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ABSTRACT
Decision-making systems based on AI and machine learning have
been used throughout a wide range of real-world scenarios, includ-
ing healthcare, law enforcement, education, and finance. It is no
longer far-fetched to envision a future where autonomous systems
will drive entire business decisions and, more broadly, support
large-scale decision-making infrastructure to solve society’s most
challenging problems. Issues of unfairness and discrimination are
pervasive when decisions are being made by humans, and remain
(or are potentially amplified) when decisions are made using ma-
chines with little transparency, accountability, and fairness. In
this paper, we introduce a framework for causal fairness analysis
with the intent of filling in this gap, i.e., understanding, modeling,
and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification
of the disparities present in the observed data with the underlying,
often unobserved, collection of causal mechanisms that generate
the disparity in the first place, a challenge we call the Fundamental
Problem of Causal Fairness Analysis (FPCFA). In order to solve
the FPCFA, we study the problem of decomposing variations
and empirical measures of fairness that attribute such variations
to structural mechanisms and different units of the population.
Our effort culminates in the Fairness Map, the first systematic
attempt to organize and explain the relationship between various
criteria found in the literature. Finally, we study which causal
assumptions are minimally needed for performing causal fairness
analysis and propose the Fairness Cookbook, which allows one to
assess the existence of disparate impact and disparate treatment.



1
Introduction

As society transitions to an AI-based economy, an increasing number of
decisions that were once made by humans are now delegated to automated
systems, and this trend will likely accelerate in the coming years. Automated
systems may exhibit discrimination based on gender, race, religion, or other
sensitive attributes, so considerations about fairness in AI are an emergent
discussion across the globe. The European Union, for instance, recently passed
sweeping regulations putting substantial constraints over automated decision-
making and AI systems (Commission, 2021). While we believe it is evident that
a novel legal framework is needed to organize and regulate this new, emerging
economy, it is less clear, however, that the proper scientific understanding
and tools for designing such regulations are currently available. Even though
one may surmise that issues of unfairness in AI are a recent development,
the problem’s origins can be traced to long before the advent of AI and the
prominence these systems have reached in the last years. This is perhaps best
witnessed by the civil rights movements of the twentieth century. Interestingly,
Martin Luther King Jr. spoke of having a dream that his children “will one day
live in a nation where they will not be judged by the color of their skin, but by
the content of their character.” So little could he have anticipated that machine
algorithms would one day use race for making decisions, and that the issues of
unfairness in AI would be legislated under Title VII of the Civil Rights Act
of 1964 (Act, 1964), which he advocated and fought for (Oppenheimer, 1994;
Kotz, 2005).

The critical challenge underlying fairness in AI systems lies in the fact that
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biases in decision-making exist in the real world from which various datasets
are collected. Perhaps not surprisingly, a dataset collected from a biased reality
will contain aspects of this bias as an imprint. In this context, algorithms
are tools that may replicate or potentially even amplify the biases that exist
in reality in the first place. As automated systems are a priori oblivious to
ethical considerations, deploying and using them blindly could lead to the
perpetuation of unfairness in the future.

More pessimistic analysts take this observation as a prelude to doomsday,
which, in their opinion, suggests that we should be extremely wary and
defensive against any AI. We believe a degree of caution is necessary, of course,
but take a more positive perspective and consider this transition to a more
AI-based society as a unique opportunity to improve the current state of affairs.
While human decision-makers are hard to change, even when aware of their
own biases, AI systems may be less brittle and more flexible. Still, one of the
requirements to realize the AI’s potential is a new mathematical framework
that allows the description and assessment of legal notions of discrimination in
a formal way. This situation is somewhat unique in the context of AI because
a new definition of “ground truth” is required. The decision-making system
cannot rely purely on learning from the data, which is contaminated with
unwanted bias. It is currently unclear how to formulate the ideal inferential
target1 that could help bring about a fair world when deployed. This degree
of flexibility in deciding the new ground truth also emphasizes the importance
of normative work in this context.2

In this paper, we build on two legal doctrines applied to large bodies
of cases throughout the US and the EU known as disparate treatment and
disparate impact (Barocas and Selbst, 2016). One of our goals will be to develop
a framework for causal fairness analysis grounded in these doctrines and
translate them into exact mathematical language amenable to AI optimization.
The disparate treatment doctrine enforces the equality of treatment of different
groups, prohibiting the use of the protected attribute (e.g., race) in the decision
process. One of the legal formulations for proving disparate treatment is that
“a similarly situated person who is not a member of the protected class would

1We believe this explains the vast number of fairness criteria described in the
literature, which we will detail later on in the paper.

2One way of seeing this point a bit more formally goes as follows. We first
consider the current version of the world, say π, and note that it generates a
probability distribution P. Training the machine learning algorithm with data from
this distribution (D ∼ P) is replicating patterns from this reality, π. We would want
an alternative, counterfactual reality π′, which induces a different distribution P ′

without the past biases. The challenge here is that thinking about and defining P ′

relies on going beyond P, or the corresponding dataset, which is non-trivial, and yet
one of our main goals.
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not have suffered the same fate” (Barocas and Selbst, 2016)3. On the other
hand, the disparate impact doctrine focuses on outcome fairness4, namely, the
equality of outcomes among protected groups. Disparate impact discrimination
occurs if a facially neutral practice has an adverse impact on members of
the protected group. Under this doctrine most commonly fall cases where
discrimination is unintended or implicit. The analysis can become somewhat
intricate when variables are correlated with the protected attribute and may
act as a proxy. The law may not necessarily prohibit their usage due to their
relevance to the business itself, legally known as “business necessity” or “job-
relatedness”. Taking business necessity into account is the essence of disparate
impact (Barocas and Selbst, 2016).

In fact, as we demonstrate intuitively and formally later in the text, the
disparate treatment and disparate impact doctrines can be seen as spanning a
spectrum of fairness notions (see Fig. 1.1). On the one end, the disparate treat-
ment doctrine ensures that there is no direct effect of the protected attribute
on the outcome, which can be seen as the minimal fairness requirement. On
the other end, the disparate impact doctrine (in the extreme case), ensures
that the protected attribute has no effect on the outcome. In practice, how-
ever, business necessity considerations determine where on this spectrum the
appropriate fairness notion is, given the requirements and specific details of
the application in question.

Figure 1.1: The spectrum of
fairness notions spanned by
the disparate treatment and
disparate impact doctrines.

The connection of fairness with causal in-
ference might be seen as natural for two rea-
sons. Firstly, business necessity considerations
are inherently causal, as they require attributing
the observed disparity to the underlying causal
mechanism. Our framework will therefore allow
the data scientist to quantify the disparity ex-
plained by mechanisms that do not fall under
business necessity and are considered discrimina-
tory, thereby accommodating application-specific
requirements. Secondly, the legal frameworks of

3This formulation is related to a condition known as ceteris paribus, which
represents the effect of the protected attribute on the outcome of interest while
keeping everything else constant. From a causal perspective, this suggests that the
disparate treatment doctrine is concerned with direct discrimination, a connection
we draw formally later on in the manuscript.

4Interestingly, both of the above-discussed doctrines are usually considered under
the rubric of outcome fairness, that is, focusing on the disparity in the outcome itself.
An important complementary notion to outcome fairness is process fairness, which
is instead focused on how the decision process is carried out, and not specifically
on the outcomes themselves (Grgic-Hlaca et al., 2016). In this context, the causal
approach offers a key strength, discussed in detail in Appendix E.
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anti-discrimination laws (for example, Title VII in the US) often require that
to establish a prima facie case of discrimination the plaintiff must demonstrate
“a strong causal connection” between the alleged discriminatory practice and
the observed statistical disparity (e.g., Texas Dept. of Housing and Community
Affairs v. Inclusive Communities Project, Inc., 576 U.S. 519 (2015)). Therefore,
as discussed in subsequent sections, another requirement of our framework
will be the ability to distinguish between notions of discrimination that would
otherwise be statistically indistinguishable.

X

Gender D

Department

Y

Admission

Figure 1.2: A partial causal
model for the Berkeley Admis-
sion example.

Consider the Berkeley Admission example, in
which admission results of students applying to
UC Berkeley were collected and analyzed (Bickel
et al., 1975). The analysis showed that male stu-
dents are 14% more likely to be admitted than
their female counterparts, which raised concerns
about the possibility of gender discrimination.
The discussion of this example is often less fo-
cused on the accuracy and appropriateness of the used statistical measures and
more on the plausible justification of disparity based on the mechanism under-
lying this disparity. A visual representation of the dynamics in this setting is
shown in Fig. 1.2. In words, each student chooses a department of application
(D). The department’s choice and the student’s gender (X) might, in turn,
influence the admission decision (Y ). In this example, there is a clear need to
determine how much of the observed statistical disparity can be attributed
to the direct causal path from gender to admission decision vs. the indirect
mechanism5 going through the department choice variable. Looking directly
at gender for determining university admission would indeed be disallowed,
whereas using department choice, which may be influenced by gender, might
be deemed acceptable. 6 The need to explain an observed statistical disparity,
say in this case the 14% difference in admission rates, through the underlying
causal mechanisms – direct and indirect – is a recurring theme when assessing
discrimination, even though it is sometimes considered only implicitly.

When AI tools are deployed in the real world, a similar pattern of questions
emerges. Examples include (but are not limited to) the debate over the origins
and interpretation of discrimination in the criminal justice system (COMPAS,
Angwin et al., 2016), the contribution of data vs. algorithms in the observed
bias in face detection (e.g., Harwell, 2019; Buolamwini and Gebru, 2018),

5As discussed later on, even among indirect paths, one may need to distinguish
between mediated causal paths and confounded non-causal paths, or, more generally,
among a specific subset of these paths.

6Society may be “guilty” of creating the wrong incentives, and perhaps fewer
female applicants are considering certain departments, but the university itself may
not be deemed discriminatory.
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and the business necessity vs. risk of digital redlining in targeted advertising
(Detrixhe and Merrill, 2019). Intuitively, through these questions, society wants
to draw a line between what is seen as discriminatory on the one hand and
what is seen as acceptable or justified by economic principles on the other. Put
differently, such discussions aim to determine where on the fairness spectrum
in Fig. 1.1 the appropriate notion of fairness lies.

A practitioner interested in implementing a fair AI system will need to
detect and quantify undesired discrimination based on society’s current ethical
standards, and then design learning methods capable of removing such unfair-
ness from future predictions and decisions. In doing so, the practitioner will
face two challenges. The first stems from the fact that the current literature is
abundant with different fairness measures, some of which are mutually incom-
patible (Corbett-Davies and Goel, 2018), and choosing among these measures,
even for the system designer, is usually a non-trivial task. This challenge is
compounded with the second challenge, which arises from the statistical nature
of such fairness measures. As we will show both formally and empirically later
in the text, statistical measures alone cannot distinguish between different
causal mechanisms that transmit change and generate disparity in the real
world, even if an unlimited amount of data is available. Despite this apparent
shortcoming of purely statistical measures, much of the literature focuses on
casting fair prediction as an optimization problem subject to fairness con-
straints based on such measures (Pedreschi et al., 2008; Pedreschi et al., 2009;
Luong et al., 2011; Ruggieri et al., 2011; Hajian and Domingo-Ferrer, 2012;
Kamiran and Calders, 2009; Calders and Verwer, 2010; Kamiran et al., 2010;
Zliobaite et al., 2011; Kamiran and Calders, 2012; Kamiran et al., 2012; Zemel
et al., 2013; Mancuhan and Clifton, 2014; Romei and Ruggieri, 2014; Dwork
et al., 2012; Friedler et al., 2016; Chouldechova, 2017; Pleiss et al., 2017), to
cite a few. In fact, these methods may be insufficient for removing bias and
perhaps even lead to unintended consequences and bias amplification, as it
will become clear later on.

As outlined briefly in previous paragraphs, the behavior of AI/ML-based
decision-making systems is an emergent property following a complex combi-
nation of past (possibly biased) data and interactions with the environment.
Predicting or explaining this behavior and its impact on the real world can
be difficult, even for the system designer who knows how the system is built.
Ensuring fairness of such decision-making systems, therefore, critically relies
on contributions from two groups, namely:

a. the AI and ML engineers who develop methods to detect bias and ensure
adherence of ML systems to fairness measures, and

b. the domain experts, policymakers, economists, social scientists, and
legal experts who study the origins of these biases and can provide the
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societal interpretations of fairness measures and their expectations in
terms of norms and standards.

Currently, these groups do not share a common starting point. It is challenging
for them to understand each other and work together towards developing a
fair specification of such complex systems, aligned with the many stakeholders
involved in the process.

In this paper, we argue that the language of structural causality can provide
a unique perspective on the issues of fairness and facilitate the discussion and
exchange of ideas, goals, and expectations between these groups. Issues of
unfairness are fundamentally linked to considerations of responsibility and
blame, and thus a causal analysis of the problem is mandated from legal,
logical and philosophical standpoints (Moore, 2019; Halpern, 2016)7. A causal
analysis, as will be discussed in detail, is contingent on obtaining rich enough
causal models of unobserved or partially observed reality, which may be non-
trivial in practice, yet it is crucial in the context of fair ML as it allows one to
relate observed disparities to existing causal mechanisms. Causal models must
be built using inputs from domain experts, social scientists, and policy-makers,
and a formal language is needed to express and scrutinize their assumptions.
In this work, we lay down the foundations for interpreting legal doctrines of
discrimination through causal reasoning, which we view as an essential step
towards the development of a new generation of more ethical and transparent
AI systems.

Paper’s Roadmap & Contributions

We develop a general and coherent framework of Causal Fairness Analysis to
overcome the challenges described above. This framework provides a common
language to connect computer scientists, statisticians, and data scientists on the
one hand and legal, social, and ethical experts on the other, to tackle challenges
of fairness in automated decision-making. Further, this new framework grounds
the legal doctrines of disparate impact and disparate treatment through the
semantics of structural causal models. The critical elements of our proposal
are shown in Fig. 1.3, which also serves as a roadmap of how this paper is
organized and how causal fairness analysis should be conducted. Specifically,
in Sec. 2, we cover the basic notions of causal inference needed to build our
framework, including structural causal models, causal diagrams, and data
collection. In Sec. 3, we introduce the essential elements of our theoretical
framework. In particular, we define the notions of structural fairness that will
serve as a baseline, ground truth for determining the presence or absence of
discrimination under disparate impact and disparate treatment doctrines. In

7We remark that the causal perspective on fairness is not the only viewpoint,
and a number of important works have been developed entirely outside this rubric.
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SCMM

a
Structural
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Tasks

Figure 1.3: A mental map of the Causal Fairness Analysis framework.

Sec. 4, we introduce causal measures of fairness that can be computed from
data in practice. We further draw the connection between such measures and
the aforementioned legal doctrines. In Sec. 5, we introduce the tasks of Causal
Fairness Analysis – (1) bias detection and quantification, (2) fair prediction,
and (3) fair decision-making – and show how they can be solved by building on
the tools developed earlier. In Sec. 6 we develop tools for decomposing indirect
and spurious variations on a variable-specific level, which leads to a general
approach for evaluating fairness under arbitrary business necessity sets. More
specifically, our contributions are as follows:

1. We study the problem of decomposing variations between the protected
attribute X and the outcome variable Y , using the technique of factual
and counterfactual contrasts (Def. 3.7). We prove the structural basis
expansion formula for such contrasts, which highlights the fundamental
difference between causal and non-causal variations (Thm. 3.1). Fur-
thermore, this result allows us to show how the total variation (TV)8
can be decomposed based on different causal mechanisms and across
different groups of units. These developments lead to the construction
of the explainability plane (Fig. 3.3).

2. We introduce the Fundamental Problem of Causal Fairness Analysis
8What we refer to in this manuscript as the total variation (TV) measure is also

known in the literature as the parity gap, or simply the difference in conditional
expectations, E[Y | x1]−E[Y | x0], where x0, x1 are the two values of the protected
attribute X, and Y is the outcome of interest.
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(FPCFA, Def. 3.6), which formalizes the key properties that empirical
measures of fairness should exhibit, including admissibility and decom-
posability. Subsequently, we develop increasingly refined solutions to
the FPCFA, proved in Thms. 4.2, 4.3, 4.4, and 4.5.

3. We design the first version of the Fairness Map (Thm. 4.8 and Fig. 4.5),
putting many well-known fairness measures under the same theoretical
umbrella and uncovering the structure that connects them. In partic-
ular, the Map connects all the measures in the so-called TV family
(Tab. 4.1). We provide a detailed analysis of the causal properties of
well-known measures found in the literature, including counterfactual
fairness, individual fairness, and predictive parity (Sec. 4.4).

4. We propose a simplified type of (clustered) graphical model called the
Standard Fairness Model (SFM, Def. 2.7), which requires fewer modeling
assumptions than typically used causal diagrams. We show that the SFM
strikes a balance between simplicity of construction and informativeness
for causal analysis (Thm. 4.11), allowing us to perform causal inference
even when detailed knowledge about the underlying decision-making
process is scarce.

5. We develop the first non-parametric decomposition of the predictive
parity measure in terms of the underlying causal mechanisms. Building
on this, we define causal predictive parity (Def. 4.14), and show how this
new notion is complementary to statistical parity, thereby addressing a
well-known impossibility result from the literature (Thms. 4.12, 4.13).

6. By putting all the above results together, we develop a practical proce-
dure called the Fairness Cookbook (Alg. 5.1) that allows data scientists
to assess the presence of disparate treatment and disparate impact and
quantify their degree. Furthermore, we provide an R-package called
faircause for performing this task.

7. We study the implications of Causal Fairness Analysis on the fair
prediction problem. In particular, we prove the Fair Prediction Theorem
(Thm. 5.1) that shows that making TV equal to zero during the training
stage is almost never sufficient to ensure that causal measures of fairness
are well-behaved. We further propose solutions that can provide causal
guarantees for the constructed predictors (Thms. 5.2, 5.3).

8. Based on the implications of the Fair Prediction Theorem to decision-
making (Cor. 5.5), we develop new procedures for achieving fairness in
particular single-step decision-making (Algs. 5.3 and 5.5).
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9. We prove the first non-parametric decomposition for spurious effects in
Semi-Markovian models (Thms. 6.1, 6.3). We further show results that
establish what is the most fine-grained path-specific analysis that can be
performed in practice (Thm. 6.9, Cor. 6.10), and develop an algorithm
for testing arbitrary business necessity requirements (Alg. 6.4).

Readers familiar with causal inference may want to move straight to Sec. 3,
even though the examples provided in the next section are used to motivate
the problem of fairness discussed throughout the manuscript.



2
Foundations of Causal Inference

In this section, we introduce three fundamental building blocks that will allow
us to formalize the challenges of fairness described above through a causal lens.
First, we will define in Sec. 2.1 a general class of data-generating models known
as structural causal models (shown in Fig. 1.3a). The key observation here is
that the collection of mechanisms underpinning any decision-making scenario
are causal, and therefore should be modeled through proper and formal causal
semantics. Second, we will discuss in Sec. 2.2 qualitatively different probability
distributions that are induced by the causal generative process, and which
will lead to the observed data and counterfactuals (Fig. 1.3b). Third, we will
introduce in Sec. 2.3 an object known as a causal diagram (Fig. 1.3c), which
will allow the data scientist to articulate non-parametric assumptions over the
space of generative models. These assumptions can be shown as necessary for
the analysis, in a broader sense. Finally, we will define the standard fairness
model (SFM), which is a special class of diagrams that act as a template,
allowing one to generically express entire classes of structural models. The
SFM class, in particular, requires fewer modeling assumptions than the more
commonly used causal diagrams.

2.1 Structural Causal Models

The basic semantical framework of our analysis rests on the notion of structural
causal models (SCM, for short), which is one of the most flexible class of
generative models known to date and that allows modeling various tasks (Pearl,

11



12 Foundations of Causal Inference

2000; Bareinboim and Pearl, 2016). The section will follow the presentation in
(Bareinboim et al., 2022), which contains more detailed discussions and proofs.
First, we introduce and exemplify SCMs through the following definition:

Definition 2.1 (Structural Causal Model (SCM) (Pearl, 2000)). A structural
causal model (SCM) is a 4-tuple 〈V,U,F , P (u)〉, where

1. U is a set of exogenous variables, also called background variables, that
are determined by factors outside the model;

2. V = {V1, ..., Vn} is a set of endogenous (observed) variables, that are
determined by variables in the model (i.e. by the variables in U ∪ V );

3. F = {f1, ..., fn} is the set of structural functions determining V , vi ←
fi(pa(vi), ui), where pa(Vi) ⊆ V \ Vi and Ui ⊆ U are the functional
arguments of fi;

4. P (u) is a distribution over the exogenous variables U .

In words, each structural causal model can be seen as partitioning the variables
involved in the phenomenon into sets of exogenous (unobserved) and endoge-
nous (observed) variables, respectively, U and V . The exogenous variables are
determined “outside” of the model and their associated probability distribution,
P (u), represents a summary of the world external to the phenomenon that
is under investigation. In our setting, these variables will represent the units
involved in the phenomenon, which correspond to elements of the popula-
tion under study, for instance, patients, students, customers. Naturally, their
randomness (encoded in P (u)) induces variations in the endogenous set V .

Inside the model, the value of each endogenous variable Vi is determined by
a causal process, Vi ← fi(pa(vi), ui), that maps the exogenous factors Ui and a
set of endogenous variables pai (so-called parents) to Vi. These causal processes
– or mechanisms – are assumed to be invariant unless explicitly intervened
on (as defined later in the section). Together with the background factors,
they represent the data-generating process according to which the values of
the endogenous variables are determined. For concreteness and grounding of
the definition, we revisit the Berkeley admission example through the lens of
SCMs.

Example 2.1 (Berkeley Admission (Bickel et al., 1975)). During the application
process for admissions to UC Berkeley, potential students choose a department
to which they apply, labeled as D (binary with D = 0 for arts & humanities,
D = 1 for sciences). The admission decision is labeled as Y (y1 accepted, y0
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rejected) and the student’s gender is labeled as X (x0 female, x1 male)1.
The SCMM is the 4-tuple 〈V = {X,D, Y }, U = {UX , UD, UY },F , P (U)〉,

where UX , UY , UD represent the exogenous variables, outside of the model,
that affect X,Y,D, respectively. Also, the causal mechanisms F are given as
follows 2:

X ← 1(UX < 0.5) (2.4)
D ← 1(UD < 0.5 + λX) (2.5)
Y ← 1(UY < 0.1 + αX + βD), (2.6)

and P (UX , UD, UY ) is such that UX , UD, UY are independent Unif[0, 1] random
variables.

In words, the population is partitioned into males and females with equal
probability (the exogenous UX represents the population’s biological random-
ness). Each applicant chooses a department D, and this decision depends on
UD and gender X. The exogenous variable UD represents the individual’s
natural inclination towards studying science. Whenever λ > 0 in Eq. 2.5, the
threshold for applying to a science department is higher for female individuals,
which is a result of various societal pressures. Finally, the admission decision
Y possibly depends on gender (if α 6= 0 in Eq. 2.6) and/or department of
choice (if β 6= 0 in Eq. 2.6). In this case, the exogenous variable UY represents
the impression the applicant left during an admission interview. Notice that
female students and arts & humanities students may need to leave a better
interview impression in order to be admitted (depending on Eq. 2.6). �

Another important notion for our discussion is that of a submodel, which is
defined next:

Definition 2.2 (Submodel (Pearl, 2000)). LetM be a structural causal model,
X a set of variables in V , and x a particular value of X. A submodelMx (of
M) is a 4-tuple:

Mx = 〈V,U,Fx, P (u)〉 (2.7)

1In the manuscript, gender is discussed as a binary variable, which is a simplifi-
cation of reality, used to keep the presentation of the concepts simple. In general,
one might be interested in analyses of gender discrimination with gender taking
non-binary values.

2The given SCM can also be written as

X ← Bernoulli(0.5) (2.1)
D ← Bernoulli(0.5 + λX) (2.2)
Y ← Bernoulli(0.1 + αX + βD). (2.3)
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where
Fx = {fi : Vi /∈ X} ∪ {X ← x}, (2.8)

and all other components are preserved fromM.
In words, the SCM Mx is obtained from M by replacing all equations in
F related to variables X by equations that set X to a specific value x. In
the context of Causal Fairness Analysis, we might be interested in submodels
in which the protected attribute X is set to a fixed value x. Building on
submodels, we introduce next the notion of a potential outcome:
Definition 2.3 (Potential Outcome / Response (Rubin, 1974; Pearl, 2000)). Let
X and Y be two sets of variables in V and u ∈ U be a unit. The potential
outcome/response Yx(u) is defined as the solution for Y of the set of equations
Fx evaluated with U = u. That is, Yx(u) denotes the solution of Y in the
submodelMx ofM.
In words, Yx(u) is the value variable Y would take if (possibly contrary to
observed facts) X is set to x, for a specific unit u. In the Admission example,
Yx(u) would denote the admission outcome for the specific unit u, had their
gender X been set to value x by intervention (e.g., possibly contrary to their
actual gender).

Notation in the Potential Outcomes (PO) Literature. For readers familiar
with the PO framework (Rubin, 1974; Rubin, 2005), we mention how our
notation translates the standard PO notation. The potential outcome under
intervention X = x is usually denoted by Y (x), corresponding to Yx in our
notation. When indicating a specific unit, in PO framework one may write
Y (x, u), corresponding to Yx(u) in our notation. That is, the argument of Y (·)
always indicates the unit in this manuscript, and the subscript indicates the
(possibly counterfactual) intervention.

2.2 Observational & Counterfactual Distributions

Each SCM M induces different types of probability distributions, which
represent different data collection modes and will play a key role in fairness
analysis. We start with the observational distribution that represents a state
of the underlying decision-making system from which the fairness analyst just
passively collects data, without interfering in any decision-making processes:
Definition 2.4 (Observational Distribution (Bareinboim et al., 2022)). An SCM
M = 〈V,U,F , P (u)〉 induces a joint probability distribution P (V ) such that
for each Y ⊆ V ,

PM(y) =
∑
u

1
(
Y (u) = y

)
P (u), (2.9)
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where Y (u) is the solution for Y after evaluating F with U = u.

In words, the procedure can be described as follows:

1. for each unit U = u, the structural functions F are evaluated following
a valid topological order, and

2. the probability mass P (U = u) is accumulated for each instantiation
U = u consistent with the event Y = y.

Throughout this manuscript, all the sums should be replaced by the
corresponding integrals whenever suitable, e.g., when underlying densities
exist3. To ground the discussion about this definition, we continue with the
example above and see how the corresponding observational distribution is
induced.

Example 2.2 (College Admissions Observational Distribution). Consider the
SCMM in Eq. 2.4-2.6. The total variation (TV for short; also called parity
gap) generated by M depends on the structural mechanisms F and the
distribution of exogenous variables P (UX , UD, UY ). The total variation can
be written as:

P (y | x1)− P (y | x0) = P (y, x1)
P (x1) −

P (y, x0)
P (x0) . (2.10)

Therefore, we compute the terms P (y, x1), P (x1), P (y, x0), P (x0) based on the
true, underlying SCM. Using Def. 2.4 and Eq. 2.4, we can see that:

P (x1) = P (UX < 0.5) = 1
2 = P (UX > 0.5) = P (x0). (2.11)

Using the fact that UX , UD, and UY are independent in the SCM, P (y, x1)
can be computed in the following way (Def. 2.4):

P (y, x1) =
∑
u

1(Y (u) = 1, X(u) = 1)P (u) (2.12)

= P (UX < 0.5)
[
P (UD > 0.5 + λ)P (UY < 0.1 + α)+ (2.13)
P (UD < 0.5 + λ)P (UY < 0.1 + α+ β)

]
= 1

2[(1
2 − λ)(0.1 + α) + (1

2 + λ)(0.1 + α+ β)] (2.14)

= 1
2(0.1 + α+ (1

2 + λ)β). (2.15)

3In the continuous case, the existence of densities will be sufficient to write
down many of the definitions and results found in the manuscript. However, in
such a setting the estimation of target quantities from finite samples may be more
complicated, and may require further regularity conditions such smoothness and
positivity. These challenges are not discussed in the manuscript.
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The computation above can be described as follows. Firstly, X(u) = 1 is
equivalent with UX < 0.5 (Eq. 2.4). Secondly, when X(u) = 1, there are
two possibilities for the variable D based on UD (see Eq. 2.5). Whenever
UD > 0.5 + λ, then D(u) = 0, and to have Y (u) = 1, we need UY < 0.1 + α
(see Eq. 2.6). If UD < 0.5 + λ, then D(u) = 1, and to have Y (u) = 1, we need
UY < 0.1 + α+ β (see Eq. 2.6). An analogous computation yields that:

P (y, x0) =
∑
u

1(Y (u) = 1, X(u) = 0)P (u) (2.16)

= 1
2
[1
2 · 0.1 + 1

2 · (0.1 + β)
]

= 1
2(0.1 + β

2 ). (2.17)

Putting the results together in Eq. 2.10, the TV equals

P (y | x1)− P (y | x0) =
1
2 (0.1 + α+ ( 1

2 + λ)β)
1
2

−
1
2 (0.1 + β

2 )
1
2

(2.18)

= α+ λβ. (2.19)

In fact, after analyzing the admission dataset from UC Berkeley, a data scientist
computes the observed disparity to be4

P (y | x1)− P (y | x0) = 14%. (2.20)

In words, male candidates are 14% more likely to be admitted than female
candidates. The data scientist (who does not have access to the SCM M
described above) might wonder if this disparity (14%) means that female
applicants are discriminated against. Also, she/he might wonder how the
observed disparity relates to the SCMM given in Eq. 2.4-2.6. Our goal in this
manuscript is to address these questions from first principles. �

Next, we define another important family of distributions, over possible coun-
terfactual outcomes, which will be used throughout this manuscript:

Definition 2.5 (Counterfactual Distributions (Bareinboim et al., 2022)). Let
M = 〈V,U,F , P (u)〉 be an SCM, and let Y1, . . . , Yk ⊂ V , and X1, . . . , Xk ⊂ V
be subsets of the observables, and let x1, . . . , xk be specific values ofX1, . . . , Xk.
Denote by (Yi)xi the potential response of variables Yi when setting Xi = xi.
The SCMM induces a family of joint distributions over counterfactual events
(Y1)x1 , . . . , (Yk)xk

:

PM((y1)x1 , . . . , (yk)xk
) =

∑
u

1
( k∧
i=1

(Yi)xi
(u) = yi

)
P (u). (2.21)

4The number below was evaluated from the actual real dataset, which is compat-
ible with structural coefficients α = 0, β = 7

10 , and λ = 2
10 .
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The l.h.s. in Eq. 2.21 contains variables with different subscripts, which syn-
tactically represent different potential responses (Def. 2.3), or counterfactual
worlds. In words, the equation can be interpreted as follows:

1. For each set of subscripts and variables (X1, . . . , Xk and Y1, . . . , Yk),
replace the corresponding mechanism with appropriate constants to
generate Fx1 , . . . ,Fxk

and create submodelsMx1 , . . . ,Mxk
,

2. For each unit U = u, evaluate the modified mechanisms Fx1 , ...,Fxk
to

obtain the potential response of the observables,

3. The probability mass P (U = u) is accumulated for each instance U = u
that is consistent with the events over the counterfactual variables, that
is (Y1)x1 = y1, . . . , (Yk)xk

= yk, that is, Y1 = y1 inMx1 , . . . , Yk = yk
inMxk

.

Example 2.3 (College Admission Counterfactual Distribution). Consider the
SCM in Eq. 2.4-2.6 and the following joint counterfactual distribution:

P (yx1 , yx0). (2.22)

In the submodel Mx0 (where X = 0 is set by intervention), we have that
Dx0(u) = 1 is equivalent with UD < 0.5. When Dx0(u) = 1, Yx0(u) = 1 if and
only if UY < 0.1 + β. Similarly, when Dx0(u) = 0, Yx0(u) = 1 if and only if
UY < 0.1. Therefore, we have that

Yx0(u) = 1 ⇐⇒ ((UD < 0.5) ∧ (UY < 0.1 + β))∨ (2.23)
((UD > 0.5) ∧ (UY < 0.1)).

In the submodelMx1 , we have

Yx1(u) = 1 ⇐⇒ ((UD < 0.5 + λ) ∧ (UY < 0.1 + α+ β))∨ (2.24)
((UD > 0.5 + λ) ∧ (UY < 0.1 + α)).

Based on this, the expression in Eq. 2.22 can be evaluated using Def. 2.5,
which leads to

P (yx1 , yx0) =
∑
u

1(Yx1(u) = 1, Yx0(u) = 1)P (u) (2.25)

=P (UD < 0.5)P (UY < 0.1 + β) + P (UD > 0.5)P (UY < 0.1)

=0.1 + β

2 . (2.26)

Interestingly, this distribution is never attainable from observational data,
since it involves both potential responses Yx0 , Yx1 , which can never be observed
simultaneously. �
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In most fairness analysis settings, the data scientist will only have data D in the
form of samples collected from the observational distribution. One significant
result in this context is known as the causal hierarchy theorem (CHT, for short),
which says that it is almost never possible (in an information-theoretic sense)
to recover the counterfactual distribution from the observational distribution
alone (Bareinboim et al., 2022, Thm. 1). Given this impossibility result and the
unavailability of the SCM in most settings, the data scientist needs to resort
to some assumptions in order to possibly make claims about these underlying
mechanisms, which is discussed in the next section.

2.3 Encoding Structural assumptions through Causal Diagrams

Even though SCMs are well defined and provide the semantics to different
families of probability distributions, and are essential for fairness analysis,
one critical observation is that they are usually not observable by the data
scientist. A common way of encoding assumptions about the underlying SCM is
through an object called a causal diagram. We describe below the constructive
procedure that allows one to articulate a diagram from a coarse understanding
of the SCM.

Definition 2.6 (Causal Diagram (Pearl, 2000; Bareinboim et al., 2022)). Let
M = 〈V,U,F , P (u)〉 be an SCM. A graph G is said to be a causal diagram (of
M) if:

1. there is a vertex for every endogenous variable Vi ∈ V ,

2. there is an edge Vi → Vj if Vi appears as an argument of fj ∈ F ,

3. there is a bidirected edge Vi L9999K Vj if the corresponding Ui, Uj ⊂ U
are correlated or the corresponding functions fi, fj share some Uij ∈ U
as an argument.

In words, there is an edge from an endogenous variable Vi to Vj whenever
Vj “listens to” Vi for determining its value5. Similarly, the existence of a
bidirected edge between Vi and Vj indicates there is some shared, unobserved
information affecting how both Vi and Vj obtain their values. Note that while
the SCM contains explicit information about all structural mechanisms (F) and
exogenous variables (P (u)), the causal diagram, on the other hand, encodes
information only about which functional arguments were possibly used as

5This construction lies at the heart of the type of knowledge causal models
represent, as suggested in (Pearl and Mackenzie, 2018, pp. 129): “This listening
metaphor encapsulates the entire knowledge that a causal network conveys; the rest
can be derived, sometimes by leveraging data.”
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inputs to the functions in F . That is, the diagram abstracts out the specifics
of the functions F and retains information about their possible arguments.

Furthermore, the existence of a directed arrow, e.g., Vi → Vj , encodes the
possibility of the mechanism of Vj to listen to variable Vi, but not the necessity.
In this sense, the edges are non-committal; for instance, fj may decide not to
take the value of Vi into account. On the other hand, the assumptions are not
encoded in the arrows present in the diagram but in the missing arrows; each
missing arrow ascertains that one variable is certainly not the argument of the
other. The data scientist, in general, should try to specify as much knowledge
as possible of this type. For concreteness, consider the following example.

Example 2.4 (Admissions Causal Diagram). Consider again the SCM M in
Ex. 2.1, which is unknown to the data scientist trying to analyze the existence
of discrimination in the admission process. To apply the graphical construc-
tion dictated by Def. 2.6, the data scientist starts the modeling process by
examining each of the endogenous variables and the potential arguments of
their corresponding mechanisms. For example, the mechanism

D ← fD(X,UD) (2.27)

suggests that each applicant’s department choice (D) is, possibly, a function of
their gender X, regardless of the specific form of how this happens in reality. If
that is the case, so the causal diagram G will contain the arrow X → D. Again,
an arrow in G does not commit to how the variables X and D interact, which
is significantly less informative than the true mechanism given by Eq. 2.5.
Continuing the causal modeling process, the data scientist may think about
the admission process, and consider that

Y ← fY (X,D,UY ), (2.28)

which represents that admission decisions may be influenced by gender and
department choice. If that is the case, the causal diagram G will also contain
the arrows X → Y and D → Y , respectively. Again, this contrasts sharply
with how detailed the knowledge avaiable in the true SCMM is, as delineated
by Eq. 2.6. Interestingly enough, an entirely different functional form than
that in Eq. 2.6, say

Y ← 1
(
UY < 0.1 + βXD

)
, (2.29)

is also compatible with the causal diagram in Fig. 1.2.
Lastly, if the coefficient α is equal to 0 in the mechanism described by

Eq. 2.6 (i.e., Y ← 1(UY < 0.1+αX+βD)), this would still be compatible with
the causal diagram G. Again, the arrow allows for the possibility of functional
dependence but does not necessitate it. �
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2.3.1 Standard Fairness Model
Specifying the relationship among all pairs of variables, as required by the
definition of a causal diagram, is possibly non-trivial in many practical settings.
In this section, we will introduce the Standard Fairness Model, which is a
template-like model that represents a collection of causal diagrams and aims
to alleviate the modeling requirements.

Definition 2.7 (Standard Fairness Model (SFM)). The standard fairness model
(SFM) is the causal diagram GSFM over endogenous variables {X,Z,W, Y }
and given by

Z

X

W

Y

where the nodes represent:

• the protected attribute, labeled X (e.g., gender, race, religion),

• the set of confounding variables Z, which are not causally influenced by
the attribute X (e.g., demographic information, zip code),

• the set of mediator variables W that are possibly causally influenced by
the attribute (e.g., educational level or other job-related information),

• the outcome variable Y (e.g., admissions, hiring, salary).

Nodes Z and W are possibly multi-dimensional or empty. Furthermore, for a
causal diagram G, the projection of G onto the SFM is defined as the mapping
of the endogenous variables V appearing in G into four groups X,Z,W, Y , as
described above. The projection is denoted by ΠSFM(G) and is constructed by
choosing the protected attribute, the outcome of interest, and grouping the
confounders Z and mediators W .

When X is a singleton (i.e., we have a single protected attribute), constructing
the groups X,Z,W, and Y will be possible for most practical applications. The
key assumptions of the SFM template are encoded in the absence of bidirected
edges other than X L9999K Z. When there are multiple protected attributes, the
causal structure that arises may be more complex. In Appendix D we discuss
some possibilities for handling multiple protected attributes.

For simplicity, we assume X to be binary (whereas Z,W , and Y could be
either discrete or continuous). The adaptation of the framework to the setting
of multi-valued or continuous X is discussed in Appendix D, but readers are
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Z1 Z2

X

J P D

Y

(a) Causal diagram of COMPAS dataset.

Z1 Z2

X

J P D

Y

Z-set

W -set

(b) Causal diagram projected onto the SFM.

Figure 2.1: Causal diagram of COMPAS dataset and its projection onto the SFM.

encouraged to consider the binary case in the main text first, for grounding
the key concepts. Furthermore, in Appendix D.1 we discuss the conceptual
underpinnings of causal manipulations of protected attributes and explain how
one may think about hypothesized manipulations of race, gender or religion.
In this appendix, we also address some considerations from the previous works
of Kohler-Hausmann, 2018; Hu and Kohler-Hausmann, 2020.

We next ground the notion of the SFM through examples. For instance, by
setting Z = ∅ and W = {D}, the causal diagram of the Admissions example
can be represented by GSFM. To ground the definition further, consider the
following well-known example.

Example 2.5 (COMPAS (Larson et al., 2016)). Courts in Broward County,
Florida use machine learning to predict whether individuals released on parole
are at high risk of re-offending within 2 years (Y ). The algorithm is based on the
demographic information Z (Z1 for gender, Z2 for age), race X (x0 denoting
White, x1 Non-White), juvenile offense counts J , prior offense count P , and
degree of charge D. The causal diagram for this setting is shown in Fig. 2.1a.
The bidirected arrows between X and Z1, Z2 indicate that the exogenous
variable UX possibly shares information with exogenous variables UZ1 , UZ2 .
This diagram can be standardized (projected on the SFM) by grouping the
mediators W = {J, P,D} and confounders Z = {Z1, Z2}. Formally, the SFM
projection can be written as

ΠSFM(G) = 〈X = {X}, Z = {Z1, Z2},W = {J, P,D}, Y = {Y }〉. (2.30)

The projection is shown in Fig. 2.1b. Notice that the complete diagram G is
not needed for determining the SFM projection. The data scientist only needs
to group the confounders and mediators, and determine whether there is latent
confounding between any of the groups.

Going back to Florida, after a period of using the algorithm, it is observed
that Non-White individuals are 9% more likely to be classified as high-risk,
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i.e.,

P (y | x1)− P (y | x0) = 9%. (2.31)

The reader may wonder if the disparity of 9% means that racial minorities are
discriminated by the legal justice system in Broward County. An important
consideration here is how much of the disparity is explained by (i) the spurious
association of race with age or gender (which potentially influences the recidi-
vism prediction); (ii) the effect of race on the prediction mediated by juvenile
and prior offense counts; or (iii) the direct effect of race on the prediction. �

As noted in the example, the SFM does not explicitly assume the causal
structure within the possibly multi-dimensional sets Z, W . In causal language,
the SFM can be seen as an equivalence class of causal diagrams6. For instance,
under the SFM, if Z = {Z1, Z2}, the relationship between Z1 and Z2 is
not fully specified, and it may be the case that Z1 → Z2, Z2 → Z1, or the
relationship may be of another type. Secondly, the SFM encodes assumptions
about the lack of hidden confounding, which is reflected through the absence
of bidirected arrows between variable groups. We discuss in Appendix B how
the lack of confounding assumptions can be relaxed.

6A more detailed study on the properties of clustered diagrams can be found in
(Anand et al., 2021).
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Foundations of Causal Fairness Analysis

In this section, we will introduce two main results that will allow us to un-
derstand and possibly solve the problem of fairness using causal tools. First,
we will introduce in Sec. 3.1 a structural definition of fairness, which leads
to a natural way of expressing legal requirements based on the doctrines of
disparate treatment and impact. In particular, we will define the notion of
fairness measure and two key properties called admissibility and decomposabil-
ity. Armed with these new notions, we will then be able to formally state the
fundamental problem of causal fairness analysis. In words, these results suggest
that reasoning about fairness requires an understanding of how to explain
variations, in particular, how the outcome variable Y can be explained in terms
of the structural measures following variations of the protected attribute X. In
Sec. 3.2, we formalize the notion of a contrast, which allows us to understand
the aforementioned variations from a factual-counterfactual perspective. We
then prove how to decompose contrasts and re-express them in terms of the
structural basis, which lead to the explainability plane and the decomposition
of arbitrary types of contrast. The discussion is somewhat theoretical and we
will provide examples to ground and make the main points more concrete.

Example 3.1 (College Admissions, inspired by (Bickel et al., 1975)). During the
process of application to undergraduate studies, prospective students choose a
department to which they want to join (D), report their gender X (x0 female,
x1 male), and after a certain period they receive the admission decisions Y
(y1 accepted, y0 rejected).

In reality, how applicants pick their department (fD) and how the university

23
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decides on who to admit (fY ) is represented by the SCM M∗ = 〈V =
{X,D, Y }, U = {UX , UD, UY }, F∗, P ∗(U)〉, where the pair 〈F∗, P ∗(U)〉 is
such that

F∗, P ∗(U) :


X ← Bernoulli (0.5) (3.1)
D ← Bernoulli (0.5 + 2

10 X) (3.2)
Y ← Bernoulli (0.1 + 0 ·X + 7

10 D). (3.3)

Based on data that it made available from the previous admissions cycle, the
school is sued by a group of applicants who allege gender discrimination. In
particular, they share with the court the following statistics:

P (y | x1)− P (y | x0) = 14%, (3.4)

which seems a devastating piece of evidence against the university. In words,
it seems that male candidates are 14% more likely to be admitted than their
female counterparts. The natural question that arises is what could explain
such a disparity in the observed data? Would this be a textbook case of direct,
gender-discrimination?

Despite the fact that the court does not have access to the trueM∗, in
reality, there is no direct discrimination at all since fY (Eq. 3.3) does not take
gender into account (note the zero coefficient multiplying X). In fact, female
applicants are more likely to apply to arts & humanities departments, which
have lower admission rates, in turn causing a disparity in the overall admission
rates.

The plaintiffs hire a team of (evil) data scientists that conduct their
own study. After some time, the team comes back and claims to have un-
derstood the university decision-making process after a series of interviews
and research, which is given by the SCM M′ = 〈V = {X,D, Y }, U =
{UX , UD, UY },F ′, P ′(U)〉, where 〈F ′, P ′(U)〉 are such that

F ′, P ′(U) :


X ← Bernoulli (0.5) (3.5)
D ← Bernoulli(0.5 + 2

10X) (3.6)
Y ← Bernoulli(0.1 + 14

100 ·X + 0 ·D). (3.7)

The only difference betweenM∗ (the true set of mechanisms) andM′ (the hy-
pothesized one) is fY . Interestingly enough, the hypothesized fY (Eq. 3.7) takes
gender (X) into account while discarding any information about applicants’
department choices (D). Clearly, if this was indeed the true decision-making
process by which the university selects students, the jury should condemn the
university, since that would be a blatant case of direct discrimination. �

Interestingly, both SCMsM∗ andM′ generate the same total variation of
14%. Still,M∗, which is the true generating model, doesn’t suggest any type of
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gender discrimination, whileM′, which is false, suggests that the university’s
admissions decisions are purely based on gender. In summary, SCMsM∗ and
M′ are qualitatively different (in the sense that the disparity is transmitted
along different causal mechanisms), but they are indistinguishable based on
TV measure. We next formalize this issue in more generality.

3.1 Structural Fairness Criteria

To understand the issue discussed in the previous section, we start by noting
that qualitative distinctions – such as differentiating direct and indirect dis-
crimination – lie at the heart of some of the most important legal doctrines
on discrimination. In particular, the doctrine of disparate treatment asks the
question on whether a different decision would have been reached for an indi-
vidual, had she/he been of a different race or gender, while keeping all other
attributes the same (Barocas and Selbst, 2016). In causal terminology, the
question is about disparities transmitted along the direct causal mechanism
between the attribute X and the outcome Y . On the other hand, the doctrine
of disparate impact considers situations in which a facially neutral policy (that
does not use race or gender explicitly) results in very different outcomes for
racial or gender groups (Rutherglen, 1987). In this case, the concern is also
with disparities transmitted along indirect and spurious causal mechanisms.
Motivated by these legal doctrines, we can mathematically define qualitative
assessments about discrimination based on an SCM:

Definition 3.1 (Structural Fairness Criterion). Let Ω be a space of SCMs. A
structural criterion Q is a binary operator on the space Ω, that is a map
Q : Ω→ {0, 1} that determines whether a set of causal mechanisms between
X and Y exist or not, in a given SCMM∈ Ω.

For most of the manuscript, we wish to focus on structural criteria that capture
direct, indirect, and spurious discrimination. We consider these criteria as
elementary. More refined and detailed structural notions are discussed in Sec. 6.
We now formally define the three elementary structural fairness criteria, based
on the functional relationships between X and Y encoded in an SCM:

Definition 3.2 (Elementary Structural Fairness Criteria). Let pa(Vi) and an(Vi)
be the observed parents and ancestors of Vi in the causal diagram G, respectively.
Let an(Vi) denote the extended set of ancestors of Vi that also includes the
unobserved, exogenous ancestors of Vi. Let GX denote the causal diagram G
with the outgoing edges from X removed. For an SCMM, define the following
three structural criteria:

(i) Structural direct criterion:

Str-DEX(Y ) = 1(X ∈ pa(Y )).
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(ii) Structural indirect criterion:

Str-IEX(Y ) = 1(X ∈ an(pa(Y ))).

(iii) Structural spurious criterion:

Str-SEX(Y ) = 1
(

an(X) ∩ anGX
(Y ) 6= ∅

)
.

For Str-DEX(Y ) = 0, Str-IEX(Y ) = 0, and Str-SEX(Y ) = 0, we write DE-
fairX(Y ), IE-fairX(Y ), and SE-fairX(Y ), respectively.

In words, the structural direct criterion verifies whether the attribute X is
a function of the mechanism fY , that is, if Y is a function of X. The structural
indirect criterion verifies whether there exist mediating variables, which are
affected by X, that in turn influence Y . These two criteria are defined in terms
of the functional relationships withinM, or F . This means that they convey
causal information about the relationship among endogenous variables. Finally,
the structural spurious criterion verifies whether there exist variables (either
observed or unobserved) that both causally affect the attribute X and the
outcome Y , sometimes also referred to as back-door confounding. Different
than the previous ones, this criterion also relies on the relationships among
the exogenous variables U , which relates to the confounding relation among
the observables. We revisit the Admissions example to ground these notions:

Example 3.2 (Admissions – continued). In the SCMM defined in Eq. 2.1-2.3,
the structural direct and indirect effects can be analyzed as follows:

(i) Y is fair w.r.t. X in terms of direct effect if and only if:

α = 0 in {Y ← Bernoulli(0.1 + αX + βD)}. (3.8)

(ii) Y is fair w.r.t. X in terms of indirect effect if and only if:

λ = 0 in {D ← Bernoulli(0.5 + λX)}, or
β = 0 in {Y ← Bernoulli(0.1 + αX + βD)

)
}.

(3.9)

For the SCMM∗ in Eq. 3.1-3.3, we can see that direct discrimination does
not exist, since α = 0, and therefore X /∈ pa(Y ) (see Def. 3.2(i)). However,
indirect discrimination is present, since λ = 2

10 and β = 7
10 , and therefore

X ∈ an(pa(Y )) (see Def. 3.2(ii)). In contrast to this, for the SCM M′ in
Eq. 3.5-3.7, direct discrimination is present, since α = 1

7 and thus X ∈ pa(Y ),
but indirect discrimination is not, since β = 0 and thus X /∈ an(pa(Y )). �
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Other meaningful structural fairness criteria could be defined using different
logical combinations of these three elementary criteria. For instance, Y can be
called totally fair with respect to X (FairX(Y )) if and only if direct, indirect,
and spurious fairness are simultaneously true (i.e., FairX(Y ) = DE-fairX(Y )∧
IE-fairX(Y ) ∧ SE-fairX(Y )). Alternatively, causal fairness could be defined
as Causal-fairX(Y ) = DE-fairX(Y ) ∧ IE-fairX(Y ), which encodes the non-
existence of active causal influence from X to Y (neither direct nor mediated).

Structural definitions of fairness represent idealized and intuitive criteria
that can be evaluated whenever the true underlying mechanisms are known,
i.e., the fully specified SCMM. The importance of these measures, encoded
through the structural mechanisms (Def. 3.2), stems from the fact that they
underpin existing legal and societal notions of fairness. Therefore, they will be
used as a benchmark to understand under what conditions, and how close other
measures, which might be estimable from data, approximate these idealized
and intuitive notions.

One central question is whether there exist quantitative measures of
discrimination that can help us assess whether a structural criterion is satisfied
or not. Firstly, we define a general fairness measure that can be computed
from the SCM:

Definition 3.3 (Fairness Measure). Let Ω be a space of SCMs. A fairness
measure µ is a functional on the space Ω, that is a map µ : Ω → R, which
quantifies the association of X and Y through any subset of causal mechanisms,
in a given SCMM∈ Ω.

Here, the definition of a fairness measure µ is kept as quite general. In Sec. 3.2,
we will restrict our attention to a specific class of measures µ and explain
their importance in the context of Causal Fairness Analysis. In the sequel, we
introduce a notion that represents when a fairness measure µ is suitable for
assessing a structural criterion Q:

Definition 3.4 (Admissibility). Let Ω be a class of SCMs on which a structural
criterion Q and a measure µ are defined. A measure µ is said to be admissible
w.r.t. the structural criterion Q within the class of models Ω, or (Q,Ω)-
admissible, if:

∀M ∈ Ω : Q(M) = 0 =⇒ µ(M) = 0. (3.10)

For simplicity, we will use admissibility instead of (Q,Ω)-admissibility whenever
the context is clear. The importance of having an admissible measure µ stems
from the contrapositive of Eq. 3.10, namely, if µ(M) can be measured or
evaluated and µ(M) 6= 0, this means that the structural measure must be
true, i.e., Q(M) = 1. In other words, the measure µ will act as a link between
the well-defined but unobservable structural measure and the observable and
estimable world. For concreteness, consider the following result that formalizes
the issue found in Ex. 3.1:
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Proposition 3.1 (TV is not admissible w.r.t. Str-DE, IE, SE). Let Ω be the
space of Semi-Markovian SCMs which contain variables X and Y . Let µ be
the total variation measure TVx0,x1(y). Then µ is not admissible with respect
to structural direct, indirect, or spurious criteria. That is,

(Str-DE(M) = 0) 6=⇒ (TVx0,x1(y) = 0), (3.11)
(Str-IE(M) = 0) 6=⇒ (TVx0,x1(y) = 0), (3.12)
(Str-SE(M) = 0) 6=⇒ (TVx0,x1(y) = 0). (3.13)

In fact, the reason why the TV measure is not admissible with respect to
structural direct, indirect, and spurious criteria is because it captures the three
types of variations together.

To formalize this idea, we introduce the notion of decomposability of a
measure µ, i.e.:

Definition 3.5 (Decomposability). Let Ω be a class of SCMs and µ be a measure
defined over it. µ is said to be Ω-decomposable if there exist measures

µ1, . . . , µk such that µ = f(µ1, . . . , µk), (3.14)

and where f is a non-trivial function vanishing at the origin, f(0, . . . , 0) = 0.

In words, decomposability states that a measure µ can be written as a function
of measures (µi)ki=1, and that if all measures (µi)ki=1 are equal to 0 for an
SCMM, then the measure µ must be 0 as well. For concreteness, consider
the following example.

Example 3.3 (Covariance decomposition, after (Zhang and Bareinboim, 2018c)).
Let µ be the covariance measure between random variables X and Y ,

Cov(X,Y ) = E[XY ]−E[X]E[Y ], (3.15)

which plays a role somewhat analogous to TV (and, more broadly, the observa-
tional distribution) whenever the system F and P (u) are linear and Gaussian.
Further, let the causal covariance be defined as

Covcx(X,Y ) = Cov(X,Y − Yx). (3.16)

Furthermore, let the spurious covariance be defined as

Covsx(X,Y ) = Cov(X,Yx). (3.17)

Then, we can write

Cov(X,Y ) = f
(
Covcx(X,Y ),Covsx(X,Y )

)
, (3.18)

with the function f(a, b) = a+ b, which satisfies f(0, 0) = 0. �
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Armed with the definitions of admissibility and decomposability, we are ready
to formally define the first version of the problem studied here.

Definition 3.6 (Fundamental Problem of Causal Fairness Analysis (preliminary)).
Consider a class of SCMs Ω, and let

• Q1, . . . , Qk be a collection of structural fairness criteria, and

• µ be a measure,

both defined over Ω. The Fundamental Problem of Causal Fairness Analysis is
to find a collection of measures µ1, . . . , µk such that the following properties
are satisfied:

(1) µ is decomposable w.r.t. µ1, . . . , µk;

(2) µ1, . . . , µk are admissible w.r.t. the structural fairness criteriaQ1, . . . , Qk.

In other words, find measures

µ1, . . . , µk that are admissible w.r.t. Q1, . . . , Qk, (3.19)

respectively, and such that

µ = f(µ1, . . . , µk), (3.20)

where f is a non-trivial function vanishing at the origin, f(0, . . . , 0) = 0.

TV

µSE

Str-SE

µDE

Str-DE

µIE

Str-IE

SCMM∗

admissible

decomposable

Figure 3.1: Fundamental Prob-
lem of Causal Fairness Analysis
(TV version).

For grounding this discussion, we will con-
sider that the measure µ is given by the
TV1 and the structural measures will be
Str-{DE,IE,SE}. We refer to this problem as
FPCFA(Str-{DE,IE,SE},TVx0,x1(y)). Fig. 3.1
provides a visual summary of the FPCFA
where TV is shown on the top and the struc-
tural measures Str-{DE,IE,SE} on the bottom.
As we have just seen in Prop. 3.1, TV is not
admissible relative to each of these structural
measures.

The FPCFA asks for the existence of a
set of measures (µDE , µIE , µSE) that could
act as a bridge between TV and the more meaningful, albeit unobservable

1Naturally, other types of contrasts can be used as measures instead of TV, such
as the covariance (Zhang and Bareinboim, 2018c) or equality of odds (Hardt et al.,
2016; Zhang and Bareinboim, 2018a).
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structural measures Str-{DE,IE,SE}. In fact, the FPCFA is solved whenever
TV can be expressed in terms of (µDE , µIE , µSE), and each of these measures
is admissible w.r.t. to the corresponding structural measures. If that is the
case, the measures (µDE , µIE , µSE) could be seen as explaining the variations
of TV in terms of the most elementary, structural components. Interestingly,
this is both a quantitative and a qualitative exercise. From TV’s perspective,
(µi)ki=1 should account for all its variations, which is naturally a quantitative
exercise. From the structural measures perspective, we would like to enforce
soundness, namely, discrimination is indeed readable from the corresponding
(µi)ki=1, which is a qualitative exercise.

3.2 Explaining Factual & Counterfactual Variations

In this section, the main task is studying how the variations in outcome Y can
be explained by changes of the protected attribute X. The result of this study
is what we call the population-mechanism plane, which we also refer to as the
explainability plane (Fig. 3.3). The methodology introduced by the plane will
allow us to re-express different measures of fairness in a unified manner, which
will facilitate their comparison in terms of admissibility, decomposability, and
possibly other desirable properties.

We start by introducing a quite general type of measure encoding the idea
of contrast.

Definition 3.7 (Contrast). Given a SCMM, a contrast C is any quantity of
the form

C(C0, C1, E0, E1) = E[yC1 | E1]−E[yC0 | E0], (3.21)
where E0, E1 are observed (factual) clauses and C0, C1 are counterfactual
clauses to which the outcome Y responds. Furthermore, whenever

(a) E0 = E1, the contrast C is said to be counterfactual;

(b) C0 = C1, the contrast C is said to be factual.

For simplicity2, we will focus on the binary case, in which a contrast can be
written as

P (yC1 | E1)− P (yC0 | E0). (3.22)
The purpose of a contrast is to compare the outcome of individuals who
coincide with the observed event E1 in the factual world and whose values were
intervened on (possibly counterfactually) as defined by C1, against individuals
who coincide with the observed event E0 in the factual world and whose
values were intervened on (possibly counterfactually) as defined by C0. The

2The results in this section hold for any real-valued random variable Y .
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definition also distinguishes two special cases of contrasts. A counterfactual
contrast captures only the difference in outcome induced by the difference in
interventions C0, C1 (since E0 = E1). Complementary to this, a factual contrast
captures only the difference induced by the observed events E0, E1 (since
C0 = C1). We now show why contrasts are useful for explaining variations:

Theorem 3.1 (Contrast’s Decomposition & Structural Basis Expansion). Let
M be an SCM and let C be a contrast P (yC1 | E1)− P (yC0 | E0). C can be
decomposed into its counterfactual and factual variations, namely:

P (yC1 | E1)− P (yC0 | E1)︸ ︷︷ ︸
counterfactual contrast

+P (yC0 | E1)− P (yC0 | E0)︸ ︷︷ ︸
factual contrast

. (3.23)

Furthermore, the corresponding counterfactual and factual contrasts admit
the following structural basis expansions, respectively:

(a) Counterfactual contrast (Cctf), where E0 = E1 = E, can be expanded as

P (yC1 | E)− P (yC0 | E) =
∑
u

(
1(YC1(u) = y)− 1(YC0(u) = y)︸ ︷︷ ︸

unit-level difference

)
× P (u | E)︸ ︷︷ ︸

posterior

, (3.24)

(b) Factual contrast (Cfactual), where C0 = C1 = C, can be expanded as

P (yC | E1)− P (yC | E0) =
∑
u

1(YC(u) = y)︸ ︷︷ ︸
unit outcome

(
P (u | E1)− P (u | E0)︸ ︷︷ ︸

posterior difference

)
.

(3.25)

Figure 3.2: Two-step generative
process includes sampling a unit
from the population (left), and
evaluating it against correspond-
ing structural mechanisms (right).

The decomposition and structural basis ex-
pansion of contrasts presented in this the-
orem entail a fundamental connection of
causal fairness measures with structural
causal models. In particular, the decomposi-
tion given in Eq. 3.23 allows us to disentangle
factual and counterfactual variations within
any contrast.

We note that Eqs. 3.24 and 3.25 re-
expresses the variations within the target
quantity in terms of the underlying units
and activated mechanisms, as referenced by
the SCM. We would like to understand these
qualitatively different types of variations separately. First, we will take a
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generative interpretation over how the targeted variations are realized in terms
of the SCMM = 〈V,U,F , P (u)〉. Fig. 3.2 illustrates the two-step generative
process that goes as follows:

(1) Sampling: A unit U = u is sampled from the population distributed
according to P (U);

(2) Evaluation: This unit u passes through the sequence of mechanisms F ,
in causal order, until the values of the endogenous variables V are realized.

The l.h.s. of the figure shows the sampling process while the r.h.s. represents
the evaluation process. As discussed in Sec. 2.2, if the system is not submitted
to an intervention, this leads to the observational distribution. On the other
hand, if the values of certain variables are fixed through intervention, this
leads to the corresponding counterfactual distribution.

Considering this two-step generative process, we re-examine the variations
encoded in the structural basis expansion of Thm. 3.1. For convenience, we
reproduce the equation relative to the counterfactual variations in the sequel
(Eq. 3.24), but for simplicity we restrict our attention to the positive outcome
Y = 1, and replace 1(YC(u) = y) terms in Eq. 3.24 with the shorthand yC(u):

P (yC1 | E)− P (yC0 | E) =
∑
u

(
yC1(u)− yC0(u)︸ ︷︷ ︸
unit-level difference

)
P (u | E)︸ ︷︷ ︸
posterior

.

First, we consider the second factor in the r.h.s. of the expression. Note that
P (u | E = e) represents the first step in the generative process in which units
who naturally arise to value E = e are drawn from the population. In fact,
depending on the granularity of the evidence E, a different fraction of the
population (or types of individuals) will be selected. For instance, if E = {},
the (posterior) distribution P (u) is somewhat uninformative, and represents
an average when units are drawn at random from the underlying population,
regardless of their predispositions and characteristics. On the other hand, if
E = {X = x}, the posterior distribution P (u | x) would be more informative
since it now includes units that naturally would have X = x. This is less
informative compared to more specific events such as E = {X = x, Z = z}
or E = {X = x, Z = z,W = w, Y = y}. In fact, the l.h.s. of the figure
illustrates this increasingly more refined and informative set of events E, i.e.,
starting from picking individuals at random from the general population,
P (u), to a single individual δu, where δu is the Dirac delta function. Second,
we note that once the unit U = u is selected, all randomness vanishes, and
the unit will go through the set of mechanisms F . The first factor of the
expression, yC1(u) − yC0(u), describes the difference in response y between
conditions C1 and C0 for a fixed realization of exogenous variables u. As
realizations of exogenous variables U determine the identity of different units
in the population, the quantity yC1(u)− yC0(u) will be an unit-level quantity.
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In the context of fairness discussed here, consider the case when C1 = x1
and C0 = x0, which could represent the protected attribute, for instance, males
and females, or White and African-American. The quantity yx1(u)− yx0(u)
measures what the change in outcome Y would be when changing the attribute
X from x0 to x1, for a specific unit u. For this particular choice of C0, C1, the
quantity captures what is known as the total causal effect of X on Y , that is
it includes all the variations from X to Y translated across causal pathways.

In summary, any counterfactual contrast Cctf can be decomposed into two
parts:

1. A unit-level difference comparing the counterfactual worlds C1 vs. C0
for a specific unit U = u. This quantity is determined by the causal
mechanisms F of the SCM, and does not depend on the distribution
P (u).

2. A posterior distribution P (u | E = e) that indicates the probability
mass assigned to unit u whenever the event E = e. By changing the
granularity of the event E, the space of included units is restricted,
making the measure more specific to a subpopulation (see Fig. 3.2
(l.h.s.)).

Given that the selection of units is fixed (second factor), and the only thing
that varies is the selection of the mechanisms (first factor) through the choices
of the counterfactual conditions C1 and C0, this will generate downstream
variations that are inherently “causal”. In fact, the specific instantiation of C1
and C0 and E = {} (i.e., P (u)) matches the very definition of average causal
effect, P (y | do(x1))− P (y | do(x0)).

We now re-examine the factual variations encoded in the structural basis
expansion of Thm. 3.1. For convenience, we reproduce the corresponding
equation (Eq. 3.25):

P (yC | E1)− P (yC | E0) =
∑
u

yC(u)︸ ︷︷ ︸
unit outcome

(
P (u | E1)− P (u | E0)︸ ︷︷ ︸

posterior difference

)
In words, a factual contrast can be expanded as a sum of differences in the
posteria P (u | E1) − P (u | E0), weighted by unit-level outcomes yC(u). We
note that the difference in posteria represents the first step in the generative
process in which two sets of units that naturally arise to values E1 and E0 are
drawn from the population, respectively. Similarly to the previous discussion,
different sub-populations will be selected depending on the granularity of the
evidence E1, E0. The scope of these events is the same but their instantiations
are different.

This can be seen as complementary when compared to the counterfactual
contrasts. Given that the mechanisms are fixed (first factor), the component
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that generates variations is relative to the choice of units based on the factual
conditions E0 and E1. We suggest this will generate upstream variations, which
will be “non-causal” (also called spurious), as described in more detail later on
in the manuscript. For factual contrasts, we are mostly interested in setting
C1 = C0 = x, so that X = x along all causal pathways. The contrast will then
capture the difference in probability mass assigned to u in events E1 and E0.
By definition, spurious effects are generated by variations that causally precede
X, so these cannot be captured by intervening on X. For this reason, we need
to compare events E1 and E0, which have resulted in a different instantiation
of the value of X. This factorization also suggests mathematically how causal
and spurious effects are inherently different from each other.

Figure 3.3: In the population axis, con-
trasts are restricted to smaller subsets of
units u in the domain U . At the same time,
along the mechanism axis, we distinguish
between direct, indirect, and spurious vari-
ations.

Explainability plane. By decom-
posing variations via factual and
counterfactual contrasts, and expand-
ing them using the structural basis,
we can give the essential structure
of the measures used in Causal Fair-
ness Analysis. The approach used for
decomposing the total variation is
shown in Fig. 3.3, which we call the
explainability plane. As the figure il-
lustrates, there are two separate axes
of the decomposition. On the mech-
anism axis, we are decomposing the
TV into its direct, indirect, and spu-
rious variations. On the population axis, we are considering increasingly precise
subsets of the space of units U , which correspond to different posterior distri-
butions. As we will see later, moving along the population axis will correspond
to constructing increasingly more powerful fairness measures that are better
suited for detecting discrimination.
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Total Variation Family

In this section, we introduce a family of measures that populate the explainabil-
ity plane in Fig. 3.3. Since all the measures describe variations included within
the TV measure, we refer to them as the TV-family (part e of Fig. 1.3). In
particular, this section aims to solve the FPCFA(Str-{DE,IE,SE},TVx0,x1(y))
discussed in Sec. 3. The measures in the TV-family are introduced in order.
We start with measures that quantify discrimination in the entire population
of units u (corresponding to the posterior P (u)), and reach measures that
quantify discrimination for a single unit u (corresponding to the posterior δu,
where δ is the Dirac delta function).

4.1 Population-level Contrasts - P (u)

We first recall that the TV measure itself is not admissible with respect to
structural criteria Str-{DE,IE,SE}, as shown in Prop. 3.1. Specifically, the
reason for this is that the TV captures variations between groups generated
by any mechanism of association, both causal and non-causal, and does not
distinguish between them. Our first step is therefore to disentangle these
variations – the causal and non-causal (or spurious) – within the TV.

Definition 4.1 (Total and Spurious Effects). Let the total effect and experimen-
tal spurious effect be defined as follows:

TEx0,x1(y) = P (yx1)− P (yx0) (4.1)
Exp-SEx(y) = P (y | x)− P (yx) (4.2)

35
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Further, we write TE-fairX(Y ) whenever TEx0,x1(y) = 0, or simply TE-fair
when X and Y are clear from the context. Exp-SE-fair is defined analogously.

In words, TE measures the difference in the outcome Y when setting X = x1,
compared to setting X = x0. The measure can be visualized graphically as
shown in Fig. 4.1a. In this case, Y responds to the change in X from x0 to x1
through two mechanisms: (i) the direct link, X → Y , and (ii) the indirect link
via W , X →W → Y . In the context of the COMPAS dataset in Ex. 2.5, the
total effect would be the average difference in recidivism prediction had an
individual’s race been set to White (by intervention) compared to had it been
set to Non-White. Since the covariates Z vary naturally in both counterfactual
worlds (both sides of the expression), those are canceled out and Y variations
can be explained in terms of the downstream variations in response to the
change in X1.

In a complementary manner, the experimental spurious effect measures the
average difference in outcome Y when simply observing that X = x, compared
to setting X = x by intervention, as shown graphically in Fig. 4.1b. Since from
Y ’s perspective X has the same value x in both factors, the Y variations can
be explained in terms of the upstream effect in response to how X naturally
affected Z versus how Z varies free from the influence of X. In the COMPAS
dataset, this would mean the average difference in recidivism prediction for
individuals for whom the race is set to White by intervention, compared to
simply observing the race to be White.

Syntactically, following the discussion in Sec. 3.2, we can write these
quantities in terms of contrasts (Def. 3.7), namely:

TEx0,x1(y) = C(x0, x1, ∅, ∅) (4.3)
Exp-SEx(y) = C(x, ∅, ∅, x) (4.4)

Based on these two notions, the TV can be decomposed into two distinct
sources of variation, which correspond precisely to its causal and non-causal
mechanisms:

Lemma 4.1 (TV Decomposition I). The total variation measure can be decom-
posed as

TVx0,x1(y) = TEx0,x1(y) + (Exp-SEx1(y)− Exp-SEx0(y)). (4.5)
1The TE measure is also called causal effect and sometimes written in do-notation,

P (y | do(x1)) − P (y | do(x0)). Obviously, this quantity has well-defined semantics
given an SCM, despite the fact that no one intends or believes to set any of the
protected attributes literally by intervention. Still, through the formal language of
causality, one can contemplate these distinct counterfactual realities. In particular,
one can disentangle and explain the sources of Y variations in response to changes
in X, including the ones through the causal pathways versus the non-causal ones,
along the spurious paths.
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(d) Natural indirect effect NIEx1,x0 (y).

Figure 4.1: Graphical representations of measures used in TV decomposition.

Lem. 4.1 shows that the TV measure equals to the total effect on Y when X
transitions from x0 to x1 plus the difference between the experimental spurious
effect of X = x1 and X = x0

2. In other words, TV accounts for the sum of
the directed (causal) and confounding paths from X to Y . More formally, the
lemma shows that the TV is decomposable with respect to TE and Exp-SE
(recall Def. 3.5).

Interestingly, the TE itself is still not admissible w.r.t. Str-{DE,IE}, as
it captures all causal influences of X on Y , including the direct (through the
direct link X → Y ) and indirect ones (i.e., paths via W ).

Proposition 4.1 (TE Inadmissibility). The total effect measure TEx0,x1(y) is
not admissible with respect to structural criteria Str-DE and Str-IE.

To solve FPCFA(Str-{DE,IE,SE},TVx0,x1(y)), therefore, we will further need
to disentangle the relationships within TE. In particular, we will need to
determine the Y variations that are a direct consequence of the protected
attribute, and the ones that are mediated by other variables. In the literature,
the total effect was shown to be decomposable into the measures known as
the natural direct and indirect effects (Pearl, 2001).

2An alternative way of interpreting this relation is by flipping TV and TE in the
equation, namely:

TEx0,x1 (y) = TVx0,x1 (y)− (Exp-SEx1 (y)− Exp-SEx0 (y)). (4.6)

This means that the total effect of transitioning X from x0 to x1 on Y is equal to
the corresponding total variation of Y minus the difference in spurious effects of
X = x1 versus the baseline X = x0.
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Definition 4.2 (Natural Direct and Indirect Effects). The natural direct and
indirect effects are defined, respectively, as follows:

NDEx0,x1(y) = P (yx1,Wx0
)− P (yx0) (4.7)

NIEx1,x0(y) = P (yx1,Wx0
)− P (yx1). (4.8)

Further, we write NDE-fairX(Y ) for NDEx0,x1(y) = 0, or simply NDE-fair
when the attribute/outcome are clear from the context. The condition NIE-fair
is defined analogously.

There are several important observations about these definitions. First in
terms of semantics, the NDE (Eq. 4.7) captures how the outcome Y changes
when setting X = x1, but keeping the mediators W at whatever value they
would have taken had X been x0, compared to setting X = x0 by intervention.
This counterfactual statement is shown graphically in Fig. 4.1c. Note that
Y “perceives” X through the direct link (marked in blue) as if it is equal to
x1, written in counterfactual language as yx1 , while W perceives X as if it
is x0, formally, Wx0 . Putting these two together leads to the first factor in
Eq. 4.7, i.e., yx1,Wx0

. The second factor in the contrast is yx0 , which can be
written equivalently as yx0,Wx0

, due to the consistency axiom. It represents
the fact that both Y and W perceive X at the same level, x0

3. Whenever we
subtract one from the other, in some sense, the variations coming from X to
Y through W are the same (since it perceives X at the baseline level x0), and
what remains are the variations transmitted through the direct arrows, so the
name direct effect. The qualification natural is because W attains its value
naturally, depending on the value of X, and not by intervention.

Second, in the context of our COMPAS example, the NDE would measure
how much the predicted probability of recidivism would change for an individual
whose race was set by intervention to White, but their juvenile and prior
offense counts took a value they would have attained naturally (that is, a value
naturally attained by Non-White individuals), compared to the race being set
to Non-White. The contrast represented by the NDE (in Eq. 4.7) is known as a
nested counterfactual, since X takes distinct values when influencing different
variables. Albeit not realizable in the real world, it encodes significant types
of variations that can be evaluated from a collection of mechanisms and fully
specified SCM, and which is sometimes computable from data, as discussed in
more details in Sec. 4.3.

Third, the definition of NIE follows a similar logic while flipping the sources
of variations, as illustrated in Eq. 4.8 and Fig. 4.1d. More specifically, the
outcome Y responds to X as being x1 through the direct link in both factors
of the contrast (yx1), which means that no direct influence from X to Y

3For further discussion on counterfactuals, see (Pearl, 2000, Sec. 7.2) and (Barein-
boim et al., 2022).



4.1. Population-level Contrasts - P (u) 39

is “active”. On the other hand, W responds to X when varying from levels
X = x1 to x0, formally written as Wx1 versus Wx0 ; this, in turn, affects Y ,
which formally is written as counterfactuals yx1,Wx1

versus yx1,Wx0
. 4 The NIE

is also a nested counterfactual. For the COMPAS example, the NIE would
measure how much the predicted probability of recidivism would change for
an individual whose race was set to White, had their race been Non-White
along the indirect causal pathway influencing the values of juvenile and prior
offense counts, compared against an individual whose race was set to White.

Syntactically, and following the discussion in Sec. 3.2, we can put these
observations together and write the NDE and NIE as counterfactual contrasts
(Eq. 3.24), namely: 5

NDEx0,x1(y) = C(x0, {x1,Wx0}, ∅, ∅) (4.11)
NIEx1,x0(y) = C(x1, {x1,Wx0}, ∅, ∅). (4.12)

The notions of NDE and NIE, together with Exp-SE, in fact provide the
first solution to the FPCFA(Str-{DE,IE,SE},TVx0,x1(y)), as shown in the
next result.

Theorem 4.2 (FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) Solution (preliminary)). The
total variation measure can be decomposed as

TVx0,x1(y) = NDEx0,x1(y)−NIEx1,x0(y) + (Exp-SEx1(y)− Exp-SEx0(y)).
(4.13)

Furthermore, the measures NDE, NIE, and Exp-SE are admissible with respect
to Str-DE, Str-IE, and Str-SE, respectively. We write

Str-DE-fair =⇒ NDE-fair (4.14)
4The first term yx1,Wx1 is equivalently written as yx1 , which follows from the

consistency axiom (Pearl, 2000, Sec. 7.2).
5Following prior discussion and reversing the usual simplification back, based

on the application of the consistency axiom, these contrasts can more explicitly be
written as:

NDEx0,x1 (y) = C({x0,Wx0}, {x1,Wx0}, ∅, ∅) (4.9)
NIEx1,x0 (y) = C({x1,Wx1}, {x1,Wx0}, ∅, ∅). (4.10)

It’s evident when considering the NDE that the variations through the mediator W ,
Wx0 , coincide in both sides of the contrast and end up canceling out, which means
that all remaining variations are due to the direct change of X from x0 to x1 in the
first component of the pair. On the other hand, the direct variations in the NIE
are both equal to X = x1, which cancel out, and Y changes are in response to the
change in W , which varies differently depending on whether X = x1 and X = x0, or
Wx1 versus Wx0 .
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Str-IE-fair =⇒ NIE-fair (4.15)
Str-SE-fair =⇒ Exp-SE-fair. (4.16)

Therefore, the measures

(µDE , µIE , µSE) = (NDEx0,x1(y),NIEx1,x0(y),Exp-SEx(y))

solve the FPCFA(Str-{DE,IE,SE},TVx0,x1(y)).

After showing a solution to FPCFA(Str-{DE,IE,SE},TVx0,x1(y)), we make
two important remarks. Firstly, the measures discussed so far admit a structural
basis expansion (Thm. 3.1) and can be expanded as follows:

TVx0,x1(y) =
∑
u

y(u)
[
P (u|x1)− P (u | x0)

]
(4.17)

TEx0,x1(y) =
∑
u

[
yx1(u)− yx0(u)

]
P (u) (4.18)

Exp-SEx(y) =
∑
u

yx(u)
[
P (u | x)− P (u)

]
(4.19)

NDEx0,x1(y) =
∑
u

[
yx1,Wx0

(u)− yx0(u)
]
P (u) (4.20)

NIEx1,x0(y) =
∑
u

[
yx1,Wx0

(u)− yx1(u)
]
P (u). (4.21)

The factorization in the display above connects the measures to the sampling-
evaluation process discussed in Sec. 3.2, explaining the observed contrasts in
terms of unit-level quantities. We revisit this point shortly. Secondly, one of
the significant and practical implications of Thm. 4.2 appears through the
Eq. 4.14’s contrapositive (and Eqs. 4.15, 4.16), i.e.:

(NDEx0,x1(y) 6= 0) =⇒ ¬Str-DE-fair. (4.22)

Based on this, we have now a principled way of testing the following hypothesis:

H0 : NDEx0,x1(y) = 0. (4.23)

If the H0 hypothesis is rejected, the fairness analyst can conclude that the
dataset provides evidence of direct discrimination under the assumptions
encoded in the causal diagram. In contrast, any statistics or hypothesis test
based on the TV are insufficient to test for the existence of a direct effect.

We display in Fig. 4.2 the measures TE, NDE, NIE, and Exp-SE along the
population and mechanism axes of the explainability plane (Fig. 3.3). One may
be tempted to surmise that the FPCFA is fully solved based on the results
discussed so far. This is unfortunately not always the case, as illustrated next.
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Figure 4.2: Placing the total, experimental spurious, natural direct, and natural
indirect effects along the population and mechanism axes that were first introduced
in Fig. 3.3.

Example 4.1 (Limitation of the NDE). A startup company is currently in hiring
season. The hiring decision (Y ∈ {0, 1} indicates whether the candidate is hired)
is based on gender (X ∈ {0, 1} represents females and males, respectively),
age (Z ∈ {0, 1}, indicating younger and older applicants, respectively), and
education level (W ∈ {0, 1} indicating whether the applicant has a PhD). The
true SCMM, unknown to the fairness analyst, is given by:

U ← N(0, 1) (4.24)
X ← Bernoulli(expit(U)) (4.25)
Z ← Bernoulli(expit(U)) (4.26)
W ← Bernoulli(0.3) (4.27)

Y ← Bernoulli(1
5(X + Z − 2XZ) + 1

6W ), (4.28)

where expit(x) = ex

1+ex . In this case, the NDE can be computed as:

NDEx0,x1(y) = P (yx1,Wx0
)− P (yx0) (4.29)

= P (Bernoulli(1
5(1− Z) + 1

6W ) = 1) (4.30)

− P (Bernoulli(1
5(Z) + 1

6W ) = 1)

=
∑

z∈{0,1}

∑
w∈{0,1}

P (z, w)[ 15(1− z) + 1
6w −

1
5z −

1
6w] (4.31)

=
∑

z∈{0,1}

∑
w∈{0,1}

P (z)P (w)[15(1− 2z)] as P (z, w) = P (z)P (w)

(4.32)

=
∑

z∈{0,1}

P (z)[15(1− 2z)] = 1
2 ×

1
5 + 1

2 ×
−1
5 = 0. (4.33)
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In other words, the NDEx0,x1(y) is equal to zero. Still, perhaps surprisingly,
the structural direct effect is present in this case, that is Str-DE-fair does
not hold, since the outcome Y is a function of gender X, as evident from the
structural Eq. 4.28. �

This example illustrates that even though the NDE is admissible with respect
to structural direct effect, it may still be equal to 0 while structural direct
effect exists. One can see through Eq. 4.33 that the NDE is an aggregate
measure over two distinct sub-populations. Specifically, when considering junior
applicants, females are 20% less likely to be hired (units with (Z = 0, X = 0)),
whereas for senior applicants, males are 20% less likely to be hired (units with
(Z = 1, X = 1)). Mixing these two groups together results in the cancellation
of the two effects and the NDE equating to 0, in turn making it impossible for
the analyst to detect discrimination using only the NDE. 6

Another interesting way of understanding this phenomenon is through the
structural basis expansion of the NDE. In Eq. 4.20, the posterior weighting
term is P (u), which means that both younger and older applicants are included
in the contrast. The fact that this contrast mixes somewhat heterogeneous
units of the population, with respect to the decision-making procedure fy that
determines Y , motivates another important notion in fairness analysis:

Definition 4.3 (Power). Let Ω be a space of SCMs. Let Q be a structural
criterion and µ1, µ2 fairness measures defined on Ω. Suppose that µ1, µ2 are
(Q,Ω)-admissible. We say that µ2 is more powerful than µ1 if

∀M ∈ Ω : µ2(M) = 0 =⇒ µ1(M) = 0. (4.34)

TV

µ1
SE

µkSE

Str-SE

µ1
DE

µkDE

Str-DE

µ1
IE

µkIE
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SCMM∗
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powerful
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..
.

..
.

..
.

Figure 4.3: FPCFA with power.

The notion of power can be useful in the
following context. Suppose there is an SCM
M in the space Ω for which discrimination
is present, Q(M) = 1, while the measure µ1
is admissible but unable to capture it, i.e.,
µ1(M) = 0. Still, another measure may exist
such that µ2(M) 6= 0. If this is the case, we
would say that discrimination qualitatively
described by criterion Q can be detected using
measure µ2, but not using µ1. We would then
say that µ2 is more powerful than µ1. Putting
it differently, what Ex. 4.1 showed was that
the measure

NDEx0,x1(y) = C(x0, {x1,Wx0}, ∅, ∅) (4.35)
6This observation is structural, and despite of the number of samples available.
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was not powerful enough. The reason is that for the NDE, the conditioning
events are E0 = E1 = ∅, which is not refined enough to capture the discrimina-
tion in the aforementioned example. We next re-write the definition of FPCFA
to account for the measures’ power:

Definition 4.4 (FPCFA – continued with Power). The Fundamental Problem
of Causal Fairness Analysis is to find a collection of measures µ1, . . . , µk such
that the following properties are satisfied:

(1) µ is decomposable w.r.t. µ1, . . . , µk;

(2) µ1, . . . , µk are admissible w.r.t. the structural fairness criteriaQ1, . . . , Qk.

(3) µ1, . . . , µk are as powerful as possible.

We provide in Fig. 4.3 an updated, visual representation of the FPCFA
that accounts for the power relation across measures. In some sense, pick-
ing (NDEx0,x1(y),NIEx1,x0(y), Exp-SEx(y)) as the measures (µ1

DE , µ
1
IE , µ

1
SE)

helped to solve the original problem, but the gap between TV and the structural
measures is so substantive that certain critical instances were left undetected.
In the updated definition, the requirement is to find measures that are as pow-
erful as possible, or in other words, the closest possible to the corresponding
structural ones, Str-{DE,IE,SE}. In the sequel, we discuss how to construct
increasingly more powerful measures by using more specific events E.

4.1.1 X-specific Contrasts - P (u | x)

We will quantify the level of discrimination for a specific subgroup of the
population for which X(u) = x (for example, females) by considering contrasts
with the conditioning event E = {X = x}. In fact, we are moving inwards in
the population axis in Fig. 3.3, following the discussion in Sec. 3.2, and the
sub-population we are focusing on is more specific. More formally, this can
be seen through the structural basis expansion (Eq. 3.24) and the fact that
the posterior after using the new E becomes P (u | X = x), which generates a
family of x-specific measures:

Definition 4.5 (x-specific TE, DE, IE, and SE). The x-{total, direct, indirect,
spurious} effects are defined as follows:

x-TEx0,x1(y | x) = P (yx1 | x)− P (yx0 | x) (4.36)
x-DEx0,x1(y | x) = P (yx1,Wx0

| x)− P (yx0 | x) (4.37)
x-IEx1,x0(y | x) = P (yx1,Wx0

| x)− P (yx1 | x) (4.38)
x-SEx1,x0(y) = P (yx1 | x0)− P (yx1 | x1). (4.39)
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Figure 4.4: Graphical representations of some x-specific causal fairness measures.
The blue and red color highlight where the contrast between the quantities lies.

The x-TE is a well-known quantity and usually called the effect of treatment
on the treated (ETT, for short), and appeared in (Heckman et al., 1998), while
the x-specific DE, IE, and SE are more recent quantities, introduced in (Zhang
and Bareinboim, 2018b). 7 Some observations ensue from these definitions.
Firstly, these measures can be written as their structural basis and unit-level
factorization (Eqs. 3.24 and 3.25), that is

x-TEx0,x1(y | x) =
∑
u

[yx1(u)− yx0(u)]P (u | x) (4.40)

x-DEx0,x1(y | x) =
∑
u

[yx1,Wx0
(u)− yx0(u)]P (u | x) (4.41)

x-IEx1,x0(y | x) =
∑
u

[yx1,Wx0
(u)− yx1(u)]P (u | x) (4.42)

x-SEx1,x0(y) =
∑
u

yx1(u)[P (u | x0)− P (u | x1)]. (4.43)

To simplify the notation and the comparison with the measures discussed
earlier, we re-write them as factual and counterfactual contrasts, namely:

x-TEx0,x1(y | x) = C(x0, x1, x, x) (4.44)
x-DEx0,x1(y | x) = C(x0, {x1,Wx0}, x, x) (4.45)
x-IEx1,x0(y | x) = C(x1, {x1,Wx0}, x, x) (4.46)
x-SEx1,x0(y) = C(x1, x1, x1, x0). (4.47)

Secondly, we will consider each of the measures individually. Starting with
the x-TE, we note that it is simply a conditional version of the total effect
(TE) for the subset of units U for which X(u) = x. This can be easily seen by
comparing the contrast representation of the TE (Eq. 4.3) versus the x-TE

7Zhang and Bareinboim, 2018b originally named these quantities the counterfac-
tual DE, IE, and SE, but we highlight here that they are the x-specific counterparts
of their marginal effects.
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(Eq. 4.44), namely:

x-TEx0,x1(y | x) = C(x0, x1, x, x)
TEx0,x1(y) = C(x0, x1, ∅, ∅),

which make it obvious that the former has E0 = E1 = ∅, whereas the latter has
E0 = E1 = x. Both measures, however, use the same counterfactual clauses
C0 = x0 and C1 = x1. In terms of the sampling-evaluation process discussed
earlier, even though these measures evaluate each unit in the same way (due
to the same counterfactual clauses), the TE draws units at random from
the population, while the x-TE filters them out based on X’s particular
instantiation. The graphical visualization of the ETT is shown in Fig. 4.4a
and can be compared with that of TE in Fig. 4.1a, for grounding the intuition.
In words, note that the downstream effect of X on Y is the same, but now
Z is no longer disconnected from X, but varies in accordance to the event
X = x. As we will show later on, in the startup hiring example (Ex. 4.1), the
gender will lead to an additional source of information about age, which can
be used in the measure.

Thirdly, the counterfactual measures of direct and indirect effects, x-DE
and x-IE, are conditional versions of the NDE and NIE, respectively. These
observations are also reflected in Eqs. 4.41-4.42, in which the only difference
compared to the general population measures is in the posterior weighting
term P (u | x), while for the NDE and NIE the weighting term is simply P (u)
(Eqs. 4.20-4.21). One difference relative to the natural DE and IE is that here
a reference value, X = x, needs to be picked such that the baseline population
can be selected. For instance, in the context of comparing the direct effect
on Y from transitioning X from x0 to x1, one could more naturally set the
baseline population to X = x0.

Fourthly, we consider the x-SE and its graphical representation, as shown
in Fig. 4.4b. This quantity also generalizes that of Exp-SEx(y) shown in
Fig. 4.1b. The difference between these two quantities is in the weighting term,
where P (u)−P (u | x) in Exp-SEx(y) is replaced by P (u | x0)−P (u | x1) in x-
SEx1,x0(y). Despite its innocent appearance, this a substantive difference since
the Exp-SE entails a comparison between the observational and interventional
distributions, while x-SE is a counterfactual measure. 8

Following the above, we can finally state the main result of this section,
namely, that the quantities x-{DE, IE, SE} solve the FPCFA.

8In terms of the Pearl Causal Hierarchy (PCH), the Exp-SE entails assumptions
only relative to associational and experimental quantities (PCH’s layers 1 and 2),
while the x-SE requires substantively stronger assumptions regarding counterfactuals
(layer 3). For a more detailed discussion, refer to (Bareinboim et al., 2022).
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Theorem 4.3 (x-specific FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) Solution). The
total variation measure can be decomposed as

TVx0,x1(y) = x-DEx0,x1(y | x0)− x-IEx1,x0(y | x0)− x-SEx1,x0(y). (4.48)

Further, the measures x-{DE, IE, SE} are admissible w.r.t. Str-{DE,IE,SE},
respectively. Moreover, the counterfactual family is more powerful than NDE,
NIE, and Exp-SE, respectively. More formally, the admissibility relations can
be written as:

Str-DE-fair =⇒ x-DE-fair (4.49)
Str-IE-fair =⇒ x-IE-fair (4.50)
Str-SE-fair =⇒ x-SE-fair, (4.51)

and the power relations as:

x-DE-fair ◦−→ NDE-fair, (4.52)
x-IE-fair ◦−→ NIE-fair, (4.53)
x-SE-fair ◦−→ Exp-SE-fair. (4.54)

Therefore, the measures

(µDE , µIE , µSE) = (x-DEx0,x1(y), x-IEx1,x0(y), x-SEx1,x0(y))

solve the FPCFA(Str-{DE,IE,SE},TVx0,x1(y)).

Similarly to the discussion in the general-population measures (i.e., P (u)),
the significance, and practical implications of Thm. 4.3 appear through the
Eq. 4.49’s contrapositive (and Eqs. 4.50, 4.51), i.e.:

(x-DEx0,x1(y) 6= 0) =⇒ ¬Str-DE-fair. (4.55)

Based on this, we have now a principled way of testing the following hypothesis:

H0 : x-DEx0,x1(y) = 0. (4.56)

If the H0 hypothesis is rejected, the fairness analyst can conclude that the
dataset provides evidence of direct discrimination (under the assumptions in
the causal diagram). Naturally, similar tests can be performed regarding the
indirect and spurious structural measures.

Example 4.2 (Revisiting Startup Hiring & NDE Lack of Power). Consider the
SCMM given in Eq. 4.24-4.28. For X = x0 we compute the x-DE as:

x-DEx0,x1(y | x0) = P (yx1,Wx0
| x0)− P (yx0 | x0) (4.57)

= P (Bernoulli(1
5(1− Z) + 1

6W ) = 1 | x0) (4.58)
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− P (Bernoulli(1
5(Z) + 1

6W ) = 1 | x0) (4.59)

=
∑

z∈{0,1}

∑
w∈{0,1}

P (w)P (z | x0)[15(1− 2z) + 1
6w −

1
6w]

(4.60)

=
∑

z∈{0,1}

1
5(1− 2z)P (z | x0) = 0.036. (4.61)

In words, when considering female applicants (X = x0), they are 3.6% less
likely to be hired than they would be, had they been male. In other words,
direct discrimination is present in the company’s hiring process. �

4.1.2 Z-specific Contrasts - P (u | z)

One might also be interested in capturing discrimination for a specific subset
of U for which Z(u) = z, similarly as for the x-specific measures. Here, we
will consider two possibilities in terms of sub-population selection, first when
event Z(u) = z and then when Z(u) = z,X(u) = x. Before introducing the
corresponding z- and (x, z)-specific quantities, we clarify one major difference
compared to the general and x-specific case, namely in the spurious effects. As
noted in Sec. 3, spurious effects are captured by factual contrasts of the form

P (yx | E1)− P (yx | E0) =
∑
u

yx(u)[P (u | E1)− P (u | E0)], (4.62)

which rely on comparing different units corresponding to events E0, E1. These
spurious effects represent variations that causally precede X and Y . Interest-
ingly enough, under the assumptions of the SFM (Sec. 2.3.1), conditioning
on Z(u) = z closes all backdoor paths between X and Y . In other words,
fixing Z also fixes the possible spurious variations, and therefore on a z- or
(x, z)-specific level spurious effects are always equal to zero9. Therefore, we
can consider the following measures:
Definition 4.6 (z- and (x, z)-specific TE, DE, and IE). The z-specific and
(x, z)-specific total, direct and indirect effects are defined as

z-TEx0,x1(y | z) = P (yx1 | z)− P (yx0 | z) (4.65)
9Experienced readers might notice that in the presence of unobserved confounders

(UCs) we could have more explicitly defined the corresponding z-, (x, z)-specific
notions

z-SEx(y) = P (y | x, z)− P (yx | z), (4.63)
(x, z)-SEx0,x1 (y) = P (yx | x1, z)− P (yx | x0, z). (4.64)

Naturally, this would account for the spurious variations brought about by the UCs.
For a more comprehensive treatment of these issues, we refer readers to Sec. 6.
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z-DEx0,x1(y | z) = P (yx1,Wx0
| z)− P (yx0 | z) (4.66)

z-IEx1,x0(y | z) = P (yx1,Wx0
| z)− P (yx1 | z) (4.67)

(x, z)-TEx0,x1(y | z) = P (yx1 | x, z)− P (yx0 | x, z) (4.68)
(x, z)-DEx0,x1(y | z) = P (yx1,Wx0

| x, z)− P (yx0 | x, z) (4.69)
(x, z)-IEx1,x0(y | z) = P (yx1,Wx0

| x, z)− P (yx1 | x, z). (4.70)

As before, the measures can be factorized using the corresponding unit-level
outcomes:

z-TEx0,x1(y | z) =
∑
u

[yx1(u)− yx0(u)]P (u | z) (4.71)

z-DEx0,x1(y | z) =
∑
u

[yx1,Wx0
(u)− yx0(u)]P (u | z) (4.72)

z-IEx1,x0(y | z) =
∑
u

[yx1,Wx0
(u)− yx1(u)]P (u | z) (4.73)

(x, z)-TEx0,x1(y | z) =
∑
u

[yx1(u)− yx0(u)]P (u | x, z) (4.74)

(x, z)-DEx0,x1(y | z) =
∑
u

[yx1,Wx0
(u)− yx0(u)]P (u | x, z) (4.75)

(x, z)-IEx1,x0(y | z) =
∑
u

[yx1,Wx0
(u)− yx1(u)]P (u | x, z). (4.76)

These quantities can also be represented more explicitly as contrasts:

z-TEx0,x1(y | z) = C(x0, x1, z, z) (4.77)
z-DEx0,x1(y | z) = C(x0, {x1,Wx0}, z, z) (4.78)
z-IEx1,x0(y | z) = C(x1, {x1,Wx0}, z, z) (4.79)

(x, z)-TEx0,x1(y | z) = C(x0, x1, {x, z}, {x, z}) (4.80)
(x, z)-DEx0,x1(y | x, z) = C(x0, {x1,Wx0}, {x, z}, {x, z}) (4.81)
(x, z)-IEx1,x0(y | x, z) = C(x1, {x1,Wx0}, {x, z}, {x, z}). (4.82)

The z-TE, z-DE, and z-IE (and similarly the (x, z)- counterparts) are simply
conditional versions of TE, NDE, and NIE, respectively, restricted to the
subpopulation of U such that Z(u) = z (or Z(u) = z,X(u) = x), which
is reflected in the posterior weighting term which becomes P (u | z) (or
P (u | x, z)).

Several important remarks are due. Using the sampling of units analogy
from before, we notice that z-specific effects filter on units which have Z(u) = z,
which means they provide us with a more refined lens for detecting discrim-
ination than the general population measures. Similarly, the (x, z)-specific
measures can be seen as additionally filtering the units on Z(u) = z, after they
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were filtered based on X(u) = x, which is precisely what x-specific measures
have done. Therefore, (x, z)-specific measures can be seen as more refined than
x- and z- specific ones. The only uncertainty left in terms of power is about
comparing x-specific and z-specific measures.

Interestingly, under the SFM, the (x, z)-specific measures are equal to the
z-specific measures. This result cannot be deduced from the structural basis
expansions above (Eq. 4.72-4.76), but requires the assumptions encoded in the
SFM (namely the absence of backdoor paths from X to Y conditional on Z).
This equivalence of z- and (x, z)-specific measures under the SFM shows that
z-specific measures are in fact more powerful than the x-specific ones, although
this need not be the case in general. Following this discussion, we are ready to
present the main result regarding the measures introduced above (while, as
discussed, for spurious effects we rely on general and x-specific notions):
Theorem 4.4 (z-specific FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) Solution). The
total variation measure can be decomposed as

TVx0,x1(y) =
∑
z

z-DEx0,x1(y | z)P (z)−
∑
z

z-IEx1,x0(y | z)P (z)

− (Exp-SEx0(y)− Exp-SEx1(y)) (4.83)

=
∑
z

(x, z)-DEx0,x1(y | x, z)P (z | x) (4.84)

−
∑
z

(x, z)-IEx1,x0(y | x, z)P (z | x) − x-SEx1,x0(y).

Further, the measures z-DE and (x, z)-DE are admissible w.r.t. Str-DE, whereas
z-IE and (x, z)-IE are admissible w.r.t. Str-IE. Moreover, the following power
relations hold:

(x, z)-DE-fair ◦−→ z-DE-fair ◦−→ NDE-fair, (4.85)
(x, z)-IE-fair ◦−→ z-IE-fair ◦−→ NIE-fair, (4.86)

and also
(x, z)-DE-fair ◦−→ x-DE-fair, (4.87)
(x, z)-IE-fair ◦−→ x-IE-fair. (4.88)

Additionally, under the SFM, we can say that:
z-DE-fair ◦−→ x-DE-fair, (4.89)
z-IE-fair ◦−→ x-IE-fair. (4.90)

Therefore, under the SFM, the measures
(µDE , µIE , µSE) = (z-DEx0,x1(y), z-IEx1,x0(y), x-SEx1,x0(y))

give a more powerful solution to FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) than
the x-specific ones.
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With z-specific measures in hand, we revisit Ex. 4.1, which showed that the
NDE can equal 0 even though direct discrimination exists:

Example 4.3 (Revisiting Startup Hiring & NDE Lack of Power). Consider the
SCMM given in Eq. 4.24-4.28. For Z = 0 we compute the z-specific direct
effects as:

z-DE(y | Z = 0) = P (yx1,Wx0
| Z = 0)− P (yx0 | Z = 0) (4.91)

= P (Bernoulli(1
5(1− Z) + 1

6W ) = 1 | Z = 0) (4.92)

− P (Bernoulli(1
5(Z) + 1

6W ) = 1 | Z = 0)

=
∑

w∈{0,1}

P (w)[15 + 1
6w −

1
6w] = 1

5 . (4.93)

In words, when considering younger applicants (Z = 0), females are 20% less
likely to be hired than their male counterparts. �

Interestingly, note that the z-specific DE is able to detect discrimination in
the above example, and finds an even larger disparity transmitted through the
direct mechanism compared to the x-specific DE measure in Ex. 4.2.

4.1.3 More informative contrasts (V ′ ⊆ V -specific).

In case even more detailed measures of fairness are needed, we can consider
specific subsets of the observed variables, V ′ ⊆ V . For example, we might be
interested in quantifying discrimination for specific units u that correspond
to Z(u) = z,W (u) = w (for example quantifying discrimination for a specific
age group with a specific level of education). Other choices of V ′ than {Z,W}
are possible, but due to a large number of possibilities, we do not cover all
of them here. Instead, we define generic v′-specific measures for an arbitrary
choice of v′:

Definition 4.7 (V ′ ⊆ V -specific TE, DE and IE). Let V ′ ⊆ V be a subset of
the observables V . For any fixed value of V ′ = v′, we define the v′-specific
total, direct, and indirect effects as:

v′-TEx0,x1(y | v′) = P (yx1 | v′)− P (yx0 | v′) (4.94)
v′-DEx0,x1(y | v′) = P (yx1,Wx0

| v′)− P (yx0 | v′) (4.95)
v′-IEx1,x0(y | v′) = P (yx1,Wx0

| v′)− P (yx1 | v′). (4.96)

Once more, these measures admit a structural basis expansion and can be
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written as contrasts:
v′-DEx0,x1(y | v′) =

∑
u

[yx1,Wx0
(u)− yx0(u)]P (u | v′) (4.97)

= C(x0, {x1,Wx0}, v′, v′) (4.98)

v′-IEx1,x0(y | v′) =
∑
u

[yx1,Wx0
(u)− yx1(u)]P (u | v′) (4.99)

= C(x1, {x1,Wx0}, v′, v′). (4.100)
Similarly as in the z-specific case, the notion of a spurious effect is lacking
whenever Z ⊆ V ′, so once again we rely on previously developed notions of
spurious effects. Importantly, the v′-specific measures give an even stronger
solution to FPCFA than the z- or (x, z)-specific measures:
Theorem 4.5 (v′-specific FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) Solution). Sup-
pose V ′ ⊆ V is a subset of the observables that contains both X and Z. The
total variation measure can be decomposed as

TVx0,x1(y) =
∑
v′

v′-DEx0,x1(y | v′)P (v′ | x) (4.101)

−
∑
v′

v′-IEx1,x0(y | v′)P (v′ | x)− x-SEx1,x0(y).

Further, the measures v′-{DE, IE} are admissible w.r.t. Str-DE, Str-IE, respec-
tively. Moreover, the v′-specific family is more powerful than the (x, z)-specific,
namely:

v′-DE-fair ◦−→ (x, z)-DE-fair, (4.102)
v′-IE-fair ◦−→ (x, z)-IE-fair. (4.103)

Therefore, the measures
(µDE , µIE , µSE) = (v′-DEx0,x1(y), v′-IEx1,x0(y), x-SEx1,x0(y))

give a more powerful solution to FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) than
the z- or (x, z)-specific ones.
The next example illustrates why having more flexible, v′-specific measures
can be informative, and therefore useful in some practical settings.
Example 4.4 (Startup Hiring – Version II). A startup company is hiring em-
ployees. Let X ∈ {x0, x1} denote female and male applicants respectively. The
employment decision Y ∈ {0, 1} is based on gender and education level W .
The SCMM is given by:

X ← Bernoulli(0.5) (4.104)
W ← N (14, 4) (4.105)

Y ← Bernoulli
(
0.1 + W

50 + 0.1 ·X · 1(W < 20)
)
. (4.106)



52 Total Variation Family

Since there are no confounders (Z = ∅), general, x-specific and z-specific effects
are all equal:

NDEx0,x1(y) = x-DEx0,x1(y | x) = z-DEx0,x1(y | z) = 9.2%. (4.107)

Therefore, there is clearly direct discrimination against female employees by
the company.

The company argues in the legal proceedings that in the high-tech industry,
they are mostly concerned with highly educated individuals. In words, they
should be asked whether they discriminate highly educated female applicants,
which is represented through the quantity w-DEx0,x1(y | w > 20). The quantity
in fact equals

w-DEx0,x1(y | w > 20) = 0%, (4.108)

In words, the company’s claim was accurate since highly educated individuals
were not discriminated against. �

What the example shows is that v′-specific measures can sometimes capture
aspects of discrimination that otherwise cannot be quantified using general,
x-specific, or z-specific measures.

Probabilities of causation. Remarkably, the v′-specific measures carry a
fundamental connection to what is known in the literature as probabilities of
causation (Pearl, 2000, Ch. 9). For example, by picking event v′ = {x0, y0},
the measure v′-TE becomes

(x, y)-TEx0,x1(y | x0, y0) = P (yx1 | x0, y0)− P (yx0 | x0, y0), (4.109)

where y is a shortcut to Y = 1. First, note that P (yx0 | x0, y0) = P (y | x0, y0),
since by the consistency axiom Y = Yx0 whenever X = x0. Obviously, P (y |
x0, y0) = 0 since y0 6= 1. Putting these together, the r.h.s. of Eq. 4.109 can be
re-written as

(x, y)-TEx0,x1(y | x0, y0) = P (yx1 | x0, y0), (4.110)

which is known as the probability of sufficiency (Pearl, 2000, Def. 9.2.2). The
measure computes the probability that a change in attribute from X = x0 to
X = x1 produces a change in outcome from Y = y0 to Y = y1, or, in words,
how likely X’s value is to be “sufficient” for producing y1. Along similar lines,
v′-TE for the event v′ = {x1, y1} can be written as

(x, y)-TEx0,x1(y | x1, y1) = P (yx1 | x1, y1)− P (yx0 | x1, y1) (4.111)
= 1− P (yx0 | x1, y1) (4.112)
= P (yx0 = 0 | x1, y1), (4.113)
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which is known as the probability of necessity (Pearl, 2000, Def. 9.2.1). The
second line of the derivation follows from the consistency axiom, and the fact
that Y = 1 in the factual world. The measure computes the probability that a
change in attribute from X = x1 to X = x0 produces a change in outcome
from Y = y1 to Y = y0, or how often X’s value is “necessary” for producing
y1. These two types of variations usually appear together and may be modeled
through what is known as the probability of necessity and sufficiency (PNS).
We refer readers to (Pearl, 2000, Ch. 9) for a further discussion.

4.1.4 Unit-level Contrasts - δu
Finally, the most powerful measures to consider are unit-level measures, as
defined next:

Definition 4.8 (Unit-level TE, DE, and IE). Given a unit U = u, the unit-level
total, direct, and indirect effects are given by

u-TEx0,x1(y(u)) = yx1(u)− yx0(u) = C(x0, x1, u, u) (4.114)
u-DEx0,x1(y(u)) = yx1,Wx0

(u)− yx0(u) = C(x0, {x1,Wx0}, u, u) (4.115)
u-IEx1,x0(y(u)) = yx1,Wx0

(u)− yx1(u) = C(x1, {x1,Wx0}, u, u). (4.116)

For unit-level measures the posterior distribution that is used as a weighting
term is δu, where δ is the Dirac delta function. The unit-level measures can
be seen as the canonical basis from which all other measures are expanded.
They also give the strongest theoretical solution to the FPCFA, once again,
with the help of x-specific spurious effect developed earlier:

Theorem 4.6 (Unit-level FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) Solution). The
total variation measure can be decomposed as

TVx0,x1(y) =
∑
u

u-DEx0,x1(y(u))P (u | x) (4.117)

−
∑
u

u-IEx1,x0(y(u))P (u | x)− x-SEx1,x0(y).

Further, the measures u-{DE, IE} are admissible w.r.t. Str-DE, Str-IE, respec-
tively. Moreover, the u-specific family is more powerful than the v′-specific,
namely:

u-DE-fair =⇒ v′-DE-fair, (4.118)
u-IE-fair =⇒ v′-IE-fair. (4.119)

Therefore, the measures

(µDE , µIE , µSE) = (u-DEx0,x1(y), u-IEx1,x0(y), x-SEx1,x0(y))

give the most powerful solution to FPCFA(Str-{DE,IE,SE},TVx0,x1(y)).
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The unit-level measures represent the most refined level at which discrimination
can be described. In fact, introducing these measures also brings us to the
final level of the population axis of the explainability plane (Fig. 3.3). Recall,
the population axis ranges from the general population measures (with a
posterior P (u)), all the way to the deterministic measures which consider a
single unit (with a posterior δu), eliciting a range of measures which may be
useful for fairness analysis. We next move onto giving a systematic overview
of the TV-family of measures that was introduced in this section.

4.2 Summary of the TV-family & the Fairness Map

To facilitate comparison and understanding after introducing the measures of
the TV-family, we show how they can be more explicitly written as contrasts:

Lemma 4.7 (TV-family as Contrasts). The TV-family of causal fairness mea-
sures is a collection of contrasts C(C0, C1, E0, E1) (Def. 3.7) that follow the
specific instantiations of counterfactual and factual clauses, C0, C1, E0, E1, as
described in Tab. 4.1.

Measure C0 C1 E0 E1

ge
ne

ra
l TVx0,x1 ∅ ∅ x0 x1

Exp-SEx x x ∅ x
TEx0,x1 x0 x1 ∅ ∅
NDEx0,x1 x0 x1,Wx0 ∅ ∅
NIEx0,x1 x0 x0,Wx1 ∅ ∅

X
=
x

x-TEx0,x1 x0 x1 x x
x-SEx0,x1 x0 x0 x0 x1
x-TEx0,x1 x0 x1 x x
x-DEx0,x1 x0 x1,Wx0 x x
x-IEx0,x1 x0 x0,Wx1 x x

Z
=
z z-TEx0,x1 x0 x1 z z
z-DEx0,x1 x0 x1,Wx0 z z
z-IEx0,x1 x0 x0,Wx1 z z

V
′
⊆
V v′-TEx0,x1 x0 x1 v′ v′

v′-TEx0,x1 x0 x1 v′ v′

v′-DEx0,x1 x0 x1,Wx0 v′ v′

v′-IEx0,x1 x0 x0,Wx1 v′ v′

un
it u-TEx0,x1 x0 x1 u u

u-TEx0,x1 x0 x1 u u
u-DEx0,x1 x0 x1,Wx0 u u
u-IEx0,x1 x0 x0,Wx1 u u

Table 4.1: Measures of fairness in the TV-
family.

A few things are worth noting rel-
ative to this taxonomy. First, the
measures are grouped into five cat-
egories, based on the granularity
of the events E0, E1. For each of
the contrasts, we define a criterion
based on the resulting measure.
Namely, we say Y is fair with re-
spect to X in the x-TE measure
if x-TEx0,x1(y | x) = 0 ∀x. We
write x-TE-fairX(Y ) for this con-
dition, or x-TE-fair, for short.

Further note that Tab. 4.1
has a distinct structure. In par-
ticular, the contrasts correspond-
ing to TE, DE, and IE measures
have repeating (equal) counterfac-
tual clauses C0 and C1, whereas
the conditioning event E changes.
Contrasts corresponding to the
SE measures, as was noted in
Thm. 3.1 and in previous sections,
are only possible at the popula-
tion and x-specific level. Mathematically, the measures in the table, but for
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the spurious effects, can be written more succinctly as
E-TEx0,x1(y | E) = C(x0, x1, E,E)
E-DEx0,x1(y | E) = C(x0, {x1,Wx0}, E,E)
E-IEx0,x1(y | E) = C(x0, {x0,Wx1}, E,E)


for E ∈ {∅, x, z, v′, u}. (4.120)

Apart from the overarching structure underlying the measures, as described in
Tab. 4.1, there is more structure across them as delineated in the next result,
which comes under the rubric of the fairness map.

Theorem 4.8 (Fairness Map). The total variation (TV) family of causal mea-
sures of fairness admits a number of relations of decomposability, admissibility,
and power, which are represented in what we call the Fairness Map, as shown
in Fig. 4.5.

In words, the measures of the TV-family satisfy an entire hierarchy of
relations in terms of the properties discussed so far, namely, admissibility,
decomposability, and power. This hierarchy is one of the main results of this
manuscript. There are several observations worth making at this point. First,
each arrow in Fig. 4.5 corresponds to an implication, and the full and more
syntactic version of the map is provided in the Appendix A.1, including the
proofs. There are different ways of reading the map, and perhaps the most
natural one is to navigate along the two axes, mechanisms and population,
which match the dimensions of the explainability plane discussed earlier
(Fig. 3.3/Sec. 3.2).

Navigating the Map. Note that the mechanism axis is partitioned into two
categories: Composite and Atomic measures, as indicated by the vertical line
in the map. Atomic measures (direct, indirect, spurious) capture the most
refined notions of fairness when working with the Standard Fairness Model
(SFM). Composite measures, on the other hand, include measures of total (or
causal) effect, and the total variation (TV) measure. Measures of total effect
are composite since they capture both direct and indirect variations, whereas
the TV measure is composite as it includes direct, indirect, and spurious
variations.

In a complementary manner, the population axis can also be divided
into two categories: Structural versus Empirical notions, as indicated by the
horizontal line on the map. First, there are the elementary structural fairness
criteria (as defined in Def. 3.2), representing idealized, qualitative notions of
discrimination that can be directly evaluated using an SCM. Additionally,
the unit-level measures, which quantify discrimination for each unit of the
population, are the measures of fairness closest to the structural notions.
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Figure 4.5: Fairness Map for the TV-family of measures. The horizontal axis
represent the mechanisms (causal, spurious, direct, and indirect), and the vertical
axis the events that capture increasingly more granular sub-populations, from gen-
eral (P (u)) to unit level, and structural. The arrow =⇒ indicates relations of
admissibility, ◦−→ of power, and 99K of decomposability.

While these can be computed directly from the SCM, they are almost never
obtainable in practice. Secondly, the empirical measures are positioned above
the structural notions. These may be estimated from the available dataset
combined with assumptions about the underlying generative processes.

Given this initial structure of the Map, we note this is a preliminary
characterization, and then navigate through the axes in a more detailed
manner, along each of them separately.

Population Axis (vertical) – Admissibility & Power Relations. When read-
ing the map vertically, from bottom to top, one can find all power and admis-
sibility relations from Thm. 4.2 to Thm. 4.6. For example, the last column of
the map (“indirect”) shows that

Str-IE =⇒ u-IE ◦−→ v′-IE ◦−→ z-IE ◦−→ x-IE ◦−→ NIE. (4.121)

In words, this says that:

(i) unit IE is admissible w.r.t. structural IE;
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(ii) unit IE is more powerful than v′-IE, which is more powerful than z-IE,
which is more powerful than x-IE, which is more powerful than NIE;

(iii) by transitivity of the admissibility and power relations, it follows that
every measure in the column is admissible w.r.t. structural IE.

The other columns of the map can be interpreted in a similar fashion.

Mechanisms Axis (horizontal) – Decomposability Relations. When read-
ing the map horizontally, from the right to the left, the decomposability
relations are encoded. For example, consider the first row of the map (“gen-
eral”), it shows that

TE 99K NDE ∧NIE (4.122)
TV 99K TE ∧ Exp-SE, (4.123)

In words, this says that:

(i) the total variation (TV) can be decomposed into the total (TE) and ex-
perimental spurious effects (Exp-SE),

(ii) the total effect (TE) can further be decomposed into natural direct effect
(NDE) and natural indirect effect (NIE),

(iii) More explicitly, these relations can be combined and written as:

TV 99K NDE ∧NIE ∧ Exp-SE. (4.124)

More strongly, this can be stated for every level of the population axis
(i.e., the TE is decomposed into DE and IE at every level), as shown next:

Corollary 4.9 (Extended Mediation Formula). The total effect admits a decom-
position into its direct and indirect parts, at every level of granularity of event
E in the Fairness Map in Fig. 4.5. Formally, we can say that

TEx0,x1(y) = NDEx0,x1(y)−NIEx1,x0(y) (4.125)
x-TEx0,x1(y | x) = x-DEx0,x1(y | x)− x-IEx1,x0(y | x) (4.126)
z-TEx0,x1(y | z) = z-DEx0,x1(y | z)− z-IEx1,x0(y | z) (4.127)
v′-TEx0,x1(y | v′) = v′-DEx0,x1(y | v′)− v′-IEx1,x0(y | v′) (4.128)
u-TEx0,x1(y(u)) = u-DEx0,x1(y(u))− u-IEx1,x0(y(u)). (4.129)

Furthermore, the TV measure admits different expansions into DE, IE,
and SE measures (as shown in Thm. 4.2-4.6). The importance of these decom-
positions was already stated earlier, as they played a crucial role in solving
the decomposability part of the FPCFA.
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In summary, the Fairness Map represents a general, theoretical solution
to the FPCFA, and shows how the gap between the observed (TV in the top
left of the map) and the structural (bottom of the map) can be bridged from
first principles. The map therefore, in principle, closes the problem pervasive
throughout the literature, as formalized earlier in this manuscript.

4.3 The Identification Problem & the FPCFA in Practice

The Fairness Map introduced in Thm. 4.8 contains various admissible measures
w.r.t. to different structural mechanisms. All these measures are well-defined
and computable from the underlying data-generating model, the true SCM
M. However,M is not available in practice, which was the very motivation
for engaging in the discussions so far, and finding proxies for the structural
measures. One key consideration that follows is which of these measures can be
computed in practice, given (1) a set of assumptions A about the underlying
M and (2) data from past decisions generated byM. This question indeed can
be seen as a problem of identifiability (Pearl, 2000, Sec. 3.2.4). We formalize
this notion considering the context of this discussion.

Definition 4.9 (Identifiability). LetM = 〈V,U,F , P (u)〉 be the true, generative
SCM,A a set of assumptions, and P (v) the observational distribution generated
byM. Let ΩA the space of all SCMs compatible with A. Let φ be a query
that can be computed fromM. The quantity φ is said to be identifiable from
ΩA and the observational distribution P (V ) if

∀M1,M2 ∈ ΩA : AM1 = AM2 and (4.130)
PM1(V ) = PM2(V ) =⇒ φ(M1) = φ(M2). (4.131)

In words, if any two SCMs agree with the set of assumptions (A) and also
generate the same observational distribution (P (v)), then they should agree
with the answer to the query φ.

A query φ is identifiable if it can be uniquely computed from the combination
of qualitative assumptions and empirical data. In fact, the lack of identifiability
means that one cannot compute the value of φ from the observational data
and the set of assumptions, i.e., the gap between the true generative process,
M, and the feature that we are trying to obtain from it, φ, is too large, and
cannot be bridged through the pair 〈A, P (v)〉. In practice, one common way
of articulating assumptions aboutM is through the use of causal diagrams.
Whenever the causal diagram is known, we can then write the following:

ΩG = {M :M compatible with G}, (4.132)
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where compatibility is related to sharing the same causal diagram, which
encodes qualitative assumptions, following the construction in Def. 2.610.

Example 4.5 ((Non-)Identifiability of Measures). Let ΩG be the space of SCMs
that are compatible with the causal diagram G

X

W

Y

.

When considering the quantities TEx0,x1(y) and NIEx0,x1(y) in this context,
we can say that:

(i) quantity TEx0,x1(y) is identifiable over ΩG ,

(ii) quantity NIEx0,x1(y) is not identifiable over ΩG .

In fact, for any SCM in ΩG , we have that TEx0,x1(y) is equal to

P (y | x1)− P (y | x0). (4.133)

To show that NIEx0,x1(y) is not identifiable, consider the following two SCMs:

M1 :=


X ← UX (4.134)
W ← 1(UD < 0.2 + 0.4X + 0.4UWY ) (4.135)
Y ← 1(UY < 0.1X + 0.7W + 0.1UWY ), (4.136)

M2 :=


X ← UX (4.137)
W ← 1(UD < 0.2 + 0.4X + 0.4UWY ) (4.138)
Y ← 1(UY < 0.2X + 0.1W + 0.7UWY ), (4.139)

where UX , UD, UWY and UY are independent, exogenous variables, with
UX , UWY binary with P (UX = 1) = P (UWY = 1) = 1

2 , and UD, UY dis-
tributed uniformly Unif[0, 1]. BothM1,M2 are compatible with G and hence
are in ΩG . The reader can verify that the two SCMs generate the same
observational distribution. However, computing that

NIEM1
x0,x1

(y) = 28% 6= NIEM2
x0,x1

(y) = 4% (4.140)

shows lack of identifiability in the given context. �

10For a more formal account of this notion, see discussion on CBNs in Bareinboim
et al., 2022, Sec. 1.3)
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Following the discussion in Sec. 2.3, we noted that one SCMM induces a
particular causal diagram G. Still, specifying the precise G may be non-trivial
in practice, and we hence introduced the standard fairness model (SFM). In
this case, we will be particularly interested in the set of SCMs defined by
the SFM projection of the causal diagram, which is called ΩSFM . Reasoning
within the ΩSFM space has two interesting consequences. First, identification
is in principle more challenging since this context is generally larger, containing
more SCMs than the true ΩG . Given that more SCMs implies the possibility
of finding an alternative SCM that agrees with the assumptions and P (v),
and disagrees in the query, identifiability will in general be less frequent. Still,
second, since the SFM projection encodes fewer assumptions than the specific
causal diagram G, from the fairness analyst’s perspective, it will be in general
easier to elicit such knowledge to construct a diagram. This situation is more
visibly seen through Fig. 4.6.

We now extend the FPCFA to account for the identifiability issues discussed
above:

Definition 4.10 (FPCFA continued with Identifiability). [Ω, Q as before] LetM
be the true, unobserved generative SCM, A a set of assumptions, and P (v)
the observational distribution generated byM. Let ΩA the space of all SCMs
compatible with A. The Fundamental Problem of Causal Fairness Analysis is
to find a collection of measures µ1, . . . , µk such that the following properties
are satisfied:

(1) µ is decomposable w.r.t. µ1, . . . , µk;

(2) µ1, . . . , µk are admissible w.r.t. the structural fairness criteriaQ1, . . . , Qk.

(3) µ1, . . . , µk are as powerful as possible.

(4) µ1, . . . , µk are identifiable from the observational distribution P (v) and
class ΩA.

The first question we ask is about solving Step (4) of FPCFA when having
the full causal graph G. To this end, we state the following theorem:

Theorem 4.10 (Identifiability over ΩG). Let G be a causal diagram compatible
with the SFM and let ΩG be the context defined based on G. Then,

(i) TE, NDE, NIE, and Exp-SE are identifiable,

(ii) x-TE, x-DE, x-IE, and x-SE are identifiable,

(iii) z-TE, z-DE, and z-IE are identifiable,
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(iv) if {W,Y } ∩ V ′ 6= ∅, then v′-TE , v′-DE , and v′-IE are not identifiable
except in degenerate cases, and excluding the measures (x,w)-DE and
(x, z, w)-DE which are identifiable,

(v) u-TE, u-DE, and u-IE are not identifiable except in degenerate cases.

By degenerate cases we refer to instances in which a measure is equal to 0 and
identifiable from the absence of pathways (edges) in the graph.

For example, v′-DE or u-DE could be identifiable (and equal to 0) if the causal
diagram G does not contain the arrow X → Y (this is a case we call degenerate
in the above theorem). In summary, we can claim that general, x-specific, and
z-specific measures are identifiable over ΩG whenever G is compatible with
the SFM. However, v′ or unit level measures are in general not identifiable,
without additional assumptions.

Figure 4.6: Spaces of SCMs
(left) and Causal Diagrams (right).
(Left) Each point corresponds to
a fully instantiated SCM. The
SCMs compatible with the dia-
gram G are shown in light blue,
and the ones with the SFM in
dark blue. (Right) Each point cor-
responds to a causal diagram. The
lightest green dot corresponds to
the true diagram G, while the ones
in the light green area correspond
to different diagrams compatible
with the SFM assumption.

The important next question we ask is
whether there is a gap in solving the FPCFA
under the context ΩSFM compared to ΩG .
In the first instance, as shown in the follow-
ing theorem, the answer is negative, show-
ing formally show why our definition of the
SFM is indeed sensible in the context of
FPCFA(Str-{DE,IE,SE},TVx0,x1(y)):

Theorem 4.11 (Identifiability over ΩSFM &
Soundness of SFM). Under the Standard Fair-
ness Model (SFM) the orientation of edges
within possibly multidimensional variable
sets Z and W does not change any of gen-
eral, x-specific or z-specific measures. That
is, if two diagrams G1 and G2 have the same
projection to the Standard Fairness Model,
i.e.,

ΠSFM(G1) = ΠSFM(G2) (4.141)

then any measure µ(P (v),G) will satisfy

µ(P (v),G1) = µ(P (v),G2) = µ(P (v),GSFM). (4.142)

That is, if measures µ1, . . . , µk in Step (4) of FPCFA in Def. 4.10 are identifiable
over the class of SCMs ΩG corresponding to a causal diagram G, then they are
also identifiable over the class of SCMs ΩSFM corresponding to the diagram’s
SFM projection GSFM. The notation µ(P (v),G) indicates the measures are
computed based on the observational distribution P (v) and the causal diagram
G (as opposed to being computed based on the SCMM as before).
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The proofs of Thm. 4.10 and 4.11 are given in Appendix A.2, together with
a discussion on relaxing the assumptions of the SFM, and a discussion on
the estimation of measures. The theorem shows that the SFM projection of a
diagram GSFM is equally useful as the fully specified diagram G for computing
any of the general, x-specific or z-specific measures in Lem. 4.7. That is,
specifying more precisely the causal structure contained in multivariate nodes
Z and W would not change the values of the different measures. The SFM
projection GSFM can be understood as a coarsening of the equivalence class of
SCMs compatible with the graph G. Perhaps surprisingly, this coarsening does
not hurt the identifiability of some of the most interesting measures. Moreover,
for computing the v′-specific and unit-level measures, additional assumptions
would be necessary, even if the full diagram G was available (see Appendix A.2
for more details). The key observation is that v′-specific measures require the
identification of the joint counterfactual distribution P (v′x0

, v′x1
), and these

two potential outcomes are never observed simultaneously. Therefore, unless
we are interested in v′-specific or unit-level measures, we can simply focus on
constructing the GSFM and not worry about full details of the diagram G. The
formulation of FPCFA with identifiability uncovers an interesting interplay of
power and identifiability, in which increasingly strong assumptions are needed
to identify more powerful measures.

Sensitivity Analyses. Identification results derived in the preceding section
are based on the assumptions encoded in the SFM. However, if the lack-of-
confounding assumptions of the SFM (encoded in the absence of bidirected
edges) are violated, estimating effects based on the derived identification
expressions may lead to incorrect results. In such settings, a possible approach
is to perform a type of sensitivity analysis, in which we attempt to understand
how much the effect estimates would change if unobserved confounding was
actually present. For instance, we may be interested in how the estimate of, say,
the direct effect would change for varying strengths of unobserved confounding
between the attribute X and the outcome Y (this would correspond to a
bidirected X L9999K Y edge). This type of approach would allow one to quantify
how robust the effect estimates are with respect to violations of the SFM
assumptions. There is important previous literature on this topic, but the most
common focus is on conditional total effects in a setting with no mediators (i.e.,
the z-TE quantity in Eq. 4.65 for an SFM withW = ∅) (Ding and VanderWeele,
2016). Other interesting works focus mainly on the linear setting (Cinelli and
Hazlett, 2020; Cinelli et al., 2019). Therefore, adapting the existing methods
to the setting of estimating x-specific or population-level direct, indirect,
and spurious in a non-parametric fashion represents an important technical
challenge that we leave for future work.
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4.4 Other relations with the literature

Equipped with the Fairness Map, which was the culmination of understanding
the relationship between a multitude of measures, we can now analyze the
connection of Causal Fairness Analysis with some influential previous works
that articulated other measures in the literature. In particular, we will discuss
the criteria of counterfactual fairness (Sec. 4.4.1), individual fairness (Sec. 4.4.2),
and predictive parity (Sec. 4.4.3).

4.4.1 Criterion 1. Counterfactual Fairness
One criterion that has received considerable attention in the literature is
called counterfactual fairness (Kusner et al., 2017). Noteworthy in terms of
terminology, the name counterfactual fairness is a misnomer, and may be
misleading, as there are various measures that are counterfactual in nature and
could be employed to reason about fairness, following the previous discussion
and the Fairness Map (Fig. 4.5). In this section, we elaborate on some important
limitations of the criterion.

To begin with, the definition of the proposed criterion is somewhat ambigu-
ous in regard to whether it represents a unit-level quantity or a probabilistic-
type of counterfactual11. To understand the issue, we list in the sequel three
possible definitions compatible with the original paper, and then discuss their
interpretations:

(i) Counterfactual Fairness – Unit-level (Ctf (u)fair ):

yx′(u)− yx(u) = 0, ∀x, x′, u ∈ U . (4.143)

(ii) Counterfactual Fairness – Unit-level/probabilistic version (Ctf(up)fair ):

P (yx(u) | X = x,W = w) = P (yx′(u) | X = x,W = w), ∀x, x′, w.
(4.144)

(iii) Counterfactual Fairness – Population-level (Ctf (p)fair ):

P (yx | X = x,W = w) = P (yx′ | X = x,W = w), ∀x, x′, w. (4.145)

In fact, the paper uses the unit-level probabilistic version (Ctf(up)fair ) as its core
definition (Kusner et al., 2017, Def. 5), which is a direct translation to our
notation so as to make the context and comparisons more transparent. 12

11For various reasons, probabilistic measures tend to be discussed in the literature.
12In particular, the original paper uses A for the protected attribute, where we

use X, and it uses X for the remaining attributes where we use W .
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The authors “emphasize that counterfactual fairness is an individual-level
definition, which is substantially different from comparing different individuals
that happen to share the same “treatment” X = x and coincide on the
values of W = w” (Kusner et al., 2017, Sec. 3). Interestingly, this seems a
deliberate choice and suggest a unit-level definition of fairness. Importantly,
the probabilistic unit-level (Ctf (up)fair ) and the unit-level definition (Ctf (u)fair ) are
equivalent, as shown next:

Proposition 4.2 (Ctf(up)
fair ⇐⇒ Ctf (u)

fair ). The unit-level counterfactual fairness
(Eq. 4.143) and the unit-level/probabilistic counterfactual fairness (Eq. 4.144)
criteria are equivalent.

This proposition suggests that the notation used in the original definition of
the counterfactual fairness criterion, Ctf(up)fair , entails some confusion. In words,
once the unit U = u is specified, as originally stated in the criterion, Yx(u) is
fully determined. It is therefore redundant, and there is no need for considering
or conditioning on event X = x,W = w, as this is implied by the choice of
the unit u.

However, the authors also state that “the distribution over possible pre-
dictions for an individual should remain unchanged in a world where an
individual’s protected attributes had been different” (Kusner et al., 2017,
Sec. 1). As explained above, if the unit U = u is known, there are no proba-
bilities involved, and the statements are deterministic. Therefore, under the
alternative description the authors provide, a different formulation of the
criterion is needed. In fact, if the goal is to have a probabilistic counterpart of
Eq. 4.143, as the above statement might lead one to think, then the unit U = u

should be removed altogether, which leads more explicitly to Ctf(p)fair definition,
as displayed in Eq. 4.145. Interestingly, using structural basis expansion from
Thm. 3.1, we can show the relation of the unit- and the probabilistic-level
definitions:

Proposition 4.3 (Ctf(p)
fair is a probabilistic average of Ctf (u)

fair ). Consider the fol-
lowing measure:

(x,w)-TEx,x′(y | x,w) = P (yx′ | X = x,W = w)− P (yx | X = x,W = w).
(4.146)

Then, the Ctf(p)fair criterion is equivalent to (x,w)-TEx,x′(y | x,w) = 0, ∀x, x′, w.
Furthermore, the measure underlying the Ctf(p)fair criterion can be written as

(x,w)-TEx,x′(y | x,w) =
∑
u

[yx′(u)− yx(u)]P (u | x,w). (4.147)

In words, Prop. 4.3 shows that probabilistic counterfactual fairness criterion
takes an average of the unit level differences yx′(u)− yx(u), weighted by the
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posterior P (u | x,w), and requires the average to be equal to 0. Note the
difference between this definition and the unit-level definition, which requires
every unit-level difference yx′(u)− yx(u) to be 0.

After explaining the difference between the two possible and qualitatively
different interpretations of counterfactual fairness, and clearing up the nota-
tional confusion with respect to fixing a unit U = u, we now discuss somewhat
more serious issues limitations of the criterion, including from a conceptual,
technical, and practical viewpoints. In fact, the issues listed below apply to
both the Ctf(u)fair and Ctf(p)fair interpretations of counterfactual fairness, with the
three major points being:

1. inadmissibility of Ctf(u)fair and Ctf(p)fair with respect to Str-{DE,IE,SE},

2. lack of accounting for spurious effects, and

3. hardness/impossibility of identifiability.

Limitation 1. Inadmissibility w.r.t. Str-{DE,IE,SE}

As formally shown in the following result, the counterfactual fairness measure
is inadmissible w.r.t. any of the structural criteria:

Proposition 4.4 (Unit-TE, (x,w)-TE not admissible). The unit-level total effect
(unit-TEx0,x1(y)) and the (x,w)-specific total effect ((x,w)-TEx0,x1(y | x,w))
are both not admissible w.r.t. the structural direct, indirect, and spurious
criteria. Formally, we write

Str-DE-fair 6=⇒ unit-TE-fair, Str-DE-fair 6=⇒ (x,w)-TE-fair (4.148)
Str-IE-fair 6=⇒ unit-TE-fair, Str-IE-fair 6=⇒ (x,w)-TE-fair (4.149)
Str-SE-fair 6=⇒ unit-TE-fair, Str-SE-fair 6=⇒ (x,w)-TE-fair. (4.150)

The importance of this result stems from the fact that even if one is able to
ascertain that

yx1(u)−yx0(u) = 0 ∀u, or
P (yx1 | X = x,W = w)−P (yx0 | X = x,W = w) = 0 ∀x,w,

it could still be that case that neither the direct nor the indirect (nor the
spurious) effects are equal to 0. The broader discussion around the Fairness
Map, and the idea of decomposability of measures into admissible ones was
introduced precisely to avoid such situations. The next example highlights this
issue more vividly.
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Example 4.6 (Startup Hiring Continued - Salaries). The startup company from
Ex. 4.1 has closed the hiring season. In the hiring process, the company
achieved demographic parity, which means in this context that 50% of new
hires were female. Now, the company needs to decide on each employee’s salary.
In an attempt of the company to be fair, each employee is evaluated on how
well they perform their tasks. The salary Y is then determined based on this
information, but, due to a subconscious bias of the executive determining
the salaries, gender also affects how salaries are determined. The SCMM∗
corresponding to this process is:

F∗, P ∗(U) :



X ← UX

W ← −X + UW

Y ← X +W + UY .

UX ∈ {0, 1}, P (UX = 1) = 0.5,
UW , UY ∼ N(0, 1).

(4.151)
(4.152)
(4.153)

(4.154)
(4.155)

For any unit u = (ux, uw, uy), we can compute that
yx1(u)− yx0(u) = (1 + (−1 + uw) + uy)︸ ︷︷ ︸

yx1 (u)

− (0 + (−0 + uw) + uy)︸ ︷︷ ︸
yx0 (u)

= 0,

(4.156)
showing that unit-level total effect is 0. Furthermore, for each choice of X =
x,W = w, it is also true that

P (yx1 | X = x,W = w)− P (yx0 | X = x,W = w) = 0. (4.157)
Therefore, both interpretations of the counterfactual fairness criterion are
satisfied. However, direct discrimination against female employees still exists
since the fy mechanism in Eq. 4.153 assigns a higher salary to male employees.
On the other hand, the mechanism fw in Eq. 4.152 shows that female employees
are better at performing their tasks, and should therefore be paid more.
Nevertheless, the superior performance of female employees in performing their
tasks is canceled out by the direct discrimination favoring males (as witnessed
by Eq. 4.156). In effect, they are paid the same as they would be had they
been male. �

The inability of total effect to detect direct and indirect effects stems from
the fact that the total effect is decomposable (see Cor. 4.9). The example
above illustrates the first critical shortcoming of the criterion proposed by
Kusner et al., 2017, as in any other composite measure, and any optimization
procedure based on it, i.e., zeroing the Ctffair measure, may lead to unintended
side effects and discrimination if implemented in the real world.13

13A formal result of this form is discussed in Thm. 5.1.
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Limitation 2. Ancestral closure & Spurious effects

The purported criterion rules out, by construction, the possibility of existence
of any spurious types of variations. In particular, the argument relies on the
notion introduced in the paper called ancestral closure (AC, for short) w.r.t.
the protected attribute set. The AC requires that all protected attributes and
their parents, and all their ancestors, should be measured and included in the
set of endogenous variables. This is obviously a very stringent requirement,
which is hard to ascertain in practice. The paper then argues that “the fault
should be at the postulated set of protected attributes rather than with the
definition of counterfactual fairness, and that typically we should expect set
X to be closed under ancestral relationships given by the causal graph. For
instance, if Race is a protected attribute, and Mother’s race is a parent of
Race, then it should also be in X”.

Conceptually speaking, we contrast this constraint over the space of models
with the very existence of dashed-bidirected arrows in causal diagrams, as
discussed earlier. These arrows in particular allow for the possibility that
there are variations between X and Z that can be left unexplained in the
model, or unmeasured confounders may exist. Practically speaking, assuming
that no bidirected arrows exist is a strong assumption that does not hold in
many settings. For instance, consider the widely recognized phenomenon in the
fairness literature known as redlining (Zenou and Boccard, 2000; Hernandez,
2009). In some practical settings, the location where loan applicants live may
correlate with their race. Applications might be rejected based on the zip code,
disproportionately affecting certain minority groups in the real world.

It has been reported in the literature that correlation between gender and
location, or religion and location, may possibly exist, and should therefore be
acknowledged through modeling. For instance, the one-child policy affecting
mainly urban areas in China had visible effects in terms of shifting the gender
ratio towards males (Hesketh et al., 2005; Ding and Hesketh, 2006). Beyond
race or gender, religious segregation is also a recognized phenomenon in some
urban areas (Brimicombe, 2007). Again, while we make no claim that location
affects race (or religion), or vice-versa, the bidirected arrows give a degree of
modeling flexibility that allows for the encoding of such co-variations. Still,
this is without making any commitment to whatever historical processes and
other complex dynamics took place and generated such imbalance in the first
place. To corroborate this point, consider the following example:

Example 4.7 (Spurious associations in COMPAS & Adult datasets). A data
scientist is trying to understand the correlation between the features in the
COMPAS dataset. The protected attribute X is race, and the demographic
variables Z1, Z2 are age and sex. The data scientist tests two hypotheses,
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Figure 4.7: Testing for independence of the protected attribute (X) and the
confounders (Z) on the Adult and COMPAS datasets.

namely:

H
(1)
0 : X⊥⊥Z1, (4.158)

H
(2)
0 : X⊥⊥Z2. (4.159)

The association of X and Z1, Z2 are shown graphically in the bottom row
of Fig. 4.7. Both of the hypotheses are rejected (p-values < 0.001). However,
possible confounders of this relationship are not measured in the corresponding
dataset.

Similarly, the same data scientist is now trying to understand the cor-
relation of the features in the Adult dataset. The protected attribute X is
gender, and the demographic variables Z1, Z2 are age and race. The data
scientist tests the independence of sex and age (X⊥⊥Z1), and sex and race
(X⊥⊥Z2), and both hypotheses are rejected (p-values < 0.001, see Fig. 4.7 top
row). Again, possible confounders of this relationship are not measured in
the corresponding dataset, meaning that the attribute X cannot be separated
from the confounders Z1, Z2 using any of the observed variables. �

As the example illustrates, from both a conceptual and practical standpoint,
disallowing the possibility of non-causal relationships and confounding induced
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by some historical or societal context, and the associated spurious effects, can
be an major limitation to any type of fairness analysis.

Limitation 3. Lack of identifiability

An important practical property of any fairness measure is its identifiability
under different sets of causal assumptions. We introduced the notion of identi-
fiability in Sec. 4.3 to better understand when a fairness measure can be used
in practice. We then discussed some necessary assumptions for measures in
the Fairness Map to be identifiable. A significant implication of this prior dis-
cussion in the context of counterfactual fairness is highlighted by the following
result:

Proposition 4.5 (Unit-TE, (x,w)-TE not identifiable). Suppose that M is a
Markovian model and that G is the associated causal diagram. Assume that
the set of mediators between X and Y is non-empty, W 6= ∅. Then, the
measures unit-TEx0,x1(y) and (x,w)-TEx0,x1(y | x,w) are not identifiable
from observational data, even if the fully specified diagram G is known.

The proposition shows that the measures on which counterfactual fairness is
based are never computable from observational data and the causal diagram,
even for models in which Markovianity is assumed to hold. The issue with
these quantities is that they require knowledge of the joint distribution of
counterfactual outcomes Yx1 , Yx0 , which are never observed simultaneously 14.

The issue discussed above obviously curtails the generality of the proposed
method, since the underlying measures are not identifiable immediately, as
illustrated next.

Example 4.8 (Non-ID of Ctf(u)
fair, Ctf

(p)
fair - Startup Salaries Continued). Consider

the SCMM∗ of the Startup Salaries example (Ex. 4.6) given in Eq. 4.151-4.153.
InM∗ we showed that

(x,w)-TEx0,x1(y | x,w) = 0. (4.160)

Consider now an alternative SCMM′ given by:

F ′, P ′(U) :


X ← UX

W ← −X + (−1)XUW
Y ← X +W + UY ,

(4.161)
(4.162)
(4.163)

14Such quantities can be identified only under additional, stronger assumptions,
such as monotonicity (Tian and Pearl, 2000; Plečko and Meinshausen, 2020).
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with the same distribution P (u) over the units as forM∗. It’s verifiable that
that M′ generates the same observational distribution as M∗ and has the
same causal diagram G. However, notice that for u = (1, uw, uy), we have

u-TEx0,x1(y) = yx1(u)− yx0(u) = −2uw 6= 0 whenever uw 6= 0. (4.164)

Furthermore, we have that

(x,w)-TEx0,x1(y | x,w > 0) 6= 0. (4.165)

Therefore,M∗ andM′ generate the same observational distribution and have
the same causal diagram, but differ substantially with respect to counterfactual
fairness. �

The example constructed above is not atypical, but stems from the general
non-identifiability result in Prop. 4.5. These results raise the question as to
whether counterfactual fairness criteria – either Ctf(u)fair or Ctf(p)fair – can be
used for the purpose of bias detection in any practical setting. In fact, to
circumvent the identifiability issue discussed above, the proposal of the paper
is that “the model M∗ must be provided” (Kusner et al., 2017, Sec. 4.2).
This means that the fully specified causal modelM∗ is needed to assess the
existence of discrimination. The assumptions put forward in our manuscript
are concerned with constructing the causal diagram G, or the simplified version
of the diagram in the form of an SFM. In stark contrast, the assumptions
needed to provide the modelM∗ are orders of magnitude stronger than those
needed for constructing the causal diagram or the SFM. This level of knowledge
requires reading the intentions and minds of decision-makers, or having access
to the internal systems and strategic secrets of companies, which are usually
not accessible to outsiders. On the more mathematical side, as alluded to
earlier, inducing such a structural model from observational data alone is
almost never possible (Bareinboim et al., 2022, Thm. 1).

4.4.2 Criterion 2. Individual Fairness
In this section, we discuss a prominent measure introduced by Dwork et
al., 2012 called individual fairness (IF, for short). One of the most natural
intuitions behind fairness is that if we constrain the population in a way that
the units are the same but for the protected attribute, this would allow us to
make claims about the impact of variations of this attribute. In fact, since
nothing else remains to explain the observed disparities, the differences in
outcome would be attributable to the change in the protected attribute.

To ground this intuition, we introduced in Sec. 3 the explainability plane
(Fig. 3.3) spanned by the population and mechanism axes. In terms of the
population axis, we noted that as the event E = e is enlarged, the corre-
sponding measure of fairness becomes more and more individualized. Formally,
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the restriction on the observed information translates into a more precise
subpopulation of the space of unobservable units U . Our earlier analysis relied
on three observations that will be key to comparing other causal measures
with the IF measure and trying to understand its causal implications. First,
the plane is contingent on the assumptions encoded in the SFM. As we will
show formally, assumptions about the underlying causal structure are also
relevant in the framework of IF. Secondly, the explainability plane considers
the admissibility and power of different measures, and we use these notions
to place and understand the IF condition in the context of the Fairness Map.
Thirdly, as highlighted by our analysis of the FPCFA, optimizing based on a
specific composite criterion may in fact fail to remove bias that could be in
principle detected when a more fine-grained analysis of the causal mechanisms
generating the disparity is undertaken. We discuss conditions under which the
IF framework can be given a causal interpretation, and show the framework
is optimizing based on a composite measure. We further provide practical
examples in which this may lead to unintended and potentially harmful side
effects. We start with the definition of individual fairness:

Definition 4.11 (Individual Fairness). Let d be a fairness metric on X ×Z ×W .
An outcome Y is said to satisfy individual fairness if

|P (y | x, z, w)− P (y | x′, z′, w′)| ≤ d((x, z, w), (x′, z′, w′)), (4.166)

∀ x, x′, w, w′, z, z′.

The framework of IF assumes the existence of a fairness metric d that computes
the distance between two individuals described by attributes (x, z, w) and
(x′, z′, w′), while the outcome y is not taken into account. In words, IF requires
that individuals who are similar with respect to metric d need to have a similar
outcome. This requirement is represented by a Lipschitz property in Eq. 4.166.
If the distance between two values of the covariates, d((x, z, w), (x′, z′, w′)),
is smaller than ε, then the criterion in Eq. 4.166 implies that individuals
who coincide with these covariate values must have a similar probability of a
positive outcome, that is

|P (y | x, z, w)− P (y | x′, z′, w′)| ≤ ε. (4.167)

We now look at the implications of the IF criterion, and observe some possible
shortcomings that can result from ignoring the causal structure.

Limitation 1. IF is oblivious to causal structure

The IF definition in Eq. 4.166 is agnostic to the underlying causal structure
that generated the data. We start with two examples of a hiring process that
are on the surface similar, but differ with respect to the underlying causal
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Example 4.9A Example 4.9B

SC
M
M

F
X ← UXY (4.168)
Z ← UZ (4.169)
Y ← X − UXY + Z + UY (4.170)

X ← UXZ (4.171)
Z ← UXZ + UZY (4.172)
Y ← UZY + UY (4.173)

P (u)
UXY ∼ Bernoulli(0.5),
UZ , UY ∼ N(0, 1)

UXZ ∼ Bernoulli(0.5),
UZY , UY ∼ N(0, 1)

di
ag

ra
m

G
X

Z

Y X

Z

Y

Table 4.2: An example of two situations in which the IF criterion has different
meanings.

structure. As we will see, this will show that the implications of the IF criterion
can be quite different based on the causal setting, highlighting the fact that
causal structure cannot be dismissed when using this criterion.

Example 4.9 (Startup Hiring III). Suppose that two startup companies, A
and B, are hiring employees. Let sex X represent the protected attribute (x0
female, x1 male), Z the candidate’s performance on an aptitude test, and
Y the overall score for job hiring Y . The set of mediators W is in this case
empty. The hiring process is similar, yet there is a difference between the two
companies. In both instances, we assume age is a latent, unobserved factor,
which has shared information with gender. In company A, age affects the
salary directly, whereas in company B, age affects the aptitude test result.
Additionally, in company B the aptitude test result has shared information
with the salary, represented by the unobserved variable which measures how
much the candidate prepared for the interview day. The respective SCMs and
causal diagrams are shown in Tab. 4.2. Suppose that the fairness metric d in
both cases equals

d((x, z), (x′, z′)) = |z − z′|. (4.174)

Then, the IF criterion can be written as

∣∣E[y | x, z]−E[y | x′, z′]
∣∣ ≤ d((x, z), (x′, z′)) = |z − z′|. ∀x, x′, z, z′. (4.175)
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Notice that in company A, we can compute that

E
MA [y | x, z] = E

MA [X − UXY + Z + UY | x, z] (4.176)
= E

MA [X − UXY | x, z]︸ ︷︷ ︸
=0 as X=UXY

+ E
MA [Z | x, z] +EMA [UY | x, z]︸ ︷︷ ︸

=0 as UY ∼N(0,1),
UY ⊥⊥Z,X

(4.177)
= z. (4.178)

Therefore, we can conclude that∣∣EMA [y | x1, z]−EMA [y | x0, z
′]
∣∣ = |z − z′|. (4.179)

In company B, however, we can compute:

E
MB [y | x, z] = E

MB [UZY + UY | x, z] (4.180)
= E

MB [Z − UXZ | x, z] +EMB [UY | x, z]︸ ︷︷ ︸
=0 as UY ∼N(0,1),

UY ⊥⊥Z,X

(4.181)

= E
MB [Z −X | x, z] = z − x. (4.182)

Therefore, the IF criterion is not satisfied, which can be shown by computing:∣∣EMB [y | x1, z]−EMB [y | x0, z
′]
∣∣ = |z − 1− z′|. (4.183)

When assessing direct discrimination on a structural level, in company A,
the mechanism fy in Eq. 4.170 shows the presence of direct discrimination.
In company B, however, the mechanism fy in Eq. 4.173 shows no direct
discrimination. We could pick a more empirical measure of DE, such as the
NDE (Def. 4.2). Evaluating the NDE using the generated data:

NDEMA
x0,x1

(y) = 1, (4.184)
NDEMB

x0,x1
(y) = 0, (4.185)

which is consistent with the observed discrimination at the structural level. �

Somewhat paradoxically, the example illustrates that in company A direct
discrimination exists, yet the IF criterion is satisfied, whereas in company B
the criterion is not fulfilled, but there is no direct discrimination. This example,
even though perhaps surprising at first, is reflective of the fact that IF does
not take the causal structure into account. Our conclusion is that without
the causal diagram, the consequences of using IF may be unclear. Therefore,
from this point forward, we assume the SFM structure, and look at the IF
framework in this fixed context.
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Limitation 2. IF captures the direct effect only under the SFM

We next show that under the assumptions of the standard fairness model,
the IF condition given in Eq. 4.166 has causal implications. In other words,
we investigate where the IF condition can be placed in the Fairness Map in
Fig. 4.5. An initial difficulty arises from the fact that the IF criterion is not
written in the form of a contrastive measure (which were studied in Sec. 3).
Therefore, instead of using the exact IF criterion, we look at a criterion that is
implied by the IF criterion, but is itself a contrastive measure. This criterion
is based on the measure known as the observational direct effect:

Definition 4.12 (Observational direct effect). The observational direct effect
(Obs-DE, for short) is defined as

Obs-DEx0,x1(y | z, w) = P (y | x1, z, w)− P (y | x0, z, w). (4.186)

Based on this measure, we define the Obs-DE-fair criterion as:

Obs-DE-fair ⇐⇒ Obs-DEx0,x1(y | z, w) = 0 ∀z, w. (4.187)

The Obs-DE-fair criterion is implied by IF whenever the fairness metric d
satisfies

d((x1, z, w), (x0, z, w)) = 0 ∀z, w, (4.188)

that is, when the metric d does not depend on the protected attribute X. The
Obs-DE condition can then be obtained from Eq. 4.166 by setting (x, z, w) =
(x1, z, w) and (x′, z′, w′) = (x0, z, w). The Obs-DE criterion, which is implied
by the IF condition under certain assumptions, is admissible with respect to
structural direct criterion:

Proposition 4.6 (Admissibility of Obs-DE w.r.t. Str-DE and IF). Suppose that
the metric d does not depend on the X variable, that is

d((x, z, w), (x′, z′, w′)) = d((z, w), (z′, w′)). (4.189)

Then, the IF criterion in Eq. 4.166 implies the Obs-DE-fair criterion in Eq. 4.187.
Furthermore, under the assumptions of the standard fairness model the Obs-DE
measure is admissible with respect to Str-DE, that is

Str-DE-fair =⇒ Obs-DE-fair. (4.190)

A further positive result shows that the Obs-DE criterion is in fact power-
ful in the context of detecting direct discrimination (again under suitable
assumptions):
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Proposition 4.7 (Power of IF w.r.t. Str-DE). Suppose that the Obs-DE-fair
criterion in Eq. 4.187 holds. Under the assumptions of the standard fairness
model, the Obs-DE measure is more powerful than z-DE, x-DE and NDE:

Obs-DE-fair ◦−→ z-DE-fair ◦−→ x-DE-fair ◦−→ NDE-fair. (4.191)

Under the SFM15 P (y | x1, z, w)− P (y | x0, z, w) equals what is known as the
controlled direct effect

CDEx0,x1 := P (yx1,z,w)− P (yx0,z,w). (4.192)

Therefore, under certain assumptions, the constraint implied by IF in fact
precludes the existence of a direct effect and has a valid causal interpretation.
Importantly, the assumptions that are needed are of a causal nature, and
ignoring the causal diagram of the data generating model can lead to undesired
consequences when using the IF condition (see Ex. 4.9).

To continue the discussion, we consider two distinct cases when choosing
the fairness metric d, on which much of the IF framework relies:

(i) metric d is sparse, meaning that it does not depend on all variables in
the sets Z,W ,

(ii) metric d is complete, meaning that it depends on all variables in the
sets Z,W .

We now consider these two cases separately, and point out their possible
drawbacks. We emphasize that our goal is not to pick a metric but to shed
light on the fundamental interplay between the arguments/properties of the
fairness metric d and the underlying causal mechanisms.

Limitation 3. Sparse metrics d lead to lack of admissibility

From individual to global. Suppose that the IF condition in Eq. 4.166 holds.
Under suitable causal assumptions, the condition precludes the existence of
direct discrimination, as was shown above. However, even if the IF condition
holds, the disparity between the groups corresponding to X = x0 and X = x1
(measured by the TV) could still be large, if the conditional distributions

Z,W | X = x0 and Z,W | X = x1

differ. This observation leads to the second step of the framework of Dwork
et al., 2012. The authors provide the following significant result:

15The exact assumption needed here can be written as Yx,z,w⊥⊥X,Z,W . This
assumption is encoded in the SFM.
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Proposition 4.8 (Optimal Transport bound on TV (Dwork et al., 2012)). Let
d be a fairness metric, and suppose that the individual fairness condition
in Eq. 4.166 holds. Let the optimal transport cost between Z,W | X =
x1 and Z,W | X = x0 be denoted by

OTCdx0,x1
((Z,W )). (4.193)

Then, the TV measure between the groups is bounded by the optimal transport
cost up to a constant Cd dependent on the metric d only, namely

|TVx0,x1(y)| ≤ Cd ·OTCdx0,x1
((Z,W )). (4.194)

In words, if the optimal transport (OT) distance between distributions

Z,W | X = x1 and Z,W | X = x0,

with the metric d measuring the transport cost, is small, the TV measure
is consequently small as well. Here, however, there is an important nuance,
stemming from the decomposability of the TV measure, as shown in the
following proposition:

Proposition 4.9 (Inadmissibility of OTC). The optimal transport cost measure
OTCdx0,x1

((Z,W )) is not admissible with respect to structural indirect and
structural spurious criteria. Formally, we write that:

Str-IE-fair 6=⇒
(
OTCdx0,x1

((Z,W )) = 0
)
, (4.195)

Str-SE-fair 6=⇒
(
OTCdx0,x1

((Z,W )) = 0
)
. (4.196)

To see the relevance of the proposition above, we proceed by means of an
example, in which the above optimal transport distance is small and the TV
is minimized, but in which indirect and spurious discrimination still exist.

Example 4.10 (Startup Hiring IV). Suppose that a startup company is hiring
accountants. Let sex X be the protected attribute (x0 female, x1 male), Z be
the age of the candidate and W their performance on an accountancy test,
upon which the job decision Y is based. The following SCMM∗ describes the
situation:

F∗, P ∗(U) :



X ← UXZ

Z ← −UXZ + UZ

W ← X + Z + UW

Y ← 1(UY < expit(W )),

UXZ ∈ {0, 1}, P (UXZ = 1) = 0.5,
UZ , UW , UY ∼ Unif[0, 1],

(4.197)
(4.198)
(4.199)
(4.200)

(4.201)
(4.202)
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where expit(x) = ex

1+ex . The fw mechanism in Eq. 4.199 shows that older
candidates perform better at the test, and that women perform better than
men, given equal age. However, due to latent confounding, arising from a
specific historical context, women tend to leave the profession at an earlier age
(mechanisms fx, fz in Eq. 4.197 and 4.198 show that lower age is correlated
with being female, through the UXZ variable). The causal graph representing
this situation is given by

Z

X W Y .

Importantly, the marginal distributions W | X = x0 and W | X = x1 are
equal inM∗. An outside authority, which certifies whether discrimination is
present in the decision-making process, decides that the metric d is given by:

d((x, z, w), (x′, z′, w′)) = |w − w′|. (4.203)

In this case, we have that

|P (y | x, z, w)− P (y | x′, z′, w′)| =|expit(w)− expit(w′)| (4.204)

≤1
4 |w − w

′|, (4.205)

where the last inequality follows from an application of the mean value theorem.
Furthermore, the optimal transport cost is 0, because the marginal distributions
of W are matching between the groups. There is no direct discrimination,
since Y is not a function of X (Eq. 4.200). Therefore, the IF criterion is
satisfied and the TV measure equals 0. However, when applying the x-specific
decomposition of TV from Thm. 4.3, we have that

TVx0,x1(y) = x-DEx0,x1(y | x0)− x-IEx1,x0(y | x0)− x-SEx1,x0(y) (4.206)
= (0%)︸ ︷︷ ︸

direct

− (14%)︸ ︷︷ ︸
indirect

− (−14%)︸ ︷︷ ︸
spurious

, (4.207)

which indicates that even though the TV equals 0, the spurious and indirect
effects are non-zero. �

Notice the following about the example. Women, who are naturally better at
their jobs, are interviewed at a younger age. If the source of the confounding
comes from the fact that women (willingly) advance to a different profession
in later stages of their career, then the cancellation of spurious and indirect
effects in Eq. 4.207 might be acceptable. If, however, the spurious effect stems
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from a confounding mechanism in which women abandon their careers for
certain adverse reasons, then the situation could reasonably be deemed unfair.
Without causal considerations, these two cases are indistinguishable. This
example is inspired by an example of the original IF paper, which says that
“the imposition of a metric already occurs in many classification processes,
including credit scores for loan applications” (Dwork et al., 2012, Sec. 6.1.1).
Notice that such a metric is based on a single mediator W , similar to the
metric in Ex. 4.10.

A possible objection to Ex. 4.10 is that the metric d does not include
all confounders and mediators Z,W , which introduces a different issues, as
discussed next.

Issue 4. Complete metrics d do not allow for business necessity

We now suppose that the fairness metric d includes all variables in Z,W . If
this is the case, then the optimal transport condition implies the independence
of X and the Z,W variables, as shown in the following proposition:

Proposition 4.10 (OTC =⇒ X⊥⊥Z,W ). Suppose that the metric d is of the
following form

d((x, z, w), (x′, z′, w′)) = ‖z − z′‖+ ‖w − w′‖, (4.208)

where ‖ · ‖ is any norm on Rd. Then, we have that the optimal transport
condition implies the independence of X and {Z,W}, namely:

OTCdx0,x1
((Z,W )) = 0 =⇒ X⊥⊥Z,W. (4.209)

Furthermore, if the metric d does not consider X then the IF condition implies
the independence of X and Y conditional of Z,W .

Proposition 4.11 (IF =⇒ X⊥⊥Y | Z,W ). Suppose that d is a fairness metric
and suppose that the IF condition in Eq. 4.166 holds. Then, for a binary
outcome Y , X⊥⊥Y | Z,W .

Finally, putting the above two propositions together implies that the variable
X is independent from all other observables in V , as shown next:

Proposition 4.12 (OTC ∧ IF =⇒ X⊥⊥V \ {X}). Suppose that the metric d
is of the form d((x, z, w), (x′, z′, w′)) = ‖z − z′‖+ ‖w −w′‖, where ‖ · ‖ is any
norm on Rd. Suppose also that OTCdx0,x1

((Z,W )) = 0 and the IF condition
in Eq. 4.166 holds. Then we have that

X⊥⊥Z,W, Y. (4.210)
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The proposition shows that if (i) the metric d includes all variables in Z,W ;
(ii) the IF condition holds; (iii) the optimal transport distance is small, then
the protected attribute X is independent from all other endogenous variables
in the system. As we will discuss later in Sec. 5, this can be a very strong
requirement in practice, which requires completely removing the influence of
X, and is not compatible with considerations about business necessity under
the disparate impact doctrine.

4.4.3 Criterion 3. Predictive Parity
In this section, we discuss another important criterion appearing in the litera-
ture. The notion of predictive parity, introduced by Chouldechova, 2017 16, is
defined as follows:

Definition 4.13 (Predictive Parity (Chouldechova, 2017)). Let X be the pro-
tected attribute, and Y the outcome. Let Ŷ be the predictor of Y . We say
that Ŷ satisfies predictive parity (PP) with respect to X,Y if

P (y | x1, ŷ) = P (y | x0, ŷ) ∀ŷ. (4.211)

Alternatively, the PP criterion can also be written as a conditional independence
statement

Y⊥⊥X | Ŷ . (4.212)

Finally, define the predictive parity measure to be

PPMx0,x1(y | ŷ) = P (y | x1, ŷ)− P (y | x0, ŷ). (4.213)

In words, the PP criterion ensures that for a group with the value of the
predictor Ŷ = ŷ, both males and females have the same average outcome Y .
Alternatively, the criterion can also be understood as saying that the attribute
X provides no additional information about the outcome Y , given that we
know the prediction Ŷ . Our goal in this section will be to relate this criterion
to our previous discussion on the FPCFA (see 3.6) and the decompositions
of the TV measure, and show how predictive parity offers important insight
when assessing business necessity arguments.

The first well-known result that is important when trying to understand
the PP criterion is the following:

Proposition 4.13 (PP and Efficient Learning). LetM be an SCM compatible
with the Standard Fairness Model (SFM). Suppose that the predictor Ŷ is

16The original paper (Chouldechova, 2017) distinguishes between predictive parity
for a binary predictor Ŷ , and calibration for a continuous score We are agnostic with
respect to this distinction, and thus use predictive parity for both.
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based on the features X,Z,W . Suppose also that Ŷ is an efficient learner,
meaning that:

Ŷ (x, z, w) = P (y | x, z, w) ∀x, z, w. (4.214)

Then, it follows that Ŷ satisfies predictive parity w.r.t. X and Y .

Proof. Notice that we can write, for any X = x:

P (y | x, ŷ) =
∑
z,w:

Ŷ (x,z,w)=ŷ

P (y | x, z, w, ŷ)P (z, w | x, ŷ) (4.215)

=
∑
z,w:

Ŷ (x,z,w)=ŷ

P (y | x, z, w)P (z, w | x, ŷ) (4.216)

= ŷ
∑
z,w:

Ŷ (x,z,w)=ŷ

P (z, w | x, ŷ) = ŷ. (4.217)

Eq. 4.215 follows from the law of total probability, Eq. 4.216 follows from
the fact that Y⊥⊥Ŷ | X,Z,W , and Eq. 4.217 follows from the fact that
P (y | x, z, w) = ŷ for all z, w with Ŷ (x, z, w) = ŷ (due to efficiency). Therefore,
it follows that P (y | x1, ŷ) = P (y | x0, ŷ), meaning that Ŷ satisfies PP. �

Prop. 4.13 shows that PP is expected to hold for an efficient learner Ŷ . In
some sense, this means that Ŷ should “exhaust” and capture all the variations
coming into the outcome Y in the factual, real world. In particular, Ŷ should
also capture all the variations of X coming into Y .

Note the stark contrast between the PP notion and the TV measure
discussed in the previous sections. For the TV measure to be equal to 0, the
predictor Ŷ should not be associated at all with the attribute X, whereas
Ŷ should contain all variations of X for the PP condition to hold. Perhaps
unsurprisingly based on this discussion, the following theorem holds:

Theorem 4.12 (PP and DP impossibility (Barocas et al., 2017)). The fairness
criteria following predictive parity and demographic parity,

Y⊥⊥X | Ŷ , (4.218)
Ŷ⊥⊥X, (4.219)

are mutually exclusive expect for degenerate cases when Y⊥⊥X.

The above theorem might lead the reader to believe that PP and DP are
criteria that come from two different realities, and bear no relation to each



4.4. Other relations with the literature 81

X

W

Y

Ŷ

Figure 4.8: Standard Fairness Model with no confounders from Thm. 4.13, extended
with the predictor Ŷ .

other. After all, the theorem states that it is not possible for the predictor Ŷ
to include all variations of X in Y and, simultaneously, include no variations
of X in Y . This realization is the starting point for our discussion in the rest
of this section.

First, note that a large amount of effort was needed in previous sections to
formalize what the causal meaning of the conditional independence statement
Ŷ⊥⊥X is. Along similar lines, we show next how to decompose the predictive
parity measure in terms of the underlying mechanisms that transmit change:

Theorem 4.13 (Causal Decomposition of Predictive Parity). LetM be an SCM
compatible with the causal graph in Fig. 4.8. Then, it follows that the PPM
can be decomposed into its causal and spurious, reverse-causal variations as
follows:

P (y | x1, ŷ)− P (y | x0, ŷ) =P (yx1 | x1, ŷ)− P (yx0 | x1, ŷ) (4.220)
+P (yx0 | ŷx1)− P (yx0 | ŷx0). (4.221)

Corollary 4.14 (Linear Causal Decomposition of Predictive Parity). Under the
additional assumption that (i) the SCMM is linear and Y is continuous; (ii)
the learner Ŷ is efficient, we have that:

E(yx1 | x1, ŷ)−E(yx0 | x1, ŷ) = αXWαWY + αXY (4.222)
E(yx0 | x1, ŷx1)−E(yx0 | x1, ŷx0) = −(αXWαWY + αXY ), (4.223)

where αViVj
is the linear coefficient between variables Vi, Vj .

The proof of the above theorem and corollary are given in Appendix A.7. In
words, these results show that the predictive parity measure can be decomposed
as its causal P (yx1 | x1, ŷ)− P (yx0 | x1, ŷ) and reverse-causal spurious P (yx0 |
ŷx1)−P (yx0 | ŷx0) counterparts. The first term of the decomposition measures
the causal variations induced from a transition x0 → x1, for a fixed set of units.
Interestingly, in the linear case, this effect does not depend on the constructed
predictor Ŷ , but only on the underlying system, i.e., it is not under the control
of the predictor designer. To achieve the condition PPM = 0, the second term
needs to be exactly the reverse of the causal effect, captured by the spurious
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Z

X

W

Y

ŶIEx(ŷ) = ?

SEx(ŷ) = 0

DEx(ŷ) = 0

(a) SFM annotated with business necessity
considerations (discriminatory pathways in
red, allowed pathways in green).

Z

X

W

Y

ŶIEx(ŷ) = IEx(y)

SEx(ŷ) = 0

DEx(ŷ) = 0

(b) Implications of causal predictive parity
under business necessity considerations, en-
forcing a constraint for the indirect effect.

Figure 4.9: Business Necessity and Causal Predictive Parity (CPP).

variations induced by changing ŷx0 → ŷx1 in the selection of units. The second
term, which is in the control of the predictor Ŷ designer, needs to cancel out
the causal effect measured by the first term, as determined by the underlying
system. This key observation allows for a causal interpretation of the predictive
parity criterion, and hence we introduce the following definition:

Definition 4.14 (Causal Predictive Parity). Let Ŷ be a predictor of the outcome
Y , and let X be the protected attribute. Then, Ŷ is said to satisfy causal
predictive parity (CPP, for short) with respect to a counterfactual contrast
(C0, C1, E,E) if

E[ŷC1 | E = e]−E[ŷC0 | E = e] = E[yC1 | E = e]−E[yC0 | E = e] ∀e.
(4.224)

Furthermore, Ŷ is said to satisfy CPP with respect to a factual contrast
(C,C,E0, E1) if

E[ŷC | E1]−E[ŷC | E0] = E[yC | E1]−E[yC | E0]. (4.225)

The intuition behind causal predictive parity is simple – if a contrast C describes
some amount of variation (factual or counterfactual) in the true outcome Y ,
then it should describe the same amount of variation in the predicted outcome
Ŷ .

Complementary to the notion of causal predictive parity, and based on the
discussion in Sec. 4, we can also define the notion of causal statistical parity:

Definition 4.15 (Causal Statistical Parity). Let Ŷ be a predictor, and let X
be the protected attribute. Then, Ŷ is said to satisfy causal statistical parity
(CSP) with respect to a counterfactual contrast (C0, C1, E,E) if

E[ŷC1 | E = e]−E[ŷC0 | E = e] = 0 ∀e. (4.226)
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Furthermore, Ŷ is said to satisfy CSP with respect to a factual contrast
(C,C,E0, E1) if

E[ŷC | E1]−E[ŷC | E0] = 0. (4.227)

Once again, the intuition behind the above notion is that if a contrast C
captures variations of X in the predictor Ŷ along a discriminatory pathway,
then the causal effect transmitted along this pathway should equal 0.

We can now tie the notions of causal statistical parity and causal predictive
parity through the concept of business necessity. Our proposal is illustrated
graphically in Fig. 4.9 through an example. Firstly, in Fig. 4.9a, we highlight
the causal pathways in the business necessity set in green, and those that are
not in red. If a contrast C is associated with variations that are not in the
business necessity set, then the value of this contrast should be C(X, Ŷ ) = 017,
in this case ensuring that direct and spurious effects should equal 0. This step
can be understood as following from the principles of causal statistical parity.

On the other hand, if the variations associated with the contrast are in
the business necessity set, then the principles of causal statistical parity are
not sufficient for determining the value of the contrast in a principled fashion
(indicated with IEx(ŷ) = ? in Fig. 4.9a). In other words, causal statistical parity
only helps us to determine that the contrasts not in the business necessity
set should equal 0, but says nothing about the contrasts that are in the
business necessity set. However, for the latter case, we can leverage the idea
behind causal predictive parity. The value of a contrast that is not considered
discriminatory should be equal for the predictor and the true outcome, i.e.,

C(X, Ŷ ) = C(X,Y ), (4.228)

which in our example ensures that IEx(ŷ) = IEx(y) as shown in Fig. 4.9b. The
idea behind Eq. 4.228 is very intuitive, yet of crucial importance when consid-
ering arguments of business necessity. We also note that similar considerations
are voiced within the legal literature on discrimination (Grimmelmann and
Westreich, 2016), although not in a formal language provided here. Finally, we
illustrate the above described notions through an example:

Example 4.11 (Statistical and Predictive Parity in Employment). A company
recently decided to switch to a new AI human resources (HR) system for
determining the salaries of their employees. Let Y denote the current salary,
X gender (x0 female, x1 male), and W an indicator of certain job-related
qualifications. The salary recommended by the AI system is denoted by Ŷ .
After this change, a group of male employees is suing the company, claiming

17Here, the notation C(A,B) indicates the value of an effect of A on B described
by the contrast C.
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that the new salary system is unfair, since their salaries have been reduced,
namely,

E(ŷ | x1) < E(y | x1). (4.229)

In a legal proceeding, the court finds that any kind of direct effect of
gender on salary decisions is not permissible. In particular, they require that
the company needs to prove that

NDEx0,x1(ŷ) = NDEx1,x0(ŷ) = 0. (4.230)

However, due to a business necessity argument, the court allows the company
to determine the salaries based on specific job-related qualifications. This,
in particular, implies the opposite of Eq. 4.230, namely, that it is legally
permissible that

NIEx0,x1(ŷ) 6= 0,NIEx1,x0(ŷ) 6= 0. (4.231)

Nonetheless, the court rules that the values of NIE cannot be arbitrary, but
need to be in line with the allocation of salaries prior to the deployment of the
new AI system. Based on the notion of causal predictive parity, this means
that:

NIEx0,x1(ŷ) = NIEx0,x1(y), (4.232)
NIEx1,x0(ŷ) = NIEx1,x0(y). (4.233)

�

The example demonstrates how considerations of statistical and predictive
parity interact through business necessity requirements. Firstly, the direct
effect, which is considered discriminatory by the court, needs to equal 0. The
indirect effect of X on Ŷ was deemed permissible, and must therefore be equal
to the indirect effect of X on the true outcome Y . For a further real-world
example of applying the above concepts in practice, we refer the reader to
Ex. 5.3 in Sec. 5.1 in which the principles of causal statistical and predictive
parity are illustrated through an analysis of the COMPAS dataset.

The discussion in this section implies that the notion of statistical parity
(i.e., TVx0,x1 = 0) will be satisfied when none of the variations are in the
business necessity set. On the other hand, if all of the variations are in the
business necessity, then the notion of predictive parity will be satisfied. The
choice of the BN set can be thought of as interpolating between demographic
parity and predictive parity, in the way described by Def. 4.14. Instead of
being viewed as mutually exclusive notions, tied through the impossibility
result from Thm. 4.12, these two criteria can be viewed as the extremes of a
spectrum spanned by different business necessity requirements.



5
Fairness tasks

The main goal of this section is to develop tools to support causal fairness
analysis in practice, building on the foundations introduced in previous sections.
We classify fairness problems into three tasks, in increasing order of difficulty:

Task 1. Bias detection and quantification: the first and most basic task of
fair ML. We may consider operating with a dataset D of past decisions,
or in infinite samples with an observed distribution P (V ) over variables
V . The task is to define a mapping

µ : P → R,

where P is the set of possible distributions P (V ), and µ is viewed as
a fairness measure and it is often constructed so that µ(P (V )) = 0
suggests the absence of some form of discrimination.

Task 2. Fair prediction: The task of fair prediction, usually, relies on a certain
measure of fairness. The task is to learn a distribution P ∗(V ) while
maximizing utility U(P (V )) and satisfying

|µ(P ∗(V ))| ≤ ε,

where µ is a measure of fairness as discussed in Task 1. Fair classification
and fair regression problems fall into this category1.

1Different categories of fair prediction methods exist, namely pre-processing,
in-processing, and post-processing, which are discussed in Sec. 5.2.
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Task 3. Fair decision-making: In fair decision-making, the well-being of cer-
tain groups over time is considered. Notions of affirmative action also
fall into this category. We might be interested in designing a policy π,
which at every time step affects the observed distribution Pt(V ) (which
now changes over time) so that we have

Pt+1(V ) = π(Pt(V )),

and we are, perhaps, interested in controlling how µ(Pt(V )) changes
with t.

Note that these three tasks form a certain hierarchy, and are introduced in
order of difficulty. Fair prediction often relies on a specific fairness measure;
fair decision-making often relies on a fairness measure, a notion of utility, and
possibly fair predictions. The three tasks are discussed in Sec. 5.1, 5.2, and 5.3,
respectively.

5.1 Task 1: Bias Detection & Quantification

We distinguish two different, but closely related subtasks in the context of
Task 1, that are referred to as bias detection and bias quantification. In
bias detection, we are interested in providing a binary decision rule ψ that
determines whether discrimination is present in the data-generating process or
not. In bias quantification, we are interested in how strong the discrimination
is, and therefore provide a real-valued number, instead of a Boolean yes/no
decision. In what follows, we provide the mathematical formulation of the two
subtasks, together with an approach for how to solve them.

Definition 5.1 (Bias Detection under SFM). Let Ω be a space of SCMs. Let
Q be a structural fairness criterion, Q : Ω → {0, 1} (Def. 3.1), determining
whether a causal mechanism within the SCMM∈ Ω is active (Q(M) = 0 if
mechanism not active, Q(M) = 1 if active). The task of bias detection is to
test the hypothesis

H0 : Q(M) = 0, (5.1)

that is, constructing a mapping ψ(GSFM,D) into {0, 1}, which provides a
decision rule for testing H0, based on the standard fairness model GSFM and
the data on past decisions D.

In words, we are interested whether direct, indirect, or spurious discrimination
exists, corresponding to Q ∈ Str-{DE,IE,SE}, as introduced in Def. 3.2. The
null hypothesis H0 assumes that there is no discrimination, and the decision
rule ψ determines whether H0 should be rejected based on the SFM and the
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available data. Notice, crucially, that ψ is a function of GSFM and D, due
to the fact that the true SCM M is never available to the data scientist.
Therefore, she/he cannot reason about Q(M) directly, but instead needs to
find an admissible measure µ that satisfies

Q(M) = 0 =⇒ µ(M) = 0, (5.2)

where µ(M) can be computed in practice. Recall the result from Prop. 3.1
showing that the TV measure is not admissible with respect to Str-{DE,IE,SE}
and, therefore, should not be used for bias detection when one is interested in
direct, indirect, and spurious effects. Moreover, we note that solving the bias
detection task depends on solving the FPCFA(Str-{DE,IE,SE},TVx0,x1(y))
from Def. 3.6, which we now restate in the form more suitable for Task 1:

Definition 5.2 (FPCFA continued for Task 1). [Ω, (Qi)ki=1, µ as before] Let
M = 〈V,U, P (u),F〉 be the true, unobserved generative SCM, A a set of
assumptions, and P (v) the observational distribution generated by M. Let
ΩA be the space of all SCMs compatible with A. The Fundamental Problem
of Causal Fairness Analysis is to find a collection of measures µ1, . . . , µk such
that the following properties are satisfied:

(1) µ is decomposable w.r.t. µ1, . . . , µk;

(2) µ1, . . . , µk are admissible w.r.t. the structural fairness criteriaQ1, . . . , Qk.

(3) µ1, . . . , µk are as powerful as possible.

(4) µ1, . . . , µk are identifiable from the observational distribution P (v) and
class ΩA.

The final step of FPCFA for Task 1 is

(5) estimate µ1, . . . , µk and their (1 − α) confidence intervals from the
observational data and the SFM projection of the causal diagram.

Upon solving FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) for Task 1, we obtain mea-
sures µi based on which the decision rule ψ can be constructed. In particular,
the decision rule ψ will be constructed by computing the (1− α) confidence
interval for µi, for instance using bootstrap. If the interval excludes 0, the H0
hypothesis is rejected.

The derived measures µi obtained from solving the FPCFA for Task 1 can
also be used for the related task of bias quantification:

Definition 5.3 (Bias Quantification under SFM). Let Ω be a space of SCMs
and let (Qi)i=1:3 = Str-{DE,IE,SE}. The task of bias quantification is to find
a mapping φ(GSFM,D) 7→ R

3 where the i-th component φi is admissible with
respect to Qi.
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In words, the amount of discrimination is summarized using a 3-dimensional
statistic. Each component of the statistic corresponds to one of the di-
rect, indirect, or spurious effects. The measures µi obtained from solving
FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) can be used to solve the task of bias
quantification, by setting

φ(M) =
(
µDE(M), µIE(M), µSE(M)

)
. (5.3)

We can now discuss a specific proposal for the measures µi.

Measures µi for Task 1. Following the x-specific solution of FPCFA from
Thm. 4.3, we use the following measures:

µDE is given by x-DEx0,x1(y | x0) = P (yx1,Wx0
| x0)− P (yx0 | x0) (5.4)

µIE is given by x-IEx1,x0(y | x0) = P (yx1,Wx0
| x0)− P (yx1 | x0) (5.5)

µSE is given by x-SEx1,x0(y) = P (yx1 | x0)− P (yx1 | x1). (5.6)

Moreover, the solution (see Eq. 4.48) also showed that the TV can be decom-
posed as:

TVx0,x1(y) = x-DEx0,x1(y | x0)︸ ︷︷ ︸
µDE

−x-IEx1,x0(y | x0)︸ ︷︷ ︸
µIE

−x-SEx1,x0(y | x0)︸ ︷︷ ︸
µSE

.

(5.7)

In words, the TV equals the x-specific direct effect with a transition x0 → x1,
minus the x-specific indirect effect with the opposite transition x1 → x0 and
minus the x-specific spurious effect with the transition x1 → x0. One critical
point to note is that such a decomposition is not unique. In fact, the TV can
also be decomposed as:

TVx0,x1(y) = −x-DEx1,x0(y | x0) + x-IEx1,x0(y | x0)− x-SEx1,x0(y). (5.8)

Sometimes it may be desirable to achieve symmetry and avoid picking a
specific order, so in such cases we propose using the average of the two
available decompositions. In particular, we define the symmetric x-specific
direct and indirect effects as follows:

Definition 5.4 (Symmetric x-specific direct and indirect effect). The symmetric
x-specific direct and indirect effects are defined as:

x-DEsym
x (y | x) = 1

2
(
x-DEx0,x1(y | x)− x-DEx1,x0(y | x)

)
(5.9)

x-IEsym
x (y | x) = 1

2
(
x-IEx0,x1(y | x)− x-IEx1,x0(y | x)

)
. (5.10)
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Therefore, we propose to use x-DEsym
x (y | x0) and x-IEsym

x (y | x0) instead of
x-DEx1,x0(y | x0) and x-IEx1,x0(y | x0) for Task 1, which corresponds to using
both of the TV decompositions and averaging them2. The benefit of these
alternative measures is that no single transition has to be chosen for computing
the direct/indirect effect. Instead, both x0 → x1 and x1 → x0 transitions are
considered, by taking the average of the two. Such an approach offers measures
of direct and indirect effect which are symmetric with respect to the change
in the protected attribute, unlike their counterparts that consider a single
transition. More generally, taking such averages over different transitions may
be seen as related to a flow-based attribution approach (Singal et al., 2021)
based on Shapley values (Shapley et al., 1953).

5.1.1 Legal Doctrines - A Formal Approach
Equipped with specific measures that can be used to perform bias detection and
quantification, we develop a formal approach for assessing the legal doctrines
of disparate impact and treatment. The operational approach is described
in Alg. 5.1, and is one of the highlights of this manuscript. The algorithm
takes the dataset D, the SFM projection ΠSFM(G) of the causal diagram, and
the Business Necessity Set (BN-set) as an input. When using the SFM, the
allowed BN-sets are ∅, {Z}, {W}, and {Z,W}3.

We distinguish two slightly different cases of applying the Fairness Cook-
book. The first, basic case is when the dataset D contains a single outcome
variable, which is in Alg. 5.1 labeled as Ŷ . In this case, we need to verify that
the causal effect along any pathway that is not in the business necessity set
equals 0. However, for the causal pathways that are in the business necessity
set, we cannot prescribe a specific value for the effect transmitted along this
pathway.

The second, more involved case is when the dataset D contains the true
observed outcomes Y and the predicted outcomes Ŷ . Again, we must verify
that pathways not in the business necessity set transmit no variations from X
to Ŷ . However, if the true outcome Y is available, business necessity pathways
require scrutiny, too, as discussed in Sec. 4.4.3. For the latter pathways, one
additionally needs to ensure that a causal effect along them is not amplified
for the predictor Ŷ compared to the true outcome Y . In other words, even
if a causal pathway is considered as non-discriminatory, we must verify that

2VanderWeele, 2015 proposes a decomposition of the total effect (TE) that
accounts for the direct and indirect effects, and also an explicit interaction term.
Connecting our framework, a formal test for existence of an interaction of X and W
in Y can be performed by testing the equality x-DEsym

x (y | x0) = x-DEx0,x1 (y | x0),
or performing the analogous test for the indirect effect.

3Handling more involved BN-sets is discussed in detail in Sec. 6.
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the discrimination along this pathway in not amplified to unacceptable levels –
which is also reflected in Alg. 5.1.

5.1.2 Empirical Evaluation
We will start by applying the cookbook for the task of bias detection in the
context of the US Census 2018 dataset. After that, we will apply the cookbook
for the task of temporal bias quantification on a College Admissions dataset,
and finish with an application on the COMPAS dataset.
Example 5.1 (US Government Census 2018). The United States Census of 2018
collected broad information about the US Government employees, including
demographic information Z (Z1 for age, Z2 for race, Z3 for nationality), gender
X (x0 female, x1 male), marital and family status M , education information
L, and work-related information R. In an initial analysis, a data scientist
observed that male employees on average earn $14000/year more than their
female counterparts, that is

E[y | x1]−E[y | x0] ≈ $14000. (5.16)
Following the Fairness Cookbook, the data scientist does the following:
SFM projection: the SFM projection of the causal diagram G of this dataset
is given by

ΠSFM(G) = 〈X = {X}, Z = {Z1, Z2, Z3},W = {M,L,R}, Y = {Y }〉. (5.17)
In words, the set of confounders includes age, race, and nationality, while the set
of mediators includes family status, education, and work-related information.
Disparate treatment: when considering disparate treatment, she computes
x-DEsym

x (y | x0) and its 95% confidence interval, i.e.,
x-DEsym

x (y | x0) = $7210± $1049. (5.18)

The hypothesis H(x-DE)
0 is thus rejected, providing evidence of disparate

treatment against female employees.
Disparate impact: when considering disparate impact, the data scientist
computes Ctf-SE, Ctf-IE and their respective 95% confidence intervals,

x-IEsym
x (y | x0) = $5126± $778, (5.19)

x-SEx1,x0(y) = −$1675± $955. (5.20)
She then concludes that the differences in salary explained by the spurious
correlation of gender with age, race, and nationality are not considered dis-
criminatory. Therefore, she tests the hypothesis

H
(x-IE)
0 : x-IEsym

x (y | x0) = 0,
which is rejected, indicating evidence of disparate impact on government’s
female employees. Measures computed in the example are shown in Fig. 5.1. �
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Algorithm 5.1 Fairness Cookbook for Task 1
• Inputs: Dataset D, SFM ΠSFM(G), Business Necessity Set BN-set.

1: Obtain the dataset D.
2: Determine the Standard Fairness Model projection ΠSFM(G).
3: Consider the existence of Disparate Treatment:

• compute x-DEsym
x (ŷ | x0) and its 95% confidence interval (CI),

• test the hypothesis

H
(x-DE)
0 : x-DEsym

x (ŷ | x0) = 0. (5.11)

– if H(x-DE)
0 rejected =⇒ evidence of disparate treatment,

• Additionally: if no evidence of disparate treatment in overall popula-
tion, for Z = z test the hypothesis H(z-DE)

0 : z-DEsym
x (y | z) = 0.

4: Consider the existence of Disparate Impact:
• compute x-IEsym

x (ŷ | x0) and x-SEx1,x0(ŷ) and their 95% CIs,
• if Y ∈ D, compute x-IEsym

x (y | x0) and x-SEx1,x0(y) with 95% CIs,
• if W /∈ BN-set, test the hypothesis

H
(x-IE)
0 : x-IEsym

x (ŷ | x0) = 0. (5.12)

– if H(x-IE)
0 rejected =⇒ evidence of disparate impact,

– Additionally: if no evidence of disparate impact in overall popula-
tion, for Z = z test the hypothesis H(z-IE)

0 : z-IEsym
x (y | z) = 0,

• if W ∈ BN-set and outcome Y is in the data D, test the hypothesis

H
(x-IE)
0,BN : x-IEsym

x (y | x0) = x-IEsym
x (ŷ | x0). (5.13)

– if H(x-IE)
0,BN rejected, a possible violation of disparate impact,

• if Z /∈ BN-set, test the hypothesis

H
(x-SE)
0 : x-SEx1,x0(y) = 0. (5.14)

– if H(x-SE)
0 rejected =⇒ evidence of disparate impact,

• if Z ∈ BN-set and Y ∈ D, test the hypothesis

H
(x-SE)
0,BN : x-SEx1,x0(y) = x-SEx1,x0(ŷ). (5.15)

– if H(x-SE)
0,BN rejected, a possible violation of disparate impact.
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Figure 5.1: Measures obtained when applying the Fairness Cookbook for Task 1
on the Government Census 2018 dataset.

Example 5.2 (Bias Quantification in College Admissions). A university in the
United States admits applicants every year through a competitive process.
The university is facing strong regulatory pressure and aims to quantify
discrimination in the admission process and track it over time, between 2011
and 2020.

The data generating process changes over time, described next. The set of
observed variables is V = {X,Z,W, Y }, where X denotes gender (x0 female,
x1 male), Z denotes age at time of application (Z = 0 under 20 years, Z = 1
over 20 years), and W denotes the department of application (W = 0 for
arts&humanities, W = 1 for sciences). Finally, let Y denote the admission
decision (Y = 0 rejection, Y = 1 acceptance). The application process changes
over time and the mechanisms are given by

F(t), P (U) :



X ← 1(UX < 0.5 + 0.1UXZ)
Z ← 1(UZ < 0.5 + κ(t)UXZ)
W ← 1(UW < 0.5 + λ(t)X)
Y ← 1(UY < 0.1 + α(t)X + β(t)W + 0.1Z).

UXZ ∈ {0, 1}, P (UXZ = 1) = 0.5,
UX , UZ , UW , UY ∼ Unif[0, 1].

(5.21)
(5.22)
(5.23)
(5.24)

(5.25)
(5.26)

Coefficient κ(t) describes the spurious association of age and gender, while
λ(t) describes the difference in preference for science departments between
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genders. Coefficient α(t) describes direct discrimination, i.e., that a gender
group is favored in an unjustified way. Coefficient β(t) describes the increase
in probability of admission when applying to a science department as opposed
to an arts & humanities department. The coefficients change every year, and
obey the following dynamics:

κ(t+ 1) = 0.9κ(t) (5.27)
λ(t+ 1) = λ(t)(1− β(t)) (5.28)
β(t+ 1) = β(t)(1− λ(t))f(t), f(t) ∼ Unif[0.8, 1.2] (5.29)
α(t+ 1) = 0.8α(t). (5.30)

The equations can be interpreted as follows. The coefficient κ(t) decreases
over time, meaning that the overall age gap between the groups decreases.
The coefficient λ(t) decreases compared to the previous year, by an amount
dependent on β(t). In words, the rate of application to arts & humanities
departments decreases if these departments have lower overall admission rates
(i.e., students are less likely to apply to departments that are hard to get
into). Further, α(t), which represents gender bias, decreases over time. Finally,
β(t) represent the increase in the probability of admission when applying to
a science department. Its value depends on the value from the previous year,
multiplied by (1− λ(t)) and the random variable f(t). Multiplication by the
former factor describes the mechanism in which the benefit of applying to a
science department decreases if a larger proportion of students apply for it.
The latter factor describes a random variation over time which describes how
well (in relative terms) the science departments are funded, and can be seen
as depending on research and market dynamics in the sciences.

The head data scientist at the university decides to use the Fairness
Cookbook for performing bias quantification of their admissions team. The
SFM projection of the causal diagram G of the dataset is given by

ΠSFM(G) = 〈X = {X}, Z = {Z},W = {W}, Y = {Y }〉. (5.31)

After that, the data scientist estimates the quantities

x-DEsym
x (y | x0), x-DEsym

x (y | x0), and x-SEx1,x0(y), (5.32)

∀t ∈ {2011, . . . , 2020}. The temporal dynamics of the estimated measures of
discrimination (together with the ground truth values obtained from the SCM
Mt) are shown graphically in Fig. 5.2. As the figure illustrates, the policies
put in place by the university have over time managed to mitigate the bias
between groups that existed initially. �

Example 5.3 (COMPAS – continued). Courts in Broward County, Florida use
a machine learning algorithm, developed by Northpointe, to predict whether
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Figure 5.2: Tracking bias over time in the synthetic College Admissions dataset
from Ex. 5.2, between years 2011 and 2020. Both the estimated values from simulated
samples (solid line) and the true population values (dashed lines) are shown, for
direct (red), indirect (green), and spurious (blue) effects.

individuals released on parole are at high risk of re-offending within 2 years (Y
for recidivism). The algorithm is based on the demographic information Z (Z1
for gender, Z2 for age), race X (x0 denoting majority, x1 minority), juvenile
offense counts J , prior offense count P , and degree of charge D (mediators
W ). The predictions obtained from Northpointe’s algorithm are labeled as Ŷ .

The standard fairness model (SFM) for this example is shown in Fig. 5.3a.
Suppose that in an initial hearing, the Broward County district court deter-
mines that the direct and indirect effects are not in the business necessity set,
while the spurious effect is. In words, gender (Z1) and age (Z2) are allowed
to be used to distinguish between the minority and majority groups when
predicting recidivism, while other variables are not.

In light of this information, we proceed as follows. We first compute the TV
decomposition for the true outcome Y . Then, we compute the Northpointe’s
predictions Ŷ NP . The comparison of the two decompositions is shown in
Fig. 5.3b. For the direct effect, we have:

Ctf-DEx0,x1(y | x0) = −0.08%± 2.59%, (5.33)
Ctf-DEx0,x1(ŷ | x0) = 6%± 2.96%. (5.34)

Since the direct effect is not in the business necessity set, Northpointe’s
predictions clearly violate the disparate treatment doctrine (turquoise bar for
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(a) SFM for Ex. 5.3. (b) TV decompositions for Ex. 5.3.

Figure 5.3: SFM and the TV decompositions for Ex. 5.3.

the Ctf-DE measure in Figure 5.3b), since they are significantly different from
0. Next, for the indirect effects, we obtain:

Ctf-IEx1,x0(y | x0) = −5.06%± 1.24%, (5.35)
Ctf-IEx1,x0(ŷ | x0) = −7.73%± 1.53%. (5.36)

Once again, the indirect effect, which is not in the business necessity set, is
different from 0 for the Northpointe’s predictions (violating disparate impact,
see turquoise bar for Ctf-IE in Figure 5.3b), but not statistically different from
0 for our predictions (blue bar). Interestingly, the indirect effect is different
from 0 for the true outcome (red bar), indicating a bias in the current real
world. The above provided reasoning was based on the principles of causal
statistical parity.

Finally, for the spurious effects, which is in the business necessity set, we
use the principles of causal predictive parity. In particular, we have computed
that:

Ctf-SEx1,x0(y) = −3.17%± 1.53%, (5.37)
Ctf-SEx1,x0(ŷ) = −3.75%± 1.58%. (5.38)

As each confidence interval contains the point estimate of the other quantity,
no violations with respect to the spurious effect are found. �

5.2 Task 2. Fair Prediction

We are now ready to discuss Task 2, which builds on similar foundations as
the previous task. The section is organized as follows.

(i) We first discuss previous literature on (fair) prediction; in particular,
we discuss post-processing, in-processing, and pre-processing methods.
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Figure 5.4: Standard Fairness Model (SFM) extended with a blue node Ŷ , for the
task of (fair) prediction.

(ii) We formalize the FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) for Task 2, which
is the problem that needs to be solved such that causally meaningful
fair predictions can be obtained.

(iii) We introduce the Fair Prediction Theorem (Thm. 5.1) that explains why
standard methods for fair prediction, agnostic to the causal structure,
fail in solving FPCFA.

(iv) We develop two alternative formulations of the fair prediction optimiza-
tion problem capable of remedying the shortcomings of methods found
in the literature.

5.2.1 Prediction
In the context of prediction, one is generally interested in constructing a predic-
tor Ŷ of Y , which is a function of X,Z and W . More precisely, from a causal
inference point of view, this process can be conceptualized as constructing
an additional mechanism Ŷ ← f

Ŷ
(x, z, w) in the SCM, which is under our

control, as shown in Fig. 5.4. A typical choice of f
Ŷ
in the context of regression

is the estimate of E[Y | X = x, Z = z,W = w], whereas for classification a
rounded version of such an estimate is often considered. The key question from
a fairness point of view is whether such an approach carries over the bias from
the existing data into the prediction mechanism f

Ŷ
.

If the newly constructed prediction does exhibit undesired bias, one may
be interested in designing fair predictions instead, by ensuring that the con-
structed Ŷ satisfies a fairness constraint. In the fairness literature, there are
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three broad categories for achieving this – post-processing, in-processing, and
pre-processing. Although there are many possible target measures of fairness
which the predictor Ŷ could satisfy, in this manuscript we focus on methods
that aim to achieve the condition TVx0,x1(ŷ) = 0.

5.2.2 Post-processing
Post-processing methods are the simplest and most easily described. First, one
constructs a predictor f

Ŷ
without applying fairness constraints. The output of

f
Ŷ

(x, z, w) is then taken and transformed using a transformation T , such that
the constructed predictor

Ŷ ← T (f
Ŷ

(x, z, w)), (5.39)

satisfies the condition TVx0,x1(ŷ) = 0. We illustrate the post-processing
methods with an example. The reject-option classification of Kamiran et al.,
2012 starts by estimating the probabilities of belonging to the positive class,
P (y) (label the estimates with f

Ŷ
(x, z, w)). The classifier Ŷ is then constructed

such that

Ŷ (x, z, w) = 1(f
Ŷ

(x, z, w) > θx),

where θx0 , θx1 are group-specific thresholds chosen so that Ŷ satisfies the
constraint TVx0,x1(ŷ) = 0, and that θx0 , θx1 are as close as possible to 0.5
(to minimize the loss in accuracy). An important question is whether the Ŷ
constructed in this way also behaves well from a causal perspective.

5.2.3 In-processing
In-processing methods take a different route, and instead of building on the
unconstrained predictions, they attempt to incorporate a fairness constraint
into the learning process. This in effect means that the mechanism f

Ŷ
is no

longer unconstrained, but is required to lie within a class of functions that
satisfy the TV constraint. Broadly speaking, this is achieved by formulating
an optimization problem of the form

arg minf
Ŷ

L
(
Y, f

Ŷ
(x,w, z)

)
(5.40)

subject to TVx0,x1(ŷ) ≤ ε, (5.41)
||f
Ŷ

(x,w, z)− f
Ŷ

(x′, w′, z′)|| ≤ τ((x,w, z), (x′, w′, z′)).
(5.42)

where L is a suitable loss function4 and τ is a metric on the covariates V \ Y .
In the language of Dwork et al., 2012, the TV minimization constraint in

4A common choice here is the loss E
[
Y − f

Ŷ
(x,w, z)

]2.
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Eq. 5.41 ensures group fairness, whereas the constraint in Eq. 5.42 ensures
covariate-specific fairness5, meaning that predictions for individuals with sim-
ilar covariates x, z, w should be similar. Exactly formulating and efficiently
solving problems such as in Eqs. 5.40-5.42 constitutes an entire field of research.
Due to space limitations, we do not go into full detail on how this can be
achieved, but rather list a few well-known examples. Zemel et al., 2013 use
a clustering-based approach, whereas Zhang et al., 2018 use an adversarial
network approach to solve such an optimization problem. Kamishima et al.,
2012 add a mutual information constraint to control for the TV constraint in
parametric settings. Agarwal et al., 2018 formulate a saddle-point problem
with moment-based constraints to achieve the desired TV minimization. The
mentioned methods differ in many practical details, but all attempt to satisfy
the constraint TVx0,x1(ŷ) = 0 by constraining the learner f

Ŷ
. More fundamen-

tally, the question arises again as to whether constructing the mechanism f
Ŷ

so that TV equals 0 can provide guarantees about the causal behavior of the
predictor and its fairness requirements.

5.2.4 Pre-processing
Pre-processing methods start from a distribution P (x,w, z, y) and find its
“fair version”, labeled P̃ (x,w, z, y) which is then used in the learning stage.
Sometimes an exact mapping between τ : V → V is constructed6, where τ can
be stochastic. In that case, the transformed distribution P̃ is defined as:

P̃ (v) = Eτ

[
P ◦ τ(v)

]
. (5.43)

The fair pre-processing methods formulate an optimization problem that
attempts to find the optimal P̃ (V ), where optimality is defined as minimizing
some notion of distance to the original distribution P (V ). There are two
different approaches here, which have different causal implications, namely:

(a) the protected attribute X should be independent from the rest of
observables V \X in the fair distribution P̃ (V ), written X⊥⊥V \X,

(b) the protected attribute X should be independent from the the outcome
Y in the fair distribution P̃ (V ), written X⊥⊥Y .

The first approach requires that the effect of the attribute X is entirely erased
from the data. The second, less stringent option requires the independence
X⊥⊥Y in P̃ (V ), which is equivalent to having TVx0,x1(ŷ) = 0.

5This notion corresponds to individual fairness in the work of Dwork et al., 2012.
Causally speaking, this would be seen as a covariate-specific fairness constraint, as
the term individual is overloaded.

6V here denotes the domain in which the observables V take values.
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Data D

Transform D s.t.
X⊥⊥Y or X⊥⊥V \ {X}

ML optimization
(unconstrained)

ML optimization
with TVx0,x1(ŷ) = 0

Predictor
Ŷ ← f̂(x, z, w)

Ŷ fair ← T (Ŷ ) s.t.
TVx0,x1(ŷ) = 0

−→ standard workflow
−→ post-processing
−→ in-processing
−→ pre-processing

Legend

Figure 5.5: A schematic summary of the post-processing (red arrows), in-processing
(blue), and pre-processing (yellow) fair prediction methods, compared to a typical
ML workflow (black).

These two cases will be discussed separately in the remainder of the section.
In Fig. 5.5 we provide a schematic representation of the three categories
of fair prediction methods, and in particular how they relate to a typical
(usually unfair) machine learning workflow. We next move onto formulating
FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) for Task 2.

5.2.5 FPCFA(Str-{DE,IE,SE},TVx0,x1(y)) for Task 2.
Building on the previous definition of FPCFA(Str-{DE,IE,SE},TVx0,x1(y)),
we can now state its version in the context of fair predictions:

Definition 5.5 (FPCFA continued for Task 2). [Ω, (Qi)ki=1, µ as before] Let
M = 〈V,U, P (u),F〉 be the true, unobserved generative SCM, A a set of
assumptions, and P (v) the observational distribution generated by M. Let
ΩA be the space of all SCMs compatible with A. The Fundamental Problem
of Causal Fairness Analysis is to find a collection of measures µ1, . . . , µk such
that the following properties are satisfied:

(1) µ is decomposable w.r.t. µ1, . . . , µk;

(2) µ1, . . . , µk are admissible w.r.t. the structural fairness criteriaQ1, . . . , Qk.

(3) µ1, . . . , µk are as powerful as possible.

(4) µ1, . . . , µk are identifiable from the observational distribution P (v) and
class ΩA.

The final step of FPCFA for Task 2 is to construct an alternative SCMM′
such that

(5) the measures µ1, . . . , µk satisfy that

µ1(M′) = · · · = µk(M′) = 0. (5.44)
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Commonly, the alternative SCMM′ will differ from the original SCMM in
the f

Ŷ
mechanism, which needs to be constructed in a fair way. More explicitly,

we want to ensure that the constructed predictor Ŷ satisfies

x-DEsym
x (ŷ | x0) = x-IEsym

x (ŷ | x0) = x-SEx1,x0(ŷ) = 0, (5.45)

instead of just requiring that TVx0,x1(ŷ) = 0. The question we address formally
next is whether the conditions in Eq. 5.45 can be achieved by methods that
focus on minimizing TV. For this purpose, we prove the Fair Prediction
Theorem that is formulated for in-processing methods in the linear case:

Theorem 5.1 (Fair Prediction Theorem). Let SFM(nZ , nW ) be the standard
fairness model with |Z| = nZ and |W | = nW . Let E denote the set of edges
of SFM(nZ , nW ). Further, let S linear

nZ ,nW
be the space of linear structural causal

models (with the exception of X variable which is Bernoulli) compatible with
the SFM(nZ , nW ) and whose structural coefficients are drawn uniformly from
[−1, 1]|E|. An SCMM∈ S linear

nZ ,nW
is said to be ε-TV-compliant if

f̂fair = arg min
f linear

E[Y − f(X,Z,W )]2 (5.46)

subject to TVx0,x1(f) = 0 (5.47)

also satisfies

|x-DEx0,x1(f̂fair | x0)| ≤ ε, (5.48)
|x-IEx1,x0(f̂fair | x0)| ≤ ε, (5.49)
|x-SEx1,x0(f̂fair)| ≤ ε. (5.50)

Under the Lebesgue measure over [−1, 1]|E|, the set of 0-TV-compliant SCMs
in SFM(nZ , nW ) has measure 0. Furthermore, for any nZ , nW , there exists an
ε = ε(nZ , nW ) such that

P(M is ε-TV-compliant) ≤ 1
4 . (5.51)

The proof is given in Appendix A.3. The theorem states that, for a random
linear SCM, the optimal fair predictor with TV measure equal to 0 will
almost never have the x-specific fairness measures equal to 0. The remarkable
implication of this result is that minimizing the TV measure provides no
guarantees whatsoever that the direct, indirect, and spurious effects are also
minimized. In other words, the resulting classifier that is deemed fair may not
be fair after all.

The Fair Prediction Theorem considers the linear case for in-processing
methods, but we conjecture that it has implications for more complex settings
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too (see also empirical evidence on real data below). For example, note that
in the optimization problem in Eqs. 5.46-5.47, we are searching over linear
functions f of X,Z, and W . For pre-processing methods that achieve X⊥⊥Ŷ ,
the space of allowed functions f would be even more flexible, but the underlying
optimization problem would remain similar. These observations raise a serious
concern about whether any of the fair prediction methods in the literature
provide predictors that are well-behaved in a causal sense. We now exemplify
this point empirically by applying several well-known fair prediction methods
to the COMPAS dataset.

5.2.6 Empirical implications of the Fair Prediction Theorem
Consider the following example based on the COMPAS dataset.

Example 5.4 (COMPAS continued for Fair Prediction). A team of data scientists
from ProPublica have shown that the COMPAS dataset from Broward County
provides evidence of a strong racial bias against minorities (see Ex. 5.3). They
are now interested in producing fair predictions Ŷ on the same dataset in
order to replace the biased predictions. To this end they implement:

(i) baseline: a random forest classifier (Breiman, 2001; Wright et al., 2020)
trained without any fairness constraints,

(ii) pre-processing: reweighing approach of Kamiran and Calders, 2012,
which introduces sample weights to guarantee TV minimization,

(iii) in-processing: fair reductions approach of Agarwal et al., 2018 with a
logistic regression base classifier,

(iv) post-processing: a random forest classifier trained without fairness
constraints, with reject-option post-processing applied (Kamiran et al.,
2012).

The goal of fair prediction algorithms (ii), (iii), and (iv) is to ascertain that the
TV measure equals 0. After constructing these predictors, the team compute
the TV measure for each of them (represented in the red bar in each of the
subplots in Fig. 5.6). Upon seeing the TV values, they conclude that the
algorithms were successful at reducing the TV measure (at this stage, they
are only aware of the TV values, indicated by a vertical dashed line in each
subplot).

However, having heard of the Fair Prediction Theorem, the team also makes
use of the Fairness Cookbook in Alg. 5.1 in order to see if discrimination is also
removed from a causal viewpoint. Following the steps of the Fairness Cookbook,
they compute measures of direct, indirect, and spurious discrimination. The
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Figure 5.6: Causal Fairness Analysis applied to a standard prediction method
(random forest, subfigure (i)) and three different fair prediction algorithms: reweighing
(Kamiran and Calders, 2012) in subfigure (ii), reductions (Agarwal et al., 2018) in
subfigure (iii), and reject-option (Kamiran et al., 2012) in subfigure (iv). All of
the fair predictions methods reduce the TV measure, but fail to nullify the causal
measures of fairness. Confidence intervals of the measures, obtained using bootstrap,
are shown as vertical bars.

obtained decompositions of the TV measure are shown in Figures 5.6(ii),
5.6(iii), and 5.6(iv). The ProPublica team notes that even though all methods
substantially reduce the TVx0,x1(ŷ), the measures of direct, indirect, and
spurious effects are not necessarily reduced to 0, consistent with the Fair
Prediction Theorem. They conclude that focusing only on the TV measure
may in fact be misleading, since it does not guarantee that undesired forms of
discrimination are removed from the predictions. �

One class of fair prediction methods that are not addressed in the discussion
above are the pre-processing methods that achieve the independence of the
protected attribute with all the observables, which is discussed next.
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5.2.7 Pre-processing methods that achieve X⊥⊥V \ {X}
A prominent pre-processing method that achieves attribute independence
(X⊥⊥V \ {X}) is the proposal of Dwork et al., 2012, in which in the pre-
processing step the distribution

V \ {X} | X = x0 is transported onto V \ {X} | X = x1.

However, as witnessed by the following example, it may be difficult to provide
guarantees that causal measure of fairness vanish for such an approach:

Example 5.5 (Failure of Optimal Transport Methods). A company is hiring
prospective applicants for a new job position. Let X denote gender (x0 for
male, x1 for female), W denotes a score on a test (taking to values, ±ε), Y
the outcome of the application (Y = 0 for no job offer, Y = 1 for job offer).
The following SCMM describes the data generating process:

F , P (U) :



X ← UX

W ← ε(2UW − 1)

Y ←

{
UY ∨ 1(W > 0) if X = x0

UY ∨ 1(W < 0) if X = x1

UX , UZ , UW , UY ∼ Bernoulli(0.5).

(5.52)
(5.53)

(5.54)

(5.55)

After the first part of the selection process, the company goes through a
certification process that ascertains that demographic parity is achieved, i.e.,

TVx0,x1(y) = 0. (5.56)

Still, the data science team is uncertain whether the process is causally fair
with respect to the direct and indirect effects. For this reason, the company
chooses to optimally transport the conditional distributions, namely

W,Y | x1
τ7→W,Y | x0, (5.57)

where τ denotes the optimal transport map between the two distributions. By
doing so, the company aims to make sure that both the direct and the indirect
effect are equal to 0.

The obtained optimal transport map τ can be described as follows:

τ(w, y) =


(−ε, 0) if (w, y) = (ε, 0)
(ε, 1) if (w, y) = (ε, 1)
(±ε, 1) w.p. 1

2 if (w, y) = (−ε, 1)
(5.58)
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(blue) W,Y | x1 (red), and the optimal
transport map τ (green) from Example 5.5.

Figure 5.7: Causal diagram and distribution from Ex. 5.5.

The conditional distributions W,Y | x0 and W,Y | x1 are shown in Fig. 5.7b,
together with the optimal transport map.

Denote by W̃ , Ỹ the transformed values of W,Y . After the transformation,
the assignment of the value of W̃ depends on Ỹ , which implies that the causal
diagram in Fig. 5.7a is no longer valid for the transformed data (and, further-
more, the transformed data is no longer compatible with the SFM). Therefore,
no causal guarantees can be provided after applying optimal transport. �

The reader may wonder about the underlying issue for why all of the discussed
methods from previous literature fail from a causal perspective. We next move
onto explaining the shortcomings of these methods, and give two possible
formulations that can help when constructing causally meaningful predictors.

5.2.8 Towards the solution
Our next goal is to remedy the pitfalls of the fair prediction methods discussed
so far. In particular, we outline a strategy for ensuring that direct, indirect,
and spurious effects vanish (or a subset of them, in case of business necessity).
There are two conditions that are needed to guarantee the causally fair behavior
of our predictor:

(I) the causal structure of the SFM is preserved for the predictor Ŷ ,

(II) the identification expressions of x-DE, x-IE, and x-SE equal 0 in the
new SCMM′.

We first show formally that these two conditions translate into guarantees for
the fairness of the constructed classifier Ŷ :

Proposition 5.1 (Fair Predictor – Causal Conditions). Let M be an SCM
compatible with the SFM and let Ŷ be a predictor of the outcome Y satisfying:
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(a) X,Z,W and Ŷ satisfy the assumptions of the SFM,

(b) the identification expressions for x-DEsym
x (y | x0), x-DEsym

x (y | x0), and
x-SEx1,x0(y) equal 0, by ensuring that∑

z,w

[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x1, z)P (z | x0) = 0 (5.59)

∑
z,w

[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z | x0) = 0 (5.60)

∑
z,w

P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]P (z | x) = 0 (5.61)

∑
z,w

P (y | x1, z, w)[P (w | x1, z)− P (w | x0, z)]P (z | x) = 0 (5.62)

∑
z

P (y | x1, z)[P (z | x0)− P (z | x1)] = 0. (5.63)

Then, the predictor Ŷ satisfies:
x-DEsym

x (ŷ | x0) = x-IEsym
x (ŷ | x0) = x-SEx1,x0(ŷ) = 0. (5.64)

Based on the proposition above, we provide two different strategies for con-
structing causally meaningful fair predictors, as discussed in the next sections.

5.2.9 Causally aware in-processing
The first strategy for constructing fair predictions that obey causal constraints
is via in-processing. The natural idea is to replace the constraint TVx0,x1(ŷ) = 0
with a number of constraints that represent the identification expressions of the
causal quantities that we wish to minimize, as described in Eqs. 5.59-5.63. After
that, we can use the fact that the causal structure of the SFM is inherited for
a predictor Ŷ constructed with in-processing. The formal statement showing
the validity of the in-processing approach is given in the following result:
Theorem 5.2 (In-processing with Causal Constraints). Let M be an SCM
compatible with the SFM. Let Ŷ be constructed as the optimal solution to

Ŷ = arg min
f

E[Y − f(X,Z,W )]2 (5.65)

subject to x-DEID
x0,x1

(ŷ | x0) = 0 (5.66)
x-DEID

x1,x0
(ŷ | x0) = 0 (5.67)

x-IEID
x0,x1

(ŷ | x0) = 0 (5.68)
x-IEID

x1,x0
(ŷ | x0) = 0 (5.69)

x-SEID
x1,x0

(ŷ) = 0, (5.70)
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Algorithm 5.2 Causal Individual Fairness (Causal IF)
• Inputs: Dataset D, SFM projection ΠSFM(G), Business Necessity Set
BN-set.
for V ′ ∈ {Z,W, Y } do

if V ′ /∈ BN-set then
transport V ′ | x1, τ

pa(V ′)(pa(V ′)) onto V ′ | x0,pa(V ′)
let τV ′ denote the transport map

else if V ′ ∈ BN-set then
transport V ′ | x, τpa(V ′)(pa(V ′)) onto V ′ | x, pa(V ′) for x ∈ {x0, x1}
let τV ′ denote the transport map

end if
end for

where x-DEID, x-IEID, and x-SEID represent the identification expressions of
the corresponding measures (as shown in Prop. 5.1). Then, the predictor Ŷ
satisfies

x-DEsym
x (ŷ | x0) = x-IEsym

x (ŷ | x0) = x-SEx1,x0(ŷ) = 0. (5.71)

The following remark shows that the result of the theorem holds even more
broadly than just for the standard fairness model:

Remark 5.1 (Robustness of In-processing with Causal Constraints). Thm. 5.2
is stated for an SCM that is compatible with the SFM. However, such an
assumption can be relaxed. In particular, the result of the theorem remains
true even if the bidirected edges X L9999K Y , Z L9999K Y , and W L9999K Y are
present in the original model.

5.2.10 Causally aware pre-processing

We now discuss a strategy based on pre-processing that is related to the optimal
transport approach of Dwork et al., 2012, which we call Causal Individual
Fairness, described in Alg. 5.2. Let the business necessity set be denoted as
BN-set, taking values

BN-set ∈
{
∅, {Z}, {W}, {Z,W}

}
. (5.72)

The algorithm performs sequential optimal transport of the distributions of
Z,W, and Y (in this topological ordering) conditional on the values of the
parental set. In particular, Causal IF procedure starts by optimally transporting

Z | X = x1 onto Z | X = x0,
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unless Z is in the business necessity set. Let τZ denote the optimal transport
map. Then, the distribution of W is transported in the next step, namely,

W | X = x1, Z = τZ(z) onto W | X = x0, Z = z ∀z.

In the final step, the distribution of Y is transported

Y | X = x1, Z = τZ(z),W = τW (w) onto Y | X = x0, Z = z,W = w ∀z, w.

Theorem 5.3 (Soundness Causal Individual Fairness). LetM be an SCM com-
patible with the SFM and τY be the optimal transport map obtained when
applying Causal IF (Alg. 5.2). Define an additional mechanism of the SCM
M such that

Ỹ ← τY (Y ;X,Z,W ). (5.73)

For the transformed outcome Ỹ , we can then claim:

if Z /∈ BN-set =⇒ x-SEx1,x0(ỹ) = 0. (5.74)
if W /∈ BN-set =⇒ x-IEsym

x (ỹ | x0) = 0. (5.75)

Furthermore, the transformed outcome Ỹ also satisfies

x-DEsym
x (ỹ | x0) = 0. (5.76)

This theorem’s proof can be found in Appendix A.4. After showing that the
Causal IF procedure provides certain guarantees for the causal measures of
fairness, we go back to Ex. 5.5 to understand why the method of joint optimal
transport fails to produce a causally meaningful predictor:

Remark 5.2 (Why Joint Optimal Transport Fails). Recall that in Ex. 5.5 we
showed that the optimal transport map, in general, may break the causal
structure in the data, and after applying it, no causal guarantees can be made.
Causal IF (Alg. 5.2), on the other hand, applies optimal transport sequentially,
by making sure that the causal structure encoded in the SFM is preserved –
which in turn allows for causal fairness guarantees.

5.3 Task 3. Fair Decision-Making

After introducing and discussing Task 2, which focused on constructing fair
predictions, we now move onto Task 3, which is concerned with fair decision-
making. In particular, it is important to clarify what the gap between Tasks 2
and 3 is. In Task 2, we focused on producing predictions Ŷ for an outcome Y ,
such that they

(i) produce a small loss L(Y, Ŷ ) with respect to a loss function L,
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(ii) satisfy a set of causal fairness constraints, which we denote with C(Ŷ ).

In Task 3, on the other hand, we are interested not only in making predictions,
but also in making decisions in practice. The gap between the two tasks will
often be encapsulated in a user-specified utility function U , that may account
for utility terms not directly specified in the dataset.7

Definition 5.6 (Utility Function). A utility function U is a function of the
decision policy D, covariates X,Z,W, and Y to the real line R. We write
U(D;X,Z,W, Y ) for the function, and sometimes U(D) when it is clear from
the context which covariates are used.

For concreteness, we now give an example which attempts to highlight the
distinction between the two tasks:

Example 5.6 (College Admissions I: Decision-Making). A university is deciding
on admissions of prospective applicants. Let X denote gender (x0 for female,
x1 for male), W1 denotes the SAT score, W2 denotes the student’s score on
the admission exam. Suppose the following SCMM∗ describes this setting:

F∗, P ∗(U) :



X ← UX

W1 ← UW +X

W2 ←

{
W1 + 2(1−X) if W1 > 0.5,
W1 otherwise.

Ŷ ← f
Ŷ

(X,W1,W2)

D ← fD(X,W1,W2, Ŷ ),

UX ∼ Bernoulli(0.8), UW ∼ Unif[0, 1],

(5.77)
(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

where Ŷ is the predicted GPA of the student, and D the final admission
decision. In words,M∗ can be interpreted as follows. Due to a societal bias,
females (x0) are discouraged from STEM subjects, causing lower SAT scores
(Eq. 5.78). However, female students who nonetheless perform well on the
SAT (W1 > 0.5) are additionally encouraged and perform even better on the
admission test (Eq. 5.79). Male candidates perform the same on the admission
test as they have on the SAT tests, regardless of SAT score.

Based on the above example, we can clarify the distinction between the
tasks:

7One viewpoint on the distinction between the tasks is that Task 2 is a specific
subcase of Task 3 in which the utility function U only depends on the prediction
loss between Y and Ŷ .
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(T2) The aim of Task 2 is to produce predictions Ŷ , that is, construct the f
Ŷ

mechanism based on the available information X,W1,W2. Furthermore,
the predictions should satisfy a fairness constraint, for example, contain
no direct effect of gender X:

NDEx0,x1(ŷ) = NDEx1,x0(ŷ) = 0. (5.83)

The prediction task is often tied to a specific mechanism, in this case
fY (that exists in reality but is not exemplified in the SCM above), that
encodes how individual’s GPA depends on their test scores and gender.

(T3) The aim of Task 3 is to decide which applicants should get admitted,
that is, to construct the decision mechanism fD. The decision policy
D may need to take into account different types of utility, such as
the university long-term reputation (based on overall success rate of
completing the studies), the total expected income from tuition fees,
or representation of protected groups. Furthermore, the decision policy
may also be required to satisfy a desired notion of fairness, for example,

NDEx0,x1(d) = NDEx1,x0(d) = 0. (5.84)

�

After clarifying the gap between the tasks, we discuss some possible approaches
for Task 3. One initial approach to solve Task 3 might be to simply use the
predictions Ŷ constructed in Task 2, and construct fair decisions based on fair
predictions. As it turns out, this approach is possible only under two special
scenarios:

Proposition 5.2 (Chaining Fair Predictions into Fair Decisions). Let µ be a
fairness measure defined by a contrast C of the form (C1, C0, E1, E0). Suppose
that a predictor Ŷ is fair w.r.t. µ, that is, µ(ŷ) = 0. Furthermore, suppose
that a decision policy D is constructed as a transformation of Ŷ , i.e.,

D := fD(Ŷ ). (5.85)

Then, D is fair with respect to µ if one of the following conditions hold:

(a) the function fD is linear, or

(b) the measure µ is a unit level measure.

The proof of the proposition is given in Appendix A.5. As the next example
illustrates, other transformations of fair predictions do not necessarily preserve
the fairness condition satisfied by the baseline predictor:
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X

W1 W2

Ŷ D

(a) Causal diagram of the SCM in Ex. 5.7. (b) Density of Ŷ and the decision policy D.

Figure 5.8: Causal diagram and the density of the GPA predictor Ŷ for Ex. 5.7.

Example 5.7 (College Admissions Continued: Thresholding). Consider the SCM
from Ex. 5.6, with the mechanisms f

Ŷ
, fD instantiated by the university as:

Ŷ ←W2 + 2 (5.86)
D ← 1(Ŷ > 3.75), (5.87)

The mechanisms were obtained after the selection committee realized that the
average admission test score is the same for male and female candidates, and
therefore decided to create the fair predictor Ŷ as simply a function of W2
(Eq. 5.86). The admission decision D is then simply based on thresholding the
values of the predictor Ŷ , and was chosen so that a fixed number of candidates
are admitted. The natural indirect effect for the predictor Ŷ can be computed
as

NIEx1,x0(ŷ) = 0. (5.88)

However, we want to verify whether the decisions D obtained from the thresh-
olding operation in Eq. 5.87 are also fair with respect to indirect effect. In
particular, we want to compute the NIE

NIEx1,x0(d) = P (dx1,Wx0
)− P (dx1). (5.89)

We now compute the first term:

P (dx1,Wx0
) = P (ŷx1,Wx0

> 3.75) = P ((W2)x0 > 1.75) (5.90)
= P ((W2)x0 > 1.75 | (W1)x0 ≤ 0.5)P ((W1)x0 ≤ 0.5) (5.91)
+ P ((W2)x0 > 1.75 | (W1)x0 > 0.5)P ((W1)x0 > 0.5) (5.92)

= P ((W1)x0 > 1.75)1
2 + P ((W1)x0 + 2 > 1.75)1

2 (5.93)

= P (UW > 1.75) · 1
2 + P (UW > −0.25) · 1

2 = 1
2 . (5.94)
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Similarly, we also compute the second term:

P (dx1) = P (ŷx1 > 3.75) = P ((W2)x1 > 1.75) (5.95)

= P ((W1)x1 > 1.75) = P (UW > 0.75) = 1
4 . (5.96)

Therefore, we have obtained that

NIEx1,x0(d) = 1
2 −

1
4 = 1

4 . (5.97)

The density of the scores for both groups is visualized in Fig. 5.8b, which shows
that the mean predicted GPA is equal between the groups, while choosing a
threshold of Ŷ > 3.75 results in a non-zero indirect effect. �

After all, a fairness criterion satisfied by a predictor Ŷ is not necessarily
satisfied by a policy D constructed following this predictor.

5.3.1 Decision-Making as In-processing
To remedy the issue highlighted above, we propose optimizing the utility
function directly subject to causal constraints of fairness. This formulation of
the problem is captured in the following theorem, closely related to Thm. 5.2:

Theorem 5.4 (In-processing with Causal Constraints). Let M be an SCM
compatible with the SFM. Let U(D;X,Z,W, Y ) be the utility function for a
possible policy D. Let the decision policy D∗ be constructed as the optimal
solution to

D∗ = arg max
D

E[U(D;X,Z,W, Y )] (5.98)

subject to x-DEID
x0,x1

(d | x0) = 0 (5.99)
x-DEID

x1,x0
(d | x0) = 0 (5.100)

x-IEID
x0,x1

(d | x0) = 0 (5.101)
x-IEID

x1,x0
(d | x0) = 0 (5.102)

x-SEID
x1,x0

(d) = 0 (5.103)

where x-DEID, x-IEID, and x-SEID represent the identification expressions of
the corresponding measures (as shown in Prop. 5.1). Then the decision policy
D∗ satisfies

x-DEsym
x (d∗ | x0) = x-IEsym

x (d∗ | x0) = x-SEx1,x0(d∗) = 0, (5.104)

where the x-DEsym
x , x-IEsym

x are the symmetric DE and IE effects from Def. 5.4.



112 Fairness tasks

This formulation guarantees to remove direct, indirect, and spurious effects from
the decision policy D. In general, however, under considerations of business
necessity, one might wish to relax this formulation, and only guarantee that a
subset of these effects is equal to 0. In the next section, we focus on a specific
utility function, that has received attention in the literature, in the context of
decision-making.

5.3.2 Explicit Trade-off of Utility and Fairness
A common challenge described in the fairness literature is about achieving a
high utility of a decision policy, while increasing the number of individuals from
the discriminated group who are favored by the policy. This balance between
the utility of a decision with respect to the true outcome, and the utility
of favoring a discriminated group is sometimes called the fairness-accuracy
trade-off (Friedler et al., 2019)8. Motivated by this trade-off, a commonly
considered class of utility functions that explicitly trade between the two types
of utility take the form:

U(D;X,Z,W, Y ) = R(D,Y ) + λ1(X = x0)D. (5.105)

The two terms in Eq. 5.105 represent (1) the utility of the decision with respect
to true outcome Y , measured by the reward term R(D,Y ) and (2) the utility
of favoring an individual belonging to the protected group x0, measured by the
term λ1(X = x0)D. The tuning parameter λ describes the trade-off between
the two objectives. For λ = 0, the utility function is only focused on the reward
with respect to outcome, whereas as λ→∞, positive decisions for individuals
belonging to the protected group are increasingly important.

Example 5.8 (College Admissions: Explicit Trade-off). Let X denote the pro-
tected attribute, Y the high school GPA, and D the university admission
decision. Consider the utility function

U(D;X,Y ) = − (Y − 4)2︸ ︷︷ ︸
reward

+ λ1(X = x0 ∧D = 1)︸ ︷︷ ︸
minority group preference

(5.106)

that balances the reward associated with each student’s success (measured by
a squared loss from a perfect GPA) with the utility of admitting students from
the minority group (giving a fixed utility of λ for each admitted student from
the x0 group). The first component of the utility ensures that students finish
university with a good success rate (important for the university reputation),
while the second term ensures diversity and minority representation. �

8In practice, the trade-off between utility and fairness may be small or negligible
in certain settings, for instance in the context of equality of odds (Dutta et al., 2020;
Rodolfa et al., 2021).
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Even though utility functions discussed above can trade between reward and
fairness, the question still remains on how the optimal decision policy D, with
respect to a utility function U , behaves from a causal perspective. Here we
recall the Fair Prediction Theorem (Thm. 5.1). The theorem can be leveraged
in the context of decision-making, too. In particular, we give the following
corollary of the theorem, and then explain its implications:

Corollary 5.5 (Fair Decision-Making). [SFM(nZ , nW ), S linear
nZ ,nW

as in Thm. 5.1]
LetM be sampled from the space of linear SCMs with coefficients drawn from
the symmetric hypercube (i.e., according to the model S linear

nZ ,nW
). Let the utility

function be given as

U(D;X,Z,W, Y ) = −[Y −D(X,Z,W )]2 + λ1(X = x0)D. (5.107)

Let Dmax denote the maximum utility policy, which solves the problem

Dmax = arg min
D linear

E[U(D;X,Z,W, Y )]. (5.108)

Further, let dCF denote the causally fair maximum utility policy, which solves
the problem

DCF = arg min
D linear

E[U(D;X,Z,W, Y )] (5.109)

subject to x-DEx0,x1(d | x0) = 0 (5.110)
x-IEx0,x1(d | x0) = 0, (5.111)
x-SEx0,x1(d) = 0. (5.112)

Then, we can claim that

∃ε(nZ , nW ) > 0 s.t. P(U(Dmax)− U(DCF) > ε(nZ , nW )) ≥ 3
4 . (5.113)

In words, the corollary implies that for a randomly sampled SCM M, the
maximum utility policy Dmax will have, with high probability, a higher utility
(by some ε-margin) than the causally fair policy DCF, for any choice of
parameter λ. Interestingly, an analogous result was obtained by (Nilforoshan
et al., 2022) for a different class of models, namely models in which variables
have discrete distributions over the unit simplex, rather than considering
linear SCMs analyzed in this manuscript. Since the utility function already
captures the benefit allocated to the minority group, and causal constraints
seemingly impede this utility, the authors interpret this result to mean that
causal fairness constraints are not useful in practice. This viewpoint, however,
does not capture the entire complexity of the problem. As illustrated by the
following example, our interpretation of the result is that admitting minority
applicants is not the same as removing discrimination as it happened in the
real world:
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Example 5.9 (College Admissions III: Who is Who?). A university is deciding on
admissions of prospective applicants. The information available to the selection
committee is the following. Let X denote race (x0 for minority groups, x1
for majority group), W denotes the SAT score, Z denotes the socio-economic
status of the family of the student (Z = 0 for low-income, Z = 1 for high-
income). Let D be the decision whether to admit an applicant. Suppose that
the following SCMM∗ describes the situation:

F∗, P ∗(U) :



X ← UX

Z ← UZ

W ← UW − 5(1− Z)(1−X)
D ← fD(X,W ),

UX ∼ Bernoulli(0.8),
UZ ∼ Bernoulli(0.3),
UW ∼ N(0, 1).

(5.114)
(5.115)
(5.116)
(5.117)

(5.118)

The SCM can be described as follows. The population consists of 80% of
applicants from the majority group (x1), and 30% of the applicants come from
high socio-economic background (Z = 1, and for simplicity, we assume that
socio-economic status and race are independent). Due to an existing societal
bias regarding school funding, minority group applicants (x0) from low income
families (Z = 0) have lower SAT scores on average, compared to their majority
group counterparts. For the high-income families, there is no difference in
the SAT scores between the majority and minority groups, since high income
allows access to better schooling. The causal diagram associated with the
decision-making process is shown in Fig. 5.9a.

The difference between the groups in terms of the SAT scores (stratified by
socio-economic status) is shown in Fig. 5.9b, indicating no racial discrimination
within the high-income group, but evidence of discrimination within the low-
income group. In this university, the probability of finishing the degree is
proportional to the SAT score, and the utility function can be written as

U(D;X,Z,W ) = W + λ1(X = x0 ∧D = 1). (5.119)

The university decides to choose the parameter λ such that exactly 10% of the
applicants from each of the groups are admitted. For the majority group, this
simply results in admitting all applicants who score better than 90% of peers
in their group. However, for the minority group, there is a difference between
the maximum utility policy and the causally fair policy. In particular, the
maximum utility policy is based on the current, factual SAT scores W , while
the causally fair policy considers the counterfactual SAT scores that would be
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X (race)

W SAT score

Z (SE status)

D (decision)

(a) Causal diagram of Ex. 5.9. (b) SAT scores from Ex. 5.9.

Figure 5.9: SFM and SAT scores visualization in Ex. 5.9.

obtained in the absence of discrimination, Wx1 . Notice that the latter scores
in particular equal

Wx1 = W + 5 · 1(Z = 0)1(X = 0), (5.120)

meaning that the counterfactual values of the SAT scores would be higher for
those in the minority group who are from low-income families. Therefore, the
two resulting policies can be described as follows:

(1) Dmax: The policy admits all applicants from the minority group that
come from a high socio-economic status, and no applicants from a low
status,

(2) DCF: The policy admits the top 10% of applicants from a high socio-
economic status, and also the top 10% from the low socio-economic
status. Such a policy takes into account that the very best students from
low-income families were actually discriminated, since in the absence
of high family income, their race was a cause of poorer access to good
schooling, also reflected in the fact that their counterfactual outcomes
(in absence of racial discrimination) would show better performance on
SATs, as indicated by Eq. 5.120.

Therefore, the Dmax policy admits individuals from high-income backgrounds,
regardless of the fact that they were not discriminated (due to privileged socio-
economic status) and that they perform poorly compared to their peers of the
same socio-economic background. The DCF policy, however, does not admit
applicants who perform poorly despite the fact they were not discriminated.
Instead, it admits applicants who perform exceptionally well compared to their
group, but were discriminated in their access to good schooling. �

The above example highlights the tension between admitting minority
applicants and admitting applicants who were actually discriminated, which
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are not always the same objectives. This fundamental tension is captured in
Cor. 5.5. The above example is a simplification of the issues that appear in
practice, and is constructed to highlight the fundamental tension between
minority representation and actual discrimination removal. Such issues need
to be considered on a case-by-case basis and take into account further societal
considerations.

5.3.3 Outcome Control & Principal Fairness
In this section, we introduce the setting of outcome control, characterized
by a decision D which precedes the outcome of interest Y . The decision D
(sometimes also referred to as treatment) is assumed to be binary, with d1
indicating the more favorable decision, and d0 the less favorable one. Similarly,
the outcome Y is also assumed to be binary9, with y1 being more desirable
than y0. The setting of outcome control appears across a broad range of
applications, from clinical decision-making (Hamburg and Collins, 2010) and
public health (Insel, 2009), to criminal justice (Larson et al., 2016) and various
welfare interventions (Coston et al., 2020). Formally, we are interested in the
following decision-making task:

Definition 5.7 (Decision-Making Optimization). LetM be an SCM compatible
with the SFM. Given a fixed budget b, the optimal decision problem is defined
as finding the (possibly stochastic) solution to the following optimization
problem:

D∗ = arg max
D(x,z,w)

E[YD] (5.121)

subject to P (d) ≤ b. (5.122)

Outcome control is also characterized by the fact that the institution (i.e.,
the decision-maker) and the individual receiving treatment have the same
utility function. In this section, we will focus on a cancer surgery example,
in which both the clinician and the patient are interested in maximizing the
patient’s survival by means of performing a surgery. In contrast to this, a
setting that does not fall under outcome control is that of issuing bank loans –
the institution (in this case the bank) can safely ignore the utility of individuals
who are not given a loan, while the clinician does not ignore the utility of
patients who are not given surgery. Therefore, not all decision-making settings
fall under outcome control, with loan approvals being an example.

In the sequel, we also discuss a fairness criterion called principal fairness
(Imai and Jiang, 2020), that is intuitively appealing in the contexts of decision-
making when the decision may influence the outcome of interest. However, as

9This assumption is made for simplicity of exposition, and most of the discussion
in the section does not rely on it.
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we will see shortly, there are several shortcomings of this definition, which can
be circumvented by an alternative approach, which we call benefit fairness.

Oracle’s Perspective

We start by introducing the cancer surgery example through the perspective
of an all-knowing oracle:

Example 5.10 (Cancer Surgery – Oracle’s Perspective). A clinical team has
access to information about the sex of cancer patients (X = x0 male, X = x1
female) and their degree of illness severity determined from tissue biopsy
(W ∈ [0, 1]). They wish to optimize the 2-year survival of each patient (Y ),
and the decision D = 1 indicates whether to perform surgery. The following
SCMM∗ describes the data generating mechanisms (unknown to the team):

F∗, P ∗(U) :



X ← UX

W ←

{√
UW if X = x0,

1−
√

1− UW if X = x1

D ← fD(X,W )

Y ← 1(UY + 1
3WD − 1

5W > 0.5).

UX ∈ {0, 1}, P (UX = 1) = 0.5,
UW , UY ∼ Unif[0, 1],

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)
(5.128)

where the fD mechanism is constructed by the team.
The clinical team has access to an oracle that is capable of predicting the

future perfectly. In particular, the oracle tells the team how each individual
would respond to surgery. That is, for each unit U = u (of the 500 units), the
oracle returns the values of

Yd0(u), Yd1(u). (5.129)

Having access to this information, the clinicians quickly realize how to use their
resources. In particular, they notice that for units for whom (Yd0(u), Yd1(u))
equals (0, 0) or (1, 1), there is no effect of surgery, since they will (or will not)
survive regardless of the decision. They also notice that surgery is harmful
for individuals for whom (Yd0(u), Yd1(u)) = (1, 0). These individuals would
not survive if given surgery, but would survive otherwise. Therefore, they
ultimately decide to treat 100 individuals who satisfy

(Yd0(u), Yd1(u)) = (0, 1), (5.130)

since these individuals are precisely those whose death can be prevented by
surgery. They learn there are 100 males and 100 females in the (0, 1)-group,
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and thus, to be fair with respect to sex, they decide to treat 50 males and 50
females. �

The space of units corresponding to the above example is represented in
Fig. 5.10. The groups described by different values of Yd0(u), Yd1(u) in the
example are known as canonical types (Balke and Pearl, 1994) or principal
strata (Frangakis and Rubin, 2002). Two groups cannot be influenced by the
treatment decision (called “Safe” and “Doomed”, see Fig. 5.10). The third
group represents those who are harmed by treatment (called “Harmed”).
Finally, the last group represents exactly those for whom the surgery is life-
saving, which is the main goal of the clinicians (this group is called “Helped”).

Figure 5.10: The space
of units corresponding to
Ex. 5.10.

This example illustrates how, in presence of per-
fect knowledge, the team can allocate resources
efficiently. In particular, the consideration of fair-
ness comes into play when deciding which of the
individuals corresponding to the (0, 1) principal
stratum will be treated. Since the number of
males and females in this group is equal, the
team decides that half of those treated should
be female. The approach described above can
be seen as appealing in many applications unre-
lated to to the medical setting, and motivated the
definition of principal fairness (Imai and Jiang,
2020).

Principal Fairness Definition

The discussion from above motivates a fairness criterion that was first intro-
duced by Imai and Jiang, 2020, through the following definition:

Definition 5.8 (Principal Fairness (Imai and Jiang, 2020)). Let D be a decision
that possibly affects the outcome Y . The pair (Y,D) is said to satisfy principal
fairness if

P (d | yd0 , yd1 , x1) = P (d | yd0 , yd1 , x0), (5.131)

for each principal stratum (yd0 , yd1). That is, the decision rate should be inde-
pendent of the attribute X in every principal stratum (yd0 , yd1). Furthermore,
define the principal fairness measure (PFM) as:

PFMx0,x1(d | yd0 , yd1) = P (d | yd0 , yd1 , x1)− P (d | yd0 , yd1 , x0). (5.132)

The above notion aims to capture the intuition described in Ex. 5.10. However,
unlike in the example, the definition needs to be evaluated under imperfect
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knowledge, when only the collected data is available10. An immediate cause
for concern, in this context, is the joint appearance of the potential outcomes
Yd0 , Yd1 in the definition of principal fairness. As is well known in the literature,
the joint distribution of the potential outcomes Yd0 , Yd1 is in general impossible
to obtain, which leads to the lack of identifiability of the principal fairness
criterion:

Proposition 5.3 (Principal Fairness is Not Identifiable). The Principal Fair-
ness (PF) criterion from Eq. 5.131 is not identifiable from observational or
experimental data.

The implication of the proposition is that principal fairness, in general, cannot
be evaluated, even if an unlimited amount of data was available11.

Monotonicity Assumption

To remedy the problem of non-identifiability of principal fairness, Imai and
Jiang, 2020 propose the monotonicity assumption:

Definition 5.9 (Monotonicity). We say that an outcome Y satisfies monotonic-
ity with respect to a decision D if

Yd1(u) ≥ Yd0(u). (5.136)

In words, monotonicity says that for every unit, the outcome with the positive
decision (D = 1) would not be worse than with the negative decision (D = 0).

10As discussed throughout this manuscript, and as implied by the definition of the
SCM (Def. 2.1), we almost never have access to the unobserved sources of variation
(u) that determine the identity of each unit.

11One way to see why PF is not identifiable is the following construction. Consider
an SCM consisting of two binary variables D,Y ∈ {0, 1} and the simple graph
D → Y . Suppose that we observe P (d) = pd, and P (y | d1) = m1, P (y | d0) = m0
for some constants pd,m1,m0 (additionally assume m0 ≤ m1 w.l.o.g.). It is easy to
show that these three values determine all of the observational and interventional
distributions of the SCM. However, notice that for any λ ∈ [0, 1 −m1] the SCM
given by

D ← UD (5.133)
Y ← 1(UY ∈ [0,m0 − λ]) +D1(UY ∈ [m0 − λ,m1])+ (5.134)

(1−D)1(UY ∈ [m1,m1 + λ]),
UY ∼ Unif[0, 1], UD ∼ Bernoulli(pd), (5.135)

satisfies P (d) = pd, P (y | d1) = m1, and P (y | d0) = m0, but the joint distribution
P (yd0 = 0, yd1 = 1) = m1 −m0 + λ depends on the λ parameter and is therefore
non-identifiable.
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We now demonstrate how monotonicity aids the identifiability of principal
fairness.

Proposition 5.4. Under the monotonicity assumption (Eq. 5.136), the principal
fairness criterion is identifiable under the Standard Fairness Model (SFM).

Proof. The main challenge in PF is to obtain the joint distribution P (yd0 , yd1),
which is non-identifiable in general. Under monotonicity, however, we have
that

Yd0(u) = 0 ∧ Yd1(u) = 0 ⇐⇒ Yd1(u) = 0, (5.137)
Yd0(u) = 1 ∧ Yd1(u) = 1 ⇐⇒ Yd0(u) = 1. (5.138)

Therefore, it follows from monotonicity that

P (yd0 = 1, yd1 = 0) = 0, (5.139)
P (yd0 = 0, yd1 = 0) = P (yd1 = 0), (5.140)
P (yd0 = 1, yd1 = 1) = P (yd0 = 1), (5.141)
P (yd0 = 0, yd1 = 1) = 1− P (yd1 = 0)− P (yd0 = 1), (5.142)

thereby identifying the joint distribution whenever the interventional distribu-
tions P (yd0), P (yd1) are identifiable. �

In the cancer surgery example, the monotonicity assumption would require
that patients have strictly better survival outcomes when surgery is performed,
compared to when it is not. Given the known risks of surgical procedures,
the assumption may be rightfully challenged in such a setting. In the sequel,
we argue that the assumption of monotonicity is not really necessary, and
often does not help the decision-maker, even if it holds true. To fix this issue,
we discuss a new definition of fairness in the setting of outcome control that
suffers from neither of the above two problems but still captures the essential
intuition behind PF.

Decision-Maker’s Perspective

Very often we might be interested in constructing a decision-making system in
which the PF criterion is satisfied (i.e., performing Task 3), rather than simply
using the criterion to verify whether the decision policy is fair (i.e., performing
Task 1). We now discuss a basic example of creating a decision-making policy.

Example 5.11 (Cancer Surgery - continued). The team of clinicians constructs
the causal diagram associated with the decision-making process, shown in
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Figure 5.11: Causal diagram for Ex. 5.11 (breast cancer) and Ex. 5.13 (startup
professional development courses).

Fig. 5.11. Using data from their electronic health records (EHR), they estimate
the proportion of patients who benefit from the treatment based on x,w:

P (yd1 = 1, yd0 = 0 | w, x1) = w

3 . (5.143)

P (yd1 = 1, yd0 = 0 | w, x0) = w

3 . (5.144)

In words, at each level of illness severity W = w, the proportion of patients
who benefit from the surgery is the same, regardless of sex. In light of this
information, the clinicians decide to construct the decision policy fD such that
fD(W ) = 1(W > 1

2 ). In words, if a patient’s illness severity W is above 1
2 , the

patient will receive treatment.
After implementing the policy and waiting for the 2-year follow-up period,

clinicians estimate the probabilities of treatment within the stratum of those
helped by surgery, and compute that

P (d | yd0 = 0, yd1 = 1, x0) = 7
8 , (5.145)

P (d | yd0 = 0, yd1 = 1, x1) = 1
2 , (5.146)

indicating that the allocation of the decision is not independent of sex. That
is, within the group of those who are helped by surgery, males are more likely
to be selected for treatment than females. �

Somewhat counter-intuitively, the decision-making policy introduced by the
clinicians does not satisfy principal fairness, even though at each level of illness
severity, the proportion of patients who benefit from the treatment is equal
between both sexes. What is the issue at hand here?

The takeaway message from this example is best illustrated in Figure 5.12.
In Figure 5.12a, we see the perspective under perfect knowledge. In particular,
on the horizontal axis the noise variable uy, which summarizes the patients’
unobserved resilience and frailty, is available. Together with the value of illness
severity (on the vertical axis) and the knowledge of the structural causal
model, we can perfectly pick apart the different groups (i.e., principal strata)
according to their potential outcomes (groups are indicated by color). In this
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Figure 5.12: Difference in perspective between perfect knowledge of an oracle (left)
and imperfect knowledge of a decision-maker in a practical application (right).

case, it is clear that our policy should allocate the treatment to the patients
within the green area, since those are the ones who benefit from it.

In Figure 5.12b, however, we see the perspective of the decision-makers
under imperfect knowledge. Firstly, the decision-makers have no knowledge
about the values on the horizontal axis, since this represents variables that are
outside their model. After computing the proportion of patients who benefit
from treatment (corresponding to values in Eqs. 5.143-5.144), the decision-
makers visualize the male and female groups (lighter color indicates larger
increase in survival associated with surgery). It is visible from the figure that
the estimated benefit from surgery is higher for the X = x0 group than for
X = x1. Therefore, to the best of their knowledge, the decision-makers decide
to treat more patients from the X = x0 group.

The example illustrates why principal fairness might not be exactly the
desired criterion, from the point of view of the decision-maker. In particular, the
clinicians cannot determine (even with the monotonicity assumption holding
true) exactly which patients belong to the group

Yd0(u) = 0, Yd1(u) = 1,

that is, who benefits from the treatment. Instead, the best thing they can do
is to look at illness severity (W ) as a proxy for treatment benefit. However, in
the example, the degree of illness severity is sex-specific, since men are more
severely ill on average. As a result, the optimal policy (from the viewpoint of
the decision-maker), is excluded by principal fairness, i.e., it does not satisfy
PF. The main issue lies in the fact that the intuition behind PF comes from
the oracle case, in which we know deterministically who would benefit from the
treatment, and then we wish the probability of treatment within this group
not to depend on sex. In practice, however, our understanding of treatment
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benefit will almost always be probabilistic. As a consequence, the optimal
policy (for example, in terms of overall patient survival) may be excluded by
principal fairness.

Benefit Fairness

To remedy the issue described above, we propose an alternative definition,
which takes the perspective of the decision-maker:

Definition 5.10 (Benefit Fairness). LetM be a structural causal model com-
patible with the SFM. Then, define the benefit relative to covariates (x, z, w)
as:

∆(x, z, w) = P (yd1 | x, z, w)− P (yd0 | x, z, w). (5.147)

We say that the pair (Y,D) satisfies the benefit fairness criterion (BFC, for
short) if

P (d | ∆ = δ, x0) = P (d | ∆ = δ, x1) ∀δ. (5.148)

Notice that the BFC takes the perspective of the decision-maker who only has
access to the unit’s attributes (x, z, w), as opposed to the exogenous U = u12.
In particular, the quantity ∆(x, z, w), which measures the benefit from the
decision D for each set of covariates (x, z, w), which is estimable from the data,
without invoking the monotonicity assumption. The BFC then requires that
at each level of the degree of benefit, ∆(x, z, w) = δ, the rate of the decision
does not depend on the protected attribute.

Note on Affirmative Versions of Benefit Fairness. The notion of fairness
encoded in Def. 5.10 requires that the treatment allocation is independent of
the protected attribute at any given, fixed value of the treatment’s benefit ∆.
In other words, the definition requires the decision-maker to be agnostic of the
protected attribute and focus solely on the benefit ∆, and can thus be seen
as a somewhat minimal fairness requirement. We now wish to highlight that
alternative, stronger notions of fairness may be enforced in a similar way, best
illustrated through an example:

Example 5.12. Let X denote sex of the patient (x0 male, x1 female) and ∆
denote the benefit from medical treatment. Consider the SCMM given by:

X ← Bernoulli(0.1) (5.149)
∆← Bernoulli(0.5), (5.150)

12Formally, having access to the exogenous instantiation of U = u implies knowing
which principal stratus from Fig. 5.10 the unit belongs to, since U = u determines
all of the variations of the model.
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and suppose the budget is 1
20 (a twentieth of all the individuals can be treated).

In words, a tenth of the patients are female, and each patient either certainly
benefits from treatment (∆ = 1) or has no benefit from treatment (∆ = 0).
Each of these two cases happens with probability 1

2 irrespective of the patient’s
sex. Suppose now that a team of clinicians has 2000 patients, with

• 1800 males (X = x0), 900 with certain treatment benefit (∆ = 1), and
900 with no treatment benefit (∆ = 0),

• 200 females (X = x1), 100 with certain treatment benefit (∆ = 1), and
100 with no treatment benefit (∆ = 0).

Suppose further that clinicians can (based on other information) infer exactly
which patients benefit from treatment, and that they need to allocate the
available 100 treatment slots to the cohort of 2000 patients. Following Def. 5.10,
the clinicians would pick 90 male patients with certain benefit and 10 female
patients with certain benefit, as this would ensure that:

P (d | ∆ = 1, x0) = P (d | ∆ = 1, x1) = 1
10 . (5.151)

However, note that the policy of selecting 50 male patients with certain benefit
and 50 female patients with certain benefit would also be optimal, but would
not satisfy Def. 5.10. Instead, this policy would result in the equal allocation
of resources between groups. �

The above example is intended to demonstrate that an “affirmative” version of
benefit fairness could be articulated. The policy that selects an equal number
of males and females for treatment, in the setting where there is a larger
number of males requiring treatment, is not agnostic of sex, but instead aims
to minimize the disparity in the amount of allocated resources between groups.
In the sequel, we focus on Def. 5.10 but the above discussion is intended to
inform the reader that stronger variants of this notion could also be considered
– in particular, notions that still focus on the benefit, but aim to choose a
policy, among all (nearly) optimal policies, that minimizes the disparity in
resource allocation.

Canonical Types & Bounds

In decision-making, the goal is to treat as many units who are helped by the
treatment, and as few who are harmed by it. As we demonstrate next, the
benefit ∆ is a function of the proportions of different canonical types:

Proposition 5.5 (Canonical Types Decomposition). LetM be an SCM compati-
ble with the SFM. Let D be a binary decision that possibly affects the outcome
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Y . Denote by (s, d, c, u)(x, z, w) the proportion of each of the canonical types
safe, harmed, helped, and doomed, respectively, for a fixed set of covariates
(x, z, w). It then holds that

P (yd1 | x, z, w) = c(x, z, w) + s(x, z, w), (5.152)
P (yd0 | x, z, w) = d(x, z, w) + s(x, z, w). (5.153)

Therefore, we have that
∆(x, z, w) := P (yd1 | x, z, w)− P (yd0 | x, z, w) (5.154)

= c(x, z, w)− d(x, z, w). (5.155)

Proof. Notice that we can write:
P (yd1 | x, z, w) = P (yd1 = 1, yd0 = 1 | x, z, w) (5.156)

+ P (yd1 = 1, yd0 = 0 | x, z, w)
= s(x, z, w) + c(x, z, w). (5.157)

where the first step follows from the law of total probability, and the second
by definition. Similarly, we have that

P (yd0 | x, z, w) = P (yd0 = 1, yd1 = 1 | x, z, w) (5.158)
+ P (yd0 = 1, yd1 = 0 | x, z, w)

= s(x, z, w) + d(x, z, w), (5.159)
thereby completing the proof. �

The proposition shows us that the degree of benefit ∆(x, z, w) captures exactly
the difference between the proportion of those helped by the treatment, versus
those who are harmed by it. From the point of view of the decision-maker, this
is very valuable information since higher ∆(x, z, w) values indicate a higher
utility of treating the group corresponding to covariates (x, z, w). As the next
proposition shows, the values of P (yd1 | x, z, w), P (yd0 | x, z, w) can also be
used to bound the proportion of different canonical types:
Proposition 5.6 (Canonical Types Bounds and Tightness). Let (s, d, c, u)(x, z, w)
be defined as in Prop. 5.5. Let m1(x, z, w) = P (yd1 | x, z, w) and m0(x, z, w) =
P (yd0 | x, z, w) and suppose that m1(x, z, w) ≥ m0(x, z, w). We then have
that (dropping (x, z, w) from the notation):

d ∈ [0,min(m0, 1−m1)], (5.160)
c ∈ [m1 −m0,m1]. (5.161)

In particular, the above bounds are tight, meaning that there exists an SCM
M, compatible with the observed data, that attains each of the values within
the interval. Under monotonicity, the bounds collapse to single points, with
d = 0 and c = m1 −m0.
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Figure 5.13: Canonical types solution space. The unit simplex is shown in yellow,
the s+ c = m1 plane in blue, and the s+ d = m0 plane in red. The solution space
for the possible values of (s(x, z, w), c(x, z, w), d(x, z, w)) lies at the intersection of
the red and blue planes, indicated by the dashed black line.

Proof. There are three linear relations that the values s, d, c, u obey:

s+ c = m1, (5.162)
s+ d = m0, (5.163)
s+ u+ d+ c = 1. (5.164)

On top of this, we know that s, d, c, u are all non-negative. Based on the linear
relations in Eqs. 5.162-5.164, we know that the following parametrization of
the vector (s, d, c, u) holds

(s, d, c, u) = (m0 − d, d, d+m1 −m0, 1−m1 − d), (5.165)

which represents a line in the 3-dimensional space (s, d, c). In particular, we
know that the values of (s, d, c) have to lie below the unit simplex in Fig. 5.13
(in yellow). In particular, the red and the blue planes represent the linear
constraints from Eq. 5.162-5.163. The line parametrized in Eq. 5.165 lies at the
intersection of the red and blue planes. Notice that d ∈ [0,min(m0, 1−m1)]
since each of the elements in Eq. 5.165 is positive. This bound on d also implies
that c ∈ [m1 −m0,m1]. Finally, we need to construct an fY mechanism which
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Algorithm 5.3 Decision-Making with Benefit Fairness
• Inputs: Distribution P (V ), Budget b

1: Compute ∆(x, z, w) = E[Yd1 − Yd0 | x, z, w] for all (x, z, w).
2: If P (∆ > 0) ≤ b, set D∗ = 1(∆(x, z, w) > 0) and RETURN(D∗).
3: Find δb > 0 such that

P (∆ > δb) ≤ b, P (∆ ≥ δb) > b. (5.169)

4: Otherwise, define

I :={(x, z, w) : ∆(x, z, w) > δb}, (5.170)
B :={(x, z, w) : ∆(x, z, w) = δb} (5.171)

5: Construct the policy D∗ such that:

D∗ :=


1 for (x, z, w) ∈ I,
1 with prob. b−P (I)

P (B) for (x0, z, w) ∈ B,
1 with prob. b−P (I)

P (B) for (x1, z, w) ∈ B.
(5.172)

achieves any value within the bounds. To this end, define

fY (x, z, w, d, uy) =1(uy ∈ [0, s]) + d · 1(uy ∈ [s, s+ c])+ (5.166)
(1− d) · 1(uy ∈ [s+ c, s+ c+ d]), (5.167)

uy ∼ Unif[0, 1]. (5.168)

which is both feasible and satisfies the proportion of canonical types to be
(s, d, c, u). �

Using the knowledge about canonical types and their bounds13, we can formu-
late a solution for the decision-making task from Def. 5.7, given in Alg. 5.3. In
particular, Alg. 5.3 takes as input the observational distribution P (V ), but its
adaptation to inference from finite samples follows easily. In Step 2, we check
whether we are operating under resource scarcity, and if not, the optimal policy
simply treats everyone who stands to benefit from the treatment. Otherwise,
we find the δb > 0 which uses the entire budget (Step 3) and separate the
interior I of those with the highest benefit (all of whom are treated), and the
boundary B (those who are to be randomized) in Step 4. The budget remaining

13The canonical bounds in Eqs. 5.160-5.161 can be used the derive policies that
perform best for the worst case proportions of c(x, z, w) and d(x, z, w) (Ben-Michael
et al., 2022).
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to be spent on the boundary is b−P (I), and thus individuals on the boundary
are treated with probability b−P (I)

P (B) . Importantly, male and female groups are
treated separately in this random selection process (Eq. 5.172), which in the
finite sample case ensures that equal proportions of males and females on the
boundary are selected. The BFC can be seen as a minimal fairness requirement
in decision-making, and is often aligned with maximizing utility:

Proposition 5.7 (Alg. 5.3 Optimality). Among all feasible policies D for the
optimization problem in Eqs. 5.121-5.122, the result of Alg. 5.3 is optimal and
satisfies benefit fairness.

A key extension we discuss next relates to the cases in which the benefit ∆
itself may be deemed as discriminatory towards a protected group.

Fairness of the Benefit

Benefit fairness guarantees that at each fixed level of the benefit ∆ = δ,
the protected attribute plays no role in the treatment assignment. However,
benefit fairness does not necessarily guarantee that the allocation rates of the
treatment D are equal between groups, i.e., P (d | x1) = P (d | x0), as shown
by our example:

Example 5.12 (Cancer Surgery - continued). After applying benefit fairness
and implementing the optimal policy D∗ = 1

(
W > 1

2
)
, the clinicians compute

that P (d | x1)− P (d | x0) = −50%, that is, females are 50% less likely to be
treated than males. �

In words, benefit fairness resulted in a disparity in resource allocation. When-
ever this is the case, it implies that the benefit ∆ differs between groups.
In Alg. 5.4 we describe a formal procedure that helps the decision-maker to
obtain a causal understanding of why that is, i.e., which underlying causal
mechanisms (direct, indirect, spurious) lead to the difference in the benefit.
We ground the idea behind Alg. 5.4 in our example:

Example 5.13 (Decomposing the disparity). Following Alg. 5.4, the clinicians
first decompose the observed disparities into their direct, indirect, and spurious
components:

P (d | x1)− P (d | x0) = 0%︸︷︷︸
DE

+−50%︸ ︷︷ ︸
IE

+ 0%︸︷︷︸
SE

, (5.175)

E(∆ | x1)−E(∆ | x0) = 0︸︷︷︸
DE

+ −1
9︸︷︷︸

IE

+ 0︸︷︷︸
SE

, (5.176)
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Algorithm 5.4 Benefit Fairness Cookbook
• Inputs: Distribution P (V ), Benefit ∆(x, z, w), Decision policy D

1: Compute the causal decomposition (Thm. 4.3) of the resource allocation
disparity into its direct, indirect, and spurious contributions:

P (d | x1)− P (d | x0) = DE + IE + SE. (5.173)

2: Compare the distributions P (∆ | x1) and P (∆ | x0).
3: Compute the causal decomposition (Thm. 4.3) of the benefit disparity

E(∆ | x1)−E(∆ | x0) = DE + IE + SE. (5.174)

4: Compute the counterfactual distribution P (∆C | x) for specific interven-
tions C that remove the direct, indirect, or total effect of X on the benefit
∆.

(a) Density of benefit ∆ by group. (b) Density of counterfactual benefit ∆C .

Figure 5.14: Elements of analytical tools from Alg. 5.4 in Ex. 5.13.

showing that the difference between groups is entirely explained by the levels
of illness severity, that is, male patients are on average more severely ill than
female patients (see Fig. 5.14a). Direct and spurious effects, in this example,
do not explain the difference in benefit between the groups.

Based on these findings, the clinicians realize that the main driver of the
disparity in the benefit ∆ is the indirect effect. Thus, they decide to compute
the distribution of the benefit P (∆x1,Wx0

| x1), which corresponds to the
distribution of the benefit had X been equal to x0 along the indirect effect.
The comparison of this distribution, with the distribution P (∆ | x0) is shown
in Fig. 5.14b, indicating that the two distributions are in fact equal. �

In the example, the difference between groups is driven by the indirect effect,
although generally, the situation may be more complex, with a combination
of effects driving the disparity. Still, the tools of Alg. 5.4 equip the reader
for analyzing such more complex cases. The key takeaway here is that the
first step in analyzing a disparity in treatment allocation is to obtain a
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causal understanding of why the benefit differs between groups. Based on this
understanding, the decision-maker may decide that the benefit ∆ is unfair,
which is what we discuss next.

Controlling the Gap

A causal approach. The first approach for controlling the gap in resource
allocation takes a counterfactual perspective. We first define what it means
for the benefit ∆ to be causally fair:

Definition 5.11 (Causal Benefit Fairness). Suppose C = (C0, C1) describes
a pathway from X to Y which is deemed unfair. The pair (Y,D) satisfies
counterfactual benefit fairness (CBF) if

E(yC1,d1 − yC1,d0 | x, z, w) = E(yC0,d1 − yC0,d0 | x, z, w) ∀x, z, w (5.177)
P (d | ∆, x0) = P (d | ∆, x1). (5.178)

To account for discrimination along a specific causal pathway (after using
Alg. 5.4), the decision-maker needs to compute an adjusted version of the
benefit ∆, such that the protected attribute has no effect along the intended
causal pathway C. For instance, C = ({x0}, {x1}) describes the total causal
effect, whereas C = ({x0}, {x1,Wx0}) describes the direct effect. In words,
CBF requires that treatment benefit ∆ should not depend on the effect of X
on Y along the causal pathway C. Additionally, the decision policy D should
satisfy BFC, meaning that at each degree of benefit ∆ = δ, the protected
attribute plays no role in deciding whether the individual is treated or not.
This can be achieved using Alg. 5.5 with method = CF. In Step 1, the factual
benefit values ∆, together with the adjusted, counterfactual benefit values ∆C

(that satisfy Def. 5.11) are computed. Then, δCF is chosen to match the budget
b, and all patients with a counterfactual benefit above δCF are treated14, as
demonstrated in the following example:

Example 5.13 (Cancer Surgery - Counterfactual Approach). The clinicians
realize that the difference in illness severity comes from the fact that female
patients are subject to regular screening tests, and are therefore diagnosed
earlier. The clinicians want to compute the adjusted benefit, by computing the
counterfactual values of the benefit ∆x1,Wx0

(u) for all u such that X(u) = x1.
For the computation, they assume that the relative order of the illness severity
for females in the counterfactual world would have stayed the same (which
holds true in the underlying SCM). That is, they assume that for any u

14In this section, for clarity of exposition we assume that the distribution of the
benefit admits a density, although the methods are easily adapted to the case when
this does not hold.
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Algorithm 5.5 Causal Discrimination Removal for Outcome Control
• Inputs: Distribution P (V ), Budget b, Intervention C, Max. Disparity
M , Method ∈ {CF,UT}

1: Compute ∆(x, z, w),∆C(x, z, w) for all (x, z, w).
2: If P (∆ > 0) ≤ b, set D = 1(∆(x, z, w) > 0) and RETURN(D).
3: Find δCF > 0 such that

P (∆C ≥ δCF ) = b. (5.179)

4: If Method is CF, set DCF = 1(∆C(x, z, w) ≥ δCF ) and RETURN(DCF ).
5: If M not pre-specified, compute the disparity

M := P (∆C ≥ δCF | x1)− P (∆C ≥ δCF | x0). (5.180)

6: Find δUT such that P (∆ ≥ δUT ) = b. If

|P (∆ ≥ δUT | x1)− P (∆ ≥ δUT | x0)| ≤M,

set DUT = 1(∆(x, z, w) ≥ δUT ) and RETURN(DUT ).
7: Otherwise, suppose w.l.o.g. that P (∆ ≥ δb | x1)−P (∆ ≥ δb | x0) = M + ε

for ε > 0. Define l := P (x1)
P (x0) , and let δ(x0)

lb be such that

P (∆ ≥ δ(x0)
lb | x0) = P (∆ ≥ δb | x0) + ε

l

1 + l
.

Set δ(x0) = max(δ(x0)
lb , 0), and δ(x1) s.t. P (∆ ≥ δ(x1) | x1) = b

P (x1) −
1
l P (∆ ≥ δ(x0) | x0).

8: Construct and RETURN the policy DUT :

DUT :=


1 for (x1, z, w) s.t. ∆(x1, z, w) ≥ δ(x1),

1 for (x0, z, w) s.t. ∆(x0, z, w) ≥ δ(x0),

0 otherwise.
(5.181)



132 Fairness tasks

with X(u) = x1, a factual value W (u) with a relative quantile Q(u) in the
W | x1 distribution would map to a counterfactual value Wx0(u) that has the
same quantile Q(u) in the W | x0 distribution. Implicitly, they construct the
mapping

Wx0(u) =
√

1− (1−W (u))2, (5.182)

∆x1,Wx0
(u) = 1

3Wx0(u), (5.183)

for each unit u with X(u) = x1. After applying Alg. 5.3 with the counterfactual
benefit values ∆C , the resulting policy DCF = 1(∆C > 1

4 ) has a resource
allocation disparity of 0. �

The above example illustrates the core of the causal counterfactual approach
to discrimination removal. The BFC was not appropriate in itself, since the
clinicians are aware that the benefit of the treatment depends on sex in a way
they deemed unfair. Therefore, to solve the problem, they first remove the
undesired effect from the benefit ∆, by computing the counterfactual benefit
∆C . After this, they apply Alg. 5.5 with the counterfactual method (CF) to
construct a fair decision policy.

Remark 5.3 (Direct Effect on Benefit is Computable). Under the assumptions
of the SFM, the potential outcome ∆x1,Wx0

(u) is identifiable for any unit u
with X(u) = x0 for which the attributes Z(u) = z,W (u) = w are observed.
However, the same is not true for the indirect effect. While the counterfactual
distribution of the benefit when the indirect effect is manipulated, written
P (∆x0,Wx1

| x0), is identifiable under the SFM, the covariate-level values
∆x0,Wx1

(x0, z, w) are not identifiable without further assumptions.

A utilitarian/factual approach. An alternative, utilitarian (or factual) ap-
proach to reduce the disparity in resource allocation uses the factual benefit
∆(u), instead of the counterfactual benefit ∆C(u). This approach is also de-
scribed in Alg. 5.5, with the utilitarian (UT) method. Firstly, in Step 5, the
counterfactual values ∆C are used to compute the disparity that would arise
from the optimal policy in the hypothetical, counterfactual world:

M := |P (∆C ≥ δCF | x1)− P (∆C ≥ δCF | x0)|. (5.184)

The idea then is to introduce different thresholds δ(x0), δ(x1) for x0 and x1
groups, such that they introduce a disparity of at most M . Thus, the utilitar-
ian approach uses the counterfactual values ∆C to determine the maximum
allowed disparity M , but then focuses on the factual benefit values ∆ to
select individuals for treatment. In Step 6 we first check whether the overall
optimal policy introduces a disparity bounded by M (if yes, we are done). If
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the disparity is larger than M by an ε, in Step 7 we determine how much slack
the disadvantaged group requires, by finding thresholds δ(x0), δ(x1) that either
treat everyone in the disadvantaged group, or achieve a disparity bounded by
M . The maximum allowed disparity M can also be pre-determined, as is done
in the following example:

Example 5.14 (Cancer Surgery - Utilitarian Approach). Due to regulatory pur-
poses, clinicians decide that M = 20% is the maximum allowed disparity that
can be introduced by the new policy D. Using Alg. 5.5, they construct DUT

and find that for δ(x0) = 0.21, δ(x1) = 0.12,

P (∆ > δ(x0) | x0) ≈ 60%, P (∆ > δ(x1) | x1) ≈ 40%, (5.185)

which yields P (dUT ) ≈ 50%, and P (dUT | x1)− P (dUT | x0) ≈ 20%, which is
in line with the hospital resources and the maximum disparity allowed by the
regulators. �

Finally, we describe the theoretical guarantees for the methods in Alg. 5.5
(proof given in Appendix A.8):

Theorem 5.6 (Alg. 5.5 Guarantees). The policy DCF is optimal among all
policies with a budget ≤ b that in the counterfactual world described by
the intervention C. The policy DUT is optimal among all policies with a
budget ≤ b that either introduce a bounded disparity in resource allocation
|P (d | x1)− P (d | x0)| ≤ M or treat everyone with a positive benefit in the
disadvantaged group.

Equivalence of the utilitarian and causal approach. We remark that policies
DCF and DUT do not necessarily treat the same individuals in general. A
natural question to ask is whether there are conditions under which the two
methods in Alg. 5.5 yield the same decision policy in terms of the individuals
that are selected for treatment. To examine this issue, we first define the notion
of counterfactual crossing:

Definition 5.12 (Counterfactual Crossing). Two units of the population u1, u2
are said to satisfy counterfactual crossing with respect to an intervention C if

(i) u1, u2 belong to the same protected group, X(u1) = X(u2).

(ii) unit u1 has a higher factual benefit than u2, ∆(u1) > ∆(u2),

(iii) unit u1 has a lower counterfactual benefit than u2 under the intervention
C, ∆C(u1) < ∆C(u2).
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In words, two units satisfy counterfactual crossing if u1 has a higher benefit
than u2 in the factual world, while in the counterfactual world the benefit is
larger for the unit u2. Based on this notion, we can give a condition under
which the causal and utilitarian approaches are equivalent:
Proposition 5.8 (Causal and Utilitarian Equivalence). Suppose that no two
units of the population satisfy counterfactual crossing with respect to an
intervention C, and suppose that the distribution of the benefit ∆ admits a
density. Then, the policies DCF and DUT from Alg. 5.5 select the same set of
units for treatment.

Proof. The policy DUT treats individuals who have the highest benefit ∆ in
each group. The DCF policy treats individuals with the highest counterfactual
benefit ∆C . Importantly, the policies treat the same number of individuals in
the x0 and x1 groups. Note that, in the absence of counterfactual crossing, the
relative ordering of the values of ∆,∆C does not change, since

∆(u1) > ∆(u2) ⇐⇒ ∆C(u1) > ∆C(u2). (5.186)
Thus, since both policies pick the same number of individuals, and the relative
order of ∆,∆C is the same, DUT and DCF will treat the same individuals. �

Interestingly, when the intervention C is changing the protected attribute X
along the direct causal pathway, the implications of the above proposition are
testable in practice, under the assumptions of the SFM (see Remark 5.3 for
more details).

To close the section, we summarize the discussion by giving a recap of the
main steps for fair decision-making in the outcome-control setting:
(1) Apply the principles of benefit fairness, using Alg. 5.3, to design the

policy D∗,

(2) Analyze the disparity introduced by the policy D∗, using Alg. 5.4, to
better understand which causal pathways drive the difference in resource
allocation,

(3) If a causal pathway that drives the difference in resource allocation
between the groups is deemed unfair (or if the disparity is deemed too
large):

(a) use Alg. 5.5 with method CF to find the policy DCF that satisfies
Causal Benefit Fairness from Def. 5.11, or

(b) use Alg. 5.5 with method UT to find the policy DUT that uses the
factual benefit and allows distinct thresholds δ(x0), δ(x1) for the
two groups, but sets the disparity in resource allocation according
to the counterfactual world.



6
Disparate Impact and Business Necessity

In this section, we generalize the analysis introduced earlier, including the
Fairness Cookbook (Alg. 5.1), to consider more refined settings described by
an arbitrary causal diagram. The main motivation for doing so comes from
the observation that when analyzing disparate impact, quantities such as
Ctf-DEx0,x1(y | x0), Ctf-IEx0,x1(y | x0), and Ctf-SEx0,x1(y) are insufficient to
account for certain business necessity requirements. For concreteness, consider
the following example.

Example 6.1 (COMPAS continued with Business Necessity). The courts at
Broward County, Florida, were using machine learning to predict whether
individuals released on parole are at high risk of re-offending within 2 years.
The algorithm is based on the demographic information Z (Z1 for gender, Z2
for age), race X (x0 denoting White, x1 Non-White), juvenile offense counts
J , prior offense count P , and degree of charge D.

A causal analysis using the Fairness Cookbook revealed that:

Ctf-IEx1,x0(y | x1) = −5.7%± 0.5%, (6.1)
Ctf-SEx1,x0(y) = −4.0%± 0.9%, (6.2)

potentially indicating presence of disparate impact. Based on this information,
a legal team of ProPublica filed a lawsuit to the district court, claiming discrim-
ination w.r.t. the Non-White subpopulation based on the doctrine of disparate
impact. After the court hearing, the judge rules that using the attributes
age (Z2), prior count (P ), and charge degree (D) is not discriminatory, but
using the attributes juvenile count (J) and gender (Z1) is discriminatory. The
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Z1 Z2

X

J P D

Y

Figure 6.1: Causal diagram of the COMPAS dataset. Business necessity variables
are highlighted in green.

causal diagram with a visualization of which variables are included in the
business-necessity set is given in Fig. 6.1. Data scientists at ProPublica need
to consider how to proceed in light of this new requirement for discounting
the allowable attributes in the quantitative analysis. �

The difficulty in this example is that the quantity Ctf-SEx1,x0(y) measures the
spurious discrimination between the attribute X and outcome Y as generated
by both confounders Z1 and Z2. Since using the confounder Z2 is not considered
discriminatory, but using the confounder Z1 is, the quantity Ctf-SEx1,x0(y)
needs to be refined such that the spurious variations based on the different
confounders are disentangled. In particular, one might be interested in finding
a decomposition of the spurious effect such that

Ctf-SEx1,x0(y) = Ctf-SEZ1
x1,x0

(y)︸ ︷︷ ︸
gender variations

+Ctf-SEZ2
x1,x0

(y)︸ ︷︷ ︸
age variations

, (6.3)

which would allow the data analyst to further distinguish the variations
explained by each of the confounders. A similar challenge is present for the
Ctf-IEx1,x0(y | x1) measure, since it has contributions explained by juvenile
offense counts J , prior counts P , and the charge degree D. Therefore, we might
be interested in decomposing the indirect effect into

Ctf-IEx1,x0(y | x1) = Ctf-IEJx1,x0
(y | x1)︸ ︷︷ ︸

juvenile count variations

+Ctf-IEPx1,x0
(y | x1)︸ ︷︷ ︸

prior count variations

(6.4)

+ Ctf-IEDx1,x0
(y | x1)︸ ︷︷ ︸

charge degree variations

.

Again, such a decomposition would allow the data analyst to better understand
the contribution of each of the mediators to the totality of the indirect effect.
In situations when some mediating variables are in the business necessity set,
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while others are not, such a decomposition would allow for the assessment of
disparate impact claims.

In the following sections we discuss how such more refined decompositions
of the spurious and indirect effects can be obtained, which allow us to reason
about disparate impact under business necessity on a more granular level.
Before doing so, we discuss some foundational techniques of causal inference,
upon which our decomposition machinery will be built.

6.1 Causal Inference Procedures

In this section, we cover important inferential techniques that are used to
compute causal (and statistical) queries. In particular, we will focus on various
associational, interventional, and counterfactual queries, which correspond to
the three layers of the Pearl’s Causal Hierarchy (PCH) (Bareinboim et al.,
2022).

6.1.1 Abduction and Prediction

The first and basic method of inference is the abduction-prediction method.
Given an SCM 〈F , P (u)〉, a variable of interest Y and some observed evidence
E = e, the method can be summarized as follows:

Algorithm 6.1 (Abduction and Prediction). Given an SCM 〈F , P (u)〉, the
conditional probability P (Y = y | E = e) of an event Y = y upon observing
the evidence E = e, can be evaluated using the following two steps:

(i) Abduction – update P (u) by the evidence e to obtain P (u | e),

(ii) Prediction – use the model 〈F , P (u | e)〉 to compute the probability
of Y = y.

The abduction-prediction procedure may be seen as one of the basic building
blocks of Bayesian inference. In the first step, the probabilities of the exogenous
variables U are updated according to the observed evidence E = e. After this,
the updated model 〈F , P (u | e)〉 is used to compute the conditional probability
P (y | e). Importantly, such a procedure can help one handle queries in the
first, associational layer of the PCH. Queries handling questions about what
would happen if X was set to x by intervention, or what value would Y had
taken had we imagined (contrary to the fact) that X = x, are not within
the scope of the procedure. Therefore, the abduction-prediction method can
be used for computing statistical queries, but cannot be used for computing
causal queries. We now demonstrate the method on an example:
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(a) Causal diagram of the
SCM in Ex. 6.2.
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(b) Extended representation of
Ex. 6.2, latent variables in red.

X = x

Z

Y

UY
UXZ
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(c) Diagram of Ex. 6.2 under
do(X = x) intervention.

Figure 6.2: Graphical representations of the SCM in Ex. 6.2.

Example 6.2 (Abduction-Prediction). Consider the following SCM

F :=


X ←fX(UX , UXZ)
Z ←fZ(UZ , UXZ)
Y ←fY (X,Z,UY ),

(6.5)
(6.6)
(6.7)

with P (UX , UXZ , UZ , UY ) the distribution over the exogenous variables. The
causal diagram of the model is shown in Fig. 6.2a, and a more detailed
representation with an explicit representation of the exogenous variables is
shown in Fig. 6.2b.

We are interested in the query P (y | x) in the given model. Based on the
abduction-prediction procedure, we can simply compute that:

P (y | x) =
∑
u

1(Y (u) = y)P (u | x) (6.8)

=
∑
u

1(Y (u) = y)P (uz, uy)P (ux, uxz | x), (6.9)

where the first step follows from the definition of the observational distribution,
and the second step follows from noting the independence UZ , UY⊥⊥UX , UXZ , X.
In the abduction step, we can compute the probabilities P (ux, uxz | x). In the
prediction step, we compute the probability P (y | x) based on Eq. 6.9. �

6.1.2 Abduction, Action, and Prediction
As mentioned, the abduction-prediction procedure was limited to the first
layer of the PCH. Often, one may be interested in the higher layers of the
hierarchy, and thus the original procedure needs to be adapted. To do so, we
make use of the definition of a submodel (Def. 2.2). Recall that the SCMMx

is obtained fromM by replacing all equations in F related to variables X by
equations that set X to a specific value x. This corresponds to “intervening”
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(layer 2 of the hierarchy) or “imagining” (layer 3) that X = x. Equipped with
this definition, we can introduce the three step procedure that allows one to
handle queries in all layers of the PCH:

Algorithm 6.2 (Abduction, Action, and Prediction (Pearl, 2000)). Given an
SCM 〈F , P (u)〉, the conditional probability P (YC | E = e) of a counterfactual
sentence “if it were C then Y ”, upon observing the evidence E = e, can be
evaluated using the following three steps:

(i) Abduction – update P (u) by the evidence e to obtain P (u | e),

(ii) Action – modify F by the action do(C), where C is an antecedent of
Y , to obtain FC ,

(iii) Prediction – use the model 〈FC , P (u | e)〉 to compute the probability
of YC .

We now contrast Alg. 6.2 with Alg. 6.1. The newly introduced procedure
adds an important action step between the abduction and prediction, which
allows for a great deal of additional flexibility. In the first step, we update
the P (u) according to the available evidence. After this, however, we modify
the modelM to a submodelMC . This action step is precisely what allows
for the additional flexibility in our inference – corresponding to interventions
or imaginative, counterfactual thinking. The final step of prediction is again
shared with the basic abduction-prediction procedure. We note that whenever
the abduction step is empty, but the action step is not, the procedure handles
interventional queries in the second layer of the PCH. We refer to this special
case as action-prediction. Similarly, when the action step is empty, we recover
the basic procedure of abduction-prediction, showing that Alg. 6.1 is contained
within Alg. 6.2. The following example illustrates the usage of Alg. 6.2:

Example 6.3 (Abduction, Action, Prediction). Consider the model in Eq. 6.5-6.7.
We are interested in computing the query P (yx) (see Fig. 6.2c):

P (yx) =
∑
u

1(Yx(u) = y)P (u) (6.10)

=
∑
u

1(Y (x, uxz, uz, uy) = y)P (u). (6.11)

where the first step follows from the definition of an interventional distribution,
and the second step follows from noting that Yx does not depend on ux. In
this case, the abduction step is void, since we are not considering any specific
evidence E = e. The value of Y (x, uxz, uz, uy) can be computed from the
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submodelMx. Finally, using Eq. 6.11 we can perform the prediction step. We
remark that

1(Y (x, uxz, uz, uy) = y) =
∑
ux

1(Y (ux, uxz, uz, uy) = y)P (ux | x, uxz, uz, uy),

(6.12)

by the law of total probability and noting that X is a deterministic function
of ux, uxz. Thus, P (yx) also admits an alternative representation

P (yx) =
∑
u

1(Y (ux, uxz, uz, uy) = y)P (ux | x, uxz, uz, uy)P (uxz, uz, uy)

(6.13)

=
∑
u

1(Y (u) = y)P (ux | x, uxz)P (uxz, uz, uy), (6.14)

where Eq. 6.14 follows from using the independencies among U and X in the
graph in Fig. 6.2b. We revisit the representation in Eq. 6.14 in Ex. 6.4. �

6.1.3 Foundations of Decomposing Spurious Variations
After getting familiar with the abduction-action-prediction procedure, our next
task is to introduce a new procedure that allows us to decompose spurious
effects. First, we define the concept of a partially abducted submodel:

Definition 6.1 (Partially Abducted Submodel). Let U1, U2 ⊆ U be a partition of
the exogenous variables. Let the partially abducted (PA, for short) submodel
with respect to the exogenous variables U1 and evidence E = e be defined as:

MU1,E=e := 〈F , P (u1)P (u2 | u1, E = e)〉. (6.15)

In words, in the PA submodel, the typically obtained posterior distribution
P (u | e) is replaced by the distribution P (u2 | u1, e). Effectively, the exogenous
variables U1 are not updated according to evidence. The main motivation for
introducing the PA model is that spurious variations arise whenever we are
comparing units of the population that are different, a realization dating back
to Pearson in the 19th century (Pearson, 1899). To give a formal discussion on
what became known as Pearson’s shock, consider two sets of differing evidence
E = e and E = e′. After performing the abduction step, the variations
between posterior distributions P (u | e) and P (u | e′) will be explained by all
the exogenous variables that precede the evidence E. In a PA submodel, however,
the posterior distribution P (u1)P (u2 | u1, e) will differ from P (u1)P (u2 | u1, e

′)
only in variables that are in U2, while the variables in U1 will induce no spurious
variations. Thus, the PA submodel allows us to choose which subset of the
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exogenous confounders introduce spurious variations. When the set U1 = ∅,
then the spurious variations are generated from all the U . On the other, when
U1 = U , the PA submodel will introduce no spurious variations. Different
choices of U1, ranging from the ∅ to U , as we will see shortly, provide a way
for decomposing spurious variations in general.

We next demonstrate how the definition of a PA submodel can be used to
obtain partially abducted conditional probabilities:

Proposition 6.1 (PA Conditional Probabilities). Let P (Y = y | E = eU1) denote
the conditional probability of the event Y = y conditional on evidence E = e,
while the exogenous variables U1 are not updated according to the evidence.
Then, we have that:

P (Y = y | E = eU1) =
∑
u1

P (U1 = u1)P (Y = y | E = e, U1 = u1). (6.16)

6.1.4 Partial Abduction and Prediction

Based on the notion of a PA submodel, we can introduce the partial-abduction
and prediction procedure:

Algorithm 6.3 (Partial Abduction and Prediction). Given an SCM 〈F , P (u)〉,
the conditional probability P (Y = y | E = eU1) of an event Y = y upon
observing the evidence e, in a world where variables U1 are unresponsive to
evidence, can be evaluated using the following two steps:

(i) Partial Abduction – update P (u) by the evidence e to obtain the pos-
terior P (u1)P (u2 | u1, e), where (u1, u2) is a partition of the exogenous
variables u,

(ii) Prediction – use the model 〈F , P (u1)P (u2 | u1, e)〉 to compute the
probability of Y = y.

In the first step of the algorithm, we only perform partial abduction. The
exogenous variables U2 are updated according to the available evidence E = e,
while the variables U1 retain their original distribution P (u1) and remain
unresponsive to evidence. As mentioned earlier, this allows us to consider
queries in which only a subset of the exogenous variables respond to the
available evidence. We next explain what kind of queries this entails, beginning
with an example:
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SCM in Ex. 6.5.
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(b) Extended graphical representation of
the SCM in Ex. 6.5, latent variables in red.

Figure 6.3: Graphical representations of the SCM in Ex. 6.3.

Example 6.4 (Partial Abduction and Prediction). Consider the model in Eq. 6.5-
6.7. We are interested in computing the query:

P (y | xUxz,Uz ) =
∑
u

1(Y (u) = y)P (uxz, uz)P (ux, uy | uxz, ux, x) (6.17)

=
∑
u

1(Y (u) = y)P (uxz, uz)P (uy)P (ux | uxz, ux, x) (6.18)

=
∑
u

1(Y (u) = y)P (uxz, uz, uy)P (ux | uxz, ux, x), (6.19)

where the first step follows from Prop. 6.1, and the remaining steps from
conditional independencies between the U variables and X. Crucially, the
query yields the same expression as in Eq. 6.14 that we obtained for P (yx)
in Ex. 6.3. Therefore, the conditional probability P (y | xUxz,Uz ) in a world
where UXZ , UZ are unresponsive to evidence is equal to the interventional
probability P (yx). �

As the example illustrates, we have managed to find another procedure that
mimics the behavior of the interventional (do(X = x)) operator in the given
example. Interestingly, however, in this procedure, we have not made use of the
submodelMx that was used in the abduction-action-prediction procedure. The
idea from Ex. 6.4 can be extended in order to decompose spurious variations
in causal models, as shown in the following example:

Example 6.5 (Spurious Decomposition). Consider an SCM compatible with
the graphical representation in Fig. 6.3b (with exogenous variables U shown
explicitly in red), and the corresponding Semi-Markovian causal diagram in
Fig. 6.3a. We note that, based on the partial abduction-prediction procedure,
the following two equalities hold:

P (y | x) = P (y | x∅) (6.20)
P (yx) = P (y | xUxz1 ,Uxz2 ), (6.21)
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Figure 6.4: Graphical representation of the Exp-SE decomposition in Ex. 6.5.

which shows that

Exp-SEx(y) = P (y | x∅)− P (y | xUxz1 ,Uxz2 ). (6.22)

The experimental spurious effect can be written as a difference of conditional
probabilities y | x in a world where all variables U are responsive to evidence
vs. a world in which UXZ1 , UXZ2 are unresponsive to evidence. Furthermore,
we can also consider a refinement that decomposes the effect

Exp-SEx(y) = P (y | x∅)− P (y | xUxz1 )︸ ︷︷ ︸
variations of Uxz1

+P (y | xUxz1 )− P (y | xUxz1 ,Uxz2 )︸ ︷︷ ︸
variations of Uxz2

,

(6.23)

allowing for an additive, non-parametric decomposition of the experimental
spurious effect. �

The first term in Eq. 6.23 is shown in Fig. 6.7a. On the left side, P (y | x∅),
both confounders UXZ1 , UXZ1 respond to the evidence X = x, whereas on the
right, P , only UXZ2 responds to evidence. Therefore, the first term captures
spurious variations explained by UXZ1 . The second term is shown in Fig. 6.4b.
On the left, we have P (y | xUXZ1 ) where only UXZ2 responds to evidence.
This is contrasted with P (y | xUXZ1 ,UXZ2 ), where neither of the confounders
are responsive to evidence. Therefore, the second term thus captures spurious
variations explained by UXZ2 .

For an overview, in Tab. 6.1 we summarize the different inferential proce-
dures discussed so far, indicating the structural causal models associated with
them. Our next task is to develop general spurious decomposition results, and
connect them to the framework of Causal Fairness Analysis.

6.2 Refining spurious discrimination

Following the framework from Sec. 3, we start by defining a structural criterion
of spurious discrimination under business necessity.

Definition 6.2 (Structural Spurious Criterion under Business Necessity). LetM
be a Semi-Markovian SCM. Write anex(·) for the set of exogenous ancestors,
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Procedure SCM Queries

Abduction-Prediction 〈F , P (u | E)〉 Layer 1

Action-Prediction 〈Fx, P (u)〉 Layer 2

Abduction-Action-Prediction 〈Fx, P (u | E)〉 Layers 1, 2, 3

Partial Abduction-Prediction 〈F , P (u1)P (u2 | E)〉 Layers 1, 2, 3

Table 6.1: Summary of the different procedures and the corresponding probabilistic
causal models.

and let GX denote the diagram G with the outgoing edges from X removed.
Let anex(X) ⊆ U be the subset of exogenous variables U which have a causal
path to the protected attribute X. Let UBN , UCBN be a partition of the set
anex(X), where UBN is the subset of the exogenous variables which fall under
business necessity. We then define the structural spurious criterion under
business necessity as

Str-SE(UBN )X(Y ) = 1(anexGX
(Y ) ∩ anex(X) ∩ UCBN = ∅). (6.24)

In words, the criterion Str-SE(UBN )X(Y ) precludes the existence of backdoor
paths between X and Y for all exogenous variables that do not fall under
business necessity. Having this definition in mind, our task is to find fairness
measures that are admissible with respect to Str-SE(UBN )X(Y ). To achieve
this goal, we study the problem of decomposing the spurious effects between
the attribute X and outcome Y into variations explained by the confounding
latent variables U1, . . . , Uk.

6.2.1 Markovian case
We begin the treatment of general spurious decompositions by considering the
Markovian (fully observed) causal models and start with several definitions.

Definition 6.3 (Set-specific Experimental Spurious Effect). Let Z be the set of
confounders between variables X and Y , and let UZ be the corresponding
latent variables. Suppose UA, UB ⊆ UZ are two nested subsets of UZ , that is
UA ⊆ UB . We then define the experimental spurious effect with respect to sets
UA, UB as

Exp-SEUA,UB
x (y) = P (y | xUA)− P (y | xUB ). (6.25)

We provide some intuition for the notion Exp-SEUA,UB
x (y). Suppose that the

set of latent confounders UZ = (U1, . . . , Uk) is split into three parts UZ =
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Figure 6.5: Quantity Exp-SEA,B
x (y) as a graphical contrast.

(UA, UB\A, UBC ). Consider the graphical representation shown in Fig. 6.5. The
quantity P (y | xUA) computes the variations in Y explained by conditioning
on X = x when the confounders UA are not responding to evidence. This
is reflected in the absence of the arrow between UA (and the corresponding
observables ZA) and X = x. In P (y | xUB ), UA is still disconnected from, or
“unaware” of the fact that X = x. Additionally, UB\A is now also disconnected
from X = x. On both left and the right, the UBC is connected to X = x,
which means that UBC is updated based on the evidence X = x. Therefore,
the difference of the two quantities captures the spurious variations explained
by the variables UB\A. We now show how this notion allows us to decompose
the experimental spurious effect into variable-specific contributions:

Theorem 6.1 (Latent Spurious Decomposition for Markovian models). LetM
be a Markovian model. Let Z1, . . . , Zk be the confounders between variables
X and Y sorted in any valid topological order, and denote the corresponding
exogenous variables as U1, . . . , Uk, respectively. Let Z[i] = {Z1, . . . , Zi} and
U[i] = {U1, . . . , Ui}. The experimental spurious effect Exp-SEx(y) can be
decomposed into latent variable-specific contributions as follows:

Exp-SEx(y) =
k−1∑
i=0

Exp-SEU[i],U[i+1]
x (y) (6.26)

=
k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]). (6.27)

We next provide an illustrative example of applying the theorem:

Example 6.6 (Latent Variable Attribution in a Markovian Model). Consider the
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X Y .

Figure 6.6: Causal diagram from Ex. 6.6 with explicitly drawn latents U1, U2.

following SCMM∗:

M∗ :


Z1 ← B(0.5)
Z2 ← B(0.4 + 0.2Z1)
X ← B(0.3 + 0.2Z1 + 0.2Z2)
Y ← X + Z1 + Z2,

(6.28)
(6.29)
(6.30)
(6.31)

and the causal diagram in Fig. 6.6. We wish to decompose the quantity
Exp-SEx(y) into the variations attributed to the latent variables U1, U2. Fol-
lowing the decomposition from Thm. 6.1 we can write

Exp-SEx(y | x1) =E(y | x1)−E(y | xU1
1 )︸ ︷︷ ︸

U1 contribution

(6.32)

+E(y | xU1
1 )−E(y | xU1,U2

1 )︸ ︷︷ ︸
U2 contribution

.

We now need to compute the terms appearing in Eq. 6.32. In particular, we
know that

E(y | xU1,U2
1 ) = E(y | do(x1)) (6.33)

= 1 +E(Z1 | do(x1)) +E(Z2 | do(x1)) (6.34)
= 1 +E(Z1) +E(Z2) = 1 + 0.5 + 0.5 = 2. (6.35)

Similarly, we can also compute

E(y | x1) = 1 + P (Z1 = 1 | x1) + P (Z2 = 1 | x1), (6.36)
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where P (Z1 = 1 | x1) can be expanded as

P (Z1 = 1 | x1) = P (Z1 = 1, X = 1)
P (X = 1) (6.37)

= P (Z1 = 1, X = 1, Z2 = 1) + P (Z1 = 1, X = 1, Z2 = 0)
P (X = 1)

(6.38)

= 0.5 · 0.6 · 0.7 + 0.5 · 0.4 · 0.5
0.5 = 0.62. (6.39)

The value of P (Z2 = 1 | x1) is computed analogously and also equals 0.62,
implying that E(y | x1) = 1 + 0.62 + 0.62 = 2.24. Finally, we want to compute
E(y | xU1

1 ), which equals

E(y | xU1
1 ) = 1 + P (Z1 = 1 | xU1

1 ) + P (Z2 = 1 | xU1
1 ). (6.40)

By definition, P (Z1 = 1 | xU1
1 ) = P (Z1 = 1) = 0.5. For P (Z2 = 1 | xU1

1 ) we
write

P (Z2 = 1 | xU1
1 ) =

∑
u1

P (Z2 = 1 | x1, u1)P (u1) (6.41)

=
∑
z1

∑
u1:Z(u1)=z1

P (Z2 = 1 | x1, u1)P (u1) (6.42)

=
∑
z1

P (Z2 = 1 | x1, z1)P (z1) (6.43)

= 1
2

[P (Z2 = 1, X = 1, Z1 = 1)
P (X = 1, Z1 = 1) (6.44)

+ P (Z2 = 1, X = 1, Z1 = 0)
P (X = 1, Z1 = 0)

]
= 1

2

[0.21
0.31 + 0.21

0.31

]
≈ 0.68, (6.45)

implying that E(y | xU1
1 ) = 2.18. Putting everything together, we found that

Exp-SEx(y | x1)︸ ︷︷ ︸
=0.24

= Exp-SE∅,U1
x (y | x1)︸ ︷︷ ︸

=0.06 from U1

+Exp-SEU1,{U1,U2}
x (y | x1)︸ ︷︷ ︸

=0.18 from U2

. (6.46)

�

The terms appearing on the r.h.s. of Eq. 6.46 are shown as graphical contrasts in
Fig. 6.7. On the left side of Fig. 6.7a, U1, U2 are responding to the conditioning
X = x, compared against the right side where only U2 is responding to the
conditioning X = x. In the second term, in Fig. 6.7b, on the left only U2
responds to X = x, compared against the right side in which neither U1 nor
U2 respond to X = x conditioning.
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Z1 Z2

x Y −
P (y | x) PMZ1 (y | x)

Z1 Z2

x Y

(a) Exp-SE∅,U1
x (y).

Z1 Z2

x Y −
PMZ1 (y | x) PMZ1,Z2 (y | x)

Z1 Z2

x Y

(b) Exp-SEU1,{U1,U2}
x (y).

Figure 6.7: Graphical representation of Exp-SE effect decomposition in Ex. 6.6.

Identification of spurious effects in Markovian models. In Ex. 6.6, however,
we used the exclusive knowledge of the SCMM∗. In practice this knowledge
is never available, so we need to compute such decompositions based on the
observational data and the causal diagram (known as an identifiability problem
(Pearl, 2000), see Sec. 4.3). In fact, when variables are added to the PA
submodel in topological order, the attribution of variations to the latents Ui
is identifiable, as we prove next:

Theorem 6.2 (Spurious Decomposition Identification in Topological Ordering).
The quantity P (y | xU[i]) can be computed from observational data using the
expression

P (y | xU[i]) =
∑
z

P (y | z, x)P (z−[i] | z[i], x)P (z[i]), (6.47)

rendering each term of decomposition in Eq. 6.27 identifiable from the obser-
vational distribution P (v).

Proof. Notice that fixing a specific value for the variables (U1, . . . , Uk) =
(u1, . . . , uk) also gives a unique value for the variables (Z1, . . . , Zk) = (z1, . . . , zk).
Therefore, we can write

P (y | xU[i]) =
∑
u[i]

P (u[i])P (y | x, u[i]) (6.48)

=
∑
u[i]

P (u[i])P (y | x, u[i], z[i](u[i])) (6.49)

=
∑
z[i]

∑
u[i]

P (u[i])1(Z[i](u[i]) = z[i])P (y | x, z[i]) (6.50)

=
∑
z[i]

P (z[i])P (y | x, z[i]) (6.51)

=
∑
z

P (y | x, z)P (z−[i] | x, z[i])P (z[i]). (6.52)

�
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The above proof is based on an important correspondence of the latent variables
Ui, and the observed variables Zi. In particular, there is a 1-to-1 correspondence
between the two, since each Zi is associated with a single Ui. Furthermore,
a fixed value of (u1, . . . , ui) corresponds to a fixed value of (z1, . . . , zi), and
this observation can be used to replace the appearances of ui in Eq. 6.48 by
zi in Eq. 6.51. This observation also demonstrates that a spurious variation
explained by U1, . . . , Ui can also, almost equivalently, be thought of as explained
by Z1, . . . , Zi.

We next show how the ID expression in Eq. 6.47 can be used to compute
the effects in Ex. 6.6:

Example 6.7 (Markov Spurious Decomposition with ID). The terms Exp-SE∅,U1
x (y),

Exp-SEU1,{U1,U2}
x (y) in Ex. 6.6 can be computed from observational data as

Exp-SE∅,U1
x (y) =

∑
z1,z2

E(y | z1, z2, x)P (z2 | z1, x)[P (z1 | x)− P (z1)],

(6.53)

Exp-SEU1,{U1,U2}
x (y) =

∑
z1,z2

E(y | z1, z2, x)[P (z2 | z1, x)− P (z2 | z1)]P (z1).

(6.54)

�

For decompositions that follow a topological ordering, we stated a positive
identification result in Thm. 6.2. However, when considering decompositions
that do not follow a topological ordering, we lose the identifiability of the
corresponding effects, as shown in the following example:

Example 6.8 (Non-identification of Latent Spurious Decomposition). Consider
two SCMsM1,M2. Both SCMs have the same set of assignment equations
F , given by

F :=



Z1 ← U1

Z2 ←


Z1 if U2 = 1
1− Z1 if U2 = 2
1 if U2 = 3
0 if U2 = 4

X ← (Z1 ∧ UX1) ∨ (Z2 ∧ UX2) ∨ UX
Y ← X + Z1 + Z2,

(6.55)

(6.56)

(6.57)
(6.58)

and the causal diagram given in Fig. 6.6. The two SCMs differ in the distribution
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over the latent variables. In particular, forM1 we have

PM1(U) :


U1, UX1, UX2, UX ∼ Bernoulli(0.5)

U2 ∼ Multinom(4, 1, (0, 1
4 ,

1
2 ,

1
4)),

(6.59)

(6.60)

and forM2

PM2(U) :


U1, UX1, UX2, UX ∼ Bernoulli(0.5)

U2 ∼ Multinom(4, 1, (1
4 ,

1
2 ,

1
4 , 0)).

(6.61)

(6.62)

That is, the only difference between PM1(U) and PM2(U) is in how U2 attains
its value. In fact, one can check that the observational distributions PM1(V )
and PM2(V ) are the same. However, when computing EM(y | xU2

0 ) we have
that

E
M1(y | xU2

0 ) = 1 (6.63)
E
M2(y | xU2

0 ) = 0.93, (6.64)

showing that the quantity EM(y | xU2
0 ) is non-identifiable. �

The example illustrates that even in the Markovian case, when the variables
are not considered in a topological order (in the example above, the variable
U2 was considered without the variable U1 being added first), we might not
be able to identify the decomposition of the spurious effects.

6.2.2 Semi-Markovian Models
As discussed above, in the Markovian case that we considered until now, there
was a one-to-one correspondence between the observed confounders Zi and their
latent variables Ui. This, however, is no longer the case in Semi-Markovian
models. In particular, it can happen that there exist exogenous variables
Uj that induce common variations between X,Y , but affect more than one
confounder Zi. We are interested in Uj ⊆ U that have causal (directed) paths
to both X,Y , described by the following definition:

Definition 6.4 (Trek). LetM be an SCM corresponding to a Semi-Markovian
model. Let G be the causal diagram of M. A trek τ in G (from X to Y ) is
an ordered pair of causal paths (gl, gr) with a common exogenous source
Ui ∈ U . That is, gl is a causal path Ui → · · · → X and gr is a causal path
Ui → · · · → Y . The common source Ui is called the top of the trek (ToT for
short), denoted top(gl, gr). A trek is called spurious if gr is a causal path from
Ui to Y that is not intercepted by X.
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Figure 6.8: Quantity Exp-SEUA,UB
x (y) as a graphical contrast. Dots · · · indicate

arbitrary observed confounders along the indicated pathway.

Example 6.9 (Spurious Treks). Consider the causal diagram in Fig. 6.6. In the
diagram, latent variables U1, U2 both lie on top of a spurious trek because:

X ← Z1 ← U1 → Z1 → Y is a spurious trek with top U1

X ← Z2 ← U2 → Z2 → Y is a spurious trek with top U2.

Note also that there are other spurious treks with U1 on top, such as the trek
X ← Z1 ← U1 → Z1 → Z2 → Y . �

When decomposing spurious effects, we are in fact interested in all the exoge-
nous variables Ui that lie on top of a spurious trek between X and Y . It is
precisely these exogenous variables that induce common variations between X
and Y . Using any subset of the variables that are top of spurious treks, we
define a set-specific notion of a spurious effect:

Definition 6.5 (Exogenous Set-specific Spurious Effect). Let UsToT ⊆ U be the
subset of exogenous variables that lie on top of a spurious trek between X
and Y . Suppose UA, UB ⊆ UsToT are two nested subsets of UsToT , that is
UA ⊆ UB. We then define the exogenous experimental spurious effect with
respect to sets UA, UB as

Exp-SEUA,UB
x (y) = P (y | xUA)− P (y | xUB ). (6.65)

The above definition is analogous to Def. 6.3, but we are now fixing different
subsets of the tops of spurious treks. We present the quantity Exp-SEUA,UB

x (y)
as a graphical contrast in Fig. 6.8. In particular, the set of tops of spurious treks
UsToT is partitioned into three parts (UA, UB\A, UBC ). The causal diagram in
the figure is informal, and the dots (· · ·) represent arbitrary possible observed
confounders that lie along indicated pathways. On the l.h.s. of the figure,
the set UA does not respond to the conditioning X = x, whereas UB\A, UBC

do. This is contrasted with the r.h.s., in which neither UA nor UB\A respond
to X = x, whereas UBC still does respond to the X = x conditioning. The
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Z1 Z2

X Y

Figure 6.9: Causal diagram of the SCM in Ex. 6.10.

described contrast thus captures the spurious effect explained by the tops of
spurious treks in UB\A.

Analogous to Thm. 6.1, we next state a variable-specific decomposition of
the spurious effect, which is now with respect to exogenous variables that are
top of spurious treks:

Theorem 6.3 (Semi-Markovian Spurious Decomposition). Let UsToT ⊆ U be the
subset {U1, . . . , Um} of exogenous variables that lie on top of a spurious trek
between X and Y . Let U[i] denote the variables U1, . . . , Ui (U[0] denotes the
empty set ∅). The experimental spurious effect Exp-SEx(y) can be decomposed
into variable-specific contributions as follows:

Exp-SEx(y) =
m−1∑
i=0

Exp-SEU[i],U[i+1]
x (y) (6.66)

=
k−1∑
i=0

P (y | xU[i])− P (y | xU[i+1]). (6.67)

We next given an example demonstrating the Semi-Markovian decomposition:

Example 6.10 (Semi-Markovian Spurious Decomposition). Consider the follow-
ing SCMM:

F , P (U) :



Z1 ← U1 ∧ U1X

Z2 ← U2 ∨ U2X

X ← UX ∧ (U1X ∨ U2X)
Y ← X + Z1 + Z2

U1, U2, U1X , U2X , UX
i.i.d.∼ Bernoulli(0.5).

(6.68)
(6.69)
(6.70)
(6.71)

(6.72)

The causal diagram G associated withM is given in Fig. 6.9. The exogenous
variables that lie on top of a spurious trek are U1X , U2X . Therefore, following
the decomposition from Thm. 6.3, we can attribute spurious variations to
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these two variables:

Exp-SEx(y | x1) =E(y | x1)−E(y | xU1X
1 )︸ ︷︷ ︸

U1X contribution

(6.73)

+E(y | xU1X
1 )−E(y | xU1X ,U2X

1 )︸ ︷︷ ︸
U2X contribution

.

We now compute the terms appearing in Eq. 6.73. In particular, we know that

E(y | xU1X ,U2X

1 ) = E(y | do(x1)) = 1 +E(Z1 | do(x1)) +E(Z1 | do(x1))
(6.74)

= 1 +E(Z1) +E(Z2) = 1 + 0.25 + 0.75 = 2. (6.75)

Similarly, we can also compute

E(y | x1) = 1 + P (Z1 = 1 | x1) + P (Z2 = 1 | x1), (6.76)

Now, P (Z1 = 1 | x1) = P (Z1=1,x1)
P (x1) , and we know that X = 1 if and only if

UX = 1 and U1X ∨U2X = 1, which happen independently with probabilities 1
2

and 3
4 , respectively. Next, Z1 = 1, X = 1 happens if and only if UX = 1, U1X =

1 and U1 = 1, which happens with probability 1
8 . Therefore, we can compute

P (Z1 = 1 | x1) =
1
8

1
2 ·

3
4

= 1
3 . (6.77)

Furthermore, we similarly compute that Z2 = 1, X = 1 happens if either
UX = 1, U2X = 1 or UX = 1, U2X = 0, U2 = 1, U1X = 1 which happens
disjointly with probabilities 1

4 ,
1
16 , respectively. Therefore,

P (Z2 = 1 | x1) =
1
4 + 1

16
1
2 ·

3
4

= 5
6 . (6.78)

Putting everything together we obtain that

E(y | x1) = 1 + 1
3 + 5

6 = 13
6 . (6.79)

Finally, we want to compute E(y | xU1X
1 ), which equals

E(y | xU1X
1 ) = 1 + P (Z1 = 1 | xU1X

1 ) + P (Z2 = 1 | xU1X
1 ). (6.80)

Now, to evaluate these expressions, we distinguish two cases, namely (i) U1X =
1 and (ii) U1X = 0. In the first case, P (Z1 | x1) = 1

2 and P (Z2 = 1 | x1) = 3
4 .
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In the second case, P (Z1 | x1) = 0 and P (Z2 = 1 | x1) = 1. Therefore, we can
compute

P (Z1 = 1 | xU1X
1 ) = 1

2PU1X=1(Z1 | x1) + 1
2PU1X=0(Z1 | x1) = 1

4 (6.81)

P (Z2 = 1 | xU1X
1 ) = 1

2PU1X=1(Z2 | x1) + 1
2PU1X=0(Z2 | x1) = 7

8 , (6.82)

which implies that E(y | xU1X
1 ) = 17

8 . Finally, this implies that

Exp-SEx(y | x1)︸ ︷︷ ︸
= 1

6

= Exp-SE∅,U1X
x (y | x1)︸ ︷︷ ︸

= 1
24 from U1X

+Exp-SEU1X ,{U1X ,U2X}
x (y | x1)︸ ︷︷ ︸
= 1

8 from U2X

.

(6.83)

�

The terms appearing on the r.h.s. of Eq. 6.83 are shown as graphical contrasts
in Fig. 6.4. On the left side of Fig. 6.4a, U1X , U2X are responding to the
conditioning X = x, compared against the right side where only U2X is
responding to the conditioning X = x. In the second term, in Fig. 6.4b, on the
left only U2X responds to X = x, compared against the right side in which
neither U1X nor U2X respond to X = x conditioning.

After introducing the Semi-Markovian spurious decomposition, we can
now show its importance in the context of Causal Fairness Analysis, namely
its admissibility to the structural spurious criterion under business necessity:

Proposition 6.2 (Admissibility of Exogenous Spurious Effects). Let UBN ⊆ U
be a subset of the exogenous confounders of X,Y that fall under business
necessity. Let UCBN denote the exogenous ancestors of X that do not fall
under business necessity, that is UCBN = anex(X) \ UBN . Then the measures
Exp-SE∅,U

C
BN

x (y),Exp-SEUBN ,U
x (y) are admissible with respect to the structural

criterion Str-SE(UBN )X(Y ), that is

(Str-SE(UBN )X(Y ) = 0) =⇒ (Exp-SE∅,U
C
BN

x (y) = 0) (6.84)
(Str-SE(UBN )X(Y ) = 0) =⇒ (Exp-SEUBN ,U

x (y) = 0). (6.85)

Proof. Assume that Str-SE(UBN )X(Y ), meaning that the set of exogenous
variables not in the business necessity set that lie on top of a spurious trek
between X and Y is empty. We can expand the two quantities of interest using
the definition as

Exp-SE∅,U
C
BN

x (y) = P (y | x∅)− P (y | xU
C
BN ) (6.86)

Exp-SEUBN ,U
x (y) = P (y | xUBN )− P (y | xU ). (6.87)
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Note that P (y | x∅) = P (y | x), so to prove that Exp-SE∅,U
C
BN

x (y) = 0, we
want to show that P (y | xUC

BN ) = P (y | x). Using Prop. 6.1, we compute:

P (y | xU
C
BN ) =

∑
uC

BN

P (uCBN )P (y | x, uCBN ) (6.88)

=
∑
uC

BN

P (uC,xBN )P (uC,yBN )P (y | x, uC,xBN , u
C,y
BN ), (6.89)

where UC,xBN are the exogenous variables not in BN-set with a path to X, and
UC,yBN with a path to Y (these two sets are disjoint by assumption). Now, we
know that the following independence relations hold (using the assumption):

UC,xBN⊥⊥Y | X,U
C,y
BN , (6.90)

UC,yBN⊥⊥X. (6.91)

Hence we can write

P (y | xU
C
BN ) =

∑
uC,x

BN

∑
uC,y

BN

P (uC,xBN )P (uC,yBN )P (y | x, uC,xBN , u
C,y
BN ) (6.92)

=
∑
uC,x

BN

∑
uC,y

BN

P (uC,xBN )P (uC,yBN )P (y | x, uC,yBN ) (Eq. 6.90) (6.93)

=
∑
uC,x

BN

P (uC,xBN )
∑
uC,y

BN

P (uC,yBN )P (y | x, uC,yBN ) (6.94)

=
∑
uC,y

BN

P (uC,yBN )P (y | x, uC,yBN ) (6.95)

=
∑
uC,y

BN

P (uC,yBN | x)P (y | x, uC,yBN ) (Eq. 6.91) (6.96)

= P (y | x). (6.97)

To show that Exp-SEUBN ,U
x (y) = 0, notice that P (y | xU ) = P (yx). Therefore,

we need to show that P (y | xUBN ) = P (yx). By definition, we have that

P (y | xUBN ) =
∑
uBN

P (uBN )P (y | x, uBN ). (6.98)

Take any observed variable that lies on top of an open back-door path between
X and Y , say Zi. Then, every exogenous ancestor of Zi must lie in the UBN
set (otherwise the assumption is violated). Furthermore, for any open spurious
trek with top Ui, Ui must also be in UBN . This implies that

Yx⊥⊥X | UBN . (6.99)



156 Disparate Impact and Business Necessity

Hence we can write

P (y | xUBN ) =
∑
uBN

P (uBN )P (y | x, uBN ) (6.100)

=
∑
uBN

P (uBN )P (yx | x, uBN ) (Consistency axiom) (6.101)

=
∑
uBN

P (uBN )P (yx | uBN ) (Eq. 6.99) (6.102)

= P (yx). (6.103)

�

Identification of spurious effects in Semi-Markovian Models. In practice,
however, we need to compute the spurious decompositions from observational
data and the causal diagram. The first difficulty comes from the fact that
exogenous variables U are not drawn out explicitly in the causal diagram G.
Therefore, to determine the exogenous variables that can possibly lie on top
of a spurious trek, we give the following definition:

Definition 6.6 (Top of trek from the causal diagram). Let M be a Semi-
Markovian model and let G be the associated causal diagram. The set of
variables UsToT can be constructed from the causal diagram in the following
way:

(I) initialize UsToT = ∅,

(II) for each bidirected edge Vi L9999K Vj consider the associated exogenous
variable Uij ; if there exists a spurious trek from Uij to X and Y , add
Uij to UsToT ,

(III) for each observed confounder Zi, consider the associated exogenous
variable Ui; if there exists a spurious trek from Ui to X and Y , add Ui
to UsToT .

Example 6.11 (continued - UsToT Construction). We continue with Ex. 6.10
and the causal graph in Fig. 6.9 and perform the steps as follows:

(i) initialize UsToT = ∅,

(ii) consider bidirected edges X L9999K Z1 and X L9999K Z2:
- U1X associated with X L9999K Z1 lies on top of a spurious trek,
- U2X associated with X L9999K Z2 lies on top of a spurious trek,
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(iii) consider the observed confounders Z1, Z2 and their associated latent
variables U1, U2:

- U1, U2 do not lie on top of spurious treks between X and Y .

Therefore, we have constructed the set UsToT = {U1X , U2X}. �

After defining the explicit construction of the set UsToT , we define the notion
of the anchor set:

Definition 6.7 (Anchor Set). Let UsToT be the subset of the exogenous variables
that lie on top of a spurious trek between X and Y . Let U1, . . . Ul ⊆ UsToT
be a subset of these variables. We define the anchor set AS(U1, . . . , Ul) of
(U1, . . . , Ul) as the subset of observables V that are different from X and are
directly influenced by any of the Uis,

AS(U1, . . . , Ul) =
l⋃
i=1

ch(Ui) \X. (6.104)

Example 6.12 (continued - Anchor Set). For the set UsToT = {U1X , U2X}
associated with the causal diagram in Fig. 6.9, the anchor sets can be computed
as follows:

AS(U1X) = Z1, (6.105)
AS(U2X) = Z2, (6.106)

AS(U1X , U2X) = {Z1, Z2}. (6.107)

�

Another important definition is that of anchor set exogenous ancestral closure:

Definition 6.8 (Anchor Set Exogenous Ancestral Closure). Let Us ⊆ UsToT be a
subset of the exogenous variables on top of a spurious trek between X and Y .
Let AS(Us) denote the anchor set of Us, and let anexsToT (AS(Us)) denote all
exogenous variables in UsToT that have a path causal path to any variable in
AS(Us). Us is said to satisfy anchor set exogenous ancestral closure (ASEAC)
if

Us = anexsToT (AS(Us)). (6.108)

Example 6.13 (continued - Anchor Set Exogenous Ancestral Closure). Consider
the following causal diagram

Z1 Z2

X Y .
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With respect to the diagram, we have that

anexsToT (AS(U1X)) = U1X , (6.109)
anexsToT (AS(U2X)) = {U1X , U2X}, (6.110)

anexsToT (AS({U1X , U2X})) = {U1X , U2X}. (6.111)

Therefore, U1X and {U1X , U2X} satisfy anchor set exogenous ancestral closure,
whereas U2X does not, since U2X has Z2 in its anchor set, but Z2 has U1X as
its ancestor. �

Based on the above, we provide a sufficient condition for identification in the
Semi-Markovian case (the theorem’s proof is given in Appendix A.9):

Theorem 6.4 (ID of Variable Spurious Effects in Semi-Markovian Models). Let
Us ⊆ UsToT . The quantity P (y | xUs) is identifiable from observational data
P (V ) if the following hold:

(i) Y /∈ AS(Us),

(ii) Us satisfies anchor set exogenous ancestral closure, Us = anexsToT (AS(Us)).

Example 6.14 (continued - Decomposition ID). Consider the causal diagram
in Fig. 6.9. We previously derived that the tops of spurious treks are given
UsToT = {U1X , U2X} and computed the anchor sets as:

AS(U1X) = Z1,AS(U2X) = Z2,AS(U1X , U2X) = {Z1, Z2}. (6.112)

Furthermore, we can compute that anexsToT (AS(U1X)) = U1X . Similarly, we
have anexsToT (AS({U1X , U2X})) = {U1X , U2X}. Thus, both U1X and {U1X , U2X}
satisfy ASEAC from Def. 6.7. Therefore, E(y | xU1X

1 ) and E(y | xU1X ,U2X

1 ) are
identifiable by the conditions in Thm. 6.4. In particular, in this case we can
derive the expressions:

Exp-SE∅,U1X
x (y) =

∑
z1,z2

E(y | z1, z2, x)P (z2 | x)[P (z1 | x)− P (z1)],

(6.113)

Exp-SEU1X ,{U1X ,U2X}
x (y) =

∑
z1,z2

E(y | z1, z2, x)[P (z2 | x)− P (z2)]P (z1).

(6.114)

�
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6.2.3 x-specific Spurious Decompositions
So far, we focused on decomposing the Exp-SEx(y) quantity. However, recall
that in Sec. 4 and the Fairness Map (Thm. 4.8) we also considered an x-
specific analogue of the Exp-SEx(y). This measure was called Ctf-SEx0,x1(y)
or x-SEx0,x1(y) (see Def. 4.5), and was defined as:

Ctf-SEx0,x1(y) = P (yx0 | x1)− P (y | x0). (6.115)

To derive the decomposition of the Ctf-SE quantity, we need to define a slightly
more flexible notion of an integrated submodel, namely:

Definition 6.9 (Doubly Partially Abducted Submodel). The doubly partially
abducted submodel with respect to prior evidence E0 = e0, latent variables
U1, and evidence E1 = e1 is defined as:

ME0=e0,U1,E1=e1 = 〈F , P (u1 | E0 = e0)P (u2 | u1, E1 = e1)〉. (6.116)

The definition of the DPA submodel is an extension of the PA submodel
definition. In a PA submodel, the variables U1 do not respond to the evidence.
In a DPA submodel, the variables U1 have previously been updated according to
other, prior evidence. For example, DPA submodelMx0,U1,x1 can be described
as follows. First, latent variables U1 are updated according to X = x0. After
this, we update the remaining variables U2 according to X = x1, while U1
does not respond to this update. The following proposition shows how a DPA
submodel is used to compute conditional probabilities:

Proposition 6.3 (DPA Submodel Conditional Probabilities). Let P (Y = y | E =
eU1,E0=e0) denote the conditional probability of the event Y = y conditional
on evidence E1 = e1, while the exogenous variables U1 are updated according
to prior evidence E0 = e0. Then, P (Y = y | E = eU1,E0=e0) equals:∑

u1

P (U1 = u1 | E0 = e0)P (Y = y | E1 = e1, U1 = u1). (6.117)

Based on the DPA submodel notion, we can also define a notion of an x-specific
spurious effect:

Definition 6.10 (x-specific Spurious Effects). Let UsToT ⊆ U be the subset
of exogenous variables that lie on top of a spurious trek between X and Y .
Suppose UA, UB ⊆ UsToT are two nested subsets of UsToT , that is UA ⊆ UB.
We define the counterfactual spurious effect with respect to sets UA, UB as:

Ctf-SEUA,UB
x0,x1

(y) = P (y | xUA,x1
0 )− P (y | xUB ,x1

0 ). (6.118)

Based on the above notion, a variable-specific decomposition of the Ctf-
SEx0,x1(y) quantity can be obtained, which is analogous to the decomposition of
the quantity Exp-SEx(y) from Thm. 6.3. Therefore, we state the decomposition
result as a corollary of Thm. 6.3:
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Corollary 6.5 (Ctf-SE Decomposition). Let UsToT = {U1, . . . , Um} ⊆ U be
the subset of exogenous variables that lie on top of a spurious trek between
X and Y . Let U[i] denote the variables U1, . . . , Ui (U[0] denotes the empty
set ∅). The x-specific spurious effect, Ctf-SEx0,x1(y) can be decomposed into
variable-specific contributions as follows:

Ctf-SEx0,x1(y) = P (yx0 | x1)− P (y | x0) (6.119)

=
m−1∑
i=0

Ctf-SEU[i],U[i+1]
x0,x1 (y) (6.120)

=
k−1∑
i=0

P (y | xU[i],x1
0 )− P (y | xU[i+1],x1

0 ). (6.121)

The admissibility results for the decomposition presented above are similar
as for the Exp-SE decomposition. Furthermore, a very similar identifiability
result also holds. These results are, in the interest of space, not explicitly
mentioned again (see Prop. 6.2 and Thm. 6.4 for reference).

6.3 Refining Indirect Effects

After introducing the conceptual underpinnings for decomposing spurious
effects, we now handle indirect effects in a similar fashion. Here, however, we
build on some previous literature. We start by defining a structural criterion
of indirect fairness, under business necessity.

Definition 6.11 (Structural Indirect Criterion under Business Necessity). LetM
be a Semi-Markovian SCM. Let W be the set of mediators between X and Y .
Let WBN ,W

C
BN be a partition of the mediators, where WBN is the subset of

the variables which fall under business necessity. We then define the structural
indirect criterion under business necessity as

Str-IE(WBN )X(Y ) = 1(an(Y ) ∩ ch(X) ∩WC
BN = ∅). (6.122)

Similarly to Def. 3.2, the criterion Str-IE-BNX(Y ) is an idealized notion that
qualitatively describes whether there is discrimination based on the variables
which do not fall under business necessity (set WC

BN ). Similarly as before,
we want to find measures of fairness that are admissible with respect to the
criterion Str-IE(WBN )X(Y ). To do so, we first define the notion of an indirect
effect for a subset of the mediators W :

Definition 6.12 (Set-specific Indirect Effects). Let WA, WB be nested subsets
of the mediators W , so that WA ⊆ WB. Let WAC and WBC denote the
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WA WB\A WBC

x0

x1
Y

−

P (yx0,(WB)x1 ,(WBC )x0
) P (yx0,(WA)x1 ,(WAC )x0

)

WA WB\A WBC

x0

x1
Y

Figure 6.10: Quantity E-IEWA,WB
x0,x1 (y) as a graphical contrast.

complements of WA, WB in W . We then define the E-specific indirect effect
with respect to sets WA,WB as

E-IEWA,WB
x0,x1

(y) = P (yx0,(WB)x1 ,(WBC )x0
| E)− P (yx0,(WA)x1 ,(WAC )x0

| E).
(6.123)

The graphical contrast for the quantity E-IEWA,WB
x0,x1

(y) is shown in Fig. 6.10.
In particular, on the r.h.s. we have that WA “listens to” X = x1, whereas
WB\A,WBC listen to X = x0. This is contrasted with the l.h.s. in which
WA,WB\A listen to X = x1, while WBC stills listens to X = x0. Hence,
the contrast captures the change in outcome mediated by variables WB\A
obtained by changing x0 → x1 . Such a notion allows us to find a variable-level
decomposition of any E-specific indirect effect:

Theorem 6.6 (Variable Decomposition of Indirect Effects). Let W1, . . . ,Wk

denote the set of mediators, sorted in a topological order. Define W[i] as the
set {W1, . . . ,Wi} and W−[i] as {Wi+1, . . . ,Wk}. The E-specific indirect effect
can then be decomposed as

E-IEx0,x1(y) = P (yx0,Wx1
| E)− P (yx0 | E) (6.124)

=
k−1∑
i=0

E-IEW[i],W[i+1]
x0,x1 (y) (6.125)

=
k−1∑
i=0

[
P (yx0,(W[i+1])x1 ,(W−[i+1])x0

| E) (6.126)

− P (yx0,(W[i])x1 ,(W−[i])x0
| E)

]
.

The theorem allows us to attribute the variations in the indirect effect to specific
variables that explain them. For concreteness, we show the decomposition for
the natural direct effect introduced in Def. 4.2:

Corollary 6.7 (Variable decomposition of NIE). By choosing the event E = ∅
in Thm. 6.6 we obtain the decomposition for the natural indirect effect into
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X Y

W1 W2

Figure 6.11: Causal diagram of Ex. 6.15.

variable specific contributions

NIEx0,x1(y) = P (yx0,Wx1
)− P (yx0) (6.127)

=
k−1∑
i=0

NIEW[i],W[i+1]
x0,x1 (y) (6.128)

=
k−1∑
i=0

[
P (yx0,(W[i+1])x1 ,(W−[i+1])x0

) (6.129)

− P (yx0,(W[i])x1 ,(W−[i])x0
)
]
.

We now work out the NIE decomposition on a specific example:

Example 6.15 (Indirect Effect decomposition). Consider the following SCM:

M∗ :


X ← B(0.5)
W1 ← B(0.4 + 0.2X)
W2 ←W1 +B(0.4 + 0.2X)
Y ← X +W1 +W2

(6.130)
(6.131)
(6.132)
(6.133)

The causal diagram G associated withM∗ is shown in Fig. 6.11. Following
the decomposition from Thm. 6.6 we can write

NIEx0,x1(y) =E(yx0,Wx1
)−E(yx0,(W1)x1 ,(W2)x0

)︸ ︷︷ ︸
W2 contribution

(6.134)

+E(yx0,(W1)x1 ,(W2)x0
)−E(yx0)︸ ︷︷ ︸

W1 contribution

.

We now need to compute the terms appearing in Eq. 6.134. In particular, we
know that

E(yx0) = E(y | x0) = E(W1 | x0) +E(W2 | x0) (6.135)
= 0.4 + 0.8 = 1.2 (6.136)

Similarly, we can also compute

E(yx0,Wx1
) = E(W1 | x1) +E(W2 | x1) (6.137)

= 0.6 + 1.2 = 1.8. (6.138)
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(a) NIE∅,W1 (y).
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)
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(b) NIEW1,{W1,W2}(y).

Figure 6.12: Graphical representation of how the NIEis decomposed in Ex. 6.15.

Finally, again using the fy mechanism in the SCMM we compute that
E(yx0,(W1)x1 ,(W2)x0

) = E((W1)x1) +E((W2)x0,(W1)x1
) (6.139)

= E(W1 | x1) +E(E(W2 | x0, (W1)x1)) (6.140)
= 0.6 + 1 = 1.6. (6.141)

Putting everything together, we found that
NIEx0,x1(y)︸ ︷︷ ︸

=0.6

= NIE∅,W1
x0,x1

(y)︸ ︷︷ ︸
=0.2 from W1

+NIEW1,{W1,W2}
x0,x1

(y)︸ ︷︷ ︸
=0.4 from W2

. (6.142)

�

The two terms appearing the decomposition of the NIE in Ex. 6.15 are
represented as graphical contrasts in Fig. 6.12. The first term, NIE∅,W1

x0,x1
(y)

compares the outcome Y when W1 responds to X = x1 and W2, Y respond
to X = x0, against the outcome when all of W1,W2, and Y respond to
X = x0. This quantity captures the effect explained by the variable W1, which
behaves differently between the two terms. The second term NIEW1,{W1,W2}

x0,x1
(y)

compares the outcome Y when W1,W2 respond to X = x1 and Y responds to
X = x0, against the outcome Y when W1 responds to x1 and W2, Y respond
to X = x0. This quantity captures the variations explained by W2, which
behaves differently between the potential response yx0,Wx1

on the left, and the
potential response yx0,(W1)x1 ,(W2)x0

on the right. This decomposition shows us
how we can distinguish between different variations within the indirect effect.
We now show formally why the set-specific measures of indirect effect from
Def. 6.12 are useful in practice, by proving their admissibility with respect to
the structural criterion Str-IE-BNX(Y ) from Def. 6.11:
Lemma 6.8 (Admissibility of Set-specific Indirect Effects). Let WBN ⊆ W
be a subset of the mediators that fall under business necessity. Then the
measure E-IE∅,W

C
BN

x0,x1
(y) is admissible with respect to the structural criterion

Str-IE(WBN )X(Y ), that is

(Str-IE-BNX(Y ) = 0) =⇒ (E-IE∅,W
C
BN

x0,x1
(y) = 0), (6.143)

(Str-IE-BNX(Y ) = 0) =⇒ (E-IEWBN ,W
x0,x1

(y) = 0). (6.144)
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Proof. Suppose that Str-IE-BNX(Y ) = 0. Note that the measure equals

E-IEW
C
BN ,W

x0,x1
(y) = P (yx0,(WC

BN
)x1 ,(WBN )x0

| E)− P (yx0 | E). (6.145)

Since ch(X) ∩WC
BN = ∅, we note that

yx0,(WC
BN

)x1 ,(WBN )x0
= yx0,(WBN )x0

= yx0,(WC
BN

)x0 ,(WBN )x0
= yx0 . (6.146)

Using this expression in Eq. 6.145 shows our result. �

After showing the admissibility of the measures, the final point to consider
is when these target quantities are identifiable from the observational data
and the causal diagram. Here, known complete algorithms can be used for
identification, and we refer the reader to (Shpitser and Pearl, 2007) or more
recently to (Correa et al., 2021b).

Addressing the lack of symmetry. In Def. 5.4 of Sec. 5.1 we introduced the
symmetric notions of the direct and indirect effects. The lack of symmetry arises
from the fact that we can either consider a transition of the protected attribute
x0 → x1, or a reverse transition x1 → x0. The same issue appears when
considering variable-specific (or set-specific) decompositions. In particular, as
discussed in Def. 5.4, we might be interested in considering the Ctf-IEx0,x1(y | x)
or Ctf-IEx1,x0(y | x). However, each of these two measures can be decomposed
in two different ways:

Ctf-IEx0,x1(y | x) = Ctf-IE∅,W
C
BN

x0,x1
(y | x)︸ ︷︷ ︸

discriminatory

+Ctf-IEW
C
BN ,W

x0,x1
(y | x)︸ ︷︷ ︸

BN variations

(6.147)

= Ctf-IE∅,WBN
x0,x1

(y | x)︸ ︷︷ ︸
BN variations

+Ctf-IEWBN ,W
x0,x1

(y | x)︸ ︷︷ ︸
discriminatory

, (6.148)

and analogously for Ctf-IEx1,x0(y | x). For the spurious effect, we can also
average over two distinct decompositions. To address this issue, we once
again introduce measures that average out the effect of the measures that are
admissible with respect to the Str-SE-BN and Str-IE-BN structural criteria:

Definition 6.13 (Symmetric Set-specific Measures under Business Necessity).
Define the x-specific indirect and spurious measures under business necessity
as:

x-IEsym
WBN

(y | x) =1
4

(
Ctf-IE∅,W

C
BN

x1,x0
(y | x) + Ctf-IEWBN ,W

x1,x0
(y | x)− (6.149)

Ctf-IE∅,W
C
BN

x0,x1
(y | x)− Ctf-IEWBN ,W

x0,x1
(y | x)

)
(6.150)

x-SEsym,UBN
x1,x0

(y) =1
2

(
Ctf-SE∅,U

C
BN

x1,x0
(y) + Ctf-SEUBN ,U

x1,x0
(y)
)
. (6.151)
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Figure 6.13: Fairness Map for the TV-family of measures. The horizontal axis
represents the mechanisms (causal, spurious, direct, and indirect), and the vertical
axis the events that capture increasingly more granular sub-populations, from general
(P (u)) to unit-level. The bottom row contains structural measures. The arrow =⇒
indicates relations of admissibility, ◦−→ of power, and 99K of decomposability.

The measures in the above definition capture the variations that are considered
to be discriminatory, after accounting for corresponding business necessity sets
WBN and UBN .

6.4 Extended Fairness Map

The set-specific and variable-specific decompositions of spurious and indirect
effects give us an additional toolkit for solving fairness problems in practice,
when considering business necessity. In particular, they extend the Fairness
Map that was introduced in Fig. 4.5. The extension of the Map is shown
in Fig. 6.13. In particular, we extend the map with two additional columns,
corresponding to spurious-BN and indirect-BN variations, for arbitrary business
necessity sets. These two columns expand the mechanism axis, as they further
refine which mechanisms are included in the specific measures.

An important analogy can be drawn with the first instance of the Fairness
Map. Our initial task was to decompose the variations within the TV, into
those going through spurious, indirect, and direct pathways. For doing so, we
only needed access to the SFM, whose “resolution” or granularity was sufficient
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for performing this task. However, once we wanted to better understand the
variations within the spurious and indirect effects, to accommodate for business
necessity, the granularity of the SFM was no longer sufficient, and we had to
move to the fully specified causal diagram G. Once G is considered, spurious
and indirect effects become decomposable, in a similar fashion as how the total
effect (TE) or the total variation (TV) were decomposable when using the
SFM. Once again, this behavior reflects two important facts:

(a) increasingly strong causal assumptions allow for increasingly powerful
decomposition of variations; in particular, the causal diagram G provides
a stronger tool for decomposing variations than just the SFM1, but is
on the other hand much more difficult to construct,

(b) the principles of decomposability, admissibility, and power apply more
broadly than just for the SFM; in particular, after specifying the full
diagram G, the indirect and spurious effects become decomposable, and
their decompositions are included in the Extended Fairness Map in
Fig 6.13.

Before providing a practical algorithm for assessing the legal doctrines, we
discuss another possibility for extending the mechanism axis.

6.4.1 Connection to Path-specific Notions
The measures described in this section so far can be called set-specific or
variable-specific. However, a further level of granularity is possible, which
allows for a path-specific analysis of causal effects (Pearl, 2001; Avin et al.,
2005). Path-specific definitions of fairness have also been considered in the
fairness literature (Nabi and Shpitser, 2018; Chiappa, 2019; Wu et al., 2019).
We next draw some connections to the path-specific notions of fairness.

1We give here an interesting remark for the curious reader. There is an analogy
to be drawn when we are transitioning from the SFM to the causal diagram by
explicating additional causal assumptions. In fact, constructing the SFM can be seen
as an expanded version of the basic bow graph

X Y

that contains no causal assumptions apart from the fact that X causally precedes Y
(which is almost a given in any fairness application). In the bow graph, the direct
effect equals the total causal effect, and we can already see that the TV measure
can be expanded into causal vs. non-causal contributions. The transition from the
bow graph to the SFM allows us to separate the causal variations into direct and
indirect, similarly to how transitioning from the SFM to G allows us to decompose
the indirect and spurious effects further.
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For the purposes of the discussion, we will assume a Markovian model with
k mediators W1, . . . ,Wk between X and Y . Further, the causal diagram G is
assumed to be fully connected. A causal path π from X to Y is any sequence
of nodes and forward edges starting at X and ending at Y . Any path π can
be encoded with a vector of length k, with the i-th entry indicating whether
the respective mediator Wi lies on the path. For instance, (0, . . . , 0) encodes
the direct path X → Y , while (1, . . . , 1) encodes X →W1 → · · · →Wk → Y .
Further, we note there are 2k paths between X and Y , and a path π encoded
by a vector (s1, . . . , sk) is given the index

∑
i si2i−1. We exemplify the above

notions on a two-mediator example that will be used in this section:

Example 6.16 (Paths in a Two Mediator Graph). Consider the causal diagram
with two mediators W1,W2, shown in Fig. 6.11. There are four pathways in
the graph, namely:

(1) direct path X → Y , encoded by (0, 0) and given index 0,

(2) path X →W1 → Y , encoded by (1, 0) and given index 1,

(3) path X →W2 → Y , encoded by (0, 1) and given index 2,

(4) path X →W1 →W2 → Y , encoded by (1, 1) and given index 3.

The paths are labeled π0, π1, π2, π3, respectively. �

For defining path-specific potential outcomes, we borrow the notation from
(Zhang and Bareinboim, 2018c), and the defined notions are similar to previous
works (Pearl, 2001; Avin et al., 2005; Shpitser and Tchetgen, 2016). Let
Wi ∈ pa(Y ), and let C be a vector of length 2k with entries {x0, x1} indicating
values of X along each causal pathway π. The edge Wi → Y defines a funnel
operator /Wi→Y (C) in the following way. Entries of C corresponding to paths
of the form X → · · · →Wi → Y are kept, and these values correspond to paths
X → · · · →Wi after applying the funnel operator. All other entries of C are
dropped by the operator. This allows us to define a notion of a path-specific
potential response:

Definition 6.14 (Path-specific Potential Response). Let C be a vector of length
2k with entries {x0, x1}, with each entry indicating the value of X along the
j-th pathway. Let CX→Y denote the value of X along the direct pathway
X → Y , and let S = pa(Y ) \X. The potential outcome YC(u) is defined as

YC(u) = YCX→Y ,S/S→Y (C)(u)(u), (6.152)

where S/S→Y (C)(u) is a set of path-specific potential responses {Si/Si→Y (C)(u) :
Si ∈ S}.
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Figure 6.14: Visualization of how a path-specific potential response is obtained.

We provide an instructive visualization of how the potential response YC(u)
can be obtained (see Fig. 6.14). We start from the leaf node Y , and in the
first row below it, we place all the parents of Y . Further, all parents of Y
that are not root nodes of the causal diagram G (i.e., all parents different
from X) are further expanded based on their parents, and the process is
repeated recursively. This creates a tree T , where each root node corresponds
to X. Notice that any directed path from the root X to the leaf node Y in T
corresponds to a causal path πj in the causal diagram G. The value assigned
to X in the root node of T , labeled X(j), determines how X behaves along
the respective pathway πj . Once all root nodes are specified (contained in the
vector C of length 2k), each node is evaluated based on its parents and the
unit u, Vi ← fi(pa(Vi), ui), until the path-specific potential outcome YC(u) is
obtained.

Example 6.16 (Two Mediators – Path-specific Potential Response). The path-
specific potential response corresponding to the vector C = (x0, x1, x0, x1) can
be written as

Yx0,(W1)x1 ,(W2)x0,(W1)x1
, (6.153)

that is X equals x0 along π0, x1 along π1, x0 along π3, and x1 along π4. �

We next recall the definition of a counterfactual contrast (Def. 3.7), and show
how such a contrast can be represented based on the underlying pathways:

Definition 6.15 (Counterfactual Contrast – Path Representation). Let C =
(C0, C1, ∅, ∅) be a counterfactual contrast. Such a contrast C is represented by
two vectors C0, C1 of length 2k.

Furthermore, a structural measure of fairness (recall Def. 3.1) can also be
represented based on paths:
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Definition 6.16 (Structural Criterion – Path Representation). A path represen-
tation of a structural criterion Q is a vector q of length 2k with {0, 1} entries,
with each entry indicating whether the respective path πj is included in the
structural criterion.

The definition can also be demonstrated to our running example:

Example 6.16 (Two Mediators – Path Structural Criteria). Using path-specific
language, structural criteria Str-DE and Str-IE can be written as

Str-DE = (1, 0, 0, 0) (6.154)
Str-IE = (0, 1, 1, 1). (6.155)

Str-DE includes the path π0, whereas Str-IE includes π1, π2, and π3. �

From this notation, it becomes clear that many other structural criteria are
possible, too. The notion of admissibility from the FPCFA (Def. 3.6) can also
be written using the path-specific language:

Definition 6.17 (Admissibility – Path Representation). A measure µ based on a
contrast C = (C0, C1) is admissible with respect to a structural criterion q if

(C0)j 6= (C1)j =⇒ qj = 1. (6.156)

The inequality (C0)j 6= (C1)j means that there are variations transmitted along
the pathway πj within the contrast C. The implication (C0)j 6= (C1)j =⇒
qj = 1 requires that all the pathways captured by the contrast C are also
contained in the structural criterion q.

Example 6.16 (Two Mediators – Path-specific Admissibility). The NIEx0,x1(y)
measure corresponds to the path-specific contrast C = (C0, C1), where C0 =
(x0, x0, x0, x0), and C1 = (x0, x1, x1, x1). The Str-TE measure corresponds to
the vector q = (1, 1, 1, 1). From Def. 6.17 it follows that NIE is admissible with
respect to Str-TE. �

Notice, however, that the structural total effect captures more than the natural
indirect effect. Therefore, another additional notion, which has not been
strongly emphasized in the discussion so far, is needed for the discussion on
path-specific effects:

Definition 6.18 (Tightness). A measure µ based on a contrast C = (C0, C1) is
tight with respect to a structural criterion q if

qj = 1 =⇒ (C0)j 6= (C1)j . (6.157)
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Example 6.16 (Two Mediators – Path-specific Tightness). The NIEx0,x1(y)
measure is not tight with respect to Str-TE. However, the NIEx0,x1(y) is
both tight and admissible with respect to Str-IE, which is represented by
q = (0, 1, 1, 1). �

For tightness, the implication is reversed compared to the notion of admissibility.
Intuitively, tightness requires that all variations within q are also captured
within C, while admissibility requires that variations captured within C are
within q (in this sense, the two notions are complementary). We next define
the notion of when a structural criterion shatters a collection of pathways:

Definition 6.19 (Shattering). Let q be a structural criterion. Let Π =
⋃
j∈J πj

be a collection of pathways, with J the index set. Let q1 be the set of indices
for which qj = 1, and q0 defined analogously. We say q shatters Π (or J) if

J ∩ q1 6= ∅, J ∩ q0 6= ∅. (6.158)

The notion of shattering is intuitive – a structural criterion q shatters a
collection of pathways Π if there are pathways in Π that are contained in q,
and also pathways that are not contained in q. In other words, Π is shattered
by q if it is not fully contained within q, nor its complement 1− q. We next
define an important notion of first-entry mapping:

Definition 6.20 (First-Entry Set). Let Wi be a mediator. For a path π, the
first entry fe(π) is the first mediator along the path π (we assign the direct
path to the node X, which we also label W0 for convenience). The first-entry
set J ife of Wi is defined as

J ife = {j : fe(πj) = Wi}. (6.159)

We now instantiate the notions of first entry and shattering on our running
example:

Example 6.16 (Two Mediators – First-Entry and Shattering). The mediator W1
has the first entry set {π1, π3} (or equivalently J1

fe = {1, 3}) corresponding
to paths X →W1 → Y , and X →W1 →W2 → Y . The mediator W2 has the
first entry set {π2} (or J2

fe = {2}), corresponding to X →W2 → Y .
The structural criterion qA = (0, 1, 0, 0) shatters J1

fe, since it includes π1
but not π3. The structural criterion qB = (0, 1, 0, 1) does not shatter J1

fe. �

Based on the first-entry mapping, and the notion of shattering, we can state a
key identifiability result:

Theorem 6.9 (Tightness, Admissibility, Identifiability – Shattering). For a struc-
tural criterion q, there exists a contrast C that is tight, admissible, and
identifiable if and only if q does not shatter any of the J ife for i ∈ {0, . . . , k}.
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We note that the result in Thm. 6.9 is related to the recanting witness criterion
of (Avin et al., 2005). We next apply the theorem to our example:

Example 6.16 (Two Mediators – Shattering and Identification). Consider the
structural criteria qA = (0, 1, 0, 0), qB = (0, 1, 0, 1) from before. There is no
tight, admissible, and identifiable contrast w.r.t. qA because qA shatters J1

fe.
For qB , there exists a contrast that is tight, admissible, and identifiable, since
qB does not shatter any J ife. For example, the contrast

CB = P (yx0,(W1)x1 ,(W2)x0,(W1)x1
)− P (yx0,(W1)x0 ,(W2)x0,(W1)x0

) (6.160)

is one such contrast. Its identification expression is given by∑
w1,w2

P (y | x0, w1, w2)P (w2 | x0, w1)
[
P (w1 | x1)− P (w1 | x0)

]
. (6.161)

Verifying tightness and admissibility is left as an exercise for the reader. �

The next question we ask is about maps from the set of paths π to the set of
variables Wi. We define the notion of a valid path-to-variable mapping:

Definition 6.21 (Valid Path to Variable Mappings). Let ν be a mapping from
pathways to the set of mediators, πj 7→Wi. A mapping ν is said to be valid if

(i) each πj is mapped to some Wi that lies along πj ,

(ii) for each structural criterion q(i) corresponding to ν−1(Wi) there exists
a tight, admissible, and identifiable contrast C(i).

We say that a mapping is valid under two conditions. Firstly, each pathway
π needs to be mapped to a variable that lies along π; mappings that do not
satisfy this property are not very meaningful. The second property ensures
the ability to perform an analysis of variations. The value of ν−1(Wi) contains
all the paths assigned to Wi, and q(i) is the corresponding structural criterion.
The existence of a tight, admissible, and identifiable contrast C(i) with respect
to q(i) ensures that there is a fairness measure computable in practice that
captures variations along paths ν−1(Wi) transmitted through variable Wi. As
it turns out, there is a single valid path-to-variable mapping:

Corollary 6.10 (Unique Valid Path to Variable Mapping). There exists a unique
valid path to variable mapping ν, and it is given by the first entry map fe(π).

Example 6.16 (Two Mediators – Path-to-variable Mappings). The path-to-
variable mapping νA, defined by{

νA(π0) = X, νA(π1) = W1, νA(π2) = W2, νA(π3) = W2
}
, (6.162)
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is not a valid path-to-variable mapping. The structural measure qA,W2 =
(0, 1, 1, 0) corresponding to the set ν−1

A (W2) = {π2, π3} does not allow for a
tight, admissible, and identifiable contrast. However, the map νB , defined by{

νB(π0) = X, νB(π1) = W1, νB(π2) = W2, νB(π3) = W1
}
, (6.163)

is valid path-to-variable mapping, and it is unique. �

Our results show formally that the first-entry mapping is the only valid
assignment of causal pathways to variables that guarantees the existence of
contrasts that are tight, admissible, and identifiable (TAI, for short). In other
words, it is the only mapping that allows us to have a practical, variable-specific
approach to fairness analysis, without requiring strong additional assumptions.
Clearly, contrasts C(i) that are TAI with respect to the q(i) = ν−1(Wi) need
to be found in practice. Note that, in Thm. 6.6, we already developed one
possible solution, which also satisfies the decomposability property (Def. 3.5).

Set-specific viewpoint. After relating the variable-specific decompositions to
the path-specific ones, we want to do the same for set-specific decompositions.
Again, we assume that the set of mediators W1, . . . ,Wk is partitioned into BN
mediatorsWBN and non-BN mediatorsWC

BN . One possible way of determining
which causal paths π fall under business necessity with respect to the partition
WBN ,W

C
BN is to use the first-entry map, that is,

qfe-BN =
⋃

Wi∈WBN

fe−1(Wi), (6.164)

where qfe-BN is the structural criterion corresponding to BN paths determined
by the first-entry map. Interestingly, our prior discussion implies that there
exist TAI contrasts CBN , CCBN with respect to qfe-BN and its complement
1 − qfe-BN, respectively. However, there exist two other ways in which the
partition WBN ,W

C
BN can be mapped to structural criteria:

Definition 6.22 (Minimal and Maximal Variable-Specific Business Necessity). Let
WBN be the business necessity set. The maximal business necessity (max-BN)
path mapping states that πj is in the business necessity set if any Wi along
πj is in WBN . The minimal business necessity (min-BN) path mapping states
that πj is in the business necessity set if all Wi along πj are in WBN .

The definitions of max-BN and min-BN represent two extremes. The max-BN
mapping says that if any variable along a path is BN, then the path is BN,
thereby labeling as many paths as possible as BN. Contrary to this, min-BN
labels as few paths as possible as BN, since a single non-BN variable along
the path is sufficient to label the path non-BN. Let qmax-BN, qmin-BN be the
structural criteria obtained in this way.
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Example 6.16 (Two Mediators – Minimal and Maximal BN). Suppose that the
set WBN = {W2}. Then, the min-BN mapping states that only the path
π2 = X →W2 → Y is in the BN set. The max-BN mapping states that paths
π2, π3 are both in the BN set. �

The natural question is when TAI contrasts with respect to the qmax-BN and
qmin-BN criteria exist. To give a condition for this, we introduce the notions of
forward and backward BN closure:

Definition 6.23 (Forward and Backward BN Closure). Let WBN be the set of
BN mediators. The set WBN satisfies forward closure if

Wi ∈WBN =⇒
(
ch(Wi) ∩W

)
⊂WBN . (6.165)

The set WBN satisfies backward closure if

Wi ∈WBN =⇒
(
pa(Wi) ∩W

)
⊂WBN . (6.166)

We ground these notions in our running example:

Example 6.16 (Two Mediators – Forward and Backward BN closure). The BN
set {W2} does not satisfy backward closure (since W1 ∈ pa(W2) is not in the
BN set), but satisfies forward closure. The BN set {W1} satisfies backward,
but not forward closure. The BN sets {W1,W2} and ∅ satisfy both forward
and backward closure. �

Based on the above definitions, we can state an important result for the
qmax-BN and qmin-BN criteria:

Theorem 6.11 (Identification Under Closure). There exists a tight, admissible,
and identifiable contrast Cmax-BN for qmax-BN if and only if WBN satisfies
backward closure. Further, there exists a tight, admissible, and identifiable
contrast Cmin-BN for qmin-BN if and only if WBN satisfies forward closure.

The above result shows that the max-BN mapping can be tested empirically if
and only ifWBN satisfies backward closure. Similarly, min-BN mapping can be
tested if and only if WBN satisfies forward closure. Thus, we have established
conditions under which alternative solutions to the first-entry mapping can be
used to evaluate business necessity requirements.

We summarize the main insights from the discussion in this section. Our
results imply that general path-specific attributions are not feasible in practice,
without invoking further strong assumptions. Therefore, variable-specific or
set-specific attributions can strike a good balance of modeling flexibility and
practical usefulness. Firstly, we showed that a variable-specific attribution of
variations is possible, and there is a unique mapping of pathways to variables
that allows for this (the first-entry mapping). We further discussed several ways
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of conceptualizing set-specific attributions, based on the structural criteria
qfe-BN, qmax-BN, and qmin-BN. The qfe-BN criterion can be evaluated in practice
for any Markovian model and selection of BN set, whereas qmax-BN and qmin-BN
additionally require the notions of backward and forward BN closure, respec-
tively. These results illuminate what are the most fine-grained analyses for
assessing claims of business necessity that are feasible in practice. Furthermore,
they also demonstrate that the approach developed in this section offers the
most fine-grained analysis possible without invoking further assumptions, and
that more detailed path-specific analyses may not be realistic in practice.

6.5 Extended Fairness Cookbook

Armed with the set-specific and variable-specific decompositions of spurious
and indirect effects, we can now provide an extended version of the Fairness
Cookbook in Alg. 5.1, which is able to accommodate for considerations of
arbitrary business necessity sets within the disparate impact doctrine. The
Extended Fairness Cookbook is presented in Alg. 6.4. The Extended Fairness
Cookbook is intended to be used when one of the following holds:

(a) the hypothesis H(Ctf-SE)
0 in the Fairness Cookbook was rejected, but

the UsToT contains both variables that fall under Business Necessity
(UBN 6= ∅), and also variables that do not fall under Business Necessity
(UCBN 6= ∅),

(b) the hypothesis H(Ctf-IE)
0 in the Fairness Cookbook was rejected, but

the W -set contains both variables that fall under Business Necessity
(WBN 6= ∅), and also variables that do not fall under Business Necessity
(WC

BN 6= ∅).

We are now ready to revisit Ex. 6.1 which motivated the discussion in this
section, and demonstrate the usage of the Extended Fairness Cookbook in
practice:

Example 6.17 (COMPAS with Business Necessity Continued). The data scien-
tists at ProPublica applied the Fairness Cookbook to the COMPAS dataset
and demonstrated that:

Ctf-IEx1,x0(y | x1) = −5.7%± 0.5%, (6.171)
Ctf-SEx1,x0(y) = −4.0%± 0.9%, (6.172)

After the court hearing, the judge ruled that using the attributes age (Z2),
prior count (P ), and charge degree (D) was not discriminatory, but using the
attributes juvenile count (J) and gender (Z1) was. In light of these business
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Algorithm 6.4 Extended Fairness Cookbook
• Inputs: Dataset D, SFM projection ΠSFM(G), arbitrary BN-set.

1: Obtain the dataset D and construct the causal diagram G.
2: Determine Business Necessity considerations.

• determine which variables UsToT lie on top of spurious treks according
to Def. 6.6,

• determine which variables in UsToT and W fall under business ne-
cessity; denote the sets as UBN , WBN , respectively, and denote by
UCBN , WC

BN their respective complements in UsToT ,W .
3: Consider Disparate Impact under Business Necessity:

• test the following two hypotheses:

H
(Ctf-SE),¬BN
0 : Ctf-SEsym,UBN

x1,x0
(ŷ) = 0, (6.167)

H
(Ctf-IE),¬BN
0 : Ctf-IEsym

WBN
(ŷ | x0) = 0. (6.168)

– if either of the hypotheses is rejected =⇒ there is evidence of
disparate impact.

• if Y ∈ D, further test the following hypotheses:

H
(Ctf-SE),BN
0 : Ctf-SEsym,UC

BN
x1,x0

(ŷ) = Ctf-SEsym,UC
BN

x1,x0
(y), (6.169)

H
(Ctf-IE),BN
0 : Ctf-IEsym

WC
BN

(ŷ | x0) = Ctf-IEsym
WC

BN

(y | x0). (6.170)

– if either of the hypotheses is rejected =⇒ there is evidence of
disparate impact.

necessity requirements, the ProPublica team realizes that their originally pre-
sented measures are not sufficient to prove discrimination under the disparate
impact doctrine. Therefore, the team decides to use the Extended Fairness
Cookbook and computes that:

Ctf-IEx1,x0(y | x1) = Ctf-IE∅,Jx1,x0
(y | x1) + Ctf-IEJ,{J,P,D}x1,x0

(y | x1) (6.173)
= (−4.9%± 0.4%)︸ ︷︷ ︸

juvenile count variations

+ (−0.9%± 0.2%)︸ ︷︷ ︸
priors and charge variations

. (6.174)

Similarly, the team also finds that UsToT = {U1X , U2X} associated with
bidirected edges X L9999K Z1, X L9999K Z2, respectively. Based on this they
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Figure 6.15: Steps of the analysis of the COMPAS dataset with different levels of
causal assumptions. In the first step, we compute the TV measure and assume only
the bow graph. In the second step, we use the SFM to obtain a causal decomposition
of the TV measure. In the third step, which is performed when necessary, we obtain
the further decompositions of the spurious and indirect effects, based on the full
causal diagram G.

compute that:

Ctf-SEx1,x0(y) = Ctf-SE∅,U1X
x1,x0

(y) + Ctf-IEU1X ,{U1X ,U2X}
x1,x0

(y) (6.175)
= (−0.7%± 0.7%)︸ ︷︷ ︸

gender variations

+ (−3.3%± 0.8%)︸ ︷︷ ︸
age variations

. (6.176)

The steps of the entire analysis of the COMPAS dataset are also shown in
Fig. 6.15. Based on this evidence, the court concludes that with respect to
spurious effect there is no disallowed discrimination (the gender variations are
not significantly different than 0). However, with respect to indirect variations,
there is evidence of disparate impact, since the juvenile count variations are
significantly different from 0, and the variable J is not included in the business
necessity set. The ProPublica team presents this evidence, and the court finds
that the disparate impact doctrine was violated, and that the future algorithm
predictions need to be adapted to account for this violation. �

6.6 Extended Fair Prediction

In the previous section we discussed how to perform Task 1 (bias detection
and quantification) under the extended model, that is the causal full causal
diagram G. We now discuss how to handle Task 2 (fair prediction) when the
full causal diagram is specified. Recall that under the SFM, we described the
procedure of Causal IF (see Alg. 5.2), which performed optimal transport
between group-specific distributions of possibly multivariate sets Z,W , and the
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Algorithm 6.5 Extended Fair Data Adaptation (EFDA)
• Inputs: Dataset D, Causal Diagram G, BN Sets UBN ,WBN .

for Zi ∈ Z in topological order do . Adapting the confounders
if Zi ∈ AS(UBN ) ∧ Zi ∈ AS(UCBN ) then

return FAIL: adaptation cannot be performed
else if Zi ∈ AS(UBN ) ∧ Zi /∈ AS(UCBN ) then

transport Zi | x1, τ
pa(Zi)(pa(Zi)) onto Zi | x0,pa(Zi)

let τZi denote the obtained transport map
else if Zi /∈ AS(UBN ) ∧ Zi ∈ AS(UCBN ) then

transport Zi | x, τpa(Zi)(pa(Zi)) onto Zi | x, pa(Zi) for x ∈ {x0, x1}
let τZi denote the obtained transport map

end if
end for

for Vi ∈ {W,Y } in topological order do . Adapting the mediators
let set(Vi) = WBN if Vi ∈WBN and set(Vi) = WC

BN otherwise
if ∃Wj ∈ pa(Vi) s.t. Wj ∈ set(Vi)C ∧Wj L9999K Vi then

return FAIL (adaptation cannot be performed)
end if
if Vi /∈WBN then

transport Vi | x1, τ
pa(Vi)(pa(Vi)) onto Vi | x0,pa(Vi)

let τVi denote the obtained transport map
else if Vi ∈WBN then

transport Vi | x, τpa(Vi)(pa(Vi)) onto Vi | x,pa(Vi) for x ∈ {x0, x1}
let τVi denote the transport map

end if
end for

outcome Y . When using the causal diagram G, we propose a similar approach,
but on a higher level of granularity. In particular, we perform optimal transport
sequentially on singleton variables, in a valid topological ordering. The formal
description of the procedure is given in the following definition:

Definition 6.24 (Extended Fair Data Adaptation (EFDA)). LetM be an SCM
and let G be the corresponding causal diagram. Assume further that G can
be projected onto the standard fairness model (SFM) from Def. 2.7. Let
UBN ⊆ UsToT be the subset of the exogenous confounders which fall under
business necessity, and let AS(·) denote the anchor set operator. LetWBN ⊆W
be the subset of the mediators that fall under business necessity. The extended
fair data adaptation (EFDA) proceeds as described in Algorithm 6.5.

As can be noted, the procedure can sometimes fail, that is, the adaptation might
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not be possible. The failure conditions are related precisely to the identification
conditions in Thm. 6.4, or the general identification conditions for indirect
effects (Shpitser and Pearl, 2007; Correa et al., 2021b). The procedure might
fail if there is a confounder Zi which is simultaneously in the anchor set of
business necessity variables AS(UBN ) and the anchor set of the complement
AS(UCBN ). In this case, it is not possible to determine how the data should
be adapted to accommodate for business necessity requirements. Similarly, if
there exists a mediator Wi for which exists a parent Wj such that (i) there
is a bidirected edge Wj L9999K Wi and (ii) either Wi ∈ WBN ,Wj ∈ WC

BN or
Wi ∈WC

BN ,Wj ∈WBN (i.e., Wj ,Wi are in different partitions of W according
to business necessity), then the procedure also fails, since we cannot determine
how the data should be adapted.

The procedure described in Def. 6.24 is based on the fair data adaptation
procedure from (Plečko and Meinshausen, 2020; Plečko et al., 2021), with
two key differences. Firstly, the EFDA procedure described here allows for
the adaptation of confounding variables that causally precede the protected
attribute X. Secondly, there is a slight difference in how the downstream effects
of business necessity variables are handled. Plečko and Meinshausen, 2020 call
these variables resolving, according to the definition of Kilbertus et al., 2017,
and consider any pathway from the protected attribute X to Y mediated by
such variables to be in the business necessity set (corresponding to the qmax-BN
criterion from Sec. 6.4.1). The above procedure is an alternative, and considers
pathways of the form X →Wi → · · · → Y , for a BN variable Wi, to be in the
business necessity set (corresponding the the qfe-BN criterion). As discussed
previously, the criterion qfe-BN gives a stronger definition of fairness than the
qmax-BN criterion.

Finally, to conclude, we show that after the adaptation procedure, the
effects associated with variables outside the business necessity sets vanish:

Theorem 6.12 (Soundness of EFDA). LetM be an SCM and let G be the cor-
responding causal diagram. Let UBN ⊆ UsToT be the subset of the exogenous
confounders which fall under business necessity, and let WBN ⊆ W be the
subset of the mediators that fall under business necessity. Let M̃ denote the
SCM after the EFDA procedure is performed. It then follows that

Ctf-IE∅,W
C
BN

x1,x0
(y | x) = Ctf-IEWBN ,W

x1,x0
(y | x) = 0 (6.177)

Ctf-SE∅,U
C
BN

x1,x0
(y) = Ctf-SEUBN ,U

x1,x0
(y) = 0. (6.178)

The theorem is given without proof, as it follows very closely (Plečko and
Meinshausen, 2020, Thm. 1) and the proof of Thm. 5.3.



7
Conclusions

Modern automated decision-making systems based on AI are fueled by data,
which encodes many complex historical processes and past, potentially dis-
criminatory practices. Such data, imprinted with undesired biases, cannot by
itself be used and expected to produce fair systems, regardless of the level of
statistical sophistication of the methods used or the amount of data available.
In light of this limitation in which more data or clever methods are not the
solution, the AI designer is left to search for a new notion of what a fair reality
should look like. By and large, the literature on fair machine learning attempts
to address this question by formulating (and then optimizing) statistical no-
tions about how fairness should be measured. Still, as many of the examples
in this manuscript demonstrated, statistical notions fall short of providing a
satisfactory answer for what a fair reality should entail. Using decision systems
that arise when only considering statistical notions of fairness may be causally
meaningless or even have unintended and possibly catastrophic consequences.

We combined in this manuscript two ingredients to address this challenge,
(i) the language of causality and (ii) legal doctrines of discrimination as a sound
basis for imagining what a fair reality should look like and how society’s norms
and expectations should be represented. This formalization of the fairness
problem will allow communication between the key stakeholders involved in
developing such systems in practice, including computer scientists, statisticians,
and data scientists on the one hand and social, legal, and ethical experts on the
other. A key observation is that mapping social, ethical, and legal norms onto
statistical measures is a challenging task. A formulation we propose explicitly

179



180 Conclusions

in the form of the Fundamental Problem of Causal Fairness Analysis is to map
such social norms onto the underlying causal mechanisms and causal measures
of fairness associated with these particular mechanisms. We believe such an
approach can help data scientists to be more transparent when measuring
discrimination and can also help social scientists to ground their principles and
ideas in a formal mathematical language that is amenable to implementation.

The final important distinction introduced in this manuscript is between
the different fairness tasks, namely (i) bias detection and quantification, (ii) fair
prediction, and (iii) fair decision-making. The first task helps us to understand
how much (and if any) bias exists in our data. The task of fair prediction
allows us to correct for (parts or entirety) of this bias and envisage a more
fair world in which such bias is removed. For the third task, we developed
a set of preliminary results for a single time-step setting, but we leave for
future work the extensions to a multi-step process. This will require interfacing
the principles introduced in this manuscript with key ideas in economics and
econometrics, which we view as an essential next step in designing fair systems.
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A
Proofs of Main Theorems & Derivations

In this section, we provide the proofs of the main theorems presented in the
manuscript. In particular, we give the proof for the Fairness Map theorem
(Thm. 4.8), soundness of the SFM theorem (Thm. 4.11), the Fair Prediction
theorem (Thm. 5.1), and the soundness of the Causal Individual Fairness
procedure (Thm. 5.3).

A.1 Proof of Thm. 4.8

The proof of Thm. 4.8 is organized as follows. The full list of implications
contained in the Fairness Map in Fig. 4.5 is given in in Tab. A.1. For each
implication, we indicate the lemma in which the implication proof is given.

Lemma A.1 (Power relations of causal effects). The total, direct, and indirect
effects admit the following relations of power (assuming that that Z ⊂ V ′):

unit-TEx0,x1(y(u)) = 0 ∀u =⇒ v′-TEx0,x1(y | v′) = 0 ∀v′ (A.1)
=⇒ z-TEx0,x1(y | z) = 0 ∀z (A.2)
=⇒ ETTx0,x1(y | x) = 0 ∀x (A.3)
=⇒ TEx0,x1(y) = 0, (A.4)

182
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Implication Proof
po

w
er

Unit-TE =⇒ v′-TE =⇒ z-TE =⇒ ETT =⇒ TE Lem. A.1

Unit-DE =⇒ v′-DE =⇒ z-DE =⇒ Ctf-DE =⇒ NDE Lem. A.1

Unit-IE =⇒ v′-IE =⇒ z-IE =⇒ Ctf-IE =⇒ NIE Lem. A.1

Exp-SE ⇐⇒ Ctf-SE Lem. A.2

ad
m
is
si
bi
lit
y S-SE =⇒ Ctf-SE Lem. A.5

S-DE =⇒ unit-DE Lem. A.3

S-IE =⇒ unit-IE Lem. A.4

de
co
m
po

sa
bi
lit
y

NDE ∧ NIE =⇒ TE Lem. A.6

Ctf-DE ∧ Ctf-IE =⇒ ETT Lem. A.6

z-DE ∧ z-IE =⇒ z-TE Lem. A.6

v′-DE ∧ v′-IE =⇒ v′-TE Lem. A.6

unit-DE ∧ unit-IE =⇒ unit-TE Lem. A.6

TE ∧ Exp-SE =⇒ TV Lem. A.7

ETT ∧ Ctf-SE =⇒ TV Lem. A.7

Table A.1: List of implications in the Fairness Map in Fig. 4.5.

unit-DEx0,x1(y(u)) = 0 ∀u =⇒ v′-DEx0,x1(y | v′) = 0 ∀v′ (A.5)
=⇒ z-DEx0,x1(y | z) = 0 ∀z (A.6)
=⇒ Ctf-DEx0,x1(y | x) = 0 ∀x (A.7)
=⇒ NDEx0,x1(y) = 0, (A.8)

unit-IEx0,x1(y(u)) = 0 ∀u =⇒ v′-IEx0,x1(y | v′) = 0 ∀v′ (A.9)
=⇒ z-IEx0,x1(y | z) = 0 ∀z (A.10)
=⇒ Ctf-IEx0,x1(y | x) = 0 ∀x (A.11)
=⇒ NIEx0,x1(y) = 0. (A.12)

Proof. We prove the statement for total effects (direct and indirect cases are
analogous). We start by showing that ETT is more powerful than TE.

TEx0,x1(y) =P (yx1)− P (yx0)

=
∑
x

[
P (yx1 | x)− P (yx0 | x)

]
P (x)

=
∑
x

ETTx0,x1(y | x)P (x).
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Therefore, if ETTx0,x1(y | x) = 0 ∀x then TEx0,x1(y) = 0. Next, we can write

ETTx0,x1(y | x) = P (yx1 | x)− P (yx0 | x)

=
∑
z

[
P (yx1 | x, z)− P (yx0 | x, z)

]
P (z | x)

=
∑
z

[
P (yx1 | z)− P (yx0 | z)

]
P (z | x) Yx⊥⊥X | Z in SFM

=
∑
z

z-TEx0,x1(y | z)P (z | x).

Therefore, if z-TEx0,x1(y | z) = 0 ∀z then ETTx0,x1(y | x) = 0 ∀x. Next, for a
set V ′ ⊆ V such that Z ⊆ V ′, we can write

z-TEx0,x1(y) = P (yx1 | z)− P (yx0 | z)

=
∑
v′\z

[
P (yx1 | z, v′ \ z)− P (yx0 | z, v′ \ z)

]
P (v′ \ z | z)

=
∑
v′\z

v′-TEx0,x1(y | v′)P (v′ \ z | z).

Therefore, if v′-TEx0,x1(y | v′) = 0 ∀v′ then z-TEx0,x1(y | z) = 0 ∀z. Next,
notice that

v′-TEx0,x1(y) = P (yx1 | v′)− P (yx0 | v′)

=
∑
u

[
yx1(u)− yx0(u)

]
P (u | v′)

=
∑
u

unit-TEx0,x1(y(u))P (u | v′).

Therefore, if unit-TEx0,x1(y(u)) = 0 ∀u then v′-TEx0,x1(y | v′) = 0 ∀v′. �

Lemma A.2 (Power relations of spurious effects). The criteria based on Ctf-SE
and Exp-SE are equivalent in the case of binary X. Formally,

Exp-SEx(y) = 0 ∀x ⇐⇒ Ctf-SEx,x′(y) = 0 ∀x 6= x′. (A.13)

Proof.

Exp-SEx(y) = P (y | x)− P (yx)
= P (y | x)− P (yx | x)P (x)− P (yx | x′)P (x′)
= P (y | x)[1− P (x)]− P (yx | x′)P (x′)
= P (y | x)P (x′)− P (yx | x′)P (x′)
= −P (x′)Ctf-SEx′,x(y).

Assuming P (x′) > 0, the claim follows. �
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We remark that, in general (for multi-valued X), the criterion based on Ctf-SE
is stronger than that based on Exp-SE.

Lemma A.3 (Admissibility w.r.t. structural direct). The structural direct effect
criterion (X /∈ pa(Y )) implies the absence of unit-level direct effect. Formally:

S-DE =⇒ unit-DEx0,x1(y(u)) = 0 ∀u. (A.14)

Proof. Suppose that X /∈ pa(Y ). Note that:

unit-DEx0,x1(y(u)) = yx1,Wx0
(u)− yx0(u)

= fY (x1,Wx0(u), Z(u), uY )− fY (x0,Wx0(u), Z(u), uY )
= fY (Wx0(u), Z(u), uY )
− fY (Wx0(u), Z(u), uY ) X /∈ pa(Y )

= 0.

�

Lemma A.4 (Admissibility w.r.t. structural indirect). The structural indirect
effect criterion (de(X) ∩ pa(Y ) = ∅) implies the absence of unit-level indirect
effect. Formally:

S-IE =⇒ unit-IEx1,x0(y(u)) = 0 ∀u. (A.15)

Proof. Let Wde ⊆W be the subset of mediators W which are in de(X), and
let WC

de be its complement in W . Then, by assumption, Wde ∩ pa(Y ) = ∅. We
can write:

unit-IEx1,x0(y(u)) = yx1,Wx0
(u)− yx1(u)

= fY (x1, (WC
de)x0(u), Z(u), uY )

− fY (x1, (WC
de)x1(u), Z(u), uY )

= fY (x1,W
C
de(u), Z(u), uY )

− fY (x1,W
C
de(u), Z(u), uY ) WC

de /∈ de(X)
= 0.

�

Lemma A.5 (Admissibility w.r.t. structural spurious). The structural spurious
effect criterion (UX ∩ an(Y ) = ∅ and an(X) ∩ anGX

(Y ) = ∅) implies counter-
factual spurious effect is 0. Formally:

S-SE =⇒ Ctf-SEx0,x1(y) = 0 ∀u. (A.16)
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Proof. Note that S-SE implies there is no open backdoor path between X and
Y . As a consequence, we know that

Yx⊥⊥X.

Furthermore, the absence of backdoor paths also implies we can use the 2nd
rule of do-calculus (Action/Observation Exchange). Therefore, we can write:

Ctf-SEx0,x1(y) = P (yx0 | x1)− P (y | x0)
= P (yx0)− P (y | x0) since Yx⊥⊥X
= P (yx0)− P (yx0) Action/Observation Exchange
= 0.

�

Lemma A.6 (Extended Mediation Formula). The total effect can be decomposed
into its direct and indirect contributions on every level of the population axes
in the explainability plane. Formally, we write:

TEx0,x1(y) = NDEx0,x1(y)−NIEx1,x0(y) (A.17)
ETTx0,x1(y | x) = Ctf-DEx0,x1(y | x)− Ctf-IEx1,x0(y | x) (A.18)
z-TEx0,x1(y | z) = z-DEx0,x1(y | z)− z-IEx1,x0(y | z) (A.19)
v′-TEx0,x1(y | v′) = v′-DEx0,x1(y | v′)− v′-IEx1,x0(y | v′) (A.20)

unit-TEx0,x1(y(u)) = unit-DEx0,x1(y(u))− unit-IEx1,x0(y(u)). (A.21)

Proof. The proof follows from the structural basis expansion from Eq. 3.24.
In particular, note that

E-TEx1,x0(y | E) = P (yx1 | E)− P (yx0 | E) (A.22)
= P (yx1 | E)− P (yx1,Wx0

| E) (A.23)
+ P (yx1,Wx0

| E)− P (yx0 | E)
= −E-IEx1,x0(y | E) + E-DEx1,x0(y | E). (A.24)

By using different events E the claim follows. �

Lemma A.7 (TV Decompositions). The total variation (TV) measure admits
the following two decompositions

TVx0,x1(y) = Exp-SEx1(y) + TEx0,x1(y)− Exp-SEx0(y) (A.25)
= ETTx0,x1(y | x0)− Ctf-SEx1,x0 . (A.26)
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Proof. We write

TVx0,x1(y) = P (y | x1)− P (y | x0)
= P (y | x1)− P (yx1) + P (yx1)− P (yx0) + P (yx0)− P (y | x0)
= Exp-SEx1(y) + TEx0,x1(y)− Exp-SEx0(y).

Alternatively, we can write

TVx0,x1(y) = P (y | x1)− P (y | x0)
= P (y | x1)− P (yx1 | x0) + P (yx1 | x0)− P (y | x0)
= ETTx0,x1(y | x0)− Ctf-SEx1,x0(y),

which completes the proof. �

A.2 Soundness of the SFM: Proof of Thm. 4.10 and 4.11

Proof. The proof consists of two parts. In the first part, we show that the
quantities where the event E is either of ∅, {x}, {z} (corresponding to the
first three rows of the fairness map) are identifiable under the assumptions
of the Standard Fairness Model. We in particular show that TEx0,x1(y), Exp-
SEx(y), TEx0,x1(y | z), ETTx0,x1(y | x), and Ctf-DEx0,x1(y | x) are identifiable
(it follows from very similar arguments that all other quantities are also
identifiable). Additionally, we also show that (x,w)-DEx0,x1(y | x,w) and
(x, z, w)-DEx0,x1(y | x, z, w) are identifiable (being the only identifiable v′-
specific measures with W ⊆ V ′). From this, it follows that for any graph G
compatible with GSFM, the quantities of interest are (i) identifiable; (ii) their
identification expression is the same. This in turn shows that using GSFM
instead of the full G does not hurt identifiability of these quantities. In the
second part of the proof, we show that any contrast defined by an event E
which contains either W = w or Y = y (excluding (x,w)-DE and (x, z, w)-DE)
is not identifiable under some very mild conditions (namely the existence of a
path X →Wi1 → ...→Wik → Y ). This part of the proof, complementary to
the first part, shows that for contrasts with event E containing post-treatment
observations (i.e., descendants of the protected attribute which is manipulated),
even having the full graph G would not make the expression identifiable. All of
the proofs here need to be derived from first principles, since the graph GSFM
contains “groups” of variables Z and W , making the standard identification
machinery (Pearl, 2000) not directly applicable.
Part I: Note that for identifying TEx0,x1(y) we need to identify P (yx). We can
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write

P (yx) = P (y | do(x))

=
∑
z

P (y | do(x), z)P (z | do(x)) Law of Total Probability

=
∑
z

P (y | x, z)P (z) (Y⊥⊥X | Z)GX
, (X⊥⊥Z)G

X

from which it follows that TEx0,x1(y) =
∑
z[P (y | x1, z) − P (y | x0, z)]P (z).

Note that the identifiability of TEx0,x1(y | z) also follows from the above
derivation, namely TEx0,x1(y | z) =

∑
z[P (y | x1, z) − P (y | x0, z)], and so

does Exp-SEx(y) =
∑
z P (y | x, z)[P (z | x) − P (z)]. We are now left with

showing that ETTx0,x1(y | x) and Ctf-DEx0,x1(y | x) are also identifiable.
These are Layer 3, counterfactual quantities and therefore rules of do-calculus
will not suffice. To be able to use independence statements of counterfactual
variables, we will make use of the make-cg algorithm of Shpitser and Pearl,
2007 for construction of counterfactual graphs, which extends the twin-network
approach of Balke and Pearl, 1994. Therefore, when considering an expression
of the form Yx = y,X = x′, we obtain the following counterfactual graph

Z

X

Wx

Yx

from which we can see that Yx⊥⊥X | Z. Therefore,

ETTx0,x1(y) = P (yx1 | x)− P (yx0 | x)

=
∑
z

[P (yx1 | x, z)− P (yx0 | x, z)]P (z | x) Law of Tot. Prob.

=
∑
z

[P (y | x1, z)− P (y | x0, z)]P (z | x) Yx⊥⊥X | Z.

Finally, for identifying Ctf-DEx0,x1(y | x) we use make-cg applied to GSFM and
yx1,w, wx0 , x, z to obtain

Z

X

Wx0

Yx1,w
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from which we can say that Yx1,w⊥⊥(Wx0 , X) | Z. Therefore, we know that
Ctf-DEx0,x1(y | x) equals to

P (yx1,Wx0
| x)− P (yx0,Wx0

| x)

=
∑
z

[P (yx1,Wx0
| x, z)− P (yx0,Wx0

| x, z)]P (z | x) Law of Tot. Prob.

=
∑
z,w

[P (yx1,w, wx0 | x, z)− P (yx0,w, wx0 | x, z)]P (z | x) Ctf. unnesting

=
∑
z,w

[P (yx1,w | x, z)− P (yx0,w | x, z)]P (wx0 | z)P (z | x) Yx1,w⊥⊥Wx0 | Z

=
∑
z,w

[P (yx1,w | x, z)− P (yx0,w | x, z)]P (w | x0, z)P (z | x) Wx0⊥⊥X | Z

=
∑
z,w

[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z | x) Yx,w⊥⊥X | Z.

From the above, one can also show that

(x,w)-DEx0,x1(y | x,w) =
∑
z

[P (y | x1, z, w)− P (y | x0, z, w)]

· P (w | z, x)P (z | x),
(x, z, w)-DEx0,x1(y | x, z, w) = P (y | x1, z, w)− P (y | x0, z, w),

completing the first part of the proof.
Part II: We next need to show that any contrast with eitherW = w or Y = y in
the event E (excluding (x,w)-DE and (x, z, w)-DE) is not identifiable, even if
using the full graph G. We show this for the quantity P (yx1 | x0, w), since other
similar quantities work analogously. Assume for simplicity that (i) variable
Z = ∅; (ii) there are no bidirected edges between the W variables. The latter
assumption clearly makes the identifiability task easier, since adding bidirected
edges can never help identification of quantities. To avoid degenerate cases
(and trivial identifiability due to a lack of directed paths), assume that a path
X → Wi1 → ... → Wik → Y exists. Then, when applying make-cg to G and
yx1 , x0, w the resulting counterfactual graph will contain

X Wi1 Wi2
. . . Wik

Wi1x1
Wi2x1

. . . Wikx1 Yx1

as a subgraph and therefore when applying the ID∗ algorithm of Shpitser and
Pearl, 2007, we will encounter a C-component {Wi,Wix1} which will result



190 Proofs of Main Theorems & Derivations

in non-identifiability of the overall expression. Therefore, even having access
to the full G will not help us identify contrasts that include observations of
post-treatment variables, completing the proof. �

A.3 Proof of Theorem 5.1

Proof. Considering the following SFM

U Z

X

W

Y

for which we can write the linear structural causal model as follows:

U ← N(0, 1) (A.27)
X ← Bernoulli(expit(U)) (A.28)
Z ← aUZU + aZZZεZ (A.29)
W ← aXWX + aZWZ + aWWW + εW (A.30)
Y ← aXYX + aZY Z + aWYW + εY (A.31)

where matrices aZZ , aWW are upper diagonal, making the above SCM non-
recursive, in the sense that no variable is a functional argument of itself. For
simplicity, we assume εZ ∼ N(0, InZ

), εW ∼ N(0, InW
) and εY ∼ N(0, 1). The

coefficients a of the above model are assumed to be drawn uniformly from
[−1, 1]|E|, where |E| is the number of edges, with each edge corresponding to
a linear coefficient.

Based on the above SCM, the outcome Y can be written

Y =
∑

Vi∈X,Z,W
aViY Vi + εY ,

and the linear predictor of Y , labeled f can be written as

f(X,Z,W ) =
∑

Vi∈X,Z,W
ãViY Vi.
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The objective of the optimization (i.e., the MSE) can then be written as

E[Y − f(X,Z,W )]2 = E
[ ∑
Vi∈X,Z,W

(aViY − ãViY )Vi + εY
]2

= E[ε2Y ] +E
[ ∑
Vi,Vj∈X,Z,W

(aViY − ãViY )(aVjY − ãVjY )ViVj
]

= 1 + (aV Y − ãV Y )TE[V V T ](aV Y − ãV Y ),

when written as a quadratic form with the characteristic matrix E[V V T ]. Here,
(with slight abuse of notation) the set V includes X,Z,W , but not Y . Further,
the constraint TVx0,x1(f) = 0 is in fact a linear constraint on the coefficients
ãV Y , since we have that

TVx0,x1(f) = (E[V | x1]−E[V | x0])T ãV Y .

We write

c = E[V | x1]−E[V | x0], (A.32)
Σ = E[V V T ] (A.33)

and note that our optimization problem can be written as

arg min
ãV Y

(aV Y − ãV Y )TΣ(aV Y − ãV Y ) (A.34)

subject to cT ãV Y = 0. (A.35)

The objective is a quadratic form centered at aV Y . Geometrically, the solution
to the optimization problem is the meeting point of an ellipsoid centered at aV Y
with the characteristic matrix Σ and the hyperplane through the origin with
the normal vector c. After a change of basis (substituting t = Σ 1

2 (aV Y − ãV Y )),
the solution can be derived explicitly as

âV Y = aV Y −
cTaV Y Σ−1c

cTΣ−1c
.

We next analyze the constraints

Ctf-DEx0,x1(f̂fair | x0) = Ctf-IEx1,x0(f̂fair | x0) = Ctf-SEx1,x0(f̂fair) = 0.

The first constraint Ctf-DEx0,x1(f̂fair | x0) can be simply written as âXY (x1 −
x0) = 0, and since x1 − x0 = 1, the constraint can be written as cT1 âV Y = 0
where c1 = (1, 0, . . . , 0)T . Similarly, but more involved, the Ctf-IE constraint
can be written as cT2 âV Y = 0 where entries of c2 corresponding to Wi variables
are

E[(Wi)x0 | x0]−E[(Wi)x1 | x0],
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and 0 everywhere else. Finally, the Ctf-SE constraint can be written as cT3 âV Y =
0 where entries of c3 corresponding to Wi variables are

E[(Wi)x1 | x0]−E[(Wi)x1 | x1],

and the entries corresponding to Zi variables

E[Zi | x1]−E[Zi | x0].

Notice also that c1 − c2 − c3 = c (following from the decomposition result in
Eq. 4.48). We further note that by inverting Eq. A.29 and using linearity of
expectations

E[Z | x0]−E[Z | x1] = −(I − aZZ)−1aUZδ
01
u

where δ01
u = E[U | x1]−E[U | x0] is a constant. Similarly,

E[Wx1 | x0]−E[Wx1 | x1] = −(I − aWW )−1aZW (I − aZZ)−1aUZδ
01
u .

Furthermore, for the indirect effect, we have that

E[Wx0 | x0]−E[Wx1 | x0] = −(I − aWW )−1aXW .

Therefore, we can now see how the three constraints can be expressed in terms
of the structural coefficients a. What remains is understanding the entries of
the Σ matrix. Note that E[ViVj ] can be computed by considering all treks from
Vi to Vj . A trek is a path that first goes backwards from Vi until a certain
node, and then forwards to Vj . The slight complication comes from the treks
with the turning point at U that pass through X, as the SCM is not linear
along the bidirected U L9999K X edge. Nonetheless, in this case the contribution
to the covariance of Vi and Vj equals the product of the coefficients on the
trek multiplied by E[XU ]. Therefore, we note that

E[ViVj ] =
∑

treks Ts
from Vi to Vj

λ(Ts)
∏

edges Vk→Vl

∈Ts

aVkVl

where the weighing factor λ(Ts) is either 1 or E[XU ] depending on the trek Ts.
To conclude the argument, notice the following. The entries of the Σ matrix are
polynomial functions of the structural coefficients a. The same also therefore
holds for Σ−1. Furthermore, the coefficient c is also a polynomial function of
coefficients in a. Therefore, the condition cT1 âV Y = 0 can be written as

cT1 (aV Y −
cTaV Y Σ−1c

cTΣ−1c
) = 0, (A.36)

where the left hand side is a polynomial expression in the coefficients of a.
Therefore, the above expression defines an algebraic hypersurface. Any such
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hypersurface has measure 0 in the space [−1, 1]|E|, proving that the set of
0-TV-compliant SCMs is in fact of measure 0. Intuitively, the result is saying
that the meeting point of an ellipsoid centered at aV Y with the characteristic
matrix Σ and the hyperplane through the origin with the normal vector c with
measure 0 also lies on a random hyperplane defined by the normal vector c1
and passing through the origin.

To extend the result for an ε > 0, we proceed as follows. Let H(ε) be
the set of ε-TV-compliant SCMs. Let HDE(ε) be the set of SCMs for which
the direct effect is bounded by ε for the f̂fair. Let HIE(ε), HSE(ε) be defined
analogously for the indirect and spurious effects. We then analyze the degrees
of the terms appearing in Eq. A.36, which defines the hypersurface HDE(0).
In particular, notice that

deg(cT1 (aV Y −
cTaV Y Σ−1c

cTΣ−1c
)) ≤ deg(c1) + deg(aV Y ) + deg(c

TaV Y Σ−1c

cTΣ−1c
)

(A.37)

and also that

deg(c
TaV Y Σ−1c

cTΣ−1c
) ≤ deg(cTaV Y Σ−1c) + deg(cTΣ−1c) (A.38)

≤ 2deg(c) + deg(aV Y ) + deg(Σ−1) + 2deg(c) + deg(Σ−1).
(A.39)

Now, one can observe the following bounds, where p = |V |:

deg(c) ≤ p from Eq. A.32, (A.40)
deg(aV Y ) = 1 by definition, (A.41)
deg(Σ−1) ≤ p2 ·max

i,j
deg(Σij) = p4 from Eq. A.33. (A.42)

from which it follows that the degree of the hypersurface of 0-TV-compliant
SCMs, labeled H(0), is bounded by 2 + 4p + 2p2. Lojasiewicz’s inequality
(Ji et al., 1992, Thm. 1) states that if K is a compact set, f a real analytic
function on Rn, and Z = {x ∈ Rn : f(x) = 0} is the locus of f , then there
exist positive constants k1, k2 such that

inf
z∈Z
‖x− z‖2 ≤ k1|f(x)|k2 ∀x ∈ K. (A.43)

Therefore, there exist constants k1, k2 such that:

vol(HDE(ε)) = vol{a ∈ [−1, 1]|E| | |cT1 (aV Y −
cTaV Y Σ−1c

cTΣ−1c
)| ≤ ε} (A.44)

= vol{a ∈ [−1, 1]|E| | d(a,HDE(0)) ≤ k1ε
k2}, (A.45)
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where the second line follows from Lojasiewicz’s inequality with the choice
f = Ctf-DEx0,x1(f̂fair | x0), Z = HDE(0), and setting K = HDE(ε). By an
application of the Crofton’s formula (Guth, 2009, p. 1975), for a real algebraic
hypersurface H of a degree d, its volume in the unit n-ball can be bounded
above by

vol(H) ≤ C(n)d, (A.46)

where the constant C only depends on the dimension n. By a rescaling ar-
gument, the volume in the n-ball of radius R can be bounded by RnC(n)d.
Therefore, the volume in Eq. A.45 can be bounded above by

vol(HDE(ε)) ≤ k1ε
k2 |E||E|/2C(|E|)deg(HDE(0)), (A.47)

by using the inequality Eq. A.46 with the choice H = HDE(0), scaling factor
R =

√
|E| (which ensures that the hypercube [−1, 1]n is contained in the |E|-

ball of radius R), and noting that the maximal thickness of HDE(ε) compared
to HDE(0) is bounded above by k1ε

k2 (see Eq. A.45). Finally, we can write
that for a random M sampled from SlinearnZ ,nW

we have that

P(M ∈ HDE(ε)) = vol(HDE(ε))
2|E| . (A.48)

By noting that |E| = p(p+ 1) and setting

ε =
( 2p(p+1)

8k1C(|E|)(p+ 1)2(p(p+ 1))
p(p+1)

2

)1/k2
(A.49)

we obtain that P(M ∈ HDE(ε)) ≤ 1
4 . Since we know that

H(ε) = HDE(ε) ∩HIE(ε) ∩HSE(ε) (A.50)
=⇒ P(M ∈ H(ε)) ≤ P(M ∈ HDE(ε)) (A.51)

=⇒ P(M ∈ H(ε)) ≤ 1
4 , (A.52)

for such an ε. Intuitively, any SCM in H(ε) must also be in HDE(ε). Any
SCM in HDE(ε) must be close to HDE(0). The maximal deviation of an
SCM in HDE(ε) from HDE(0) can be bounded using Lojasiewicz’s inequality,
whereas the surface area of HDE(0) can be bounded above by an application
of Crofton’s formula. Putting together, we get a bound on the measure of
ε-TV-compliant SCMs. �

The behavior of the ε term given in Eq. A.49 cannot be theoretically
analyzed further, since the constants arising from the Lojasiewicz’s inequality
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Figure A.1: Estimating empirically the probability that a random SCM in Slinear
nZ ,nW

,
for nZ = nW = 5, has a direct effect smaller than ε after ensuring that TV equals 0.

are dimension dependent. To this end, for nZ = nW = 5 we empirically
estimate

P(M ∈ HDE(ε)) (A.53)

for a range of ε values, and obtain the plot in Fig. A.1.

A.4 Proof of Thm. 5.3

Proof. We prove the result for the case BN-set= ∅ (the other cases of BN-sets
follow analogously), in the population level case. Based on the standard fairness
model, we are starting with an SCMM given by:

X ← fX(ux, uz) (A.54)
Z ← fZ(ux, uz) (A.55)
W ← fW (X,Z, uw) (A.56)
Y ← fY (X,Z,W, uy). (A.57)

The noise variables ux, uz are not independent, but the variables uw, uy are
mutually independent, and also independent from ux, uz.

We now explain how the sequential optimal transport steps extend the
original SCMM (to which we do not have access). Firstly, the conditional
distribution Z | X = x1 is transported onto Z | X = x0. Write τZ for the
transport map. On the level of the SCM, this corresponds to extending the
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equations by an additional mechanism

Z̃ ←

{
fZ(ux, uz) if fX(ux, uz) = x0

fZ(πZ(ux, uz)) if fX(ux, uz) = x1
. (A.58)

Here, there is an implicit (possibly stochastic) mapping πZ that we cannot
observe. For simplicity, we assume that the variable Z is continuous and that
πZ is deterministic. We can give an optimization problem to which πZ is the
solution, namely:

πZ := arg min
π

∫
UX×UZ

‖fZ(π(uz, ux))− fZ(uz, ux)‖2duX=x1
xz

s.t. fZ(π(uz, ux))
ux,uz∼UX ,UZ |X=x1

d= fZ(uz, ux)
ux,uz∼UX ,UZ |X=x0

.
(A.59)

The measure duX=x1
xz in the objective is the probability measure associated

with the distribution P (ux, uz | X = x1). The constraint ensures that after
the transport, Z̃ | X = x1 is equal in distribution to Z̃ | X = x0. In the second
step of the procedure, we are transporting the distribution of W . This results
in adding the mechanism:

W̃ ←

{
fW (x0, Z̃, uw) if X = x0

fW (x0, Z̃, π
W (uw)) if X = x1

. (A.60)

Similarly as for πZ , πW is a mapping that solves following optimization
problem:

πW := arg min
π

∫
UW

‖fW (x0, z̃, π(uw))− fW (x1, z̃, uw)‖2duw

s.t. fW (x0, z̃, π(uw)) d= fW (x0, z̃, uw).
(A.61)

The above optimization problem is thought of being solved separately for each
value of Z̃ = z̃. Finally, in the last step, we are constructing the additional
mechanism:

Ỹ ←

{
fY (x0, Z̃, W̃ , uy) if X = x0

fY (x0, Z̃, W̃ , πY (uy)) if X = x1
(A.62)

Again, the implicit mapping πY is constructed so that it is the solution to

πY := arg min
π

∫
UY

‖fY (x0, z̃, w̃, π(uy))− fY (x1, z̃, w̃, uy)‖2duy

s.t. fY (x0, z̃, w̃, π(uy)) d= fY (x0, z̃, w̃, uy).
(A.63)
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where the problem is solved separately for each fixed choice of parents Z̃ = z̃,
W̃ = w̃.

After constructing the additional mechanisms Z̃, W̃ , and Ỹ , we draw the
explicit causal diagram corresponding to the new variables, which includes the
unobservables UX , UZ , UW , and UY (marked in red), given as follows:

X

Z̃

W̃

Ỹ

UX

UZ

UW

UY

.

Note that by marginalizing out the unobserved variables UX , UZ , UW , UY , we
obtain the new causal diagram, which is given by the standard fairness model
over the variables X, Z̃, W̃ , Ỹ . Therefore, it follows that the identification
expressions for the spurious, indirect, and direct effects are known, and given
by:

x-DEx0,x1(ỹ | x0) =
∑
z̃,w̃

[P (ỹ | x1, z̃, w̃)− P (ỹ | x0, z̃, w̃)]P (w̃ | x0, z̃)P (z̃ | x)

(A.64)

x-IEx0,x1(ỹ | x0) =
∑
z̃,w̃

P (ỹ | x0, z̃, w̃)[P (w̃ | x1, z̃)− P (w̃ | x0, z̃)]P (z̃ | x)

(A.65)

x-SEx1,x0(ỹ) =
∑
z̃

P (ỹ | x1, z̃)[P (z̃ | x0)− P (z̃ | x1)]. (A.66)

To finish the proof, notice that by construction (the matching of distributions
via optimal transport), we have that

P (ỹ | x1, z̃, w̃) = P (ỹ | x0, z̃, w̃) (A.67)
P (w̃ | x1, z̃) = P (w̃ | x0, z̃) (A.68)
P (z̃ | x0) = P (z̃ | x1), (A.69)

implying that all three effects in Eq. A.64-A.66 are equal to 0 (the argument
for showing that x-DEx1,x0(ỹ | x0) and x-DEx1,x0(ỹ | x0) are also equal to 0 is
the same). �
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A.5 Proof of Prop. 5.2

Proof. Suppose that the contrast (C0, C1, E0, E1) is a counterfactual one,
meaning that C1 6= C0, E1 = E0 (the proof for factual contrasts with C1 =
C0, E1 6= E0 is the same). Using the structural basis expansion from Thm. 3.1,
the fairness condition µ(ŷ) = 0 implies that∑

u

[ŷC1(u)− ŷC0(u)]P (u | E) = 0. (A.70)

For part (a), assume that the policy D is a linear function of Ŷ , i.e., fD(ŷ) =
aŷ + b. Then we simply have that:

µ(d) =
∑
u

[dC1(u)− dC0(u)]P (u | E) (A.71)

= a ·
∑
u

[ŷC1(u)− ŷC0(u)]P (u | E) (A.72)

= aµ(ŷ) = 0. (A.73)

For part (b), assume that the measure µ is a unit-level measure (the event
E = {U = u}). Then, the fairness condition implies that ŷC1(u) = ŷC0(u) ∀u,
from which it follows that

dC1(u) = fD(ŷC1(u)) = fD(ŷC0(u)) = dC0(u) ∀u. (A.74)

�

A.6 Ex. 5.11 Computation

Here we provided the expanded computation from Ex. 5.11, showing why
Eq. 5.143 hold. Notice that for x ∈ {x0, x1} we can compute the probability
of the joint distribution of the potential responses as follows:

P (yd0 = 0, yd1 = 1 | w, x) = P (UY −
w

5 < 0.5, UY + w

3 −
w

5 > 0.5) (A.75)

= P (UY < 0.5 + w

5 , UY > 0.5 + w

5 −
w

3 ) (A.76)

= P (0.5 + w

5 −
w

3 < UY < 0.5 + w

5 ) (A.77)

= w

3 (using UY ∼ Unif[0, 1]), (A.78)

from which Eq. 5.143 follows.
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A.7 Proof of Thm. 4.13 and Cor. 4.14

Proof. For the theorem proof, consider that:

E(y | x1, ŷ)−E(y | x0, ŷ) = E(yx1 | x1, ŷx1)−E(yx0 | x0, ŷx0) (A.79)
= E(yx1 | x1, ŷx1)−E(yx0 | x1, ŷx1)︸ ︷︷ ︸

Term (I)

(A.80)

+E(yx0 | x1, ŷx1)−E(yx0 | x1, ŷx0)︸ ︷︷ ︸
Term (II)

(A.81)

+E(yx0 | x1, ŷx0)−E(yx0 | x0, ŷx0)︸ ︷︷ ︸
Term (III)

. (A.82)

Since by assumption no backdoor paths between X and Y, Ŷ exist, Term (III)
vanishes. By noting that E(yx | x1, ŷx1) = E(yx | x1, ŷ) ∀x by consistency
(and applying it to Term (I)), and also that Yx⊥⊥X (and applying it to Term
(II)) gives us the required result.

For Cor. 4.14, we further assume that the SCM is linear, and that the
predictor Ŷ is efficient, i.e., Ŷ (x,w) = E[Y | x,w]. In the linear case, the
efficiency simply translates to the fact that

α
WŶ

= αWY , (A.83)
α
XŶ

= αXY . (A.84)

Due to linearity, for every unit u, we have that

yx1(u)− yx0(u) = αXWαWY + αXY , (A.85)

and since Term (I) can be written as
∑
u[yx1(u)−yx0(u)]P (u | x1, ŷ), Eq. 4.222

follows. We next look at Term (II), which can be expanded as∑
u

ŷx0(u)[P (u | ŷx1)− P (u | ŷx0)]. (A.86)

We now look at units u which are compatible with Ŷx1(u) = ŷ and Ŷx0(u) = ŷ.
We can expand Ŷx1(u) as

Ŷx1(u) = α
XŶ

+ αXWαWŶ
+ α

WŶ
uW . (A.87)

Thus, we have that

Ŷx1(u) = ŷ =⇒ α
WŶ

uW = ŷ − α
XŶ

+ αXWαWŶ
. (A.88)

Similarly, we also obtain that

Ŷx0(u) = ŷ =⇒ α
WŶ

uW = ŷ. (A.89)
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Due to the efficiency of learning which implies that α
WŶ

= αWY and α
XŶ

=
αXY , Eq. A.88 and A.89 imply

yx0(u) = ŷ − (αXY + αXWαWY ) ∀u s.t. Ŷx1(u) = ŷ, (A.90)
yx0(u) = ŷ ∀u s.t. Ŷx0(u) = ŷ, (A.91)

which in turn shows that

E(yx0 | ŷx1)−E(yx0 | ŷx0) = −αXY − αXWαWY . (A.92)

�

A.8 Proof of Thm. 5.6

Proof. The first part of the theorem states the optimality of the DCF policy
in the counterfactual world. Given that the policy uses the true benefit values
from the counterfactual world, we apply the argument of Prop. 5.7 to prove
its optimality.

We next prove the optimality of the DUT policy from Alg. 5.5. In Step 2
we check whether all individuals with a positive benefit can be treated. If yes,
then the policy DUT is the overall optimal policy. If not, in Step 6 we check
whether the overall optimal policy has a disparity bounded by M . If this is
the case, DUT is the overall optimal policy for a budget ≤ b, and cannot be
strictly improved. For the remainder of the proof, we may suppose that DUT

uses the entire budget b (since we are operating under scarcity), and that DUT

has introduces a disparity ≥M . We also assume that the benefit ∆ admits a
density, and that probability P (∆ ∈ [a, b] | x) > 0 for any [a, b] ⊂ [0, 1] and x.

Let δ(x0), δ(x1) be the two thresholds used by the DUT policy. Suppose that
D̃UT is a policy that has a higher expected utility and introduces a disparity
bounded by M , or treats everyone in the disadvantaged group. Then there
exists an alternative policy DUT with a higher or equal utility that takes the
form

D
UT =


1 if ∆(x1, z, w) > δ(x1)′ ,

1 if ∆(x0, z, w) > δ(x0)′ ,

0 otherwise.
(A.93)

with δ(x0)′ , δ(x1)′ non-negative (otherwise, the policy can be trivially improved).
In words, for any policy DUT there is a threshold based policy that is no worse.
The policy DUT is also a threshold based policy. Now, if we had

δ(x1)′ < δ(x1) (A.94)
δ(x0)′ < δ(x0) (A.95)
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it would mean policy DUT is using a larger budget than DUT . However, DUT

uses a budget of b, making DUT infeasible. Therefore, we must have that

δ(x1)′ < δ(x1), δ(x0)′ > δ(x0) or (A.96)
δ(x1)′ > δ(x1), δ(x0)′ < δ(x0). (A.97)

We first handle the case in Eq. A.96. In this case, the policyDUT introduces
a larger disparity than DUT . Since the disparity of DUT is at least M , the
disparity of DUT is strictly greater thanM . Further, note that δ(x0)′ > δ(x0) ≥
0, showing that DUT does not treat all individuals with a positive benefit in
the disadvantaged group. Combined with a disparity of > M , this makes the
policy DUT infeasible.

For the second case in Eq. A.97, let U(δ0, δ1) denote the utility of a
threshold based policy:

U(δ0, δ1) = E[∆1(∆ > δ0)1(X = x0)] +E[∆1(∆ > δ1)1(X = x1)]. (A.98)

Thus, we have that U(δ(x0), δ(x1))− U(δ(x0)′ , δ(x1)′) equals

E[∆1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.99)
−E[∆1(∆ ∈ [δ(x0)′ , δ(x0)])1(X = x0)] (A.100)

≥δ(x1)
E[1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.101)

− δ(x0)
E[1(∆ ∈ [δ(x0)′ , δ(x0)])1(X = x0)] (A.102)

≥δ(x0)(
E[1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.103)
−E[1(∆ ∈ [δ(x0)′ , δ(x0)])1(X = x0)]

)
(A.104)

=δ(x0)(P (∆ ∈ [δ(x1), δ(x1)′ ], x1) (A.105)
− P (∆ ∈ [δ(x0)′ , δ(x0)], x0)

)
(A.106)

≥0, (A.107)

where the last line follows from the fact that DUT has a budget no higher
than DUT . Thus, this case also gives a contradiction.

Therefore, we conclude that policy DUT is optimal among all policies with
a budget ≤ b that either introduce a bounded disparity in resource allocation
|P (d | x1)− P (d | x0)| ≤ M or treat everyone with a positive benefit in the
disadvantaged group. �
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A.9 Proof of Thm. 6.4

Proof. Suppose that Us ⊆ UsToT , and suppose that (i) Y /∈ AS(Us); (ii)
Us = anexsToT (AS(Us)). Let Zs be the anchor set of Us, with Y excluded. Note
that we have by definition that

P (y | xUs) =
∑
us

P (us)P (y | x, us). (A.108)

Denote all the exogenous ancestors of the set Zs by anex(Zs). The set anex(Zs)
can be partitioned into three subsets:

Uxs , latents with a causal path to X, but which are not in UsToT , (A.109)
Uys , latents with a causal path to Y , but which are not in UsToT , (A.110)
Us, latents in UsToT . (A.111)

Note that anex(Zs) could, in general, contain variables in UsToT which are not
in Us. However, this case is precluded by the condition (ii) above. Then, note
that we have

Y⊥⊥Uxs | X,Us, (A.112)

since any path from Uxs to Y must be intercepted by X. Hence, we can write

P (y | xUs) =
∑
us,ux

s

P (us, uxs )P (y | x, us, uxs ) using Eq.A.112 (A.113)

=
∑

us,ux
s ,u

y
s

P (us, uxs )P (y | x, us, uxs , uys)P (uys | x, us, uxs ) (A.114)

Now, note that we have

Uys⊥⊥X,Us, Uxs , (A.115)

since Uys has no path to X,Us, Uxs . Denote by us the values us, uxs , uys . Thus,
we can re-write Eq. A.114 as

P (y | xUs) =
∑
us

P (us)P (y | x, us) (A.116)

=
∑
us

P (us)P (y | x, us, zs(us)) (A.117)

=
∑
zs

∑
us

1(Zs(us) = zs)P (us)P (y | x, us, zs(us)). (A.118)

Now, note that

Y⊥⊥Us | X,Zs, (A.119)
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since X,Zs close all paths from Us to Y , which is also due to the fact that
Y /∈ AS(Us). Without the latter condition, there could be an element in Uys
which points directly to Y , and cannot be separated from Y . Therefore, using
Eq. A.119, we finally have that

P (y | xUs) =
∑
zs

∑
us

1(Zs(us) = zs)P (us)P (y | x, zs) (A.120)

=
∑
zs

P (y | x, zs)
∑
us

1(Zs(us) = zs)P (us) (A.121)

=
∑
zs

P (y | x, zs)P (zs), (A.122)

which completes the proof by giving an expression for P (y | xUs) based on the
observational distribution P (v). �



B
Practical aspects of fairness measures

B.1 Identification of measures

The structure of the measures used in Causal Fairness Analysis was given
by the Fairness Map in Thm. 4.8 (see also Fig. 4.5). Moreover, in Thm. 4.11
in Appendix A.2 we have shown that many of the measures in the map are
identifiable from observational data in the standard fairness model (SFM) and
we provided explicit expressions for their identification.

The natural question is whether these measures remain identifiable when
some assumptions of the SFM are relaxed. To answer this question, we consider
what happens to identifiability of different measures when we add bidirected
edges to the GSFM.

B.1.1 Identification under Extended Fairness Model

There are five possible bidirected edges that could be added to the GSFM
(since the bidirected edge X L9999K Z is assumed to be present already). The
other five possibilities include the Z L9999K Y (confounder-outcome), W L9999K Y
(mediator-outcome), X L9999KW (attribute-mediator), Z L9999KW (confounder-
mediator) and X L9999K Y (attribute-outcome). We analyze these cases in the
respective order.

Bidirected edge Z L9999K Y . Consider the case of confounder-outcome con-
founding, represented by the Z L9999K Y edge. An example of such a model is

204
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Measure ID expression

ge
ne

ra
l

TEx0,x1(y)
∑
z[P (y | x1, z)− P (y | x0, z)]P (z)

Exp-SEx(y)
∑
z P (y | x, z)[P (z)− P (z | x)]

NDEx0,x1(y)
∑
z,w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z)

NIEx0,x1(y)
∑
z,w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]P (z)

x
-s
pe

ci
fic

ETTx0,x1(y | x)
∑
z[P (y | x1, z)− P (y | x0, z)]P (z | x)

Ctf-SEx0,x1(y)
∑
z P (y | x0, z)[P (z | x0)− P (z | x1)]

Ctf-DEx0,x1(y | x)
∑
z,w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z | x)

Ctf-IEx0,x1(y | x)
∑
z,w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]P (z | x)

z
-s
pe

ci
fic z-TEx0,x1(y | x) P (y | x1, z)− P (y | x0, z)

z-DEx0,x1(y | x)
∑
w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)

z-IEx0,x1(y | x)
∑
w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]

Table B.1: Population level and x-specific causal measures of fairness in the TV-
family, and their identification expressions under the standard fairness model GSF M .

given on the r.h.s. of Table B.2. In this case, without expanding the Z set, none
of the fairness measures are identifiable (due to the set Z not satisfying the
back-door criterion with respect to variables X and Y ). However, this does not
necessarily mean there is no hope for identifying our fairness measures. What
we do next is refine the Z set, in the hope that the additional assumptions
obtained in this process will help us identify our quantities of interest. In some
sense, the assumptions encoded in the clustered diagram are not sufficient
for identification. However, spelling out the variable relations within a cluster
may help with identification. Consider the example on the r.h.s. of Table B.2,
where the full causal graph is given, after refining the previously clustered
Z set. Interestingly, in this case the set {Z1, Z2} can be shown as back-door
admissible for the effect of X on Y . Furthermore, the identification expression
for all the quantities remains the same as in the standard fairness model, given
by the expressions in Table B.1.

Bidirected edge W L9999K Y . Next consider the case where there is a bidi-
rected edge between the group of variables W and the outcome Y . Firstly,
we note that the identification of causal (TE/ETT) and spurious measures
(Exp-SE/Ctf-SE) is unaffected by the W L9999K Y edge, and that these quan-
tities are identified by the same expressions as in Table B.1. The quantities
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cluster model refined model

Z

X Y

Z1 Z2

X Y

Table B.2: An example of the extended fairness model with a bidirected Z L9999K Y
edge (left side), in which refining the set of variables Z yields a graph (right side) in
which all fairness measures are identifiable.

cluster model refined model

W

X Y X Y

W1 W2

Table B.3: An example of the extended fairness model with a bidirected W L9999K Y
edge (left side), in which refining the set of variables W yields a graph (right side)
in which all fairness measures are identifiable.

measuring direct and indirect effects are not identifiable, at least not without
further refining the W set. Consider the example given in Table B.3. In the
l.h.s. of the table we have a model in which W is clustered and NDE or NIE
quantities are not identifiable. On the r.h.s., after expanding the previously
clustered W set, the natural direct (and indirect) effects can be identified, by
the virtue of the front-door criterion (Pearl, 2000). However, note that in this
case, the identification expression for the natural direct effect is different from
the identification expression for the natural direct effect in the standard fairness
model. Whenever front-door identification is used, we expect the expression to
change, compared to the baseline SFM case.

Bidirected edge X L9999K W . The case of the X L9999K W edge is similar to
that of W L9999K Y , yet slightly different. None of the measures discussed are
identifiable in this case, before refining the W set. However, similarly as in
the W L9999K Y example in Table B.3, when refining the W set, we might find
that in fact the effect of X on Y is identifiable via the front-door. Again, the
identification expression in this case will change. For the sake of brevity we
skip an explicit example.
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YW 4 4 Refine W Refine W

YZ Refine Z Refine Z Refine Z Refine Z

WX Refine W Refine W Refine W Refine W

WZ Refine Z,W Refine Z,W Refine Z,W Refine Z,W

YX 8 8 8 8

Table B.4: Identification of causal fairness measures under latent confounding.

Bidirected edge Z L9999KW . In the case of the Z L9999KW edge, none of the
measures are identifiable. However, refining the Z and W sets may help. To
see an example, consider the following graph

Z1

W1 W2

X Y

.

In this case, all of the measures of fairness in Table B.1 are identifiable, but
again with different expressions than those presented in the table.

Bidirected edgeX L9999K Y . The attribute-outcome confounding represented
by the X L9999K Y edge is the most difficult case. When this edge is present,
none of the fairness quantities can be identified. The reason why this case is
hard is that the X L9999K Y introduces a bidirected edge between X and its
child Y . This causes the effect of X on Y to be non-identifiable (Tian and
Pearl, 2002). For more general identification strategies for when a combination
of observational and experimental data is available, we refer the reader to (Lee
et al., 2019) and (Correa et al., 2021a), and for partial identification ones, see
(Zhang et al., 2022).

The summary of the discussion of the five cases of bidirected edges in the
extended fairness model, and what can be done under their presence, is given
in Table B.4. We end with an example (see Fig. B.1) that fits the extended
fairness model with all bidirected edges apart from the X L9999K Y , but in
which case all the fairness measures in Table B.1 are identifiable (albeit not
with the same expression as in the table), showing that refining Z and W sets
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Z1 Z2

X Y

W1 W2

Figure B.1: Causal diagram compatible with the SFM with all bidirected arrows
apart from X L9999K Y , in which all effects are identifiable.

sometimes may help. We leave the derivation of the identification expressions
in this instance as an exercise for the curious reader.

B.2 Estimation of measures

Suppose we found that a target causal measure of fairness is identifiable
from observational data (after possibly refining the SFM). The next question
is then how to estimate the causal measure in practice. There is a large
body of literature on the estimation of causal quantities, based on which our
own implementation is built. We focus on describing how to estimate E(yx)
and E(yx1,Wx0

). Most fairness measures can then be derived from taking
(conditional) differences of these two estimands.

Doubly Robust Estimation

In the SFM, a standard way of computing the quantity E(yx) would be using
inverse propensity weighting. The mediator W can be marginalized out and
the estimator

1
n

n∑
i=1

1(Xi = x)Yi
p̂(Xi | Zi)

, (B.1)

where p̂(Xi | Zi) is the estimate of the conditional probability P(Xi = x | Zi),
can be used. There is an additional assumption necessary for such an approach:

Definition B.1 (Positivity assumption). The positivity assumption holds if
∀ x, z, P(X = x | Z = z) is bounded away from 0, that is

δ < P(X = x | Z = z) < 1− δ,

for some δ > 0.



B.2. Estimation of measures 209

Such an assumption is needed for the estimation of causal quantities we
discuss (together with the assumptions encoded in the SFM that are used for
identification).

However, more powerful estimation techniques have been developed and
applied very broadly. In particular, doubly robust estimators have been pro-
posed for the estimation of causal quantities (Robins et al., 1994; Robins
and Rotnitzky, 1995; Bang and Robins, 2005). In context of the estimator in
Eq. B.1, a doubly robust estimator would be

1
n

n∑
i=1

1(Xi = x)(Yi − µ̂(Yi | Zi, Xi))
p̂(Xi | Zi)

+ µ̂(Yi | Zi, Xi), (B.2)

where µ̂ denotes the estimator of the conditional mean E[Y | Z = z,X = x].
In fact, only one of the two estimators µ̂(Yi | Zi, Xi) and p̂(Xi | Zi) needs
to be consistent, for the entire estimator in Eq.B.2 to be consistent. Such
robustness to model misspecification is a rather desirable property.

Estimating E(yx1,Wx0
) in a robust fashion is somewhat more involved. This

problem has been studied under the rubric of causal mediation analysis (Robins
and Greenland, 1992; Pearl, 2001; Robins, 2003). Tchetgen and Shpitser, 2012
proposed a multiply robust estimator of the expected potential outcome
E[Yx1,Wx0

] defined via:

φx0,x1(X,W,Z) =1(X = x1)f(W | x0, Z)
px1(Z)f(W | x1, Z) [Y − µ(x1,W,Z)]

+ 1(X = x0)
px0(Z)

[
µ(x1,W,Z)−

∫
W
µ(x1, w, Z)f(w | x0, Z) dw

]
(B.3)

+
∫
W
µ(x1, w, Z)f(w | x0, Z) dw.

The estimator is given by 1
n

∑n
i=1 φ̂x0,x1(Xi,Wi, Zi), where in φ̂ the quantities

px(Z), µ(X,W,Z) and f(W | X,Z) are replaced by respective estimates. Such
an estimator is multiply robust (one of the three models can be misspecified).
However, the estimator also requires the estimation of the conditional density
f(W | X,Z). In case of continuous or high-dimensional W , estimating the
conditional density could be very hard and the estimator could therefore suffer
in performance. We revisit the estimation of E[yx1,Wx0

] shortly.

Double Machine Learning

Doubly (and multiply) robust estimation allows for model misspecification
of one of the models, while retaining consistency of the estimator. However,
we have not discussed the convergence rates of these estimators yet. In some
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cases fast, O(n− 1
2 ) rates are attainable for doubly robust estimators, under

certain conditions. For example, one such condition is that px(Z), µ(X,W,Z)
and their estimates belong to the Donsker class of functions (Benkeser et al.,
2017). For a review, refer to (Kennedy, 2016). However, modern ML methods
do not belong to the Donsker class.

In a recent advance, Chernozhukov et al., 2018 showed that the Donsker
class condition can, in many cases (including modern ML methods), be relaxed
by using a cross-fitting approach. This method was named double machine
learning (DML). For estimating E[Yx] we make use of the estimator in Eq. B.2
and proceed as follows:

1. Split the data D into K disjoint folds D1, D2, ..., DK ,

2. Using the complement of fold Dk (labeled DCk ) compute the estimates
p̂
−(k)
x (Z), µ̂−(k)(X,Z) of P (X = x | Z = z) and E[Y | Z = z],

3. Compute

1(Xi = x)(Yi − µ̂(Yi | Zi, Xi))
p̂(Xi | Zi)

+ µ̂(Yi | Zi, Xi), (B.4)

for each observation (Xi, Zi, Yi) inDk by plugging in estimators p̂−(k)
x (Z),

µ̂−(k)(X,Z) obtained on the complement DCk ,

4. Taking the mean of the terms in Eq. B.4 across all observations.

For estimating E[yx1,Wx0
] we follow the approach of Farbmacher et al., 2020.

The authors propose a slightly different estimator than that based on Eq. B.3,
where they replace φx0,x1(X,W,Z) by

ψx0,x1(X,W,Z) =1(X = x1)px0(Z,W )
px1(Z,W )px0(Z) [Y − µ(x1,W,Z)]

+ 1(X = x0)
px0(Z)

[
µ(x1,W,Z)−E[µ(x1,W,Z) | X = x0, Z]

]
(B.5)

+E[µ(x1,W,Z) | X = x0, Z],

which avoids the computation of densities in a possibly high-dimensional
case. The terms ψx0,x1(X,W,Z) are estimated in a cross-fitting procedure as
described above, with the slight extension in Step 2, where we further split the
complement DCk into two parts, to estimate the conditional mean µ(X,W,Z)
and the nested conditional mean E[µ(x1,W,Z) | X = x0, Z] on disjoint subsets
of the data. This approach is used in the faircause R-package.



C
Selection Bias Interpretation

The majority of the manuscript was concerned with the standard fairness
model (SFM) from Def. 2.7. In the SFM, there is a bidirected edge X L9999K Z,
which represents some latent (possibly historical) context which is a source
of common variation between the protected attribute X and confounders
Z. In particular, we now discuss the version of the SFM which considers
a selection bias process based on X,Z, instead of latent confounding. In
particular, consider the following definition:

Definition C.1 (SFM with Selection Bias). The standard fairness model with
selection bias (SFM-SB) is the causal diagram GSFM-SB over endogenous
variables {X,Z,W, Y } and given by

Z

X

W

Y

S
.

In the above causal model, we are considering a selection process S(x, z) based
on which individuals are included in the dataset. If S(x, z) = 1, the individual
is included in our dataset, and S(x, z) = 0 otherwise. As there are no open
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Z

x1

x0

W

Y

S

P (yx0 | S(x1, Z) = 1)

−

Z

x0

W

Y

S

P (yx0 | S(x0, Z) = 1)

Figure C.1: Quantity Ctf-SBEx0,x1 (y) represented graphically as a contrast.

back-door paths between X and Y , we know that the spurious effect between X
and Y is 0, so we can ignore it. However, the TV measure P (y | x1)−P (y | x0)
does include variations originating from the selection process at node S. In
particular, we can define an effect associated with the selection process at S:

Definition C.2 (Counterfactual Selection Bias Effect). The counterfactual se-
lection bias effect (Ctf-SBE) is defined as:

Ctf-SBEx0,x1(y) = P (yx0 | S(x1, Z) = 1)− P (yx0 | S(x0, Z) = 1). (C.1)

We also write Sx as an abbreviation for S(x, Z) = 1.

The definition is shown graphically in Fig. C.1. On the r.h.s. we have the
baseline in which the variables W,Y respond to the value X = x0, and the
selection process on individuals at S also takes the value X = x0. This setting
is compared to the setting on the l.h.s., in which W,Y still respond to the
value of the X = x0, but the individuals are subject to the selection process of
X = x1. Intuitively, due to a different selection process for value x0, x1, the
observed conditional distributions

Z | X = x0 and Z | X = x1

are different, even though there are no common causes ofX and Z. The contrast
in Eq. C.1 and its graphical representation in Fig. C.1 capture precisely the
difference in outcome Y arising from this difference in the selection processes
S(x0, ·) and S(x1, ·). Importantly, the model SFM-SB allows us to decompose
the total variation measure. For doing so, we need the notions of direct and
indirect effects, which are defined as follows:

Ctf-DEx0,x1(y | Sx0) = P (yx1,Wx0
| Sx0)− P (yx0 | Sx0) (C.2)

Ctf-IEx0,x1(y | Sx0) = P (yx0,Wx1
| Sx0)− P (yx0 | Sx0). (C.3)
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The notions are entirely analogous to the notions of direct and indirect effects
from Def. 4.5, apart from the fact that the conditioning on X = x is replaced
by conditioning on the selection process Sx. Armed with such analogues of
the direct and indirect effects for the SFM-SB model, we decompose the TV
as follows:

Proposition C.1 (Decomposition of TV for SFM-SB). The total variation mea-
sure can be decomposed into the selection bias effect, indirect effect, and direct
effect as follows:

TVx0,x1(y) = Ctf-DEx0,x1(y | Sx0)− Ctf-IEx1,x0(y | Sx0)− Ctf-SBEx1,x0(y)
(C.4)

= Ctf-SBEx0,x1(y)− Ctf-DEx1,x0(y | Sx1) + Ctf-IEx0,x1(y | Sx1)
(C.5)

Importantly, the decomposition in Prop. C.1 can be identified from observa-
tional data in the following way:

Proposition C.2. The quantities appearing in the TV decomposition in Eq. C.4
are identifiable from observational data under selection bias, and have the
following identification expressions:

Ctf-DEx0,x1(y | Sx0) =
∑
z,w

[P ∗(y | x1, z, w)− P ∗(y | x0, z, w)] (C.6)

· P ∗(w | x0, z)P ∗(z | x0)

Ctf-IEx1,x0(y | Sx0) =
∑
z,w

P ∗(y | x1, z, w) (C.7)

· [P ∗(w | x0, z)− P ∗(w | x1, z)]P ∗(z | x0)

Ctf-SBEx1,x0(y) =
∑
z

P ∗(y | x1, z)[P ∗(z | x0)− P ∗(z | x1)], (C.8)

where P ∗ is the observational distribution under selection bias, defined by

P ∗(v) = P (v | S = 1). (C.9)

Proof. We prove the identification expression for the Ctf-SBE term, and the
other two expressions follow from a similar argument. Note that:

P (yx1 | Sx = 1) =
∑
z

P (yx1 | z, Sx = 1)P (z | Sx = 1). (C.10)
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The first term within the sum can be expanded as:

P (yx1 | z, Sx = 1) = P (yx1 | z, x, Sx = 1) Yx1⊥⊥X | Z, Sx (C.11)
= P (yx1 | z, x, S = 1) Consistency Axiom (C.12)
= P (yx1 | z, x1, S = 1) Yx1⊥⊥X | Z, S (C.13)
= P (y | z, x1, S = 1) Consistency Axiom (C.14)
= P ∗(y | z, x1) by definition. (C.15)

For the second term within the sum, we have that

P (z | Sx = 1) = P (z | Sx = 1, x) Z⊥⊥X | Sx (C.16)
= P (z | S = 1, x) Consistency Axiom (C.17)
= P ∗(z | x) by definition. (C.18)

Putting together with the first term, the derivation yields the identification
expression in Eq. C.8. �

The crucial takeaway from the above proposition is that the identification
expressions we obtain are identical to those obtained when decomposing the
TV based on the SFM. In particular, this implies that even if we work with the
SFM, but SFM-SB is the true underlying model, the decomposition we obtain
is valid, but has a slightly different interpretation. This result can be seen
formally in the following corollary:

Corollary C.1 (SFM and SFM-SB decomposition ID equivalence). LetM1 be
an SCM compatible with the SFM, and let P1(V ) denote its observational
distribution. LetM2 be an SCM compatible with the SFM-SB, and let P2(V )
denote its observational distribution. Suppose moreover that

P1(V ) = P2(V ) = P (V ), (C.19)

that is, the observational distributions ofM1 andM2 are the same. Then it
follows that

Ctf-DEM1
x0,x1

(y | x0) = Ctf-DEM2
x0,x1

(y | Sx0) (C.20)
Ctf-IEM1

x1,x0
(y | x0) = Ctf-IEM2

x1,x0
(y | Sx0) (C.21)

Ctf-SEM1
x1,x0

(y) = Ctf-SBEM2
x1,x0

(y), (C.22)

that is, the decomposition of the TV measure for the two SCMs has the same
terms.

Proof. We leverage the identification expressions from Prop. C.2 and check
they are equal to the identification expressions for Ctf-SE, Ctf-DE, and Ctf-IE
shown in Tab. B.1. �
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In words, the terms appearing in the TV decomposition of the SFM are the
same as the terms appearing in the TV decomposition when using the SFM-
SB, if two SCMs have the same observational distribution. What this shows
is that we are agnostic to the choice of the model, between the SFM and
SFM-SB, when decomposing the TV - the only difference in the decomposition
arises in the interpretation of the effects. In particular, the if the SFM model
is the true model, then the Ctf-SEx1,x0(y) measures the change in outcome
between conditioning on X = x0 and X = x1, while keeping X = x1 along
all causal pathways. If the SFM-SB model is the true model, then the Ctf-
SBEx1,x0(y) measures the change in outcome induced by the selection process
Sx0 compared to Sx1 , while keeping X = x1 along all causal pathways. The
qualitative interpretation of the two terms differs, but the quantitative value is
the same regardless of the model. This shows a fundamental analogy between
the bidirected arrow X L9999K Z in the SFM and the selection process at the
node S governed by X,Z in the SFM-SB.



D
Multi-valued and Continuous Protected

Attributes

In this appendix, we discuss how to extend the main results of the manuscript to
a setting with multi-valued or continuous protected attributes. We also quickly
discuss how we may address the setting with multiple protected attributes.

Throughout, let X denote the domain of the protected attribute X. In the
multi-valued, discrete case, we consider |X | to be an integer, whereas for X
continuous, we assume that X in a subset of the reals, X ⊆ R. We next explain
how some of the key results may be extended to the case of a multi-valued X.

(1) The definition of the total variation (TV) measure is updated, and the
new criterion we consider is

E[Y | X = x] = E[Y ] ∀x. (D.1)

Suppose we select a fixed baseline value of X, say x0 ∈ X . Then, we
could consider a collection of measures E[Y | X = x]−E[Y | X = x0],
for each x ∈ X . Alternatively, a single measure over the entire domain
could be considered, e.g.,

iTVx0,X(y) = EX∼P (X) [E[Y | X]−E[Y | X = x0]] , (D.2)

where iTV stands for integrated TV measure.

(2) Notions of direct, indirect, and spurious effects also need to be updated
accordingly. For instance, given a baseline value of X = x0, we may
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consider the following measures of the direct, indirect, and spurious
effects

NDEx0,x(y) = P (yWx0 ,x
)− P (yx0) (D.3)

NIEx0,x(y) = P (yWx,x0)− P (yx0) (D.4)
Exp-SEx(y) = P (y | x)− P (yx), (D.5)

and further analogues can be written for x, z, or v′-specific measures of
direct / indirect effects. In case a single measure1 is of interest instead
of a collection of measures, we may consider measures such as

iNDEx0,X(y) = EX∼P (X)[NDEx0,X(y)] (D.6)

that integrates the NDE value over the entire domain of X.

(3) The Fundamental Problem of Causal Fairness Analysis (FPCFA, Def. 3.6)
requires a decomposability property. If one considers measures such as
NDEx0,x(y) for each x separately, then the property of decomposabil-
ity will be satisfied for each value of x separately. For the integrated
measures, iTV measure can be decomposed as

iTVx0,X(y) = iNDEx0,X(y)− iNIEX,x0(y) (D.7)
+ iExp-SEX(y)− Exp-SEx0(y). (D.8)

Other decomposition results, such as in Thms. 4.3, 4.4, and 4.5 can be
adapted similarly. Further, the integrated measures are still admissible
to the structural measures, i.e.,

Str-DE = 0 =⇒ iNDEx0,X(y) = 0 (D.9)
Str-IE = 0 =⇒ iNIEx0,X(y) = 0 (D.10)
Str-SE = 0 =⇒ iExp-SEX(y) = 0. (D.11)

For each x ∈ X , the NDE, NIE, and Exp-SE measures are also admissible
with respect to structural criteria.

(4) The Fairness Map (Thm. 4.8, Fig. 4.5) was defined as having two separate
axes, corresponding to different units of the population, and different
mechanisms. In the continuous case, there is an additional, third axis,
which indicates which value of x ∈ X is being compared against the
baseline value X = x0.

1One may also attempt to detect discrimination by using measures such as
supx∈X |NDEx,x0 (y)| which would also be a valid choice, but the property of decom-
posability as in Eq. D.7 would not hold true.
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(5) The decomposition of the predictive parity measure (PPM) from Thm. 4.13
can still be applied, but now again there is a unique measure for each
x ∈ X , PPMx0,x(y) = P (y | x, ŷ)−P (y | x0, ŷ). Furthermore, the princi-
ples of Causal Predictive Parity (Def. 4.14) can also be extended to the
continuous case, by adding a quantifier ∀x ∈ X , e.g., causal predictive
parity along the direct pathway could be written as
E[yx,Wx0

| E]−E[yx0 | E] = E[ŷx,Wx0
| E]−E[ŷx0 | E] ∀x ∈ X , E.

(D.12)

(6) In the context of decision-making, the Benefit Fairness criterion (Def. 5.10)
can be adapted to require that

P (d | x,∆ = δ) = P (d | x,∆ = δ) ∀x ∈ X , δ. (D.13)
The definition of Causal Benefit Fairness (Def. 5.11) could be adapted
to the continuous case by adding a quantifier over x ∈ X , for instance,
Causal BF along the direct pathway would be defined as
E(yx,Wx0 ,d1 − yx,Wx0 ,d0 | x, z, w) = E(yx0,d1 − yx0,d0 | x, z, w) ∀x, z, w

(D.14)
P (d | ∆, x0) = P (d | ∆, x1) ∀x, δ. (D.15)

As the above reasoning shows, extending the results of the manuscript to multi-
valued and continuous protected attributes X would be conceptually possible.
However, we note that continuous protected attributes may complicate the
estimation of some of the quantities described above, and we do not consider
these challenges in this manuscript.

Multiple Protected Attributes. Finally, we mention how one may wish to
handle multiple protected attributes X1, . . . , Xk. Firstly, we will only consider
the case in which the attributes X1, . . . , Xk satisfy the assumptions of the
standard fairness model (SFM), defined as follows:
Definition D.1 (Multi-Attribute Standard Fairness Model). The multi-attribute
standard fairness model (MA-SFM) is the cluster causal diagram GSFM over
endogenous variables {X1, . . . , Xk, Z,W, Y } and given by

Z

X1...
Xk

W

Y

.
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The cluster {X1, . . . , Xk} allows for arbitrary causal or confounding relation-
ships between the variables X1, . . . , Xk.

Now, if we are dealing with a setting of multiple protected attributes that
satisfy the MA-SFM model, we proceed as follows. Let X1, . . . ,Xk be the
domains of X1, . . . , Xk, respectively. Then, we define the product protected
attribute as Xp = (X1, . . . , Xk) taking values in X p = X1 × · · · × Xk. Then,
based on the product attribute Xp and the values it takes, we reduce the
problem to a setting with a single multi-valued (or continuous) protected
attribute that can be handled as discussed above.

In general, the protected attributes X1, . . . , Xk may not necessarily satisfy
the assumptions of the MA-SFM. If this is the case, a suggested route for
considering fairness with respect toX1, . . . , Xk would be to considerX1, . . . , Xk

one-by-one, and perform the analyses described in the manuscript for a single
X = Xi at a time.

D.1 On the Semantics of Manipulating the Protected Attribute

In this section, we discuss various questions related to the meaning of manipu-
lating the protected attribute X. In particular, commonly considered protected
attributes such as race, gender, or religion are not subject to a real-world
“intervention” of setting the attribute to a fixed value. In other words, we
cannot simply design an experiment in which we randomize the allocation of
individuals to males and females, or to majority and minority group applicants.
Furthermore, some works have argued that the meaning of the counterfactual
Yx may not be well-defined (Hu and Kohler-Hausmann, 2020), with some
even arguing that counterfactual reasoning may be inappropriate for capturing
discrimination (Kohler-Hausmann, 2018; Dembroff and Kohler-Hausmann,
2022). All of these works seek more precision in the semantics around the
concept of “manipulating race”, which is certainly a worthwhile question to
ask. More broadly, in the causal inference literature, many have argued for
the mantra “no causation without manipulation” (Rubin, 1986; Hernán, 2005;
Gelman and Hill, 2006), and here we wish to alleviate most of these concerns,
by discussing the semantics of manipulating attribute such as race, gender, or
religion.

In our discussion, we focus on the arguments put forth by Hu and Kohler-
Hausmann, 2020, as these arguments are articulated in the language of graph-
ical causal models. We analyze a number of claims made by the authors,
and propose specific tools for addressing their concerns. Crucially, we phrase
some of the elusive philosophical concepts in a formal mathematical language,
thereby adding to the existing discussion about the validity of hypothetical ma-
nipulations of the protected attribute. In particular, we address the following
three arguments of Hu and Kohler-Hausmann, 2020:
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Figure D.1: Modeling options for religion as a bundle of sticks.

(A) Protected attributes are a “bundle of sticks” (Sen and Wasow, 2016),
formed from multiple constitutive, and not defining features,

(B) The effects of interventions on attributes such as sex, race, and religion
thus cannot be reasoned about in the framework of structural causality
and graphical causal models, since such effects are not well-defined,

(C) Explanations originating from counterfactual worlds where the protected
attribute is manipulated are not meaningful for explaining discrimination
in the current world.

D.1.1 Issue A: Attributes as a bundle of sticks.
The example put forward by Hu and Kohler-Hausmann, 2020 takes religion as
the protected attribute, with X ∈ {0, 1} representing whether an individual is
or is not Catholic. A number of constitutive features of X are then mentioned,
namely the following beliefs and practices: Resurrection of Christ (X1), Papal
Infallibility (X2), Saints (X3), and Sunday Mass (X4), to name a few. The
authors then argue that, for a given outcome Y , one of the two causal models
is possible, shown in Figs. D.1a, D.1b. Their conclusion is that either (i)
X1, . . . , X4 are causal descendants of X as in Fig. D.1a; or (ii) X1, . . . , X4
causally precede X as in Fig. D.1b. The very concept of Catholic surely
depends on all of the mentioned constitutive features, and hence (Hu and
Kohler-Hausmann, 2020) conclude that the setting (i) seems unlikely. Similarly,
one may notice that reasoning about the concept of Catholic itself seems
to be meaningless without X1, . . . , X4. Therefore, the Fig. D.1b also seems
inappropriate. From this, the authors conclude that causal diagrams may be
insufficient for representing concepts that are formed from constitutive features,
such as religion, race, or gender.

However, not all modeling options are exhausted after considering diagrams
in Fig. D.1a and D.1b. In fact, the standard fairness model (SFM) introduced
in Def. 2.7 was partially motivated by such ambiguities in specifying diagrams
in the context of fairness analysis – and in particular, there is a bidirected
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arrow X L9999K Z between the protected attribute X and the set of confounders
Z. The reason for this modeling choice is that one may not be able to commit
to the complex historical processes that introduce co-variations between the
protected attribute, and the usually observed demographics. Importantly, the
very same modeling choice can be used for the bundle of sticks representation
of religion – clearly, belief in the Resurrection of Christ and Papal Infallibility
are correlated, yet there is no clear causal relation between them. Instead, we
may say that a set of historical process and practices confounds these two
variables, indicated by the latent, unobserved Uhist in Fig. D.1c. In the analysis
of the second issue, we discuss how the causal diagram in Fig. D.1c can be
used for a meaningful analysis.

D.1.2 Issue B: Effects of interventions on race, sex, or religion are
not well-defined through structural causality.

Hu and Kohler-Hausmann, 2020 argue that, partly for reasons outlined above,
one cannot reason about the causal effects of attributes such as race, sex, or
religion. Even though the question of manipulating protected attributes is
subtle, and clarity on the semantics of such manipulations is a worthy endeavor,
we disagree with the conclusions of (Hu and Kohler-Hausmann, 2020). We
next discuss a number of methodological options that ground the semantics of
such manipulations, and allow one to reason about fairness through structural
causality.

In particular, we cover three different approaches for defining how the
manipulations of the protected attribute can be defined in light of considering
constitutive features. The described approach is related to the reasoning
presented in (Weinberger, 2022), based on the notion of signal manipulation.
The approaches we discuss are twofold, based on whether the constitutive
features of the protected attribute (featuresX1, . . . , X4 in our running example)
are observed and available in the data. We thus discuss an approach for the
case of observed features, and an interpretation for the case of unobserved
features.

Observed Constitutive Features and Multi-valued Attributes. Consider
now the case of the causal diagram in Fig. D.1c, with X1, . . . , X4, and Y
observed. The first modeling step required is to draw a boundary that de-
termines what are the constitutive features of the protected attribute. For
instance, should the protected attributes be constituted from all of the features
X1, . . . , X4? Or, alternatively, should one choose only a subset of them as
constitutive of the protected group? For instance, one may consider X1, X3, X4
only as constitutive of the protected group. The choice of constitutive features
may be application-specific, and should be performed by the data analyst,
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Figure D.2: Modeling options for religion as a bundle of sticks.

while also taking into account domain knowledge. Once the constitutive fea-
tures have been grouped into a cluster2, the remaining features become a
confounder, as displayed in Fig. D.2a. Once the cluster diagram after grouping
the variables has been established, there are two ways we can proceed, which
are discussed next.

The first option is to treat all of the constitutive features separately.
Consider the multi-valued vectors that represent all the possible combinations
of (X1, X3, X4). There are 23 possible values that are attained, and we set the
value (0, 0, 0) as the baseline value (corresponding to an individual for whom
no constitutive characteristics are present). Then, we can compare each vector
(x1, x3, x4) against (0, 0, 0), and measure the effect of manipulating the xi 6= 0
to 03. Interesting structure may be uncovered in this way, namely, perhaps
E[Y(0,0,1)−Y(0,0,0)] is much larger (in absolute value) than E[Y(1,0,0)−Y(0,0,0)],
possibly implying that the feature x1 plays a more important role in explaining
the phenomenon than the feature x4. In fact, this argument can be made
formal under the assumption of no interactions in the fY mechanism but we
do not go into its detail here.

Another option would be construct a mapping fX : (X1, X3, X4) 7→ X,
that assigns a value to the entire cluster. One such possible function is just
setting X = 1

|I|
∑
i∈I Xi, where I is the index set of all constitutive features.

Naturally, other possible mappings exist, and the mapping could also be
stochastic. Once a cluster value X has been defined, we can again use the
methods proposed for multi-valued attributes in Appendix D, and compare
different values of X = x against the baseline X = 0. In the extreme case,
the mapping fX may create a binary label for X. We next explain why this
simplification step can still be meaningful.

2This clustering process is similar to the clustering of Z or W variables when
constructing the Standard Fairness Model (Def. 2.7). For more details, we refer the
reader to (Anand et al., 2021).

3For instance, such manipulations can be conceptualized as a person “writing a
different value on their application”.



D.1. On the Semantics of Manipulating the Protected Attribute 223

Unobserved Constitutive Features and Soft Interventions. Consider now
the case of the causal diagram in Fig. D.2a, with X1, . . . , X4, not observed,
but instead we are given an imperfect value of the cluster, labeled X. That is,
we are only given the output of the fX : (X1, X3, X4) 7→ X mapping described
in the previous paragraph. The key question we answer next is the following:
If we hypothesize interventions on the variable X, do such operations have a
valid syntactic interpretation?

To give a positive answer to this question, we describe an interpretation
via soft-interventions (Correa and Bareinboim, 2020). Soft interventions are
an extension of atomic interventions, which were considered throughout this
manuscript. Atomic interventions set X to a specific, fixed value, say X = x0.
Soft interventions, on the other hand, may set the value of X to a policy, e.g.,
we may consider a policy intervention that sets the value of X to x0 with
probability 0.6, whereas it sets it to x1 with probability 0.4.

We continue illustrating our point by means example. Consider a hypo-
thetical setting in which we have a continuous variable Xc ∼ Unif[0, 1] that
represents the protected attribute, and the true causal diagram is given in
Fig. D.2b. The variable is chosen as continuous to indicate a possible complexity
in determining the protected attribute (as described in previous paragraphs).
Instead of having access to Xc, we only have access to an imperfect version
of it, say X ∈ {0, 1}, and we posit the diagram in Fig. D.2c. For simplicity,
suppose that X = 1(Xc ≥ 1

2 ) but we are not given this information.
A possible issue may lie in the fact that the mechanism fY in fact responds

to Xc, while we are trying to conceptualize interventions on X, and the fY
mechanism responds to Xc, and not its abstraction X. However, as it turns
out, an atomic intervention in the model in Fig. D.2c corresponds to a soft-
intervention in the model in Fig. D.2b. In particular, in this case, we may
write

P (YX=x0 = 1) = P (Y = 1 | X = x0) (D.16)

=
∫

[0, 1
2 ]
P (Y = 1 | Xc = xc, X = x0)fXc|X=x0(xc)dxc (D.17)

=
∫

[0, 1
2 ]

2P (Y = 1 | Xc = xc, X = x0)dxc (D.18)

= P (Y = 1 | Xc ∼ Unif[0, 1
2 ]) (D.19)

= P (Y = 1 | do(Xc ∼ Unif[0, 1
2 ])) (D.20)

= P (Y = 1;σXc) (D.21)

where σXc
indicates a policy intervention that sets Xc uniformly to the [0, 1

2 ]
interval. Through this analysis, the meaning of, say, the total effect of X on
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Y , written P (yx1)− P (yx0), becomes more apparent:

TEx0,x1(y) = P (y | do(Xc ∼ Unif[ 12 , 1]))− P (y | do(Xc ∼ Unif[0, 1
2 ])).
(D.22)

That is, the total effect compares the outcome of a policy that sets Xc uni-
formly to [0, 1

2 ], against a policy that sets Xc uniformly to [ 1
2 , 1], given a

clear semantical interpretation to the quantity TEx0,x1(y) in terms of the true
underlying, though unobserved, quality Xc.

In fact, this construction generalizes to arbitrary mappings satisfying
minor assumptions. Suppose that Xc ∼ FXc

according to some probability
distribution FXc

that admits a density. Then, suppose that fX : Xc 7→ X is
an arbitrary mapping from the domain of Xc into {0, 1}. We can then write

P (YX=x0 = 1) = P (Y = 1 | X = x0) (D.23)

=
∫
f−1

X
(x0)

P (Y = 1 | X = x0, Xc = xc)fXc|X=x0(xc)dxc

(D.24)

=
∫
f−1

X
(x0)

P (Y = 1 | Xc = xc)fXc|X=x0(xc)dxc (D.25)

= P (Y = 1 | Xc ∼ FXc|X=x0) (D.26)
= P (Y = 1 | Xc ∼ do(FXc|X=x0)) (D.27)
= P (Y = 1;σXc

), (D.28)

where σXc
now indicates a stochastic intervention that setsXc to its conditional

distribution given X = x0. In other words, the interpretation given to the
total effect in our first example with a uniformly distribution and a threshold
mapping was not an idiosyncrasy. Instead, it follows from a more general
approach in Eqs. D.23-D.28.

We now recap the importance of the above result. Crucially, in the real
world, the fY mechanism responds to a continuous random variable Xc. The
mechanism is unaware of the value of the “binarized” attribute X, and does not
respond to it. Nonetheless, in a simplified causal diagram with X taken as the
treatment instead of Xc, the total effect still has a meaningful interpretation
with respect to the underlying true structural causal model, in which fY
responds to changes in Xc, and not to X.

D.1.3 Issue C: Counterfactual Worlds Do Not Explain Social Phe-
nomena in the Current World

The final point we address concerns the validity of counterfactual causal reason-
ing for explaining discrimination in the current real world. Here, we leverage
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the Berkeley admissions example introduced in Ex. 2.1. As a quick recap, the
protected attribute X represents gender, a mediator D represents the choice
of department to which the student applies, and Y represents the admission
outcome. In particular, Hu and Kohler-Hausmann, 2020 write: “Modular coun-
terfactuals of the type, ‘What would the effect of sex on admissions be in a
world when men and women apply at the same rates to math departments?’
– do not necessarily tell us anything empirically relevant to the normative
question about whether a current practice is discriminatory in our current
world where those premises are counter to fact”.

Some clarification is in order regarding what causal modeling is attempting
to answer in such instances. The dataset under analysis was generated from a
specific structural causal model that represents the decision-making mechanism
that was used by the university’s committee, labeled fY . One can perform a
thought experiment, in which the committee spends infinite time deliberating
admissions, and produces an output decision for any input and possible value
of the noise variables. Any causal analysis undertaken is strictly concerned with
this generative model of reality, and does not attempt to answer anything about
how the committee would have acted on a different occasion, on which the
correlation between department of application and gender vanished. Instead,
the type of question we are asking is, for the committee fixed in time and place,
how would they have evaluated students had they been given applications of
students in which, for instance, the gender was randomized? That is, causal
modeling is relative to the underlying model of reality, and does not purport to
answer questions on how downstream mechanisms (evaluation of applications)
would change over time had an upstream mechanism (choosing department of
application) been affected.

We address one final point of Hu and Kohler-Hausmann, 2020. The au-
thors write that “more people sexcoded ‘male’ than ‘female’ apply to math
departments and that means, cognitively, that decision-makers associate male
and math more than they associate female and math. That is, after all, the
problem. It is not clear why knowing how people sexcoded ‘female’ would be
treated in a counterfactual world where equal numbers of people sexed female
and male applied to math departments is helpful for sorting out whether in
our world, where math is a male-y thing, the current admission practices
constitute discrimination”. Some key methodological developments in causal
inference are entirely ignored in the considerations of authors, similarly as
in (Kohler-Hausmann, 2018). In fact, as we discuss next, causal methodology
allows us to: (i) determine whether math is seen as a male-y thing by the
committee, or if females are treated unfairly for other reasons; (ii) quantify
the contribution of math being a male-y thing compared to other forms of
discrimination.

The issue at hand hand, best illustrated through an example, has to do
with interactions among variables. Consider the following example:
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Example D.1 (Berkeley Admissions – continued). Consider the Berkeley admis-
sions setting from Ex. 2.1. Let X be gender (x0 female, x1 male), D department
choice (d0 non-math, d1 math), and Y admission outcome (y1 for admission).
Consider the following SCM:

X ← Bernoulli(0.5) (D.29)
D ← Bernoulli(0.5 + αX) (D.30)
Y ← (0.1 + βX + γD + δXD). (D.31)

Now, notice that there is an interaction term in the fY mechanism, namely
δXD. Due to this term, the probability of admission increases for individuals
who are male, and apply to the math department. This term, therefore, in
words of Hu and Kohler-Hausmann, 2020 measures how much math is male-y
thing, as perceived by the committee. The other part of this story about how
much math is male-y thing is the difference in the rate of application to math
departments, given by the parameter α.

Importantly, other forms of discrimination also exist. For instance, if β > 0,
male applicants are given advantage over female candidates, in way that has
nothing to do with math being a male-y thing.

A technical question, in this scenario, is the following. Can we test for
the existence of the interaction term? And secondly, if the interaction term
exists, can we obtain a quantity that captures it? To answer affirmatively to
both questions, we first compute the NDE for both x0 → x1 and x1 → x0
transitions:

NDEx0,x1(y) = β + δ

2 (D.32)

NDEx1,x0(y) = β + δ

2 + αδ. (D.33)

Notice that if either α = 0, or δ = 0, the two NDEs are the same. In fact, a
hypothesis test

H0 : NDEx0,x1(y) = NDEx1,x0(y) (D.34)

is a test for the existence of an interaction between direct and indirect pathways.
In fact, the difference between the two NDEs

NDEx1,x0(y)−NDEx0,x1(y) = αδ (D.35)

quantifies the strength of the interaction of direct and indirect pathways, e.g.,
the impact of the entire phenomenon of math being a male-y thing (males are
more likely to apply to math departments, in conjunction with the committee
perceiving males as more qualified) on the disparity observed in outcome. �
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The discussion of the above example does not only address the simple paramet-
ric instance in Eqs. D.29-D.31, but can also be generalized to more complex
settings and interactions, that is, to arbitrary SCM mechanisms. Therefore,
when diagnosing issues with the causal methodology for detecting discrimina-
tion, one also needs to carefully consider the methodological capabilities at
hand to the data analyst.



E
Process Fairness

In this appendix, we discuss the connection of causal fairness analysis with
the notion of process fairness (Grgic-Hlaca et al., 2016). Process fairness offers
a different normative view on fairness when compared to the legal doctrines of
disparate treatment and disparate impact, around which most of the discussion
in this manuscript revolved. The discussion in this appendix builds on the
tools developed in Sec. 3 and Sec. 4.

The disparate treatment and impact doctrines are usually discussed in the
context of outcome fairness, focusing on disparities in the outcome itself. Com-
plementary to this, the notion of process fairness is focused on how decisions
come about, and, in particular, which variables are used in the decision-making
process. In this context, the causal approach to fairness discussed earlier also
plays an important role. The crucial point is that considerations about out-
come fairness, when paired with appropriate causal assumptions, may also
give insights about process fairness. We formalize this statement in the sequel.

The disparate treatment doctrine is concerned with differential outcomes
for similarly situated individuals who differ in the protected characteristic. If
Z = z,W = w denote the values of the confounders and mediators, respectively,
such as disparity can be written as

P (y | x1, z, w)− P (y | x0, z, w) 6= 0. (E.1)

However, a statistical claim, such as in Eq. E.1, in itself does not make
any claims about the decision-making process, unless paired with causal
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assumptions. To produce a causal claim, we can consider the quantity

(x, z, w)-DEx0,x1(y | x0, z, w) = P (yx1,Wx0
| x0, z, w)− P (yx0 | x0, z, w),

(E.2)
which measures the direct effect of a x0 → x1 transition for the group of units
with covariate values x0, z, w (see Sec. 4 for details). Crucially, this quantity
may have causal implications since it is admissible (Def. 3.4) with respect to
the structural direct effect (Def. 3.2). This implies that

(x, z, w)-DEx0,x1(y | x0, z, w) 6= 0 =⇒ Str-DE 6= 0. (E.3)

In words, if the causal quantity is different from 0, then the protected attribute
X is known to be used as an input to the decision-making mechanism fY
that determines the values of the outcome. Put differently, this allows one to
establish a qualitative claim about the process itself, as discussed in (Grgic-
Hlaca et al., 2016). Now, the key piece of the puzzle is how to move from the
statistical claim in Eq. E.1 to a counterfactual claim about (x, z, w)-DEx0,x1(y |
x0, z, w). As it turns out, the latter quantity is identifiable under the SFM, and
in fact equals exactly the expression in Eq. E.1. The main point here is that, in
absence of appropriate causal assumptions, the quantity (x, z, w)-DEx0,x1(y |
x0, z, w) need not equal the expression in Eq. E.1, and observing a disparity
in outcome does not imply anything about the process of decision-making in
general. However, based on this disparity, one may be able to produce claims
about the process of decision-making with the help of appropriate causal
assumptions.

A similar line of reasoning, although somewhat more involved, applies for
the doctrine of disparate impact, and the indirect and spurious effects. For
instance, based on the admissibility of measures such as natural indirect effect
(Def. 4.2) and experimental spurious effect (Def. 4.1) with respect to structural
indirect and spurious effects, respectively, we know that

NIEx0,x1(y) 6= 0 =⇒ Str-IE 6= 0, (E.4)
Exp-SEx(y) 6= 0 =⇒ Str-SE 6= 0. (E.5)

Once again, this allows one to make qualitative claims about the decision-
making process (in particular, Str-IE 6= 0 implies mediators are used as an input
to the mechanism fY , and that the mediators are affected by the protected
attribute X; Str-SE 6= 0 implies that confounders are used as an input to fY ,
and that there are common variations of the confounders and the attribute
X).

Finally, we mention another fundamental connection of process and out-
come fairness that follows from the causal approach. Based on the decomposi-
tion of the TV measure in Thm. 4.3, we have that

TVx0,x1(y) = x-DEx0,x1(y | x0)− x-IEx1,x0(y | x0)− x-SEx1,x0(y). (E.6)
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The TV measure captures the entire observed disparity, related to outcome
fairness. However, each of the terms on the r.h.s. of Eq. E.6 is related to a
specific part of the decision-making process – whether the attribute is used
directly (term x-DE); whether the attribute influences the mediators, which
are then used in decision-making (term x-IE); and whether the attribute
has common variations with the confounders, which are used in decision-
making (term x-SE). Crucially, once we compute each of the terms on the
r.h.s. of Eq. E.6, it allows us to quantify how much each part of the decision
process contributes to the overall disparity in the outcome that was observed
in an aggregate measure such as TV. Therefore, the causal analysis allows
the data scientist to attribute outcome disparities found in the data to the
causal mechanisms that generate them, and therefore permit simultaneous
reasoning about both disparities in outcome and how they came about –
thereby considering outcome and process fairness within a unified framework.
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