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Abstract

Learning cause and effect relations is arguably one of the central challenges found
throughout the data sciences. Formally, determining whether a collection of obser-
vational and interventional distributions can be combined to learn a target causal
relation is known as the problem of generalized identification (or g-identification)
[Lee et al., 2019]. Although g-identification has been well understood and solved
in theory, it turns out to be challenging to apply these results in practice, in partic-
ular when considering the estimation of the target distribution from finite samples.
In this paper, we develop a new, general estimator that exhibits multiply robust-
ness properties for g-identifiable causal functionals. Specifically, we show that any
g-identifiable causal effect can be expressed as a function of generalized multi-
outcome sequential back-door adjustments that are amenable to estimation. We
then construct a corresponding estimator for the g-identification expression that
exhibits robustness properties to bias. We analyze the asymptotic convergence
properties of the estimator. Finally, we illustrate the use of the proposed estimator
in experimental studies. Simulation results corroborate the theory.
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1 Introduction

Performing causal inferences is a crucial aspect of scientific research with broad applications ranging
from the social sciences to economics, biology to medicine. It provides a set of principles and tools
to draw causal conclusions from a combination of observations and experiments. Two significant
tasks in the realization of these inferences are causal effect identification and estimation. Causal
effect identification concerns determining the conditions under which one can infer the causal effect
P (Y = y|do(X = x)) (shortly, P (y|do(x))) of the treatment X = x on the outcome Y = y from a
combination of available data distributions and a causal graph depicting the data-generating process
[Pearl, 2000, Bareinboim and Pearl, 2016]. Causal effect estimation aims to develop an estimator
for the identified causal effect expression using a set of finite samples.

Recent advances in the literature on generalized causal effect identification (g-identification) have
developed algorithms that can identify causal effects by using a set of observational and experimental
distributions and a causal graph. The result is an expression of the causal effect as a function of
available observational and experimental distributions [Bareinboim and Pearl, 2012, Lee et al., 2019].
For concreteness, consider some practical scenarios that exemplify g-identification.
Example 1. Many studies have investigated how a training program’s eligibility (X) affects future
salary (Y ) (e.g.,[Glynn and Kashin, 2017]). Actual registration in the program (Z) determines the
salary, and experimental studies have looked into how Z affects Y (e.g., [LaLonde, 1986]). Eligibility
is determined by past average income (W ), which is associated with both Z and Y . The causal
graph in Fig. 1a shows the data-generating process, with bidirected edges indicating unmeasured
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Figure 1: Causal graphs of examples 1 and 2. The nodes representing the treatment and the outcome
are marked in blue and red, respectively.

confounders affecting the variables. According to Lee et al. [2019], the causal effect P (y|do(x))
can be identified by combining the experimental distribution on Z (denoted P (·|do(z))) with the
observational distribution P . It’s given as P (y|do(x)) =

∑
z,w P (y|do(z))P (z|w, x)P (w). ■

Example 2. There have been many experimental studies on the effect of an antihypertensive
drug (X1) on blood pressure (W ) (e.g., Hansson et al. [1999]) and on the effect of using an
anti-diabetic drug (X2) on cardiovascular disease (Y ) (e.g., Ajjan and Grant [2006], Kumar
et al. [2016]). R is a set of mediators. Their relations are depicted in Fig. 1b. Recent stud-
ies report that simultaneously taking antihypertensive and anti-diabetic drugs may be harmful
[Ferrannini and Cushman, 2012]. This motivates the study of the combined causal effect of
both treatments (i.e., P (y|do(x1, x2))) by combining the two experimental studies (i.e., from
P (·|do(x1)) and P (·|do(x2))). According to Lee et al. [2019], it turns out that P (y|do(x1, x2)) =∑

r,w P (y|r, w, do(x2))P (r|x2, do(x1))
∑

x′
2
P (w|r, x′2, do(x1))P (x′2|do(x1)), which means that

the joint treatment effects can be computed using the two experimental studies on X1 and X2. ■

On the other hand, causal effect estimation has mainly focused on limited identification scenarios,
relying on stringent assumptions such as the no unmeasured confounder assumption. Beyond these
restrictions, recent progress has been made in developing statistically appealing estimators from
observational data for any identification functional given by the complete identification algorithms
[Jung et al., 2020a,b, 2021b,a, Bhattacharya et al., 2022, Xia et al., 2021]. While these estimators
are capable of estimating any identification expression from observational data, they are not yet suffi-
ciently advanced to estimate g-identification, which involves multiple observations and experiments.

Recently, Jung et al. [2023] generalized existing doubly robust estimators [Mises, 1947, Bickel
et al., 1993, Robins and Rotnitzky, 1995, Bang and Robins, 2005, Robins et al., 2009, van der
Laan and Gruber, 2012, Luedtke et al., 2017, Chernozhukov et al., 2018, Rotnitzky et al., 2021]
to estimate covariate adjustments (e.g., back-door adjustment [Pearl, 1995], sequential back-door
(SBD) adjustment [Pearl and Robins, 1995] or multi-outcome SBD (mSBD) [Jung et al., 2021b])
in the g-identification setting, where the expression is given in the form of covariate adjustment
but involves multiple experimental distributions. However, the covariate adjustments only cover a
limited portion of all g-identifiability scenarios, as exemplified in Examples (1,2). In other words,
there is still a gap between g-identification and causal effect estimation.

In this paper, our goal is to bridge the gap between g-identification and causal effect estimation.
Specifically, this paper presents a framework for estimating identification expressions using multi-
ple sets of samples from both observational and interventional distributions. This framework is a
generalization of the results in Jung et al. [2021b] since our results reduce to theirs when only ob-
servational data is available. Furthermore, our work subsumes the results in Jung et al. [2023] when
the identification functional takes the form of covariate adjustments.

The contributions of our paper are as follows:

1. We show that any causal effects identifiable by g-identification can be expressed as a function of
generalized mSBD adjustments. We provide a systematic procedure for specifying the function.

2. We develop a multiply robust estimator for generalized mSBD adjustments. and then an es-
timator for any g-identifiable causal effects that under appropriate assumptions, enjoy multiply
robustness against model misspecification and bias. Experimental studies corroborate our results.
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1.1 Preliminaries

We use bold letters (X) to denote a random vector and X a random value. Each random vector is
represented with a capital letter (X) and its realized value with a small letter (x). Given a set X =

{X1, · · · , Xn} aligned by an order≺ such thatXi ≺ Xj for i < j, we denote X
i
:= {X1, · · · , Xi}

and X
i:j

:= {Xi, · · · , Xj}. For a discrete vector X, we use 1x(X) to represent the indicator
function such that 1x(X) = 1 if X = x; 1x(X) = 0 otherwise. We use [n] := {1, · · · , n} a
collection of index. For a discrete vector V, we use P (v) := P (V = v) where P is a distribution.
We use EP [f(V)] :=

∑
v∈SV

f(v)P (v) for a function f , where SV denote the support of V. We
will use DV to denote the domain of V. For a sample set D := {V(i)}ni=1 where V(i) denotes the
ith samples, we use ED [f(V)] := (1/n)

∑n
i=1 f(V(i)). We use ∥f∥P :=

√
EP [{f(V)}2]. If a

function f̂ is a consistent estimator of f having a rate rn, we will use f̂ − f = oP (rn). We will
say f̂ is L2-consistent if ∥f̂ − f∥P = oP (1). We will use f̂ − f = OP (1) if f̂ − f is bounded in
probability. Also, f̂ − f is said to be bounded in probability at rate rn if f̂ − f = OP (rn). We
use the typical graph terminology pa(C)G, ch(C)G, de(C)G, an(C)G to represent the union of C
with its parents, children, descendants, ancestors in the graph G. We use pre(C;G) to denote the
union of the predecessors of Ci ∈ C given a topological order ≺G over a graph G. We use G(C) to
denote the subgraph of G over C. Throughout the paper, we will assume a fixed topological order
≺G over V on G. ■
Structural Causal Models (SCMs). We use Structural Causal Models (SCMs) as our framework
[Pearl, 2000, Bareinboim et al., 2022]. An SCMM is a quadrupleM = ⟨U,V, P (U), F ⟩. U is
a set of exogenous (latent) variables following a joint distribution P (U). V is a set of endogenous
(observable) variables whose values are determined by functions F = {fVi

}Vi∈V such that Vi ←
fVi

(pai, ui) where PAi ⊆ V and Ui ⊆ U . Each SCM M induces a distribution P (V) and a
causal graph G = G(M) over V in which there exists a directed edge from every variable in PAi

to Vi and dashed-bidirected arrows encode common latent variables (e.g., see Fig. 1a). Performing
an intervention fixing X = x is represented through the do-operator, do(X = x), which encodes
the operation of replacing the original equations of X (i.e., fX(pax, ux)) by the constant x for all
X ∈ X and induces an interventional distribution P (V|do(x)). ■
Experimental Distributions and Samples To clarify the connection between the experimental sam-
ples where the randomization is applied to Z ⊆ V and the distribution Pz(V\z), we introduce the
notation Pσ(Z)(V) where σ(Z) denotes that Z is randomized. The distribution Pσ(Z)(V) is a dis-
tribution induced by the SCM in which the original equation Z ← fZ(paz, uz) for Z ∈ Z is
replaced to the function assigning the value to Z = z at random without depending on other en-
dogenous variables PAZ ; e.g., Z = 1 and 0 at probability 0.5 for each. We note that P := Pσ(∅)
when observational. For any set A,B,Z ⊆ V, the interventional distribution can be represented
as P (A|do(z),B) = Pσ(Z)(A|Z = z,B) by the definition of the do-operator and Pσ(Z) distribu-
tion. We use Pz(A|B) := Pσ(Z)(A|Z = z,B) to highlight that the distribution is induced from
the randomization and conditioning on Z = z. The experimental samples from randomization σ(Z)
induces samples Dσ(Z) following Pσ(Z)(V). We use Dz to denote the subsample of Dσ(Z) fixing
Z = z, which follows Pz(V). ■
g-identification. Let Z := {Zi}mi=1 denote a collection of variables where Zi can be an empty set.
Let P := {Pσ(Zi)(V), Zi ∈ Z}, a collection of distributions inducing experimental samples from
trials randomizing Zi ∈ Z. A causal effect P (y|do(x)) is said to be g-identifiable from P in a causal
graph G if P (y|do(x)) is uniquely computable from the combination of distributions in P in any
SCM that induces G [Lee et al., 2019, Def. 4]. The complete g-identification algorithm developed
by Lee et al. [2019] identifies the causal effect by decomposing so-called confounded components
(c-component). A c-component is a maximal set of variables where every pair is connected by a
bidirectional path composed of bidirectional edges (Vi ↔ Vj). For example, graphs in Figs. (1a,
1b) form a single c-component since bidirectional paths connect any pairs of variables. For any
sets C ⊆ V, the quantity Q[C] := P (c|do(v\c)) is called a c-factor. To identify the causal effect
P (y|do(x)) from P and G, the g-identification algorithm in [Lee et al., 2019, Algo. 1] (and rewrote
in Algo. 1) rewrites the causal effect as a marginalization over a product of c-factors, P (y|do(x)) =∑

d\y∈SD\Y

∏kd

i=1Q[Di], where D := an(Y)G(V\X) and Di are c-components in G(D), and
identifies each Q[Di] from P. ■
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1.2 Problem Statement

This paper aims to develop an estimation framework for the g-identifiable causal effect P (y|do(x))
identified as a function of distributions in P from experimental samples D := {DZi ∼ Pσ(Zi)(V) ∈
P}. We impose the following regularity assumptions:
Assumption 1 (Regularity). For variables V and distributions Pσ(Z) ∈ P, the following conditions
hold: (1) All variables in V are discrete; (2) Pσ(Z)(v) > c, ∀v ∈ DV for some c ∈ (0, 1).

We discuss the relaxation of the regularity assumption in Appendix C. This relaxation allows some
subset of variables in V can be a mixture of continuous and discrete random variables. Due to space
constraints, all proofs are provided in Appendix B.

2 Expressing Causal Effects as a Combination of mSBD Adjustments

In this section, we present an algorithm that expresses any g-identifiable causal effects as a combina-
tion of marginalization/multiplication/divisions of adjustment functionals defined in the following.
We begin by formally defining the generalized multi-outcome sequential back-door adjustment (g-
mSBD) functional, which strictly generalizes the mSBD adjustment proposed by Jung et al. [2021b]:
Definition 1 (generalized-mSBD adjustment (g-mSBD)). Let (W,R) be a disjoint pair in V
topologically ordered as (W,R) = {R0,W1, · · · ,Rm−1,Wm,Rm} by ≺G, where Ri can be
empty. Let W

i−1
:= {Wj}i−1

j=1 and R
i−1

:= {Rj}i−1
j=0 for ∀i ∈ [m]. Let C ⊆W. Let Z0 ⊆ Z be

some set such that ∀Z ∈ Z0,W ∩ Z = ∅. Let seq(Z0) denote a sequence (z1, · · · , zm) where zi
denotes some realization of Zi ∈ Z0 (same zi could appear multiple times in the sequence). Then,
the g-mSBD adjustment is expressed as an operator A0[W,C,R;Z0, seq, G](w\c, r) defined by

A0[W,C,R;Z0, seq](w\c, r) :=
∑

c∈SC

∏
i:Wi∈W

Pzi
(wi|wi−1, ri−1\zi). (1)

The g-mSBD adjustment specializes to the mSBD adjustment [Jung et al., 2021b] when Z0 = ∅. The
g-mSBD adjustment can be viewed as a variant of the g-formula [Robins, 1986] involving multiple
distributions. The power of the g-mSBD adjustment lies in its ability to express the c-factor:
Lemma 1 (c-component Identification [Jung et al., 2021b]). Let S denote a c-component in
Gi := G(V\Zi) for some Zi ∈ Z. Let R := pa(S)Gi\S. Let (S,R) be ordered as
(R0, S1, · · · ,Rm−1, Sm) by ≺G. Let A ⊆ S denote a set satisfying A = an(A)Gi(S). Let
C := (S\A). Let Z0 := {Zi} and seq(Z0) be a sequence of zi repeating m times. Then, the
c-factor Q[A] is g-identifiable as follows:

Q[A] = A0[S,C,R;Z0 := {Zi}, seq](a, r) =
∑

c∈SC

∏
j:Vj∈S

Pzi
(vj |sj−1, rj−1\zi). (2)

We propose an identification algorithm, Algo. 1, which expresses any causal effect as a combination
of marginalizations, multiplications, and divisions of g-mSBD operators. Here are some results used
for the g-mSBD operation. An example of using these results is provided in Appendix A.
Lemma 2 (Marginalization). Let A0[W,C,R;Z0, seq](w\c, r) denote the g-mSBD operator in
Def. 1. Let W0 ⊆W\C. Let Wmar ⊆ {W0,C} denote the vector formed by the following proce-
dure: Starting from Wmar = ∅, for j = m, · · · , 1, Wmar = Wmar ∪ {Wj} if (1) Wj ∈ {W0,C}
and (2) ∃k ∈ {j, · · · ,m} such that Rj , · · · ,Rk−1 = ∅, Wk+1:m ⊆ Wmar, and Zk = · · · = Zj

and zk = · · · = zj . Let W′ := W\Wmar, R′ := pre(W′;G)∩R and C′ := {W0,C}\Wmar. Let
Z′ ⊆ Z0 denote the collection of Zi corresponding to the variable in W′, and seq′ the correspond-
ing sequence. Then,∑

w0∈SW0

A0[W,C,R;Z0, seq](w\c, r) = A0[W
′,C′,R′;Z′, seq′](w′\c′, r′). (3)

This lemma provides a graphical criterion where
∑

w0∈SW0
A0[W,C,R;Z0, seq](w\c, r) is given

as a g-mSBD operator.
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Algorithm 1: GID (x,y,Z,P, G)
Input: x,y,Z := {Zi},P := {Pσ(Zi)(V), ∀Zi ∈ Z}, G
Output: Expression of P (y|do(x)) w.r.t. distributions in P

1 If ∃Zi ∈ Z such that P (y|do(x)) = Pzi(y) for some zi ∈ DZi , then return Pzi(y).
2 Let V← an(Y); P (v)← P (an(Y)); and G← G(an(Y)).
3 Let D := an(Y)G(V\X).
4 Find the C-component of G(D): D1, · · ·Dkd

.
5 foreach Dj ∈ {D1, · · ·Dkd

} do
6 foreach Zi ∈ Z do
7 Find the c-component Si

j in G(V\Zi) such that Dj ⊆ Si
j .

8 Q[Si
j ] = A0[S

i
j , ∅,Ri

j ;Zi
j := {Zi}, seqij ](sij , rij), where Ri

j := pa(Si
j)G(V\Zi)\Si

j . //
By Lemma 1

9 Run Q[Dj ] = SUBID(Dj ,S
i
j , Q[Si

j ], G(S
i
j)).

10 If Q[Dj ] ̸= FAIL, then break.
11 end
12 If Q[Dj ] = FAIL, then return FAIL.
13 end
14 P (y|do(x)) =

∑
d\y∈SD\Y

∏kd

j=1Q[Dj ]. // Apply Lemmas (2,3,4) if viable
15 return P (y|do(x))

a.1 Procedure SUBID(C,T, Q[T], G(T))
a.2 Let A := an(C)G(T) = {A1, A2, · · · , Ana} such that A1 ≺G · · · ≺G Ana in G(T).
a.3 Let Q[A] =

∑
t\a∈ST\A

Q[T]. // Apply Lemma 2 if viable
a.4 If A = C, then return Q[A].
a.5 If A = T, then return FAIL.
a.6 else
a.7 Let S be the c-component in G(A) such that C ⊆ S.

a.8 Let Q[S] :=
∏

{i:Ai∈S}

∑
bi+1∈SBi+1

Q[A]∑
bi∈SBi

Q[A] for Bi := A\Ai−1
. // Apply

Lemmas (2,3,4) if viable
a.9 return SUBID (C,S, Q[S], G(S))

a.10 end

Lemma 3 (Multiplication). Let Ai
0 := A0[Wi, ∅,Ri;Zi, seq

i](wi, ri) :=∏mi

j=1 Pzi
j
(wi,j |wj−1

i , rj−1
i \zij) for i ∈ {1, 2} where seqi := (zij)

mi

j=1. Let W := W1 ∪W2. Let
R := (R1 ∪R2)\W. Let (W,R) be ordered by ≺G. Let Z := Z1 ∪Z2. Assume the following: (1)
W1 ∩W2 = ∅; and (2) ∀Wj ∈ W, ∃Wi,k ∈ Wi such that (W

j−1
,R

j−1
) = (Wi

k−1
,Ri

k−1
).

Let seq := (zj)j:Wj∈W where zj = zik for all j. Then,

A1
0 ×A2

0 = A0[W, ∅,R;Z, seq](w, r) =
∏

j:Wj∈W

Pzj
(wj |wj−1, rj−1\zj). (4)

This lemma provides a graphical criterion where a product A1
0 ×A2

0 is given as a g-mSBD operator.
Lemma 4 (Division). Let Ai

0 := A0[Wi, ∅,Ri;Zi, seq
i](wi, ri) :=∏mi

j=1 Pzi
j
(wi,j |wj−1

i , rj−1
i \zij) for i ∈ {1, 2} where seqi := (zij)

mi

j=1. Let W := W1\W2.
Let R := (R1 ∪ W2) ∩ pre(W;G). Assume the following: (1) W2 ⊆ W1; and (2)
∀Wj ∈W, ∃W1,k ∈W1 such that (W

j−1
,R

j−1
) = (W1

k−1
,R1

k−1
), Zi,k = Zj and zi,k = zj .

Then,

A1
0/A

2
0 = A0[W, ∅,R;Z1, seq

1](w, r) =
∏

j:Wj∈W

Pzj (wj |wj−1, rj−1\zj). (5)

This lemma provides a graphical criterion where a product A1
0/A

2
0 is given as a g-mSBD operator.
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We have rewritten the identification algorithm proposed by Lee et al. [2019] as Algo. 1 to express
the g-identifiable causal effect as a combination of marginalizations, multiplications, and divisions
of g-mSBD. It’s worth of noting that the identification algorithm proposed by Lee et al. [2019] and
Algo. 1 are equivalent.

Theorem 1 (Expression of g-Identifiable Causal Effects). Algo. 1 returns any g-identifiable
causal effects as a function of a set {Ak

0} of g-mSBD adjustment operators in the form

P (y|do(x)) = f({Ak
0}Kk=1), (6)

where the function f(·) applies marginalization, multiplication, or division over g-mSBD operators
in {Ak

0} as specified by Algo. 1.

For concreteness, we demonstrate the application of Algo. 1 for Figs. (1a,1b), where the effects
P (y|do(x)) are g-identifiable. Detailed and visually friendly demonstrations are described in Ap-
pendix A.

Example 3 (Application of Algo. 1 to Example 1). Note Z = {∅, Z}. Line 3-4: D = {Z, Y }
where D1 := {Z} and D2 := {Y }. Line 5-13: Identify Q[D1] from Z1 = ∅ as follow. Note
D1 ⊆ S0, where S0 := V where Q[S0] = A0[S

0, ∅, ∅;Z0 := ∅, ∅](s0, ∅) = P (v). Run
Q[D1] = SUBID(D1,S

0, Q[S0], G) and obtain Q[D1] = A1
0 := A0[{W,Z},W,X; ∅, ∅](z, x) =∑

w∈SW
P (z|x,w)P (w). Lemmas (2,3,4) are used in running the sub-procedure. Now, identify

Q[D2] from Z2 = {Z} as follow. Note D2 ⊆ S1 := {W,X, Y }, the c-component in G(V\Z).
Note Q[S1] = A0[S

1, ∅, ∅;Z1 := {Z}, seq1](s1, ∅) = Pz(w, x, y), where seq1 = (z, z, z). We run
Q[D2] = SUBID(D2,S

1, Q[S1], G(S1)), and obtain Q[D2] = A2
0 := A0[Y, ∅, ∅;Z1, seq1](y, ∅) =

Pz(y). Lemma 2 is used in the sub-procedure. Line 14-15: P (y|do(x)) =
∑

z∈SZ
A1

0A
2
0. ■

Example 4 (Application of Algo. 1 to Example 2). Note Z = {X1, X2}. Line 3-4: D =
{R,W, Y } where D1 := {R}, D2 := {W}, and D3 = {Y }. Line 5-13: In G(V\X1), D1 =
S1
1 := {R}. Q[D1] = Q[S1

1] = A1
0 := A0[R, ∅, X2;Z1 := {X1}, seq1](r, x2) = P (r|do(x1), x2),

where seq1 = (x1). In G(V\X1), D2 ⊆ S1
2 := {X2,W, Y }. Q[S1

2] = A0[S
1
2, ∅, R;Z2 :=

{X1}, seq2](s12, r) = Px1(x2)Px1(w|x2, r, )Px1(y|x2, w, r) where seq2 = (x1, x1, x1). Run
Q[D2] = SUBID(D2,S

1
2, Q[S1

2], G(S
1
2)) = A2

0 := A0[{X2,W}, X2, R;Z2, seq2](w, r) =∑
x′
2∈SX2

Px1
(w|r, x′2, )Px1

(x′2) where seq2 = (x1, x1). Lemma 2 is used in the sub-procedure.
Since SUBID(D3,S

1
2, Q[S1

2], G(S
1
2)) return FAIL, we find the c-component S2

1 := {Y } where
D3 = S2

1. Note Q[D3] = Q[S2
1] = A3

0 := A0[Y, ∅, {R,W};Z3 := {X2}, seq3](y, {r, w}) =
Px2

(y|w, r), where seq3 = (x2). Line 14-15: Applying Lemma 3, A13
0 := A1

0 × A3
0 =

A0[{R, Y }, ∅, {X2,W};Z13 := {X1, X2}, seq13]({r, y}, {x2, w}) = Px1
(r|x2, )Px2

(y|r, w),
where seq13 = (x1, x2). Then, P (y|do(x1, x2)) =

∑
r,w∈SR,W

A13
0 A

2
0. ■

3 Estimating g-Identifiable Causal Effects

In this section, we develop an estimator for P (y|do(x)) using samples D := {Dσ(Zi) ∼
Pσ(Zi)(V) ∈ P} obtained from randomized experiments and observations (where Zi = ∅). We
use Pσ(Z) instead of Pz to highlight the distribution Dσ(Zi) ∈ D follows.

We first introduce an estimator for the g-mSBD adjustment that exhibits the doubly robust property.
The nuisance parameters for the g-mSBD adjustment are defined as follows:

Definition 2 (Nuisances for g-mSBD). Nuisances for g-mSBD A0 in Eq. (1) are {µi+1
0 , πi

0}m−1
i=1

defined as follows. Let µm+1
0 = µm+1 := 1w\c(W\C). For i = m− 1, · · · , 1,

µi+1
0 (W

i
,R

1:i
) := EPσ(Zi+1)

[
µi+2
0 (W

i+1
, ri+1,R

1:i
)|Wi

,R
1:i
, r0, zi+1

]
(7)

πi
0(W

i
,R

1:i
) :=

Pσ(Zi)(W
i
,R

1:i−1|zi, r0)

Pσ(Zi+1)(W
i
,R

1:i−1|zi+1, r0)

1ri(Ri)

Pσ(Zi+1)(Ri|W
i
,R

1:i−1
, zi+1, r0)

. (8)

Remark 1 (Simplification of Nuisances). Although the nuisances πi
0 may seem compli-

cated, they can be simplified in several important special cases. For example, πi
0 =

1ri(Ri)/Pσ(Z)(Ri|W
i
,R

i−1
, z, r0) if Z = {Z} for any Z ⊆ V where Z is possibly empty.
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In general, employing off-the-shelf classification methods for density ratio estimation is feasible,
leveraging the techniques outlined in Section 5.4 of Díaz et al. [2021].

We now introduce a g-mSBD estimator exhibiting the robustness properties using these nui-
sances. This estimator is motivated by the double/debiased machine-learning style estimators [Cher-
nozhukov et al., 2018, 2022]:
Definition 3 (DR-g-mSBD Estimators). Let Dσ(Zi) for Zi ∈ Z denote the experimental sam-
ples from randomizing the variable Zi. Let Dzi

for zi ∈ DZi
denote the subsamples of Dσ(Zi)

fixing R0\Zi = r0\zi and Zi = zi. A DR-g-mSBD estimator Â for the g-mSBD adjustment
A0[W,C,R;Z0 := {Zi}mi=1, seq := (zi)

m
i=1](w\c, r) is given as follows:

1. Randomly partition Dzi
into {Dzi,ℓ}ℓ∈[L]; i.e., Dzi

= ∪Lℓ=1Dzi,ℓ, ∀Zi ∈ Z and zi ∈ DZi
.

2. For each fold ℓ ∈ [L], let µi+1
ℓ denote learned µi+1

0 using Dzi+1\Dzi+1,ℓ for i = m, · · · , 2; and

πi
ℓ learned πi

0 for i = 1, · · · ,m− 1. Define µ̌i+1
ℓ := µi+1

ℓ (W
i
, ri,R

1:i−1
) and πi

ℓ :=
∏i

j=1 π
j
ℓ .

3. Estimate Â := Â({µj+1
ℓ , πj

ℓ}j∈[m−1],ℓ∈[L]) := (1/L)
∑L

ℓ=1 Âℓ({µj+1
ℓ , πj

ℓ}j∈[m−1]) where

Âℓ := Âℓ({µj+1
ℓ , πj

ℓ}j∈[m−1]) :=

m−1∑
j=1

EDzj+1,ℓ

[
πj
ℓ{µ̌

j+2
ℓ − µj+1

ℓ }
]
+ EDz1,ℓ

[
µ̌2
ℓ

]
, (9)

where EDzj ,ℓ
[·] is an empirical average over samples Dzj ,ℓ.

We now analyze the doubly robustness property of this estimator.
Proposition 1 (Asymptotic Analysis of g-mSBD Estimators). Assume that the nuisance estimates
µi
ℓ and πi

ℓ are L2-consistent; i.e., ∥µi+1
ℓ −µi+1

0 ∥Pσ(Zi+1)
= oPσ(Zi+1)

(1), ∥µ̌i+2
ℓ − µ̌i+2

0 ∥Pσ(Zi+1)
=

oPσ(Zi+1)
(1) and ∥πi

ℓ − πi
0∥Pσ(Zi+1)

= oPσ(Zi+1)
(1) for i = 1, · · · ,m− 1, and ∥µ̌2

ℓ − µ̌2
0∥Pσ(Z1)

=

oPσ(Z1)
(1). Let ni :=

∣∣Dzi

∣∣ for i ∈ {1, · · · ,m}. Then,

Â−A0 =

m∑
i=1

Ri +
1

L

L∑
ℓ=1

m−1∑
i=1

OPσ(Zi+1)

(
∥µi+1

ℓ − µi+1
0 ∥∥πi

ℓ − πi
0∥
)
, (10)

where Ri is a random variable such that n1/2i Ri converges in distribution to a mean-zero normal
random variable.

This estimator possesses a doubly robustness property since the estimator is bounded in probabil-
ity at rate n−1/2 (for n := min{n1, · · · , nm}, whenever OPσ(Zi+1)

(
∥µi+1

ℓ − µi+1
0 ∥∥πi

ℓ − πi
0∥
)
=

OP (n
−1/2
i+1 ) for all i.

We now construct an estimator for the g-identification expression using the DR-g-mSBD estimator
defined in Def. 3. The resulting estimator is called the MR-gID estimator:

Definition 4 (MR-gID Estimator). The MR-gID estimator ψ̂ for the identification expression of
the causal effect ψ0 := f({Ak

0}Kk=1) in Theorem 1 is given as follows: For each Ak
0 composing

f({Ak
0}Kk=1), let Âk := Âk({µj+1

k,ℓ , π
j
k,ℓ}j∈[mk−1],ℓ∈[L]) denote the DR-g-mSBD estimator with

nuisance estimates {µj+1
k,ℓ , π

j
k,ℓ} for the true nuisances {µj+1

k,0 , π
j
k,0}. Then,

ψ̂ := f({Âk}Kk=1). (11)

We impose assumptions on the identification expression and its nuisances for further analysis.
Assumption 2 (Analysis of MR-gID ). The identification function f({Ak}Kk=1) in Thm. 1 and each
nuisances {µi+1

k,ℓ , π
i
k,ℓ}k,ℓ for Âk satisfy the following properties:

1. Twice differentiability: f({Ak}Kk=1) is twice continuously Frechet differentiable w.r.t. {Ak}Kk=1

w.r.t. {Ak}Kk=1.
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2. Boundedness: ∀k ∈ [K] and ∀Zi ∈ Z, ∇Akf({Aj
0}Kj=1)[Â

k −Ak
0 ] = OPσ(Zi)

(Âk −Ak
0).

3. L2-Consistency: ∥µi+1
k,ℓ −µ

i+1
k,0 ∥Pσ(Zk

i+1
)
= oP

σ(Zk
i+1

)
(1), ∥µ̌i+2

k,ℓ − µ̌
i+2
k,0 ∥Pσ(Zk

i+1
)
= oP

σ(Zk
i+1

)
(1),

∥πi
k,ℓ − πi

k,0∥Pσ(Zk
i+1

)
= oP

σ(Zk
i+1

)
(1), and ∥µ̌2

k,ℓ − µ̌2
k,0∥Pσ(Zk

1 )
= oP

σ(Zk
1 )
(1).

Assumption 2 is imposed to limit the error of the MR-gID, which is a linear function of the errors of
each DR-g-mSBD estimator.

Theorem 2 (Asymptotic Analysis of MR-gID). Suppose Assumption 2 holds. Let nk,i := |Dzk
i
|

for Zk
i ∈ Z and zki ∈ DZk

i
. Let ψ̂ denote the MR-gID estimator in Def. 4 for the causal effect

ψ0 := f({Ak
0}Kk=1) in Theorem 1. Then, the error of ψ̂ is given as

ψ̂ − ψ0 =

K∑
k=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

K∑
k=1

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥).

(12)

We highlight that the MR-gID ψ̂ exhibits robustness property since ψ̂ − ψ0 for ψ0 = P (y|do(x))
is bounded at rate n−1/2 (for n = min{nk,i} and P ∈ P) even when all nuisances {µi+1

k,ℓ , π
i
k,ℓ} are

bounded at slower n−1/4 rate. Furthermore, the MR-gID estimator demonstrates multiply robust-
ness. This is because the error of the MR-gID is a linear function of the error of DR-g-mSBD, which
showcases the doubly robustness property.
Corollary 2 (Multiply Robustness (Corollary of Thm. 2)). Suppose (1) Assumption 2 holds; (2)
Either πi

k,ℓ = πi
k,0 or µj

k,ℓ = µj
k,0 for j = mk, · · · , i + 1 for all i, ℓ, k; and (3) all nuisances

{πi
k,ℓ, µ

i+1
k,ℓ }i,ℓ,k are bounded by some constant. Then, the MR-gID ψ̂ in Def. 4 is a consistent

estimator of ψ0.

For concreteness, we illustrate the application of Thm. 2 for Examples (1, 2). Detailed procedures
are provided in Appendix A.
Example 5 (Application of Thm. 2 to Example 1). Recall that P (y|do(x)) = f({A1

0, A
2
0}) :=∑

z∈SZ
A1

0A
2
0. The nuisance set for A1

0 is µ2
1,0(X,W ) := EP [1z(Z)|X,W ] and π1

1,0(X,W ) :=

1x(X)/P (X|W ). Then, the estimator for A1
0 is Â1 := Â1({µ2

1,ℓ, π
1
1,ℓ}ℓ∈[L]) defined in Def. 3. The

nuisance set for A2
0 is µ2

2,0 := EPσ(Z)
[1y(Y )]. Then, the estimator for A2

0 is Â2 := Â2({µ2
2,ℓ}ℓ∈[L]).

Then, the estimator is constructed as Def. 4, as f({Â1, Â2}). By Thm. 2, the error of the estimator
is OP (n

−1/2
0 ) +OP (n

−1/2
z ) + (1/L)

∑L
ℓ=1OP (∥µ2

1,ℓ − µ2
1,0∥∥π1

1,ℓ − π1
1,0∥), where n0 := |D| and

nz := |Dz| where D ∼ P and Dz ∼ Pz .
Example 6 (Application of Thm. 2 to Example 2). Recall that P (y|do(x1, x2)) =
f({A2

0, A
13
0 }) =

∑
r,w∈SR,W

A2
0A

13
0 . The nuisance set for A2

0 is µ2
2,0 := EPx1

[1w(W )|R,X2] and

π1
1,0 := 1r(R)/Px1(R|X2). Then, the estimator for A2

0 is Â2 := Â2({µ2
2,ℓ, π

1
1,ℓ}ℓ∈[L]). The nui-

sance set for A13
0 is µ2

13,0 := EPx2
[1r,y(R, Y )|R,W ] and π1

13,0 :=
Pσ(X1)(R|x2,x1)

Pσ(X2)(R|x2)
1w(W )

Pσ(X2)(W |R,x2)
.

Then, the estimator is Â13 = Â13({µ2
13,0, π

1
13,0}ℓ∈[L]). Then, the estimator is constructed as Def. 4,

as f({Â13, Â2}). By Thm. 2, the error of the estimator is OPσ(X1)
(n

−1/2
1 ) + OPσ(X2)

(n
−1/2
2 ) +

(1/L)
∑L

ℓ=1{OPσ(X1)
(∥µ2

2,ℓ − µ2
2,0∥∥π1

2,ℓ − π1
2,0∥) + OPσ(X2)

(∥µ2
13,ℓ − µ2

13,0∥∥π1
13,ℓ − π1

13,0∥)},
where n1 := |D1| and n2 := |D2| where D1 ∼ Px1 and D2 ∼ Px2 .

4 Experiments

In this section, we demonstrate the MR-gID estimator from Definition (4) through Examples (1,2)
and Project STAR dataset[Krueger and Whitmore, 2001, Schanzenbach, 2006]. For each example,
the proposed estimator is constructed using a dataset D := {DZi , Zi ∈ Z} simulated from an
underlying SCM. Our goal is to provide empirical evidence of the fast convergence behavior and
the robustness property of the proposed estimator compared to competing baseline estimators. We
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Fig. 1a

(Example 1)

Scenario 1

Fig. 1b

(Example 2)

Scenario 2 Scenario 3 Scenario 4

Figure 2: AAE Plots for Examples (1,2) for Scenarios {1,2,3,4} depicted in the Experimental Setup
section. The x-axis and y-axis are the number of samples and AAE, respectively.

consider two standard baselines in the literature: the ‘regression-based estimator (reg)’ only uses the
regression nuisance parameters µ2 for µ2

0 defined in Def. 2, and the ‘probability weighting-based
estimator (pw)’ only uses the probability weighting parameters πm−1 for πm−1

0 defined in Def. 2,
while our MR-gID uses both in estimating the g-mSBD operatorsAk composing f({Ak}) in Thm. 1.
Details of the regression-based (‘reg’) and the probability weighting-based (‘pw’) estimators are
provided in Appendix A. The details of the simulation are in Appendix (D, E).

4.1 Synthetic Dataset Analysis

Accuracy Measure. We compare the proposed estimator (‘mr’) in Def. 4 to the regression-based es-
timator (‘reg’) and the probability weighting-based estimator (‘pw’). In particular, we use T est(x) for
est ∈ {reg, pw,mr} to denote the g-ID estimators that leverage regression-based (‘reg’), probability
weighting-based (‘pw’), and MR-gID in estimating each operatorAk in the identification expression
f({Ak}) of the causal effect P (y|do(x)). We assess the quality of the estimators by computing the
average absolute error AAEest := 1

|DX|
∑

x∈DX
|T est(x)− P (y|do(x))| where |DX| is the cardi-

nality of DX. Nuisance functions are estimated using gradient boosting models called XGBoost
[Chen and Guestrin, 2016]. We ran 100 simulations for each n = {200, 400, 600, 800, 1000} for
n := |DZ| for ∀Z ⊆ Z. We label the box-plot for these AAEs as ‘AAE-plot’.

Experimental Setup. We evaluate the AAEest for Examples (1,2) in four scenarios:

• (Scenario 1) There were no noises in estimating nuisances.
• (Scenario 2) We introduced a converging noise ϵ in estimating the nuisance, decaying at a n−α

rate (i.e., ϵ ∼ Normal(n−α, N−2α)) for α = 1/4 to emphasize the errors induced by the finiteness
of samples. This scenario is motivated by [Kennedy, 2020]

• (Scenario 3) Nuisance {µi+1
k,ℓ }ℓ,k,i are wrongly estimated - simulated by training the model with

a random matrix having the same dimension as the input matrix.
• (Scenario 4) Nuisance {πi

k,ℓ}ℓ,k,i are wrongly estimated – simulated with wrong inputs.

In Scenario 1, we aim to show that all estimators T reg, T pw, Tmr are converging to the true causal
quantity P (y|do(x)). In Scenario 2, we aim to show that the MR-gID estimator exhibits fast con-
vergence behavior compared to competing estimators. In Scenario (3,4), our goal is to highlight the
multiply robustness property of the MR-gID estimator.
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X1

X2

W

Y

R

(a) Graph (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 3: A graph and the AAE-plot for Project STAR.

Experimental Results. The AAE plots for all scenarios are presented in Fig. 2. All the estimators
(‘reg’, ‘pw’, ‘mr’) converge in Scenario 1 as the sample size grows. In Scenario 2, where the
estimated nuisances are controlled to be bounded in probability at n−1/4 rate, the proposed MR-
gID ψ̂ outperforms the other two estimators by achieving fast convergence. This result corroborates
the robustness property in Thm. 2. In Scenarios (3,4), where the estimated nuisances for {µi}mi=2

or {πi}m−1
i=1 are wrongly specified, the MR-gID estimator converges while other estimators fail to

converge. This result corroborates the multiply robustness property in Coro. 2.

4.2 Project STAR Dataset

This section provides an overview of the analysis conducted on Project STAR dataset [Krueger and
Whitmore, 2001, Schanzenbach, 2006]. Project STAR investigated the impact of teacher/student
ratios on academic achievement for students in kindergarten through third grade. The dataset D
includes class size for kindergarten (X1), the academic outcome in kindergarten (W ), the academic
outcome in second grade (R), class size for third grade (X2), and the academic outcome in the third
grade (Y ). We assume that the SCMM generating D can be depicted in Figure 3a. The detailed
procedures can be found in Appendix E. We aim to study E[Y |do(x1, x2)].
Experimental Setup. We generate two datasets D1 and D2 from the original dataset D to demon-
strate the gID estimation. D1 is a random subsample of D with only {X1,W,R} and follows
Pσ(X1)(X1,W,R). D2 is constructed by resampling from D in a way that the confounding bias
between X1 and W , and X1 and Y presents, following Pσ(X2)(X1,W,X2, R, Y ). We conducted
100 simulations by generating new instances of D1 and D2 to create the AAE plot. Estimators were
constructed solely from D1 and D2, with D used exclusively to construct the ground-truth estimate.

Experimental Results. We evaluated the AAEest of estimators T est for est ∈ {reg, pw,mr}. The
AAE plots for scenarios (2,3,4) are in Figs. (3b,3c,3d). Our findings indicate that the MR-gID
estimator Tmr consistently provided reliable estimates for the ground-truth quantity.

5 Conclusions

We present a framework for estimating the causal effect P (y|do(x)) by combining multiple observa-
tional and experimental datasets and a causal graph G. We introduce the generalized multi-outcome
sequential back-door adjustment (g-mSBD) operator (Def. 1) and its operations. We show that any
g-identifiable causal effects can be expressed as a function of the g-mSBD operators as specified
in Algo. 1 (Thm. 1). We then develop an estimator called DR-g-mSBD (Def. 3) for the g-mSBD
operator and analyze its statistical properties in Prop. 1. Based on the DR-g-mSBD estimator, we
develop the MR-gID estimator (Def. 4) and analyze its statistical properties (Thm. 2 and Coro. 2)
which exhibits fast convergence and multiply-robustness. Our experimental results demonstrate that
the MR-gID estimator is a consistent and robust estimator of P (y|do(x)) against model misspecifi-
cation and slow convergence.
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A Further Details

We restate the notation here. To clarify the relationship between the experimental samples, where
randomization is applied to Z ⊆ V, and the distribution Pz(V\z), we introduce the notation
Pσ(Z)(V), where σ(Z) indicates that Z has been randomized. The distribution Pσ(Z)(V) is de-
rived from the Structural Causal Model (SCM), where the original equation Z ← fZ(paz, uz) for
Z ∈ Z is replaced by a function that assigns a value to Z = z randomly, independent of other
endogenous variables. For example, assigning Z = 1 and 0 with a probability of 0.5 each.

It should be noted that when considering observational data, P := Pσ(∅). For any sets A, B, and
Z ⊆ V, the interventional distribution can be represented as P (A|do(z),B) = Pσ(Z)(A|Z =
z,B) according to the definition of the do-operator and the Pσ(Z) distribution. To emphasize that
the distribution is induced from randomization and conditioning on Z = z, we use Pz(A|B) :=
Pσ(Z)(A|Z = z,B). The experimental samples obtained from randomization σ(Z) lead to samples
Dσ(Z) that follow Pσ(Z)(V). We denote the subsample of Dσ(Z), where Z = z is fixed, as Dz,
which follows Pz(V). ■

A.1 Example 3

We provide a detailed illustration of Example 3, demonstrating the application of Lemmas (2,3,4).

Input: x = {x}, y := {y}, Z := {∅, Z}. The goal is to identify P (y|do(x)) from P which contains
P and Pσ(Z)(V). In the identification, P (V) and Pz(V\Z) := Pσ(Z)(V|z) for z ∈ DZ are used.

Line 3-4: Since V\X = {Z, Y }, D = an(Y )G(Z,Y ) = {Z, Y }. Let D1 := {Z} and D2 := {Y }.
We now run Line 5-13. We first run D1 = {Z} and Z1 = ∅. Then,

1. Line 7: The c-component S1
1 = V = {W,X,Z, Y } includes D1.

2. Line 8: The c-factor Q[S1
1] is identified as

Q[S1
1] = A0[S

1
1, ∅, ∅;Z1

1 := ∅, ∅](s11, ∅) = P (w)P (x|w)P (z|x,w)P (y|w, x, z).

3. Line 9: Run Q[D1] = SUBID(D1,S
1
1, Q[S1

1], G(S
1
1)).

(a) Line a.(2-3): A = an(Z)G(V) = {W,X,Z}. Then, by Lemma 2,

Q[A] =
∑

y∈SY

Q[S] = A0[{W,X,Z}, ∅, ∅; ∅, ∅]({w, x, z}, ∅) = P (w)P (x|w)P (z|x,w).

(b) Line a.(7-8): Note S = {W,Z} is a c-component in G(A) containing D1 = {Z}.
Then,

Q[S] = (
∑

x,z∈SX,Z

Q[A])× Q[A]∑
z∈DZ

Q[A]
.

By Lemma 2,∑
x,z∈SX,Z

Q[A] = A0[W, ∅, ∅; ∅, ∅](w, ∅) = P (w),

∑
z∈SZ

Q[A] = A0[{W,X}, ∅, ∅; ∅, ∅]({w, x}, ∅, ∅) = P (w)P (x|w).

By Lemma 4,

Q[A]∑
z∈SZ

Q[A]
=
A0[{W,X,Z}, ∅, ∅; ∅, ∅]({w, x, z}, ∅)
A0[{W,X}, ∅, ∅; ∅, ∅]({w, x}, ∅, ∅)

= A0[Z, ∅, {W,X}; ∅, ∅](z, {w, x})
= P (z|w, x).
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By Lemma 3,

Q[S] = A0[W, ∅, ∅, ∅; ∅, ∅](w, ∅)×A0[Z, ∅, {W,X}; ∅, ∅](z, {w, x})
= A0[{W,Z}, ∅, X; ∅, ∅]({w, z}, x)
= P (w)P (z|w, x),

because the order is W ≺G X ≺G Z.

(c) Line a.9: Run Q[D1] = SUBID(D1,S, Q[S], G(S)).

(d) Line a.(2-3): A = an(D1)G(S) = {Z} = D1. Then, by Lemma 2,

Q[D1] =
∑
w∈W

Q[S]

= A1
0 := A0[{W,Z},W,X; ∅, ∅](z, x)

=
∑

w∈SW

P (w)P (z|w, x).

We now run Line 5-13. We first run D2 = {Y } and Z1 = ∅. We note that it fails since the
sub-procedure subID(D2,S

1
1, Q[S1

1], G(S
1
1)) fails. Specifically, A := an(D2)G(S1

1)
= V = S1

1.
Therefore, by Line a.5, the procedure fails.

We now run D2 with Z2 = {Z}.

1. Line 7: The c-component S1
2 = V\Z = {W,X, Y }.

2. Line 8: Q[S1
2] = A0[S

1
2, ∅, ∅, ;Z1

2 = {Z}, seq12](s12, ∅) = Pz(w)Pz(x|w)Pz(y|x,w),
where seq12(Wj) = (z, z, z).

3. Line 9: We run Q[D2] = SUBID(D2,S
1
2, Q[S1

2], G(S
1
2)).

4. Line a.(2-3): A = an(D2)G(S1
2)

= {Y } = D2. Then, by Lemma 2

Q[D2] =
∑

w,x∈SW,X

Q[S1
2] (A.1)

=
∑

w,x∈SW,X

A0[{W,X, Y }, ∅, ∅;Z1
2 = {Z}, seq12](y; ∅) (A.2)

= A0[Y, ∅, ∅;Z1
2 = {Z}, seq12]({y}; ∅) (A.3)

= Pz(y). (A.4)

Let

Q[D1] = A1
0 := A0[{W,Z},W,X; ∅, ∅](z, x) (A.5)

Q[D2] = A2
0 := A0[Y, ∅, ∅;Z1

2 = {Z}, seq12]({y}; ∅). (A.6)

By Line 14,

P (y|do(x)) =
∑

z∈SZ

Q[D1]Q[D2] =
∑

z∈SZ

A1
0A

2
0. (A.7)

A.2 Example 4

We provide a detailed illustration of Example 4, demonstrating the application of Lemmas (2,3,4).

Input: x = {x1, x2}, y := {y}, Z := {X1, X2}. The goal is to identify P (y|do(x1, x2)) from
P := {Pσ(X1)(V), Pσ(X2)(V)}. Specifically, two distributions Px1

(V\X1) and Px2
(V\X2) will

be used in the identification task.

Line 3-4: D = an(Y )G(R,W,Y ) = {R,W, Y }. Let D1 := {R}, D2 := {W} and D3 = {Y }.
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Line 5-13: Consider D1 = {R} and Z1 := {X1}. Note S1
1 := {R} = D1 is a c-component in

G(V\X1). Therefore, Q[D1] = Q[S1
1], where

Q[D1
1] = A1

0 := A0[R, ∅, X2;Z1
1 := {X1}, seq11](r, x2) = Px1

(r|x2), (A.8)

where seq11 := (x1).

Line 5-13: We now consider D3 = {Y }. Note that Q[D3] is not identifiable from Px1
(V\X1).

To witness, consider the c-component S1
3 := {W,X2, Y } in G(V\X1). Then, the sub-procedure

subID(D3,S
1
3, Q[S1

3], G(S
1
3)) fails because failure condition in line a.5 is triggered. Specifically,

an(Y )G(S1
3)

= S1
3.

Therefore, we consider D3 = {Y } with Z3 := x2. Note S2
3 := {Y } = D3 is a c-component in

G(V\X2). Therefore, Q[D3] = Q[S2
3] which is given by line 8:

Q[D3] = A0[Y, ∅, {R,W};Z2
3 := {X2}, seq23 = (x2)](y, {r, w}) (A.9)

= Px2
(y|r, w). (A.10)

Line 5-13: Consider D2 = {W} and Z1 := X1. Note that Q[D2] is not identifiable from
Px2

(V\X2). To witness, consider the c-component S2
2 := {X1,W} in G(V\X2). Then, the

sub-procedure subID(D2,S
2
2, Q[S2

2], G(S
2
2)) fails because failure condition in line a.5 is triggered.

Specifically, an(W )G(S2
2)

= S2
2.

Therefore, we consider D2 = {W} with Z1 := X1.

1. Note S1
2 = {X2,W, Y } is a c-component in G(V\X1) containing D2. Then,

Q[S1
2] = A0[{X2,W, Y }, ∅, R;Z1

2 := {X1}, seq12 = (x1, x1, x1)]({x2, w, y}, r) (A.11)
= Px1

(x2)Px1
(w|r, x2)Px1

(y|x2, w, r). (A.12)

2. Run Q[D2] = SUBID(D2,S
1
2, Q[S1

2], G(S
1
2)).

3. Line a.(2-3): A = an(W )G(S1
2)

= {W} = D2. Then,

Q[D2] =
∑

y,x2∈SY,X2

Q[S1
2] (A.13)

=
∑

y,x2∈SY,X2

A0[{X2,W, Y }, ∅, R;Z1
2, seq

1
2]({x2, w, y}, r) (A.14)

= A0[{X2,W}, X2, R;Z1
2, seq

1
2 = (x1, x1)](w, r) (A.15)

=
∑

x′
2∈X2

Px1
(x2)Px1

(w|r, x′2). (A.16)

Also, by Lemma 3,

Q[D1]Q[D3] (A.17)

= A13
0 (A.18)

:= A0[R, ∅, X2;Z1
1 := {X1}, seq11](r, x2)×A0[Y, ∅, {R,W};Z2

3 := {X2}, seq23](y, {r, w})
(A.19)

= A0[{R, Y }, ∅, {X2,W}; Z13 := {X1, X2}, seq13 = (x1, x2), G]({r, y}, {x2, w}) (A.20)
= Px1

(r|x2)Px2
(y|r, w). (A.21)

Finally,

P (y|do(x1, x2)) =
∑

r,w∈SR,W

A2
0A

13
0 . (A.22)
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A.3 Example 5

A.3.1 Specification of Nuisances

Recall that the topological order of the variable is W ≺G X ≺G Z ≺G Y . Also, P (y|do(x)) =∑
z∈SZ

A1
0A

2
0 where

A1
0 := A0[{W,Z},W,X; ∅, ∅](z, x) =

∑
w∈SW

P (z|x,w)P (w) (A.23)

A2
0 := A0[Y, ∅, ∅; {Z}, (z)](y, ∅) = Pz(y) := Pσ(Z)(y|z). (A.24)

That is,

P (y|do(x)) = f(A1
0, A

2
0) :=

∑
z∈SZ

A1
0A

2
0. (A.25)

By leveraging the definition of the nuisance in Def. 2, the nuisance composing A1
0 is {µ2

1,0, π
1
1,0}

which are defined as follow:

µ2
1,0(X,W ) := EP [1z(Z)|X,W ] ,

π1
1,0(X,W ) := 1x(X)/P (X|W ).

The nuisance composing A2
0 is {µ2

2,0} which is µ2
2,0 := EPz

[1y(Y )].

A.3.2 Construction of Estimators

We apply the procedure in Def. 3 to construct estimators Â1 and Â2 for A1
0 and A2

0. We choose
L = 2. We first construct Â1 for the fixed {z, x} ∈ DZ,X . We note that Â1

ℓ for ℓ ∈ {1, 2} is given
as follow: For a fixed z, x,

Â1
ℓ := EDℓ

[
π1
ℓ (X,W ){1z(Z)− µ2

1,ℓ(X,W )}+ µ2
1,ℓ(x,W )

]
, (A.26)

and

Â1 = 1/L

L∑
ℓ=1

Â1
ℓ , (A.27)

where π1, µ2 are nuisances estimated using D\Dℓ. Specifically, µ2
1,ℓ(X,W ) is obtained by using

the XGBoost [Chen and Guestrin, 2016] regression model which regresses 1z(Z) onto the {X,W}
using D\Dℓ. µ2

1,ℓ(x,W ) is evaluated from Dℓ after fixing a column for X to x. In similar, π1 as
follow: we first model P (X|W ) by regressing X onto W from the data D\Dℓ using the XGBoost
[Chen and Guestrin, 2016]. Then, we evaluate π1

1,0(X,W ) by plugging in the trained P (X|W ).

We now construct Â2 for the fixed z and y. We first take the subsamples Dz from the experimental
samples Dσ(Z) ∈ D, where Dz is the sample where Z = z. Then, we compute the following:

Â2 = µ2
2 = EDz

[1y(Y )] . (A.28)

Then, following Def. 4, the MR-gID is constructed as follow:

f(Â1, Â2) =
∑

z∈DZ

Â1Â2. (A.29)
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A.4 Example 6

A.4.1 Specification of Nuisances

Recall that the topological order of the variable is X1 ≺G X2 ≺G R ≺G W ≺G Y . Also,

A2
0 := A0[{X2,W}, {X2}, R;Z2 = {X1}, seq2 = (x1, x1)](w, r) (A.30)

=
∑

x′
2∈SX2

Px1(w|r, x′2)Px1(x
′
2) (A.31)

A13
0 := A0[{R, Y }, ∅, {X2,W};Z13 = {X1, X2}, seq13 = (x1, x2)]({r, y}, {x2, w}) (A.32)

= Px1(r|x2)Px2(y|r, w). (A.33)

Then,

P (y|do(x1, x2)) =
∑

r,w∈SR,W

A2
0A

13
0 . (A.34)

The nuisance composing A2
0 is {µ2

2,0, π
1
2,0} which are defined as follow:

µ2
2,0(R,X2) := EPx1

[1w(W )|R,X2] , (A.35)

π1
2,0(R,X2) := 1r(R)/Px1

(R|X2). (A.36)

The nuisance composing A13
0 is {µ2

2,0, π
1
2,0} which are defined as follow:

µ2
13,0(R,W ) := EPx2

[1r,y(R, Y )|R,W ] (A.37)

= EPσ(X2)
[1r,y(R, Y )|R,W, x2] (A.38)

= 1r(R)EPσ(X2)
[1y(Y )|R,W, x2] , (A.39)

and

π1
13,0(X2,W ) :=

Pσ(X1)(R|x2, x1)
Pσ(X2)(R|x2)

1w(W )

Pσ(X2)(W |R, x2)
. (A.40)

A.4.2 Construction of Estimators

We apply the procedure in Def. 3 to construct estimators Â2 and Â13 for A2
0 and A13

0 . We choose
L = 2. We first construct Â2 for the fixed {w, r, x1}. We note that Â2 := (1/L)

∑L
ℓ=1 Â

2
ℓ for

ℓ ∈ {1, 2} where Â2
ℓ is given as follow:

Â2
ℓ := EDx1,ℓ

[
π1
2,ℓ(R,X2){1w(W )− µ2

2,ℓ(R,X2)}+ µ2
2,ℓ(r,X2)

]
, (A.41)

where Dx1
is a subsample of Dσ(X1) fixing X1 = x1, and π1

2,ℓ, µ
2
2,ℓ are nuisances trained using

Dx1\Dx1,ℓ. We note that µ2
2,ℓ(R,X2) is constructed by regressing 1w(W ) onto {R,X2}. Also,

π1
2,ℓ(R,X2) is constructed by regressing R onto X2.

We now construct Â13 := (1/L)
∑L

ℓ=1 Â
13
ℓ for ℓ ∈ {1, 2} where Â13

ℓ is given as follow:

Â13
ℓ := EDx2,ℓ

[
π1
13,ℓ(X2,W ){1r,y(R, Y )− µ2

13,ℓ(R,W )}
]
+ EDx1,ℓ

[
µ2
13,ℓ(R,w)}

]
, (A.42)

where Dx1
is a subsample of Dσ(X1) fixing X1 = x1, and Dx1

is a subsample of Dx1
fixing

X2 = x2. π1
2,ℓ, µ

2
2,ℓ are nuisances trained using Dx1

\Dx1,ℓ and Dx2
\Dx2,ℓ.

A.5 Details on Regression-based (REG) and Probability Weighting-based (PW) estimators.

In this section, we provide details on two alternative g-ID estimators used in Sec. 4: T reg :=

f({Âk,reg}Kk=1}) (‘regression-based estimators’) where Âk,reg denotes the regression-based estima-
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tor for the g-mSBD operator, and T pw = f({Âk,pw}Kk=1}) (‘probability weighting-based estimators)
where Âk,reg denotes the probability weighting-based estimator for the g-mSBD operator.

A.5.1 Regression-based Estimator

The regression-based g-mSBD estimator is defined as follows:

Definition A.1 (Regression-based g-mSBD Estimator). Let Dσ(Zi) for Zi ∈ Z denote the exper-
imental samples from randomizing the variable Zi. Let Dzi

for zi ∈ DZi
denote the subsamples

of Dσ(Zi) fixing R0\Zi = r0\zi and Zi = zi. A regression-based estimator Âreg for the g-mSBD
adjustment A0[W,C,R;Z0 := {Zi}mi=1, seq := (zi)

m
i=1](w\c, r) is given as follows:

1. Randomly partition Dzi into {Dzi,ℓ}ℓ∈[L]; i.e., Dzi = ∪Lℓ=1Dzi,ℓ, ∀Zi ∈ Z and zi ∈ DZi .

2. For each fold ℓ ∈ [L], let µi+1
ℓ denote learned µi+1

0 using Dzi+1\Dzi+1,ℓ for i = m, · · · , 2.

Define µ̌i+1
ℓ := µi+1

ℓ (W
i
, ri,R

1:i−1
).

3. Estimate Âreg := Âreg({µj+1
ℓ }j∈[m−1],ℓ∈[L]) := (1/L)

∑L
ℓ=1 Â

reg
ℓ ({µj+1

ℓ }j∈[m−1]) where

Âreg
ℓ := Âreg

ℓ ({µj+1
ℓ }j∈[m−1]) := EDz1,ℓ

[
µ̌2
ℓ

]
. (A.43)

The error of the regression-based estimator is given as follows:

Proposition A.1 (Error Analysis of the regression-based g-mSBD estimator). Suppose ∥µ2
ℓ −

µ2
0∥Pσ(Z1)

= oPσ(Z1)
(1). Then,

Âreg −A0 = OPσ(Z1)
(n

−1/2
1 ) +

1

L

L∑
ℓ=1

OPσ(Z1)
(∥µ2

ℓ − µ2
0∥). (A.44)

Proof of Proposition A.1. We note that

A0 = EPσ(Z1)

[
µ̌2
0|z1, r0

]
(A.45)

by the analysis in Lemma S.2. Therefore, by Lemma S.7,

Âreg
ℓ −A0 = EDz1,ℓ−Pσ(Z1)|r0,z1

[
µ̌2
0

]
(A.46)

+ EDz1,ℓ−Pσ(Z1)|r0,z1

[
µ̌2
ℓ − µ̌2

0

]
(A.47)

+ EPσ(Z1)

[
µ̌2
ℓ − µ̌2

0|r0, z1
]
. (A.48)

By the central limit theorem,

Eq. (A.46) = OPσ(Z1)
(n

−1/2
1,ℓ ), (A.49)

where n1,ℓ := |Dz1,ℓ|.
By [Kennedy et al., 2020, Lemma 2] and the given assumption that ∥µ2

ℓ − µ2
0∥Pσ(Z1)

= oPσ(Z1)
(1),

Eq. (A.47) = OPσ(Z1)
(1/n

−1/2
1,ℓ ). (A.50)

Finally, by applying Cauchy-Schwarz inequality,

Eq. (A.48) = OPσ(Z1)
(∥µ̌2

ℓ − µ̌2
0∥). (A.51)
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Finally,

Âreg −A0 =
1

L

L∑
ℓ=1

(Âreg
ℓ −A0) (A.52)

=
1

L

L∑
ℓ=1

(
OPσ(Z1)

(n−1/21,ℓ) +OPσ(Z1)
(∥µ̌2

ℓ − µ̌2
0∥)
)

(A.53)

= OPσ(Z1)
(n−1/21) +

1

L

L∑
ℓ=1

OPσ(Z1)
(∥µ2

ℓ − µ2
0∥). (A.54)

A.5.2 Probability-weighting based Estimator

In this section, we define and analyze the probability weighting-based g-mSBD estimator. The
probability-weighting-based estimator is defined as follows:
Definition A.2 (Probability-weighting-based g-mSBD Estimator). LetDσ(Zi) for Zi ∈ Z denote
the experimental samples from randomizing the variable Zi. Let Dzi

for zi ∈ DZi
denote the

subsamples of Dσ(Zi) fixing R0\Zi = r0\zi and Zi = zi. A probability weighting-based estimator
Âpw for the g-mSBD adjustment A0[W,C,R;Z0 := {Zi}mi=1, seq := (zi)

m
i=1](w\c, r) is given as

follows:

1. Randomly partition Dzi
into {Dzi,ℓ}ℓ∈[L]; i.e., Dzi

= ∪Lℓ=1Dzi,ℓ, ∀Zi ∈ Z and zi ∈ DZi
.

2. For each fold ℓ ∈ [L], let πi
ℓ denote learned πi

0 using Dzi
\Dzi,ℓ for i = m − 1, · · · , 1. Let

πm−1
ℓ :=

∏m−1
i=1 πi

ℓ.

3. Estimate Âpw := Âpw({πj
ℓ}j∈[m−1],ℓ∈[L]) := (1/L)

∑L
ℓ=1 Â

pw
ℓ ({πj

ℓ}j∈[m−1]) where

Âpw
ℓ := Âpw

ℓ ({πj
ℓ}j∈[m−1]) := EDzm,ℓ

[
πm−1
ℓ 1w\c(W\C)

]
. (A.55)

Lemma S.1 (Representation of the g-mSBD operator using Probability Weighting). The g-
mSBD adjustment A0 in Def. 1 can be represented as

A0 = EPσ(Zm)

[
πm−1
0 1w\c(W\C)|zm, r0

]
. (A.56)

Proof of Lemma S.1. It suffices to show that, for k = m− 1, · · · , 1,

EPσ(zk+1)

[
πk
0 µ̌

k+2
0 |zk+1, r0

]
= EPσ(zk)

[
πk
0 µ̌

k+1
0 |zk, r0

]
. (A.57)

If this holds, Lemma S.1 can be shown as follows:

A0 = EPσ(z1)

[
µ̌2
0|z1, r0

]
= EPσ(z2)

[
π1
0µ̌

3
0|z2, r0

]
= EPσ(zm)

[
πm−1
0 µ̌m+1

0 |zm, r0
]

= EPσ(Zm)

[
πm−1
0 1w\c(W\C)|zm, r0

]
.

Eq. (A.57) holds as follows:

EPσ(zk+1)

[
πk
0 µ̌

k+2
0 |zk+1, r0

]
= EPσ(zk+1)

[
πk
0µ

k+1
0 |zk+1, r0

]
= EPσ(zk)

[
πk−1
0 µ̌k+1

0 |zk, r0
]
.

This completes the proof.
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Equipped with Lemma S.1, we analyze the error of the probability-weighting-based estimator as
follow:

Proposition A.2 (Error Analysis of the probability weighting-based g-mSBD estimator). Sup-
pose ∥{π1

ℓ τ
2
ℓ − π1

0τ
2
0 }∥Pσ(Z2)

= oPσ(Z2)
(1). Then,

Âpw −A0 = OPσ(Z,)
(n−1/2

m ) +
1

L

L∑
ℓ=1

OPσ(Zm)
(∥πm

ℓ − πm
0 ∥). (A.58)

Proof of Proposition A.2. By Lemma S.7 and Assumption 1,

Âpw
ℓ −A0 = EDzm,ℓ−Pσ(Zm)|zm,r0

[
πm
0 1w\c(W\C)

]
(A.59)

+ EDzm,ℓ−Pσ(Zm)|zm,r0

[
(πm − πm

0 )1w\c(W\C)
]

(A.60)

+ EPσ(Zm)|zm,r0

[
(πm − πm

0 )1w\c(W\C)
]
. (A.61)

By the central limit theorem,

Eq. (A.59) = OPσ(Zm)
(n

−1/2
m,ℓ ). (A.62)

By [Kennedy et al., 2020, Lemma 2] and the given assumption,

Eq. (A.60) = OPσ(Zm)
(n

−1/2
m,ℓ ). (A.63)

Finally, by applying Cauchy-Schwarz inequality,

Eq. (A.61) = OPσ(Zm)
(∥{πm − πm

0 }∥). (A.64)

This completes the proof.

B Proofs

B.1 Proof of Lemma 1

Lemma 1 (c-component Identification [Jung et al., 2021b]). Let S denote a c-component in
Gi := G(V\Zi) for some Zi ∈ Z. Let R := pa(S)Gi

\S. Let (S,R) be ordered as
(R0, S1, · · · ,Rm−1, Sm) by ≺G. Let A ⊆ S denote a set satisfying A = an(A)Gi(S). Let
C := (S\A). Let Z0 := {Zi} and seq(Z0) be a sequence of zi repeating m times. Then, the
c-factor Q[A] is g-identifiable as follows:

Q[A] = A0[S,C,R;Z0 := {Zi}, seq](a, r) =
∑

c∈SC

∏
j:Vj∈S

Pzi
(vj |sj−1, rj−1\zi). (2)

Proof of Lemma 1. Let C0 := pre(A;G(S)) ∩C. Let C1 := C\C0. We first note that, by [Jung
et al., 2021b, Lemma 1],

Q[A] =
∑

c0SC0

∏
j:Vj∈A∪C0

Pzi
(vj |sj−1, rj−1\zi). (B.1)

Therefore, it suffices to show that

Eq. (B.1) = A0[S,R;Z0 := {Zi}, seq](s\c, r). (B.2)
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It holds as follows:

A0[S,R;Z0 := {Zi}, seq](s\c, r) =
∑

c∈SC

∏
Vj∈S

Pzi(vj |sj−1, rj−1\zi) (B.3)

=
∑

c0∈SC0

∑
c1∈SC1

∏
Vj∈S

Pzi(vj |sj−1, rj−1\zi) (B.4)

=
∑

c0∈SC0

∏
Vj∈S\C1

Pzi
(vj |sj−1, rj−1\zi) (B.5)

=
∑

c0∈SC0

∏
Vj∈A∪C0

Pzi
(vj |sj−1, rj−1\zi) (B.6)

= Eq. (B.1). (B.7)

We note that the third equation holds since the all Pzi
(vj |sj−1, rj−1\zi) will be marginalized out

if Vj ∈ C1. The fourth equation holds since S := A ·∪ C0 ·∪ C1, which implies that S\C1 =
A ∪C0.

B.2 Proof of Lemma 2

Lemma 2 (Marginalization). Let A0[W,C,R;Z0, seq](w\c, r) denote the g-mSBD operator in
Def. 1. Let W0 ⊆W\C. Let Wmar ⊆ {W0,C} denote the vector formed by the following proce-
dure: Starting from Wmar = ∅, for j = m, · · · , 1, Wmar = Wmar ∪ {Wj} if (1) Wj ∈ {W0,C}
and (2) ∃k ∈ {j, · · · ,m} such that Rj , · · · ,Rk−1 = ∅, Wk+1:m ⊆ Wmar, and Zk = · · · = Zj

and zk = · · · = zj . Let W′ := W\Wmar, R′ := pre(W′;G)∩R and C′ := {W0,C}\Wmar. Let
Z′ ⊆ Z0 denote the collection of Zi corresponding to the variable in W′, and seq′ the correspond-
ing sequence. Then,∑

w0∈SW0

A0[W,C,R;Z0, seq](w\c, r) = A0[W
′,C′,R′;Z′, seq′](w′\c′, r′). (3)

Proof of Lemma 2. Let Wc
mar := {W0,C}\Wmar. We note that∑

w0∈SW0

A0[W,C,R;Z0, seq](w\c, r) (B.8)

=
∑

w0,c0∈SW0,C0

∏
j:Wj∈W

Pzj (wj |wj−1, rj−1\zj) (B.9)

=
∑

wc
marSWc

mar

∑
wmarSWmar

m∏
i=k+1

Pzi
(wi|wi−1, ri−1\zi)Pzj

(wj , · · · , wk|wj−1, rj−1\zj)
j−1∏
ℓ=1

Pzℓ
(wℓ|wℓ−1, rℓ−1\zℓ)

(B.10)

=
∑

c′∈SC′

Pzj
({wj , · · · , wk}\wmar|wj−1, rj−1\zj)

j−1∏
ℓ=1

Pzℓ
(wℓ|wℓ−1, rℓ−1\zℓ) (B.11)

=
∑

c′∈SC′

∏
Wj∈W\Wmar

Pzj
(wj |wj−1, rj−1\zj) (B.12)

= A0[W
′,C′,R′;Z′, seq′](w′\c′, r′). (B.13)

B.3 Proof of Lemma 3

Lemma 3 (Multiplication). Let Ai
0 := A0[Wi, ∅,Ri;Zi, seq

i](wi, ri) :=∏mi

j=1 Pzi
j
(wi,j |wj−1

i , rj−1
i \zij) for i ∈ {1, 2} where seqi := (zij)

mi

j=1. Let W := W1 ∪W2. Let
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R := (R1 ∪R2)\W. Let (W,R) be ordered by ≺G. Let Z := Z1 ∪Z2. Assume the following: (1)
W1 ∩W2 = ∅; and (2) ∀Wj ∈ W, ∃Wi,k ∈ Wi such that (W

j−1
,R

j−1
) = (Wi

k−1
,Ri

k−1
).

Let seq := (zj)j:Wj∈W where zj = zik for all j. Then,

A1
0 ×A2

0 = A0[W, ∅,R;Z, seq](w, r) =
∏

j:Wj∈W

Pzj (wj |wj−1, rj−1\zj). (4)

Proof of Lemma 3.
A0[W, ∅,R;Z, seq](w, r) (B.14)

=
∏

j:Wj∈W

Pzj
(wj |wj−1, rj−1\zj) (B.15)

=
∏

k:W1,k∈W1 s.t W1,k=Wj

Pz1
k
(w1,k|wj−1

1 , rj−1
1 \z1j )×

∏
k:W2,k∈W2 s.t W2,k=Wj

Pz2
k
(w2,k|wj−1

2 , rj−1
2 \z2j )

(B.16)

=

m1∏
j=1

Pz1
j
(w1,j |wj−1

1 , rj−1
1 \z1j )×

m2∏
j=1

Pz2
j
(w2,j |wj−1

2 , rj−1
2 \z2j ) (B.17)

= A1
0 ×A2

0. (B.18)

B.4 Proof of Lemma 4

Lemma 4 (Division). Let Ai
0 := A0[Wi, ∅,Ri;Zi, seq

i](wi, ri) :=∏mi

j=1 Pzi
j
(wi,j |wj−1

i , rj−1
i \zij) for i ∈ {1, 2} where seqi := (zij)

mi

j=1. Let W := W1\W2.
Let R := (R1 ∪ W2) ∩ pre(W;G). Assume the following: (1) W2 ⊆ W1; and (2)
∀Wj ∈W, ∃W1,k ∈W1 such that (W

j−1
,R

j−1
) = (W1

k−1
,R1

k−1
), Zi,k = Zj and zi,k = zj .

Then,

A1
0/A

2
0 = A0[W, ∅,R;Z1, seq

1](w, r) =
∏

j:Wj∈W

Pzj
(wj |wj−1, rj−1\zj). (5)

Proof of Lemma 4.

A1
0/A

2
0 =

∏m1

j=1 Pz1
j
(w1,j |wj−1

1 , rj−1
1 \z1j )∏m2

j=1 Pz2
j
(w2,j |wj−1

2 , rj−1
2 \z2j )

(B.19)

=
∏

k:Wk∈W1\W2

Pz1
k
(w1,k|w1

k−1, r1
k−1\z1k) (B.20)

=
∏

k:Wk∈W1\W2

Pz1
k
(w1,k|w1

k−1 ∩w,w1
k−1\w, r1k−1\z1k). (B.21)

We note that W1
k−1 ∩W = W

j−1
for some Wj ∈W s.t. Wj = W1,k. Also, (W1\W) ∪R1 =

W2 ∪ R1. Therefore, ∪k:Wk∈W1\W2
{W1

k−1\W,R1
k−1} = R := (R1 ∪W2) ∩ pre(W;G).

Therefore,

A1
0/A

2
0 =

∏
k:Wk∈W1\W2

Pz1
k
(w1,k|w1

k−1 ∩w,w1
k−1\w, r1k−1\z1k) (B.22)

=
∏

ℓ:Wℓ∈W

Pzℓ
(wℓ|wℓ−1, rℓ−1) (B.23)

= A0[W, ∅,R;Z1, seq
1](w, r). (B.24)
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B.5 Proof of Theorem 1

Theorem 1 (Expression of g-Identifiable Causal Effects). Algo. 1 returns any g-identifiable
causal effects as a function of a set {Ak

0} of g-mSBD adjustment operators in the form

P (y|do(x)) = f({Ak
0}Kk=1), (6)

where the function f(·) applies marginalization, multiplication, or division over g-mSBD operators
in {Ak

0} as specified by Algo. 1.

Proof of Theorem 1. Throughout the proof, we refer to the algorithm developed in [Lee et al., 2019,
Algo. 1] as the “standard gID” algorithm, in comparison to our gID algorithm presented in Algo. 1.
It is established that the standard gID algorithm is sound, as stated in [Lee et al., 2019, Theorem 2].
This means that if the algorithm returns an identification expression, it must be correct. Furthermore,
the standard gID algorithm is proven to be complete [Lee et al., 2019, Theorem 3]. In other words,
the causal effect P (y|do(x)) is identifiable from P and the causal graphG if and only if the standard
gID algorithm does not return FAIL.

In our proof, we will show the soundness and completeness of Algo. 1 based on the foundation
provided by the standard gID algorithm.

Algo. 1 is sound – If Algo. 1 returns an expression f({Ak
0}Kk=1), then it holds that f({Ak

0}Kk=1) =
P (y|do(x)). The soundness of Algo. 1 is derived from the soundness of Tian’s c-factor operation,
as demonstrated in [Tian and Pearl, 2003, Lemmas (3,4)] and Lemma 1.

We will now show that Algo. 1 is complete. Suppose there exists an input (x,y,Z,P, G) for which
the standard gID algorithm does not return FAIL while Algo. 1 does return FAIL. This implies the
existence of Dj such that Q[Dj ] is not identifiable from all Q[Si

j ] where Dj is a c-component in
G(D), and Si

j is the c-component in G(V\Zi) that contains Dj . This observation is a consequence
of the soundness and completeness of the SUBID procedure, as established in [Huang and Valtorta,
2006, Theorem 1].

It should be noted that Q[Dj ] is not identifiable from Si
j for all {i : Zi ∈ Z} only when there exists

a c-component Ti
j in G(Si

j) that serves as an ancestral set of Dj and includes Dj . However, in such
a scenario, the standard gID algorithm fails due to lines 12 and 13 of the algorithm. This contradicts
the initial assumption that the standard gID algorithm does not return FAIL. Consequently, Algo. 1
returns FAIL whenever the standard gID algorithm does so. The completeness of the standard gID
algorithm implies that Algo. 1 is complete in the g-identification task.

The fact that f(·) is a function involving marginalization, multiplications, and divisions of g-mSBD
(generalized modified single back-door) operators is a consequence of applying Lemmas (2, 3, 4)
within the algorithm. These lemmas establish the properties and operations of the g-mSBD operators,
which are then utilized in the construction of f(·) in Algo. 1.

B.6 Proof of Proposition 1

We first restate the g-mSBD adjustment, its nuisances, and the g-mSBD estimator here:

Definition 1 (generalized-mSBD adjustment (g-mSBD)). Let (W,R) be a disjoint pair in V
topologically ordered as (W,R) = {R0,W1, · · · ,Rm−1,Wm,Rm} by ≺G, where Ri can be
empty. Let W

i−1
:= {Wj}i−1

j=1 and R
i−1

:= {Rj}i−1
j=0 for ∀i ∈ [m]. Let C ⊆W. Let Z0 ⊆ Z be

some set such that ∀Z ∈ Z0,W ∩ Z = ∅. Let seq(Z0) denote a sequence (z1, · · · , zm) where zi
denotes some realization of Zi ∈ Z0 (same zi could appear multiple times in the sequence). Then,
the g-mSBD adjustment is expressed as an operator A0[W,C,R;Z0, seq, G](w\c, r) defined by

A0[W,C,R;Z0, seq](w\c, r) :=
∑

c∈SC

∏
i:Wi∈W

Pzi
(wi|wi−1, ri−1\zi). (1)
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Definition 2 (Nuisances for g-mSBD). Nuisances for g-mSBD A0 in Eq. (1) are {µi+1
0 , πi

0}m−1
i=1

defined as follows. Let µm+1
0 = µm+1 := 1w\c(W\C). For i = m− 1, · · · , 1,

µi+1
0 (W

i
,R

1:i
) := EPσ(Zi+1)

[
µi+2
0 (W

i+1
, ri+1,R

1:i
)|Wi

,R
1:i
, r0, zi+1

]
(7)

πi
0(W

i
,R

1:i
) :=

Pσ(Zi)(W
i
,R

1:i−1|zi, r0)

Pσ(Zi+1)(W
i
,R

1:i−1|zi+1, r0)

1ri(Ri)

Pσ(Zi+1)(Ri|W
i
,R

1:i−1
, zi+1, r0)

. (8)

Definition 3 (DR-g-mSBD Estimators). Let Dσ(Zi) for Zi ∈ Z denote the experimental sam-
ples from randomizing the variable Zi. Let Dzi

for zi ∈ DZi
denote the subsamples of Dσ(Zi)

fixing R0\Zi = r0\zi and Zi = zi. A DR-g-mSBD estimator Â for the g-mSBD adjustment
A0[W,C,R;Z0 := {Zi}mi=1, seq := (zi)

m
i=1](w\c, r) is given as follows:

1. Randomly partition Dzi into {Dzi,ℓ}ℓ∈[L]; i.e., Dzi = ∪Lℓ=1Dzi,ℓ, ∀Zi ∈ Z and zi ∈ DZi .

2. For each fold ℓ ∈ [L], let µi+1
ℓ denote learned µi+1

0 using Dzi+1
\Dzi+1,ℓ for i = m, · · · , 2; and

πi
ℓ learned πi

0 for i = 1, · · · ,m− 1. Define µ̌i+1
ℓ := µi+1

ℓ (W
i
, ri,R

1:i−1
) and πi

ℓ :=
∏i

j=1 π
j
ℓ .

3. Estimate Â := Â({µj+1
ℓ , πj

ℓ}j∈[m−1],ℓ∈[L]) := (1/L)
∑L

ℓ=1 Âℓ({µj+1
ℓ , πj

ℓ}j∈[m−1]) where

Âℓ := Âℓ({µj+1
ℓ , πj

ℓ}j∈[m−1]) :=

m−1∑
j=1

EDzj+1,ℓ

[
πj
ℓ{µ̌

j+2
ℓ − µj+1

ℓ }
]
+ EDz1,ℓ

[
µ̌2
ℓ

]
, (9)

where EDzj ,ℓ
[·] is an empirical average over samples Dzj ,ℓ.

We analyze the bias of the g-mSBD estimator using the following results:

Lemma S.2 (Representation of g-mSBD). The g-mSBD adjustment A0 in Def. 1 can be repre-
sented as

A0 =

m−1∑
i=1

EPσ(Zi+1
)

[
πi
0{µ̌i+2

0 − µi+1
0 }|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2
0|z1, r0

]
, (B.25)

where µ̌i+1
ℓ (W

i
,R

1:i−1
) := µi+1

ℓ (W
i
, ri,R

1:i−1
) and πi :=

∏i
j=1 π

j as defined in Def. 3.

Proof of Lemma S.2. Throughout the proof, we will use w′\c′ as some realization of W\C. Recall
that 1w\c(w

′\c′) = 1 when w′\c′ = w\c and zero otherwise. We first recall that

A0 =
∑

w′∈SW

∏
i:Wi∈W

1w\c(w
′\c′)Pσ(Zi)(w

′
i|w′i−1

, ri−1, zi), (B.26)

by the definition of the experimental distribution Pσ(Zi).

For all i = 1, · · · ,m− 1,

EPσ(Zi+1)

[
πi
0(W

i
,R

1:i
){µ̌i+2

0 (W
i+1

,R
1:i
)− µi+1

0 (W
i
,R

1:i
)}|zi+1, r0

]
(B.27)

1
= EPσ(Zi+1)

[
πi
0(W

i
,R

1:i
){EPσ(Zi+1)

[
µ̌i+2
0 (W

i+1
,R

1:i
)|Wi

,R
1:i
, zi+1, r0

]
− µi+1

0 (W
i
,R

1:i
)}|zi+1, r0

]
(B.28)

2
= EPσ(Zi+1)

[
πi
0(W

i
,R

1:i
){µi+1

0 (W
i
,R

1:i
)− µi+1

0 (W
i
,R

1:i
)}|zi+1, r0

]
(B.29)

= 0, (B.30)

where the equation 1
= holds by the total law of expectation, and 2

= holds by the definition of µ̌i+1
0 .
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It suffices to show that

EPσ(Z1)

[
µ2
0(W

1
, r1)|z1, r0

]
= A0 =

∑
w′∈DW

1w\c(w
′\c′)

m∏
j=1

Pσ(Zj)(w
′
j |w′j−1

, rj−1, zj).

(B.31)

To prove the equation, we show that, for all k = m,m− 1, · · · , 2,

µk
0(W

k−1
,R

1:k−1
) =

∑
w′k:m∈S

Wk:m

1w\c(w
′\c′)

m∏
j=k

Pσ(Zj)(w
′
j |W

k−1
,R

1:k−1
,w′k:j−1

, rk:j−1, r0, zj).

(B.32)

This equation holds when k = m, because

µm
0 (W

m−1
,R

1:m−1
) := EPσ(Zm)

[
1w\c(w

′\c′)
∣∣Wm−1

,R
1:m−1

, r0, zm

]
(B.33)

=
∑

w′
m∈Swm

1w\c(w
′\c′)Pσ(Zm)(w

′
m|W

m−1
,R

1:m−1
, r0, zm). (B.34)

For k = m− 1,

µm−1
0 (W

m−2
,R

1:m−2
) (B.35)

:= EPσ(Zm−1)

[
µ̌m
0 (W

m−1
, rm−1,R

1:m−2
)|Wm−2

,R
1:m−2

, zm−1, r0

]
(B.36)

=
∑

w′m−1:m∈S
Wm−1:m

1w\c(w
′\c′)

m∏
j=m−1

Pσ(Zj)(w
′
j |w′m−1:j−1

, rm−1:j−1,W
m−2

,R
1:m−2

, zj , r0)

(B.37)

Based on this observation, we make the following induction hypothesis: Suppose, for a fixed k ∈
{2, · · · ,m}, the following holds:

µk+1
0 (W

k
,R

1:k
)

induction
=

∑
w′k+1:m∈S

Wk+1:m

1w\c(w
′\c′)

m∏
j=k+1

Pσ(Zj)(w
′
j |W

k
,R

1:k
,w′k+1:j−1

, rk+1:j−1, zj , r0).

(B.38)

Then, the induction hypothesis holds for k − 1 as follows:

µk
0(W

k−1
,R

1:k−1
) (B.39)

:= EPσ(Zk+1)

[
µ̌k+1(W

k
,R

1:k−1
, rk)|W

k−1
,R

1:k−1
, zk+1, r0

]
(B.40)

=
∑

w′k:m∈S
Wk:m

1w\c(w
′\c′)

m∏
j=k+1

Pσ(Zj)(w
′
j |W

k−1
,R

1:k−1
,w′k:j−1

, rk:j−1, zj , r0)Pσ(Zk)(w
′
k|W

k−1
,R

1:k−1
, zk, r0)

(B.41)

=
∑

w′k:m∈S
Wk:m

1w\c(w
′\c′)

m∏
j=k

Pσ(Zj)(w
′
j |W

k−1
,R

1:k−1
,w′k:j−1

, rk:j−1, zj , r0). (B.42)

Also, we already checked that the induction hypothesis holds for k = m. Therefore, the hypothesis
holds for all k = 2, · · · ,m:

µk
0(W

k−1
,R

1:k−1
) =

∑
w′k:m∈S

Wk:m

1w\c(w
′\c′)

m∏
j=k

Pσ(Zj)(w
′
j |W

k−1
,R

1:k−1
,w′k:j−1

, rk:j−1, zj , r0).

(B.43)
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Then,

µ2
0(W1,R1) =

∑
w′2:m∈S

W2:m

1w\c(w
′\c′)

m∏
j=2

Pσ(Zj)(w
′
j |W1,R1,w′2:j−1

, r2:j−1, zj , r0),

(B.44)

µ2
0(W1, r1) =

∑
w′2:m∈S

W2:m

1w\c(w
′\c′)

m∏
j=2

Pσ(Zj)(w
′
j |W1,w′2:j−1

, rj−1, zj) (B.45)

Then,

EPσ(Z1)

[
µ2
0(W1, r1)|z1, r0

]
(B.46)

=
∑

w′m∈SWm

1w\c(w
′\c′)

m∏
j=2

Pσ(Zj)(w
′
j |w′

1,w
′2:j−1

, rj−1, zj)Pσ(Z1)(w
′
1|z1, r0) (B.47)

=
∑

w′m∈SWm

1w\c(w
′\c′)

m∏
j=1

Pσ(Zj)(w
′
j |w′j−1

, rj−1, zj) (B.48)

= A0. (B.49)

Lemma S.3 (Bias Analysis of g-mSBD Estimators (1)). Let A be the quantity defined as

A :=

m−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2|z1, r0

]
. (B.50)

For i = 2, · · · ,m,

EPσ(Zi+1)

[
πi{µ̌i+2

0 − µi+1}|zi+1, r0
]
+ EPσ(Zi)

[
πi−1{µ̌i+1 − µi}|zi, r0

]
(B.51)

= EPσ(Zi+1)

[
πi−1{µi+1

0 − µi+1}{πi − πi
0}|zi+1, r0

]
+ EPσ(Zi)

[
πi−1{µ̌i+1

0 − µi}|zi, r0
]
.

Proof of Lemma S.3. We first rewrite Eq. (B.51) as follows:

Eq. (B.51) = EPσ(Zi+1)

[
πi{µ̌i+2

0 − µi+1}|zi+1, r0
]

(B.52)

+ EPσ(Zi)

[
πi−1{µ̌i+1 − µ̌i+1

0 }|zi, r0
]

(B.53)

+ EPσ(Zi)

[
πi−1{µ̌i+1

0 − µi}|zi, r0
]
. (B.54)

Also,

Eq. (B.53)

= EPσ(Zi)

[
πi−1(W

i−1
,R

1:i−1
){µ̌i+1(W

i
,R

1:i−1
)− µ̌i+1

0 (W
i
,R

1:i−1
)}|zi, r0

]
= EPσ(Zi+1)

[
πi−1(W

i−1
,R

1:i−1
)

Pσ(Zi)(W
i
,R

1:i−1|zi, r0)

Pσ(Zi+1)(W
i
,R

1:i−1|zi+1, r0)
{µ̌i+1(W

i
,R

1:i−1
)− µ̌i+1

0 (W
i
,R

1:i−1
)}|zi+1, r0

]

= EPσ(Zi+1)

[
πi−1 Pσ(Zi)(W

i
,R

1:i−1|zi, r0)

Pσ(Zi+1)(W
i
,R

1:i−1|zi+1, r0)

1ri(Ri)

Pσ(Zi+1)(Ri|W
i−1

,R
1:i−1

, r0, zi+1)
{µi+1 − µi+1

0 }
∣∣∣∣zi+1, r0

]
= EPσ(Zi+1)

[
πi−1(W

i−1
,R

1:i−1
)πi

0(W
i
,R

i
){µi+1(W

i
,R

i
)− µi+1

0 (W
i
,R

i
)}|zi+1, r0

]
.

(B.55)
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Therefore,

Eq. (B.52) + Eq. (B.53)
= Eq. (B.52) + Eq. (B.55)

= EPσ(Zi+1)

[
πi{µ̌i+2

0 − µi+1}|zi+1, r0
]
+ Eq. (B.55)

= EPσ(Zi+1)

[
πi{µi+1

0 − µi+1}|zi+1, r0
]
+ Eq. (B.55)

= EPσ(Zi+1)

[
πi{µi+1

0 − µi+1}|zi+1, r0
]
+ EPσ(Zi+1)

[
πi−1πi

0{µi+1 − µi+1
0 }|zi+1, r0

]
= EPσ(Zi+1)

[
πi−1{µi+1

0 − µi+1}{πi − πi
0}|zi+1, r0

]
. (B.56)

Finally,

Eq. (B.51) = Eq. (B.56) + Eq. (B.54).

Lemma S.4 (Bias Analysis of g-mSBD Estimators (2)). Let A be the quantity defined as

A :=

m−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2|z1, r0

]
. (B.57)

Then, for k = 3, · · · ,m− 1,

A−A0 =

m−1∑
r=k

EPσ(Zr+1)

[
πr−1{µr+1

0 − µr+1}{πr − πr
0}|zr+1, r0

]
+ EPσ(Zk)

[
πk−1{µ̌k+1

0 − µk}|zk, r0
]

+

k−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]
.

Proof of Lemma S.4. The equation holds for k = m− 1. It can be shown as follows:

A−A0

=

m−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]

= EPσ(Zm+1)

[
πm{µ̌m+2

0 − µm+1}|zm+1, r0
]
+ EPσ(Zm)

[
πm−1{µ̌m+1 − µm}|zm, r0

]
(B.58)

+

m−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]
. (B.59)

Then,

Eq. (B.58)
Lemma S.3

= EPσ(Zm+1)

[
πm−1{µm+1

0 − µm+1}{πm − πm
0 }|zm+1, r0

]
+ EPσ(Zm)

[
πm−1{µ̌m

0 − µm−1}|zm, r0
]
.

(B.60)

Therefore,

A−A0

= Eq. (B.60) +
m−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]
. (B.61)
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For any fixed k + 1 ∈ {m− 1, · · · , 4}, suppose the following holds:

A−A0

=

m−1∑
r=k+1

EPσ(Zr+1)

[
πr−1{µr

0 − µr}{πr+1 − πr+1
0 }|zr+1, r0

]
(B.62)

+ EPσ(Zk+1)

[
πk{µ̌k+2

0 − µk+1}|zk+1, r0
]

(B.63)

+

k−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
(B.64)

+ EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]
. (B.65)

We note that this holds when k = m− 2, as shown in Eq. (B.61). We will now show that it will hold
for k, too. First,

Eq. (B.63) + Eq. (B.64) (B.66)

EPσ(Zk+1)

[
πk{µ̌k+2

0 − µk+1}|zk+1, r0
]
+

k−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
= EPσ(Zk+1)

[
πk{µ̌k+2

0 − µk+1}|zk+1, r0
]
+ EPσ(Zk)

[
πk−1{µ̌k+2 − µk+1}|zk, r0

]
+

k−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
,

Lemma S.3
= EPσ(Zk+1)

[
πk−1{µk+1

0 − µk+1}{πk − πk
0}|zk+1, r0

]
+ EPσ(Zk)

[
πk−1{µ̌k+1

0 − µk}|zk, r0
]

+

k−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
. (B.67)

Therefore,

A−A0

= Eq. (B.62) + Eq. (B.63) + Eq. (B.64) + Eq. (B.65)
= Eq. (B.62) + Eq. (B.67) + Eq. (B.65)

=

m∑
r=k+1

EPσ(Zr+1)

[
πr−1{µr+1

0 − µr+1}{πr − πr
0}|zr+1, r0

]
+ EPσ(Zk+1)

[
πk−1{µk+1

0 − µk1}{πk − πk
0}|zk+1, r0

]
+ EPσ(Zk)

[
πk−1{µ̌k+1

0 − µk}|zk, r0
]

+

k−2∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ Eq. (B.65)

Therefore, the equation holds for k, too. This completes the proof.

Lemma S.5 (Bias Analysis of g-mSBD Estimators (3)).
EPσ(Z2)

[
π1{µ̌3

0 − µ2}|z2, r0
]
− EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]
= EPσ(Z2)

[
{µ2

0 − µ2}{π1 − π1
0}|z2, r0

]
.
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Proof of Lemma S.5. Note that

EPσ(Z1)

[
µ̌2(W1,R0)− µ̌2

0(W1,R0)|z1, r0
]

= EPσ(Z2)

[
Pσ(Z1)(W1,R0|z1, r0)
Pσ(Z2)(W1,R0|z2, r0)

{µ̌2(W1,R0)− µ̌2
0(W1,R0)}

∣∣∣∣z2, r0]
= EPσ(Z2)

[
Pσ(Z1)(W1,R0|z1, r0)
Pσ(Z2)(W1,R0|z2, r0)

1r1(R1)

Pσ(Z2)(R1|W0, z2, r0)
{µ2(W1,R1)− µ2

0(W1,R1)}
∣∣∣∣z2, r0]

= EPσ(Z2)

[
π1
0(W1, X1){µ2(W1, X1)− µ2

0(W1, X1)}|z2, r0
]
.

Therefore,

EPσ(Z2)

[
π1{µ̌3

0 − µ2}|z2, r0
]
− EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]

= EPσ(Z2)

[
π1{µ2

0 − µ2}|z2, r0
]
− EPσ(Z1)

[
µ̌2 − µ̌2

0|z1, r0
]

= EPσ(Z2)

[
π1{µ2

0 − µ2}|z2, r0
]
− EPσ(Z2)

[
π1
0{µ2

0 − µ2}|z2, r0
]

= EPσ(Z2)

[
{µ2

0 − µ2}{π1 − π1
0}|z2, r0

]
.

Lemma S.6 (Bias Analysis of g-mSBD Estimators). Let A be the quantity defined as

A :=

m−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2|z1, r0

]
, (B.68)

where πi, µi are arbitrary nuisances for true nuisances πi
0 and µi

0 defined in Def. 2. Let A0 denote
the g-mSBD in Def. 1. Then,

A−A0 =

m−1∑
r=1

OPσ(Zr+1)

(
∥πr − πr

0∥∥µr+1 − µr+1
0 ∥

)
. (B.69)

Proof of Lemma S.6. By Lemmas (S.3,S.4,S.5).

We also use the following results which are used by Kennedy et al. [2020].

Lemma S.7 (Decomposition). LetD ∼ P denote a finite sample set following a distribution P . Let
h(V ; η) denote an arbitrary random function taking η as a nuisance. For any η, η0,

ED [h(V; η)]− EP [h(V; η0)] (B.70)
= ED−P [h(V ; η0)] + ED−P [h(V ; η)− h(V ; η0)] + EP [h(V ; η)− h(V ; η0)] . (B.71)

Proof of Lemma S.7.
ED [h(V; η)]− EP [h(V; η0)] (B.72)
= ED−P [h(V; η0)] + ED [h(V; η)− h(V; η0)] (B.73)
= ED−P [h(V; η0)] + ED−P [h(V; η)− h(V; η0)] + EP [h(V; η)− h(V; η0)] . (B.74)

Lemma S.8 (Continuous Mapping Theorem for L2(P )). Let Xn, X denote a random sequence
defined on a metric space S. Suppose a function g : S → S′ (where S′ is another metric space) is
bounded and continuous almost everywhere. Then,

Xn
L2(P )→ X =⇒ g(Xn)

L2(P )→ g(X). (B.75)
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Proof of Lemma S.8. We first note that Xn
L2(P )→ X implies Xn

p→ X . Then, by continuous
mapping theorem, g(Xn)

p→ g(X). Then,

lim
n→∞

∥g(Xn)− g(X)∥2 = lim
n→∞

∫
X
|g(Xn)− g(X)|2 d[P ] ∗

=

∫
X

lim
n→∞

|g(Xn)− g(X)|2 d[P ] = 0,

(B.76)

where the equation ∗
= holds by the dominated convergence theorem, which is applicable since

g(Xn), g(X) are bounded functions (from the given condition) and Xn
p→ X .

Proposition 1 (Asymptotic Analysis of g-mSBD Estimators). Assume that the nuisance estimates
µi
ℓ and πi

ℓ are L2-consistent; i.e., ∥µi+1
ℓ −µi+1

0 ∥Pσ(Zi+1)
= oPσ(Zi+1)

(1), ∥µ̌i+2
ℓ − µ̌i+2

0 ∥Pσ(Zi+1)
=

oPσ(Zi+1)
(1) and ∥πi

ℓ − πi
0∥Pσ(Zi+1)

= oPσ(Zi+1)
(1) for i = 1, · · · ,m− 1, and ∥µ̌2

ℓ − µ̌2
0∥Pσ(Z1)

=

oPσ(Z1)
(1). Let ni :=

∣∣Dzi

∣∣ for i ∈ {1, · · · ,m}. Then,

Â−A0 =

m∑
i=1

Ri +
1

L

L∑
ℓ=1

m−1∑
i=1

OPσ(Zi+1)

(
∥µi+1

ℓ − µi+1
0 ∥∥πi

ℓ − πi
0∥
)
, (10)

where Ri is a random variable such that n1/2i Ri converges in distribution to a mean-zero normal
random variable.

Proof of Proposition 1. We start the proof by noting that

Â−A0 =
1

L

L∑
ℓ=1

{Âℓ −A0}, (B.77)

where Âℓ is defined in Def. 3. This proof focuses on analyzing Âℓ −A0.

Also, we recall that Dzi,ℓ for all zi follows the distribution Pσ(Zi)(V|r0, zi). Throughout the proof,
we will denote

Pσ(Zi+1)|zi+1,r0(V) := Pσ(Zi+1)(V|zi+1, r0). (B.78)

Then, each Âℓ −A0 in Eq. (B.77) is given as follow:

Âℓ −A0

=

m−1∑
i=1

EDzi+1,ℓ−Pσ(Zi+1)|zi+1,r0

[
πi
0{µ̌i+2

0 − µi+1
0 }

]
+ EDz1,ℓ

−Pσ(Z1)|z1,r0

[
µ̌2
0

]
(B.79)

+

m−1∑
i=1

EDzi+1,ℓ−Pσ(Zi+1)|zi+1,r0

[
πi
ℓ{µ̌i+2

ℓ − µi+1
ℓ } − πi

0{µ̌i+2
0 − µi+1

0 }
]

+ EDz1,ℓ
−Pσ(Z1)|z1,r0

[
µ̌2
ℓ − µ̌2

0

]
(B.80)

+

m−1∑
i=1

EPσ(Zi+1)

[
πi
ℓ{µ̌i+2

ℓ − µi+1
ℓ } − πi

0{µ̌i+2
0 − µi+1

0 }|zi+1, r0
]
+ EPσ(Z1)

[
µ̌2
ℓ − µ̌2

0|z1, r0
]
.

(B.81)

Define

Ra
1,ℓ := EDz1,ℓ

−Pσ(Z1)|z1,r0

[
µ̌2
0

]
(B.82)

and for i = 1, · · · ,m− 1,

Ra
i+1,ℓ := EDzi+1,ℓ−Pσ(Zi+1)|zi+1,r0

[
πi
0{µ̌i+2

0 − µi+1
0 }

]
. (B.83)
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By the central limit theorem, we note that Ra
i,ℓ for i = 1, · · · ,m is a random variable such that

n
1/2
i,ℓ R

a
i,ℓ converges in distribution to a mean-zero normal random variable. Therefore,

Eq. (B.79) =
m∑
i=1

Ra
i,ℓ, (B.84)

also behaves the same.

We now analyze the second term. Define

Rb
1,ℓ := EDz1,ℓ

−Pσ(Z1)|z1,r0

[
µ̌2
ℓ − µ̌2

0

]
, (B.85)

and for i = 1, 2, · · · ,m− 1,

Rb
i+1,ℓ := EDzi+1,ℓ−Pσ(Zi+1)|zi+1,r0

[
πi
ℓ{µ̌i+2

ℓ − µi+1
ℓ } − πi

0{µ̌i+2
0 − µi+1

0 }
]
. (B.86)

By [Kennedy et al., 2020, Lemma 2] and the continuous mapping theorem in Lemma S.8,

Rb
1,ℓ = OPσ(Z1)

(
∥µ̌2

ℓ − µ̌2
0∥√

n1,ℓ

)
, (B.87)

and for i = 1, · · · ,m− 1,

Rb
i+1,ℓ = OPσ(Zi+1)

(
∥∥πi

ℓ{µ̌
i+2
ℓ − µi+1

ℓ } − πi
0{µ̌i+2

0 − µi+1
0 }∥∥

√
ni+1,ℓ

)
. (B.88)

Under the given assumption, for i = 1, 2, · · · ,m,

Rb
i,ℓ = oPσ(Zi)

(1), (B.89)

and

Eq. (B.80) =
m∑
i=1

oPσ(Zi)
(1). (B.90)

Define

Ri,ℓ := Ra
i,ℓ +Rb

i,ℓ. (B.91)

Then, Ri,ℓ is also a random variable such that n1/2i,ℓ Ri,ℓ converges in distribution to a mean-zero
normal random variable, by Slutsky’s theorem.

We now analyze the third term. By Lemma S.6, the third term can be analyzed as follow:

Eq. (B.81) =
m−1∑
i=1

OPσ(Zi+1)

(
∥µi+1

ℓ − µi+1
0 ∥∥πi

ℓ − πi
0∥
)
. (B.92)

Therefore,

Âℓ −A0 = Eq. (B.79) + Eq. (B.80) + Eq. (B.81) (B.93)

=

m∑
i=1

Ri,ℓ +

m−1∑
i=1

OPσ(Zi+1)

(
∥µi+1

ℓ − µi+1
0 ∥∥πi

ℓ − πi
0∥
)
. (B.94)
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Define Ri := (1/L)
∑L

ℓ=1Ri,ℓ. We note that Ri is a random variable such that n1/2i Ri converges
in distribution to a mean-zero normal random variable. Then,

Â−A0 =
1

L

L∑
ℓ=1

{Âℓ −A0} (B.95)

=

m∑
i=1

Ri +
1

L

L∑
ℓ=1

m−1∑
i=1

OPσ(Zi+1)

(
∥πi

ℓ − πi
0∥∥µi+1

ℓ − µi+1
0 ∥

)
. (B.96)

B.7 Proof of Theorem 2

We first restate the definition of the MR-gID estimator, the theorem, and its corresponding assump-
tions.

Definition 4 (MR-gID Estimator). The MR-gID estimator ψ̂ for the identification expression of
the causal effect ψ0 := f({Ak

0}Kk=1) in Theorem 1 is given as follows: For each Ak
0 composing

f({Ak
0}Kk=1), let Âk := Âk({µj+1

k,ℓ , π
j
k,ℓ}j∈[mk−1],ℓ∈[L]) denote the DR-g-mSBD estimator with

nuisance estimates {µj+1
k,ℓ , π

j
k,ℓ} for the true nuisances {µj+1

k,0 , π
j
k,0}. Then,

ψ̂ := f({Âk}Kk=1). (11)

Assumption 2 (Analysis of MR-gID). The identification function f({Ak}Kk=1) in Thm. 1 and each
nuisances {µi+1

k,ℓ , π
i
k,ℓ}k,ℓ for Âk satisfy the following properties:

1. Twice differentiability: f({Ak}Kk=1) is twice continuously Frechet differentiable w.r.t. {Ak}Kk=1
w.r.t. {Ak}Kk=1.

2. Boundedness: ∀k ∈ [K] and ∀Zi ∈ Z, ∇Akf({Aj
0}Kj=1)[Â

k −Ak
0 ] = OPσ(Zi)

(Âk −Ak
0).

3. L2-Consistency: ∥µi+1
k,ℓ −µ

i+1
k,0 ∥Pσ(Zk

i+1
)
= oP

σ(Zk
i+1

)
(1), ∥µ̌i+2

k,ℓ − µ̌
i+2
k,0 ∥Pσ(Zk

i+1
)
= oP

σ(Zk
i+1

)
(1),

∥πi
k,ℓ − πi

k,0∥Pσ(Zk
i+1

)
= oP

σ(Zk
i+1

)
(1), and ∥µ̌2

k,ℓ − µ̌2
k,0∥Pσ(Zk

1 )
= oP

σ(Zk
1 )
(1).

Theorem 2 (Asymptotic Analysis of MR-gID). Suppose Assumption 2 holds. Let nk,i := |Dzk
i
|

for Zk
i ∈ Z and zki ∈ DZk

i
. Let ψ̂ denote the MR-gID estimator in Def. 4 for the causal effect

ψ0 := f({Ak
0}Kk=1) in Theorem 1. Then, the error of ψ̂ is given as

ψ̂ − ψ0 =

K∑
k=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

K∑
k=1

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥).

(12)

Proof of Theorem 2. We first define the following notation. For a map g(x), we will use
∇xg(x0)[h] := limt→0(g(x0 + th) − g(x0))/t. We first note that by the definition of Fréchet
Derivative-based Taylor expansion [Blanchard and Brüning, 2015, Def. 34.1] and the given assump-
tion (‘Twice differentiability’), the error ψ̂ − ψ0 can be represented as follow:

ψ̂ − ψ0 =

K∑
k=1

∇Akf({Aj
0}Kj=1)[Â

k −Ak
0 ] + o(Âk −Ak

0), (B.97)

where, by Prop. 1,

Âk −Ak
0 =

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i+1
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥). (B.98)

35



Therefore, by the big O in probability calculus [Van der Vaart, 2000, Chap. 2],

o(Âk −Ak
0) = o

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

L∑
ℓ=1

mk−1∑
i=1

OP
zk
i+1

(∥µi+1
k,ℓ − µ

i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥).


(B.99)

=

mk∑
i=1

oP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

L∑
ℓ=1

mk−1∑
i=1

oP
σ(Zk

i+1
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥).

(B.100)

By applying the given assumption (‘Boundedness’), we have the following:

∇Akf({Aj
0}mj=1)[Â

k −Ak
0 ] =

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i )

+
1

L

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i+1
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥). (B.101)

Therefore,

ψ̂ − ψ0 =

K∑
k=1

∇Akf({Aj
0}Kj=1)[Â

k −Ak
0 ] + o(Âk −Ak

0) (B.102)

=

K∑
k=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

K∑
k=1

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥)

(B.103)

+

K∑
k=1

mk∑
i=1

oP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

K∑
k=1

L∑
ℓ=1

mk−1∑
i=1

oP
σ(Zk

i
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥)

(B.104)

=

K∑
k=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
k,i ) +

1

L

K∑
k=1

L∑
ℓ=1

mk−1∑
i=1

OP
σ(Zk

i
)
(∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥).

(B.105)

B.8 Proof of Corollary 2

Corollary 2 (Multiply Robustness (Corollary of Thm. 2)). Suppose (1) Assumption 2 holds; (2)
Either πi

k,ℓ = πi
k,0 or µj

k,ℓ = µj
k,0 for j = mk, · · · , i + 1 for all i, ℓ, k; and (3) all nuisances

{πi
k,ℓ, µ

i+1
k,ℓ }i,ℓ,k are bounded by some constant. Then, the MR-gID ψ̂ in Def. 4 is a consistent

estimator of ψ0.

Proof of Corollary 2. We first note that f is a continuous function under the twice differentiability
condition in Assumption 2. Suppose each Âk is a consistent estimator of Ak

0 under given conditions.
Then, by the continuous mapping theorem, f({Âk}Kk=1) is consistent to Px(y) = f({Ak

0}Kk=1).
Therefore, it suffices to show that each Âk is a consistent estimator of Ak

0 .
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We first recall that Âk := (1/L)
∑L

ℓ=1 Â
k
ℓ by Def. 4. By applying Lemma S.7, Âk

ℓ − Ak
0 can be

rewritten as follow:

Âk
ℓ −A0

=

m−1∑
i=1

ED
zk
i+1

,ℓ
−P

σ(Zk
i+1

)|zk
i+1

,r0

[
πi
k,0{µ̌i+2

k,0 − µ
i+1
k,0 }

]
+ ED

zk
1,ℓ

−P
σ(Zk

1 )|zk1 ,r0

[
µ̌2
k,0

]
(B.106)

+

m−1∑
i=1

ED
zk
i+1

,ℓ
−P

σ(Zk
i+1

)|zk
i+1

,r0

[
πi
k,ℓ{µ̌i+2

k,ℓ − µ
i+1
k,ℓ } − π

i
k,0{µ̌i+2

k,0 − µ
i+1
k,0 }

]
+ ED

zk
1,ℓ

−P
σ(Zk

1 )|zk1 ,r0

[
µ̌2
k,ℓ − µ̌2

k,0

]
(B.107)

+

m−1∑
i=1

EP
σ(Zk

i+1
)

[
πi
k,ℓ{µ̌i+2

k,ℓ − µ
i+1
k,ℓ } − π

i
k,0{µ̌i+2

k,0 − µ
i+1
k,0 }|r0, z

k
i+1

]
+ EP

σ(Zk
1 )

[
µ̌2
k,ℓ − µ̌2

k,0|r0, zki+1

]
(B.108)

We first note that all term in Eq. (B.106) converges in the mean-zero normal distribution and is
bounded in probability at n−1/2

i+1,ℓ,k rate. Therefore,

Eq. (B.106) =
mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
i,ℓ,k ). (B.109)

We now analyze the second term. We note that, by [Kennedy et al., 2020, Lemma 2],

ED
zk
i+1

,ℓ
−P

σ(Zk
i+1

)|zk
i+1

,r0

[
πi
k,ℓ{µ̌i+2

k,ℓ − µ
i+1
k,ℓ } − π

i
k,0{µ̌i+2

k,0 − µ
i+1
k,0 }

]
(B.110)

= OP
σ(Zk

i+1
)

(
∥πi

k,ℓ{µ̌
i+2
k,ℓ − µ

i+1
k,ℓ } − π

i
k,0{µ̌

i+2
k,0 − µ

i+1
k,0 }∥√

ni+1,ℓ,k

)
. (B.111)

We note that ∥πi
k,ℓ{µ̌

i+2
k,ℓ − µi+1

k,ℓ } − πi
k,0{µ̌

i+2
k,0 − µi+1

k,0 }∥ is bounded by some constant by the

given condition. Therefore, it is bounded in probability at n−1/2
i+1,ℓ,k rate. By the same analysis,

ED
zk
1,ℓ

−P
σ(Zk

1 )|zk1 ,r0

[
µ̌2
k,ℓ − µ̌2

k,0

]
is bounded in probability at 1/√n1,ℓ,k-rates. Therefore,

Eq. (B.107) =
mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
i,ℓ,k ). (B.112)

Finally, under the given assumption, the third term can be analyzed by Lemma S.6 and is zero:

Eq. (B.108) =
mk−1∑
i=1

OP
σ(Zk

i+1
)

(
∥µi+1

k,ℓ − µ
i+1
k,0 ∥∥π

i
k,ℓ − πi

k,0∥
)
= 0. (B.113)

Therefore,

Âk
ℓ −A0 = Eq. (B.106) + Eq. (B.107) + Eq. (B.108) =

m∑
i=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
i,ℓ,k ), (B.114)
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and, finally,

Â−A0 =
1

L

L∑
ℓ=1

{Âk
ℓ −A0} (B.115)

=
1

L

L∑
ℓ=1

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
i,ℓ,k ) (B.116)

=

mk∑
i=1

OP
σ(Zk

i
)
(n

−1/2
i,k ) (B.117)

=

m∑
i=1

oP
σ(Zk

i
)
(1), (B.118)

where the last equation holds since OP (n
−α) = oP (1) when α > 0.

C Discussion

C.1 Relaxation of Discreteness Assumption

In this paper, we made the strong assumption that all variables are discrete. However, this assump-
tion does not hold in general. In this section, we relax the assumption to a certain degree while
ensuring that the proposed estimators and corresponding error analysis remain applicable without
sacrificing generality.

First, we define a set of variables, denoted as disc, which must be discrete in order to apply the
proposed estimators and leverage the error analyses presented in the paper.
Definition 4 (Discreteness set disc). For some given inputs (x,y,Z,P, G), suppose

f({Ak
0}Kk=1) = GID(x,y,Z,P, G), (C.1)

where each Ak
0 is specified as

Ak
0 := A0[W

k,Ck,Rk;Zk, seqk](wk\ck, rk), (C.2)

for Wk,Rk ⊆ V and Zk ⊆ Z. Then, the discreteness set disc({Ak
0}Kk=1) is defined as follow:

disc({Ak
0}Kk=1) :=

K⋃
k=1

{(Wk\Ck) ∪Rk ∪ Zk}. (C.3)

For Example 1, the discreteness set is given as

disc({A1
0, A

2
0}) = (Z,X) ∪ (Y, Z) = {Z,X, Y } = V\{W}. (C.4)

For Example 2, the discreteness set is given as

disc({A2
0, A

13
0 }) = (W,R,X1) ∪ (R, Y,X2,W,X1) = {X1, X2, R,W, Y } = V (C.5)

Equipped with the discreteness set, we relax the assumption as follows:
Assumption 1.1 (Relaxed Regularity). For variables V and the Radon-Nikodym derivative pσ(Z)

of Pσ(Z) for Z ∈ Z, the following conditions hold:

1. All variables in disc({Ak
0}) are discrete;

2. pσ(Z)(v) > c, ∀v ∈ DV for some c ∈ (0, 1).

We note that the proposed estimator is well-defined and corresponding error analyses Theorem 2
and Corollary 2 hold true under the relaxed assumption:
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Lemma S.9 (Well-defined MR-gID Estimator under Relaxed Regularity). The MR-gID estima-
tor in Definition 4 is pathwise-differentiable under Assumption 1.1 and Assumption 2.

Proof of Lemma S.9. For k = 1, · · · ,K, define

A
k
:=

mk−1∑
i=1

EP
σ(Zk

i+1
)

[
πk

i{µ̌i+2
k − µi+1

k }|zki+1, r
k
0

]
+ EP

σ(Zk
1 )

[
µ̌2
k|zk1 , rk0

]
. (C.6)

To establish the pathwise-differentiability of the MR-gID estimator f({Âk}Kk=1) as defined in Def-
inition 4, it is sufficient to ensure the pathwise-differentiability of individual A

k
. Under Assump-

tion 1.1, µmk+1
k := 1wk\ck(Wk\Ck) is well-defined since (Wk\Ck) ∈ disc({Ak

0}Kk=1) are dis-
crete. Also, each 1rki

(Rk
i ) in each πi

k are well-defined since Rk
i ∈ disc({Ak

0}Kk=1) are discrete. Fi-
nally, the conditional expectation EP

σ(Zk
i
)
[·|zki , rk0 ] is well-defined since Zk

i ∈ disc({Ak
0}Kk=1) are

discrete. Also, under the positivity condition stated in Assumption 1.1, A
k

in Eq. (C.6) is pathwise-
differentiable. By combining this with Assumption 2, we conclude that the MR-gID estimator is
pathwise-differentiable.

C.2 Sequential Doubly Robustness: 2m−1 robustness versus m-robustness

In this section, we discuss the practical properties of the proposed doubly robust g-mSBD estimator
in Def. 3. We recall that the estimator is doubly robust by the analysis in Lemma S.6 as follows:

Lemma S.6 (Bias Analysis of g-mSBD Estimators). Let A be the quantity defined as

A :=

m−1∑
i=1

EPσ(Zi+1)

[
πi{µ̌i+2 − µi+1}|zi+1, r0

]
+ EPσ(Z1)

[
µ̌2|z1, r0

]
, (B.68)

where πi, µi are arbitrary nuisances for true nuisances πi
0 and µi

0 defined in Def. 2. Let A0 denote
the g-mSBD in Def. 1. Then,

A−A0 =

m−1∑
r=1

OPσ(Zr+1)

(
∥πr − πr

0∥∥µr+1 − µr+1
0 ∥

)
. (B.69)

The term in Eq. (B.69) exhibits doubly robustness, becoming zero when either πr = πr
0 or µr+1 =

µr+1
0 hold for all r = 1, 2, . . . ,m − 1. This phenomenon is referred to as the sequential doubly

robustness [Luedtke et al., 2017], or 2m−1 robustness in the sense that there are 2m−1 ways to make
Eq. (B.69) zero [Vansteelandt et al., 2007, Rotnitzky et al., 2017].

While the proposed doubly robust g-mSBD estimator defined in Definition 3 exhibits doubly robust-
ness, as shown in Proposition 1, it does not satisfy 2m−1 robustness. This is due to the dependencies
between µr

ℓ and µs
ℓ for s ∈ {r + 1, · · · ,m}. Specifically, if µs

ℓ is misspecified for some s > r, it
renders the case µr

ℓ = µr
0 impossible. Consequently, instead of having 2m−1 possibilities, there are

only m ways to make Eq. (B.69) equal to zero. For each r = 1, · · · ,m − 1, this requires either
πr
ℓ = πr

0 or µs
ℓ = µs

0 for s > r. This condition is referred to as m-robustness. In summary, the dou-
bly robust g-mSBD estimator achieves m-robustness instead of 2m−1 robustness. We acknowledge
that an interesting open direction is to explore ways to enhance the doubly robust g-mSBD estimator
to attain 2m−1 robustness, building upon the findings presented in Luedtke et al. [2017].

D Details of Experiments

As described in Sec. 4, we used the XGBoost [Chen and Guestrin, 2016] as a
model for estimating nuisances µ, π, {µi}mi=2, {πi}mi=1. We implemented the model
using Python. In modeling nuisance using the XGBoost, we used the command
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xgboost.XGBClassifier(eval_metric=’logloss’)1 to use the XGBoost with the default pa-
rameter settings. In estimating the weight, we set the weight πi

ℓ = 10 whenever the estimated weight
is over 10 [Crump et al., 2009]. For Example 1, the dimension of W is set as |W | = 10. We chose
L = 2. All variables are set to be binary. We compute the effect of P (Y = 1|do(x)).

D.1 Designs of Simulations

In this section, we present the structural causal models (SCMs) utilized for generating the dataset.
Furthermore, we include a segment of the code employed to generate the dataset.

D.1.1 Example 1

We define the following structural causal models for Example 1:

UW , UWZ , UWY , UXY ∼ normal(0, 1),
W := fW (UWZ , UWY , UW ),

X := fX(W, UXY ),

Z := fZ(W,X,UWZ),

Y := fY (Z,UWY , UXY ),

where

fW (UWZ , UWY ) :=

⌊
1

1 + exp(UW − UWZ + UWY )

⌋
,

fX(W, UXY ) :=

⌊
1

1 + exp(c⊺XW + UXY )

⌋
,

fZ(W,X,UWZ) :=

⌊
1

1 + exp(UWZ · c⊺ZW + 4X − 2 + UWZ)

⌋
fY (Z,UWY , UXY ) :=

⌊
1

1 + exp(4Z − 2 + 0.5UWY − UXY )

⌋
,

where the coefficient vector cX , cZ are such that their ith element is 0 if i is an even number and 1
otherwise.

D.1.2 Example 2

We define the following structural causal models for Example 2:

UX1,X2
, UX1,W , UX1,R, UX2,W , UX2,Y ∼ normal(0, 1),

X1 := fX1
(UX1,X2

),

X2 := fX2(UX1,X2),

R := fR(UX1,R, X1, X2),

W := fW (UX1,W , UX2,W , X1, R),

Y := fY (UX2,Y , X2, R,W ),

1Detailed parametrization of parameters including learning rates, maximum depth of the trees, etc.
are explained in https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.
XGBClassifier.
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Figure E.4: Example causal graphs for Section E. Nodes representing the treatment and outcome are
marked in blue and red, respectively.

where

fX1
(UX1,X2

) :=

⌊
1

1 + exp(2UX1,X2
− 1)

⌋
,

fX2
(UX1,X2

) :=

⌊
1

1 + exp(3UX1,X2
+ 1)

⌋
,

fR(UX1,R, X1, X2) :=

⌊
1

1 + exp(UX1,R(2X2 − 1) + 2X1 + 3X2 + UX1,R − 4)

⌋
,

fW (UX1,W , UX2,W , X1, R) :=

⌊
1

1 + exp(UX1W (2X1 − 1) + (4R− 2) + UX2,W

⌋
,

fY (UX2,Y , X2, R,W ) :=

⌊
1

1 + exp(0.5UX2,Y (2R− 1)− 2X2 + 2W + UX2,Y − 2)

⌋
.

E Project STAR: Estimating Joint Effects of Class Sizes to Academic
Outcomes

We applied the proposed estimators to the Project STAR dataset [Krueger and Whitmore, 2001,
Schanzenbach, 2006]. Project STAR is an experimental study investigating teacher/student ratios’
impact on academic achievement for kindergarten through third-grade students. In the study, stu-
dents were randomly assigned to three different class sizes: small-size classes, regular classes,
and large-size classes. The objective was to evaluate how class size affects academic outcomes
[Schanzenbach, 2006]. In our analysis, we used the dataset introduced in the online complement of
Stock et al. [2003].

Project STAR Dataset. We denote the Project STAR dataset as D. The dataset D includes the
following information: class size for kindergarten (X1), the academic outcome in kindergarten (W ),
the academic outcome in second grade (R), class size for third grade (X2), the academic outcome in
the third grade (Y ), free lunch receiving for kindergarten (C1), gender (C2), ethnicity (C3) and free
lunch receiving for the third grade (C4). We will use C1 := (C1, C2) and C2 := (C3, C4).

Assumption on Dataset. We assume that the SCM M generating the variables
(X1,W,R,X2, Y,C1,C2) induces a causal graph depicted in Figure E.4a. Here, we mark
C1,C2 as gray to denote that these variables will be considered latent; i.e., these variables will not
be used in the data analysis.

Project STAR dataset D is a longitudinal experimental study randomizing X1 and X2; i.e.,
the dataset is induced by the submodel Mx1,x2

for x1, x2 ∈ DX1,X2
, represented in

Fig. E.4b. The samples for variables {X1,W} follow a distribution Pσ(X1)(X1,W,R) =
Pσ(X1,X2)(X1,W,R), and the samples for variables {X1,W,R,X2, Y } follow a distribution
Pσ(X1,X2)(X1,W,R,X2, Y ). To demonstrate, we will describe how to generate the sample fol-
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lowing a distribution Pσ(X2)(X1,W,R,X2, Y ) by creating unmeasured confounding bias between
X1 and W , and X1 and Y , which is depicted by Fig. E.4c.

Creation of Datasets from Marginal Experiments. In this empirical study, we create two
datasets from this dataset: D1 and D2. The dataset D1 is a random subsample of D only including
{X1,W}. Then, D1 follows Pσ(X1)(X1,W,R).

To construct the dataset D2 following the marginal experimental distribution
Pσ(X2)(X1,W,R,X2, Y ), the confounding bias between X1 and W and X1 and Y should
be introduced. To do so, we follow a standard procedure for introducing confounding bias from
experimental studies used in Hill [2011], Louizos et al. [2017], Zhang and Bareinboim [2019],
Gentzel et al. [2021].

A setting for the standard procedure is the following. For any arbitrary random variable X,Y, Z,W
such that X → Y , Z → Y , and there are no arrows into X , the dataset D := {(X(i), Y(i), Z(i),W(i)

:

i = 1, · · · , n} is given. In D, Z is not a confounding variable since Z ⊥⊥ X . The goal is to
generate a new dataset D′ := {(X(j), Y(j), Z(j) : j = 1, · · · , n′} where Z serves as a confounding
variable between X and Y . The procedure named IntroduceConfounding(X,Y ;Z,D) is given
as follows: Initialize D′ = {}. For i = 1, · · · , n, do the followings:

1. Generate the Bernoulli Random B(i) with parameter P (X(i)|Z(i)).

2. If B(i) = 1, include (X(i), Y(i), Z(i),W(i)) in D′.

Finally, we exclude Z is removed from D′. By doing so, we introduce unmeasured confounding
bias between X and Y in D′; i.e., D′ = IntroduceConfounding(X,Y ;Z,D).

To generate the dataset D2 ∼ Pσ(X2)(X1,W,R,X2, Y ) from D ∼
Pσ(X1,X2)(X1,W,R,X2, Y,C1,C2), we have to introduce the unmeasured confounding bias
betweenX1 andW , andX1 and Y . We do this byD′

2 = IntroduceConfounding(X1,W ;C1, D).
Then, D′

2 is a variable containing (X1,W,R,X2,C2, Y ) and there is a confounding bias between
X1 and W . Then, we set D2 = IntroduceConfounding(X1, Y ;C2, D

′
2). Then, D2 is a variable

containing (X1,W,R,X2, Y ) and there is a confounding bias between X1 and Y , and X1 and W .
A causal graph Fig. E.4c depicted the dependencies in D2.

Goal. In this empirical study, we aim to study the joint effect of the class size for kindergarten (X1)
and the third grade (X2) on the third grade’s academic outcome (Y ); i.e., E [Y |do(x1, x2)]. Since
D is a longitudinal experimental dataset following Prand(X1,X2)(C,X1,W,X2, Y ), the ground-truth
E [Y |do(x1, x2)] is estimated as ED [Y 1x1,x2(X1, X2)] /ED [1x1,x2(X1, X2)].

Causal Effect Identification. We identify P (y|do(x1, x2)) through Algo. 1.

1. Line 3: Set D := an(Y )G(V\{X1,X2}) = {Y,R,W}.
2. Line 4: Set D1 := {R},D2 := {W},D3 := {Y }.

Each Q[D1] = Q[W ], Q[D2] = Q[R], Q[D3] = Q[Y ] are identified as follows: For Q[D1],

1. Line 7: For D1, Z1 := {X1}, z1 := {x1}, S1
1 := {W}.

2. Line 8: Set Q[S1
1] = A0[S

1
1, ∅,R1

1;Z1
1 = {X1}, seq1

1 = (x1)](w, x1) where R1
1 := ∅.

3. Line a.4: Since S1
1 = D1, we set

Q[D1] = Q[S1
1]

= AW
0

:= A0[W, ∅, ∅;Z1
1 = {X1}, seq1

1 = (x1)](w, ∅)
= Pσ(X1)(w|x1) = Px1(w).

For Q[D2] = Q[R],
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1. Line 7: For D2, Z2 := {X1}, z2 := {x1}, S1
2 := {R}.

2. Line 8: Set Q[S1
2] = A0[S

1
2, ∅,R1

2;Z1
2 = {X1}, seq1

2 = (x1)](r, x1) where R1
1 := {W}.

3. Line a.4: Since S1
2 = D2, we set

Q[D2] = Q[S1
2]

= AR
0

:= A0[S
1
2, ∅, {W};Z1

2 = {X1}, seq1
2 = (x1)](w, r)

= Pσ(X1)(r|r, x1) = Px1
(r|w).

For Q[D3] = Q[Y ],

1. Line 7: For D3, Z3 := {X2}, z3 := {x2}, S2
1 := {Y,X1,W}.

2. Line 8: Set Q[S2
1] = A0[S

2
1, ∅,R2

1;Z2
1 = {X2}, seq2

1 = (x2)](y, r) where R2
1 := {W};

i.e.,

Q[S2
1] = A0[{X1,W, Y }, ∅, {R};Z2

1 = {X2}, seq2
1 = (x2)]((x1, w, y), r)

= Pσ(X2)(y|x1, w, r, x2)Pσ(X2)(x1, w|x2).

3. Line a.2: Set A := an(D3)G(S2
1)

= {Y }.
4. Line a.3: Q[A] = A0[{Y }, {X1,W}, {R};Z2

1 = {X2}, seq2
1 = (x2)](y, r).

5. Line a.4: Since A = D2, we set

Q[D2] = Q[A]

= AY
0

:= A0[{Y }, {X1,W}, {R};Z2
1 = {X2}, seq2

1 = (x2)](y, r) (E.1)

=
∑

x′
1,w∈DX1,W

Pσ(X2)(y|x
′
1, w, r, x2)Pσ(X2)(x

′
1, w|x2).

Then, by Line 14,

P (y|do(x1, x2)) =
∑

r,w∈DR,W

Q[W ]Q[R]Q[Y ]

=
∑

r,w∈DR,W

AW
0 AR

0 A
Y
0 .

By Lemma 3,

AWR
0 := AW

0 AR
0

= A0[{R,W}, ∅, ∅;Z1
2 = {X1}, seq1

2 = (x1, x1)]((w, r), ∅)
= Pσ(X1)(w, r|x1) = Px1

(w, r).

Therefore,

P (y|do(x1, x2)) =
∑

r,w∈DR,W

AW
0 AR

0 A
Y
0

=
∑

r,w∈DR,W

AWR
0 AY

0

=
∑

r∈DR

(
∑

w∈DW

AWR
0 )AY

0 ,

where the last equation holds since AY
0 is not a function of W . By Lemma 2

AR′

0 :=
∑

w∈DW

AWR
0 = A0[R, ∅, ∅; {X1}, (x1)](r, ∅) = Pσ(X1)(r|x1) = Px1

(r).
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Fig. E.3a

(Project STAR)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure E.5: AAE Plot for Project STAR dataset analysis for Scenarios {1,2,3,4}.

Therefore,

P (y|do(x1, x2)) =
∑

r∈DR

(
∑

w∈DW

AWR
0 )AY

0

=
∑

r∈DR

AR′

0 AY
0 .

Causal Effect Estimation. Here, we only describe the nuisance for AY
0 in Eq. (E.1), since esti-

mating AR′

0 = Px1
(r) is trivial. We define the nuisance as follows: For the fixed x2 ∈ DX2

,

µ0(X1,W,R) := EPx2
[Y |X1,W1, C] , (E.2)

π0(R|X1,W ) :=
1r(R)

Px2
(R|X1,W )

. (E.3)

Then, AY
0 in Eq. (E.1) can be expressed as follows:

Eq. (E.1) (E.4)

= EPx2

[
Y

1r(R)

π0(R|X1,W )

]
, or , (E.5)

= EPx2
[µ0(X1,W, r)] , or , (E.6)

= EPx2

[
1r(R)

π0(R|X1,W )
{Y − µ0(X1,W,R)}+ µ0(X1,W, r)

]
. (E.7)

We then construct the regression-based, probability weighting-based, and MR-gID (MR)
T reg, T pw, Tmr using the following procedure.

1. For each fixed x2 ∈ DX2
and a sample set Dx2

for i ∈ {1, 2}, randomly split the sample
as Dx2,t and Dx2,e.

2. Use Dx2,t to train the model for learning nuisances in Eq. (E.2) and Eq. (E.3). Let
µ(X1,W,R) and π(R|X1,W ) denote the learnt models. We use the XGBoost [Chen and
Guestrin, 2016] to learn the model.

3. Then, each estimator is defined as follows:

T reg := EDx2,e
[µ(X1,W, r)] (E.8)

T pw := EDx2,e

[
1r(R)

π(R|X1,W )
Y

]
(E.9)

Tmr := EDx2,e

[
1r(R)

π(R|X1,W )
{Y − µ(X1,W,R)}

]
+ EDx2,e

[µ(X1,W, r)] . (E.10)

Experimental Results As described in the Experimental Setup section (Sec. 4), we evaluated the
AAEest of estimators T est for est ∈ {reg, pw,mr} in Scenarios {1, 2, 3, 4}. The AAE plots for all
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cases can be seen in Fig. E.5. In this particular scenario, the sample size was not varied since the
sample itself was externally given.

In Case 2, we introduced variation by adjusting the size of the converging noise ϵ, which follows a
normal distribution Normal(n−α, n−2α) for n ∈ {200, 400, 600, 800, 1000}. It was observed that
the MR-gID estimator Tmr outperformed the other two estimators by achieving fast convergence, as
demonstrated in Theorem 2. For Scenarios {3, 4}, the DML estimator Tmr exhibited doubly robust
properties, as illustrated in Corollary 2.
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