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Abstract

Estimating the effects of multi-dimensional treat-
ments (i.e., joint treatment effects) is critical in
many data-intensive domains, including genetics
and drug evaluation. The main challenges for
studying the joint treatment effects include the
need for large sample sizes to explore different
treatment combinations as well as potentially un-
safe treatment interactions. In this paper, we de-
velop machinery for estimating joint treatment ef-
fects by combining data from multiple experimen-
tal datasets. In particular, first, we develop new
identification conditions for determining whether
joint treatment effects can be expressed as a multi-
distribution adjustment formula. Further, we de-
velop estimators with statistically appealing prop-
erties such as consistency and robustness to model
misspecification and slow convergence. Finally,
we perform simulation studies that corroborate
the effectiveness of the proposed methods.

1. Introduction

A large body of scientific research is concerned with es-
timating the effect of multi-dimensional treatments. For
example, Genome-Wide Association Studies (GWAS) in
computational biology application study the effect of mul-
tiple combinations of genes (Tam et al., 2019). As another
example, estimating the multi-dimensional treatment effects
is essential in the pharmaceutical industry because poten-
tial treatment-treatment interactions can lead to harmful
effects to patients, potentially lethal in some situations. Con-
sider two real-world scenarios in which understanding the
treatment-treatment interaction is critical:

Example TTI (Treatment-Treatment-Interaction (Lee
et al., 2019)). Many experimental studies have been con-
ducted on the effects of antihypertensive drugs (X;) on
blood pressure (I¥) with baseline characteristics (C1) (e.g.,
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(Hansson et al., 1999)) and on the effects of anti-diabetic
drugs (X2) on cardiovascular disease (Y) with baseline char-
acteristics (C5) (e.g., (Ajjan & Grant, 2006)). Other studies
reported that simultaneously taking both durgs was harm-
ful to the population (Ferrannini & Cushman, 2012). This
leaves open the question on how to evaluate the joint effect
of antihypertensive and anti-diabetic medications from data
coming from individual randomized studies. ]

Example MTI (Multiple Treatments Interactions). Many
experimental studies have been conducted on the effects of
(1) taking an aspirin (X;) on blood pressure (W;) (e.g.,
(Hansson et al., 1998); (2) taking acetaminophen (X5) on
blood coagulation (W5) (e.g., (Gazzard et al., 1974)); and
(3) taking the ibuprofen (X3) on the gastrointestinal disease
(Y) (e.g., (Lesko & Mitchell, 1995)). Other more recent
studies reported adverse drug reactions to taking ibuprofen
with aspirins and acetaminophen (Moore et al., 2015). What
are the causal effects of the combinations of such drugs? Hl

Despite their critical importance, the analysis of multi-
dimensional effects remain underrepresented compared to
the vast literature on single-treatment experiments. This
is primarily due to two major challenges: the requirement
for large sample sizes to investigate all possible treatment
combinations and the possibility of unsafe or unethical treat-
ment interactions (Examples TTI and MTI). It is, therefore,
of great importance to investigate the possibility of estimat-
ing joint treatment effects by combining data from multiple
marginal experiments, which refer to experiments on a sub-
set of treatments (e.g., a single treatment). In this paper, we
present novel methods for estimating joint effects given data
from multiple marginal experiments, as well as a qualitative
description of the underlying causal system articulated in
the form of a causal graph. Specifically,

1. We develop nonparametric identification criteria deter-
mining whether the joint treatment effects can be expressed
through an adjustment formula using distributions from
marginal experiments.

2. We construct estimators for the joint treatment effects
using samples from marginal experiments and provide learn-
ing guarantees for the estimators.

3. We illustrate the empirical validity of the estimators
through simulations, which corroborate the theory.
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The proofs are provided in Appendix C in suppl. material.

1.1. Related Work

Causal Effect Identification and Estimation. Recent ad-
vances in the literature of generalized causal effect identifica-
tion (g-1D) lead to algorithmic solutions for determining the
identification of a causal effect from a set of observational
and experimental studies given a causal graph (Bareinboim
& Pearl, 2012a; 2016; Lee et al., 2019; Lee & Bareinboim,
2020; Lee et al., 2020; Correa et al., 2021). In addition,
recent progress has been made in developing estimators for
any causal effects identifiable from observational data in
a causal graph (Jung et al., 2020; 2021a;b; Bhattacharya
et al., 2022; Jung et al., 2022). However, these estimators
are not applicable to g-ID settings that involve multiple
experimental distributions.

On a different thread, estimating causal effects from mul-
tiple experiments and observations has been investigated
for some specific settings. For example, the problems of
estimating a long-term effect of a single treatment by com-
bining multiple short-term experimental studies into a surro-
gate variable have been recently studied (e.g., Bareinboim
& Pearl (2012b); Athey et al. (2019; 2020); Imbens et al.
(2022)). In epidemiology, estimators for causal effects in
a target domain by combining multiple experiments in dif-
ferent source domains have been developed (e.g., Dahabreh
et al. (2019); Colnet et al. (2020); Degtiar & Rose (2021);
Shi et al. (2022)). However, these methods are not applica-
ble when the goal is to estimate the joint treatment effects
from multiple marginal experiments.

Treatment Combinations. The aforementioned examples
are related to the analysis of treatment combinations, with
aiming to attribute the joint treatment effects to either the ef-
fect of treatment combination or marginal treatment effects
(e.g., VanderWeele & Knol (2014); Egami & Imai (2018);
Parbhoo et al. (2021)). Existing literature commonly relies
on the back-door criterion. Such assumptions, however, are
not satisfied when latent confounders exist, as illustrated in
Examples (TTI, MTI) and Figs. (1a, 2a).

Closer to our work is Saengkyongam & Silva (2020), which
investigates the identifiability of joint effects for the additive
models with Gaussian noises and continuous treatments by
entangling observations and marginal experiments. How-
ever, this approach is inapplicable when the treatment vari-
ables are discrete, which is common in many applications.
In contrast to these methods, we provide nonparametric
identifiability criteria for the joint effects from marginal
experiments based on a causal graph without imposing such
constraints on the data-generating processes. Additionally,
we develop estimators for joint treatments effect having
statistically desirable properties.

2. Preliminaries

Notations. Each variable is represented with a capital letter
(X) and its realized value with a small letter (). We use
bold letters (X) to denote a random vector. Given an ordered
set X = (Xy,---,X,) such that X; < X, fori < j,
we denote X = {X;,--- X;}. For a graph G over
V and disjoint vectors X, Xy C 'V, we will use GXle2
as a subgraph of G in which all incoming edges to the
node in X; and all outgoing edges to the node in X, are
cut. For a discrete (e.g., binary) random vector X and
its realized value x € ®x where Dx is the domain of
X, we use 1x(X) to represent the indicator function such
that 1(X) = 1if X = x; 1x(X) = 0 otherwise. For a
random vector X, we use P(X) to denote its distribution
and p(x) as a corresponding density function at X = x.
For a function f, Ep [f(X)] = fo f(x)p(x) d[x] where
Gx is the support for X. For a sample set D := {V ;) }7;
where V ;) denotes the ith samples, we use Ep [f(V)] ==

(1/n) 32021 f(V)). Wewse [[f[|p = Ep[(f(X))?]. If
a function fis a consistent estimator of f having a rate r,,,
we will use f— f =op(ry). We will say f is Lo-consistent
if |f = fllp = op(1). Wewilluse f — f = Op(1)if f — f
is bounded in probability. Also, f— f is said to be bounded
in probability at rate r,, if f— f = Op(ry). Throughout
the paper, we assume that samples D are independent.

Structural Causal Models. We use Structural Causal
Models (SCMs) as our framework (Pearl, 2000; Barein-
boim et al., 2022). An SCM M is a quadruple M =
(U, V, P(U), F). U is aset of exogenous (latent) variables
following a joint distribution P(U). V is a set of endoge-
nous (observable) variables whose values are determined
by functions F' = { fy, }v,ev such that V; « fv, (pa;, u;)
where PA; C V and U; C U. Each SCM M induces a
distribution P(V) and a causal graph G = G(M) over V
in which there exists a directed edge from every variable in
PA,; to V; and dashed-bidirected arrows encode common
latent variables (e.g., see Fig. 1a). Performing an interven-
tion fixing X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the
original equations of X (i.e., fx (pas,u;)) by the constant
z € Dy for all X € X and induces an interventional
distribution P(V|do(x)). We will sometimes employ the
shorthand notation Px(y) to represent P(y|do(x)). We
will use Prynacx)(Y) = {Px(Y)}xeex- For a sample set
D = {V;}ii, D is said to follow Pnq(x)(V) if each
subsamples Dy = {V(j }v, eD X ;) =x follows Px (V).

3. Combining Two Experiments

In this section, we address the challenge of estimating the
combined effects by leveraging the results of two distinct
experiments. In Section 3.1, we delve into the estimation
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of treatment-treatment interactions (TTI) based on the out-
comes of two separate marginal experiments. Then, in
Section 3.2, we extend our investigation to accommodate
scenarios where the treatment effects in the source and target
experiments may not align perfectly.

3.1. Treatment-Treatment Interaction

Our goal is to estimate joint effects by combining two ran-
domized controlled experiments, as formally defined below.

Task TTI (Treatment-Treatment Interaction (TTI)). The
task of estimating the treatment-treatment interactions (TTT)
from two marginal experiments composes of

e Input: Two sets of samples, D; and D5, which fol-
low interventional distributions Pyyna(x,)(C1, X1, W) and
Prana(x5)(C1, W, X1, X2, Y), respectively. C is a covari-
ate for the experiment randomizing X (i.e., rand(X7)), and
W, Y represents the outcomes of the experiments randomiz-
ing X; (rand(X)) and X5 (rand(X3)), respectively.

* Query: Estimation of E [Y'|do(z1, z2)].

3.1.1. ADJUSTMENT CRITERION FOR TTI (AC-TTI)

A sufficient graphical criterion for identifying the treatment-
treatment interaction is the following:

Definition 1 (Adjustment criterion for Treatment-Treat-
ment Interaction (AC-TTI)). A set {C;, W} is said to
satisfy the adjustment criterion for treatment-treatment in-
teraction (AC-TTI) w.r.t {( X1, X32), Y} in G if

1. {C,W} iLXQ\Xl)GX1 - there are no direct

paths from X5 to {C1, W} in Gm; and
2. (Y 1L Xy|Cy, W, XQ)GX _: the back-door paths be-
tween X and Y are blocked by {C;, W} in Gz

We make the following positivity assumption:

Assumption 1 (Positivity Assumption for AC-TTI).
P, (C1,W), P, (C1,W), P, (X1|C1,W) are strictly
positive distributions for V1, z2 € Dx, x,-

Under AC-TTI and Assumption [, the joint treatment effects
E [Y|do(x1, z2)] is identifiable and given as follow:

Theorem 1 (Identification through AC-TTI). Suppose
AC-TTI in Def. 1 and Assumption [ hold. Then,
E [Y|do(x1,x2)] is identifiable from Prqpq(x,)(C1, W) and
Prana(x2) (C1, W, X1,Y) and the expression is:

E[Y|do(z1,72)] = Ep,, [Ep,, [Y|C1,W,z1]]. (1)

For example, in Fig. la, {C;,W} satisfies AC-TTI
wrt. {(X1,X5),Y}. Therefore, with Assumption. 1,
E [Y|do(x1, z2)] is identifiable from Ppypa(x,)(C1, W) and
Prana(x5)(C1, W, X1,Y) as in Eq. (1).

(a) Task TTI (b) Task gTTI

Figure 1: Example causal graphs for Section 3. Nodes
representing the treatment and outcome are marked in blue
and red respectively.

3.1.2. ESTIMATORS FOR AC-TTI

We define nuisance functional for estimating the AC-TTI
functional in Eq. (1) as follow:

Definition 2 (Nuisance for AC-TTI). Nuisance functions
for AC-TTTI functional in Eq. (1) are defined as follow:
For a fixed z1,22 € Dx, x, where 1,z are specified

. Pp, (W|Cy

in Eq. (1), 7o = m0(C, X3, W) i= phrsdra. Also,
Mo = /,Lo(cl,Xl,W) = I[‘_‘:pw2 [Y|X1,VV701] We will
use 7 = 7(C1, X1,W) > 0and p = pu(Cy, X1, W) to

denote arbitrary' finite functions.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’) and double/debiased machine learning
(‘DML) (Chernozhukov et al., 2018) based estimators:

Definition 3 (AC-TTI estimators). Let D; and Do
denote two separate samples following the distribution
Prana(x,)(C1, W) and Puna(x,)(C1, W, X1,Y), respec-
tively. For fixed 21,22 € Dx, x,, we define D,, and
D,,, as subsamples of D; and D such that X; = z; and
X5 = xy. Let p and 7 denote the nuisances as defined in
Definition 2. We now introduce the {REG, PW, DML} esti-
mators for the AC-TTI-functional specified in Equation (1)
as follows:

Tre9 = Ep,, (W, C1,x1))],
TPW — Ep,, [7(W,C1, X1)1,,(X1)Y],
dml . _ Ep,, [71e, (X0){Y = p}] +Ep, [u(W,C1,21))] .

We assume that samples used for training the nuisance func-
tions and evaluating the nuisances are independent:

Assumption 2 (Sample-splitting). Samples for training
nuisances and evaluating the estimators equipped with the
trained nuisance are separate and independent’.

'Throughout the paper, j, 7 may be understood as estimated
nuisances for o, 7o.
This assumption is satisfied by applying cross-fitting algo-
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We assume that nuisances can be estimated Lo consistently.
In practice, this assumption can be easily satisfied by em-
ploying flexible machine learning models.

Assumption 3 (L. consistency of nuisances). Estimated
nuisances are Loy consistent; i.e., Vi € {1,2},Vz, € Dx,,

11(W; Cry 1) — po(W, Cr, 1)l p, - = o, (1),
l7m(W, C1, X1) = mo(W, C1, Xa) |, = op,, (1)

We also assume that the baseline covariates have the same
distribution over all marginal experiments. Specifically,

Assumption 4 (Shared Covariates). The distributions of
the covariates Cy are the same; i.e., For all x1,15 €

©X17X2r P$1 (Cl) = PCC2 (Cl)

Then, the errors for each estimator are given as follows:

Theorem 2 (Error analysis for AC-TTI estimators). Un-
der Assumptions (1,2,3,4) and AC-TTI in Def. I, the er-
ror of the estimators in Def. 3, denoted €' = T*' —
E [Y|do(x1, z2)] for est € {reg, pw,dml} are:

€ =R1+Op,, (- woll),

" = Ry + Op,, (|7 —mol|),

¢ = Ry + Ry + Op,, (|7 — 7ol I — poll) »
where R; is a random variable such that \/n; R; converges

in distribution to the mean-zero normal random variable,
where n; = |D,,| fori € {1,2}.

We highlight that the DML estimator 7™ exhibits robust-
ness property since €™ is bounded in probability at n~1/2
rate (for n = min{ny,n2}) whenever |7 — mollp,, =
Op,, (n=Y*) and || — pollp,, = Op,, (n='/*). Further-
more, the DML estimator displays the following doubly
robustness property:

Corollary 2 (Doubly robustness of the DML estimators
(Corollary of Thm. 2)). Suppose Assumptions (1,2,3,4) and
AC-TTI in Def. |1 hold. Suppose either m1 = my or |1 = L.
Then, T™ is an unbiased estimator of E[Y |do(z1, 732)].

3.2. Combining Two Arbitrary Experiments

In this section, we extend Task TTI to cases where the effect
with two or more treatments (i.e., |X| > 2) can be iden-
tified from two arbitrary experiments conducted on other
variables, denoted as Z. For example, let’s consider a sce-
nario extending Example TTI where we are interested in
studying the effect of three factors: the antihypertensive

rithms (e.g., (Klaassen, 1987; Robins & Ritov, 1997; Zheng &
van der Laan, 2011; Chernozhukov et al., 2018)), which split the
samples and using one for training nuisances and another for eval-
uating the trained nuisances.

drug (Z7), the anti-diabetic drug (Z2), and the individual’s
diet habits (X{), on the occurrence of cardiovascular disease
(as depicted in Fig. 1b) when we are given two marginal
experiments randomizing Z; and Z, respectively. This ex-
tended task is referred to as generalized treatment-treatment
interactions (gTTI) and is defined as follows:

Task gTTI (Generalized TTI). The task of generalized
TTI composes of

e Input: Two samples sets D1, Dy following distribu-
tions Prana(z,)(V) and Prnq(z,)(V), respectively.

* Query: Estimation of E [Y|do(x)].

We note that Task gTTI generalizes Task TTT in the sense
that it does not require that X is identical to Z.

3.2.1. ADJUSTMENT CRITERION FOR GTTI (AC-GTTI)
A graphical criterion for identifying E [Y'|do(x)] from two
distributions Pyyq(z,)(V) and Pyng(z,)(V) is the follow-
ing:

Definition 4 (Adjustment criterion for combining two
experiments (AC-gTTI)). A set of variables A is said to

satisfy adjustment criterion for generalized TTI (AC-gTTI)
w.r.t an ordered set X and Y in G if

1. Z; C Xand (A 1L X\Z1\Z1)GY; there are no direct
paths from X\ Z; to A in Gx; and

2. Zo CXand (Y 1L X\Z5]A, ZQ)GX\Z -+ the back-
door paths between X\ Z5 and Y™ are blocked by A in G,

We make the following positivity assumption:
Assumption 5 (Positivity Assumption for AC-gTTI).
P, (A),P.,(A), P, (X\Z2|A) are strictly positive distri-
butions forVz1,20 € Dz, 7,.

Under AC-gTTI, the joint treatment effects E [Y'|do(x)] is
identifiable and given as follow:

Theorem 3 (Identification through AC-gTTI). Suppose
AC-gTTI in Def. 4 and Assumption 5 hold. Then, the
query E[Y|do(x)] is identifiable from Prauqcz,)(A) and
Prand(z) (A, X, Y') and given as follow:

E[Y|do(x)] = Ep,, [Ep, [Y]A,x\2o]] . 2)
For example, in Fig. 1b, A := {W, C} satisfies AC-gTTI

criterion w.r.t. {X = (Xo, Z1, Z3), Y }. Therefore, under
positivity, E [Y|do(x)] is expressible as in Eq. (2).

3.2.2. ESTIMATORS FOR AC-GTTI

We define nuisance functional for AC-gTTI functional in
Eq. (2) as follow:
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Definition 5 (Nuisances for AC-gTTI). Nuisance functions
for estimating AC-gTTTI functional in Eq. (2) are defined
as follow: For a fixed 21,22 € Dz, z, where 21, 29 are

e P., (A
specified in Eq. (2), mo := mo(A, X) = W()(\)ZQ)’ and
o = po(A, X) = Ep_ [Y|X\Zz, A]. We will use 7 :=
m(A,X) > 0 and p = p(A,X) to denote an arbitrary

finite function.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’) and double/debiased machine learning
(‘DML) estimators:

Definition 6 (AC-gTTI estimators). Let D, Dy denote
two sample sets following distributions Pyyq(z,)(A) and
Prand(z,) (A, X,Y), respectively. For a fixed 21,22 €
Dz, z,, wedefine D, and D, as subsamples of D; and
Dy such that 77 = z; and Z5 = 2. Let p,m denote
nuisances defined in Def. 5. Then, {REG, PW, DML} esti-
mators for AC-gTTTI functional defined as follow:

T =Ep,, [n(A,x))],

TPV = Ep., [r(A, X)1x(X)Y],

T = Ep,, ["L(X){Y — u}] +Ep,, [u(A,x))].
We assume that nuisances can be estimated Lo consistently.

Assumption 6 (L. consistency of nuisances). Estimated
nuisances are Lo consistent; i.e., Vi € {1,2},Vz; € Dy,

||,U,(A,X) - NO(AaX)”PZi = 0P, (1)7
(A, X) = mo(A, X)||lp =op., (1)

Then, the error of each estimator are given as follows:

Theorem 4 (Error analysis for AC-gTTI estimators). Un-
der Assumptions (2,5,6) and AC-gTTI in Def. 4, the error of
the estimators in Def. 6, denoted €' .= T*" — E [Y'|do(x)]
for est € {reg,pw,dml}, are:

€ =Ri+Op, ([ln—poll),
e =Ry + Op,, (|7 —mol|) ,
6dml — Rl +R2 —+ OPz2 (||7T - 7TO|| HN’ - /‘LOH)’

where R; is a random variable such that \/n; R; converges
in distribution to the mean-zero normal random variable,
where n; == |D,,

We highlight that the DML estimator 79™ exhibits robust-
ness property since €™ is bounded in probability at n~1/2
(for n = min{ni,na}) rate whenever |7 — mollp,, =
Op.,(n™Y*) and || — pollp., = Op,, (n='/*). Further-
more, the DML estimator displays the following doubly
robustness property:

Corollary 4 (Doubly robustness of the DML estimators
(Corollary of Thm. 4)). Suppose Assumptions (2,5,6) and
AC-gTTI in Def. 4 hold. Suppose either T = Ty or L = L.
Then, T™ is an unbiased estimator of E [Y'|do(x)].

4. Combining Multiple (> 2) Experiments

In this section, we address the estimation of joint effects by
leveraging multiple (more than two) experiments. Specifi-
cally, in Sec. 4.1, we focus on estimating multiple treatment
interactions (MTI) using multiple marginal experiments. In
Sec. 4.2, we extend this setting to estimate multiple treat-
ment effects from multiple experiments in which the ran-
domization was on each element in Z that are not necessarily
matched with the cause of interest X.

4.1. Multiple Treatment Interaction

‘We first introduce the formal version of the task.

Task MTI (Multiple-Treatment Interaction (MTI)). Es-
timating multiple treatment interaction (MTI) composes of

e Input: Multiple sets of samples {D;}7; drawn
from a sequence of interventional distributions
{Prana(x) (CH, WO X(D)ym {Ci, X5, W;} for
i =1,---,mis the ith triplet corresponding to a covariate,
a treatment, and an outcome.

* Query: Estimation of E[Y|do(x)] where x =
{z;}/*, is a realization for an ordered set X :=
{X1, -, X} and Y :=W,,.

4.1.1. ADJUSTMENT CRITERION FOR MTI (AC-MTI)

A sufficient graphical criterion for identifying the multiple
treatment interaction is the following:

Definition 7 (Adjustment criterion for Multiple
Treatment Interaction (AC-MTI)). An ordered set
{Cl, Wi, Co, Wo, -+, Cp_1, Wmfl} satisfies adjustment
criterion for multiple treatment interaction (AC-MTI) w.r.t.
{X,Y}for X ={X;}", inGif, fori =1,2,--- ,m,

1. {X;};>i is non-ancestor of {X) W C®}; and

2. (Y AL X’i|c(i71)7x(i71)7w(i)aX>i>G 5 the
back-door paths between X; and Y are blocked by

Cl=D XD W X>?in the graph Gx=+.

X, x>0

We make the following positivity assumption:

Assumption 7  (Positivity = Assumption for

AC-MTI).  {P,,(W;, C;|Wi~D Ccl-1 xX(=1)yym
Pxi+1(Xi|W(i),C(i),X(i_l))fori =1,---,m—1are

strictly positive Vx € Dx.
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Under AC-MTI, the joint treatment effects E [Y'|do(x)] is
identifiable and given as follow:

Theorem 5 (Identification through AC-MTI). Suppose
AC-MTI in Def. 7 and Assumption 7 hold. Then, E[Y (x)]
is ldentlﬁablefrom {Prana(x, (C(’) WO XE=Dym g
follow: Let it == Ep, [Y|vv<m 1>,c<m b, X (m=1],

andfori=m—1,---,2,

ph =B, [ WD, €U0, XD
pstTHW @ C@ g, X)), Then,
=Ep,, (g (W1, Cr, )] 3)

where /f“

EY ()]

For example, in Fig. 2a, {Cy, Wy, Cy, W} satisfies AC-
MTIw.r.t. {(X1, X2), Y} in Def. 7. Therefore, with the pos-
itivity assumption in Assumption. 7, E [Y|do(x)] is identifi-
able from { Pgng(x,)(CY, WO XE=D)}m | agin Eq. (3).

4.1.2. ESTIMATORS FOR AC-MTI

We define nuisance functional for estimating the AC-MTI
functional in Eq. (3) as follows:

Definition 8 (Nuisances for AC-MTI). Nuisance func-
tions for AC-MTI are defined as follows: For a fixed

x = {x1, - ,zm} € Dx, let {p'}", and {u m,

be the nuisances defined in Thm. 5. For =
1 P, (W;]C;,ct=D XG=1 wii= 1))
S

Px, (W5, X]C;,C0-D X(=1 W(=D)>
and 7T(()i) = H;Zl (W), W) XE), We will use
7Ti(vv(i)7 C(i)’X(i)) > 0 and ,ui(W(i_l), C(i—l)’ X(i—l))
for any arbitrary” finite functions.

m— 1, 1§ =

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’) and double/debiased machine learning
(‘DML’) estimators:

Definition 9 (AC-MTI estimators). Let D; denote samples
following Prna(x,)(C, WO X®) fori = 1,2,--+ ,m
For a fixed z; € Dx,, let D,, denote the subsamples of
D; such that X; = x;. Let A; = {W;,C;} and V; =
{A;, X3}, Let ™t =Y, Let 1571 i= T 0-0)(X071D)
fori = 2,--- ,m. Then {REG, PW, DML} estimators are
defined as follow:

T = EDM [/J/Q(Wlachxl))] ’

TPW .— EDx {ﬂ-(m—l)ﬂx(x)y} ,
Tdml Z ED [ﬂ_(i—l) 161 {ﬁi+1 _
We assume that nuisances can be estimated Lo consistently.

3Throughout the paper, pi_, 7i*, " may be understood as esti-
mated nuisances for 1, fig, 76.

w'} +Ep,, [

(a) Task MTI

(b) Task gMTI

Figure 2: Example causal graphs for Section 4.

Assumption 8 (L. consistency of nuisances). Estimated
nuisances are Lo-consistent; Specifically,

It = it b, = op,, (1), Vi€ {1,2,-+ ,m — 1}
It = ., = 0., (1), Vi € {2, ,m}
||7rl - ﬂ-i”aniJrl = 0P73i+1 (]‘)’ VZ 6 {17 U ’m B 1}

We assume that treatments and outcomes will have the same
distribution over all marginal experiments:

Assumption 9 (Shared Covariates). For any fixed i,j €
{1,2,---,m — 1} s.t. j > i and any fixed z;,x; €
Dx, x;, the baseline covariates C;’s distribution satis-
fies the following: P,,(C;|]Ct—1 XU-D WU-1) =
ij (Ci‘C(i_l),X(i_l),W(i_l)).

Theorem 6 (Error analysis of AC-MTI estimators). Un-
der Assumptions (2,7,8,9) and AC-MTI in Def. 7, the error of
the estimators in Def. 9, denoted €' := T*' — E [Y'|do(x)]
for est € {reg,pw,dml}, are:

€ = R1+Op,, (In' = mol) ,
= B+ Op,,, (I = ")),

(dml ZR +ZOPM ||/'4 —,u0||||7Tz 1_71-0 1”)

where R; is a random variable such that \/n; R; converges
in distribution to the mean-zero normal random variable,
where n; == |D,,| fori € {1,--- ,m}.

We highlight that the DML estimator 79 in Def. 9
exhibits robustness property since the error €™ is
bounded in probability at a rate Op, (n='/?) (for n =
min{ny, ny, - ,nm}) rate whenever |[u’ — pgllp, =
Op, (n~Y*Yand ||7"~' — 75~ Y|p, = Op, (n=1/*). Fur-
thermore, the DML estimator displabys the f(;llowing multi-
ply robustness property:

Corollary 6 (Multiply robustness of the DML estimators
(Corollary of Thm. 6)). Suppose Asumptions (2,7,8,9) and
AC-MTI in Def. 7 hold. Fori = 2,--- ,m — 1, suppose
either =1 = 7l ™' or pi* = pi. Then, T¥"! in Def. 9 is an
unbiased estimator of E [Y'|do(x)].
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4.2.Combining Multiple Arbitrary Experiments

In this section, we generalize Task MTT to the case where
multiple treatment effects E [Y'|do(x)] can be identified
from arbitrary sets of experiments. We label this task as
‘generalized multiple-teratment-interaction (gMTI)’:

Task gMTI (Generalized MTI). The task of generaliazed
MTI composes of

* Input: Multiple sets of samples {D,}, following
distributions { Pypa(z,) (V) }i%;-

* Query: Estimation of E [Y|do(x)].

We note that Task gMTT is a generalization of Task MTI
since X is not necessarily identical to Z.

4.2.1. ADJUSTMENT CRITERION FOR GMTI

A graphical criterion for identifying the effect E [Y|do(x)]
is the following:

Definition 10 (Adjustment criterion for gMTI
(AC-gMTI). Let Z = {Z1,---,Zyn} C X denote
the subset of treatments. Let {¢;}7, C {1,2,---,|X]|}
denote the index of Z; ie, Z = {Xo, --,Xe,}
Let X1 = {X;}j<t;s Xmy1 = {Xj}j>e,, and
Xi ={X;}t,_,<j<p, fori=2,3,--- m. An ordered set
A ={A, Ay, -, A,,} satisfies adjustment criterion for
combining multiple experiments (AC-gMTI) w.r.t. {X,Y'}
in Gif, fori =1,2,--- ,m—1,

LA LXT TNz XY A6, Z)6

¥>i71 ’

2. (v L XA XY X7e  _and

X, 50
3. (Y L X ™ Zn A XY 72906

We make the following positivity assumption:

Assumption 10  (Positivity = Assumption for
AC-gMTD. P, (Xm\Zum, Xpr1| A0, XY and
m—1

i_1) (-1 i—1) < (i—1)
{Pzz(A1|A( 1)7X )7PZi+1(Ai|A( 1)7X ) =1 >

{Pi“(fi\A(i),X(iil))}?gl are strictly positive distri-
butions Vi € {1,--- ,m},Vz; € Dz,

Under AC-gMTI in Def. 10, E [Y'|do(x)] is identifiable and
given as follow:

Theorem 7 (Identification through AC-gMTI). Suppose
AC-gMTI in Def. 10 and Assumption 10 hold. Then,
E [Y|do(x)] is identifiable from {Pm,,d(zi)(A(i),X(Z))}”Ll

3

S, .
Z’V'Vl:xfm\Z’VTL

and given as follow:
= Ep, [Y|A(m‘1), X\Zm}

fg =Ep, | {Y|A(m_1)afmfl:mﬂvi(mim}

po' ' =Ep,

where X 1.m+1 = {Xm-1, Xm, Xmi1}. Fori=m —
2,02

/1“6 = EPzi |:ui+1(A(i)7§i7X(i_1))‘Auil%i(i_l)} s

—i+1 .

and iyt = uéH(A(i),Ti,X(i_l)). Then,

E[Y(x)] =Ep, [m)- )

For example, in Fig. 2b, {A1, Ay} where A, := {C1, W1}
and Ay = {Cy, Wy} satisfies AC-gMTI criterion in Def. 10
wrt. {X,Y} where X = {Xy, Z1, Z2, Z3}. Therefore,
with the positivity in Assumption 10, E [Y|do(x)] is identi-
fiable from {P,. (A, X" )17 | as in Eq. (4).

4.2.2. ESTIMATORS FOR AC-GMTI

We define nuisance functional for estimating the AC-gMTI
functional in Eq. (4) as follow:

Definition 11 (Nuisances for AC-gMTI). Nui-
sance functions for AC-gMTI are defined as fol-
lows: For a fixed z = {z1,--+,zm} € Dz, let
{ué}m, be the nuisances defined in Thm. 7. For
P (A]AG—D XY

i = 1,---.m — 2, ©t — —
T 0 P.,, (A, X;|AG-D X0
and 7 = T, ©(AD X(j)) Also
0 = =170 ) : ’
m—2) g(m—2
mel . P.  (Ap_1]A=D X2
e = — oo, and
P, (Ap—1, Xm—1my1|AM=2 X )
.(m—-1) (m—2) m—1 ~ .
Dig = Ty X my'" ", where X, _1.mq1 =

{Xm-1,Xm;Xmy1}. Foralli =1,2,--- ,m — 1, we
will use 7/ (W@, C® X)) > 0 and p* and 7' to denote
arbitrary finite functions.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’) and double/debiased machine learning
(‘DML’) estimators:

Definition 12 (AC-gMTI estimators). Let D; denote sam-
ples following Prang(z,) (V)fori=1,2,---  m. Forafixed
zi € ®z,, let D, denote the subsamples of D; such that

Z; = 2. Let ™+l = Y. Let 1imt i= T (X" ),
Then {REG, PW, DML} estimators are:

T = Ep,, [13(An,50)],
™ = Ep, {Hm*l)(A(m*l),X)ﬂx(X)Y} :

dml . ZEDzi [ﬂ.(ifl)]li:l{ﬁz#l B ‘uz}:| +Ep., [
i—2
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Figure 3: AAE Plots for Figs. (1a, 1b, 2a, 2b) for Cases {1,2,3,4} depicted in the Experimental Setup section. The z-axis

and y-axis are the number of samples and AAE, respectively.

We assume that nuisances can be estimated Lo consistently.

Assumption 11 (Lo consistency of nuisances). Estimated
nuisances { '}, and {7} are Ly consistent; Specifi-

cally,
I = p., =op (1), Vie{1,2,--- ,m—1}
1" = pollp., = op., (1), Vi € {2,-- ,m}
||mf — 7ri|‘Pzi+1 =op., (1), Vie{l,--- ,m—1}.

Theorem 8 (Error analysis of the AC-gMTI estimators).
Under Assumptions (2,10,11) and AC-gMT]I in Def. 10, the
error of the estimators in Def. 12, denoted €' = T*' —
E [Y|do(x)] for est € {reg, pw, dml}, are:

€ = Ry + Op, (lu" — moll),
Y = R, + Osz(HTr(mil) _

m m
"= Ri+> Op (Iu' = pplll="
=1 =2

where R; is a variable such that \/n; R; converges in dis-
tribution to the mean-zero normal random variable, where
i = |D;|forie{l,--- ,m}.

m—1
"I,

_770 1||)

We highlight that the DML estimator 7% in Def. 12
exhibits robustness property since the error ™ is

Plots can be zoomed in.

bounded in probability at a rate Op, (n=/?) (for n =
min{n, ng, -, nm}) rate whenever ' = pollp., =
Op, ( ~1/4) and ||7*~ 1||p =Op, ( ~1/4). Fur-

thermore, the DML estlmator dlsplays the followmg multi-
ply robustness property:

Corollary 8 (Multiply robustness of the DML estimators
(Corollary of Thm. 8)). Suppose Assumptions (2,10,11) and
AC-gMTI in Def 1() hold. Fori = 2,- — 1, suppose
either m'~1 = 7}~ Yorp = = ub. Then, Tdml in Def. 12 is
an unbiased estimator of E [Y |do(x)].

5. Experiments

In this section, we demonstrated the proposed estimators
in Defs. (3,6) for combining two experiments presented in
Sec. 3, and Defs. (9, 12) for combining multiple experi-
ments in Sec. 4. Details of the experiments and a different
simulation example are provided in Appendice E.

Accuracy Measure. For each Tasks (TTI, gTTI, MTI,
eMTI) and given n samples Dy, --- ,D,,, we will use
T (x) for est € {reg, pw, dml} be the {REG, PW, DML}
estimator for the joint treatment effects E [Y'|do(x)]. For
each est € {reg, pw, dml}, we assess the quality of the esti-
mator by computing the average absolute error AAE®™ :=
2 Loxex [T (%) — E[Y|do(x)]| where X denote the set

of all possible values for x and |X| its cardinality. Nuisance
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functions are estimated using gradient boosting models
called XGBoost (Chen & Guestrin, 2016). We ran 100 sim-
ulations for each N = {2000, 4000, 6000, 8000, 10000}
We label the box-plot for these AAEs as ‘AAE-plot’.

Experimental Setup. We measure the AAE® for each
four scenarios: (Case 1) there were no noises nor mis-
specification in estimating nuisances; (Case 2); The ‘con-
verging noise’ €, decaying at a N~ rate (i.e., € ~
Normal(N =%, N=2%)) for o = 1/4, was added in esti-
mating nuisances; (Case 3) Nuisances {‘}", are wrongly
estimated; (Case 4) {7?}!"" " are wrongly estimated. Case
2 is a scenario to highlight fast convergence property of the
DML estimator implied in Thms. (2,4,6,8) where T9™ con-
verges faster (n~'/2-rate) when other estimators 772, TP%
converge at n~/*-rate. Cases {3,4} are scenarios high-
lighting doubly robustness property of the DML estimator
formalized in Corolaries (2,4,6,8).

Experimental Results. The AAE plots for all cases are
presented in Fig. 3. All {DML, REG, IPW} estimators con-
verges in Case 1 as the sample size grows. In Case 2 where
the estimated nuisances are controlled to converge at n~/*
rate, the DML estimators 7°9™! outperform the other two es-
timators by achieving a fast convergence. This result corrob-
orates the robustness property in Thms. (2,4,6,8). In Cases
(3,4) where the estimated nuisances for {* }7., or {7}
are wrongly specified, the DML estimator 79™ converges
while other estimators fail to converge. This result corro-

brates the doubly robustness property in Coros. (2,4,6,8).

Project STAR Dataset. To provide empirical evidence
in a real-world setting, beyond the analysis of the syn-
thetic dataset, we applied the proposed estimators to Project
STAR dataset (Krueger & Whitmore, 2001; Schanzenbach,
2006). Project STAR is an experimental study investigating
teacher/student ratios’ impact on academic achievement for
kindergarten through third-grade students. More detailed
information on the analysis and comprehensive results are
provided in Appendix D. In summary, the proposed DML
estimator 79™ exhibits fast convergence and doubly robust-
ness properties in real-world scenarios.

6. Conclusions

We introduced a set of identification conditions for esti-
mating joint causal effects by combining multiple marginal
experiments (Thms. (1,3,5,7)), developed corresponding
estimators (Defs. (3,6,9,12)), and analyzed their statistical
properties (Thms. (2,4,6,8) and Coros. (2,4,6,8)) for vari-
ous Task (TTLgTTI,MTI,gMTI). Our experimental results
demonstrate that the proposed estimators are consistent es-
timators of the joint effect E [Y|do(x)]. Additionally, the
proposed DML estimators were found to be robust against
model misspecification and slow convergence rate in learn-

ing nuisances. We hope this work can help data scientists to
estimate joint treatment effects from multiple experiments
in a more principled and efficient manner.
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A. Preliminaries

In this section, we present the preliminary concepts and notation used in this paper. Let W and X be sets of variables that
are subsets of V, which are induced from the structural causal model (SCM) M. Given a realization x of X, we denote
‘W (x) as the counterfactual W under the hypothetical scenario where X takes the value x. In other words, W (x) represents
a random vector generated by the submodel M.

A.1. The Axioms of Structural Counterfactuals

Definition A.1 (The Axioms of Structural Counterfactuals (Pearl, 2000, Chapter 7.3.1)). For any three sets of endogenous
variables X, Y, W in a causal model and x, w € Dx w, the following holds:

e Composition: W(x) =w = Y(x,w) = Y (x).
* Effectiveness: X(w,x) = x.
* Reversibility: Y(x,w) =yand W(x,y) =w = Y(x) =y.
Theorem A.1 (Soundness and Completeness of the Axioms (Pearl, 2000, Theorems {7.3.3, 7.3.6})). The Axioms of

structural counterfactuals in Def. A.1 are sound and complete for all causal models.

Remark 1 ((Pearl, 2000, page 230)). In the recursive (acyclic) system, Reversibility is followed from Composition. Therefore,
Composition and Effectiveness are sound and complete.

Definition A.2 (Potential Response, Counterfactuals (Pearl, 2000, Def. 7.1.4)). Let (X,Y) C V generated by the SCM
M. The counterfactual of Y at x, denoted Y (x), is the variable Y induced by the submodel M.

In this section, we will use Pyyna(x)(V) = {P(V(x))}xepx to denote a collection of counterfactual distributions P(V (x))
over all possible realizations x € ®x. We will denote the density of P as p.

B. Identification based on Potential Outcome Framework

In this section, we introduce more results on identifying causal effects. For x € ©x, we use (W\X)(x) to denote the
counterfactual of W\X at x. We use (w\x)(x) to denote its realization.

B.1. Treatment-Treatment Interaction based on Potential Outcome Framework
We present a sufficient identification criterion for estimating treatment-treatment interactions using potential outcome
frameworks based on two marginal experiments.

Definition B.1 (Adjustment criterion for treatment-treatment-interaction — Potential Outcome (AC-TTI-PO)). A set of
variables {C, W} is said to satisfy the adjustment criterion for treatment-treatment interaction (AC-TTI) w.r.t. discrete treat-
ments (X, X5) and the outcome Y from two sets of distributions Pyyna(x,)(C1, X1, W) and Ppypa(x,)(C1, X1, W, X5,Y)
if

1. W(xy,22) = W(zy), C1(x1,22) = C1(z1); i.e., the outcome W and the covariate C; is invariant of the second
intervention Xo = 5.

2. Y(z1,22) WL Xy (z2)|Wi(x1,22), C1(21,22); i.€., the first intervention X; = z; is non-informative to the joint
experimental outcome Y (x1, 22) given covariates C (x1, x2) and the first outcome W (1, z3).

The treatment-treatment interaction can be identified as follow:

Theorem B.1 (Identification through AC2-TTI-PO). Suppose the condition AC-TTI-PO in Def. B.1 holds. For any fixed
1,22 € Dx, x,, define Pl=P, € Pranax,) and P?=P,, € Prana(x,)- Assume the following positivity condition

14
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holds for Vxy,x2,w,c1 € Dx, x,,w,c0°

2
p-(w,c
72( 1)p2(X1:$1|w701) > 0. (B.1)
p (U%Cl)

Then, the query B [Y (21, x2)] is identifiable from two distributions P, P? and given as follow:

E [Y(.’Ehl'z)] = ]EPI [Epz [Y|W, Cl,Xl = [L’l]] . (B2)

Proof of Theorem B.1.

E[Y (21, 22)] = E[E[Y (21, 22)|[W (21, 22), C1 (21, 72)]]
L E[E[Y (21, 22)|W (21, 22), C1(a1, 22), X1 (22) = 21]]
2 E[E[Y (21, 22)|W (1), C1(21), X1 (w2) = 21]]
ZE[E[Y (22)[W (21), Ci(21), X1 (3) = 21]]
L Epr [E[Y (22)|W, C1, X (22) = 1]

where

I Xy(xe)|W(z1,22),C1(x1,22) and the positivity

« £ holds by the given condition that Y (z1,z2)
it suffices to show that

P(Xq(z2) = x1|W(x1,22),C1(z1,22)) > 0 for any x1,z2. To witness,

Pxy(22)|W(21,22),C1(21,22) (xl |w7 Cl) > 0.

DX (22)|W (21,22),C1 (21,22) (T1]w, 1)
— le(12)7W(11712)7C1($1,I2)(xla w, 01)
pW($1712)»Cl(1?1,$2)(w7 Cl)

la DX, (22),W (21,22),Ca (1,22) (L1, W, €1)
PW (21),C1 (1) (W, €1)
16 DX, (22), W (22),C1 (2) (L1, W, C1)
B PW (21),C1 (1) (W, €1)
DX (22). W (2),C1 (22) (T1, W, €1) PW ()04 (a2) (W5 €1)
B PW (21),C1 (1) (W, €1) PW (25),C1 (w2) (W5 €1)

_ PW (). Cr () (W, C1)
PW (21),C1 (1) (W5 €1)

- e (w’q)p2 (z1|w, c1)
_ Pwe, \ ) 1 1
pwlzv,cl(w,cl) X1|W,Cq ,

le(xg)\W(mg),Cl(wg) (xl |w7 Cl)

lc
<0,
where
- “ holds by the first condition of the AC-TTI-PO in Def. B.1, stating that W (z1,x2) = W (x1) and C1(z1,22) =
Cl (1?1)

2 holds by the Composition axiom in Def. A.1. Specifically, X; (z2) = x1 implies W (x1,x2) = W (z2) and
Ci(z1,x2) = C1(x2).

lc
— > holds by the given assumption.

« £ holds since W (21, 22) = W(xy1) and Cy (21, 22) = C1(x1) by the first condition of the AC-TTI-PO in Def. B.1.
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« £ holds by the Composition axiom in Def. A.1. Specifically, X1 (x2) = x1 implies Y (1, z2) = Y (23).

. 2 by the definition of P!.

We note that E [Y (z2)|W (x1), C1(x1), X1(22) = x1] is estimable from P?(Y|W, Cy, X;) since

[len

PX(Y|W,Cy, Xy = x1) = P(Y (22)|W (22), C1 (2), X1 (22) = 71)
(Y(22)|W (21, 22), Cr (21, 22), X1 (22) = 21)

(Y (22)|W (21), Cr(21), X1(22) = 71),

lo
AR

z
where

« 2 holds by the definition of P2.
« £ holds since W (x1,22) = W(xz2) and Cy (21, 22) = C1(x2) when X7 (z2) = x1 by Composition axiom in Def. A.1.
« £ holds by the first condition of the AC-TTI-PO in Def. B.1, stating that W (x1,22) = W(z1) and Cy(z1,22) =
Cy(x1).
Therefore,

]Epl [E [Y(IQ)H/V, Cl,Xl(Ig) = xlﬂ = Epl [Epz [Y|VV, Cth = Il]] .

B.2. Combining Two Experiments based on Potential Outcome Framework

We provide an adjustment criterion based on potential outcome frameworks for combining two experiments as follow:

Definition B.2 (Adjustment criterion for combining two experiments — Potential Outcome (AC2-PQO)). A set of
variables A is said to satisfy the adjustment criterion (AC2) w.r.t discrete treatments X and the outcome Y from two sets of
distributions Prnq(z,)(A) and Pyypaz,) (A, X, Y) if

1. A(x) = A(z1);i.e., Z1 C X and X\ Z; is causally irrelevant to A given Z3;
2. Z5 CXand Y (x) AL (X\Z2)(22)]A(x).
Under Def. B.2, the causal effect is identified as follows:
Theorem B.2 (Identification through AC2-PO). Suppose the condition AC2-PO in Def. B.2 holds. Let

P'(A) == P(A(z))
P*(Y,X\Z3,A) = P(Y(22), (X\Z2)(22), A(22)),

|
o)

and p*, p? are densities for distributions P!, P2. Assume the following positivity condition:

2
zégﬁ@w@:xvmmv&anxA. (B.3)

Then, the query E[Y (x)] is identifiable from two distributions P*, P? and given as follow:

E[Y (x)] = Ep1 [Ep: [Y|A, x\2]]. (B.4)
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Proof of Theorem B.2.
E[Y(x)] =E[E[Y(x)|A(x)]
= E[E[Y(x)|Ax), (X\Z)(22) = x\2]]
ZEE[Y(x)A(21), (X\2)(22) = x\2]]
ZEE[Y (22)|A(21), (X\Z2)(22) = x\22]]
2 Ep, [E[Y(22)|A, (X\Z2)(22) = x\2]]
where

« £ holds since Y(x) 1L (X\Z3)(22)]A(x), and the positivity P((X\Z3)(22)|A(x)) > 0 for any x. To witness, it
suffices to show that p(x\ 7,)(z,)|A (x) (X\22]a2) > 0.

Px\Zs.AG0) (X\22,8)
PA(x)(a)
la P(X\Z5) (=), A (x) (X\22, @)
- pA(Zl)(a)
1b P(X\2>)(22) 2)(x\22’a)
pA(zl) a)
p(X\Zz (22),A(22) (x\22,a) PA(22) (a)
pa®) Pacy (@)
- mp(X\Zz)(z2)|A(z2)(X\22|a)

2 a
= 2 e\ cafa
<0,

P(X\Z2)(22) | A (x) (X\22[a) =

where
- Y holds by the first condition of the AC2-PO in Def. B.2, stating that A (x) = A(z1).
- L holds by the Composition axiom in Def. A.1. Specifically, (X\ Z2)(z2) = x\ 22 implies A(x) = A(z2).
- 1>C holds by the given assumption.
« £ holds since A(x) = A(z2).
« £ holds by the Composition axiom in Def. A.1. Specifically, (X\Z2)(22) = x\zo implies Y (x) = Y (22).

« £ holds by the definition of P.

We note that E [V (22)|A(z1), (X\Z2)(22) = x\ 22] is estimable from P> (Y |A, X\ Z;) since

||

Py(Y[A, X\Z5 = x\22) = P(Y (22)|A(22), (X\Z2)(22) = x\22)
(Y (22)|A(x), (X\Z2)(22) = x\22)

P
P(Y (22)|A(21), (X\Z2)(22) = x\22),

lle

(I~

where
« 2 holds by the definition.
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« £ holds since A (x) when (X\ Z3)(z2) = x\ 22 by Composition axiom in Def. A.1.

« L holds since A(z;) = A(x).

Therefore,

Epr [E[Y(22)|A, (X\22)(22) = X\22]] = Ep1 [Ep2 [Y|A, x\z0]]

B.3. Multiple Treatment Interaction based on Potential Qutcome Framework

We first provide a sufficient identification criterion based on potential outcome frameworks for estimating multiple treatment
interaction from multiple marginal experiments.

Definition B.3 (Adjustment Criterion for MTI - Potential Outcome (AC-MTI-PO)). A set of variables {C, W} is said
to satisfy the adjustment criterion for multiple treatment interaction (AC-MTI-PO) w.r.t. discrete treatments x = {z; }";
and the outcome Y from multiple distributions { P, (V)}/™, if

1. Wi(x) = W;(x9), Ci(x) = C;(xD) fori = 1,2,--- ,m — 1; i.e., the ith joint outcome W;(x) and the covariate
C;(x) are invariant to the next interventions X1, - , X;n.

2. Foralli =1,2,---,m — 1, X; = X;(xU+t18) vk € {i 4+ 1,--- ,m}; i.e., X; is invariant to any intervention
X = xp for k > 1.

3. Y(x) 1L X;|CO(x), X0~ WG (x) for i = 1,2,---,m — 1; ie., the ith intervention X; = x; is non-
informative to the joint outcome Y (x) given the ith outcome W;(x), covariate C;(x) and previous observations
X (=1 wi-1) ¢t-1),

Under Def. B.3, the causal effect E [V (x)|A(~1) (x), X~D] fori = 1,2,--- ,m — 1 can be expressed in a recursive form
as follow:

Lemma B.1. Suppose the condition AC-MTI-PO in Def. B.3 holds. Let A; .= {W;, C;}. Assume the following positivity
condition holds: Fori=1,2,--- ,m —1

pXi‘A(i)(xLX(ifl)($i|a(i),X(i_l)) > O, Va,x c QA,X' (BS)

Then,

E [Y(x)

A<“><x>,X(“’] =& [E [y (0]A® (), X; = i, XE] A (), X6
where Ay = () and Xy := .
Proof of Lemma B.1.

E [Y(x)

A@—l)(x),X(i—l)] i1E [IE [Y(x)

A(i>(x),x<i—1>] ‘A<i—1>(x)7x(i—1>}

ZE [E {Y(x)

AV (x), X; = wi,X(il)} ’A(i1)<x)’X(z‘1)] ’
where

« = holds by marginalizing over A;(x).

18
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« 2 holds by the condition in the AC-MTI-PO; i.e., Y (x) AL X;|A® (x), XD fori =1,2,--- ,m — 1, and the given
positivity condition in Eq. (B.5).

O

Corollary B.1 (Corollary of Lemma B.1). Suppose the condition AC-MTI-PO in Def. B.3 holds. Let A; .= {W;,C;}.
Assume the positivity condition given in Eq. (B.5). Let

V(A (x), X)) = [Y(x)|A(i’1)(x),X(i’1)] , fori=mam—1,-- 2.
Then,
Vi(AG-D(x), X(0-D) = E {VéH(A(i)(x),xi,X(Fl))’A(Fl)(x),X(i’l)} fori=m—1,---,2,
where Ag := () and Xo = 0. Furthermore,

E[Y(x)] = E {V%(A(l)(x),xl)} .

Proof of Corollary B.1. We first note that the equations
Vi(AGD (x), X0-D) = E [Y(x)|A<i—1>(x),x<i—1>}  fori=m,m—1,---,2,
is immediately followed by Lemma B.1. Therefore, it only suffices to show the following:
E[Y ()] = B [5(AV(x),21)]
To witness,

E[Y(x)]

E []E [Y(x)|A<1>(x)H
—E [E[Y()IAD (x), X, = 1]
—E [3(AM(x),21)]
where the second equation holds by the condition in the AC-MTI-PO; i.e., Y(x) I X;|A®(x), X0~ for i =
1,2,--- ;m — 1, and the given positivity condition in Eq. (B.5). O
Lemma B.2. Suppose the condition AC-MTI-PO in Def. B.3 holds. Let A; .= {W;, C;}. Assume the positivity condition
given in Eq. (B.5). Fori =m,---,1, and

V(AU (x), X07) =B |V (x)|AD (x), X0
Fori=1,2,--- ,m, let P* denote a distribution defined as follow:

pi(w(i)7 C(i)7X(i)) — P(W(i)(;vi),C(i) (551.)7)((1')(%))’

and p',--- ,p™ "t are densities for distributions P',--- | P™. Let

ugz(A(m—l)7 X(m—l)) =Epm |:Y|A(m_1), X(m—l)} ,
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andfori=m—1,---,1,

(AT XY = Epr | gt (AW 2y, XOD) | ACD X EZD T

Then, fori =m,--- ,1,

o (A0 (), x07Y) = 1 (ALY (), x071).

Proof of Lemma B.2. We first show that
MBn(A(m_1)7 X(m—l)) — Vgn(A(m—l)(X), X(m—l)).

To witness,
E [Y(X)IAW—U(X),X(WU _ x(m—ﬂ
LE [y (AT (), XD (1) = x|
E

[ () A (), X0 D () = x|

[les

[ () A (), X (1) = x|
=Epm [Y\A(m*1)7 x(m=1) _ X(m,l)}

— M?(A(m_l)7 X(m—l))7

where

« < holds since X (™~1) (2,,) = X(™=1) by the condition of the AC-MTI-PO in Def. B.3 stating that treatment variables

are invariant to the next interventions.
2 .
¢ = holds since
XM D(g,)=xMD — V(x) =Y ™Y 2,) =Y (),

by Composition axiom in Axiom A.1.

3 holds since

X(mfl)(zm) _ X(mfl) — A(mfl)(x) _ A(mfl)(x(mfl)ﬁcm) _ A(mil)(l‘m),

by Composition axiom in Axiom A.1.

We now make an induction hypothesis as follow: For any given i € {2,--- ,m — 1} suppose the following holds:

pot (AW, xW) = 15t (A (x), x ).
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Then,
Vé(A(i—l)(X),X(i—l)) iR [V8+1(A(i) (X),xi,X(i_l))|A(i_1)(X)7 x(i-1) _ X(i—l)}
E [Vé“(A(i) (x),xD)| AV (x), X(i—l)]

5 E [Mé+1(A(i), X(i)) |A(i71)(x)’ X(ifl)}
g E I:MéJrl <A(Z) (xl>7 X(i)) ’A(l—l) (xi)a X(i_l) (-rz):|
=Ep: [ué“(A(i)7 ONYNGS X(iq)}
— 6(A(i—1)’ X(i_l))’

where

.2 implies from Corollary B.1.
« 2 because of the induction hypothesis.
« £ holds because X (i~ = X(i=1)(z,) by the Composition Axiom in Def. A.1, and
X(i_l)(l‘i) — X(i—l) — A(i—l)(x) — A(i—l)(x(i—l)) — A(i—l)(X(i—l)(xi) — X(i_l),l‘i) — A(i—l)(xi)

by applying the Composition Axiom in Def. A.1.

This proves that, fori = m,m — 1,--- , 1,
(A UTD, XD = 1 (A1) (30, x07D),
O
Theorem B.3 (Id_entiﬁcation through AC-MTI-PO). Suppose the condition AC-MTI-PO in Def. B.3 holds. Fori =
1,2,--- ,m, let P" denote a distribution defined as follow:
Pi(W(i), C(i),X(i)) — P(W(i)(xi),C(i) (mi)),X(i)(xi)),
and p*,- -, p™ ! are densities for distributions P',--- | P™. Assume the following positivity condition holds: For all
i=1,2,--- ,m—1

P (wi, sl wi=D | ei=1) x(-1))

PH(wi, ¢ |w(i*1)’ cli-1), x(ifl))

PUX = 2w @ xED) > 0; Yw,e,x € Dw,cx. (B.6)
Then, the query B [Y (x)] is identifiable from distributions P*,--- | P™, and given as follow: Let
P(ACD XD R, [Y|A(m—1>,x<m—1>] ,

andfori=m—1,m—2,--- 2,
(A X6-D) — B, [%H(A(i)’xi’X(z‘—n”A(i—n,X(i—l)} _
Then,
E[Y(x)] = Ep: [Mg(Aﬂ),xﬂ))} .
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Proof of Theorem B.3. Suppose the positivity condition in Eq. (B.5) is equivalent to the condition in Eq. (B.6). Then,
Theorem B.3 is implied by Lemmas (B.1, B.2) and Corollary B.1.

The equivalence between Eq. (B.5) and Eq. (B.6) are the following. We will use A; :== {W;, C;}. Then,

PX,|A® (x),x 6D (Ti lal®, x(=1)

- pXi,Ai(x)|A(i—1)(x),X(i—1)(xia a;[at =, x(=1)

DA, (x)| A G- (x),x -1 (@i (a1, x(=1))

(7;_1), X(i_l))

_ pXi(ri+1)7A71(fﬂi+1)\A("*l)(%‘ﬂ)yx(““(Ii+1)(xi’ a;la
DA () AG=D () X =) () (@i @l =D x(1=1))

 PXa@ip) A )AG D (i) X6 (ayy) (T 0:[@CT X)) py A () x 60 (@) (aila® T, xETY)

pAi(wi)\A“_l)(wi)7X("’_1)($i)(ai|a(i71)’X(iil)) pAi(CEHl)lA("’_l)($i+1)7x("’_1)(751+1)(ai|a(i71)’X(iil))
_ pAi(xiJrl)lA(i*l)($i+1)vx(i*1)($zﬂ+1)(ai|a(i71)7x(iil))
B pAi(xi)|A(’i*1)(xi),X(’ifl)(zi)(ai|a(i_1)?X(i_l))
Pt (s, 5| wli=D)| =) x(i=1))

_ i+1 o (D) e() (i-1)
P (wn, caltwlD, oG, 1 P (Xi = @i w, e, x).

PXi(@ip ) AD (441), X601 (2441) (Ii|a(i)’ X(iil))

B.4. Combining Multiple Experiments based on Potential Outcome Framework

We provide an adjustment criterion based on potential outcome frameworks for combining two experiment as follow:

Definition B.4 (Adjustment criterion for combining multiple experiments — Potential Outcome (AC-gMTI-PQO)).
Let X := {X1, -+, X, } and Y denote an ordered treatments and outcome variables. Let Z = {Z;,--- ,Z,,} € X
denote the subset of treatments. Let {¢;}™; C {1,2,---,m,} denote the index of Z; ie., Z = {X,, -+, X, }-
Let X1 = {X;}j<tr» Xmi1 = {X;}j>e,,. and X; = {X;}s, ,<j<p, fori = 2,3,--- ,m. A set of topologically
ordered variables A := {A, Ao, -+, A,,} is said to satisfy the adjustment criterion for combining multiple experiments
(AC-gMTI-PO) w.r.t. treatments x = {x; }/*% and the outcome Y from multiple distributions { P,, (A("), X(l))}’i’il if

1. Ai(x) = Ay(zD) fori =1,2,--- ,m — land X;(2;) = X; foralli.j € {1,2,--- ,m} where i < j.

(i—1)

2. Y(X)J-LYAA(”(X),X fori=1,2,--- ,m—1

- —_ —(m—1
3. V(%) 1L {X o\ Zores Xt (z0n) A= (), XY,

We first note that the causal effect E [Y'(x)] can be represented in a recursive form as follow:
Lemma B.3. Suppose the condition AC-gMTI-PO in Def. B.4 holds. Assume the following positivity condition holds: For

= m—1) w(m—1
VT, T, 2D XN €Dg 2 amen g0,

PR\ Ko (o) A1) () KO0 (T s T 1=, % 70) > 0, (B.7)

andfori=1,2,--- ,m—1
pyHAu)(x)X(ffl)(§i|a(i)ai(i_1)) >0, Va® x e 4D x x@. (B.8)

Let
VA (x),%\20) = B [Y ()| A (X), (X\Zon) (2m) = X\ 20
V(r)nfl(A(m—Q) (X)’i(m—2)) —E [VSn(A(m—l)(X)’ X\Zm) A(m_2)(x)7f(m_2)] ,
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andfori=m —2,--- 2,
vy (A (x),x07Y) =E [ l+1(A(i)(x),i(i))‘A(ifl)(x),g(i—l) _
Then,

E[Y(x)]=E [V2(A1(X),fl)} .

Proof of Lemma B.3. Let
N AD (x), %) = E [Y(x)|A<i> (x),i@} , fori=1,2,--,m—1.
Then, the causal effect can be written as
E[Y (x)] = E [5(A1(x),71)] ,
since
E[Y(x)] =E[E[Y(x)|Ai(x)] = E[E[Y(x)[71, 41 (x)]] = E [1°(A1(x),71)] ,

where the second equation holds since Y'(x) 1L X;|A® (xLX(i_l) fori =1,2,--- ,m — 1 by Def. B.4 and the positivity
condition in Eq. (B.8).

We will show the following:

g (AU (x), %) = g (AT D (%), %\ 2n)
et (AD (x), %) = T AP (x),%D) fori=m —2,--- 1.

First equation can be witnessed by

(ALY (), % 7D) = B [ ()| A ) (), %0
: E |:Y A(m 1) ) i(m71)7 {Y’ITL\ZW = Em\z’mvym-‘rl(zm) = §7n+1}:|
~E [ |A(m 1) x), (X\Zm)(2m) = x\zm | ,

vt (AT (x), x\zn),

where

e Zholds by Y (x) LL {X o\ Zim, Xt (z) AV (), X" in Def. B.4 and the positivity condition in Eq. (B.7).

« 2 holds since X;(z;) = X, forall i, j, as given in Def. B.4.
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The second equation can be witnessed as follow:
71(A(m—2)(x)’i(m—2)) — R [Y(X)‘A(m 2)( —(m—2)}
—EI|E [Y |A(m 1) (x), i(m—Q):| ‘A(m—2)(x)’i(m*2)]
4 [Y ) A (x), x(m—l):| ‘A(m—2)(x)’i(m—2)j|

_ 770 (A(mq)( ), <(m— 1) ‘A(m 2)( ), % —(m— 2)]

2 _Z/m(A(m—l)( ) (m— 1) ‘Am 2)( ) < (m— 2)]

= v (A (x), xR,

where

« £ holds since Y'(x) 1L Yi\A(i)(x),X(i_l) fori = 1,2,---,m — 1 by Def. B.4 and the positivity condition in
Eq. (B.8).

« £ holds since ™ (A (™D (x), % x(m— 1)):ygn(A(m—l)(X%i(mfl))'

Now, we make an induction hypothesis as follow: Forany ¢ + 1 € {m — 1--- |3}, suppose the following holds:

ot (AW (%), x19) = vt (AP (x),x1).

Then,
M AL (0, %07Y) = B [Y (0] A0 (), %)
=E[E [Y(X)IA(” (x), i(i‘l)} ‘A(i‘l) (x), i(i_l)}
LE[E[v(x)AO ), %] ’A@ (), 01|
- F -776+1(A(i)(x % ‘A(z—l) (x), i(z—l)j|
2E :VéH(A(’)( ‘A(Z (x), —(i—l)}
A0 X 7).
where
« Z holds since ¥ (x) 1L X;|A®(x), X"V fori = 1,2,-- ,m — 1 by Def. B.4 and the positivity condition in
Eq. (B.9).
o2 by induction hypothesis.
Therefore, 77i =viforalli =1,2,---,m. This completes the proof. 0

Theorem B.4 (Identification through AC-gMTI-PO). Suppose the condition AC-gMTI-PO in Def. B.4 holds. For
i=1,2,---,m, let P’ denote a distribution defined as follow:

PAD XN\ 7)) = P(AD (), XN\Z) (=), fori=1,2,-- m—1
P A, X\ Zp, Y = P(A (2,), (X\Z) (2), Y (2)).
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. e .. . _ ~1) —=(m—1
Assume the following positivity condition holds: For VT, , Tpy1,a™ 1), x(m—1) ¢ :DYm i1 Al D

PR\ Foa A0 K0 E\oms F a7, 0 71) > 0, (B.9)
andfori=1,2,--- ,m—1,

pi+1 (ai |a(i71) , i(i_l))

G E )it (z,]a®, %07D) > 0, Val %0 e T x A, (B.10)
pz(ai|a(zfl)’x(7’_ ))

Then, the query R [Y (x)] is identifiable from distributions P*,--- | P™, and given as follow: Let
(A x\z,) == Epm [Y|A(m_1),x\zm}
A KD i B [ (A, X\ 2) | A2, RO
andfori=m—2,---,2
Mé(A(ifl)vi(ifl)) — Eps [#i+1(A(i)’i(i))‘A(ifl)vi(ifl)} .
Then,

E[Y(x)] =Ep: [p*(41,71)] .

Proof of Theorem B.4. We first show that the positivity conditions in Eqs (B.7, B.8) match with Eqgs. (B.9, B.10).
Eq. (B.7) = Eq. (B.9) holds since

Eq. (B.7) (m—l)7i(m—1))

= p(ym\zm(z'mxfnzﬁ»l(ZWL)IA(M’_U (x)vi“nil) («/L'm\zm; mm+1 ‘a
_ — — m—1) <(m—1
= PR\ 2o (20 T oA 1) KO (Fon o B |27, %)
o — - m—1) —=(m-—1
ip(ym\zm(zm%YTrHJ(Zm)IA(m—l)’iﬁn—l) (xm\zmymm+1|a( )7X( ))

— — m—1) g(m—1
:p(ym\Zm(zm),Ym_pl(Zm)|A(m71>(Zm)vi(m_l)(zm)(xm\zm’Im+1|a( )7X( ))
— Eq. (B.9).
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Eq. (B.8) = Eq. (B.10) holds since

Eq. (B.8)

(Ti, ai‘a(i—1)7i(i71))
(a;|lati—1),x0=1)
(Ti’ai|a(i71)7i(i—1))

a,Jat D, XD

~ Pxiaxiac-neg x0T

P aio1a6-0 (0 XY

_ PXiai@)AG- D 0-0) X0

pAi(Z(i)”A(i—l)(z('i—l))’f(i’_l) (
(i, a;ali =1, %0

. thAiIA(ifl)’i(i—l)
B (asfal-D, X0 D)

Pai(a0)ac-nx0-

, = a(i—1) w(i—1)
_ p?i(ziﬂ)7Ai(zi+1)\A“*”(Ziﬂ)yi(“l)(Zi+1)(x“ al|a(z )% )
- a;lal=1), %= 1)

pAi<zi>|A<'i*1>(zi),i“‘”<zi>,(
ai|a(i71) R i(i_l))

7 q.lgi—1) x(—1)
(@, aifa o ) X pAi(zi+1)|A“*1)(Zz‘+1)-§<1'_1)(zl'+1)(
a;lati—1 x0-1)

_ pYi(ZH—l)Az‘(Zz‘+1)\A(“l)(ziﬁ—l)yf(i_l)(Zf,+1)
o . a(i—1) (i—1) .
pAi(Zi)|A(7"_1)(Zi)vi(lil)(ﬁ),(alh(l )X ) pAi(Zi#»l)IA(i_l)(Zi+1),i(171)(zi+l)(
, 1q(i=1) $(i—1)
_ pAi(Zi+1)\A“*”(Ziﬁ—l)yi(l_l)(21:+1)(az|a X )

. =190 x(—1)
(ai‘a(i—l),i(i—l)) pyi(ZiJrl”A(“(Zi+1)7i(l_l)(zi+1)(xl|a X )

P g () AGD (2), KD (z0)
_ p i (a;fal Y %0

i+1 (= |a(1) <(i—1) .
= - T;la‘, X =: Eq. (B.10).
pi(ag)ali-1 x0-1) v ) & (540

Now, it suffices to show that

v (AT (x), x\2) = gt (A (%), %\ 21)
V8+1(A(i) (X)?i(Z)) = /“L6+1(A(Z)7i(l))7 fori =m — 27 ) la

where v? for i = m, - - - , 2 are defined in Lemma B.3.

First,
V(A (x),%\2m) = B Y ()| AT (), (X\Zn) (2m) = X\
= E [V (z)| AT (20, (X\Zon) (5m) = X\ 2
= Epn [Y|A(m_1),x\zm}
= (A X\ ).
Also,

5 (A2, 5 ) = B [ (A0 (), 0\ 2) [ A2 ), 202

E [ (A0, %\2,0)| A2 (), 52|

E [ (AT (2070), x\z,0) | 4072 (), 2072

- m— ~(m—2 —(r—
E {Mgl(A(m 1)(Zm—1)7x\zm)'A( 2)(Zm—1)7 X( )(Zm—l) = X( 1)}
=Epm— [MB”(A(’H%x\zm)‘Am—?),i(m—m]

—. Iungl (A(m72) , i(m72)).
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Finally, fori+1 € {m — 1,--- , 3}, suppose

v (A (x),%9) = uiH(AD, % O),

Then,
V(ALY (), 207D) = B [ (A (), %) [ A ) 56V
=E |:M6+1(A(i),i(i))‘A(i—l)(x)’i(i—l):|
=E {Mfﬁl(A(i)(Zi)»i(i))‘A(i_l)(zi)7ﬁ(“1)(zi) _ -1
=Ep: [ué“(A(i),i“))‘AU*l),g(ifl)]
_ (A6, K6,
[
C. Proofs

C.1. Preliminaries

Lemma C.1 (Continuous Mapping Theorem for L, (P)). Let X,,, X denote a random sequence defined on a metric
space S. Suppose a function g : S — S’ (where S’ is another metric space) is continuous almost everywhere. Suppose g is
bounded. Then,

X, 29 x — gx) 2 g(x0).

Proof of Lemma C.1. We first note that X, Lip) X implies X, % X Then, by continuous mapping theorem, g(X,,) S
g(X). Then,

n—oo n—oo n—oo

lim [|g(X,)) — 9(X)[? = lim /X 19(X) — g(X)? d[P] = /X lim |g(X,.) — g(X)[? d[P] = 0,

where the equation = holds by dominated convergence theorem in Lo (P) space, which is applicable since g(X,,), g(X) are
bounded functions (from the given condition) and X, 5 X. L]

Lemma C.2 (Asymptotic Unbiasedness implies Consistency). Suppose an estimator Ty is asymptotically unbiased to i,
i.e, Ep [Ty — p] = 0as N — oo. Suppose an estimator has vanishing variance; i.e., var(Tx) — 0 as N — oo. Then,
TN is a consistent estimator of .

Proof of Lemma C.2. By Markov inequality,
_ 2. .2 21 /.2
P(ITy — ul > €) = P(Tw — ) > ) < Ep [(Tw — p)?] /€
Also, for uy = Ep [Ty],

Ep [(Ty — p)?] <2Ep [(Tn — pn)?] + 2(un — p)?
=2Vp [Tn] + 2(un — 1)
— 0.

where var(Tw) + (unx — 1) — 0 by the given assumptions that var(Ty) — 0 and Ep [Ty — ] = py — pp — O as
N — o0. O
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Lemma C.3 (Decomposition (Kennedy et al., 2020, Lemma 2)). Let f,, = f(V;n) denote a finite and continuous
functional and 1 denote its nuisances. For some samples D ~ P, let T = Ep [fy]. Let 0y = Ep [fy,] for some no. Let
Ep_p[fy) = Ep [fy] — Ep [fy]. Then, the following decomposition holds:

Ep [fn] =00 =Ep—p [foo] + Ep—p [fy = faol T Ep [fy — fiol- (C.1)

Suppose further that

1. Samples used for estimating 1 are independent and separate from D; and
2. |ln = noll = op(1).
Then, Eq. (C.1) reduces to

Ep [fn]_€0:R+EP[fn_fno]a (C2)

where R is a random variable such that \/nR converges in distribution to a mean-zero normal random variable, where
n = |D|.

Proof of Lemma C.3. We first prove the equality in Eq. (C.1).

Ep [fn] — by =Ep [fn} —Ep [fﬂo]
= IEDfP [fn] +EP [fn - fno]

=Ep-p [fno] +Ep-p [fn - fno] +Ep [fn - fno] :
=A =B

We now prove Eq. (C.2).

* A converges in distribution to the zero-mean normal distribution at \/n rate by the central limit theorem.

* We note that a given condition || — 7o|| = op(1) implies || f;, — fy, || = op(1) by continuous mapping theorem for
Ly(P) in Lemma C.1. In particular, Lemma C.1 is applicable since f,, f,, is a bounded and continuous function, and
ln — nol| = op(1). Then, B converges to zero at op(1/+/N) rate by (Kennedy et al., 2020, Lemma 2).

Finally, define R = A + B. Then, the proof completes by applying Slutsky’s theorem. [

C.2. Proof of Theorem 1

Definition 1 (Adjustment criterion for Treatment-Treatment Interaction (AC-TTI)). A set {C}, W} is said to satisfy
the adjustment criterion for treatment-treatment interaction (AC-TTI) w.r.t {( X1, X3), Y} in G if

1. ({C1, W} AL X5|Xy) g — there are no direct paths from X to {C1, W} in Gz and

X1.X

2. (Y 1L X|C1, W, XQ)GXsz; the back-door paths between X; and Y™ are blocked by {C, W} in G-

Assumption 1 (Positivity Assumption for AC-TTI). P, (C1,W), P,,(Cy, W), P,,(X1|C1, W) are strictly positive
distributions forVzi,x2 € Dx, x,.

Theorem 1 (Identification through AC-TTI). Suppose AC-TTI in Def. | and Assumption | hold. Then, E[Y |do(x1, z3)]
is identifiable from Pyuq(x,)(C1, W) and Pyanq(x,)(C1, W, X1,Y") and the expression is:

E[Y‘do(l’l,l‘g)] = Epwl [EPLQ [Y|01,I/V,$(11]] . (1)

28



Estimating Joint Treatment Effects by Combining Multiple Experiments

Proof of Theorem 1.

E[Y|do(x1,x2),C1, W] |do(z1, 22)]

[

[E[Y|do(z2),x1,C1, W]|do(z1, x2))
[Ep,, [Y|z1,C1, W] |do(zy, x5)]

[

]EP [Y‘Il,ChW} |d0(1’1)}

z2

[EPI? [Y‘.’El, Cl, WH 5

where = holds by the condition 2 which implies Rule 2 of do-calculus, and 2 holds by the condition 1 in AC-TTI which
implies Rule 3 of do-calculus. O

C.3. Proof of Theorem 2 and Corollary 2

Definition 2 (Nuisances for TTI). Nuisance functions for AC-TTI functional in Eq. (1) are defined as follow: For a
. . 2 c

fixed z1,z2 € Dx, x, wWhere x1,zo are specified in Eq. (1), mp = mo(C1, X1, W) = %.

po(C1, X1, W) :==Ep, [YV|X1, W,Cy]. We will use 7 := 7(C1, X1, W) > 0 and p := p(C1, X1, W) to denote arbitrary

finite functions.

Also, po =

Definition 3 (Estimators for TTI). Let D; and D, denote two separate samples following the distribution Ppyna(x,)(C1, w)
and Prang(x,) (C1, W, X1,Y), respectively. For fixed 21,2 € Dx, x,, we define D,, and D,, as subsamples of D; and
Dy such that X1 = 21 and Xs = z9. Let p and 7 denote the nuisances as defined in Definition 2. We now introduce the
{REG, PW, DML} estimators for the AC-TTI-functional specified in Equation (1) as follows:

T :=Ep,, [m(W,C1,21))],

TP = Esz [W(I/Vv 017 Xl)]lafl (Xl)Y} )

T = Ep,, [wly, (X){Y — u}] + Ep, [w(W,Cr,z1))].-
Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained

nuisance are separate and independent.

Assumption 3 (L consistency of nuisances). Estimated nuisances are Lo consistent; i.e., Vi € {1,2},Vz; € Dx,,

[1(W, C1,21) — po(W, Cr, 1)l p, = op, (1),

T i

le(W; C1, X1) = mo(W, C1, Xa) |, = op,, (1)

Theorem 2 (Error analysis of the estimators). Under Assumptions (1,2,3,4) and AC-TTI in Def. 1, the error of the
estimators in Def. 3, denoted €' .= T*' — E[Y|do(x1, x2)] for est € {reg, pw,dml} are:

€% =Ry + OPm1 (H,LL *:U'O”)v
& =Ry +Op,, (|7 —ml),
e — R+ Ry + Op,, (lm = moll [ — poll) ,

where R; is a random variable such that \/n; R; converges in distribution to the mean-zero normal random variable, where
n; = |Dy,| fori € {1,2}.

Proof of Theorem 2. We provide error analyses for each estimators:
Analysis for 77¢9.

“Throughout the paper, i1, 7 may be understood as estimated nuisances for 10, 7.
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We first note that

Ep,, [to(W,C1,x)] = Ep,, [Ep,, [Y|W,C1,21]] = E[Y|do(21,22)],

where the last equation holds by Theorem 1. By Lemma C.3,

T — E[Y]|do(x1, 22)]
=Treg _ EPwl [,U/O(Wa C'17 X)]

= EPml—DZI [/’LO(W 017 X)] + E’le—Dml [/J/(VV? Clv X) - /’[’O(W 017 X)] +]EP1'1 [/’L(VV) Cla X) - :U’O(W Cla X)}

=Ry

=Ry + Ep,, [W(W,C1,x) — po(W, C1, x)]

Ry 4 Op,, (o = ull),

[[v

where

« < holds by Lemma C.3.

« 2 holds by Cauchy-Schwartz inequality.

Analysis for T7v.

‘We first note that

Ep

z3

= Epzz

[mo(W, C1, X1)1,, (X1)Y] = Ep,, [mo(W, C1, X1)1a, (X1)po(W, C1, X1)]

P L (X)W, G, )|
[ PIl (W|01)PZD1 (Cl)
_PIQ (Wa X1|Cl)PT2 (Cl)
[ PIl(vvv Cl)

| P, (X1|W, C1) Py, (W, C1)
[P, (W, Ch)

To, (X1)po(W, Ch, X1)}

Lo, (X))uo(W, O, Xg}

_Pzg (W, Cl)NO(VVa Cl,l’l):|

=Ep,, [o(W,C1,21)]
2 E[Y|do(z1,2)],

where

« 2 holds by Assumption 4.

« £ holds by Theorem 1.
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By applying Lemma C.3,

TP —E[Y|do(x1,x2)]
= TP —Ep, [ro(W,C1, X)), (X1)Y]
—Ep, ., [1o(W,C1, X2)Lay (X0)Y] + B, _p., [{mo(W,C1, X1) — n(W, Cy, X))}, (X)Y]
=Ro
+Ep,, [{mo(W,C1, X1) — (W, C1, X1)} L, (X1)Y]
2 Ry +Ep,, [{mo(W,C1, X1) — 7(W, C1, X1)} 1, (X1)Y)

2 Ry +Op,, ([lmo — =),

« £ holds by Assumption 4.

« £ holds by Cauchy-Schwartz inequality and the setting where Y has a finite variance.

Analysis for 7™,

Let

T4 = Ep,, [x(W, C1, X1) Lo, (X){Y — (W, C1, X))} +Ep,, [1(W, C1,21))].

—dml,1 —Tdml,2

Let

Ty = Ep,, [ro(W, C1, X1) Lo, (X0){Y — po(W, C1, X1)}]
T(;iml’2 = Epzl [o(W,C1, 21))] .

We note that T := Tt 4 1902 — B [Y|do(x1, x)]. We first apply the Lemma C.3 to 7911 and T%™!2 separately.

Tdml,l _ T(;lm:l,l

=Ep,,-p,, [To(W,C1,21) Ly, (X0){Y — po(W, C1, X1)}]

+Ep,, ., [To(W,C1, 1)L, (X){Y — po(W, C1, X1)} — 7(W, Cr,21) L, (X){Y — u(W, C1, X1)}]
+Ep,, [m(W, C1,21) 1y, (X0){Y — p(W, C1, X1)}]

=Ry +Ep,, [r(W,C1, 1)1, (X0){Y — u(W,Cr, X1)},
where
Ry :==Ep,, p,, [To(W,C1, 1)Ly, (X0){Y — po(W, C1, X1)}]
+Ep,,-p,, [To(W,C1,21)Le, (Xi){Y — po(W,C1, X1)} — 7(W, C1, 21) Lo, (X0){Y — w(W, Cr, X1)}].
Also, by the proof for analyzing the error of 779,
Témh2 — T2 = Ry + Ep,, [u(W, Cr,21) — po(W, Ch, 1))
Then,

T4 _ R ([Y|do(z1, x2)]
_ Tdml,l + Tdml,2 _ Téiml’l _ Télml,Q

=R+ Ro+Ep, [7(W,C1,21) Ly, (Xa){Y — (W, C1, X1)}] + Ep, | [0(W,Cr,21) — po(W, C1, 1)) -

31



Estimating Joint Treatment Effects by Combining Multiple Experiments

Note that
Ep,, [#(V_V, Cr,21) — po(W, Cr, 1)
~Br, | e (V.0 X0) = 7.1 X))
=Ep,, i % gﬁji Pfj;;ﬁxwl’)cl) {u(W,C1, X1) — po(W, chxl)}}
—Ep, :P P(mgvgléf)éfl) {B(W, C1, X1) — oW, €, Xl)}]
Ly, | B O w01, 60) = a7, 01,301
=Ep,, [mo(W, C1, X1)1a, (X1) {u(W, C1, X1) — po(W, C1, X1)}],

where = holds by Assumption 4. Then,

Ep,, [m(W, C1,21) Ly (Xi){Y — (W, C1, X1)}] + Ep, | [0(W, C1,21) — po(W, C1, 21)]

=Ep,, [r(W,C1,21) Lo, (Xo){Y — p(W, C1, X1)} + Ep,, [mo(W, C1, X1) 1o, (X1) {n(W, C1, X1) — po(W, C1, X1)}]
=Ep,, [1a, (X1) (7(W, Cr, 21) {0 (W, C1, X1) — (W, C1, X1)} + mo(W, Cr, Xu) {(W, Cr, X1) — po(W, C1, X1)})]
=Ep,, [Ls, (X1) {o(W, C1, X1) — (W, C1, X1) } {mo(W, C1, X1) — (W, C1, X1)}]

= Op,, (Iln — poll |7 — 7o) -

Therefore,

T4 —E[Y|do(x1,22)] = R1 + Ra + Op,, (|l — pol| |7 — mol]) -

Corollary 2 (Doubly robustness of the DML estimators (Corollary of Thm. 2)). Suppose Assumptions (1,2,3,4) and
AC-TTI in Def. I hold. Suppose either ™ = mq or j1 = jig. Then, T*™ is an unbiased estimator of E [Y |do(z1, x2)).

Proof of Corollary 2. Let 7 and 1 denote the limiting estimator for 7 and .

T4 = Ep,, [x(W, C1, X1) L, (X){Y — (W, C1, X))} +Ep,, [1(W, C1,21))].

.—Tdml,1 .—Tdml,2

Let

T = Ep,, [mo(W, C1, X1) 10y (X0){Y — po(W, C1, X1)}]
Téiml’2 = Epm [/Jo(m Ch, fl))] :

Under the assumption that

Ep, [Tdmz,l] =Ep,, [r(W,C1, X1)14, (X1) {Y — u(W, C1, X1)}]
Ep,, [T"?] =Ep,, [u(W,C1,21)]
= Ep,, [1o(W, C1, X1) 1y, (X1)u(W, C1, X1)] .
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Then,

Ep

EP

[Tdml,l] +EP1.1 [Tdml,Q} _Esz [Tgml,l} +]EP,_,1 {Tgml,Q}

=Ep,, [7(W,C1, X1)1s, (Xa){Y — p(W, C1, X1)} + mo(W, C1, X1) 1, (X1) {p(W, C1, X1) — po(W, C1, X1)}]
=Ep,, [Tz, (X1) {po(W, C1, X1) — p(W, C1, X1) } {mo(W, C1, X1) — 7(W, C1, X1)}]

= Op,, (lr = poll |7 — moll)

where the last equation holds under the given condition. O

C.4. Proof of Theorem 3

Definition 4 (Adjustment criterion for combining two experiments (AC-gTTI)). A set of variables A is said to satisfy
adjustment criterion for generalized TTI (AC-gTTI) w.r.t an ordered set X and Y in G if

1. Z; CXand (A 1L X\Z; |Z1)Gi; there are no direct paths from X\ Z; to A in Gx; and

2. Zy CXand (Y 1L X\Z5|A, ZZ)GX\ZQTQ; the back-door paths between X\ Z; and Y are blocked by A in G

Assumption 5 (Positivity Assumption for AC-gTTI). P, (A), P.,(A), P,,(X\Z2|A) are strictly positive distributions
forVz1,20 € Dz, z,.

Theorem 3 (Identification through AC-gTTI). Suppose AC-gTTI in Def. 4 and Assumption 5 hold. Then, the query
E [Y'|do(x)] is identifiable from Pranq(z,)(A) and Pqz,) (A, X,Y') and given as follow:

E[Y|do(x)] = Ep,, [Ep, [Y]A,x\2o]]. )

Proof of Theorem 3.

E[Y]do(x), A] |do(x)]

E [Y|do(z2),x\z2, A] |do(x)]
Ep., [Y[x\22, A]|do(x)]
Er., [V]x\22, A] |do(z1)]
[Ep., [Y]x\22,A]],

where = holds by the condition 2 which implies Rule 2 of do-calculus, and 2 holds by the condition 1 in AC-gTTI which
implies Rule 3 of do-calculus. O

C.5. Proof of Theorem 4 and Corollary 4

Definition 5 (Nuisances for gTTI). Nuisance functions for estimating AC-gTTI functional in Eq. (2) are defined as follow:
For a fixed z1, 2o € ©z, z, Where z1, 2o are specified in Eq. (2), mg = mo(A, X) = #g?\)zz), and po = po(A,X) =

Ep,, [Y[X\Z2, A]. We will use 7 := 7(A, X) > 0 and y := p(A, X) to denote an arbitrary finite function.

Definition 6 (Estimators for gT'TI). Let D;, D, denote two sample sets following distributions Pyq(z,)(A) and
Prang( Zz)(A7 X.,Y), respectively. For a fixed 21,22 € ®y, z,, we define D, and D,, as subsamples of D; and Do
such that Z; = z; and Z5 = 2. Let pu, 7 denote nuisances defined in Def. 5. Then, {REG, PW, DML} estimators for
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AC-gTTI functional defined as follow:
79 =Ep., [u(A;x))],
7" = Ep., [r(A,X)1(X)Y],
T = Ep_ [rL(X){Y — u}] + Ep., [u(A,x))].

Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained
nuisance are separate and independent

Assumption 6 (L consistency of nuisances). Estimated nuisances are Lo consistent; i.e., Yi € {1,2},Vz; € Dy,

l14(Asx) = po(A, X)) p, = op. (1),
(A, X) — mo(A, X)

lp., = op, (1).

Theorem 4 (Error analysis of the estimators). Under Assumptions (2,5,6) and AC-gTTI in Def. 4, the error of the
estimators in Def. 6, denoted €' .= T*' — R [Y|do(x)] for est € {reg, pw,dml}, are:

€ =R1+Op_ (|lu—poll),
¢ =Ry + Op,, (|7 —mol|),
e = Ry + Ry + Op,, (|lm — mo]| | — poll)

where R; is a random variable such that \/n; R; converges in distribution to the mean-zero normal random variable, where
n; = |D,,|.

Proof of Theorem 4. We provide error analyses for each estimators:
Analysis for 77¢9.
We first note that
Ep., [to(Ax)] =Ep, [Ep, [V|A,x\22]] = E[Y]|do(x)],

where the last equation holds by Theorem 3. By Lemma C.3,

T —E[Y|do(x)]

=T" —Ep,, [po(A,x)]

=Ep., —p, [0(Ax)] +Ep. —p, [1(A, %) = po(A, x)] +Ep., [1(A, %) — po (A, %)]

t:Rl

= Ry +Ep,, [1(A,x) — (A, )]

2

= Ri+O0p., (o — pll)

where
« £ holds by Lemma C.3.
« 2 holds by Cauchy-Schwartz inequality.

Analysis for 77%.
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We first note that

Er., [mo(A, X)L(X)Y] = Er, [mo(A, X)1x(X)uo(A, X)]

P, (A)
mﬂx(X)MO(A7 X)
=Ep,, [1x(X)uo(A,X)]
= Ele [MO(Aa X)}

E[Y|do(x)],

= EP22

[[es

where 2 holds by Theorem 3. By applying Lemma C.3,
e — [YldO(X)]
=T —Ep_, [mo(A, X)1x(X)Y]
- EP 5, — D2 [770( ) ( )Y] + EPZQ*Dz [{ﬂ—()(Aa X) - W(Av X)}]]-X(X)Y}

=Ry
+Ep., {m0(A,X) — (A, X)} 1,(X)Y]
= Ry +Ep_ [{mo(A,X) — 7(A,X)} 1(X)Y]
5

=Ry + Op,, (o —7|),

« £ holds by Lemmas (C.1, C.3).
« £ holds by Cauchy-Schwartz inequality and the setting where Y has a finite variance.

Analysis for 7™,

Let

T = Ep, [7(A, X) L(X){Y — p(A, X)}] +Ep, [n(A,x))].

=Tdml,1

.—dml,2

Let

Tyt = Ep [ro(A, X) La(X){Y — po(A,X)}]

Tg"™? = Ep., [10(A,x))].

We note that T .= T¢™0! 4+ T2 — R [Y|do(x)]. We first apply the Lemma C.3 to 7951 and T%"12 separately.

dml,1 dml,1
Tmhl _ T

=Ep,,—p, [T0(A, %) L (X){Y — po (A, X)}]

+Ep.,—p, [T0(A, %) 1 (X){Y = po(A, X)} — (A, x) L (X){Y — u(A, X)}]
+Ep., [m(A,x)Ix(X){Y — u(A,X)}]
=Ry +Ep,, [m(A,x)1x(X{Y — (A, X)},

where

Ry = Ep,,_p, [1o(A, %) L(X){Y — oA, X)}]
+ Ep., s [1o(A, )L (X){Y — po(A, X)} — m(A, ) L(X){Y — u(A, X)}].
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Also, by the proof for analyzing the error of 779,
742 — Tim? = Ry + B, [1(A, %) — po(A, )]
Finally,
T4 _ R [Y|do(x)]

__ mdml,1 dml,2 dml,1 dml,2
= qamll | pdmb2 _ pdmll

=R+ Ry + Ep, [7(A, X)L (X){Y — u(A, X)} + Ep. [1(A, %) — po(A,x)].

We note that R; for i € {1, 2} is a variable such that ,/n; R; converges in distribution to the normal random variable, where

n; = |D,,|, by Lemmas (C.1, C.3). Note that
IEPZI [,u(Av X) - ,U'O(Av X)]
~ e, | 5 (A0 - (4 X))
~Br, | 0 P A ) o(a, X))
—Br, | (A0 o(a, X))
=Ep,, [mo(A, X)Lx(X) {#(A, X) — po(A, X)}].
Then,
Ep,, [m(A,x)1c(X){Y — u(A,X)} + Ep, [1(A,x) — po(A, x)]
=Ep,, [m(A,x)1x(X{Y — n(A, X)}H + Ep,, [mo(A, X)1x(X) {1(A, X) — o (A, X)}]
=Ep,, [1x(X) (7(A, x){p0(A, X) — (A, X)} + 7o (A, X) {1(A, X) — po(A, X)})]
=Ep., [1x(X) {10o(A, X) — u(A, X)} {7 (A, X) — 7(A, X)}]
= Op., (1t = poll |7 — moll) -
Therefore,

T4 —E[Y|do(x)] = R1 + Ra + Op_, (|lin — poll |7 — moll) -
O

Corollary 4 (Doubly robustness of the DML estimators (Corollary of Thm. 4)). Suppose Assumptions (2,5,6) and
AC-gTTI in Def. 4 hold. Suppose either ™ = g or j1 = jig. Then, T is an unbiased estimator of E [Y |do(x)].

Proof of Corollary 4. Let m and 1 denote the limiting estimator for 7 and (9.

T4 = Ep, [r(A, X)1x(X){Y — u(A, X)}] +Ep, [u(A,x))].

.—dml,1 =T dml,2

Let

T = Ep,, [mo(A, X) 1x(X){Y — po(A, X)}]
Tgml’Q = EPZ1 [1o(A,x))] .
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Under the assumption that samples are i.i.d.,

]EPZ2 [Tdml’l} = EPZ2 [W(Aa X)ILX(X) {Y - M(Aa X)H
Ep., [T"?] =Ep,, [u(A,x)]
=Ep,, [m0(A, X)1x(X)u(A, X)].
Then,
EPZQ [Tdml,l] + ]Epzl [Tdml,Q} . EPZ2 [Téimm] n Ele [Tgml,z}
=Ep., [(A X)L(XN{Y — u(A, X)} + mo(A, X)1x(X) {1(A, X) — po(A, X)}]
= EPQ []lx(X) {IU'U(A7 X) - N(Aﬂ X)} {WO(A7 X) - 7T(*A7 X)}]
= ()7
where the last equation holds under the given condition. O

C.6. Proof of Theorem 5

Definition 7 (Adjustment criterion for Multiple Treatment Interaction (AC-MTI)). An ordered set
{C1,W1,Co, W, -+ Cry1, Wp,_1} satisfies adjustment criterion for multiple treatment interaction (AC-MTI) w.r.t.
{X,Y}for X ={X;}", inGif fori =1,2,--- ,m,

1. {X;};>i is non-ancestor of {X) W C®}; and

2. (Y AL X;|cl-D X-1) W) x>i),

Cl= X (=D W) X>?in the graph Gx=+.

_; the back-door paths between X; and Y are blocked by

X,;,X>0

Assumption 7  (Positivity = Assumption  for AC-MTI). {P,,(W;, C;[W(~1 Ccl-1 XG-1)yym
Py, (X WO CO XE=D) fori = 1,--- ,m — 1 are strictly positive ¥x € Dx.

Theorem 5 (Identification through AC-MTI). Suppose AC-MTI in Def. 7 and Assumption 7 hold. Then, E[Y (x)] is
identifiable from {Pm,,d(Xi)(C(i), WO XOE=D)N2m s follow: Let i = Ep,, [Y|W(m’1), c(m=1), X(mfl)}, and for
i=m—1,--,2

NB = Epmi |:ﬁ6+l|w(i71), C(i71)7 X(iil):| ’
where ﬁé“ = ,uéJrl(W(i), CO gz, XE=D), Then,

EY (x)] =Ep,, [15(W1,Cy,z1)]. 3)

Proof of Theorem 5. Let A; .= {W;,C;} in this proof. Then, it suffices to show the following equation: For all ¢ =
1a27"' 7m71’

E {Y|d0(x2i),A(Fl),x(i*l)] =E {IE [Y|do(x2i+1),A(i),x(i)] do(x;), AU x=1)
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It holds as follow:
E [Y|do(x2i), A(i’l),x(i’l)}

LE |E [Y|do(x>i), A®), x(~D)] do(xzi),A(i_l),x(i_l)}

JIS

=
=

_Y’do(xz”l)’A(i)’X(i)_ do(x>i),A(i1)7x(i1)]

[les

=
&=

>Y|do(x2i+1)’A(i)’X(i)_ dO(l’z’),A(il),x(il):l ’
where

« £ holds by marginalizing over A;.

. 2 holds as follow:

E[V]do(x>"), AV, x| = E [V]do(x>"*1), A x|

since (Y AL X;|A®) X1 xZi+1), ., by the given condition and the positivity condition.
X, X1

x>

« 2 holds because X=+1 is not an ancestor of A (%), X ().

C.7. Proof of Theorem 6 and Corollary 6

Definition 8 (Nuisances for MTI). Nuisance functions for AC-MTI are defined as follows: For a fixed x :=
{1, 2} € Dx, let {pi}™, and {f'}™, be the nuisances defined in Thm. 5. For i = 1,--- ,m — 1,

; Py, (Wi]C;,C0 7D XC-D w1 i i j j 4 j . i i i i
Th = e ey and 7 = [T m (WO, €O, X)), We will use 71(W, O, X0) > 0

and p* (W01 C=1D XE=1) for any arbitrary finite functions.

Definition 9 (AC-MTI estimators). Let D; denote samples following Pryna(x;)(CY, W X®) fori = 1,2, -+, m. For
a fixed z; € Dx,, let D,, denote the subsamples of D; such that X; = x;. Let A; == {W;,C;} and V; == {4;, X, }. Let
p =Y. Let 1571 == 1, -1y (X0~Y) fori = 2,--- ,m. Then {REG, PW, DML} estimators are defined as follow:

T :=Ep,, [/LQ(WhChxlm )

" = Ep [ﬂmfl)ﬂx(x)y} ,

Tm

dml . ZEDM {ﬂ.(i—l)]l;—l{ﬁi+1 _ qu}:| +Ep,, [77].
=2

Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained
nuisance are separate and independent

Assumption 8 (L2 consistency of nuisances). Estimated nuisances are Lo-consistent; Specifically,

I = it p,, = op,, (1), Vi€ {1,2,-+ ,m — 1}
1" = wbllp,, = op,, (1), Vi€ {2,--- ,m}
= 0P'£1+1(1)7 Vi € {17 y T — 1}

I=* = 7"llp,,.,

>Throughout the paper, 1, ', 7° may be understood as estimated nuisances for s, ﬁg, 7y,
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Assumption 9 (Multiple experiments represent the same population). For any fixed i,j5 € {1,2,--- ,m — 1}
s.t. j > i and any fixed v;,v; € Dx, x;, the baseline covariates C;’s distribution satisfies the following:
P, (C;|ct=1 XU-D WU-1) = p, (C;|Ct~D XD Wi-1),

Lemma C.4 (Error analysis of the REG estimator for MTI). Suppose Assumptions (2,8) hold. Let T"%Y denote the
estimator defined in Def. 9. Then,

T —E[Y|do(x)] = Ry + Op,, (||1® — 12|

),

where Ry is the random variable such that \/n1 R converges in distribution to the mean-zero normal random variable,
where ny == | Dy, |.

Proof of Lemma C.4. We first note that, by Theorem 5,

Ep,, [#d(Wi,C1,21)] = E[Y]do(x)] .

By Lemma C.3,
T — E[Y|do(x)]
=17 —Ep,, [ud(Wy,Cy,21)]
= Ep,, —p,, [1(W1,C1.20)] + Ep,, ., (W1, Cr.1) =7 (W1, Cy, 1)
=Ry
+ ]EPTJ [,U:g(W17 Cl? I’l) - .[‘L2(W17 017 xl)]
= Rl + EP’H [,LL%(Wl, Cl?xl) - /’LQ(Wla Claxl):l
= R1+Op,, (I1* = ugl).
= holds by Lemmas (C.1, C.3), and the last equation holds by Cauchy-Schwartz inequality. O

Lemma C.5 (Error analysis of the PW estimator for MTI). Suppose Assumptions (2,8,9) hold. Let TP" denote the
estimator defined in Def. 9. Then,

TP —E[Y|do(x)] = Ry + Op,, (||a™=D — ™=V,

where R, is the random variable such that \/n, R,, converges in distribution to the mean-zero normal random variable,
where ny, == |D,, |

Proof of Lemma C.5. Throughout the proof, we set A; := {C;,W;} foralli =1,2,--- ,m. We will use V; := {4;, X; }.
In the proof, we tentatively assume

Ep,

Tm

Alm=D (wm=1 gm-1), X<”L—1>)1X(X)Y} = E[Y]do(x)]. (C.3)
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Then, by Lemma C.3,

T — E[Y|do(x)]
= T7 ~Ep,, [r" (WD, CO D, X)L (X)Y |

Tm

~Ep, -p [wgmfl)(v(m—l))ﬂx(x)y} +Ep, _p,. [{Wémfl)(v(m—l)) _ 7T(m—n(v(m_n)} HX(X)Y}

Tm ~ Hem

=R,
+Ep,,, [{m{" D (vimD) - gD vin) b (x)y ]
= Ro+Ep,, [{nfm" D (vOD) - an=D vy (x)v ]

= Ry + Op,, (|79 — ™D,

where = holds by Lemmas (C.1, C.3). The last equation holds by Cauchy-Schwartz inequality.

We now prove Eq. (C.3). We first show the following: For¢ = 2,---  ;m,

i—1 ] j—
pmj(A(J)’X(J D)
E[Y|do(x)] =Ep, |[] & (AD), X))

j=1 " Ti+1

pb (A0 XDy oy (XE-Dy | (C.4)

It holds for ¢ = 2 as follow:

P, (A1)

B (A, 0(An X1 “(Xl)} — Ep,, [13(A1,21)] = E[Y]do(x)],

o[
where the last equation holds by Lemma C.4. Now, we make the following induction hypothesis: For some i — 1 €
{2,3,---,m — 1}, suppose

(A(J) XU- 1))

T 1 ot :(‘ i (A(]) X(]))

induction hypothesis
()] "=

E [V |do(x A2 XY gy (X))

Then,

—2 P, (AU XU-1)
J ? [

—1/ A (i—2 i—2 i—2
Ep., P, . (AW x<j))”0 (AU, X)) (X))
j=1 "~ Ti+1 ’
AW xG-1) ) ) ) ) ) )
=Ep,_, H (AW X(])))]E Poy g [%(A(%l),$¢—1,X(172))|A(172)aX(%z) L2 (X072))
= Prio(
1 - A(J) X0U-1) Pl . o
=Ep,,_, H (AD, X" pi (AT Xy (X072
= Prio(
— A(J) X - 1)) )
2 (i-1) x(i-1)y7 (i—1)
=Ee H P, . (AD), X)) o(ATTH XET ) Lo (XETY)
— A(J) X - 1)) (A(z D x - )) _ _ ) )
_ i A(=1) x(i-1) 4 (i-1)
=Ep,, U Py,., (A0, X)) M(A(z 1)’X(z D) po (A XU ) L0 (XYTH)
A X(j—l)) ) . _ )
=Ep, pd (A=Y XDy, (X))
i 1;[ Py (AG), X)) Ho
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where
« < holds by the law of total expectation.
2 . L
» = holds since the expectation is over Py, |,

Therefore, Eq. (C.4) holds. By plugging ¢ = m, we have

m—1 P, (AW, XU-D)
(A, X)) *

E[Y|do(x)] = Ep, - P (A=Y Xm=Dyg (XM
j=1 Ti+1

. m—1 P, (AW, XU-D)
— P P, (A, XG)

j=1 Ti+1

Ep, |VIAM™D XM=D) 1 00 (XM7Y

. m—1 P, (AW, XU-D)
e | UL AG), X))

j=1 Ti+1

Lyim-1 (X(m_l))Y

Finally,

m- A(a) X = 1)) le(A(l))PxQ(A(z),X(l))~-~me,1(A(m’1)7X(m’2))
_1:[ Py . (AG) ,X@) P, (AW XY P, (AR X®@)...p,  (Alm=2) X(m=-2))p, (A(m=1) X(m-1))

m—1

1 - -
prj(AJ,'A(J D, X6 1))

= sz (A(m—1)7 X(nL—l))

m—1 IJA|AJIX(J 1))
Py, (A;, X,;|AG-D, X(G-1)

Jj=1
P (G WAL XGY)

i1 Py, (C;,W;, X;|AG-1) X G-1))
- m—1 ij(Wj|C’j, A(j*l),X(j*l))pmj(C”A(jfl)’ X(jfl))
i P (W5 XG5, AGD, XOED) P, (CG|AGD, XGD)

Py, (W;|Cy, AU=D X —1))
P,, (W;, X;|C;, AG=1) XG-1))

oﬂ H. E
,_.

1)(A('m 1) X(rn 1))

Lemma C.6 (Bias Analysis of the DML estimator for MTI). Suppose Assumptions (2,8,9) hold. Fori=1,2,--- ,m
let A; = {C;,W;} and V; = {A;,X;}. Fori = 1,---,m, let B; = {A;,;X;_1} where Xo = (. Let
T ({rk Yt {uk Y, be defined as follow:

T { S A,

= iE |: i 1) (7 D)]lx(iq)(X(i_l)) {M7+1(B(1),J}Z) - MZ(B(Z_l),Xz_l)}} +EPm1 |:,LL2(B(1),$1):| . (CS)

=
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Then,

m

T T ) — EYIdo(x)] = Y Op,, ([|n' = pol |71 = =57])) (C.6)
=2

Proof. We follow the proof technique used in (Rotnitzky et al., 2017). We first note that
T (G S {6 ) = E [Y|do(x)] (C.7)
It’s easy to witness Eq. (C.7) because, for¢ = 2,3,--- ,m,

Ep,, [76 ™ (VD) Lo (XOD) {if (BD, ) — (B, X;1) }]

1 Ep, {EP,” [W[()i—l)(v(i1))]lx(i_l)(X(i1)) {M8+1(B(i)aﬂfi) _ ‘ué(B(ifl)’Xi_l)} ‘B(i1)7Xi_1”
=Ep,, [m (VO Lo (XE) {Ep, [ (BY, @) BOD, X | - (B, X
=Ep,, [n6" (VO L0 (X)) {1 (BUD, Xin) = iy (BOD, X}

= O’

where the equation < holds by the law of total expectation. Therefore,
T (b} (e ise) = Er,, [i8(BY,21)| = E[V]do(x)],

where the second equation holds by Lemma C.4. Therefore, it suffices to prove the following to show Eq. (C.6):

m

T (Y AW ) = T (g Ve e i) = D Opy, (I = | In ! = mg7H)) . (€9
i=2
Forv=1,2,--- ;m — 1, we define a quantity
i i)y . Pe(BY)
wy(BW) = P, (BO)’
We note that wj(B") is related with 7 as follow:
wo(BY) = (V) P, (Xi|B). (C9)

To witness, consider the following:

“BY) = 5 AN )R, (VD)

Py, (A VEY)
P, (A;|[VGi-1)
Pxi (Wz7 Ci|W(i—1), C(i—l)7 X(z—l))
P, (W, C, W1, CO 1), XGD)

P,,(W;|C;, Wi-D -1 x(-1)
P, (W;|C;, Wi-1) (j(ifl)7 X(ifl))
Pl‘m (Wia Xz‘cl, ‘R7(i_1)7 C(i—l)’ X(i_l))

me (WZ|Cza W(ifl), C(ifl), X(Zfl))

[

Py, (A VED) Py (VOTD)

[les

— Wé(w(i)7 C(i), X(i))
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=5 (V) Py, (Xi|BY),

where

« £ holds since X; is non-descendent to V(=1 so that P, (V(i—D) = p, (V(~1),

« 2 holds by Assumption 9.
To simplify the notation, we sometimes simply denote wj(B") as wj; p*(BU~Y, X; 1) as p'; ' (B~ x;_1) as i';
and 7/ (V) as 7%,
Then, T4 ({zk} =1 {1F},) in Eq. (C.5) can be rewritten as

m

Tdml({ﬂ'k}k 1 ,{/J/ }k 2) Z]Epzm |:w67r(i_l)]lx(ifl)( (l 1) {7’L+1 ,U/Z} +wéﬁ2:|7 (CIO)

=2

where 7"t =Y.

Foreach k = 1,2, ,m, we define a quantity Q as follow:
Qr = Qu({m} 7 Y yp) = wom™ ™ + Z wim FID T iy (XFD) fitt — ity (C.11)
i=k+1

Note @, =Y and Ep, [@1] = T4 ({m*}}*7,", {u*}7",) defined in Eq. (C.10). We note that

_ 4 m m— m
Py, [Q1 = wi] £ T (S (i Y i) — Er, 1B, 1)

2 pdml({phymot Ry )~ E[Y|do(x)]
= Lh.s. of Eq. (C.6),

where
« 2 holds since Ep, [wo(BM)u2(BW, 21)] = Ep,, [1'(BM, 21)].

« 2 holds by Lemma C.4.

Motivating from the fact that Ep, [Ql — wéﬁg] = Lh.s. of Eq. (C.6), we establish a following induction hypothesis. For
?;: = P,, (-|[V@=1), the induction hypothesis is given as follow:

Hypothesis: ]Ffprz;l [Qr — wé“u’g“ — Z OF’jfl (H/‘i _ Mé” ||7ri*1 _ 7r(i)—lH) ,forke{2,--- ,m—1} (C.12)
i=k+1 ‘

We first verify the hypothesis Eq. (C.12) for k = m — 1.

Epm—2 [Qm-1—wp' ']

:]FfP:‘_Q [wg)n 1:um+7rm 11rm71(Xm71){Y_Nm}_W(T)n 1#81]

6 m— m m— m m m—1l—m

= B [wg 0" + 1" e, (X ) (i — 0™} = g ]

= s [ ("~ T 7 L, () 45— )]

1 m—1 ]]-a:m I(Xm 1) m m—1 m m
= Epr e |90 B, By TG T ey (X)L = 1)
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= B [m6" Ly (Kn) (0™ = 8"} 7" ey (Kin) (' — )]
=Epr2 L, (Xnoa) {p™ — g H ™ =1

=B, (Lo, () ™ = i} {0 = 1} [V

£ Oppe (™ = | [~ = m )

where

£ holds by the total law of expectation.

z holds since

Ep

Tm

Lo, (Xm1)
m—1 (m—1) (m=2)| _ m—1 (m—1) Tm—1 m— (m—2)
{ﬂ (B ,xm_l)]V }_Epmm [u (B  Xomo1) (X BT ‘V }

L]

£ holds by the definition of wpt

2 holds by applying Cauchy-Schwarz inequality.

Now, we suppose Eq. (C.12) holds for some k + 1 € {2,--- ,m — 1}. Then, we will show that Eq. (C.12) holds for k.
Toward this end, we first rewrite Q in Eq. (C.11) in a recursive form. For any k + 1 € {2,--- ,;m — 1}, the following
relation can be derived from Eq. (C.11):

-Kk Xk {Qk—i—l _wk+1 k+2} _ Z wz (k:i—1) ]].x(k:ifl)(x(k:iil)) {ﬁi+1 _ ‘uz} )
i=k+2

Therefore, foreach k =1,2,--- ,m — 1,

Qr ({77]}3 k a{/J’ }J k+1) = woﬁkH +w(’§+17rk]lﬂck(Xk) {ﬁkﬁ - MkH} +7Tk]]'.’£k (Xk) {Qk+1 - W0+1 k+2}
Then,
Epe-s [Qr — wimg ]
_ ]Efk—l [w(l)c’uk-i-l k+1 k]]-:vk Xi) {Mk+2 k+1} +7rk]]-xk(Xk) {Qk+1 —wg+1ﬁk+2} wkulg+1]
— E—k ) [wouk‘-‘rl 4 wk+1 k]lzk Xk: {Mk+2 k‘-‘rl} + W§+17Tk]l;pk (Xk) {ﬁg+2 _ ﬁk+2} wkulHl]

Ivn

+ B [7F 1, (Xk) {Qrs1 — wi T EG 2]

P'c
— ]]%5_1 [wgﬁkJrl +wk+1 k]lm Xi) {uk+2 k+1} wkulg-&-l] ]E?'i_l [Wk]lzk (Xp) {Qk+1 7wk+1ﬁk+2}}
= ]Eﬁ’;; [wh {7 — R} b b, (X)) (b2 — Y] +EF;1 [0, (X) {Qrpr — iR 2Y]
08 (0 — A7} 7 () (17 — 7]+ B [P, (30 { Qe — )
= Pt (78 Ly (Xk) {0 = g™} + 7810, (Xk) {pg ™ — 1"} +Epies (751, (Xi) { Qi1 — b P EEY2)]
- Pé:l []l (Xk) {/ﬂHI §+1} {ﬂg - Wk}] Jr]EF:;: [Wk]].xk (Xk) {Q}H.ulmf wg+1 +2H
2 e [ L (X0) {0 = i {7 }] 4 B [0, (X0) {Qua — w6 )]
13

By [Ty (Xe) {0 — b1} (= )] 4 B [1 1, (X0) {Qusr — w1 EE2Y]
+ Tm
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m

1:4]%:;1 [T () {5 = a2} {mb = 73]+ D0 O (Il = | =" = =)
i=k42 ‘
2 0p, , (It = it e =7 + 0 Ope (= mll It = i)
Rk i=k+2
= > Opr (lw = ol ="~ = mg7[1)
i=k+1 ¢

where

10 .
e = holds since

Ep,, {wngl(B(k-&-l))ﬂk(V(k))]lxk(Xk)ulg+2(B(k+1)7xk+1)‘v(k—1)]

—Ep_ ']EPM [wéc+1(B(k+1))7Tk(V(k))]lxk (Xk)ulg+2(B(k+1)’xk_H)’V(k)} ‘V(k—l)}

—Ep,,, [P (VO L (X0)Er,,, [wf T BED)uf B, ) [ VO] [V
[ P. (B(k+1))

_ k xr (k) k1 k42 (k+1) (k) (k=1)

= EPJ:m T (V )]lwk (Xk)EP,;m Wﬂo (B ,.’I;k+1)‘v ‘V

Tk41

=Ep,,, [P (VO L (X0)Er,, | [ BED, wp) [ VO] [VED]

_7rk (V(k))]lxk (Xk)ﬂlg-‘rl (V(k)) ’V(k—l)} )

11 .
¢ = holds since

Ep,,, [Wg(B(k)) {ukH(B(k),xk) — M’SH(BUC)’%)} ‘V(kfl):|
' Lo, (Xi) .
- BBy e Rk (B _ kg k) ‘ (k=1)
Eme _w() (B )Pmm (Xk|B(k)) {M (B ;Xk) Mo (B 7Xk)} V :|

1, (Xk)
=Er.,, |m (V)P (XuIBY) = m

(VO (X0) {1 (BW, X)) - T BO, X, | ‘VUH)} _

{1 B, 30 B0, 100 [ |

12 13 .
¢ = and = hold since

Ep,,, [hk (Xk) {uk+1(V(k)) _ u’é“(V(‘“))} {Wg(v(m) _ Wk(V(k))} ’V(kq)]

=Ep,,, [wh VO L, (X0) {5 (V) = (VO H b (V) — 2k (v | v
=Ep, w]lxk()(k) {uk+1(V(k)) _ M§+1(V(k))} {Wg(V(k)) _ 7Tk(V(k))} ‘V(k—l)‘|
=Ep,, ., |:]].xk(Xk) {Mk-i-l(V(k)) _ ulg+1(V(k))} {Wg(v(k)) _ 7Tk(v(k))} ‘V(k—l)} ’

where the second equation hold since

Py, ., (V#)

m

since Xj41, X, are non-descendants of V(*) so that P, ,, (VW) = P, (VR
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« 2 holds by the induction hypothesis.

« £ holds by Cauchy-Schwarz inequality.

Therefore, the induction hypothesis in Eq. (C.12) holds for all k = 1,2, - - - m — 1. Therefore,
Lhs. of Eq. (C.6) =Ep, [Q1 — wimid] = Z Op,, (|| = wh|| |7 = =57,
i=2

where the second equation holds by plugging k£ = 1 into the verified hypothesis in Eq. (C.12). This completes the proof. [

Lemma C.7 (Error analysis of the DML estimator for MTI). Suppose Assumptions (2,8,9) hold. Let T%™ denote the
estimator defined in Def. 9. Then,

T — R [Y |do(x ZR +ZOPII (et = wi [ |~ =7~

1/2

where R; fori =1,2,--- ,m are variables converging in mean-zero normal distribution at n, ~'~ rates.

Proof of Lemma C.7. Throughout the proof, we set A; == {C;,W;} foralli =1,2,--- ,m. We will use V; .= {4;, X;}
oralli =1,2,--- ,m. Wewilluse B; .= {A4;, X;_q}oralli =1,2,---  m, where X := (). To simplify the notation, we
sometimes simply denotep*(BU~1, X; 1) as p; ¢ (BU~Y 2, _1) as i’ and 7°(V®) as 7,

Let 79 ({x*}72 !, {p*}7m_,) be a quantity defined in Eq. (C.5). We first note that
T ({6175 {ng Hils) = E[Y]do(x)]
by Eq. (C.7). Then, by Lemma C.3,

T —E[Y|do(x)]
=T — T ({mg e {Ho Yiss)

~S Ep, ., [W(()z— Ly (X0 {7t — }} +Ep, _p,. [ (C.13)
=2
m . .
+ZEP597‘,_DT«L |:7T(()z 1)]lx(i71)(Xl 1) {'ut-‘rl _%} _ pli=1)y (im 1>(X(l 1)){ —itl z}:| +Ep, b, [ﬁg _Hg]
(C.19)
+Z]EPT1 |: (Z 1)]]_ (i 1)(X(’L 1)){ —i+1 Nl}:| +EP11 [ﬁ27ﬁ(2)] . (C15)
i=2

‘We first note that
Eq. (C.14) = Z Op,, (n;/?)

under Assumptions (2,8) by Lemma C.3.

Then,

Eq. (C.13) + Eq. (C.14) = Y "R,
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where R; fori = 1,2, .- ,m are variables converging in mean-zero normal distribution, by the central limit theorem and
Slutsky’s theorem.

Finally
Eq. (C.15) = T ({m" 1), {1 }ils) — B[V |do(x)]
= 2 Op (I = will == = 7571}
i=k+1 ¢
where the second equation holds by Lemma C.6. O

Theorem 6 (Error analysis of the estimators for MTI). Under Assumptions (2,7,8,9) and AC-MTI in Def. 7, the error of
the estimators in Def. 9, denoted ¢*' .= T*" — E [Y'|do(x)] for est € {reg, pw,dml}, are:

€ = Ry + Op,, (It —udll)
& = Ry + Op, (|71 —7{""V))),

m m
™= "Ri+Y Op, (1" = phlll=" =" = =5 I)
i=1 =2

where R; is a random variable such that \/n; R; converges in distribution to the mean-zero normal random variable, where
n; == |Dy,|fori € {1,--- ,m}.

Proof of Theorem 6. The proof is complete by Lemmas (C.4, C.5, C.7). O

Corollary 6 (Multiply robustness of the DML estimators (Corollary of Thm. 0)). Suppose Asumptions (2,7,8,9) and
AC-MTI in Def. 7 hold. Fori = 2,--- ,m — 1, suppose either 7'~! = 7r671 or ut = ub. Then, T in Def. 9 is an unbiased
estimator of E [Y'|do(x)].

Proof of Corollary 6. Let T4 ({x*}7""!, {1/*}7_,) be a quantity defined in Eq. (C.5). Let

Tt — g, [0 vE-Dy ) (X0-D) {'uiJrl(B(i)’ ) — uz‘(v(i))H =2 .m

and
T B, [42(By, 1)) .

Under the assumption that samples are i.i.d.,

m

D Ep, [T = T (S ).
i=1
Then,
> Ep., [T"] = E[Y]do(x)]
i=1
= T ({1 A ) — E [Y]do()]
m
i i i—1 i—1
= ZOPM (|l _UOH H” — T H)
i=2
= ()7
where the third equation holds by Lemma C.6, and the last equation holds under the given condition. O
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C.8. Proof of Theorem 7

Definition 10 (Adjustment criterion for gMTI (AC-gMTI)). Let Z = {Z, -+ ,Z,,} C X denote the subset of
treatments. Let {¢;}"; C {1,2,---,|X|} denote the index of Z; i.e., Z = {Xy,, -+, X, }. Let X1 = {X;}j<s,,
X1 = {X;}j>e,and X; = {X;}s, ,<j<p, fori=2,3,--- m. Anordered set A := {A1, Ay, -+, A,,} satisfies
adjustment criterion for combining multiple experiments (AC-gMTI) wat. {X,Y}in Gif, fori =1,2,--- ,m — 1,

LA LXT N2 XY A, 26

x>i—1’

2 (v LA XY X7 and

X,

3. (Y AL X"\ Zy A0 XY 7

GTm:YZ "\ Zm )
Assumption 10 (Positivity ~Assumption for AC-gMTI). P, (Ym\Zm,YmH|A(m*1),X(m_1)) and
(P, (AJAGD X P (A AGD XTI mL pit (A XYY are strictly positive  dis-

Zi41

tributions Vi € {1,--- ,m},Vz; € Dg,.

Theorem 7 (Identification through AC-gMTI). Suppose AC-gMTI in Def. 10 and Assumption 10 hold. Then, E Y |do(x)]
is identifiable from { P,yna(z,) (A®), X(z))}z’-"z1 and given as follow:

Wg = Ep, [YIATTD,X\Z,]
=B, (VAT % g, X
py =, [ a2, X0,
where X 1:ma1 = {Xm—1, Xm, Xma1}. Fori=m —2,--- .2,
and iyt = uéH(A(i),Ei,K(i_l)). Then,

EY(x)] =Ep_ [Fg] - “)

Proof of Theorem 7. We first note that
[Y|do(x\x(m 1)) x(m=1 Alm=1) ] E {Y|d0 T \Zms Zim Tm1 ), X1 A= 1)}
i1E [Y|do (Zm)s Tm \Zm, Tm+1, x(m=1) A(m- 1)}
=E {Y|d0 Zm)s x\zm,A(mfl)}
= 15 (A", x\z),
where
« < holds by the condition (Y 1 {Ym\Z,mYmH}\A(mfl)(x),X(m_l)7 Zm> in Def. 10. Specifi-

Zm Xm\Zm , X1

cally, the condition is an application of Rule 2 of do-calculus (Pearl, 2000).
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We also note that

E [Y|d0(x\i(m72)) x(m=2) A(m*2)]
~ E [B [ 1do(\ "), 272, A0 |dofae\ 2", 2, Alm=2)]
iE[ [Yldo(X\xm Dy glm=1) A (m= 1)} ‘do X\X(m 2)) <m=2) A (m- 2)}

=E _u{)”(A(m*l) x\Zm

do(x\x "), %072, A (2]

)
)
= B [ (A0, 5\ 20| o™ N\ s 1, 2 1), %7, A2
)

—E|: m(A(m 1) X\Zm

‘ Zm 1 (m—2)7A(m—2)}
= pg (AT x(mm2)),

where

« 2 holds since (Y 1L X;|A® X XY X ) _, in Def. 10 and the given positivity condition.

Xi»

« £ hold since (Ai AL Y>i71\Zi|§(i71),A(i—1), Zi) in Def. 10, X

o ~1\ Z; is non-ancestral to XY AG-D

x=>i—1
and the given positivity condition.

Finally, fori +1 € {m — 2,--- , 3}, suppose

E [Y\do(x\i(i)),i(i), A(i)} = pit (A x0)),

Then,
E [Y|d0(x\i(i71))’i(ifl)’A(z;l)}
- [ 1t 00,4 a0
“E _E {Y|d0(x\i(i)) x) A(i)} ‘do x\xH)y, i(i—1)7A(i—1)}
—E 5t (A0, % ‘do (x\x(Dy, gD A= 1)]
=FE H—l(A(l = ‘do 720\ 2, %), % %=1, A~ 1)}
LE {%H(A( ), %00 ‘do () 72(1—1)7A(1_1)}
= %(A(ifl)’i(iﬂ))’
where

« 2 holds since (Y 1L Y”A(i)’x(i—l)’ix)ci

_. in Def. 10 and the given positivity condition.
X;, v

« 2 holds since (AZ-iLX>i71\Zi|K(i71)7A(i—l),Zi) in Def. 10, X "

x=i—1

\Z; is non-ancestral to

x 1), AU=1) and the given positivity condition.
Therefore, forallt =m — 2,--- ,2.

E [Y\do(x\i(“),i(i), AD] = i AD 50),
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Finally,
E[Y|do(x)] = E [E [Y]do(x), A1] |do(x)]
L E[E[Y|do(x\z1), z1, A1] |do(x)]
= E [p5(A1,T1)|do(x)]
= E [1i3(A1,71)|do(x\z1, 21)]
L E [13(A1,71)|do(z)]
= Ele [,u Al, )] 5
where

o S holds since (Y 1L X;| A0, X"V X7

 _; inDef. 10 and the given positivity condition.
X, v

« L holds since (AiJLi>i71\Zi|X(i71),A(i_1),Zi) in Def. 10, §>i71\Zi is non-ancestral to
G

<>i—1

X(i—1)7 AU=1) and the given positivity condition.

C.9. Proof of Theorem 8 and Corollary 8

Definition 11 (Nuisances for AC-gMTI). Nuisance functions for AC-gMTI are defined as follows: For a fixed z =
P, (A]AGD XOY)

{21, , 2m} € Dz, let {u{} ™, be the nuisances defined in Thm. 7. Fori = 1,--+ ,m—2, 7§ :== (A XJAT D XDy
(i) _ 17 <) L P (A AT X (m—1) _ _(m—2) 1
and 7 = [[_, ) (AD), X)), Also, my" ! = - (A,”:X,,,L,mﬂ\A<m—2>,i(""2>) and pi =, Xy,

where X 1:mi1 = {Xm—1, Xm, Xms1}. Foralli = 1,2,---  m — 1, we will use 7¢(W® C® X)) > 0 and z*
and 7' to denote arbitrary finite functions.

Definition 12 (AC-gMTT estimators). Let D; denote samples following Pyyna(z,)(V) fori = 1,2,---,m. For a fixed
z; € Dz, let D, denote the subsamples of D; such that Z; = z;. Let p™*! .= Y. Let 15! := 11 (X(l_l)). Then
{REG, PW, DML} estimators are:

T = Ep,, [1*(A1,T1))],

™" =Ep_ [ﬂ(mfl)(A(mfl),X)lx(X)Y} ,

m

pdmi ZED |:ﬂ,z Dpi-ligi+l _ #2}} +Ep,, 7] .

Assumption 11 (L consistency of nuisances). Estimated nuisances {yi*}™.,, and {n*}" " are Ly consistent; Specifically,

- Ué—i_l”Pzi = OPzi(l)v Vi e {1’27"' 2y 1T — 1}
”:ui - Mz)”Pzi = OPzi(l)v Vi€ {27 T ’m}
(1), Vi€ {1, ,m—1}.

|1

|7 = llp..,, = or.,,

Lemma C.8 (Error analysis of the REG estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let T"®9 denote
the estimator defined in Def. 12. Then,

T — E[Y|do(x)] = Ry + Op., (||11* — u]])
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Proof of Lemma C.8. We first note that, by Theorem 7,
Ep., [1#3(A1,71)] = E[Y|do(x)] .
By Lemma C.3,
T —E[Y|do(x)]
=T"9—Ep,, [16(A1, )]
= Epzl—Dl [:ug(Alajl)] + Ele —-D; [Mg(Alvjl) - M2(A1af1)j|
=R
+Ep., [p3(A1, 1) — (A1, 7))
=R +Ep, [1g(A1,T1) — (A1, 7)]
= Ry +Op, (||* = u])),

where I?; is a variable such that /n; R; converges in distribution to the normal random variable. The last equation holds by
Cauchy-Schwartz inequality. O

Lemma C.9 (Error analysis of the PW estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let TP" denote the
estimator defined in Def. 12. Then,

TP —E[Y|do(x)] = Ry + Op,, (Jn™ D — x|

Proof of Lemma C.9. In the proof, we will use X;=X;fori=1,2,--- ,m—2,and Xp_1 = { X1, X, Xons1}-
Therefore, X; partitions X. In the proof, we tentatively assume

Ep

Zm

[ﬂgm*)(v(m*l))nx(xw = E[Y]do(x)]. (C.16)
Then, by Lemma C.3,

TP — E[Y|do(x)]

=T —Ep,, [n{" (V) L(X)Y]

b [{wgm*”(v“”—l)) _ w“”—l)(V(m—l))} llx(X)Y}

Zm

=Ep, D, [W(()mil)(v(m_l))]lx(x)y} +Ep

=R,
+Ep, [{Wém‘”(VW*l)) _ w“"*l)(V(m*l))} ]lx(X)Y}
=Ry +Ep, Hﬂémfl)(v(m_l)) — 7]'(”L_1)(V(m_1))} ]lx(X)Y}

1+ O, ([ £,

where R,, is a variable converging in distribution to the normal distribution at ,/n,,-rate. The last equation holds by
Cauchy-Schwartz inequality.

We now prove Eq. (C.16). We first show the following: For i = 2,--- |m,

i—1 i— v (7—
sz(Aj|A(J D, XG-1)
E[Y]do(x)] = EPzi H (Aj,f(j|A(j—1),5((j—1))

=1 Pz

pd (A XDy oy (XEDY | (C.17)
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It holds for : = 2 as follow:

Er, { 7;1 (A1)

A X)L, (0)] = B, (141 1)) = BLYldoG)

where the last equation holds by Lemma C.8. Now, we make a following induction hypothesis: For some i € {2,--- ,m—1},
suppose

'_2 . ~ .
induction hypothesis 3 P, (A; A(Jil),X(jil)
( )] duct :hYPth]E2171 H _7( ]| )

E[Yl|d _ _ i—1 A(i—2) X(i—Q) Lo X(i—Q)
[Vldolx 4, %, AG-D XG0y (AT Mz (X

j=1 PZJ'+1(
Then,

. ﬁ P, (A;|AU-D XG-D)
Peia | ijH(A_’X_|A(jf1),5((j71))

j=1

i (ACD RO 1 (RO2)

(4 |AJ D, X6 D)

_ - L AG-D . KO- AG-2) KD 1., (K-2)
P 1:[ z+1(AJ,X|Aa D XG-1) e (A, 50y KU AL, KO g (XO)
z72
L (4 |AJ D, X@- D)
=E A z XOE2) 1 ) (X2
e le_Il z]+1( X|AJ D X(] 1)),“( ) * 2)( )
z72 1) (7—1) v
—Ep H A |‘Aj XJ ) Tg,_ 1(X1 1) i(A(i—l) X(i—l))1~(i72)()~((i—2))
B z7+1<AJ,X|AJ D, XGD) P, (Ko 1\ Zo 1 |AGD, X2 0 ’ ¥
_7,72 v (i— 7— v (i—
=Ep H A |A(J Y X(j 1)) ]li(l,l)(X(l 1)) PZ'L 1(A( 1) X( 1))N (A(z 1) X(z 1))
i = P.. +1( X |AG-1) X(J 1))Pzi_l(X'i_l\Zi_ﬂA(i*l),f{(i*2)) P, (AG-D X(Z D)
1*2 (7—-1) (7—1) . i—2) Y (i—2)
_E, J(4;|AG-D XU-D) Pzifl(Azjl\A( ,X<~ ) ph(AGD, KD, (6D
= Zm( VXA, XG0 P, (A1, X1 |AG—2), X (=2)
L P4 |A(J n x<a Y) s go _
—F i A(z—l) X(z—l) Lo X(z—l)

where = holds by the law of total expectation. Therefore, Eq. (C.17) holds. By plugging ¢« = m, we have

m—1
A JAG-D) X(J 1))
E[Y|do(x)] =Ep P, (4] )

=m ]1;[1 sz( X |A(J 1) X(J 1))

(A(m 1) X(m 1))]]_ (e 1)(X(m71))

—Ep._ {Wngl(Aw—l)?X(m—n)%n(A(m—l),X(m—n)lx(x)}
B, [ A, KO, [FAC, X0 1)

=Ep,, [m (A, XD (XY ]

Lemma C.10 (Bias Analy51s of the DML estimator for AC-gMTI). Suppose Assumptions (2,8) hold. Let prmtl=Y,
Let X; =X, fori=1,2,--- ,m —2, and X,m_1 = { X1, Xm, Xmi1}. Let V; —{A“X}forz—LZ,--- m — 1.

7
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Let B; = {A;, X;_1} fori =1,2,--- ;m where Xo := (0. Let T¥™ ({7*}y7"=!, {1F}1,) be defined as follow:
T (Yot )

= Emjnapz [V D) g (ROD) {1 BO, 5w (BED, Koo | + Ep, [#2(BY,30)]. (€18)

i

m

T (" VAR L,) — EIYldo(x)] = Y Op., (|u' = gl |7~ — =7 ]) (C.19)

=2

Proof of Lemma C.10. We follow the proof technique used in (Rotnitzky et al., 2017). To simplify the notation, we
sometimes simply denote p*(BU~D, X; 1) as p*; p* (B, ;1) as i*; and 7 (V) as 7°.

We first note that

T ({3t e i) = E[Y |do(x)] (C.20)
It’s easy to witness Eq. (C.20) because, for i = 2,3,--- ,m,
Ep., [Wéifl)(v(i_l))]lium (X071 {M6+1(B(i),fi) - ME(B(i_l)vxi—l)H
1 Ep, [EP% |:ﬂ_(()i—1)(v(i1))]li(il)(5((i1)) {MS+I(B(1')75UZ,) _ MS(B(i71)7)~(i_l)} ‘B(i1)7)~(i_1:|]
=Ep., [nf (VO D) heeon (ROD) {Ep, [ (BO, 2) B, X - (B, Xi) }]
=Ep, [m ™ (VO L RO7) {pp(BOD, Ximy) — b (BOY, Ko }
=0

)

where the equation < holds by the law of total expectation. Therefore,

T (b Vst b Yie) = Er, [13(BD,71)| = EYIdo(x)],

where the second equation holds by Lemma C.8. Therefore, it suffices to prove the following to show Eq. (C.19):

T (e e A i) = T ({3t A Yime) = D Op., (|| = ]| |7 = =57 1)) - (€21
i=2
Fori=1,2,.--- ,m — 1, we define a quantity
L P.,(B®)
% (@)Y .— Zi
wy(BY) - 7sz B0
We note that wj (B") is related with  as follow:
wy(BY) = my (V) P, (X:[BY). (C.22)
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To witness, consider the following:

Wi (B(i)) _ P, (A |V i_l))PZi (V(i_l))
0 P, (A4VEED)P, (VETD)

m m

P, (A;|[VE-1)

P, (A[VGED)
P, (A;, X;|VED)

P, (Ai[VG=D)
= (V) P.,, (XiBY),

JIS

— mj(VO)

where

« 2 holds since X; is non-descendent to V=1, so that P, (V(i—1) = P, (V(i-1),

To simplify the notation, we sometimes simply denote wj(B") as wj; p*(BUY, X; 1) as p'; ' (BU~V &, 1) as i';
and 7/ (V@) as 7%,
Then, 74 ({zk} "1, {p*},) in Eq. (C.18) can be rewritten as

m

Tdml({ﬂ'k}k 1 ,{,LL }k 2 ZEPZ I:woﬂ. i— 1)]1 2lie 1)(X(’L 1)) {ﬁi-‘rl _,U/Z} +wéﬂ2:| , (C23)

where g™ =Y.

Foreach k = 1,2, ,m, we define a quantity Q as follow:
Qk = Qk({WJ}J R }g pp1) = WO Z wimF DT L iy (X R {Ett—p'}. (C.24)
i=k+1

Note Qn, =Y and Ep, [@1] = T4 ({x*}7*7,", {u*}7",) defined in Eq. (C.23). We note that

Er,,, [Qn—wbfi] £ T ({(n* i (b} — B, [n§(BY),24)]

Z Pyt (i y) — E[Y |do(x)]
= Lh.s. of Eq. (C.19),

where
« 2 holds since Ep, [w}(BW)p2(BW,#,)] =Ep_ [u'(BY, )]
« 2 holds by Lemma C.8.

Motivating from the fact that Ep, [Ql - wéﬁg] = Lh.s. of Eq. (C.19), we establish a following induction hypothesis. For
Pt = P, (-[V=1), the induction hypothesis is given as follow:

m

Hypothesis: E: - [Qr — whpkt!] = Z O (|| = pb|| | =g H|]), fork € {2,--- ,m —1} (C.25)
i=k+1
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We first verify the hypothesis Eq. (C.25) for k = m — 1.

B+ Qs —

= B [wf T 7 W (R ) (Y — 0} - o
m— lfm:|

= Eprs |wg' A" 7" s, (Kn) {0 — 1™} — wg TG

= Eps ol {7 = )+ 7 L (Rn) L — )]

- g2 wp' ™! szlf;?ml_(j{go&)) (™ =g+ 7" e (X)) {1 — um}l
& B [0 ey, (Ro) (07 = 4+ 7 1, (Kno) L — 1)

- Eﬁ:ﬁf :]lim_l (X)) {0 = g} {mg'~ ”mil}}

—Ep,,, [Lap . (Xn) {0 = ugﬂ} {rp=t = a1} [ven-2)]

£ Opmns (I = ui'l |7 2

where

« £ holds by the total law of expectation.

. L holds since

Ep

Zm

) . 1z, (Xm_1)
m—1 B(m_l), Fm— ‘V(m—Q):| —F m—1 :E;(’rn—l)7 Xm— ‘LT 1 m lv(m—Q) .
[ ) P [H N G ST

£ holds by the definition of w]*~"

2 holds by applying Cauchy-Schwartz inequality.

Now, we suppose Eq. (C.25) holds for some k + 1 € {2,--- ,m — 1}. Then, we will show that Eq. (C.25) holds for k.
Toward this end, we first rewrite Q in Eq. (C.24) in a recursive form. For any k + 1 € {2,--- ,;m — 1}, the following
relation can be derived from Eq. (C.24):

m

7T {Qk+l_wk+1 k+2}_ Z wl (k:i— 1)]1 2 1)(X(k2 1) {71-&-1 Hl}
i=k+2

Therefore, foreach k =1,2,--- ;m — 1,

QuU{m Yo A Yiikin) = Wi B+ wp s, (Xi) {B5F2 = i)+ 7P, (X)) {Quea —wp T
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Then,

Epis [Qn — w5 ]
= Eﬁlz—l [wgﬁk“ + whtirk 1, (Xy) {ﬁk+2 - uk'H} + 7* 1z, (Xi) {Qr+1 - wé“ﬁk”} wkulgﬂ}
B [T L, () {7 — ) L, () (A — ) — ]

+Epi [w Lz, (Xi) {Qup1 — b k”}}

Z m

_]Efk 1 5 k+1 +wk+1 k]l Xk {Mk+2 k+1} wkﬂlgﬂ} +]Eﬁk—1 [ﬂ'k]la*ck(j(k) {Qk+1—W§+1 +2}}

Zm

= Epis w’o“ (A =Y b L, (R {5 — 1] B [0 1, (R0) {Quin — wf TG

2 Ep |wf {7 -} 7, (X)) {b ! - Mk+1}] +Epr [Wk]lazk (Xp) {Qrr1 —wp ™7 k+2}}

Zm

= EFIZPI _ngik (Xk) {/“LkJrl - N§+1} + Wkﬂa‘ck (Xk) {ngJrl - ,U]Hl}] + Eﬁl:—l {Wk]].jk (Xk) {Qk+1 — w0+1 k+2}}

=E5i {]lik (Xk) (g - NSH} {r§ — Wk}} -HEF;;-,l |:7Tk]ljk () {Qusr — wécﬂﬁ/gﬂﬂ

z7n

o Fﬁk ! §+1]153k (Xk) {/‘kﬂ - NgH} {WIS - Wk}] JFEF’}I |:7Tk]].:ik (Xk) {Qk+1 - wé““ +2}]

Zm.

- ]&k ! []lfck (‘i‘k) {/Jk+1 - /L]0€+1} {77(]; - Wk}} + Eﬁk—l {ﬂ'k]lg"ck (X}c) {Qk+1 — w§+1ﬁg+2}}

zk+1

e (1R (0 4ot =] 4 3 0pn (il )

Zk+1 i=k+2

m
Lo (it =i =il + Y- Ope (= il 7 =7~

K i=k+2 i
-y O (|| = b I~ =51}
i=k+1

where

10 .
¢ = holds since

Esz [w§+1(B(k+1))ﬂ—k(V(k))1jk (Xk)ﬂg+2(B(k+1),xk+1)‘V(k*1)]
=Lp, EPZm [WISH(B(kH))Wk(V(k))]lik(Xk)ug+2(B(k+1),§:k+1)‘v(k)] ‘V(kil)}
=Ep, |:7Tk(V(k)>]lik(Xk)EPZm {w§+1<B(k+1))ulg+2(B(k+1)7jk+1)‘v(k)} ‘V("’—U}

- 5 P, (Bk+D)
—Ep,_ |7* (V) 1, (X4)Ep,, MNISH(B(HD@kJrl)’V(M] ’V(k_l)]
=Ep, _wk(V(k))]lgzk(X’k)E Py {MSH(B(HD’@H)’V(@} ‘V(kﬂ)}
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11 .
¢ = holds since

Ep

Zm

Wb BW) {1 BY), 5y) — T BO, ) [VEY]

1z, (Xx) >

_E : k1R ¥,y _ kL BE X ’VUH)
. e oy LB (B0, )}

Zm

wi (BW)

:EP

Zm

(v P

Zm

; 1z, (Xk) > : ~ _
Xp B0y =224 kB Xy — kLB X ’V(k b
(Xl )sz(Xk|B(’€)) {u ( k)= o ( k)}

[wé“(vw)uik(f(k) {Mk+1(B(k);Xk> _ M§+1<B<k>)5{k)} ‘VUH)} _

Zm

12 13 .
e = and = hold since

Er.,, [15, (%) {# 1 (VO) = (VO } {m (V) — (v [ v )]

= Ep.,, [ (VO)La, () {1 (VO) = (VO Hmb (VD) = b (v) } vk
PZ 41 (V(k)) " : —

=B, | py o (K {1 (V) = VD | b (V) - (v [V

—Er,,,, [La(X0) {1 (V) = p (v b (vO) - 2 (v®) ) [vEn]
where the second equation hold since

sz+1 (V(k))

k+1 k _
wo (V( )) = sz (V(k))

=1
since Zj+1, Zy, are non-descendants of V(*) so that P,,,, (V(®) = P, (V(*)),

« Y holds by the induction hypothesis.

« £ holds by Cauchy-Schwartz inequality.

Therefore, the induction hypothesis in Eq. (C.25) holds for all £ = 1,2, - - - m — 1. Therefore,

m

Lhs. of Eq. (C.19) =Ep,  [Q1 — wylig] = ZOP@, (I = || ||~ = =i
=2

where the second equation holds by plugging k£ = 1 into the verified hypothesis in Eq. (C.25). This completes the proof. [J

Lemma C.11 (Error analysis of the DML estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let T%™ denote
the estimator defined in Def. 12. Then,

T —E[Y|do(x)] =Y Ri+ > Op. (|| = [|=" " = =57])
i=1 i=2

) . L P —1/2
where R; fori=1,2,--- ,m are variables converging in mean-zero normal distribution at n, /% rates.

Proof of Lemma C.11. In the proof, we will use Xl- = X,;fori=1,2,--- ,m—2, and Xm_l = {Ym_l,ym,ym_l’_l}.
Therefore, X; partitions X. We will use B; := {A;, X;_1} oralli = 1,2,--- ,m, where X := ). To simplify the notation,
we sometimes simply denote p*(BU~1, X; 1) as p'; p*(BU~Y, 2;_1) as 7i'; and 72 (VD) as 7’
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Let T4 ({7*}7 ! {p*}_,) be a quantity defined in Eq. (C.18). We first note that
T ({76375 {6 Hils) = E [Y]do(x)]
by Eq. (C.7). Then, by Lemma C.3,

T4 —E[Y|do(x)]
Tdm,l Tdml({ O}k: 1 7{/-]’0},7@ 2)

:Z]Ep h, [77 T (XO-0) {5t — }} +Ep,, _p, [F)] (C.26)
=2
3 Br, -, 1 Lo (XOD) {1 i} — 7D Ly (XD {5 = Y] + By, [~ ]
=2
(C.27)
+ ZEP11 |:7T(7471)]]'x(7"71) (X(l*l)) {ﬁ’H*l _ ’ul}:| + EPII I:H2 _ H(Q)] . (C28)
1=2

We first note that
Eq. (C.14) = Z op, (n;'?)

under Assumptions (2,8) by Lemma C.3.

Then,
Eq. (C.13) + Eq. (C.14) = Y "R,

where R; for¢ = 1,2,--- ,m are variables converging in mean-zero normal distribution, by the central limit theorem and
Slutsky’s theorem.

Finally
__ rdml kym—1 kim
Eq. (C.15) = T ({m"}; 50 {n" ile) — E[Y|do(x)]
= 2 Op (I = will == =751}
i=k+1
where the second equation holds by Lemma C.6. O

Theorem 6 (Error analysis of the estimators for MTI). Under Assumptions (2,7,8,9) and AC-MTI in Def. 7, the error of
the estimators in Def. 9, denoted ¢*' .= T*" — E [Y'|do(x)] for est € {reg, pw,dml}, are:

¢ = Ry + Op,, (I — 1d]l) .
= Ry + Op, (|79 —x{™ 1)),

m m

=S R+ > 0n,, (I = bl =i ),
=1 1=2

where R; is a random variable such that \/n; R; converges in distribution to the mean-zero normal random variable, where
= |Dy,| forie {1,--- ,m}.
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Proof of Theorem 6. The proof is complete by Lemmas (C.4, C.5, C.7). O

Corollary 6 (Multiply robustness of the DML estimators (Corollary of Thm. 0)). Suppose Asumptions (2,7,8,9) and
AC-MTI in Def. 7 hold. Fori =2,--- ,m— 1, suppose either m*~1 = 71'671 or ut = ph. Then, T in Def. 9 is an unbiased
estimator of E [Y|do(x)].

Proof of Corollary 6. Let T4 ({x*}7"~!, {1*}7_,) be a quantity defined in Eq. (C.5). Let
Tt — g, [0 vE-Dy ) (XE-D) {'uiJrl(B(i),Ii) _ M-(V(i))H =2 .m
and

Tdml,1 . Ep, [#2(31,x1)] :

Under the assumption that samples are i.i.d.,

Y Ep,, [T = T ({7 1 (i s).-
i=1

Then,

m .

> Ep,, [T —E[Y]do(x)]

i=1

=T ({7" 0 (M s) — E[Y|do(x)]

=2 O, (I = moll == = =5))

i=2

= ()7

where the third equation holds by Lemma C.6, and the last equation holds under the given condition. O

Theorem 8 (Error analysis of the AC-gMTI estimators). Under Assumptions (2,10,11) and AC-gMTI in Def. 10, the
error of the estimators in Def. 12, denoted €' :== T*" — E [Y'|do(x)] for est € {reg, pw,dml}, are:

€ = R+ Op,, (I — mol)),

& = Ry + Op,, (Jn™ ) — x|,

Zm
m m

dml __

e = E R; + E OPzi(
=1 =2

where R; is a variable such that \/n;R; converges in distribution to the mean-zero normal random variable, where
n; = |D;|fori e {1,--- ,m}.

It = pdlllle = =),

Proof of Theorem 8. The proof is complete by Lemmas (C.8, C.9, C.11). O

Corollary 8 (Multiply robustness of the DML estimators (Corollary of Thm. 8)). Suppose Assumptions (2,10,11) and
AC-gMTI in Def. 10 hold. Fori = 2,--- ,m — 1, suppose either m'~1 = ’/Té_l or u* = pb. Then, T in Def. 12 is an
unbiased estimator of E [Y'|do(x)].

Proof of Corollary 8. Let T\ ({x*}7"~ ' {1*}7,) be a quantity defined in Eq. (C.18). Let
Timii — gy, [r=D (VD)1 (XED) {Mi+1(B(i),§ji) _ Mz'(v(i)>H i=2,.m
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D CU
P -

(a) Project STAR

Figure D.4: Example causal graphs for Section D. Nodes representing the treatment and outcome are marked in blue and
red, respectively.

and
Tdml’l = EDl [/,LQ(Bl,.fl)] .

Under the assumption that samples are i.i.d.,

m

D Ep, [T = T ({r B (i)
i=1
Then,
>_Ep, [T] ~E[Y]do(x)
i=1
= T (S At Hie) — B Y [do(x)]
=>_Op., (I = will = = mg~*))
i=2
= O7
where the third equation holds by Lemma C.10, and the last equation holds under the given condition. O

D. Project STAR: Estimating Joint Effects of Class Sizes to Academic Outcomes

We applied the proposed estimators to Project STAR dataset (Krueger & Whitmore, 2001; Schanzenbach, 2006). Project
STAR is an experimental study investigating teacher/student ratios’ impact on academic achievement for kindergarten
through third-grade students. In the study, students were randomly assigned to three different class sizes: small-size
classes, regular classes, and large-size classes. The objective was to evaluate how class size affects academic outcomes
(Schanzenbach, 2006). In our analysis, we used the dataset introduced in the online complement of Stock et al. (2003).

Project STAR Dataset. We denote Project STAR dataset as D. The dataset D includes the following information: class
size for kindergarten (X7), the academic outcome in kindergarten (W), class size for third grade (X5), the academic
outcome in third grade (Y), and pre-treatment variables (C') including genders, age, ethnicity, qualification for free lunch,
school types, and teacher’s education levels. Since Project STAR is a longitudinal experimental study, the samples for
variables {C, X1, W} follow a distribution Pyyuq(x,)(C, X1, W), and the samples for variables {C, X1, W, X5, Y} follow
a distribution Pyua(x,,x,)(C, X1, W, Xo,Y).
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Assumption on Dataset. We assume that the structural causal model M generating the dataset D induces a causal graph
depicted in Figure ??. Specifically, since Project STAR is a longitudinal experimental study randomizing X; and X5, the
submodel M, ., for z1,x2 € Dx, x, generates the dataset D.

Creation of Datasets from Marginal Experiments. In this empirical study, we create two datasets from this dataset: D;
and Dy. The dataset D, is a random subsample of D only including {C, X1, W}. Then, D follows Pyyuax,)(C, X1, W).

We now construct the dataset D following the marginal experimental distribution Pyyna(x,)(C, X1, W, X3,Y") by intro-
ducing the confounding bias between X; and W as follows. A specific procedure for introducing confounding bias
from experimental studies follows an approach widely used in practice®, which is described below. Among attributes
in C, we chose specific covariates Cl,s = {ethnicity, gender, free-lunch-eligibility}. Next, we assign probabilities for
Prampie (21| Chias) for Va1, cpias € D x, cye- Then, we construct the dataset Do as follows: Dy == {}, and for each samples in

D = {Cu, X1,6), Wiy, Xo,0), Yi) }Lﬂ we repeat the following steps:
1. Generate the Bernouli random variable B;) with parameter Poample (X1, (i) |Chias. (1)) -
2. If B(z) =1, include {C(l), le(i)’ W(,L)7 X2,(i)7 Y'(,L)} in DQ.

Finally, we exclude the covariate ‘ethnicity’ from C in D7 and Ds. By doing so, we introduce unmeasured confounding bias
between X and W in Ds. As aresult, D, follows a marginal experimental distribution Pyq(x,)(C, X1, W, X»,Y). In this
empirical study, the construction of estimators solely relied on the datasets D1 and D5, while the dataset D was exclusively
leveraged to construct the ground-truth estimate. The following procedure outlines the specific steps on constructing the
ground-truth estimate.

Goal. In this empirical study, we aim to study the joint effect of the class size for kindergarten (X;) and the
third grade (X2) on the third grade’s academic outcome (Y); i.e., E[Y]|do(x1,22)]. Since D is a longitudi-
nal experimental dataset following Prnax,,x,)(C, X1, W, X5,Y), the ground-truth E[Y|do(x1,x2)] is estimated as
Ep [Y]lfcl,xz (X17X2)] /ED []]‘1’17$2 (Xla XZ)]-

Causal Effect Identification. Identifying and estimating the causal effects E [Y|do(x1, 22)] falls under Task TTL To
witness, we first recall that the datasets D; and D2 consist of samples that follow the distributions P4 Xl)(C, X1, W)
and Pryna(x,)(C, X1, W, X2,Y), respectively. Furthermore, within each dataset, the samples D, follow the distribution
P,,(C,W) and the samples D, follow the distribution P,,(C, X1, W) Y').

We first observe that {C, W} in the graph G (in Fig. D.4a) satisfies the AC-TTI in Def. | w.r.t {(X1, X2), Y }. Specifically,

; and

1. {C, W} L X5|X1)a

X1,Xo

2. (Y UL Xa|C, W, X1)ay .

Also, the positivity assumption in Assumption | is satisfied for D; and D,. Therefore, according to Theorem 1, the joint
treatment effects [E [Y'|do(x1, x2)] are identifiable and can be expressed as follows:

E[Y|do(x1,22)] = Ep,, [Ep,, [Y|C, W, 21]] . (D.1)

The following procedure introduces confounding bias in an experimental dataset by resampling the dataset with a probability
depending on the treatment X; and covariates C'. The procedure has been used in prior research, such as (Hill, 2011; Louizos et al., 2017;
Zhang & Bareinboim, 2019; Gentzel et al., 2021) for simulation purposes.
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Case 1 Case 2 Case 3 Case 4

Model Model Model Model
Fig. D.4a 0 wE 0s ; 0
(Project STAR) | P! = 0 -

Figure D.5: AAE Plot for Fig. (D.4a) for Cases {1,2,3,4} depicted in the Experimental Setup in Sec. 5.

Causal Effect Estimation. We define the nuisance as follows: For the fixed 1,22 € Dx, x,,

1o(C, X1, W) == Ep,, YW, X4,C], (D.2)
Py, (W|C)
C, X, W)= | D.3
7T0( 9 1 ) Px2(VV7X1‘C) ( )
Then, besides Eq. (D.1), the causal effect can be expressed as follows:

Eq.(D.1)=Ep,, [Ymo(C, X1, W)1,, (X1)], or, (D.4)
= Epz2 [Tl'o(c, Xl, W)]].xl (Xl){y — ,LL()(O, )(17 W)}] + ]Epml [[}Jo(c, T, W)] . (DS)

We then construct the regression-based, probability weighting-based, and double/debiased machine learning (DML)
Tree, TPW T9m ysing the following procedure.
1. For each fixed z; € ®x, and a sample set D, for i € {1, 2}, randomly split the sample as D, ; and D, ..

2. Use {Dy, t, Dy, +} to train the model for learning nuisances in Eq. (D.2) and Eq. (D.3). Let u(C, X7, W) and
m(C, X1, W) denote the learnt models. We use the XGBoost (Chen & Guestrin, 2016) to learn the model.

3. Then, each estimator is defined as follows:

T :=Ep,, , [W(C,z1,W)] (D.6)
TP =By, | [7(C, X1, W)y, (X1)Y] D.7)
T = Ep.  [71(C, X1, W)y, (X){Y — u(C, X1, W)} +Ep, . [u(C,z1, W)]. (D.8)

zg,e z1,e

With the following construction, the Assumption 2 is satisfied.

Experimental Results. As described in the Experimental Setup section (Sec. 5), we evaluated the AAE® of estimators
T for est € {reg, pw, dml} in Cases {1, 2, 3, 4}. The AAE plots for all cases can be seen in Fig. D.5. In this particular
scenario, the sample size was not varied since the sample itself was externally given.

In Case 2, we introduced variation by adjusting the size of the converging noise €, which follows a normal distribution
Normal(n =%, n=2%) for n € {200,400, 600,800, 1000}. It was observed that the DML estimator 79™ outperformed the
other two estimators by achieving fast convergence, as demonstrated in Theorem 2. For Cases {3, 4}, the DML estimator
T9m! exhibited doubly robust properties, as illustrated in Corollary 2.

E. Details of Experiments

As described in Sec. 5, we used the XGBoost (Chen & Guestrin, 2016) as a model for estimating nuisances
pym, {pi}m,, {m*}™ . We implemented the model using Python. In modeling nuisance using the XGBoost, we used the
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command xgboost .XGBClassifier (eval_metric='1logloss’)’ to use the XGBoost with the default parame-
ter settings. In implementing the PW estimators 7P* and the DML estimators 7™, we use the clipped weight by trimming
samples yielding weights lower than 10 percentile or greater than 90 percentile (Crump et al., 2009). For Tasks (TTI,MTT),

d is chosen to be 10. For Task gTTI, d is chosen to be 5. For Task gMTI,

d is chosen to be 1.

We split the dataset as training and test samples with a 5:5 ratio. The training samples are used only for running parameters
of the XGBoost models, and the test samples are used only for evaluating the trained XGBoost models.

E.1. Designs of Simulations

This section provides the structural causal models used for generating the dataset. Specifically, we provide a part of the code

for generating the dataset.

E.1.1. TASK TTI

[:]Generate Exogeneous Variables[:]
# Generate U_Cl_W (Latent confounders between CI1,
U_Cl_W 1,

np.random.normal (0, size=(n,))

# Generate U_CI1_XI1
U_Cl_X1

(Latent confounders between C1,
1,

np.random.normal (0O, size=(n,))

# Generate U_XI1_W (Latent confounders between X1,
U_X1_W 1,

np.random.normal (0, size=(n,))

# Generate U_X1_X2 (Latent confounders between X1,
U_X1_X2 1,

np.random.normal (0, size=(n,))
# Generate U_X2_Y (Latent confounders between X2,
U_X2_Y 1,

np.random.normal (O, size=(n,))
# Generate U_C2_X2 (Latent confounders between C2,
U_C2_X2 1,

np.random.normal (0, size=(n,))
# Generate U_C2_Y (Latent confounders between C2,
U_C2_Y 1,

np.random.normal (0, size=(n,))
[:]Generate Endogenous Variables[:]
# SCM for Covariates C1
def £ Cl(n,d,U_Cl_X1, U_CI_W):
Cc1l np.zeros ((n,d))
for idx in range(0,d):
Cl[:,1idx]
return (C1l)

np.random.normal (0,1, size

# SCM for Treatment X1
def f_X1(n,d,Cl, U_C1l_X1,
coeff np.repeat (1,d)
X1_linfun np.dot (Cl, coeff)
X1_param 1/ (l+np.exp(-X1_linfun))
X1 np.round (X1_param)
return (X1)

U_X1 W, U_X1_X2):

(n,))

W)

X1)

w)

X2)

Y)

X2)

Y)

+ U_C1l_X1 + U_CLl_W

+ U_Cl_X1 + U_X1_W + U_X1_X2

"Detailed parametrization of parameters including learning rates, maximum depth of the trees, etc. are explained in https:
//xgboost .readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier.
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# SCM for Output W
def £ W(n, d, Cl, X1, U_CI1_W, U_X1_W):
coeffl = np.repeat(l,d)
coeff2 = np.repeat (-1,d)
W_linfun = np.dot(Cl, coeffl) + np.dot(Cl, coeff2) » X1 + U_Cl1_W + U_X1_W
W_param = 1 / (1 + np.exp(-W_linfun))
W = np.round(W_param)
return (W)

# SCM for Covariates C2
def £ C2(n, d, Cl,U_C2_X2, U_C2_Y):
C2 = np.zeros((n, d))
for idx in range (0, d):
C2[:, 1dx] = (2+Cl[:,idx]-1) + U_C2_X2 + U_C2_Y
return (C2)

# SCM for Treatment X2
def f_X2(n, d, C2, X1, U_C2_X2, U_X2_Y, U_X1_X2):
coeffl = np.repeat(l, d)
coeff2 = np.repeat (-1, d)
X2_linfun = np.dot (C2, coeffl) + np.dot(C2, coeff2) *X1 + U_C2_X2 + U_X2_Y + U_X1_X2
X2_param = 1 / (1 + np.exp(-X2_linfun))
X2 = np.round(X2_param)
return (X2)

# SCM for Y
def £ Y(n, d, C2, X2, W, U_C2_Y, U_X2_Y):
coeffl = np.repeat (1, d)
coeff2 = np.repeat (2, d)
coeff3

np.repeat (-1, d)

Y_linfun = np.dot (C2, coeffl) + np.dot(C2, coeff2) x X2 \
+ np.dot (C2, coeff3) » W + U_C2_Y + U_X2_Y

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.2. TASK GTTI

[:]Generate Exogeneous Variables[:]
# Generate U_X0_Z1 (Latent confounders between X0, Z1)
U_X0_Z721 = np.random.normal (0, 1, size=(n,))

## Generate U_X0_Z2 (Latent confounders between X0, Z2)
U_X0_Z2 = np.random.normal (0, 1, size=(n,))

## Generate U_ZI1_W (Latent confounders between Z1, W)
U_Z1_W = np.random.normal (0, 1, size=(n,))

## Generate U_Z2_ Y (Latent confounders between Z2, Y)
U_Z2_Y = np.random.normal (0, 1, size=(n,))
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[:]Generate Endogenous Variables[:]
# SCM for Treatment C
def f_C(n,d):
C = np.zeros((n, d))
for idx in range (0, d):
C[:, idx] = np.random.normal (0, 1, size=(n,))
return (C)

# SCM for Treatment X0
def f_X0(n,d, U_X0_21 , U_X0_Z2):
X0_linfun = U_X0_Z1 - U_X0_Z2 + 0.5 + np.random.normal (0, 1, size=(n,))
X0_param = 1/ (l+np.exp(-X0_linfun))
X0 = np.round (X0_param)
return (X0)

# SCM for Treatment Z1
def f 7Z1(n, 4, C, X0, U_X0_Z1, U_Z1_W):
coeffl = np.repeat (1, d)
Z1_linfun = np.dot (C, coeffl)« (2xX0-1) + U_X0_Z1 + U_Z1_W + X0 \
+ np.random.normal (0, 1, size=(n,))
Zl_param = 1 / (1 + np.exp(-Z1_linfun))
Z1 = np.round(Zl_param)
return (Z1)

# SCM for W
def f_W(n,d,C,21,U_Z1_W):
coeffl = np.repeat (-0.5, d)
W_linfun = np.dot(C, coeffl)*(2x21-1) + U_Z1_W + np.random.normal (0, 1, size=(n,))
W_param = 1 / (1 + np.exp(-W_linfun))
W = np.round(W_param)
return (W)

# SCM for Treatment Z2
def £ 722(n, d, C, X0, z1, U_X0_z2, U_Z2_Y):
coeffl = np.repeat (-1, d)
coeff2 = np.repeat (0.5, d)
U = 0.5%x(U_X0_Z2 + U_Z2_Y)
Z2_linfun = np.dot (C,coeffl)* (2+xX0-1) + np.dot (C,coeff2)x(2+x21-1) + U \
+ np.random.normal (0, 1, size=(n,))
7Z2_param = 1 / (1 + np.exp(-Z2_linfun))
Z2 = np.round(Z2_param)
return (Z2)

# SCM for Y

def £ Y(n, d, C, X0, Z2, W, U_Z2_Y):
coeffl = np.repeat (-1, d)
coeff3 = np.repeat (-0.5, d)
coeffd = np.repeat (2, d)
U=0.5% U_22_Y

Y_linfun = np.dot (C, coeffl) x (2xX0-1) + np.dot(C, coeff3) * (2%xzZ2-1) \

+ np.dot (C, coeffd) + (2+xW-1) + \
U + np.random.normal (0, 1,size=(n,))
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Y_param = 1 / (1 + np.exp(-Y_linfun))
Y = np.round(Y_param)
return (Y)

E.1.3. TASK MTI

[:] Generate Exogeneous Variables [:]
# Generate U_CIl_WI1 (Latent confounder between C1l, WI1)
U_C1_Wl = np.random.normal (0, 1, size=(n,))

## Generate U_CIl_X1 (Latent confounder between Cl, XI1)
U_C1l_X1 = np.random.normal (0, 1, size=(n,))

## Generate U_XI_WI1 (Latent confounder between X1, WI1)
U_X1_Wl = np.random.normal (0, 1, size=(n,))

## Generate U_C2_ W2 (Latent confounder between C2, WZ2)
U_C2_W2 = np.random.normal (0, 1, size=(n,))

## Generate U_C2_X2 (Latent confounder between C2, X2)
U_C2_X2 = np.random.normal (0, 1, size=(n,))

## Generate U_X2 W2 (Latent confounder between X2, W2)
U_X2_W2 = np.random.normal (0, 1, size=(n,))

## Generate U_C3_ Y (Latent confounder between C3, Y)
U_C3_Y = np.random.normal (0, 1, size=(n,))

## Generate U_C3_X3 (Latent confounder between C3, X3)
U_C3_X3 = np.random.normal (0, 1, size=(n,))

## Generate U_X3_'Y (Latent confounder between X3, Y)
U_X3_Y = np.random.normal (0, 1, size=(n,))

[:] Generate Endogenous Variables [:]
# SCM for Covariates CI1
def £ Cl(n,d,U_C1_X1,U_Cl_Wl):
Cl = np.zeros((n,d))
for idx in range(0,d):
Cl[:,1idx] = np.random.normal(0,1,size = (n,)) + U_Cl1_X1 + U_Cl_Wl
return (Cl)

# SCM for Treatment X1
def f X1(n,d,Cl, U_Cl_X1, U_X1_W1l):
coeff = np.repeat(1l,d)
X1_linfun = np.dot (Cl,coeff) + U_CI1_X1 + U_X1_Wl
X1_param = 1/ (l+np.exp(-X1_linfun))
X1 = np.round (X1_param)
return (X1)

# SCM for Output W1
def f Wl(n, 4, Cl1, X1, U_C1_W1l, U_X1_W1):
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coeffl = np.repeat (1,d)

coeff2 = np.repeat (-1,d)

Wl_linfun = np.dot (Cl, coeffl) + np.dot(Cl, coeff2) % X1 + U_Cl_Wl + U_X1_ Wl
Wl_param = 1 / (1 + np.exp(-Wl_linfun))

Wl = np.round (Wl_param)

return (W1)

# SCM for Covariates C2
def £ C2(n, d, Cl,U_C2_X2, U_C2_W2):
C2 = np.zeros((n, d))
for idx in range (0, d):
C2[:, idx] = (2+«Cl[:,idx]-1) + U_C2_X2 + U_C2_W2
return (C2)

# SCM for Treatment X2
def £ X2(n, d, C2, U_C2_X2, U_X2_W2):
coeffl = np.repeat (1, d)
X2_linfun = np.dot (C2, coeffl) + U_C2_X2 + U_X2_W2
X2_param = 1 / (1 + np.exp(-X2_linfun))
X2 = np.round (X2_param)
return (X2)

# SCM for Output W2

def £ W2(n, d, C2, X2, Wl, U_C2_W2, U_X2_W2):
coeffl = np.repeat(l, d)
coeff2 = np.repeat (2, d)
coeff3 = np.repeat (-1, d)

W2_linfun = np.dot (C2, coeffl) + np.dot(C2, coeff2) % X2 + np.dot(C2, coeff3)
+ U_C2_W2 + U_X2_W2

W2_param = 1 / (1 + np.exp(-W2_linfun))

W2 = np.round (W2_param)

return (W2)

# SCM for Covariates C3
def f_C3(n, d, C2, U_C3_X3, U_C3_Y):
C3 = np.zeros((n, d))
for idx in range (0, d):
C3[:, 1dx] = (2 % C2[:, idx] - 1) + U_C3_X3 + U_C3_Y
return (C3)

# SCM for Treatment X3
def f X3(n, d, C3, U_C3_X3, U_X3_Y):
coeffl = np.repeat (1, d)
X3_linfun = np.dot (C3, coeffl) + U_C3_X3 + U_X3_Y
X3_param = 1 / (1 + np.exp(-X3_linfun))
X3 = np.round (X3_param)
return (X3)

# SCM for Output Y

def f_Y(n, d, C3, X3, W2, U_C3_Y, U_X3_Y):
coeffl = np.repeat(l, d)
coeff2 = np.repeat (2, d)
coeff3 = np.repeat (-1, d)
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Y linfun = np.dot(C3, coeffl) + np.dot(C3, coeff2) » X3 + np.dot(C3, coeff3)
+ U_C3_Y + U_X3_Y

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.4. TASK GMTI

[:]Generate Exogeneous Variables[:]

# Generate U_X0_Z1 (Latent Confounders between X0, Z1)
U_X0_Z71 = np.random.normal (0, 1, size=(n,))

# Generate U_X0_Z2 (Latent Confounders between X0, Z72)
U_X0_Z2 = np.random.normal (0, 1, size=(n,))

# Generate U _X0_Z3 (Latent Confounders between X0, Z3)
U_X0_Z73 = np.random.normal (0, 1, size=(n,))

# Generate U_ZI1_WI1 (Latent Confounders between Z1, W)
U_Z1_W1l = np.random.normal (0, 1, size=(n,))

# Generate U_Z2 W2 (Latent Confounders between 72, W2)
U_Z2_W2 = np.random.normal (0, 1, size=(n,))

# Generate U_Z3 Y (Latent Confounders between 73, Y)
U_Z3_Y = np.random.normal (0, 1, size=(n,))

[:]Generate Endogenous Variables[:]
# SCM for Covariate C1
def f_Cl(n,d):
Cl = np.zeros((n, d))
for idx in range (0, d):
Cl[:, idx] = np.random.normal (0, 1, size=(n,))
return (C1l)

# SCM for Treatment X0
def f X0(n,d, U_X0_Zz1 , U_X0_Z2):
X0_linfun = U_X0_Z1 - U_X0_Z2 + 0.5 + np.random.normal (0, 1, size=(n,))
X0_param = 1/ (l+np.exp(-X0_linfun))
X0 = np.round(X0_param)
return (X0)

# SCM for Treatment Z1
def £ 71(n, d, Cl, X0, U_X0_Z1, U_Z1_W1):
coeffl = np.repeat (1, d)
Z1_linfun = np.dot (Cl, coeffl) = (2 = X0 — 1) + U_X0_2z1 + U_Z1_Wl1 \
- X0 + np.random.normal (0, 1, size=(n,))
Z1l_param = 1 / (1 + np.exp(-Z1_linfun))
Z1 = np.round(Z1l_param)
return (Z1)
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# SCM for Outcome W1
def £ Wl(n,d,C1l,21,U_2z1_Wl):
coeffl = np.repeat (-0.5, d)
Wl_linfun = np.dot (Cl, coeffl)*(2xZ21-1) + U_Z1_Wl + np.random.normal (0, 1, size=(n,))
Wl_param = 1 / (1 + np.exp(-Wl_linfun))
Wl = np.round(Wl_param)
return (W1)

# SCM for Covariate C2
def f_C2(n, d):
C2 = np.zeros((n, d))
for idx in range (0, d):
C2[:,1dx] = np.random.normal (0, 1, size=(n,))

return (C2)

# SCM for Treatment Z2
def £ _722(n, d4, C1, X0, z1, C2, U_X0_Zz2, U_Z2_W2):
coeffl = np.repeat (-1, d)
coeff2 = np.repeat (0.5, d)
U = 0.5%x(U_X0_Z2 + U_Z2_W2)
Z22_linfun = np.dot (Cl,coeffl) « (2xX0-1) + np.dot (C2,coeff2)* (2xZ21-1) \
+ U + np.random.normal (0, 1, size=(n,))
7Z2_param = 1 / (1 + np.exp(-Z2_linfun))
Z2 = np.round(Z2_param)
return (Z2)

# SCM for Outcome W2

def £ W2(n, d, Cl, C2, z2, W1, U_Z2_W2):
coeffl
coeff2
coeff3 = np.repeat (2, d)
U = 0.5 % U_Z2_W2

np.repeat (-1, d)

np.repeat (-0.5, d)

W2_linfun = np.dot (Cl, coeffl) x (2+xX0-1) + np.dot(C2, coeff2) x (2x22-1) \
+ np.dot (C1 + C2, coeff3) x (2+Wl1-1) + \
U + np.random.normal (0, 1,size=(n,))

W2_param = 1 / (1 + np.exp(-W2_linfun))
W2 = np.round (W2_param)
return (W2)

# SCM for Treatment Z3
def f _73(n, d, C2, X0, z2, U_X0_2z3, U_Z3_Y):
coeffl 1
coeff2
coeff3 = np.repeat (2, d)
U= 0.5 ( U_X0_2Z3 + U_Z3_Y )
Z3_linfun = np.dot (C2, coeffl) + np.dot(C2, coeff2) * (2xX0-1) \
+ np.dot (C2, coeff3d) * (2+Z2-1) + Ux(2+X0-1)*(2%22-1) \
+np.random.normal (0, 1,size=(n,))

np.repeat (-1, d)

np.repeat (-0.5, d)

Z3_param = 1 / (1 + np.exp(-Z3_linfun))
723 = np.round(Z3_param)
return (Z3)
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# SCM for Outcome Y

def £ Y(n, d, C2, X0, Z3, W2, U_Z3_Y):
coeffl = np.repeat (-1, d)
(-0
(

coeff2 = np.repeat .5, d)

coeff3 = np.repeat (2, d)

U=0.5 % U 23_Y

Y_linfun = np.dot (C2, coeffl) x (2 « X0 - 1) + np.dot(C2, coeff2) % (2 « 723 — 1) \
+ np.dot (C2, coeff3) * (2 » W2 - 1) + U + np.random.normal (0, 1, size=(n,))

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)
return (Y)
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