4+ Therefore, if we randomly pick variances of
the added noise terms, with probability 1, any adjacent pairs of variables will be dependent still after
a union bound.

Therefore, in the graph G .1, plus the F-variable for interventions specifically in domain j, every

pair of adjacent variables are dependent. Then, using Meek’s Lemma 2, we have that (F} [ Y|Z),,.
Since we have not added any other F-variables in this domain as regime variables, we do not need to
condition on them. Now, we can augment this distribution to cover variables outside G pq:p. Pick all
remaining variables independent from the variables in G4+, and construct interventional distributions
by adding extra noise terms to the intervened variables. Note, even with different domains, we only
need to construct a distribution valid within that specific domain. That is, being adjacent to an F-node
not associated with the particular domain in question, is irrelevant.

We can repeat the same procedure as described for S-nodes that are now adding extra noise terms
to the nodes in which it changes the distribution due to the domain. We simply pick one of the
observational distributions as a reference and fix it. Then we arbitrarily add noise terms to each node
that has an S-node that perturbs the distribution with respect to another domain. We continue until all
domains have an associated distribution.

All that is left is to account for the case, where we are comparing interventions between different
domains. That is, we must account for simultaneously a S-node and F-node change in regime. Without
loss of generality, we can consider the case of just two domains, ¢ and j and interventions I from
domain i and J from domain j. In this case, we can definee; = e+ ey +egsandes = e+ e; + eg,
where eg is the noise vector added due to the change in domain. It is defined with non-zero values at
the rows of nodes that are affected by the S-node S%7. Since eg is constant between both e; and e,
we can simply redefine €’ = e + eg and the result still follows. Then to generalize across all possible
domains, we fix a domain and observational distribution and repeat the process until all domains have
an associated set of observational and interventional distributions.

The corresponding tuple of distributions across interventions and domains belong to S,rC[(G 1), but
not S (Gs) since m-separation should have implied invariance between the interventional and
domain-change distributions whereas we constructed the distributions such that this is not true. [

The difference between this statement and the one is Thm. 4 is simply what data is available. But the
Lemma 6 does not care what sort of data is available, but is simply a result of the graphical structure.

Given Thm. 1, we can leverage the W-FCI algorithm in the multi-domain observational data setting.

Corollary 5 (Modified W-FCI algorithm given multi-domain observational data). Let IT =
{IT!, ...,TIN} be N domains with P generated from ¥ = ({}1 {}2 ... .{}*V) consists of N
observational distributions. Define the modified ¥-FCI algorithm with the following modification:
represent S as the set of intervention targets. The resulting W-PAG learned is the same as the
S-PAG. O

Therefore, the W-FCI algorithm is applicable to the multi-domain setting when there is only observa-
tional data.

In the final theorem, we show that the S-FCI algorithm is sound, in that it learns a valid S-PAG (i.e.
PAG with additional orientations).

D.1.5.3 Proof of Main Text Thm. 3 [S-FCI Soundness]

Theorem (S-FCI Soundness). Assuming tuple P'! is generated by some unknown tuple (G, ¥, S'T)
with known intervention target /C from domains II and is s-faithful, where W is a tuple of set of
interventions with known/unknown targets, S and its corresponding edges indicate the S-nodes and
their edges and G is the causal diagram, with G g being the selection diagram. S-FCI algorithm is
sound (i.e. every adjacency and orientation in Pg_ pcr is common for M AG(Augw s(G))).

Proof Idea. In order to prove soundness that the result of S-FCI is a valid S-PAG, we will show that
the algorithm’s inferred separating sets between pairs of nodes are valid.

We determine:
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1. Are all pairs of separable nodes in the graph correctly identified? I.e. all edges in the PAG
are the result of an adjacency in the underlying DAG, or a primitive inducing path.

2. Do the augmented separating sets affect (negatively) the application of FCI rules?

3. Are the additional orientation rules sound?

The proof idea for the additional orientation rule R9’ is as follows: adjacencies in a MAG are due to
either adjacency in the true underlying selection diagram, or an inducing path between two nodes.
Determining when this inducing path is the case across multiple domains and different interventions
with known-targets allows one to then orient this inducing path. O

Proof. (1) All pairs of F-nodes and S-nodes are separable with the empty set by construction of
the augmented graph. Hence, after phase I of the S-FCI algorithm, they are non-adjacent with
SepSet(Fj, Fii) = ¢ and the same for the S-nodes.

(2) To validate that the existing FCI rules are sound, we simply need to check that the rules that rely
on separating sets are still valid given our augmented separating sets. The orientation of unshielded
colliders and discriminating paths is sound based on the same reasoning as that in [7], since S-nodes
are also in fact source nodes.

(3) Finally, we address the soundness of orientation rules. In [7] R9 of the Z-FCI algorithm is proved
sound, which we follow a similar logic.

Define A;jy, as the set of nodes that are children of the F-nodes sz ok

We consider a pair of nodes Fij’k, Y, where Fij’k S ]—'H, Y € V that are not adjacent, but Y €

Neigh(A;;), indicating that there is no separating set between F; * and Y in the augmented graph.
Since they are not adjacent by construction, then there must be an inducing path between the two
nodes relative to latent variables L. The same argument applies to separate Y from S7-*. Therefore
the MAG of the augmented diagram, M AG(Augw s(G)) contains an edge from this node to Y. [

D.1.6 Results improving efficiency of skeleton discovery phase

The skeleton discovery phase of the Z-FCI and W-FCI algorithm require testing every possible
combinations of nodes with every possible combination of conditioning sets. Constraint-based
causal discovery algorithms typically searches for invariances by testing for example conditional
independences among existing node pairs. These algorithms then typically may test all possible
nodes as part of the separating set.

In the Z-FCI [7] and W-FCI algorithms [6], the algorithms compare run through every single possible
conditioning set when comparing distributions similar to the SGS algorithm [2]. However, this is
obviously very inefficient.

This strategy while sound and works in theory, is very inefficient. Other strategies involve considering
only neighbors, such as in the PC algorithm [5]. In addition, the FCI algorithm has been extended to
be more computationally efficient, by only testing the possibly d-separating sets [42]. When dealing
with the augmented graphs, we would like to ignore the augmented nodes that are irrelevant in the
conditioning set. This is possible because we will see graphically that none of the augmented F-nodes
constructed in Def. 2.3 are part of the possibly d-separating sets between nodes.

This enables one to speed up the S-FCI algorithm during the skeleton discovery stage using the same
techniques.

Definition 4.6 (Possible-D-sep sets). Let G be a mixed-edge graph with circular endpoints, and
bidirected edges. pds(X,Y") in G is defined as follows:

X € pds(G, X,Y) if and only if there is a path 7 between X and Y in G such that every subpath
(Xi, X, Xy) of m, X, is a collider on the subpath in G, or (X;, X, X} ) is a triangle in G. O
The pds(X,Y) set is useful because pds(X,Y) D dsep(X,Y).

Lemma 7 (S-nodes are not required to be part of a d-separating sets). Let G = (V U S, EU Eg) be
a joint selection diagram. Define PDS(X,Y") as the possibly d-separating sets of X and Y as defined
in [42]. For all X, Y C V disjoint, no S-nodes are required to be part of d-sep(X, Y).
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Proof. Assume an S-node, \S; is only pointing to one node, Z € V. Then it is always an ancestor of
Z. Consider disjoint X, Y C V\{Z,S;}. For X and Y to be d-separated, all d-connected paths must
be blocked. Consider the path from X to Y through Z. If the path is a collider at Ax— Z <—B, then
the triplet (A, Z, B) is blocked as long Z, or descendants of Z are not conditioned on. If the path is
a non-collider at Z, then it is blocked as long as Z is conditioned on. In both scenarios, S; may be
added to the conditioning set without changing the blocked/unblocked status of the triplet.

Consider now S; € S that is another S-node. If that S-node is not along the path from X to Y, then it
can be conditioned on arbitrarily since it is never a descendant of a collider and therefore would not
open up a collider path.

Say S; is pointing to now multiple nodes due to inducing paths. The argument is the same now for
each node it is pointing to. If \S; is pointing to multiple nodes, the presence of an inducing path
between X and Y indicates that there is no d-separating set between X and Y, so even if S; is a
graphical "confounder"”, adding it or not would not change the d-connectedness between X and Y. [

This is useful to know as the skeleton search phase of the FCI algorithm and its variants typically rely
on defining a superset of the d-separating set between variables, such as the PD.S(X,Y") set. Based
on this lemma, we do not need to include any S-nodes ever in the conditioning set. This results in a
faster skeleton discovery stage in S-FCI, which we incorporate into our implementation.

The skeleton phase proceeds as follows:
1. Run the FCI skeleton discovery phase among the non S-node variables using neighbors to
select the conditioning sets
. Orient unshielded colliders
. Compute the pds(X,Y) for all disjoint X, Y € V
. Orient all edges into circular endpoints

. Re-run the FCI skeleton discovery phase using the pds(X,Y") to select conditioning sets

AN N AW

. Repeat the above now among S-node variables and non-S node variables

See Algorithm D.3 where we can leverage the strategy of possibly d-separating sets in the "CondSel"
function. Moreover, we can limit the PDS set further by always removing all S-nodes and F-nodes
from the PDS set.

D.2 Learning Selection Diagrams Across More Than Two Domains

The traditional selection diagram is presented with S-nodes that represent a change in mechanism
between a pair of domains [17]. When we extend this to allow more than two domains, we can add
additional S-nodes for each pair of domains. Consider Figure S1(a), where there are three S-nodes
representing domains 1, 2 and 3. The presence of an S-node edge means there is not necessarily
an invariance of X: i.e. P(X) = P7(X) is not necessarily true for i # j. However, in Figure
S1(b), removing the edge between S and X indicates that an invariance is present in the marginal
distribution, P1(X) = P?(X). However, if we also remove the edge S** — X, then this implies
the invariance P!(X) = P3(X). Then by transitivity, P?(X) = P3(X) must also be true and the
S-node edge 522 — X should also be removed in order for the graph to be valid.

This removal means that with higher number of domains, the learning of invariances across domains
due to the lack of S-node edges can be accelerated. Say we have observational data across three
domains and the selection diagram indicates that X is d-separated from all the S-nodes. Then as soon

S-FCI determines the invariance such that the corresponding F-node, F{Z}J is removed for two pairs

of domains (1,2) and (1,3), then it can immediately remove the F-node F' {2}3 since the invariance

must be true as well. To determine the invariant domains per node in the graph, one simply needs
to construct an undirected graph among the domain IDs of the removed S-node edges and compute
the connected components, which can be done in @ (V) time, where N is the number of domains.
This is a common graph algorithm that uses a disjoint set and is implemented in a variety of different
packages, such as networkx [70]. This enables one to efficiently compute the invariant domains
during the skeleton removal phase of Algorithm D.3.
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Figure S1: (a) shows a selection diagram with 3 domains with the distribution of X changing across
any pair of domains. If we remove an edge S'> — X, then this implies that for domain 1 and 2,
the distribution of X is invariant (b). However, if we also remove the edge S'® — X, then this
additionally implies for domain 1 and 3 the distribution of X is invariant (c). Without explicitly
testing the invariance, one can remove the edge S>3 — X by transitivity. The reasoning is described
in more detail in Section D.2.

This improvement due to limiting the necessary CI tests needed to be run can help improve runtime
of the S-FCI algorithm.

D.3 Comparing Markov Properties

We compare the different Markov properties in greater detail here. The Markov property maps
graphical d-separation to invariances in the decomposition of the joint probability distribution.
Definition 4.1 defines the standard Markov property, which takes a DAG’s d-separation statements
and maps them to conditional independences. Compared to the S-Markov property from Definition
2.2, the Markov property only captures invariances present in a single distribution. However, in the
complex real world, problems may be modeled with different distributions. For example, in machine
learning, a common problem is generalizing learning to out-of-distribution settings.

[7] introduced a new characterization that extends the Markov property to account for experimental
data arising from known-target interventions.

Definition 4.7 (I-Markov Property [7]). Consider the tuple of absolutely continuous probability
distributions (Py) ez over a set of variables V. A tuple (Pr) <7 satisfies the [-Markov property with
respect to a graph G = (V U L, E) if the following holds for disjoint Y,Z, W C V:

() ForI € T: Pr(y|lw, z) = Pr(ylw) if (Y L Z|W)g¢.
(2)For1,J € T: P;(y|lw) = Py(ylw)if (Y L KlW\W’“)Gm,W
Remark 1. We see that the [-Markov property fixes the intervention targets, I € 7 and then allows

the graphical structure to change fitting the Markov property with respect to a tuple of distributions
now rather than a single distribution.

Similarly, the S-Markov property allows one to fix the intervention targets in the case of known-
target interventions, but more importantly generalizes to the setting with different domains and
unknown-targets at the same time.

Experimental data can come with either known-target interventions, where the targets are explicitly
perturbed, or from unknown-target interventions, where one knows an intervention took place, but is
unsure of what nodes it possibly affects. This resulted in the W-Markov property.

Definition 4.8 (U-Markov Property [0]). Let G = (V U L, E) denote a causal graph, let P denote
an ordered tuple of distributions and let Z denote an ordered tuple of interventional targets such that
|P| = |Z|. Tuple P satisfies the ¥-Markov property with respect to the pair (G, Z) if the following
holds for disjoint Y,Z, W C V:

() For1; € Z: Pi(y|w, z) = P;(ylw) if (Y L Z|W)¢

(2)For I, 1; € T: P;(y|w) = P;(yw) if (Y L K[W\Wk)

GWK>R(W)

where K := LAL;, Wk := WNK, R := K\Wgk and R(W) C R are non-ancestors of W in G.

Compared to the S-Markov property, the W-Markov property does not allow us to characterize
invariances with known-target interventions. More importantly, the ¥-Markov property does not
characterize invariances for distributions that occur in different domains. As we show in Example 9,
4, characterizing interventions separately from domain-changes is an important distinction to make.
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D.4 Comparisons with Other Works

In this section, we explicitly discuss some subtleties compared to work that could be also seen as
learning over multiple domains. We survey a few works in the area of causal discovery that touch
upon structure learning in the presence of multiple distributions of data. We illustrate similarities and
differences via examples.

D.4.1 Single-domain interventions with known-targets: Z-FCI [7, 44]

[44] characterize a MEC under interventions with known-targets. [7] further refines the characteriza-
tion and shows an improved EC and learning algorithm, the Z-FCI algorithm. As shown in Ex. 9
and related simulation experiment in Experimental Results - Simulations, the S-FCI not only learns
additional details when possible, but also does not learn incorrect statements compared to the Z-FCI
algorithm.

Furthermore, in other works, such as [44] have made this assumption since observational data is
typically cheaper and easier to collect compared to experimental data. However, it is also plausible
that many times only experimental data is available and observational data is riddled with selection
biases. For example, in a controlled experiment in the lab, one can control biological samples, but if
collecting biological samples from an observational hospital setting, then the samples may contain
selection bias depending on what sort of patients the hospital specializes in treating (e.g. cancer
patients, or pediatric patients).

Another important connection with the work of Z-FCI is the unsoundeness of the orientation rules
in the presence of known-target interventions. In F-FCI, R9 orienting inducing paths works only if
|Sk| = 1, where Si, = IAJ is the symmetric difference between different interventions. However,
a trivial example where this is incomplete is given in Figure S2, where there is observational data
and a joint intervention on {X,Y'}. R9 of Z-FCI does not apply in this setting and thus one does
not orient the edge between Y and Z. However, we should be able to deduce that Y — Z. Although
this example is somewhat trivial, the issue extends whenever |S;| > 1 and this leaves room for
improvement in the presence of known-target interventions. Providing a complete orientation rule
such that Z-FCI and S-FCI can be complete in the presence of known-target interventions would be
interesting future work.

On the other hand, consider the example shown
in Figure S3, which shows an example, where
one might try to orient the inducing path, but

F, X,y F—‘u"
this would be incorrect. X - X/ j \ X/ l \
~ v Y Y
V4
O\OZ ~N M

D.4.2 Single-domain interventions
with unknown-targets: W-FCI [6] @ ®) ©

Figure S2: Counter-example demonstrating that
orientation rules for known-targets stemming
from Z-FCI are not complete. (a) shows the
ground-truth graph. Given ¥ = ({}!, {X,Y}1)
ing a W-MEC, the W-FCI algorithm, Given the intervention targets with &€ = [1, 1], (b) shows the
refults from Corr. 5, one ﬁﬁght suspect that graph learned using Z-FCI (or S-FCI). (c) shows
the S-FCI algoritﬁm a;n d the S-Markov charac- what we should be able to learn due to the inducing
terization is just a relabeling of the W-FCI and path between F. , and Z through Y.

W-Markov characterization.

[6] generalize the work of the Z-FCI and its
EC characterization to the setting with unknown
intervention targets and the authors propose a
constraint-based learning algorithm for learn-

Here, we construct an example demonstrating

that when considering the domain setting, one

can learn more than just naively applying the W-FCI algorithm. Moreover, this demonstrates that the
S-Markov characterization is a more refined EC characterization.

Example 10. Consider the selection diagram in Figure S4(a). The S-node pointing to Z indicates
that there is a possible change in mechanism going from domain 1 to domain 2. Let IT = {IT*, T1%},
wll = (3 {X}L {33, P = (P, P}, P?) and K = [1,0,1]. Assume we have access to an
oracle to query for d-separation.
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Figure S3: Counter-example demonstrating orientation rules for known-targets stemming from
Z-FCI are not complete. (a) shows three different causal graphs. Given ¥ = ({}!, {X, Z}1), with
K = [1, 1], we would learn the I-PAG in the column (b). The graphs in column (b) are all in the same
MEC. The inducing paths for example from Z — Y cannot be oriented in this case, otherwise the
edges would not be sound.

If one runs the W-FCI algorithm, then there is no notion of multiple domains in the ¥-Markov char-
acterization. Therefore, we would ignore the domain superscript, and combine the two observational
datasets. Running the algorithm results in the ¥-PAG in Figure S4(b). Observe that the skeleton of
the variables { X, Y, Z} is correct. However, no orientations are learned. In contrast, Figure S4(c)
shows the results of running the S-FCI algorithm. Observe that there is not only improved orientation
by learning that Y — Z, but also the augmented nodes provide additionally rich structure. For
example, the S-PAG indicates that the only S-node present in the true selection diagram is one that
points to Z. O

This example demonstrates that the characterization and S-FCI algorithm proposed in this paper
improves upon the work of [0]. Note that we demonstrate subtle differences that show we improve
upon the W-FCI algorithm. The appendix of [6] also shows similar examples that illustrate subtle

differences of the W-FCI algorithm with respect to other works, such as [13, 14, 44, 71].
True graph Y-PAG S-PAG

S 1,2 F\l F\l F\l 2 S 1,2

o v | \\0_6 LXAN]

I e A 4 Xo—oY z Xo—oY—>7
(b)

(a) ()

Figure S4: augmented graph representing an intervention and a S-node over domains 1 and 2 (a), the
resulting W-PAG one can learn using W-FCI (b), and the resulting S-PAG one can learn using S-FCI
(c).
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Figure S5: Comparison of ICP vs SFCI given ground-truth graph (a). Assume that we are
given interventions ¥ = ({}!, {X}!, {}?) and their corresponding distributions with known-targets
K =[1,0,1]. (b) is the graph learned by ICP. (c) is the S-PAG learned by S-FCL

D.4.3 Invariant Causal Prediction [13, 35]

Invariant causal prediction (ICP) can identify the causal parents of a target variable under the
assumption that the target’s causal mechanism is invariant across environments [ 13, 35]. The work
in [13] treats interventions and different regimes (i.e. domains) as similar concepts, whereas in this
work, as explicitly noted by the S-Markov property, they are in fact quite different in subtle ways.

The work proposes for a target variable Y, to identify subsets S such that P;(Y'|.S) are invariant across
all distributions P, (.) for all "environments" i. Interestingly, the paper provides sufficient conditions
for the ICP framework to uniquely identify the true causal parents of Y. However, this requires the
assumption of linear SCMs, the absence of latent confounders, and certain constraints on the set of
interventions. It is interesting future work to explore the ideas introduced in this paper in the context
of functional assumptions on the causal structure. However, we contrast our approach mainly with
the idea of leveraging invariances across distributions.

Mainly, the authors in [13] suggest looking for invariances that hold across a/l domains, whereas
we look for invariances across pairs of domains. Moreover, we also leverage different pairs of
distributions to learn different information. For example, comparing interventions across domains
allows one to learn invariances with respect to both the domain change and the intervention set.
However, comparing interventions within a domain allows one to learn invariances with respect to the
intervention set, with the implicit assumption that there are no other changes induced by a changing
environment.

As an example, consider the graph and setting shown in Figure S5(a). We have known-target
interventions ¥ = ({}1, {}?,{X}!), £ = [1,1,1] and their associated distributions P. When
applying ICP, one would recursively say discover parents and say we start with Z. Across all
distributions, one would see that P(z|y) is invariant, and thus Y — Z. However, say one moves to
the node Y next. There is no invariance for P(Y|.S) across all distributions, since for example the
domain-shift from domain 1 to 2 through the S-node, S':? affects Y. Thus, ICP may learn the graph
in Figure S5(b). On the other hand, Figure S5(c) show the result of applying S-FCI and even the
S-node structure is recovered.

D.4.4 Causal Discovery with Joint Causal Inference [14]

The work in [14] proposed "Joint Causal Inference" (JCI) as a framework that pools multiple
datasets/distributions with unknown interventional targets and then employs a standard causal dis-
covery algorithm to learn the causal graph, such as FCI. Namely, FCI-JCI is an adaptation of the
FCI algorithm that learns causal graphs over the pooled datasets, combining different observational
and interventional datasets. In [6] Appendix Section D.2, it is shown that W-FCI explicitly can learn
more than the JCI procedure. Moreover, [6] Appendix Section D.2 Proposition 6 demonstrates a
proof that this holds in general for settings with at least three distributions. The basic intuition is
that JCI compares everything relative to the observational distribution, which can miss invariances.
On the other hand, comparing every pair of distributions is important for characterizing all possible
invariances. Since JCI is already shown to characterize and learn less in a single-domain setting, the
same will hold when we consider the multi-domain setting. We direct the readers to [6] for additional
discussion on the single-domain setting comparing W-FCI to JCL.
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Figure S6: Comparison of JCI vs SFCI given ground-truth graph (a). Assume that we are given
interventions ¥ = ({}1,{X,Y}?, {X,Y, Z}?) and their corresponding distributions with known-
targets KL = [1,1,1]. (b) is the graph is the S-PAG learned by S-FCI and (c) is the graph learned
by JCI. The results hold if the interventions are unknown-targets as well, and even if there was
observational data in both domains.

The pooling procedure constructs auxiliary context variables, = {C;}M, given datasets

0, ---» Dar), where Dg corresponds to the "observational distrlbutlon and D; corresponds to

n "interventional" distribution. The algorithm pools the datasets into one, D* and then appends

context variables such that C = 0 for Dy and C; = 1 if the sample corresponds to D;, else C; = 0.

Thus there are an additional M columns in the dataset, which result in added nodes to the causal

graph. When context nodes are added, C; <> C} for all 4, j and then C; — V/ if there is a dependency
among the C; variable and the V; variable.

In Figure S6, SFCI is shown to learn more than JCI. JCI learns the graph in Figure S6(b). SFCI learns
the graph in (c) and importantly also estimates the S-node structure.

D.4.5 Causal Discovery with Nonstationary Changes [11, 36]

[11, 36] also uses auxiliary random variables to capture mechanism changes. JCI can be seen as an
extension of this idea. Similarly to JCI, our approach differs in how we treat these auxiliary nodes
and characterize the pairwise-distribution invariances in a more complete manner.

D.4.6 Multi-Domain Causal Structure Learning in Linear Systems [37]

The paper [37] proposes a causal discovery method that accounts for observations across multiple
domains. However, the setting relies on the absence of latent confounders and also linearity in the
SCM. In this work, we characterize the EC in the semi-Markovian and nonparametric setting.

D.5 Experimental Results - Simulations

All experiments are reproducible using the algorithm implementations at https://github.com/py-
why/dodiscover and https://github.com/py-why/pywhy-graphs [72, 73].

D.5.0.1 Chain-Graph Experiment In this section, we demonstrate empirically through compu-
tational experiments that S-FCI learns more, or more accurate graphs relative to the true selection
diagram.

In the first simulation, a very simple setup is done to confirm the presentation of Ex. 9. In this
example, G = {Y — X, S1? — X} is the selection diagram with the augmented-selection diagram
shown in Figure S7(c). The ground-truth causal diagram and augmented graph are shown in Figure
S7(a-b), neither of which encode the change in domain.

Data is generated using a linear SCM, where nodes have exogenous noise generated from a Gaussian
distribution (i, o) where p is generated uniformly in [-5, 5] and o is generated uniformly in [0.01,
1.5], and edge weights are generated uniformly in [-5, 5]. Each node is a linear combination of
its parents, where edge functions are generated uniformly from the following choices with "x" as
the input: linear (x), quadratic (x2), sin (sin(x)), or negative (-x). We repeat the experiment 10
times with sample sizes ranging from 500 to 5000 linearly spaced. At each parametrization, we
repeat the experiment 5 times. We simulate two different domains, with the S-node pointing to

Y indicating a possible change in mechanism between domain 1 and 2. In total, we generate two

34



different distributions, P! = (P}, P#), one per domain. Each distribution is interventional. We
simulate a soft intervention on the node X by additively perturbing the values of X. We encode
different soft interventions in domain 1 and 2 (i.e. the mechanisms have the same target, but different
mechanisms; W1 = ({X}! {X"}2)). We assume the targets are known, K = [1,1].

Using the ground-truth diagram as an oracle for conditional independence and conditional invariance
testing (of the form listed in Def. 2.2), we can get different ECs, which are shown in Figure S7(d-f).
As we expect from Ex. 9, the Z-FCI arrives at the incorrect causal conclusion, X — Y. Next, using
partial correlation and the Kernel conditional discrepancy test [74], we test this setting with finite
data. In Figure S8, we see that it is always the case that S-FCI learns the correct graph even with
finite data.

('F, 0) (F, 0) ('S, 0)

(d)

M

Figure S7: Comparing S-FCI vs FCI vs Z-FClI in a simulation with two known-target interventions
with different mechanisms on X - The top row shows the true diagrams: (a) is the true causal diagram,
(b) is the augmented diagram encoding the intervention on X, (c) is the augmented graph that shows
the interventions on X in each domain and the S-node indicating a possible change in mechanism
for Y. The bottom row shows the learned EC with an oracle for querying d-separation - (d) the PAG
learned by the FCI algorithm, (e) the I-PAG learned by the Z-FCI algorithm and (f) the S-PAG
learned by the S-FCI algorithm.
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Figure S8: S-FCI learns the correct orientation consistently given known target interventions in
multiple domains compared to Z-FCI in linear SCMs following the two-node setting.

D.5.1 Analysis of Protein Sequencing
As motivated by Ex. 4 and 9, we next analyze a protein sequencing Sachs dataset [22], where different

perturbations of proteins were made, and then responses from other proteins were observed. The
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Figure S9: The presumed ground-truth graph for the protein experiments from [22]. Imported from
bnlearn [76].

ground truth graph is given by [22] and is shown in Supplemental Figure S9. We utilize this dataset
because it is a commonly used dataset to evaluate causal discovery in many papers [0, 7, 38, 75].
We run S-FCI and get the results shown in Figure S10, where various structures such as the cluster
among (PIP3, PIP2, Plcg) is detected and certain orientations in the larger graph are also correctly
detected.S As aresult, these two experiments provide a realistic setting in which S-FCI could plausibly
be used °.

D.5.2 Simulated Data

In this next section, we present some experiments validating that adding additional data across
multiple domains improves upon the structure by helping orient additional edges.

The ground-truth graph is shown in Figure S11(a). We forward-sample discrete data according to the
graphical model and implement categorical data with cardinality of "3" per node. We then sample a
random conditional probability distribution (CPD) for each node in topological order using pgmpy
[77]. By specifying the full conditional distributions for each node as a function of its parents, this
now specifies the full SCM. We then proceed with four different settings:

1. From this SCM, we sample 30,000 samples to denote the observational distribution, obs.
We will denote this SCM as coming from domain 1. We run FCI on the data and obtain
Figure S11(b).

2. Next, we generate 30,000 samples of interventional data by intervening on the *D’ node,
generating a new CPD for node D. Then we run the Z-FCI, or ¥-FCI algorithm depending
on if we assume the intervention is a known-target or not. Regardless of the algorithm, the
graph learned is in Figure S11(c).

3. Next we generate a domain-shift that changes the distribution of node X and C. L.e. in the
corresponding selection diagram of (a), this would have the additional edges X « S*? —

SReal world data with ground truth selection diagrams and observational and interventional data collected
over multiple domains is a big challenge that is necessary to evaluate multi-domain causal discovery algorithms.
This paper partially addresses this need by leveraging real single-domain data and using that data to generate
plausible datasets to simulate the multi-domain setting. Additional research is needed that generates this dataset
in the real world from experiments and observations.
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Figure S10: Shows the learned S-PAG of the Sachs dataset.

C. This generates a new SCM that represents domain 2. Combining the observational
datasets from domain 1 and the domain 2, we can run FCI again and obtain the Figure
S11(d).

4. We also simulate an intervention that occurs on node D again this time in domain 2. By
pooling the interventional datasets and the observational datasets and naively ignoring the
difference in domain, we can re-run the W-FCI algorithm and obtain the graph in Figure
S1l(e).

5. Finally, taking all datasets together and applying the S-FCI algorithm, we obtain the result
in Figure S11(f).

(a) (b) (c) (d) (e) (U]

Figure S11: Example simulation comparing FCI, ¥-FCI and S-FCI using the same datasets
with ground-truth graph in (a). Running FCI on single-domain observational data results in (b).
Running ¥-FCI on single-domain observational and interventional data results in (c). Stacking the
multi-domain observational data, ignoring the domains and running FCI results in (d). Stacking the
multi-domain observational and interventional data, ignoring the domains and running W-FCI results
in (e). Running S-FCI on the same dataset as (e) without ignoring domains results in (f). (f) learns
the most correct graph relative to ground-truth (a).
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D.6 Discussion on Assumptions

In this paper, various assumptions are made. Here, we include additional discussion on the justification
of those assumptions.

* (Shared causal structure assumption 2) - This assumption indicates that across different
domains, there is no change in the input arguments of the functionals in the SCM. That
is x; < f(argl,arg2,...,argk) has the same input arguments for any f that is assigned
in different SCMs corresponding to different domains. This limits the scope of functional
changes across domains, but is realistic since many real-world applications potentially share
causal structure even with a domain-shift. For example, in human brains when listening to
speech, from subject to subject, it is reasonable to suspect that there is a domain change in
how brain activity manifests. Although the amplitude and frequencies of brain activity may
differ, it is reasonable to assume that the brain regions involved are the same from subject
to subject. That is, the visual cortex in the occipital lobe is involved in visual processing,
with Wernicke’s area is involved in downstream speech processing. Thus a causal selection
diagram with assumption 2 preserves the causal structure of speech processing, while
allowing any other kinds to the functionals of the SCM.

* (Interventions have different mechanisms across domains) - This assumption specifies that
any intervention cannot be exactly the same when they occur in different domains. Let
x; < f; be the function that assigns the value for node x; in the SCM before an intervention.
This essentially restricts the sub-model from the intervened SCM to not be able to have
fi < f! for two interventions that occur in different domains. If the interventions occur in
different domains, then they must always be of the form f; < f/ in domain k and f; « f/
in domain 1, where f/ # f!’. Thus even if the same nodes are intervened in two different
domain settings, there is still a difference in their distributions, which is encoded by the
S-node edge. This assumption is realistic because if a scientist is making the assumption that
there is say genomic sequencing data coming from two different domains (e.g. lab settings,
or biological specimens), then even if the intervention is applied to the same gene, or set of
genes, it is highly unlikely that the intervention has the exact same effect in the different
domains. Hence, running the same sequencing experiemnts in different labs are known as
batch effects and accounting for them allows one to make causal inferences across domains

[29].

* (Soft interventions) - Currently, no characterization for a Markov class with respect to hard
interventions exists. Each intervention alters the graph, making a consistent object for
constraint collection challenging. An analogous Proposition 1 version is difficult due to
intervention-induced graph changes. Hence, mapping invariances to augmented graph’s
d-separation differs. Our work aims to illuminate properties and subtleties for potential
broader characterization later.

In addition to these assumptions, we make the assumption that any intervention does not reproduce a
domain-shift. This assumption is implicit in a single-domain setting, where interventions are assumed
to actually intervene on the system, such that there is a difference relative to the observational
distribution. In the multi-domain setting, then these interventions perturb the distribution space, but is
independent from a domain-shift and is assumed to never exactly equal an observational distribution
in another domain. The reason for this assumption is related to faithfulness and Definition 2.2. For
example, if we have two domains, and intervention { X }! in domain 1 and observation {}? in domain
2. The intervention takes place in domain 1. If it perfectly reproduced the domain-shift going from
domain 1 to domain 2, then it would provide an additional invariance that is not encoded in the graph.

D.7 Background and Additional Preliminaries

In this section, we provide additional background notation and concepts relevant for the proofs and
theoretical concepts introduced in this paper.

Additional Notation

A path p from X to Y in G is a sequence of distinct nodes (X, ..., Y) where each pair of consecutive
nodes is adjacent in G. A directed path (also known as a causal path) from X to Y is a path where
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all edges are directed X — --- — Y. A possibly directed path from X to Y is a path where no
arrowhead is pointing to X. A star on edge endpoints is used as a wildcard to denote circle, arrowhead,
or tail.

We say if X — Y, then X is a parent of Y. If there is a (possibly) directed path from X to Y, then X is
a (possible) ancestor of Y and Y is a (possible) descendant of X. The convention is that every node is
also a descendant and ancestor of itself. The sets of parents and (possible) descendants of X in G
are denoted by Pa(X, G) (or just Pa(X ) when it is unambiguous) and (Poss)De(X, G) respectively.
Similarly, we would also write PossCh(X) as the possible children of X, and NonDesc(X) as the
definite non-descendants of X. A definite non-descendant, Z, is one where there is no possibility of Z
being a descendant of X. This can occur if there is a arrow-endpoint ending at X, or a tail-endpoint
ending at Z.

A triple (X, Y, Z) is an unshielded triple if X and Y are adjacent, Y and Z are adjacent, and X and Z
are not adjacent. If both edges are into Y, then the triple is referred to as unshielded collider. A path
between X and Y, p = (X, ..., W, Z,Y'), is discriminating for Z if every node between X and Z is a
collider on p and is a parent of Y. Two MAGs are Markov equivalent if and only if (1) they have the
same adjacencies; (2) the same unshielded colliders; and (3) if a path p is a discriminating path for Z
in both graphs, then Z is a collider on p in one graph if and only if it is a collider on p in the other.
A PAG represents an MEC of a MAG and is learnable from data. The output of the celebrated FCI
algorithm is a PAG, which is proven sound and complete for the corresponding MEC [39].

Structural Causal Models

We use Structural Causal Models (SCMs) [1] as our basic semantical framework. A SCM is a 4-tuple
(U, V,F, P(u)), where 1) U is a set of exogenous (latent) variables, 2) V is a set of endogenous
(observed) variables, 3) F is a set of functions that determine the values of endogenous variables (i.e.
v« fy(pay,uy) is a function with pa,, C V {V} and Uy C U and 4) P(u) is a joint distribution
over exogenous variables, U.

Each SCM induces a causal diagram, G [52], where every variable v € V is a vertex and directed
edges in G correspond to functional relationships specified by F and bidirected edges represent
common exogenous variables between two vertices. Within the structural semantics, an intervention
by setting X = x is represented with the do-operator, which encodes the operation of replacing the
original functions of X (i.e. fx(pay,ux)) by the constant z and then induces a submodel M, and
corresponding interventional distribution P(v|do(x)).

Definition 4.9 (Selection Diagrams). Let (M, M*) be a pair of SCMs relative to the domains (7, 7*),
sharing a causal diagram G. (M, M*) is said to induce a selection diagram D, if D is constructed

as follows: every edge in G is also an edge in D; D contains an extra edge S; — V; whenever there
exists a discrepancy f; # f7, or P(U;) # P*(U;) between M and M*.

Selection diagrams are causal graphs imbued with extra selection "S-nodes". Selection diagrams
are induced from tuples of SCMs rather than a single one, since they represent different underlying
SCMs.

Figure S12: A selection diagram between source domain "i" and target (a), a selection diagram
between source domain "j" (b) and target and a joint selection diagram (c).

Ancestral Graphs

A mixed graph can contain directed and bi-directed edges. A is an ancestor of B if there is a directed
path from A to B. A is a spouse of B if A «> B is present. If A is both a spouse and an ancestor of B,
this creates an almost directed cycle. A mixed graph is ancestral if it does not contain directed or
almost directed cycles. It is maximal if there is no inducing path (relative to the empty set) between
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any two non-adjacent nodes. A Maximal Ancestral Graph (MAG) is a graph that is both ancestral and
maximal [60]. Given a causal graph G(V U L, E), a unique MAG Mp over V can be constructed
such that both the independence and the ancestral relations among V are retained; see, [00]. Ancestral
graphs, such as MAGs represent a Markov equivalence class (MEC) of a DAG, G. PAGs represent
the unique MEC of a MAG. Therefore a DAG maps to a unique PAG, representing the MEC of the
conditional independence statements. However, a PAG represents a class of different DAGs that
encode the same conditional independence statements.

MAGs and PAGs are ECs of causal diagrams. In this paper, analogues, such as the S-MAG (Def. 2.4)
and S-PAG (Def. 3.1) are introduced and relevant for encoding an EC of selection diagrams.

m-separation and m-connectedness

In this section, we briefly review the graphical criteria m-separation and m-connectedness, which
is a generalization of d-separation and d-connectedness [60]. First, a necessary definition to fully
understand and characterize m-separation is the notion of definite colliders and definite non-colliders
in PAGs as these are a way to determine definite status along a path that does not need oriented end
points.

Definition 4.10 (Definite collider and non-colliders). Let (A4, B, C) be a consecutive triple along a
path p in a PAG, G. B is a definite collider on p if both edges are into B (i.e. arrowhead endpoint at
B). B is a definite non-collider on p if either one of these is true:

i) One of the edges is out of B (A +— B x—+ C, or A x—x B — (. ii) Both edges have a circle-
endpoint at B, and there is no edge between A and C (i.e. (A, B, C) is unshielded). This looks like
A x—o0Bo—xC.

Otherwise B has a non-definite status along p.

A definite status path p between nodes X and Y is m-connecting given a set of nodes Z (with
X,Y ¢ Z)if every definite non-collider on p is not in Z and every collider in p has a descendant in Z.
A possibly m-connecting path between X and Y given Z is a path where every definite non-collider
on the path is not in Z and every collider has a possible-descendant in Z.

If Z blocks all definite status paths between X and Y, we say that X and Y are m-separated given Z.
Otherwise X and Y are m-connected. If Z blocks all possibly m-connecting paths between X and Y,
we say that X and Y are m-separated given Z.

D.8 Additional Example Illustrating S-FCI Subtleties

We illustrate a few additional examples that augment Ex. 9 to show how observational data is
necessary to differentiate interventions and domain-associated mechanism changes.

Example 11. Consider the same setup as in Example 9 with the ground-truth selection diagram
in Figure 3. This time, in II', say we have access to also observational distributions. Specifically,
Pl = (Y} {35 {}2) with € = [1,1,1] and P = (P}, P}, P}), where we have the ability to
experiment on Y proteins and collect passive observations in a laboratory setting, and we have access
to observational data in a hospital setting.

Since we have access to the observational dataset in domain IT*, then it would be possible to learn
the correct orientation of X <+ Y. This is because within the same domain, the observational and
interventional distributions can be compared.

Furthermore, we know that a potential selection diagram that with the correct cross-domain invari-
ances is one with the S-node, Y < S%2? — X from the F-node that is constructed comparing

L {3? € v, F {1 }12. However, note regardless that one cannot learn that the S-node only points to

X. This is because of the inducing path between S'2 and Y through X that makes the two nodes
adjacent in all graphs of the EC.

Note, the same result could be obtained if one had an interventional dataset that simultaneously
intervenes on { X, Y} because the symmetric difference between {X, Y }'A{Y}! = { X} results in
an F-node, F'; associated with the known-target X. The F-node would be adjacent to both X and Y,
and through R9’ of the S-FCI algorithm, we could orient the edge X — Y correctly. O
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In this example, we demonstrate it is very valuable to obtain L,
the observational distribution in separate domains to cali-
brate against, which allows one to differentiate interventional
effects from change-in-domain effects. This next example
demonstrate that nothing is learnable in the degenerate case
where no data is given in one of the domains. e
(b) X — Y

(a) X — Y

Example 12. Consider again the setting in Example 9. This

time however, we do not have access to observational data in

II* (i.e. we do not have experimental, or observational data in N
the hospital setting). The only thing we can learn is whether \ ¥
or not there is an adjacency between X and Y given the data in (© X — Y
IT'. However, at this point, we do not know and cannot learn

if there are S-nodes pointing to X, Y, both, or neither because F
we simply do not have access to data in one of the domains. TR
It is impossible to know if there are conditional invariances
when moving from the lab to the hospital that might affect
the protein level expressions without some type of data in _, .
the ﬁospital settingpto calibrate against. Exggrimental, or Figure S13: Demonstratlng. how
observational data in the relevant "target" domain is necessary nodes represent exogenous variables

for causal discovery in the multi-domain setting. O @), mechar}lsm chap ges (eg. S-
nodes) (b), interventions (c) are en-

coded in a causal diagram and then
(d) an augmented graph, where inter-
ventions and change in domain are
represented. The node in (b) is rep-
Although Figure S13 suggests in some way that observations resented as a square node, and can
from multiple domains and interventions within a single do- be viewed as an "intervention" on the
main can be viewed similarly, the next example demonstrates €xogenous variables. In a selection di-
that not accounting for the domains, when data is collected agram, Fr, can be a S-node pointing
from multiple domains can lead to incorrect characterization. to X. Nodes in gray are exogenous.
This incorrect characterization is precisely what leads to the

incorrect result of the Z-FCI algorithm in Example 9. Why is the setting where observational data not
present more subtle? We illustrate how the characterization of the Markov property when comparing
interventions across domains without observational data can lead to incorrect characterizations under
our assumptions.

(d) X — Y

This example illustrates that it is not possible to learn relevant
multi-domain graphical structure without data present in all
domains.

Example 13 (I-Markov vs S-Markov property). Let G be a causal diagram as shown in Figure
1(a). Let IT = (IT*, I12) be the set of domains representing the lab (IT') and the hospital (II?) and
assume we have access to data where proteins are perturbed in the lab and the intent is to utilize that
information along with observational data in the hospital (e.g. [22]). These are a tuple of distributions
P = (P}, P;) with intervention targets ¥!I = ({Y}!,{}*) and K = [1, 1], where X represents
some protein in the dataset.

Given the known-target intervention and observation, one can analyze the I-Markov property. Due to
(X LY)g,. would encode the additional constraint P! (X) = Py (X) thus satisfying the I-Markov
property. However, that is not true, since P is generated from the diagram with a S-node S1-*
changing the mechanism of X. The S-Markov property constraint correctly encodes this because even
though (X LY)q_, wehave X / S'*)q, thus the invariance is not valid. O

Even though the intervention target is known, we see that the I-Markov property does not correctly
encode distributional constraints. We will explore this in more details in the next few sections.

S-nodes can be seen as analogous to interventions with the exception that S-nodes occur by some
unknown change of distribution in either the exogenous variable distribution, U, or the function of
the endogenous variable the S-node is pointing to, f;. Consider a simple causal bow-graph. Figure
S13(a) shows how this can be represented with its exogenous variables explicitly shown. In general,
we never know the true structure of the exogenous variables since the true causal model is unknown.
In Figure S13(b), an S-node pointing to X could be viewed as a soft-intervention on U. On the other
hand, in Figure S13(c), soft-interventions are represented by F-nodes in an augmented graph that
change the distribution of X [7, 54, 57].
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Now, if we look at Figure S13b and c, then we notice that the conditional independence statements
are the same. Notice that S,, / Y|X and F, [ Y|X, and thus the soft-intervention is graphically
similar to the S-node because we do not observe U, € U. Despite their similarities, it is important to
explicitly note some subtle differences. As demonstrated in Ex. 4, the distribution changes between
domains as denoted by a S-node is always present, whether the data is collected in an observational,
or experimental setting. Thus S-nodes and F-nodes carry different meanings. However, in the purely
observational setting, they are in some sense equivalent.

D.9 Broader Impact and Forward Looking Statements

The development of new causal discovery algorithms has the potential to improve our understanding
of complex systems, and to help identify the causal factors underlying important societal issues. By
improving our ability to learn causal relationships from observational and interventional data across
multiple domains, your work could ultimately lead to more effective interventions to address these
issues that are transportable across operating domains. Beyond the causal inference community, we
expect that our results will enable fundamental contributions in various fields, including biology [22],
epidemiology [65], economics [78] and neuroscience [21].

One significant research direction is to study how to relax the assumption that the joint selection
diagram does not contain structural differences among the different domains. Additionally, it will
be important in future research to develop new benchmarks that reflect this emerging multi-domain
causal discovery paradigm to evaluate algorithms. Another important research question is how to
perform transportability inference within this newly introduced equivalence class. Transportability of
causal effects, also known as "external validity" [79, 80], "meta-analysis" [81], "quasi-experiments"
[82], "heterogeneity" [83], is a critical task that has been studied under the assumption that a well-
specified selection diagram is available. It will be important to develop algorithms for transportability
inference given the selection diagrams’ EC and develop algorithms for computing causal effects from
an EC of selection diagrams. This would enable scientists to perform completely data-driven causal
analysis across multiple domains.

D.10 S-FCI Algorithm Additional Details

Here, we expand on the S-FCI algorithm and its details. The inner-workings of the S-FCI algorithm
are introduced in Algorithm 1. Here, we provide details for the rest of the algorithm.

D.10.1 S-FCI Algorithm Details

D.10.1.1 Creating augmented graph Alg. D.2 describes how the augmented graph is created by
adding nodes that map to pairs of distributions, and optionally symmetric difference targets.
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Algorithm D.2 Generalized Augmenting Nodes - S is the set of S-nodes, F'! is the set of F-nodes
over each domain, /C is the vector of known intervention targets, H is the set of intervention targets
mapping each pair of known-target interventions, o is the mapping of each pair of distributions within
each domain and V is the set of nodes in the graph.

function CREATEAUGMENTEDNODES(¥!L, IC, V)
S=¢,Fl=¢p,H=¢,0: N xN — 2"V x2V
k+0
(Comparing distributions: Add F-nodes and S-nodes)
for all pairs I}, J7, € ¥ do

k+—k+1
i) = (), 3}, = {}J.i# ] then
Add S¥ to S
else B
Add F}? to FI
if I! and J7, are known-targets and ¢ = j then
H =T'AJ’
Add H o H
o(k) = g, m): (Maps the kth F-node to distributions I and m)
return S, 7, H, o

D.10.1.2 Generalized Multi-Domain Skeleton Discovery Alg. D.3 describes a generalized
algorithm for performing constraint-based skeleton discovery, which allows our algorithm to choose
a method for choosing candidate conditioning sets, CondSel. For example, one may use all possible
combinations of nodes (e.g. the SGS algorithm does this [40]), or the neighbors of the nodes (e.g. the
PC algorithm does this [5]), or the possibly d-separating sets (e.g. in RFCI algorithm [42]). Alg. D.4
describes how to infer the skeleton structure using constraints found in the data. For instance, the first
else-if statement states that all F-nodes are by construction separated. The second else-if statement
states that an F-node will be separated from another node given a specific kind of invariance described
in Condition 2 of Def. 2.2.

Algorithm D.3 Generalized Skeleton Discovery - G is the augmented causal diagram from Def. 2.3,
CondSel is the conditioning selection function for determining how to select candidate separating
sets Z, P45 1s a hyperparameter controlling the maximum size of the conditioning set

function GENERALIZEDSKELETONDISCOVERY(G, CondSel, Pp,q.)
G=VUF,EUEx)
while p < P, do
for X € V do
for Z € CondSel(X,p) do
if (X € FNY € F) then
SepSet(X,Y) < ¢, Sep(X,Y) = True
else
(SepSet(X,Y), Sep(X,Y) + Generalized Do-constraints (see Alg. D.4)

if Sep(X,Y) = True then
Remove (X, Y) edge in graph G
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Algorithm D.4 Generalized Do-Constraints - W g the intervention targets per N domains, IT; K
are the known targets; V are the relevant causal variables.

function GENERALIZEDDOCONSTRAINTS(X, Y, S, FII, o, ¥ [C, V)
(FI' = ¢, SepSet = ¢,0 : N — 2V x 2V
V<« Vurt
if X, Y ¢ 711, and X,Y ¢ S then
for I' ¢ ¥ do
for W C V\F do
if P}(y|w,z) = Pi(y|lw) then
SepSet =W UFTUS
SepFlag=True
elseif X € S, Y € V then
(Il,m) < o(k)
for W C V\F do
if P/ (y|w,z) = PJ,(y|w) then
SepSet = W U FILU S\ S%7
SepFlag=True
elseif X, Y € F then (X and Y are both F-nodes)
SepSet = FLUS\{X,Y}
SepFlag=True
else if X,Y € S then (X and Y are both S-nodes)
SepSet = FT U S\{X, Y}
SepFlag=True
elseif (X € Fland (Y € V), so let F,i’] denote X (X is a F-node representing a distribution
between domains i and j, and Y is a normal node in V) then
(I,m) + o(k)
for W C V\F do
if Py (ylu, ) = PJ, (y|w) then
SepSet =W U FI\{F,’}US
SepFlag=True

D.10.1.3 Generalized Multi-Domain Orientation Rules - We restate the orientation rules
presented in 3 for completeness of the appendix.

Algorithm D.5 Generalized Orientation Rules - G is the causal diagram, SepSet are the separating
sets that were learned, FU is the set of F-nodes, H is the set of known-intervention targets and S are
the S-nodes.

For every unshielded triple (X, Y, Z), if Z & SepSet(X,Y) orient it as X+ Y +xZ

Phase IIb: Apply logical orientation rules

R1-7: Apply 7 FCI rules from [39] and following two rules until none apply.

Rule 8’: For any F; ,zj € FU, orient adjacent edges out of F,ZJ .

Rule 9’: For any F,:j € FU that is adjacent to a node Y ¢ HM if i = jand X € H;J and
|H/’| =1, orient X — Y.
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