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Abstract
Learning personalized treatment policies is a formative challenge in many real-
world applications, including in healthcare, econometrics, artificial intelligence.
However, the effectiveness of candidate policies is not always identifiable, i.e.,
it is not uniquely computable from the combination of the available data and
assumptions about the generating mechanisms. This paper studies policy learning
from data collected in various non-identifiable settings, i.e., (1) observational
studies with unobserved confounding; (2) randomized experiments with partial
observability; and (3) their combinations. We derive sharp, closed-formed bounds
from observational and experimental data over the conditional treatment effects.
Based on these novel bounds, we further characterize the problem of safe policy
learning and develop an algorithm that trains a policy from data guaranteed to
achieve, at least, the performance of the baseline policy currently deployed. Finally,
we validate our proposed algorithm on synthetic data and a large clinical trial,
demonstrating that it guarantees safe behaviors and robust performance.

1 Introduction
Learning optimal personalized treatment policies that maximize a primary outcome by drawing
insights from a fixed dataset is a ubiquitous challenge in many real-world applications, including
in healthcare, social science, robotics. Several conditions and algorithms have been proposed to
solve this problem, including reinforcement learning [59, 35, 61, 33] and causal inference [38, 39, 9].
Most of these algorithms require the critical assumption of no unmeasured confounding (NUC) [49],
also known as unconfoundedness, ignorability [53, 52], or backdoor admissibility [46, Def. 3.3.1].
This requires that the treatment allocation policy that generates the data considers only the observed
covariates; no unobserved confounder affects the treatment and outcome simultaneously. However,
the NUC assumption could be fragile and does not necessarily hold in consequential domains with
human interactions. For example, when learning personalized medicine from electronic health records
(EHR), the physician might unintentionally prescribe a new drug to patients with access to better
healthcare, making the drug appear more effective than it is.

A common remedy for the presence of UCs is to perform direct experimentation. The NUC assump-
tion could be made to hold by directly controlling the treatment assignment in specific environments,
as sometimes done in randomized trials [17] and online reinforcement learning [60]. Still, the
challenge of policy evaluation could arise when experimental data are partially observed, i.e., it lacks
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critical measurements or has a mismatch in the measured covariates that will be used as input for
candidate policies. For example, the Affordable Care Act required hospitals to collect demographic
variables such as race that were not routinely collected before 2010 [41, 42]. Consequently, even with
randomized controlled trials being performed and the NUC holds, one could not learn a personalized
policy to treat patients that accounts for race using past medical data.

Broadly, causal inference provides a collection of principles and tools for evaluating the effects of
policies from the combination of data and structural assumptions about the environment [46, 58, 5].
There exist conditions and algorithms to infer the effect of a new intervention from observational
studies by leveraging knowledge encoded in its causal models [45, 66, 64, 57, 23]. Further, causal
effects can also be inferred from randomized experiments with a mismatch in the intervened treatments
[4, 31] and the measured covariates [32]. Recent advancements also lead to complete algorithmic
solutions to combine observational and experimental data to identify causal effects [31]. However,
when the unobserved confounders (UCs) generally exist, and critical covariates are partially observed,
the effects of treatment policies are not necessarily always identifiable [46, Def. 3.2.3]. The treatment
effects may not be not uniquely computable from data, despite extensive synthesis and analysis of
numerous samples collected across multiple regimes.

Evaluating non-identifiable treatment effects from the combination of data and assumptions has been
studied under the rubrics of partial identification. There is a growing body of work in causal inference
[36, 50, 3, 10, 15, 47, 69, 71, 20], and more recently, in machine learning [28, 40] tackling this
challenge. Among these works, one of the following approaches is employed (not exclusively): (1)
bounds on the treatment effects are estimated; (2) additional parametric assumptions are invoked, and
sensitivity analysis is conducted to assess how treatment effects change as parametric assumptions
are perturbed. While cases exist where the partial identification analysis lead to a particular treatment
recommendation [12], there is no safety guarantee for the recommended treatment’s performance.
Our goal in AI is to build intelligent systems that can reason and act autonomously, which means
we need to move from a heuristic understanding of the interplay between partial identification and
policy learning to a more principled understanding of a robust decision-making process. There are
still significant challenges in policy learning under non-identifiability.

This paper aims to overcome these challenges and develop a framework for safe policy learning
through causal lenses. In particular, from a fixed dataset, train a policy that is guaranteed to perform as
well as a baseline policy currently deployed in the environment [63, 19, 27]. This framework supports
evidence-based medicine since the learner can validate whether the treatment policy significantly
improves the standard of current care without direct interaction with the patients. Closet to our work,
Kallus and Zhou [27] studied the problem of confounding-robust policy improvement that optimizes
a policy to achieve the best worst-case improvement relative to a baseline policy. This method
computes a policy recommendation based only on observational data. Our work, instead, will account
for additional data collected from controlled experiments and explore the nuanced and fundamental
interplays between the observational and experimental data on policy evaluation in non-identifiable
settings. For a more detailed survey of the related work, we refer readers to Appendix A.

This paper departs from existing approaches and studies safe policy learning in several non-identifiable
settings, including learning from observational studies with unobserved confounders, past randomized
experiments with partial observability, and combining the two. Our contributions are summarized
as follows. (1) We derive closed-form bounds on effect estimates conditioned on new features that
combine observational and experimental data (collected with limited context). (2) We prove these
bounds are sharp (i.e., cannot be improved without additional assumptions) and identify sufficient
conditions when bounds will improve over the purely observational setting. (3) We formulate two
objectives and propose a new notion of safe policy learning that leverages these bounds, deviating
from worst-case approaches explored in literature. Finally, the proposed approach is evaluated in
the synthetic dataset and a large clinical trial. Due to space constraints, all proofs and details on the
experiment setup are in Appendix B and Appendix D.

2 Preliminaries
This section will introduce basic notation and definitions used in this paper and provide a short review
of related work. We use capital letters X to indicate random variables and lowercase letters x to
indicate their realizations. Bold-face capital letters indicate multivariate random variables. Domain of
a random variable X is denoted by ΩX and its cardinality by |ΩX |. P (X) indicates the probability
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Figure 1: Pipeline of the proposed safe policy learning framework. (a) Causal diagram G for the
underlying SCMM∗ with confounding attributions C1 and C2. (b) Available data drawn from the
observational P (X,Y,C1,C2) and interventional PX(Y,C1), PX(Y,C2) distributions. (c) Lower
bounds for the true treatment effect of x on Y obtained from different combinations of data. (d) A
safe policy π(X | C1,C2) optimizing the worst-case treatment effect.

distribution of X and P (x) the probability that X = x. Let 1X=x denote an indicator function that
takes the value 1 if X realizes to x and is 0 otherwise. We use [K] to denote the set {1, 2, · · · ,K}.
We indicate the event X 6= x with the shorthand notation ¬x.

We use Structural Causal Models (SCM) as the basic semantical framework to represent data-
generating mechanisms [46]. An SCM is a tupleM = 〈V,U,F , P 〉 where V are the observed
random variables in the system, and U are unobserved exogenous variables that introduce stochasticity
in the system. Dependence across observed variables is governed by functional relationships F . That
is, for every V ∈ V, v ← fV (paV ,uV ) denotes the values of V will be determined by the function
fV ∈ F taking as input a set of observed parents PAV ⊆ V and unobserved parents UV ⊆ U.
Values of unobserved variable U are drawn from an exogenous distribution P (U). Naturally, every
SCMM defines an observational distribution P (V) over endogenous variables V [6, Def. 2]. The
SCM can be more coarsely represented as a causal diagram G, which is a directed acyclic graph with
solid nodes representing observed variables (V), empty nodes for unobserved variables (U), and
directed edges codifying the causal dependencies to the parents.

An intervention on a set of observed nodes X ⊆ V, denoted by do(x), is an operation that anchors
realizations of X to constants x, removing the dependence on the parents (and exogenous nodes). The
do(·) operation mechanistically allows us to measure the causal effect of the intervened variables X on
the other observed variables V \X. We will denote the original SCM byM and the intervened SCM
(after a do operation) asMx. The interventional distribution Px(Y) is defined as the distribution
over Y in the submodelMx, i.e., Px(Y) , PMx(Y) [6, Def. 5]. We denote by PX(Y) a collection
of interventional distributions {Px(Y) | ∀x ∈ ΩX}. Potential outcomes Yx(u) are solutions for a
set of observed variables Y ⊆ V evaluated in the intervened SCMMx after intervention on x. Fix a
value y ∈ ΩY. Let yx denote an event Yx = y. For a set of variables X, . . .W,Y, . . . ,Z, the coun-
terfactual distribution P (Yx, . . . , ,Zw) is a joint distribution over potential outcomes Yx, . . . , ,Zw

in SCMM, given by P (yx, . . . , zw) =
∑

u 1Yx(u)=y,...,Zw(u)=zP (u) [6, Def. 7].

3 Safe Policy Learning under Partial Identifiability

We will study the problem of optimizing an action X based on values of observed covariates
C = {C1,C2} to maximize a primary outcome (i.e., reward) Y in an SCMM∗. Fig. 1 (a) shows
the causal diagram G associated with this SCM, where unobserved confounders U exist affecting the
action X , outcome Y , and covariates C1,C2, simultaneously. This class of environmental models is
also referred to as contextual bandit [30] and is widely applied in reinforcement learning literature [34].
Throughout this paper, we will consistently assume domains of variables X,Y,C1,C2 are discrete
and finite; both C1 and C2 can be high-dimensional, i.e., |ΩCi |� |ΩX |, |ΩY | for i = 1, 2.

A policy π(X | C1,C2) is a function mapping from domains of covariates C1,C2 to the space
of probability distribution over the action domain X . The collection of such policies defines a
policy space Π. An intervention on action X following the policy π, denoted by do(π), induces an
interventional distribution Pπ(X,Y,C1,C2) given by

Pπ(x, y, c1, c2) = Px(y, c1, c2)π(x | c1, c2) (1)
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The expected reward associated with a policy π(X | C1,C2) is thus given by

Eπ[Y ] =
∑

x,y,c1,c2

yPx(y, c1, c2)π(x | c1, c2) (2)

The agent is interested in learning a policy π that maximizes the expected reward Eπ[Y ] evaluated
in SCM M∗. When detailed parametrization of the SCM M∗ is provided, efficient planning
algorithms exist to solve for an optimal policy [7, 60]. In many practical applications, however, the
environment’s system dynamics Px(y, c1, c2) are assumed to be unknown. Instead, the learner can
access data collected from the SCMM∗ under different regimes (observational studies or randomized
experiments). We assume access to the following data sources:

1. Observational Data Obs(C1,C2). An observational study is performed to collected sam-
ples Obs(C1,C2) drawn from the observational distribution P (X,Y,C1,C2). For notational
convenience, since observational data always uses both sets of covariates C1,C2, we denote
Obs(C1,C2) ≡ Obs.

2. Experimental Data Exp(C1), Exp(C2). Randomized controlled trials (RCTs) are conducted on
subjects (e.g., patients) from a population C1 = c1 or C2 = c2, but never the combination of the two.
This means covariates C1,C2 are never observed simultaneously in experimental data. Consequently,
experimental data can come in two forms: Exp(C1) ∼ PX(Y,C1) or Exp(C2) ∼ PX(Y,C2).

The key challenge in evaluating a policy π(X | C1,C2) is to find a function that recovers the
expected reward Eπ[Y ] from Obs(C1,C2), Exp(C1), Exp(C2) in all possible SCMsM generating
the data. However, classic results in the causal identification suggest this is infeasible [31, 32].

Corollary 1. The interventional distribution Pπ(Y ) is not identifiable from P (X,Y,C1,C2),
PX(Y,C1), and PX(Y,C2) in contextual bandits. That is, there exists SCMsM(1),M(2) compatible
with Fig. 1 (a) such that P (1)(X,Y,C1,C2) = P (2)(X,Y,C1,C2), P (1)

X (Y,C1) = P
(2)
X (Y,C1),

P
(1)
X (Y,C2) = P

(2)
X (Y,C2) while P (1)

π (Y ) 6= P
(2)
π (Y ) for some policies π(X | C1,C2).

In words, one cannot uniquely determine the expected reward Eπ[Y ] from any combination of the
observational and interventional distributions P (X,Y,C1,C2), PX(Y,C1), PX(Y,C2), regardless
of how many samples are collected. This result seems to suggest that when the expected reward is not
identifiable from available data, it is impossible to learn a policy with satisfactory performance.

To address this challenge, we now formulate the safe policy learning problem. Instead of learning
an optimal policy maximizing the expected reward, the agent attempts to obtain a robust policy to
achieve a specific baseline performance τ . Let M be the set of SCMsM compatible with distributions
P (X,Y,C1,C2), PX(Y,C1), and PX(Y,C2). Formally, a robust policy π∗ is given by

π∗ = arg max
π∈Π

min
M∈M

Eπ[Y ;M]︸ ︷︷ ︸
Worst-case treatment effect

− E[Y ;M∗]︸ ︷︷ ︸
Baseline performance τ

(3)

Among quantities in the above maximin program, the inner minimization in the first term computes the
worst-case treatment effect of a policy π(X | C1,C2). Naturally, the solution minM Eπ[Y ;M] ≤
Eπ[Y ;M∗] is a lower bound for the expected reward for policy π evaluated in the true SCMM∗.
The second term is the baseline performance τ = E[Y ;M∗] achieved by the behavioral policy
X ← fX(C1,C2,U) that generates the observational data in the underlyingM∗.2 We show in
Fig. 1 a graphical representation of our problem setup.

3.1 Partial Identification from a Single Distribution
Note that in the maximin program of Eq. (3), the baseline E[Y ;M∗] = E[Y ] is an observational
quantity and is computable from distribution P (X,Y,C1,C2). Following Eq. (2) and the convexity
of a minimum function, the worst-case treatment effect could be further written as:

min
M∈M

Eπ[Y ;M] ≥
∑

x,y,c1,c2

π(x | c1, c2)y min
M∈M

Px(y, c1, c2;M) (4)

It is thus sufficient to consider the problem of bounding interventional probabilities Px(y, c1, c2)
from distributions P (X,Y,C1,C2), PX(Y,C1), and PX(Y,C2). Formally,

2More generally, the baseline performance τ ∈ R could be an arbitrary real value based on the context. This
paper focuses on finding a robust policy that improves over the policy fX currently deployed in the environment.
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Definition 1 (Lower Causal Bound). Let G be a causal diagram over variables V, P be a set of
distributions (observational or interventional) over V, and X,Y ⊆ V be (disjoint) subsets of V. A
lower bound over the causal effects PX(Y) is an expression for a function l(x,y) in terms of P such
that for every SCMM compatible with G, Px(y;M) ≥ l(x,y;M),∀(x,y) ∈ ΩX × ΩY.

First, a function of the observational distribution P (X,Y,C1,C2) that consistently lower bounds
Px(y, c1, c2) in all SCMM compatible with Fig. 1 (a), called the natural bound [36],

Px(y, c1, c2) ≥ P (x, y, c1, c2) (5)

Interestingly, it can be shown that the marginal interventional distribution PX(Y,C1) or PX(Y,C2)
does not impose any informative constraint over the joint distribution PX(Y,C1,C2). Consider, for
example, C1 = c1. One could always construct an SCMM compatible with Fig. 1 (a) such that
Px(y, c1;M) = Px(y, c1,¬c2;M) and Px(y, c1, c2;M) = 0. This implies a lower bound

Px(y, c1, c2) ≥ 0 (6)

So far, our analysis reveals that marginal interventional distributions PX(Y,C1) or PX(Y,C2) do
not impose any meaningful constraint over the target effect Px(y, c1, c2). This seems to suggest
when computing the worst-case treatment effect, it is sufficient to consider only the observational
distribution P (X,Y,C1,C2). For the remainder of this paper, we will show this is not the case by in-
vestigating non-trivial interactions between the observational and interventional distributions.

4 Partial Identification from Multiple Distributions
This section will derive novel lower bounds over the target causal effects PX(Y,C1,C2) from
the combination of observational and interventional distributions P (X,Y,C1,C2), PX(Y,C1),
PX(Y,C2) in the models compatible with the causal diagram of Fig. 1 (a). We start with a novel
lower bound over the target effects by combining the observational distribution P (X,Y,C1,C2) and
a marginal interventional distribution PX(Y,C1) over partial covariates C1.

Lemma 1 (Obs+Exp(C1)). Given distributions P (X,Y,C1,C2) and PX(Y,C1), the lower bound
over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1

× ΩC2
is given by

Px(y, c1, c2) ≥ max {l1(x, y, c1, c2), l2(x, y, c1, c2)} (7)

where l1, l2 are functions defined as

l1(x, y, c1, c2) = P (x, y, c1, c2) (8)
l2(x, y, c1, c2) = Px(y, c1)− P (x, y, c1,¬c2)− P (¬x, c1,¬c2) (9)

Among the quantities in Lem. 1, l1(x, y, c1, c2) is the natural bound, but l2(x, y, c1, c2) is a function
of both the observational P (X,Y,C1,C2) and interventional PX(Y,C1) distribution. It follows
immediately that the bound in Lem. 1 is never inferior to the natural bound.

Definition 2. Let G be a causal diagram over variables V, P be a set of distributions over V, and
X,Y ⊆ V. For lower bounds l1(x,y) and l2(x,y) over the causal effects PX(Y), l1(x,y) is said
to consistently dominate l2(x,y) if the following conditions hold:

(i) For every SCMM compatible with G, l1(x,y;M) ≥ l2(x,y;M),∀(x,y) ∈ ΩX × ΩY.
(ii) There is an SCMM compatible with G s.t. l1(x,y;M) > l2(x,y;M),∃(x,y) ∈ ΩX × ΩY.

The more interesting question is whether instances exist where Lem. 1 is strictly tighter than the
natural bound. For instance, consider an SCM M∗ compatible with Fig. 1 (a) with exogenous
variables U = {U1, U2, U3} independently drawn over the binary domain {0, 1} such that P (U1 =
0) = P (U2 = 1) = 0.9, P (U3 = 0) = 0.5. Values of X,Y,C1,C2 inM∗ are given by

X ← U1 ⊕ U3, Y ← X ⊕ U1 ⊕ U2, C1 ← U1, C2 ← U2 (10)

where ⊕ is the “xor” operator. Evaluating the causal effect Px(y, c1, c2) in SCMM∗ gives

PX=0(Y = 1,C1 = 0,C2 = 1) = P (U1 = 0, U2 = 1) = 0.81 (11)

Evaluating the corresponding natural bound l1(x, y, c1, c2) gives

l1(X = 0, Y = 1,C1 = 0,C2 = 1) =

P (U1 = 0, U2 = 1, U3 = 0) = 0.405
(12)
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On the other hand, evaluating the new bound l2(x, y, c1, c2) from Eq. (14) in SCMM∗ gives

l2(X = 0, Y = 1,C1 = 0,C2 = 1) = P (U1 = 0, U2 = 1)−
P (U1 = 0, U2 = 0, U3 = 1)

(13)

Computing Eq. (13) gives. l2(X = 0, Y = 1,C1 = 0,C2 = 1) = 0.765, which is larger than the
natural bound. Recall that a single marginal distribution PX(Y,C1) does not impose any (lower)
constraint on Px(y, c1, c2). Lem. 1 thus improves over the natural bound by exploring interactions
between observational and interventional distributions.

Proposition 1. Given distributions P (X,Y,C1,C2) and PX(Y,C1), the lower bound given in
Lem. 1 consistently dominates the natural bound (Eq. (5)).

We also provide a lower bound computed from marginal distributions PX(Y,C1), PX(Y,C2), i.e.,
the observational distribution P (X,Y,C1,C2) is not available.

Lemma 2 (Exp(C1) + Exp(C2)). Given distributions PX(Y,C1) and PX(Y,C2), the lower bound
over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1

× ΩC2
is given by

Px(y, c1, c2) ≥ Px(y, c1)− Px(y,¬c2) (14)

The above bound is informative if Px(y, c1) > Px(y,¬c2). However, there is no clear preference
between the interventional bound in Lem. 2 and other bounds computed using the observational
distribution, including the one in Lem. 1. Finally, we provide a novel bound utilizing all available
data, including the observational and marginal interventional distributions over covariates C1, C2.

Theorem 1 (Obs + Exp(C1) + Exp(C2)). Given distributions P (X,Y,C1,C2), PX(Y,C1), and
PX(Y,C2), the lower bound over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1

× ΩC2
is

Px(y, c1, c2) ≥ max{l1(x, y, c1, c2), l2(x, y, c1, c2),

l3(x, y, c1, c2), l4(x, y, c1, c2)} (15)

where l1, l2 are given by Eqs. (8) and (9), respectively; l3, l4 are functions defined as

l3(x, y, c1, c2) = Px(y, c2)− P (x, y,¬c1, c2)−
P (¬x,¬c1, c2)

(16)

l4(x, y, c1, c2) = Px(y, c1)− Px(y,¬c2)+

P (x, y,¬c1,¬c2)
(17)

Among quantities in Thm. 1, l3(x, y, c1, c2) is symmetric to l2(x, y, c1, c2), and follows from
applying Lem. 1 with input P (X,Y,C1,C2), PX(Y,C2). The constraint in l4(x, y, c1, c2) is a
function of all available distributions P (X,Y,C1,C2), PX(Y,C1), PX(Y,C2). One could see by
inspection that Thm. 1 improves over the interventional bound in Lem. 2 if P (x, y,¬c1,¬c2) > 0.
A more interesting question is how it compares with the bound given by Lem. 1. Consider again the
SCMM∗ described in Eq. (10). Evaluating the lower bound l4(x, y, c1, c2) gives

l4(X = 0, Y = 1,C1 = 0,C2 = 1) = P (U1 = 0, U2 = 1)−
P (U1 = 1, U2 = 0, U3 = 0)

(18)

Computing the above equation gives, l4(X = 0, Y = 1,C1 = 0,C2 = 1) = 0.805, which
consistently dominates lower bounds l1, l2 evaluated in Eqs. (12) and (13).

Proposition 2. Given distributions P (X,Y,C1,C2), PX(Y,C1), and PX(Y,C2), the lower bound
given in Thm. 1 consistently dominates Lems. 1 and 2 and the natural bound (Eq. (5)).

In Fig. 2 we summarize all the bounds derived in this paper and their relationships. A single
marginal distribution PX(Y,C1) or PX(Y,C2) does not impose any constraint on the target effect
PX(Y,C1,C2). One can derive meaningful bounds by incorporating the observational distribution
P (X,Y,C1,C2) or multiple interventional distributions PX(Y,C1) and PX(Y,C2). Finally, Thm. 1
presents the most informative bounds using all available data sources.
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Exp(C1) or Exp(C2)
(Eq. (6))

Obs
(Eq. (5))

Obs+Exp(C1)
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Prop. 1

Prop. 2
Prop. 2

Prop. 2

Figure 2: Hierarchy of lower bounds derived from different data sources. A directed path from D1 to
D2 indicates the bound derived from dataset D2 consistently dominates the one from dataset D1.

4.1 Sharpness Conditions of Closed-form Bounds
A natural question at this point is whether the bound provided in Thm. 1 is sharp, i.e., a tighter bound
can be derived through a more refined analysis. Fortunately, we will show this is not the case.

Definition 3 (Sharp Lower Bound). Let G be a causal diagram over variables V, P be a set of
distributions over V, and X,Y ⊆ V. A lower bound l(x,y) over the causal effects PX(Y) from P
is said to be sharp if there is no other lower bound l∗(x,y) that consistently dominates l(x,y).

Suppose the bound in Thm. 1, denoted by l = max{l1, l2, l3, l4}, is not sharp, and there is a different
lower bound l∗ consistently dominates l. There must exist an SCMM compatible with Fig. 1 (a) and
a realization (x, y, c1, c2) such that l∗(x, y, c1, c2;M) > l(x, y, c1, c2;M). The key challenge is to
construct an alternative SCMM∗ fromM so that the lower bound l∗ no longer applies.

Theorem 2. Given distributions P (X,Y,C1,C2), PX(Y,C1), and PX(Y,C2), Thm. 1 is a sharp
lower bound over the causal effects PX(Y,C1,C2) in the causal diagram of Fig. 1 (a).

Proof (sketch). Suppose there is an SCM M where l∗(x, y, c1, c2;M) > l(x, y, c1, c2;M) for
some (x, y, c1, c2). Construct an alternative SCMM∗ such that (1)M∗ andM share the same
P (X,Y,C1,C1), PX(Y,C1), PX(Y,C2); and (2) the counterfactual distribution P (X,Yx,C1,C2)
inM∗ satisfy the following, based on the evaluation of lower bound l inM:


P (yx | ¬x, c1, c2;M∗) = 0 if l(x, y, c1, c2;M) = l1(x, y, c1, c2;M)

P (yx | ¬x, c1,¬c2;M∗) = 1 if l(x, y, c1, c2;M) = l2(x, y, c1, c2;M)

P (yx | ¬x,¬c1, c2;M∗) = 1 if l(x, y, c1, c2;M) = l3(x, y, c1, c2;M)

P (yx | ¬x,¬c1,¬c2;M∗) = 0 if l(x, y, c1, c2;M) = l4(x, y, c1, c2;M)
(19)

This construction is feasible since observational and interventional distributions are under-determined
by counterfactual distributions in SCMs [6]. It is verifiable in this modified SCMM∗, the target
effect Px(y, c1, c2) matches the lower bound l given by Thm. 1,

Px(y, c1, c2;M∗) = l(x, y, c1, c2;M∗) (20)

Since lower bounds l and l∗ are functions of distributions P (X,Y,C1,C1), PX(Y,C1), PX(Y,C2)
which are shared acrossM andM∗, we must have

l∗(x, y, c1, c2;M∗) = l∗(x, y, c1, c2;M), (21)
l(x, y, c1, c2;M∗) = l(x, y, c1, c2;M) (22)

Since l∗ consistently dominates l in SCMM, the above equations imply

l∗(x, y, c1, c2;M∗) > l(x, y, c1, c2;M∗) = Px(y, c1, c2;M∗) (23)

This means that l∗ is not a valid lower bound for Px(y, c1, c2) inM∗, which is a contradiction.
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Algorithm 1 Safe Policy Learning

Input: Samples (yi, xi, c1,i, c2,i)
Nobs
i=1 , (yi, xi, c1,i)

Nexp1
i=1 , (yi, xi, c2,i)

Nexp2
i=1 and learning rate λ > 0

1: Estimate lower bounds lj(x, y1, c1, c2), j = 1, . . . , 4, given by Thm. 1 from the observational
and experimental data (yi, xi, c1,i, c2,i)

Nobs
i=1 , (yi, xi, c1,i)

Nexp1
i=1 , (yi, xi, c2,i)

Nexp2
i=1

2: for x, i ∈ ΩX × [Nobs] do
3: wi(x, y1, c1,i, c2,i)← maxj=1,...,4 lj(x, y1, c1,i, c2,i)
4: end for
5: Initialize parameters of π0 randomly.
6: for e ∈ {1, 2, · · · , Nepochs} do
7: πe+1 ← πe + λ∇πVNobs

(π) such that πe ∈ Π
8: end for
9: return πNepochs+1

5 Safe Policy Learning with Partial Effects
We now apply the closed-form bounds derived so far to solve for a safe policy that outperforms the
baseline policy. Without loss of generality, assume the reward Y ∈ {0, 1}; let y1 denote the event
Y = 1. By replacing the inner minimization in Eq. (4) with the lower bound given in Thm. 1, the
worst-case treatment effect of policy π could be written as:

min
M∈M

Eπ[Y ;M] ≥
∑

x,y,c1,c2

π(x | c1, c2)y max
j=1,...,4

lj(x, y1, c1, c2) (24)

The maximin objective proposed in Eq. (3) could thus be written as

arg max
π∈Π

Ex∼π(x|c1,c2) [w(x, y1, c1, c2)]︸ ︷︷ ︸
Value function V(π)

− E[Y ]︸︷︷︸
Baseline performance τ

(25)

Among the above quantities, the performance baseline E[Y ] is estimable by computing the empirical
mean of reward in the observational data; the weight w is a function defined as

w(x, y, c1, c2) , max
j=1,...,4

lj(x, y, c1, c2) (26)

Given access to multiple distributions, the worst-case treatment effect is the best estimate of the lower
bound leveraging all data sources/multiple distributions. Thus, the minimax problem in Eq. (25)
reduces to weighted maximization that corresponds to the best worst-case treatment effects.

We propose a three-step algorithm to learn a safe policy π, in Alg. 1 for the case when the
bounds in Thm. 1 can be estimated reliably from data. In Step 1, we use plug-in estimates of
the bounds given by Thm. 1 by first deriving the bounds as a function of conditional distributions
P (y|x, c1, c2), P (x|c1, c2), Px(y|c1), Px(y|c2), P (x|c1) and P (x|c2) (see Appendix C.1 for a de-
tailed discussion), and then estimating a plug-in bound by estimating these conditional using standard
supervised learning methods, such as regression and/or supervised classification, as appropriate.
Steps 2 - 4 estimate the worst-case treatment effects for all instances of observed covariates (c1,i, c2,i)
by computing the weight function wi. Here we only consider the observational data since covariates
C1,C2 are observed simultaneously. Steps 5 - 8 optimize for a safe policy, using estimates wi,
effectively resulting in a differentiable weighted loss function (Eq. (25)) that is maximized over a
function family Π. We use policy ascent for the maximization. Alg. 1 is effectively an Oracle-based
algorithm since we do not consider the statistical challenges of estimating the bounds.

6 Experiments
We evaluate the proposed method on 1) Synthetic data, and 2) the International Stroke Trial (IST)
data [21, 54] and learn four policies. Each policy uses one or more derived bounds in the maximin
framework: i) Alg 1 (C1,C2) - l1: Uses only Obs bound, ii) Alg 1 (C1,C2) - l1, l2: Uses Obs and
Obs+Exp(C1) bound, iii) Alg 1 (C1,C2) - l1, l3: Uses Obs and Obs+Exp(C2) bound, and iv) Alg 1
(C1,C2) - l1, l2, l3, l4: Uses all bounds. We compare to the following baselines: i) Random policy,
ii) Behavior policy (C1,C2): policy used to collect the observational data.
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Figure 3: Synthetic Data policy evaluation at varying the threshold on policy scores,
1 (zero treated)→ 0 (all treated). Higher is better.

1) Synthetic Data. The generative process of the data is,

U ∼ N (0, 1); C1 = 0.1U + 2.05e− 04;
C2 = 0.43U + 8.97e− 05

x = 1
(
σ([−0.06, 0.39, 0.46] · [U,C1,C2]

T +N (0, 1)) > 0.5
)

y = 1
(
σ([−0.16, 0.41, 0.04, 0.1] · [U,C1,C2, x]

T +N (0, 1)) > 0.5
)

Three data sources are generated, each consisting of 1, 000 samples corresponding to Obs,Exp(C1),
and Exp(C2). For experimental data, the treatment is sampled using: x ∼ Bernoulli(0.5).
To implement Alg. 1, we first estimate all lower bounds using their simplified form derived
in Appendix C.1. These require estimating intermediate conditional distributions such as
P (y|x, c1, c2), P (x|c1, c2), P (x|c1), P (x|c2) which require marginalization over U and/or C1,C2

for which numerical integration was used. These estimates are then used in Alg. 1 to learn a treatment
policy π. The function family Π (see Eq. (25)) corresponds to a two-layer Multi-layer Perceptron
(MLP) with 5 hidden units and the GELU activations [22].

Each policy returns a score between 0 and 1. All samples above a threshold can be chosen for
treatment. We evaluate mean outcome over the data, of varying the threshold between 1 (treat no
one) to 0 (treat everyone). Fig. 3 shows the mean outcome for varying thresholds averaged over
5-fold cross-validation (standard errors not visible due to low variability). The learned policy Alg
1 (C1,C2) - l1, l2, l3, l4 clearly outperforms all baselines suggesting our estimates of treatment
effect indeed improve using multiple data-sources and can be leveraged to learn not only safe, but
improved policies. Further, the bounds Obs+ Exp(C1), and Obs+ Exp(C2) improve over the natural
bounds Obs for some covariate values (see Fig. 5 in Appendix D) providing better policies compared
to Obs. Finally, Fig. 5 suggests that bounds using Obs+ Exp(C1)+Exp(C2) are not informative.
Nonetheless, using l1, l2, l3 in conjunction provide significant improvement over behavior policy, and
other variants.

International Stroke Trial (IST). Broadly, the goal of this trial was to estimate the effect of
Aspirin treatment on the clinical course of Ischemic Stroke. The database consists of patient age,
gender, conscious state at randomization, and systolic blood pressure at randomization, among
others. We study the outcome at 6 months post-treatment (Y = 1 if a patient survives, 0 otherwise).
From this trial data, we create an observational dataset by inducing selection bias as a function
of age, gender, conscious state at randomization, and systolic blood pressure (see Appendix D.3
for more details). We treat conscious state as unobserved confounding. C1 = {Age, Sex} and
C2 = {Systolic Blood Pressure (SysBP)} constitute observed confounding attributes. We set aside
30% data as a held-out test set.

Fig. 4 demonstrates the results. On the left, we show the mean outcome for varying thresholds
on the policy score (a higher threshold implies fewer patients selected for treatment). Thus higher
mean outcome while selecting fewer patients is desirable. The learned policies clearly dominate the
behavior policy. On the right, we show the outcome when x-fraction of the population is selected for
treatment based on policy scores. Again, while the improvement over behavior policy is significant,
improvement using different bounds is limited. Fig. 8 in Appendix D.3 shows the bounds obtained in
each case. Notice that the effect of treatment is relatively small and only occurs for a small region of
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Figure 4: IST Policy Evaluation. Left: Policy evaluation with varying threshold
1 (zero treated)→ 0 (all treated) on policy scores. For fewer treated patients (higher threshold),
learned policies peak earlier suggesting that our learned policies are better at targeting patients over
behavior policy. Right: Mean outcome when x-fraction of the population is targeted for treatment us-
ing sorted policy scores. Behavior policy trails relative to the learned policies although the difference
between learned policy variants is not significant suggesting other patient features may be crucial to
improve targeting.

the SysBP space. Second, our bounds require parametric assumptions on P (Age, Sex, SysBP). We
model SysBP as a Gaussian, and Age and Sex as independent Bernoulli variables. Misspecification
in our parametrization may result in biased estimates in our bounds. Additional covariates beyond
Age, Sex, and SysBP may further improve the bounds and in turn the treatment policy.

7 Conclusions
We propose a safe policy learning framework in non-identifiable settings using observational studies
with unobserved confounding, experimental studies with partial observability, and combinations
thereof. We derive closed-form bounds over conditional treatment effects. We propose a robust policy
improvement framework to train policies that maximize the worst-case treatment effect by using our
lower bounds that is guaranteed to improve over a baseline policy that generate the observational data.
We demonstrate utility in synthetic and real-world experimental data. We include in Appendix E
more detailed discussion on limitations and broader impacts of our proposed framework.
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Appendix

A Related Work
Our work builds upon the literature on partial identification of causal effects, sensitivity analysis, and
safe policy learning from offline data.

Partial Identification and Sensitivity Analysis. Seminal work of Manski [36], Imbens and Man-
ski [25], Tian and Pearl [65], Robins [48], Balke and Pearl [2], Manski and Pepper [37], Swanson
et al. [62], Fan and Park [14] developed the first bounds on causal effects in non-identifiable settings
using observational data in the standard backdoor graph [44] and the instrumental variable setting [24]
respectively. More recently, the bounds have been improved for applicability to continuous outcomes
[69], and to establish a general framework for estimating bounds on interventional and counterfactual
effects [70, 71]. While Zhang et al. [71] develop informative bounds using both observational and
experimental data, they focus on general counterfactual queries by discretizing the exogenous latent
space, formulating bounds as polynomial programs over this discretization and a Bayesian framework
to approximately estimate bounds using MCMC. Sensitivity analysis attempts to provide intervals
on causal effects by assuming the level of confounding, for example, via models such as Marginal
Sensitivity analysis, which considers deviations in the propensity score in relation to the estimated
propensity [51, 26, 47, 67, 68, 29]. Other approaches explore the linearity of structural functions [11].
Our work instead focuses on estimating closed-form bounds using observational and experimental
data sources that are able to account for unobserved confounders and mismatched contexts.

Safe Policy Learning. Safety in reinforcement learning is an overloaded term [18], as it may be
considered with respect to one of the following: uncertainty in the parametrization of the environment
[63, 19], additional constraints on the optimal policy [1, 8], the ability to interrupt early before
potential risks could occur [43, 13], or as exploration in a hazardous environment [55, 56, 16]. This
paper focuses on the first approach, where the goal is to learn a policy from a fixed dataset that could
achieve the performance of a behavioral policy, called baseline, that generates the observational
data. Closet to our work, Kallus and Zhou [27] studied the problem of confounding-robust policy
improvement that optimizes a policy to achieve the best worst-case improvement relative to a baseline
treatment assignment policy. The agent is assumed to access the observational data and a sensitivity
parameter describing the strength of the unobserved confounders’ influence on the treatment. Our
work does not invoke this untestable parametric assumption but instead requires the domains of
observed variables to be computable and finite. Our work also accounts for additional data collected
from controlled experiments and explores non-trivial interaction between the observational and
experimental data on the bounds over the treatment effects.

B Proofs of Partial Identification
This section provides proofs for the theoretical results provided in the paper. Our proofs rely on the
inference system based on the counterfactual distributions. For a set of variables X, . . .W,Y, . . . ,Z,
the counterfactual distribution P (Yx, . . . , ,Zw) is a joint distribution over potential outcomes
Yx, . . . , ,Zw in SCMM [6, Def. 7], given by

P (yx, . . . , zw) =
∑
u

1Yx(u)=y,...,Zw(u)=zP (u) (27)

Fix a value y ∈ ΩY. We will consistently use yx denote an event Yx = y, and ¬yx for Yx 6= y.
The counterfactual probability for a joint collection of events Yx 6= y, . . . ,Zw(u)¬z evaluated in
SCMM is given by

P (¬yx, . . . ,¬zw) =
∑
u

1Yx(u)¬y,...,Zw(u)¬zP (u) (28)

Counterfactual variables follow three properties of composition, effectiveness, and reversibility,
which hold in all structural causal models.

Theorem 3 (Counterfactual Axioms). LetM = 〈U,V,F , P 〉 be an SCM. For any three sets of
variables X,Y,W ⊆ V, the following properties hold

1. Composition. Wx(u) = w⇒ Yx,w(u) = Yx(u);

2. Effectiveness. Xx,w(u) = x;

3. Reversibility {Yx,w(u) = y}& {Wx,y(u) = w} ⇒ Yx(u) = y.
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B.1 Proofs of the Closed-form Bounds
We will first provide proofs for the closed-form bounds over the causal effect Px(y, c1, c2) given in
Sec. 4, taking different combinations of data sources.

Lemma 1 (Obs+Exp(C1)). Given distributions P (X,Y,C1,C2) and PX(Y,C1), the lower bound
over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1 × ΩC2 is given by

Px(y, c1, c2) ≥ max {l1(x, y, c1, c2), l2(x, y, c1, c2)} (7)

where l1, l2 are functions defined as

l1(x, y, c1, c2) = P (x, y, c1, c2) (8)
l2(x, y, c1, c2) = Px(y, c1)− P (x, y, c1,¬c2)− P (¬x, c1,¬c2) (9)

Proof. Observe that in the contextual bandit model described in Fig. 1 (a), action X has not causal
effects on the covariates C1,C2. We must have that given any U = u, the potential outcomes
C1x(u) = C1(u) and C2x(u) = C1(u). By the definition of counterfactual and interventional
distributions, the causal effect Px(y, c1, c2) could be written as a particular counterfactual probability,

Px(y, c1, c2) = P (yx, c1, c2) (29)

It is thus sufficient to bound the counterfactual probability P (yx, c1, c2). We will next discuss
different bounding strategy based on the available distributions.

Case I: Obs(C1,C2). The first lower bound is obtained when only observational distribution in
the form of P (Y,X,C1,C2) is available. By summing over the domain of the observed action X ,

P (yx, c1, c2) = P (yx, x, c1, c2) + P (yx,¬, x, c1, c2) (30)
≥ P (yx, x, c1, c2) (31)

The last step holds since probability P (yx,¬x, c1, c2) ≥ 0. By the composition axiom (Thm. 3),
Yx(u) = Y (u) if X(u) = x. The above equation could be written as

P (yx, c1, c2) ≥ P (y, x, c1, c2) (32)

Among quantities in the above equation, the right-hand side is an observational quantity, which is
also referred to as the natural bound in the literature [36, 48].

Case II: Obs(C1,C2) + Exp(C1). When the interventional distribution PX(Y,C1) is also avail-
able, applying basic probabilistic operations gives,

P (yx, c1, c2) = P (yx, c1)− P (yx, c1,¬c2) (33)
= P (yx, c1)− P (yx, x, c1,¬c2)− P (yx,¬x, c1,¬c2) (34)
= P (yx, c1)− P (yx, x, c1,¬c2)− P (¬x, c1,¬c2) (35)

The last step holds since the marginal probability P (¬x, c1,¬c2) ≥ P (yx,¬x, c1,¬c2) is lower
bounded by its joint probability. Again, by the composition axiom (Thm. 3), Yx(u) = Y (u) if
X(u) = x. The above equation could be written as

P (yx, c1, c2) ≥ P (yx, c1)− P (y, x, c1,¬c2)− P (¬x, c1,¬c2) (36)

It follows from Eq. (29) that the above equation could be further written as

P (yx, c1, c2) ≥ Px(y, c1)− P (y, x, c1,¬c2)− P (¬x, c1,¬c2) (37)

where the right-hand side is a function of the observational P (X,Y,C1,C2) and interventional
PX(Y,C1) distributions.

Lemma 2 (Exp(C1) + Exp(C2)). Given distributions PX(Y,C1) and PX(Y,C2), the lower bound
over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1 × ΩC2 is given by

Px(y, c1, c2) ≥ Px(y, c1)− Px(y,¬c2) (14)
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Proof. Given both interventional distributions PX(Y,C1) and PX(Y,C2), applying Eq. (33) gives
P (yx, c1, c2) = P (yx, c1)− P (yx, c1,¬c2) (38)

≥ P (yx, c1)− P (yx,¬c2) (39)
The last step holds since the marginal probability P (yx,¬c2) ≥ P (yx, c1,¬c2) is lower bounded by
the joint probability. It follows from Eq. (29) that the above equation could be further written as

P (yx, c1, c2) ≥ Px(y, c1)− P (yx,¬c2) (40)
where the right-hand side is a function of interventional distributions PX(Y,C1) and PX(Y,C2).

Theorem 1 (Obs + Exp(C1) + Exp(C2)). Given distributions P (X,Y,C1,C2), PX(Y,C1), and
PX(Y,C2), the lower bound over Px(y, c1, c2) for all (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1

× ΩC2
is

Px(y, c1, c2) ≥ max{l1(x, y, c1, c2), l2(x, y, c1, c2),

l3(x, y, c1, c2), l4(x, y, c1, c2)} (15)

where l1, l2 are given by Eqs. (8) and (9), respectively; l3, l4 are functions defined as
l3(x, y, c1, c2) = Px(y, c2)− P (x, y,¬c1, c2)−

P (¬x,¬c1, c2)
(16)

l4(x, y, c1, c2) = Px(y, c1)− Px(y,¬c2)+

P (x, y,¬c1,¬c2)
(17)

Proof. The first two bounds l1, l2 follow from Lem. 1. We will next focus on the last two cases.

Case III: Obs(C1,C2) + Exp(C2). The bounding strategy in this case is analogous to Case II. By
applying basic probabilistic operations, we have

P (yx, c1, c2) = P (yx, c2)− P (yx,¬c1, c2) (41)
= P (yx, c2)− P (yx, x,¬c1, c2)− P (yx,¬x,¬c1, c2) (42)
= P (yx, c2)− P (yx, x,¬c1, c2)− P (¬x,¬c1, c2) (43)
= P (yx, c2)− P (y, x,¬c1, c2)− P (¬x,¬c1, c2) (44)

Eq. (43) holds since the marginal probability P (¬x,¬c1, c2) ≥ P (yx,¬x,¬c1, c2) is lower bounded
by its joint probability. Eq. (44) follows from the composition axiom (Thm. 3), i.e., Yx(u) = Y (u) if
X(u) = x. Applying Eq. (29) gives

P (yx, c1, c2) ≥ Px(y, c2)− P (y, x,¬c1, c2)− P (¬x,¬c1, c2) (45)
Among quantities in the above equation, the right-hand side is a function of the observational
P (X,Y,C1,C2) and interventional PX(Y,C2) distributions.

Case IV: Obs(C1, C2) + Exp(C1) + Exp(C2). For the last case, all observationalP (X,Y,C1,C2)
and interventional PX(Y,C1) and PX(Y,C2) are available. By a telescoping sum, we have

P (yx, c1, c2) =

P (yx, c1, c2)− P (yx,¬c1,¬c2) + P (yx,¬c1,¬c2)
(46)

≥ P (yx, c2)− P (yx,¬c1,¬c2) + P (yx,¬c1,¬c2) (47)
≥ P (yx, c2)− P (yx,¬c2) + P (yx,¬c1,¬c2) (48)
≥ P (yx, c2)− P (yx,¬c2) + P (yx, x,¬c1,¬c2) (49)

The last three steps holds due to the following inequality relationships respectively,
P (yx, c2) ≥ P (yx, c1, c2) (50)
P (yx,¬c2) ≥ P (yx,¬c1,¬c2) (51)
P (yx,¬c1,¬c2) ≥ P (yx, x,¬c1,¬c2) (52)

By the composition axiom, Yx(u) = Y (u) if X(u) = x. Eq. (49) could be further written as
P (yx, c1, c2) ≥ P (yx, c2)− P (yx,¬c2) + P (y, x,¬c1,¬c2) (53)

≥ Px(y, c2)− Px(y,¬c2) + P (y, x,¬c1,¬c2) (54)
The last step follows from Eq. (29). Among quantities in the above equation, the right-hand side is a
function of all input distributions P (X,Y,C1,C2), PX(Y,C1) and PX(Y,C2).
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B.2 Proof of the Sharpness Gaurantee
This section will provide the proof for the sharpness of the lower bound given by Thm. 1. We will
utilize a special parametric family of SCMs compatible with the causal diagram of Fig. 1 (a).

Definition 4 (Canonical Contextual Bandit). A canonical contextual bandit model (for short, CCB)
M is an SCM 〈U,V,F , P 〉 compatible with the causal diagram in Fig. 1 (a) such that

(i) V = {X,Y,C1,C2} and U = {X,Y∗,C1,C2};
(ii) Y∗ is a vector of counterfactuals (i.e., potential outcomes) (Yx | ∀x ∈ ΩX);

(iii) Values of X,C1,C2 are determined by the corresponding variables in the exogenous U;
(iv) Values of Y are determined by the counterfactual variable Yx ∈ Y∗ indexed by input x,

y ← fY (x,y∗) = yx; (55)

(v) The exogenous distribution P (X,C1,C2,Y∗) decomposes as follows

P (x, c1, c2,y∗) = P (x, c1, c2)
∏

x′∈ΩX

P (yx′ | x, c1, c2) (56)

For a general SCM graphically described in Fig. 1 (a), its structural functions F and the exogenous
distribution P (U) are not well-specified, and could take arbitrary forms. On the other hand, for
a canonical contextual bandit model described in Def. 4, its structural functions F are fixed; its
exogenous domains over U are discrete and finite, determined by the cardinality of the observed
domains over V. Moreover, its exogenous distribution P (U) follows the independence relationships
implied by the factorization in Eq. (56). Perhaps surprisingly, the parametric family of canonical
bandits is sufficient in representing all possible observational distribution P (X,Y,C1,C2) and
interventional distributions PX(Y,C1), PX(Y,C2) in the causal diagram of Fig. 1 (a).

Lemma 3. For any SCM M compatible with the causal diagram in Fig. 1 (a), there is a CCB
N such that P (X,Y,C1,C2;M) = P (X,Y,C1,C2;N ), PX(Y,C1;M) = PX(Y,C1;N ) and
PX(Y,C2;M) = PX(Y,C2;N ).

Proof. By the composition axiom (Thm. 3), Yx(u) = Y (u) if X(u) = x. This implies that

P (x, y, c1, c2;M) = P (yx, x, c1, c2;M) (57)

By summing over domains of C2,

Px(y, c1;M) =
∑
c2

Px(y, c1, c2;M) =
∑
c2

P (yx, c1, c2;M) (58)

The last step follows from Eq. (29). By further summing over domains of observed action X ,

Px(y, c1;M) =
∑
x′,c2

P (yx, x
′, c1, c2;M) (59)

Following a similar procedure, we also have

Px(y, c2;M) =
∑
x′,c1

P (yx, x
′, c1, c2;M) (60)

Eqs. (57), (59) and (60) imply that the observational P (X,Y,C1,C2) and interventional PX(Y,C1),
PX(Y,C2) distributions in SCMM could be written as functions of a counterfactual distribution of
the form P (Yx, X,C1,C2). It is thus sufficient to simulate this counterfactual distribution. Precisely,
let the exogenous distribution in CCB N be defined as:

P (X,C1,C2;N ) = P (X,C1,C2;M) (61)
∀x ∈ ΩX , P (Yx | X,C1,C2;N ) = P (Yx | X,C1,C2;M) (62)

We will next show that the CCB N constructed above generate the same observational and interven-
tional distributions as the SCMM.
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Consistency in Obs(C1, C2). By the definition of CCB (Def. 4), the observed reward Y is deter-
mined by the counterfactual Yx indexed by the input action X = x (Eq. (55)). This implies

P (x, y, c1, c2;N ) = P (yx, x, c1, c2;N ) (63)
= P (yx | x, c1, c2;N )P (x, c1, c2;N ) (64)
= P (yx | x, c1, c2;M)P (x, c1, c2;M) (65)
= P (yx, x, c1, c2;M) (66)

Eq. (65) follows from the construction of the CCB N in Eqs. (61) and (62). Applying Eq. (57) gives

P (x, y, c1, c2;N ) = P (x, y, c1, c2;M) (67)

Consistency in Exp(C1) + Exp(C2). Again, note that in a CCB N , the observed reward Y is
determined by the counterfactual Yx indexed by the input action X = x (Eq. (55)). This gives

Px(y, c1;N ) =
∑
x′,c1

P (yx, x
′, c1, c2;N ) (68)

=
∑
x′,c1

P (yx | x′, c1, c2;N )P (x′, c1, c2;N ) (69)

=
∑
x′,c1

P (yx | x′, c1, c2;M)P (x′, c1, c2;M) (70)

=
∑
x′,c1

P (yx, x
′, c1, c2;M) (71)

Eq. (70) follows from the construction of the CCB N in Eqs. (61) and (62). Applying Eq. (59) gives

Px(y, c1;N ) = Px(y, c1;M) (72)

Analogously, we also have

Px(y, c2;N ) = Px(y, c2;M) (73)

This means that SCMM and CCBN give the same evaluation of the observational P (X,Y,C1,C2)
and interventional PX(Y,C1), PX(Y,C2) distributions, which completes the proof.

Our next result identifies a set of extreme points on the exogenous probabilities of a CCB such that
its evaluation of the target effect Px(y, c1, c1) matches the lower bound given by Thm. 1.

Lemma 4. Let M be a CCB. Fix a realization (x, y, c1, c2) ∈ ΩX × ΩY × ΩC1
× ΩC2

. If its
exogenous distribution P (X,Y∗,C1,C2) satisfies one of the following conditions, ,

P (yx | ¬x, c1, c2) = 0, P (yx | ¬x, c1,¬c2) = 1, (74)
P (yx | ¬x,¬c1, c2) = 1, P (yx | ¬x,¬c1,¬c2) = 0 (75)

then in this SCMM, the causal effect Px(y, c1, c2) is equal to the lower bound l(x, y, c1, c2) given
by Thm. 1, i.e., Px(y, c1, c2) = l(x, y, c1, c2).

Proof. We will first evaluate the causal effect Px(y, c1, c2) in a CCBM at four extreme points of
Eqs. (74) and (75), showing that they match the lower bound l1, l2, l3, l4 given by Thm. 1, respectively.

Case 1: P (yx | ¬x, c1, c2) = 0. By summing over the domain of action X ,

P (yx, c1, c2) = P (yx, x, c1, c2) + P (yx,¬x, c1, c2) (76)
= P (yx, x, c1, c2) (77)
= P (y, x, c1, c2) (78)
= l1(x, y, c1, c2) (79)

The second step follows from the condition P (yx | ¬x, c1, c2) = 0. The third step follows from the
composition axiom (Thm. 3): Yx(u) = Y (u) if X(u) = x.
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Case 2: P (yx | ¬x, c1,¬c2) = 1. By a telescoping sum, we have

P (yx, c1, c2) = P (yx, x, c1, c2) + P (yx,¬x, c1, c2) (80)
+ P (yx, x, c1,¬c2) + P (yx,¬x, c1,¬c2) (81)
− P (yx, x, c1,¬c2)− P (yx,¬x, c1,¬c2) (82)
= P (yx, c1)− P (yx, x, c1,¬c2)− P (yx,¬x, c1,¬c2) (83)
= P (yx, c1)− P (yx, x, c1,¬c2)− P (¬x, c1,¬c2) (84)
= P (yx, c1)− P (x, y, c1,¬c2)− P (¬x, c1,¬c2) (85)
= Px(y, c1)− P (x, y, c1,¬c2)− P (¬x, c1,¬c2) (86)
= l2(x, y, c1, c2) (87)

The third step follows from the condition P (yx | ¬x, c1,¬c2) = 1. The fourth step follows from the
composition axiom (Thm. 3): Yx(u) = Y (u) if X(u) = x. The fifth step follows from Eq. (29).

Case 3: P (yx | ¬x,¬c1, c2) = 1. By a telescoping sum, we have

P (yx, c1, c2) = P (yx, x, c1, c2) + P (yx,¬x, c1, c2) (88)
+ P (yx, x,¬c1, c2) + P (yx,¬x,¬c1, c2) (89)
− P (yx, x,¬c1, c2)− P (yx,¬x,¬c1, c2) (90)
= P (yx, c2)− P (yx, x,¬c1, c2)− P (yx,¬x,¬c1, c2) (91)
= P (yx, c2)− P (yx, x,¬c1, c2)− P (¬x,¬c1, c2) (92)
= P (yx, c2)− P (x, y,¬c1, c2)− P (¬x,¬c1, c2) (93)
= Px(y, c2)− P (x, y,¬c1, c2)− P (¬x,¬c1, c2) (94)
= l3(x, y, c1, c2) (95)

The third step follows from the condition P (yx | ¬x,¬c1, c2) = 1. The fourth step follows from the
composition axiom (Thm. 3): Yx(u) = Y (u) if X(u) = x. The fifth step follows from Eq. (29).

Case 4: P (yx | ¬x,¬c1,¬c2) = 0. By a telescoping sum, we have

P (yx, c1, c2) = P (yx, x, c1, c2) + P (yx,¬x, c1, c2)

+ P (yx, x, c1,¬c2) + P (yx,¬x, c1,¬c2)

− P (yx, x, c1,¬c2)− P (yx,¬x, c1,¬c2)

− P (yx, x,¬c1,¬c2)− P (yx,¬x,¬c1,¬c2)

+ P (yx, x,¬c1,¬c2) + P (yx,¬x,¬c1,¬c2)

(96)

= P (yx, c1)− P (yx,¬c2)

+ P (yx, x,¬c1,¬c2) + P (yx,¬x,¬c1,¬c2)
(97)

= P (yx, c1)− P (yx,¬c2) + P (yx, x,¬c1,¬c2) (98)
= P (yx, c1)− P (yx,¬c2) + P (x, y,¬c1,¬c2) (99)
= Px(y, c1)− Px(y,¬c2) + P (x, y,¬c1,¬c2) (100)
= l4(x, y, c1, c2) (101)

The third step follows from the condition P (yx | ¬x,¬c1,¬c2) = 0. The fourth step follows from
the composition axiom : Yx(u) = Y (u) if X(u) = x. The fifth step follows from Eq. (29).

At all the above extreme points, the causal effect Px(y, c1, c2) matches one of the lower bound li,
i = 1, . . . , 4, given by Thm. 1. Since Thm. 1 applies to all SCMs compatible with the causal diagram
of Fig. 1 (a), we must have in each of the above cases i = 1, . . . , 4, for any j 6= i,

li(x, y, c1, c2) ≥ lj(x, y, c1, c2) (102)

This implies for all cases considered above,

Px(y, c1, c2) = li(x, y, c1, c2) = max
j=1,...,4

lj(x, y, c1, c2) (103)

In words, the causal effect Px(y, c1, c2) evaluated in CCBM at extreme points of Eqs. (74) and (75)
matches the lower bound l(x, y, c1, c2) given by Thm. 1, which completes the proof.
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A more interesting challenge at this point is to construct a canonical contextual bandit model from an
SCM compatible with Fig. 1 such that its exogenous probabilities reach the extreme points given by
Lem. 4 while maintaining the same observational and interventional distributions.

Lemma 5. For any SCM M compatible with the causal diagram of Fig. 1 (a), fix a realization
(x, y, c1, c2) ∈ ΩX × ΩY × ΩC1 × ΩC2 . There is an CCB N such that

(i) M and N define the same observational distribution P (X,Y,C1,C1) and interventional
probabilities Px(y, c1), Px(y,¬c1), Px(y, c2) and Px(y,¬c2);

(ii) The exogenous distribution P (X,Yx,C1,C2) in N satisfy the following
P (yx | ¬x, c1, c2;N ) = 0 if l(x, y, c1, c2;M) = l1(x, y, c1, c2;M)

P (yx | ¬x, c1,¬c2;N ) = 1 if l(x, y, c1, c2;M) = l2(x, y, c1, c2;M)

P (yx | ¬x,¬c1, c2;N ) = 1 if l(x, y, c1, c2;M) = l3(x, y, c1, c2;M)

P (yx | ¬x,¬c1,¬c2;N ) = 0 if l(x, y, c1, c2;M) = l4(x, y, c1, c2;M)
(104)

where l = max{l1, l2, l3, l4} are lower bounds over Px(y, c1, c2) given by Thm. 1.

Proof. It follows from Lem. 3 that it is sufficient to consider a CCB model M without loss of
generality. We will next discuss the construction of an alternative CCB N on a case-by-case basis.

Case 1: l1 ≥ l2, l3, l4. Construct a CCB N fromM such that its exogenous distribution satisfies

P (yx,¬x, c1, c2;N ) = 0 (105)
P (yx,¬x, c1,¬c2;N ) = P (yx,¬x, c1,¬c2;M)

+ P (yx,¬x, c1, c2;M)
(106)

P (yx,¬x,¬c1, c2;N ) = P (yx,¬x,¬c1, c2;M)

+ P (yx,¬x, c1, c2;M)
(107)

P (yx,¬x,¬c1,¬c2;N ) = P (yx,¬x,¬c1,¬c2;M)

− P (yx,¬x, c1, c2;M)
(108)

Other exogenous probabilities P (yx, x, c1, c2) remain the same across N and M. The above
construction is feasible since l(x, y, c1, c2;M) = l1(x, y, c1, c2;M) implies

l1(x, y, c1, c2;M) ≥ l2(x, y, c1, c2;M) (109)
⇒ P (yx,¬x, c1,¬c2;M) + P (yx,¬x, c1, c2;M) ≤

P (¬x, c1,¬c2;M)
(110)

l1(x, y, c1, c2;M) ≥ l3(x, y, c1, c2;M) (111)
⇒ P (yx,¬x,¬c1, c2;M) + P (yx,¬x, c1, c2;M) ≤

P (¬x,¬c1, c2;M)
(112)

l1(x, y, c1, c2;M) ≥ l4(x, y, c1, c2;M) (113)
⇒ P (yx,¬x,¬c1,¬c2;M)− P (yx,¬x, c1, c2;M) ≥ 0 (114)

We will next show that this construction of N maintain the same observational P (X,Y,C1,C2) and
interventional probabilities Px(y, c1), Px(y,¬c1), Px(y, c2) and Px(y,¬c2). First,

P (x, y, c1, c2;N )

=P (yx, x, c1, c2;N )

=P (yx, x, c1, c2;M)

=P (x, y, c1, c2;M)

(115)
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The last step follows from the definition of CCBs (Def. 4). As for the interventional distribution,

Px(y, c1;N ) (116)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N ) (117)
+ P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N ) (118)
= P (yx, x, c1, c2;M) + 0

+ P (yx, x, c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

+ P (yx,¬x, c1, c2;M)

(119)

= Px(y, c1;M) (120)

and

Px(y,¬c1;N ) (121)
= P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(122)

= P (yx, x,¬c1, c2;M) + P (yx,¬x,¬c1, c2;M)

+ P (yx,¬x, c1, c2;M)

+ P (yx, x,¬c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;¬M)

− P (yx,¬x, c1, c2;M)

(123)

= Px(y,¬c1;M) (124)

Similarly, we also have

Px(y, c2;N ) (125)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N ) (126)
+ P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N ) (127)
= P (yx, x, c1, c2;M) + 0 (128)
+ P (yx, x,¬c1, c2;M) + P (yx,¬x,¬c1, c2;M) (129)
+ P (yx,¬x, c1, c2;M) (130)
= Px(y, c2;M) (131)

and

Px(y,¬c2;N ) (132)
= P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(133)

= P (yx, x, c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

+ P (yx,¬x, c1, c2;M) + P (yx, x,¬c1,¬c2;M)

+ P (yx,¬x,¬c1,¬c2;M)− P (yx,¬x, c1, c2;M)

(134)

= Px(y,¬c2;M) (135)

Case 2: l2 ≥ l1, l3, l4. Construct a CCB N fromM such that its exogenous distribution satisfies

P (yx,¬x, c1, c2;N ) (136)
= P (yx,¬x, c1, c2;M) + P (yx,¬x, c1,¬c2;M)

− P (¬x, c1,¬c2;M)
(137)

P (yx,¬x, c1,¬c2;N ) = P (¬x, c1,¬c2;M) (138)
P (yx,¬x,¬c1, c2;N )

= P (yx,¬x,¬c1, c2;M)− P (yx,¬x, c1,¬c2;M)

+ P (¬x, c1,¬c2;M)

(139)

P (yx,¬x,¬c1,¬c2;N )

= P (yx,¬x,¬c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

− P (¬x, c1,¬c2;M)

(140)
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Other exogenous probabilities P (yx′ , x, c1, c2) remain the same across N and M. The above
construction is feasible since l(x, y, c1, c2;M) = l2(x, y, c1, c2;M) implies

l2(x, y, c1, c2;M) ≥ l1(x, y, c1, c2;M) (141)
⇒ P (yx,¬x, c1, c2;M) + P (yx,¬x, c1,¬c2;M)

− P (¬x, c1,¬c2;M) ≥ 0
(142)

l2(x, y, c1, c2;M) ≥ l3(x, y, c1, c2;M) (143)
⇒ P (yx,¬x,¬c1, c2;M)− P (yx,¬x, c1,¬c2;M)

+ P (¬x, c1,¬c2;M) ≤ P (¬x,¬c1, c2;M)
(144)

l2(x, y, c1, c2;M) ≥ l4(x, y, c1, c2;M) (145)
⇒ P (yx,¬x,¬c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

− P (¬x, c1,¬c2;M) ≥ 0
(146)

We will next show that this construction of N maintain the same observational P (X,Y,C1,C2) and
interventional probabilities Px(y, c1), Px(y,¬c1), Px(y, c2) and Px(y,¬c2). First,

P (x, y, c1, c2;N )

= P (yx, x, c1, c2;N )

= P (yx, x, c1, c2;M)

= P (x, y, c1, c2;M)

(147)

The last step follows from the definition of CCBs (Def. 4). As for the interventional distribution,

Px(y, c1;N ) (148)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )
(149)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

+ P (yx,¬x, c1,¬c2;M)− P (¬x, c1,¬c2;M)

+ P (yx, x, c1,¬c2;M) + P (¬x, c1,¬c2;M)

(150)

= Px(y, c1;M) (151)

and

Px(y,¬c1;N ) (152)
= P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(153)

= P (yx, x,¬c1, c2;M) + P (yx,¬x,¬c1, c2;M)

− P (yx,¬x, c1,¬c2;M) + P (¬x, c1,¬c2;M)

+ P (yx, x,¬c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

+ P (yx,¬x, c1,¬c2;M)− P (¬x, c1,¬c2;M)

(154)

= Px(y,¬c1;M) (155)

Similarly, we also have

Px(y, c2;N ) (156)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )
(157)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

+ P (yx,¬x, c1,¬c2;M)− P (¬x, c1,¬c2;M)

+ P (yx, x,¬c1, c2;M) + P (yx,¬x,¬c1, c2;M)

− P (yx,¬x, c1,¬c2;M) + P (¬x, c1,¬c2;M)

(158)

= Px(y, c2;M) (159)
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and
Px(y,¬c2;N ) (160)
= P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(161)

= P (yx, x, c1,¬c2;M) + P (¬x, c1,¬c2;M)

+ P (yx, x,¬c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

+ P (yx,¬x, c1,¬c2;M)− P (¬x, c1,¬c2;M)

(162)

= Px(y,¬c2;M) (163)

Case 3: l3 ≥ l1, l2, l4. Construct a CCB N fromM such that its exogenous distribution satisfies
P (yx,¬x, c1, c2;N ) (164)
= P (yx,¬x, c1, c2;M) + P (yx,¬x,¬c1, c2;M)

− P (¬x,¬c1, c2;M)
(165)

P (yx,¬x, c1,¬c2;N ) (166)
= P (yx,¬x, c1,¬c2;M)− P (yx,¬x,¬c1, c2;M)

+ P (¬x,¬c1, c2;M)
(167)

P (yx,¬x,¬c1, c2;N ) = P (¬x,¬c1, c2;M) (168)
P (yx,¬x,¬c1,¬c2;N ) (169)
= P (yx,¬x,¬c1,¬c2;M) + P (yx,¬x,¬c1, c2;M)

− P (¬x,¬c1, c2;M)
(170)

Other exogenous probabilities P (yx′ , x, c1, c2) remain the same across N and M. The above
construction is feasible since l(x, y, c1, c2;M) = l3(x, y, c1, c2;M) implies

l3(x, y, c1, c2;M) ≥ l1(x, y, c1, c2;M) (171)
⇒ P (yx,¬x, c1, c2;M) + P (yx,¬x,¬c1, c2;M)

− P (¬x,¬c1, c2;M) ≥ 0
(172)

l3(x, y, c1, c2;M) ≥ l2(x, y, c1, c2;M) (173)
⇒ P (yx,¬x, c1,¬c2;M)− P (yx,¬x,¬c1, c2;M)

+ P (¬x,¬c1, c2;M) ≤ P (¬x, c1,¬c2;M)
(174)

l3(x, y, c1, c2;M) ≥ l4(x, y, c1, c2;M) (175)
⇒ P (yx,¬x,¬c1,¬c2;M) + P (yx,¬x,¬c1, c2;M)

− P (¬x,¬c1, c2;M) ≥ 0
(176)

We will next show that this construction of N maintain the same observational P (X,Y,C1,C2) and
interventional probabilities Px(y, c1), Px(y,¬c1), Px(y, c2) and Px(y,¬c2). First,

P (x, y, c1, c2;N )

= P (yx, x, c1, c2;N )

= P (yx, x, c1, c2;M)

= P (x, y, c1, c2;M)

(177)

The last step follows from the definition of CCBs (Def. 4). As for the interventional distribution,
Px(y, c1;N ) (178)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )
(179)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

+ P (yx,¬x,¬c1, c2;M)− P (¬x,¬c1, c2;M)

+ P (yx, x, c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

− P (yx,¬x,¬c1, c2;M) + P (¬x,¬c1, c2;M)

(180)

= Px(y, c1;M) (181)
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and

Px(y,¬c1;N ) (182)
= P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(183)

= P (yx, x,¬c1, c2;M) + P (¬x,¬c1, c2;M)

+ P (yx, x,¬c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

+ P (yx,¬x,¬c1, c2;M)− P (¬x,¬c1, c2;M)

(184)

= Px(y,¬c1;M) (185)

Similarly, we also have

Px(y, c2;N ) (186)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )
(187)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

+ P (yx,¬x,¬c1, c2;M)− P (¬x,¬c1, c2;M)

+ P (yx, x,¬c1, c2;M) + P (¬x,¬c1, c2;M)

(188)

= Px(y, c2;M) (189)

and

Px(y,¬c2;N ) (190)
= P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(191)

= P (yx, x, c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

− P (yx,¬x,¬c1, c2;M) + P (¬x,¬c1, c2;M)

+ P (yx, x,¬c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

+ P (yx,¬x,¬c1, c2;M)− P (¬x,¬c1, c2;M)

(192)

= Px(y,¬c2;M) (193)

Case 4: l4 ≥ l1, l2, l3. Construct a CCB N fromM such that its exogenous distribution satisfies

P (yx,¬x, c1, c2;N ) (194)
= P (yx,¬x, c1, c2;M)− P (yx,¬x,¬c1,¬c2;M) (195)
P (yx,¬x, c1,¬c2;N ) (196)
= P (yx,¬x, c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M) (197)
P (yx,¬x,¬c1, c2;N ) (198)
= P (yx,¬x,¬c1, c2;M) + P (yx,¬x,¬c1,¬c2;M) (199)
P (yx,¬x,¬c1,¬c2;N ) = 0 (200)

Other exogenous probabilities P (yx′ , x, c1, c2) remain the same across N and M. The above
construction is feasible since l(x, y, c1, c2;M) = l4(x, y, c1, c2;M) implies

l4(x, y, c1, c2;M) ≥ l1(x, y, c1, c2;M) (201)
⇒ P (yx,¬x, c1, c2;M)− P (yx,¬x,¬c1,¬c2;M) ≥ 0 (202)
l4(x, y, c1, c2;M) ≥ l2(x, y, c1, c2;M) (203)
⇒ P (yx,¬x, c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

≤ P (¬x, c1,¬c2;M)
(204)

l4(x, y, c1, c2;M) ≥ l3(x, y, c1, c2;M) (205)
⇒ P (yx,¬x,¬c1, c2;M) + P (yx,¬x,¬c1,¬c2;M)

≤ P (¬x,¬c1, c2;M)
(206)
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We will next show that this construction of N maintain the same observational P (X,Y,C1,C2) and
interventional probabilities Px(y, c1), Px(y,¬c1), Px(y, c2) and Px(y,¬c2). First,

P (x, y, c1, c2;N )

= P (yx, x, c1, c2;N )

= P (yx, x, c1, c2;M)

= P (x, y, c1, c2;M)

(207)

The last step follows from the definition of CCBs (Def. 4). As for the interventional distribution,

Px(y, c1;N ) (208)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )
(209)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

− P (yx,¬x,¬c1,¬c2;M) + P (yx, x, c1,¬c2;M)

+ P (yx,¬x, c1,¬c2;M) + P (yx,¬x,¬c1,¬c2;M)

(210)

= Px(y, c1;M) (211)

and

Px(y,¬c1;N ) (212)
= P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(213)

= P (yx, x,¬c1, c2;M) + P (yx,¬x,¬c1, c2;M)

+ P (yx,¬x,¬c1,¬c2;M) + P (yx, x,¬c1,¬c2;M) + 0
(214)

= Px(y,¬c1;M) (215)

Similarly, we also have

Px(y, c2;N ) (216)
= P (yx, x, c1, c2;N ) + P (yx,¬x, c1, c2;N )

+ P (yx, x,¬c1, c2;N ) + P (yx,¬x,¬c1, c2;N )
(217)

= P (yx, x, c1, c2;M) + P (yx,¬x, c1, c2;M)

− P (yx,¬x,¬c1,¬c2;M) + P (yx, x,¬c1, c2;M)

+ P (yx,¬x,¬c1, c2;M) + P (yx,¬x,¬c1,¬c2;M)

(218)

= Px(y, c2;M) (219)

and

Px(y,¬c2;N ) (220)
= P (yx, x, c1,¬c2;N ) + P (yx,¬x, c1,¬c2;N )

+ P (yx, x,¬c1,¬c2;N ) + P (yx,¬x,¬c1,¬c2;N )
(221)

= P (yx, x, c1,¬c2;M) + P (yx,¬x, c1,¬c2;M)

+ P (yx,¬x,¬c1,¬c2;M) + P (yx, x,¬c1,¬c2;M) + 0
(222)

= Px(y,¬c2;M) (223)

This completes the proof.

Finally, we are now ready to prove the sharpness of the lower bound given by Thm. 1.

Theorem 2. Given distributions P (X,Y,C1,C2), PX(Y,C1), and PX(Y,C2), Thm. 1 is a sharp
lower bound over the causal effects PX(Y,C1,C2) in the causal diagram of Fig. 1 (a).

Proof. Suppose there is an SCM M where l∗(x, y, c1, c2;M) > l(x, y, c1, c2;M) for some
(x, y, c1, c2). Construct an alternative SCMM∗ following Lem. 5. It follows from Lem. 4 that in
this modified SCMM∗, the causal effect Px(y, c1, c2) matches the lower bound l given by Thm. 1,

Px(y, c1, c2;M∗) = l(x, y, c1, c2;M∗) (224)
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Observe that the construction in Lem. 5 ensures that SCMsM andM∗ share the same evaluation
of the same observational distribution P (X,Y,C1,C1) and interventional probabilities Px(y, c1),
Px(y,¬c1), Px(y, c2) and Px(y,¬c2). Since lower bounds l and l∗ are functions of these observa-
tional and interventional probabilities, we must have

l∗(x, y, c1, c2;M∗) = l∗(x, y, c1, c2;M),

l(x, y, c1, c2;M∗) = l(x, y, c1, c2;M)
(225)

Since l∗ consistently dominates l in SCMM, the above equations imply
l∗(x, y, c1, c2;M∗) > l(x, y, c1, c2;M∗) = Px(y, c1, c2;M∗) (226)

This means that l∗ is not a valid lower bound for Px(y, c1, c2) inM∗, which is a contradiction.

C Policy learning using partial effects
C.1 Simplifying bounds in terms of conditional distributions estimated using ML
Notice that the bound using Obs is simply P (y|x, c1, c2)P (x|c1, c2). We consider the other cases
below.

Case I: Lower bound using Obs,Exp(C1).
(Px(y, c1)− P (y, x, c1,¬c2)− P (¬x, c1,¬c2))

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− (P (y, x, c1)− P (y, x, c1, c2))

P (c1, c2)
− P (¬x, c1,¬c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x, c1)

P (c1, c2)
+
P (y, x, c1, c2)

P (c1, c2)
− P (¬x, c1,¬c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x|c1)

P (c2|c1)
+ P (y|x, c1, c2)P (x|c1, c2)

− P (¬x, c1)− P (¬x, c1, c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x|c1)

P (c2|c1)
+ P (y|x, c1, c2)P (x|c1, c2)

− P (c1)− P (¬x, c1)− P (¬x, c1, c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x|c1)

P (c2|c1)
+ P (y|x, c1, c2)P (x|c1, c2)

− P (c1)

P (c1, c2)
+
P (c1)− P (x, c1)

P (c1, c2)
+
P (c1, c2)− P (x, c1, c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x|c1)

P (c2|c1)
+ P (y|x, c1, c2)P (x|c1, c2)− P (c1)

P (c1, c2)

+
P (c1)

P (c1, c2)
− P (x, c1)

P (c1, c2)
+
P (c1, c2)

P (c1, c2)
− P (x, c1, c2)

P (c1, c2)

=
Px(y|c1)

P (c2|c1)
− P (y, x|c1)

P (c2|c1)
+ P (y|x, c1, c2)P (x|c1, c2) + 1

− P (x|c1)

P (c2|c1)
− P (x|c1, c2)

=
P (c2|c1) + Px(y|c1)− P (y, x|c1)− P (x|c1)

P (c2|c1)

+ (P (y|x, c1, c2)− 1)P (x|c1, c2)

= 1 +
Px(y|c1)

P (c2|c1)
− P (y|x, c1)P (x|c1)

P (c2|c1)
− P (x|c1)

P (c2|c1)

+ (P (y|x, c1, c2)− 1)P (x|c1, c2)

(227)

The bound is analogously derived when Obs,Exp(C2) are available.
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Case II: Lower bound using Obs,Exp(C1),Exp(C2).

Px(y, c2)− Px(y,¬c1) + P (y, x,¬c1,¬c2)

P (c1, c2)

=
Px(y, c2)− Px(y)

P (c1, c2)

+
Px(y, c1) + P (y, x,¬c1)− P (y, x,¬c1, c2)

P (c1, c2)

=
Px(y, c2)− Px(y) + Px(y, c1)

P (c1, c2)

+
P (y, x,¬c1)− (P (y, x, c2)− P (y, x, c1, c2))

P (c1, c2)

=
Px(y, c2)− Px(y) + Px(y, c1) + P (y, x,¬c1)

P (c1, c2)

− P (y, x, c2) + P (y, x, c1, c2)

P (c1, c2)

=
Px(y|c2)

P (c1|c2)
− Px(y)

P (c1, c2)
+
Px(y|c1)

P (c2|c1)
+

P (y, x)

P (c1, c2)

− P (y|x, c1)P (x|c1)

P (c2|c1)
− P (y|x, c2)P (x|c2)

P (c1|c2)

+ P (y|x, c1, c2)p(x|c1, c2)

(228)

D Additional Empirical Analysis
D.1 Synthetic Data I
This section provides additional details on the Synthetic data experiments provided in Section 6 of
the main paper.

SCM parameters

U ∼ N (0, 1); C1 = αC1
U + βC1

; C2 = αC2
U + βC2

x = σ(αTx [U,C1,C2]T +N (0, 1)) > 0.5;

y = σ(αTy [U,C1,C2, x]T +N (0, 1)) > 0.5

(229)

Parameter Value

αc1 0.10
αc2 0.43
βc1 2.05e-04
βc2 8.9766e-05
αx [-0.06, 0.39, 0.46]
αy [-0.16, 0.41, 0.04, 0.1]

Table 1: Synthetic Data: SCM Parameters

Estimated bounds on Synthetic Data. Figure 5 shows the estimated bounds on Synthetic data
with respect to covariate values.

D.2 Synthetic Data II
We present additional evaluation for a different choice of SCM parameters. The parametrization of
the SCMs remains the same as above. The specific parameters used are given in Table 2. As before,
the estimated bounds are shown in Figure 6. We sample 100 training points from the SCM to estimate
the bounds, and learn the policy according to our safe policy learning framework. We test the learned
policies on a separate sample of 100 test points. Figure 7 shows the performance of the learned
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Figure 5: Synthetic Data: Lower bounds as a function of individual features C1 and C2. Each row
corresponds to bounds obtained from different combination of data sources (see y-label). The first
two columns show the corresponding lower bound for treatment x = 0 and x = 1 with respect to the
first covariate c1. Analogously, the third and fourth columns correspond to treatment x = 0 and x = 1
with respect to the second covariate c2. Since we use plug-in estimates of the bounds, the bounds are
not smooth. Nonetheless notice that for some covariate values, bounds obtained using Obs+Exp(C1)
or Obs+Exp(C2) dominate the Obs bound providing us with better estimates of treatment effects.
Finally, for this SCM setup, the bound using all data sources, specifically Obs+Exp(C1)+Exp(C2)
saturates to 1 for x = 0 suggesting most samples do not need treatment to achieve improved outcome.
However, it is still crucial to target patients carefully, and using the first three bounds in conjunction,
allows us to learn a safe policy (see Figure 3).
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Figure 6: Synthetic Data II: Lower bounds as a function of individual featuresC1 andC2. Nonetheless
notice that for some covariate values, bounds obtained using Obs+Exp(C1) or Obs+Exp(C2) dominate
the Obs bound providing us with better estimates of treatment effects. Finally, for this SCM
setup, the bound using all data sources, specifically Obs+Exp(C1)+Exp(C2) is 0 and unable to
provide informative estimates. Nonetheless using all bounds in conjunction, we can obtain some
improvements using our safe policy learning.

Parameter Value

αc1 0.7
αc2 0.86
βc1 0.34
βc2 0.32
αx [-0.038, 0.012, 0.013]
αy [-0.72, -0.58, -0.67, 3.5]

Table 2: Synthetic Data: SCM Parameters
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Synthetic Data I Synthetic Data II IST Data

p(y|x, c) n/a n/a XGBoost
p(y|x, c1), p(y|x, c2) n/a n/a XGBoost
p(x|c) n/a n/a XGBoost
p(x|c1), p(x|c2) n/a n/a XGBoost

p(c1, c2) Gaussian Gaussian Systolic BP: Gaussian
Age, Sex: Bernoulli

Bounds estimation Plugin Plugin Plugin

Policy Learning Rate 0.01 0.1 0.001

Policy Model

Model type: MLP
# Hidden: 5
# Layers: 2
Activation: GeLU

Model type: MLP
# Hidden: 5
# Layers: 2
Activation: GeLU

Model type: MLP
# Hidden: 5
# Layers: 2
Activation: GeLU

Table 3: Model training details for all datasets

policies compared to behavior and random policies. On the left, we see policy value at different
thresholds on the policy score. On the right is the mean outcome when x-proportion of samples are
treated after sorting by policy score. As in previous experiment, we see that the learned policies
dominates the behavior and random policy. In this case, since l4 is uninformative, the performance
of using all bounds overlaps with that of using l1, l2 and l1, l3. While observational bound trails
the other learned policies, the consequence in selecting patients is not significant as can be seen on
the right. Nonetheless all learned policies dominate the behavior policy suggesting utility of our
framework to target samples for treatment.

D.3 IST Data
Generating Observational Data. IST data can be accessed at Sandercock et al. [54]. IST consists
of trial data studying the effect of Aspirin treatment allocation on clinical course of Ischemic
stroke. For our empirical analysis, we generate i) Obs: an observational dataset with unobserved
confounding, ii) Exp(C1), Exp(C2): Two experimental datasets with partial observability. We choose
C1 = {Age, Sex} and C2 = {Systolic Blood Pressure (SysBP)} constitute observed confounding
attributes. We binarize Age (≥ 73 is 1, and 0 otherwise).

To generate Obs, we induce selection bias based on Age {0, 1}, Sex {0, 1}, SysBP, and Conscious
state (CONSC). A person’s conscious state at randomization can take 3 values (0: fully alert, 1:
drowsy, 2: unconscious). We introduce a new variable Z such that:

lc = 0.9 ∗ 1(CONSC == 0) + 0.7 ∗ 1(CONSC == 1)

− 0.6 ∗ 1(CONSC == 2)

ls = 0.85 ∗ 1(Sex == 0)− 0.1 ∗ 1(Sex == 1)

la = 0.7 ∗ 1(Age == 0)− 0.1 ∗ 1(Age == 1)

lbp = 0.8 ∗ 1(SysBP ≤ 120) + 0.5 ∗ 1(120 < SysBP ≤ 130)

− 0.01 ∗ 1(130 < SysBP ≤ 140)

− 0.31(140 < SysBP ≤ 180)− 0.61(SysBP > 180)

Z = 1(σ(lc + ls + la + lbp) > 0.65)

(230)

Observational samples are chosen if Z = 1 and dropped otherwise. Exp(C1) data drops all covariates
except treatment, outcome, Age and Sex. Exp(C2) drops all covariates except treatment, outcome,
SysBP.

Estimated Lower bounds on IST Data.

D.4 Modeling Details
Table 3 provides modeling details for intermediate distributions used to estimate the plugin bounds.
Bounds are estimated using the derivations in Appendix C.1. Results of the learned policies are
discussed in the main paper in Section 6.
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Figure 7: Synthetic Data II Policy Evaluation. Left: Policy evaluation with varying threshold
1 (zero treated)→ 0 (all treated) on policy scores. For fewer treated samples (higher threshold),
learned policies peak much earlier suggesting that our learned policies are better at targeting patients
over behavior policy. Right: Mean outcome when x-proportion of the population is targeted for
treatment using sorted policy scores. Behavior policy trails relative to the learned policies. Since l4 is
uninformative, performance of using all bounds (red) is comparable to using l1, l2 and l1, l3. Learned
policies are also better at selecting patients compared to random and behavior policy, though their
variability in using different bounds is low.

E Additional Discussions
We discuss limitations and broader impacts of our proposed work here.

Limitations. Our bounds are derived for discrete treatments and outcomes. Our proposed algorithm
is a two-step approach where the first step estimates plugin bounds and the second step learns a policy
with estimated plugin bounds. Considering doubly-robust estimates of bounds, implications for policy
learning, sample efficiency, and joint approaches are interesting aspects of future work.

Broader Impacts. Our work considers a highly relevant healthcare setting where observational
studies are affected by unobserved confounding rendering conventional offline policy learning
approaches ineffective. By leveraging relevant experimental studies with partial observability, we
demonstrate that effective safe offline learning is indeed possible. Our robust policy learning
framework optimizes for worst-case treatment effects using our estimated lower-bounds. Our work is
a proof-of-concept and adds a novel perspective to existing body of work on robust policy learning.
However, understanding of real-world constraints is required before the proposed method is ready for
practical deployment in health and medicine. For example, our policy learning framework is useful
for identifying patients who benefit from treatment. However, in practice we might want to focus on
populations for whom no treatment is actively harmful. This requires different learning objectives
and is an active area of our future work.

F Compute Resources
All experiments were conducted on a 2.3 GHz Dual-Core Intel Core i5, 8 GB RAM, MacOS
Monterey 12.5.1. No GPU Requirements. Code can be found at https://github.com/reAIM-Lab/
safecrl.
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Figure 8: IST Data: Lower bounds as a function of individual SysBP features. Each row corresponds
to bounds obtained from different combination of data sources (see y-label). The first two columns
show the corresponding lower bound for no-treatment (x = 0) and Aspirin treatment (x = 1)
respectively. We model SysBP as a Gaussian resulting in relatively smooth variation. However, since
we use plug-in estimates of the bounds, the bounds are not smooth. Notice that for some covariate
values, bounds obtained using Obs+Exp(C1) or Obs+Exp(C2) dominate the Obs bound providing
us with relatively better estimates of treatment effects. However, the effect of treatment itself is not
significant or uniformly beneficial with respect to SysBP.
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