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ABSTRACT

Decision-making systems based on Al and machine learning have
been used throughout a wide range of real-world scenarios, includ-
ing healthcare, law enforcement, education, and finance. It is no
longer far-fetched to envision a future where autonomous systems
will drive entire business decisions and, more broadly, support
large-scale decision-making infrastructure to solve society’s most
challenging problems. Issues of unfairness and discrimination are
pervasive when decisions are being made by humans, and remain
(or are potentially amplified) when decisions are made using ma-
chines with little transparency, accountability, and fairness. In
this paper, we introduce a framework for causal fairness analysis
with the intent of filling in this gap, i.e., understanding, modeling,
and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification
of the disparities present in the observed data with the underlying,
often unobserved, collection of causal mechanisms that generate
the disparity in the first place, a challenge we call the Fundamental
Problem of Causal Fairness Analysis (FPCFA). In order to solve
the FPCFA, we study the problem of decomposing variations
and empirical measures of fairness that attribute such variations
to structural mechanisms and different units of the population.
Our effort culminates in the Fairness Map, the first systematic
attempt to organize and explain the relationship between various
criteria found in the literature. Finally, we study which causal
assumptions are minimally needed for performing causal fairness
analysis and propose the Fairness Cookbook, which allows one to
assess the existence of disparate impact and disparate treatment.
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Introduction

As society transitions to an Al-based economy, an increasing number of
decisions that were once made by humans are now delegated to automated
systems, and this trend will likely accelerate in the coming years. Automated
systems may exhibit discrimination based on gender, race, religion, or other
sensitive attributes, so considerations about fairness in Al are an emergent
discussion across the globe. The European Union, for instance, recently passed
sweeping regulations putting substantial constraints over automated decision-
making and Al systems (Commission, 2021). While we believe it is evident that
a novel legal framework is needed to organize and regulate this new, emerging
economy, it is less clear, however, that the proper scientific understanding
and tools for designing such regulations are currently available. Even though
one may surmise that issues of unfairness in Al are a recent development,
the problem’s origins can be traced to long before the advent of Al and the
prominence these systems have reached in the last years. This is perhaps best
witnessed by the civil rights movements of the twentieth century. Interestingly,
Martin Luther King Jr. spoke of having a dream that his children “will one day
live in a nation where they will not be judged by the color of their skin, but by
the content of their character.” So little could he have anticipated that machine
algorithms would one day use race for making decisions, and that the issues of
unfairness in Al would be legislated under Title VII of the Civil Rights Act
of 1964 (Act, 1964), which he advocated and fought for (Oppenheimer, 1994;
Kotz, 2005).

The critical challenge underlying fairness in Al systems lies in the fact that



biases in decision-making exist in the real world from which various datasets
are collected. Perhaps not surprisingly, a dataset collected from a biased reality
will contain aspects of this bias as an imprint. In this context, algorithms
are tools that may replicate or potentially even amplify the biases that exist
in reality in the first place. As automated systems are a priori oblivious to
ethical considerations, deploying and using them blindly could lead to the
perpetuation of unfairness in the future.

More pessimistic analysts take this observation as a prelude to doomsday,
which, in their opinion, suggests that we should be extremely wary and
defensive against any Al. We believe a degree of caution is necessary, of course,
but take a more positive perspective and consider this transition to a more
Al-based society as a unique opportunity to improve the current state of affairs.
While human decision-makers are hard to change, even when aware of their
own biases, Al systems may be less brittle and more flexible. Still, one of the
requirements to realize the AI’s potential is a new mathematical framework
that allows the description and assessment of legal notions of discrimination in
a formal way. This situation is somewhat unique in the context of Al because
a new definition of “ground truth” is required. The decision-making system
cannot rely purely on learning from the data, which is contaminated with
unwanted bias. It is currently unclear how to formulate the ideal inferential
target! that could help bring about a fair world when deployed. This degree
of flexibility in deciding the new ground truth also emphasizes the importance
of normative work in this context.?

In this paper, we build on two legal doctrines applied to large bodies
of cases throughout the US and the EU known as disparate treatment and
disparate impact (Barocas and Selbst, 2016). One of our goals will be to develop
a framework for causal fairness analysis grounded in these doctrines and
translate them into exact mathematical language amenable to Al optimization.
The disparate treatment doctrine enforces the equality of treatment of different
groups, prohibiting the use of the protected attribute (e.g., race) in the decision
process. One of the legal formulations for proving disparate treatment is that
“a similarly situated person who is not a member of the protected class would

We believe this explains the vast number of fairness criteria described in the
literature, which we will detail later on in the paper.

20One way of seeing this point a bit more formally goes as follows. We first
consider the current version of the world, say m, and note that it generates a
probability distribution P. Training the machine learning algorithm with data from
this distribution (D ~ P) is replicating patterns from this reality, 7. We would want
an alternative, counterfactual reality 7', which induces a different distribution P’
without the past biases. The challenge here is that thinking about and defining P’
relies on going beyond P, or the corresponding dataset, which is non-trivial, and yet
one of our main goals.



4 Introduction

not have suffered the same fate” (Barocas and Selbst, 2016)3. On the other
hand, the disparate impact doctrine focuses on outcome fairness*, namely, the
equality of outcomes among protected groups. Disparate impact discrimination
occurs if a facially neutral practice has an adverse impact on members of
the protected group. Under this doctrine most commonly fall cases where
discrimination is unintended or implicit. The analysis can become somewhat
intricate when variables are correlated with the protected attribute and may
act as a proxy. The law may not necessarily prohibit their usage due to their
relevance to the business itself, legally known as “business necessity” or “job-
relatedness”. Taking business necessity into account is the essence of disparate
impact (Barocas and Selbst, 2016).

In fact, as we demonstrate intuitively and formally later in the text, the
disparate treatment and disparate impact doctrines can be seen as spanning a
spectrum of fairness notions (see Fig. 1.1). On the one end, the disparate treat-
ment doctrine ensures that there is no direct effect of the protected attribute
on the outcome, which can be seen as the minimal fairness requirement. On
the other end, the disparate impact doctrine (in the extreme case), ensures
that the protected attribute has no effect on the outcome. In practice, how-
ever, business necessity considerations determine where on this spectrum the
appropriate fairness notion is, given the requirements and specific details of
the application in question.

The connection of fairness with causal in-
ference might be seen as natural for two rea- Business Nocessity
sons. Firstly, business necessity considerations comsens
are inherently causal, as they require attributing #
the observed disparity to the underlying causal
mechanism. Our framework will therefore allow — Deearste Disparate
the data scientist to quantify the disparity ex-
plained by mechanisms that do not fall under Figure 1.1: The spectrum of
business necessity and are considered discrimina- fairness notions spanned by
tory, thereby accommodating application-specific the disparate treatment and
requirements. Secondly, the legal frameworks of ~disparate impact doctrines.

3This formulation is related to a condition known as ceteris paribus, which
represents the effect of the protected attribute on the outcome of interest while
keeping everything else constant. From a causal perspective, this suggests that the
disparate treatment doctrine is concerned with direct discrimination, a connection
we draw formally later on in the manuscript.

“Interestingly, both of the above-discussed doctrines are usually considered under
the rubric of outcome fairness, that is, focusing on the disparity in the outcome itself.
An important complementary notion to outcome fairness is process fairness, which
is instead focused on how the decision process is carried out, and not specifically
on the outcomes themselves (Grgic-Hlaca et al., 2016). In this context, the causal
approach offers a key strength, discussed in detail in Appendix E.



anti-discrimination laws (for example, Title VII in the US) often require that
to establish a prima facie case of discrimination the plaintiff must demonstrate
“a strong causal connection” between the alleged discriminatory practice and
the observed statistical disparity (e.g., Texas Dept. of Housing and Community
Affairs v. Inclusive Communities Project, Inc., 576 U.S. 519 (2015)). Therefore,
as discussed in subsequent sections, another requirement of our framework
will be the ability to distinguish between notions of discrimination that would
otherwise be statistically indistinguishable.

Consider the Berkeley Admission example, in
which admission results of students applying to o
UC Berkeley were collected and analyzed (Bickel Gof@\} Y
et al., 1975). The analysis showed that male stu- o
dents are 14% more likely to be admitted than
their female counterparts, which raised concerns Figure 1.2: A partial causal
about the possibility of gender discrimination. model for the Berkeley Admis-
The discussion of this example is often less fo- sion example.
cused on the accuracy and appropriateness of the used statistical measures and
more on the plausible justification of disparity based on the mechanism under-
lying this disparity. A visual representation of the dynamics in this setting is
shown in Fig. 1.2. In words, each student chooses a department of application
(D). The department’s choice and the student’s gender (X) might, in turn,
influence the admission decision (Y'). In this example, there is a clear need to
determine how much of the observed statistical disparity can be attributed
to the direct causal path from gender to admission decision vs. the indirect
mechanism® going through the department choice variable. Looking directly
at gender for determining university admission would indeed be disallowed,
whereas using department choice, which may be influenced by gender, might
be deemed acceptable. ¢ The need to explain an observed statistical disparity,
say in this case the 14% difference in admission rates, through the underlying
causal mechanisms — direct and indirect — is a recurring theme when assessing
discrimination, even though it is sometimes considered only implicitly.

When Al tools are deployed in the real world, a similar pattern of questions
emerges. Examples include (but are not limited to) the debate over the origins
and interpretation of discrimination in the criminal justice system (COMPAS,
Angwin et al., 2016), the contribution of data vs. algorithms in the observed
bias in face detection (e.g., Harwell, 2019; Buolamwini and Gebru, 2018),

D Admission
Department

% As discussed later on, even among indirect paths, one may need to distinguish
between mediated causal paths and confounded non-causal paths, or, more generally,
among a specific subset of these paths.

5Society may be “guilty” of creating the wrong incentives, and perhaps fewer
female applicants are considering certain departments, but the university itself may
not be deemed discriminatory.
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and the business necessity vs. risk of digital redlining in targeted advertising
(Detrixhe and Merrill, 2019). Intuitively, through these questions, society wants
to draw a line between what is seen as discriminatory on the one hand and
what is seen as acceptable or justified by economic principles on the other. Put
differently, such discussions aim to determine where on the fairness spectrum
in Fig. 1.1 the appropriate notion of fairness lies.

A practitioner interested in implementing a fair Al system will need to
detect and quantify undesired discrimination based on society’s current ethical
standards, and then design learning methods capable of removing such unfair-
ness from future predictions and decisions. In doing so, the practitioner will
face two challenges. The first stems from the fact that the current literature is
abundant with different fairness measures, some of which are mutually incom-
patible (Corbett-Davies and Goel, 2018), and choosing among these measures,
even for the system designer, is usually a non-trivial task. This challenge is
compounded with the second challenge, which arises from the statistical nature
of such fairness measures. As we will show both formally and empirically later
in the text, statistical measures alone cannot distinguish between different
causal mechanisms that transmit change and generate disparity in the real
world, even if an unlimited amount of data is available. Despite this apparent
shortcoming of purely statistical measures, much of the literature focuses on
casting fair prediction as an optimization problem subject to fairness con-
straints based on such measures (Pedreschi et al., 2008; Pedreschi et al., 2009;
Luong et al., 2011; Ruggieri et al., 2011; Hajian and Domingo-Ferrer, 2012;
Kamiran and Calders, 2009; Calders and Verwer, 2010; Kamiran et al., 2010;
Zliobaite et al., 2011; Kamiran and Calders, 2012; Kamiran et al., 2012; Zemel
et al., 2013; Mancuhan and Clifton, 2014; Romei and Ruggieri, 2014; Dwork
et al., 2012; Friedler et al., 2016; Chouldechova, 2017; Pleiss et al., 2017), to
cite a few. In fact, these methods may be insufficient for removing bias and
perhaps even lead to unintended consequences and bias amplification, as it
will become clear later on.

As outlined briefly in previous paragraphs, the behavior of AI/ML-based
decision-making systems is an emergent property following a complex combi-
nation of past (possibly biased) data and interactions with the environment.
Predicting or explaining this behavior and its impact on the real world can
be difficult, even for the system designer who knows how the system is built.
Ensuring fairness of such decision-making systems, therefore, critically relies
on contributions from two groups, namely:

a. the AT and ML engineers who develop methods to detect bias and ensure
adherence of ML systems to fairness measures, and

b. the domain experts, policymakers, economists, social scientists, and
legal experts who study the origins of these biases and can provide the



societal interpretations of fairness measures and their expectations in
terms of norms and standards.

Currently, these groups do not share a common starting point. It is challenging
for them to understand each other and work together towards developing a
fair specification of such complex systems, aligned with the many stakeholders
involved in the process.

In this paper, we argue that the language of structural causality can provide
a unique perspective on the issues of fairness and facilitate the discussion and
exchange of ideas, goals, and expectations between these groups. Issues of
unfairness are fundamentally linked to considerations of responsibility and
blame, and thus a causal analysis of the problem is mandated from legal,
logical and philosophical standpoints (Moore, 2019; Halpern, 2016)7. A causal
analysis, as will be discussed in detail, is contingent on obtaining rich enough
causal models of unobserved or partially observed reality, which may be non-
trivial in practice, yet it is crucial in the context of fair ML as it allows one to
relate observed disparities to existing causal mechanisms. Causal models must
be built using inputs from domain experts, social scientists, and policy-makers,
and a formal language is needed to express and scrutinize their assumptions.
In this work, we lay down the foundations for interpreting legal doctrines of
discrimination through causal reasoning, which we view as an essential step
towards the development of a new generation of more ethical and transparent
AT systems.

Paper’'s Roadmap & Contributions

We develop a general and coherent framework of Causal Fairness Analysis to
overcome the challenges described above. This framework provides a common
language to connect computer scientists, statisticians, and data scientists on the
one hand and legal, social, and ethical experts on the other, to tackle challenges
of fairness in automated decision-making. Further, this new framework grounds
the legal doctrines of disparate impact and disparate treatment through the
semantics of structural causal models. The critical elements of our proposal
are shown in Fig. 1.3, which also serves as a roadmap of how this paper is
organized and how causal fairness analysis should be conducted. Specifically,
in Sec. 2, we cover the basic notions of causal inference needed to build our
framework, including structural causal models, causal diagrams, and data
collection. In Sec. 3, we introduce the essential elements of our theoretical
framework. In particular, we define the notions of structural fairness that will
serve as a baseline, ground truth for determining the presence or absence of
discrimination under disparate impact and disparate treatment doctrines. In

"We remark that the causal perspective on fairness is not the only viewpoint,
and a number of important works have been developed entirely outside this rubric.
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Figure 1.3: A mental map of the Causal Fairness Analysis framework.

Sec. 4, we introduce causal measures of fairness that can be computed from
data in practice. We further draw the connection between such measures and
the aforementioned legal doctrines. In Sec. 5, we introduce the tasks of Causal
Fairness Analysis — (1) bias detection and quantification, (2) fair prediction,
and (3) fair decision-making — and show how they can be solved by building on
the tools developed earlier. In Sec. 6 we develop tools for decomposing indirect
and spurious variations on a variable-specific level, which leads to a general
approach for evaluating fairness under arbitrary business necessity sets. More
specifically, our contributions are as follows:

1. We study the problem of decomposing variations between the protected
attribute X and the outcome variable Y, using the technique of factual
and counterfactual contrasts (Def. 3.7). We prove the structural basis
expansion formula for such contrasts, which highlights the fundamental
difference between causal and non-causal variations (Thm. 3.1). Fur-
thermore, this result allows us to show how the total variation (TV)3
can be decomposed based on different causal mechanisms and across
different groups of units. These developments lead to the construction
of the explainability plane (Fig. 3.3).

2. We introduce the Fundamental Problem of Causal Fairness Analysis

8What we refer to in this manuscript as the total variation (TV) measure is also
known in the literature as the parity gap, or simply the difference in conditional
expectations, E[Y | z1] — E[Y | zo], where xo,x1 are the two values of the protected
attribute X, and Y is the outcome of interest.



(FPCFA, Def. 3.6), which formalizes the key properties that empirical
measures of fairness should exhibit, including admissibility and decom-
posability. Subsequently, we develop increasingly refined solutions to
the FPCFA, proved in Thms. 4.2, 4.3, 4.4, and 4.5.

. We design the first version of the Fairness Map (Thm. 4.8 and Fig. 4.5),
putting many well-known fairness measures under the same theoretical
umbrella and uncovering the structure that connects them. In partic-
ular, the Map connects all the measures in the so-called TV family
(Tab. 4.1). We provide a detailed analysis of the causal properties of
well-known measures found in the literature, including counterfactual
fairness, individual fairness, and predictive parity (Sec. 4.4).

. We propose a simplified type of (clustered) graphical model called the
Standard Fairness Model (SFM, Def. 2.7), which requires fewer modeling
assumptions than typically used causal diagrams. We show that the SFM
strikes a balance between simplicity of construction and informativeness
for causal analysis (Thm. 4.11), allowing us to perform causal inference
even when detailed knowledge about the underlying decision-making
process is scarce.

. We develop the first non-parametric decomposition of the predictive
parity measure in terms of the underlying causal mechanisms. Building
on this, we define causal predictive parity (Def. 4.14), and show how this
new notion is complementary to statistical parity, thereby addressing a
well-known impossibility result from the literature (Thms. 4.12, 4.13).

. By putting all the above results together, we develop a practical proce-
dure called the Fairness Cookbook (Alg. 5.1) that allows data scientists
to assess the presence of disparate treatment and disparate impact and
quantify their degree. Furthermore, we provide an R-package called
faircause for performing this task.

. We study the implications of Causal Fairness Analysis on the fair
prediction problem. In particular, we prove the Fair Prediction Theorem
(Thm. 5.1) that shows that making TV equal to zero during the training
stage is almost never sufficient to ensure that causal measures of fairness
are well-behaved. We further propose solutions that can provide causal
guarantees for the constructed predictors (Thms. 5.2, 5.3).

. Based on the implications of the Fair Prediction Theorem to decision-
making (Cor. 5.5), we develop new procedures for achieving fairness in
particular single-step decision-making (Algs. 5.3 and 5.5).
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9. We prove the first non-parametric decomposition for spurious effects in
Semi-Markovian models (Thms. 6.1, 6.3). We further show results that
establish what is the most fine-grained path-specific analysis that can be
performed in practice (Thm. 6.9, Cor. 6.10), and develop an algorithm
for testing arbitrary business necessity requirements (Alg. 6.4).

Readers familiar with causal inference may want to move straight to Sec. 3,
even though the examples provided in the next section are used to motivate
the problem of fairness discussed throughout the manuscript.



2

Foundations of Causal Inference

In this section, we introduce three fundamental building blocks that will allow
us to formalize the challenges of fairness described above through a causal lens.
First, we will define in Sec. 2.1 a general class of data-generating models known
as structural causal models (shown in Fig. 1.3a). The key observation here is
that the collection of mechanisms underpinning any decision-making scenario
are causal, and therefore should be modeled through proper and formal causal
semantics. Second, we will discuss in Sec. 2.2 qualitatively different probability
distributions that are induced by the causal generative process, and which
will lead to the observed data and counterfactuals (Fig. 1.3b). Third, we will
introduce in Sec. 2.3 an object known as a causal diagram (Fig. 1.3c), which
will allow the data scientist to articulate non-parametric assumptions over the
space of generative models. These assumptions can be shown as necessary for
the analysis, in a broader sense. Finally, we will define the standard fairness
model (SFM), which is a special class of diagrams that act as a template,
allowing one to generically express entire classes of structural models. The
SFM class, in particular, requires fewer modeling assumptions than the more
commonly used causal diagrams.

2.1 Structural Causal Models
The basic semantical framework of our analysis rests on the notion of structural

causal models (SCM, for short), which is one of the most flexible class of
generative models known to date and that allows modeling various tasks (Pearl,

11
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2000; Bareinboim and Pearl, 2016). The section will follow the presentation in
(Bareinboim et al., 2022), which contains more detailed discussions and proofs.
First, we introduce and exemplify SCMs through the following definition:

Definition 2.1 (Structural Causal Model (SCM) (Pearl, 2000)). A structural
causal model (SCM) is a 4-tuple (V,U, F, P(u)), where

1. U is a set of exogenous variables, also called background variables, that
are determined by factors outside the model;

2. V={",..,V,} is a set of endogenous (observed) variables, that are
determined by variables in the model (i.e. by the variables in U U V);

3. F=A{f1,..., [n} is the set of structural functions determining V', v; +
fi(pa(vi), u;), where pa(V;) C V\V; and U; C U are the functional
arguments of f;;

4. P(u) is a distribution over the exogenous variables U.

In words, each structural causal model can be seen as partitioning the variables
involved in the phenomenon into sets of exogenous (unobserved) and endoge-
nous (observed) variables, respectively, U and V. The exogenous variables are
determined “outside” of the model and their associated probability distribution,
P(u), represents a summary of the world external to the phenomenon that
is under investigation. In our setting, these variables will represent the units
involved in the phenomenon, which correspond to elements of the popula-
tion under study, for instance, patients, students, customers. Naturally, their
randomness (encoded in P(u)) induces variations in the endogenous set V.

Inside the model, the value of each endogenous variable V; is determined by
a causal process, V; + f;(pa(v;), u;), that maps the exogenous factors U; and a
set of endogenous variables pa, (so-called parents) to V;. These causal processes
— or mechanisms — are assumed to be invariant unless explicitly intervened
on (as defined later in the section). Together with the background factors,
they represent the data-generating process according to which the values of
the endogenous variables are determined. For concreteness and grounding of
the definition, we revisit the Berkeley admission example through the lens of
SCMs.

Example 2.1 (Berkeley Admission (Bickel et al., 1975)). During the application
process for admissions to UC Berkeley, potential students choose a department
to which they apply, labeled as D (binary with D = 0 for arts & humanities,
D =1 for sciences). The admission decision is labeled as Y (y; accepted, yo
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rejected) and the student’s gender is labeled as X (x( female, x; male)®.

The SCM M is the 4-tuple (V = {X, D, Y}, U = {Ux,Up, Uy }, F, P(U)),
where Ux, Uy, Up represent the exogenous variables, outside of the model,
that affect X, Y, D, respectively. Also, the causal mechanisms F are given as
follows 2:

X + 1(Ux < 0.5) (2.4)
D« 1(Up < 0.5+ AX) (2.5)
Y « 1(Uy < 0.1+ aX + D), (2.6)

and P(Ux,Up, Uy) is such that Ux, Up, Uy are independent Unif[0, 1] random
variables.

In words, the population is partitioned into males and females with equal
probability (the exogenous Ux represents the population’s biological random-
ness). Each applicant chooses a department D, and this decision depends on
Up and gender X. The exogenous variable Up represents the individual’s
natural inclination towards studying science. Whenever A > 0 in Eq. 2.5, the
threshold for applying to a science department is higher for female individuals,
which is a result of various societal pressures. Finally, the admission decision
Y possibly depends on gender (if & # 0 in Eq. 2.6) and/or department of
choice (if 8 # 0 in Eq. 2.6). In this case, the exogenous variable Uy represents
the impression the applicant left during an admission interview. Notice that
female students and arts & humanities students may need to leave a better
interview impression in order to be admitted (depending on Eq. 2.6). |

Another important notion for our discussion is that of a submodel, which is
defined next:

Definition 2.2 (Submodel (Pearl, 2000)). Let M be a structural causal model,
X a set of variables in V| and z a particular value of X. A submodel M, (of
M) is a 4-tuple:

M, = (V,U, F,, P(u)) (2.7)

'In the manuscript, gender is discussed as a binary variable, which is a simplifi-
cation of reality, used to keep the presentation of the concepts simple. In general,
one might be interested in analyses of gender discrimination with gender taking
non-binary values.

2The given SCM can also be written as

X < Bernoulli(0.5) (2.1)
D < Bernoulli(0.5 + AX)
Y < Bernoulli(0.1 + aX + 8D).
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where
Fe={fi: Vi ¢ X}U{X « 2}, (2.8)
and all other components are preserved from M.

In words, the SCM M, is obtained from M by replacing all equations in
F related to variables X by equations that set X to a specific value z. In
the context of Causal Fairness Analysis, we might be interested in submodels
in which the protected attribute X is set to a fixed value z. Building on
submodels, we introduce next the notion of a potential outcome:

Definition 2.3 (Potential Outcome / Response (Rubin, 1974; Pearl, 2000)). Let
X and Y be two sets of variables in V and u € U be a unit. The potential
outcome/response Y, (u) is defined as the solution for Y of the set of equations
F, evaluated with U = w. That is, Y, (u) denotes the solution of Y in the
submodel M, of M.

In words, Y, (u) is the value variable Y would take if (possibly contrary to
observed facts) X is set to z, for a specific unit w. In the Admission example,
Y. (u) would denote the admission outcome for the specific unit u, had their
gender X been set to value x by intervention (e.g., possibly contrary to their
actual gender).

Notation in the Potential Outcomes (PO) Literature. For readers familiar
with the PO framework (Rubin, 1974; Rubin, 2005), we mention how our
notation translates the standard PO notation. The potential outcome under
intervention X = x is usually denoted by Y (z), corresponding to Y, in our
notation. When indicating a specific unit, in PO framework one may write
Y (x,u), corresponding to Y, (u) in our notation. That is, the argument of Y'(-)
always indicates the unit in this manuscript, and the subscript indicates the
(possibly counterfactual) intervention.

2.2 Observational & Counterfactual Distributions

Each SCM M induces different types of probability distributions, which
represent different data collection modes and will play a key role in fairness
analysis. We start with the observational distribution that represents a state
of the underlying decision-making system from which the fairness analyst just
passively collects data, without interfering in any decision-making processes:

Definition 2.4 (Observational Distribution (Bareinboim et al., 2022)). An SCM
M =(V,U, F, P(u)) induces a joint probability distribution P(V) such that
foreach Y CV,

PM(y) =3 1(Y () = y) Pw), (2.9)

u
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where Y (u) is the solution for Y after evaluating F with U = w.
In words, the procedure can be described as follows:

1. for each unit U = u, the structural functions F are evaluated following
a valid topological order, and

2. the probability mass P(U = u) is accumulated for each instantiation
U = u consistent with the event Y = y.

Throughout this manuscript, all the sums should be replaced by the
corresponding integrals whenever suitable, e.g., when underlying densities
exist®. To ground the discussion about this definition, we continue with the
example above and see how the corresponding observational distribution is
induced.

Example 2.2 (College Admissions Observational Distribution). Consider the
SCM M in Eq. 2.4-2.6. The total variation (TV for short; also called parity
gap) generated by M depends on the structural mechanisms F and the
distribution of exogenous variables P(Ux,Up, Uy ). The total variation can
be written as:

P(y|z1) — Py | o) = Pﬁéﬁ)l) - Pﬁ&ﬁ;f (2.10)

Therefore, we compute the terms P(y,x1), P(x1), P(y, xo), P(x¢) based on the
true, underlying SCM. Using Def. 2.4 and Eq. 2.4, we can see that:

Pla1) = P(Ux < 0.5) = % — P(Ux >05) = Plzy).  (211)

Using the fact that Ux, Up, and Uy are independent in the SCM, P(y,x1)
can be computed in the following way (Def. 2.4):

Py, z1) = > 1(Y(u) =1,X(u) = 1)P(u) (2.12)

=P(Ux <0.5)[P(Up > 0.5+ A\)P{Uy <0.1+a)+ (2.13)
P(Up < 0.5+ N)P(Uy <0.1+a+p5)]
[(

= 5(0.1+o¢+(%+)\)5). (2.15)

—)\)(0.1+a)+(%+>\)(0.1+a+5)] (2.14)

o
N -

3In the continuous case, the existence of densities will be sufficient to write
down many of the definitions and results found in the manuscript. However, in
such a setting the estimation of target quantities from finite samples may be more
complicated, and may require further regularity conditions such smoothness and
positivity. These challenges are not discussed in the manuscript.
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The computation above can be described as follows. Firstly, X (u) = 1 is
equivalent with Ux < 0.5 (Eq. 2.4). Secondly, when X (u) = 1, there are
two possibilities for the variable D based on Up (see Eq. 2.5). Whenever
Up > 0.5+ A, then D(u) =0, and to have Y (u) = 1, we need Uy < 0.1 + «
(see Eq. 2.6). If Up < 0.5+ A, then D(u) = 1, and to have Y'(u) = 1, we need
Uy < 0.1+ a+ f (see Eq. 2.6). An analogous computation yields that:

Py, x0) = >_ (Y (u) =1, X (u) = 0)P(u) (2.16)
11 1 1 B
=§b4ﬂ+5~®l+ﬁﬂ=§®l+§) (2.17)

Putting the results together in Eq. 2.10, the TV equals

P(y| ) - Ply| ag) = 2OLHATGHAD _50145) o 1y

2 2
=a+\3. (2.19)

In fact, after analyzing the admission dataset from UC Berkeley, a data scientist
computes the observed disparity to be*

Ply | 21) - Ply | 20) = 14%. (2.20)

In words, male candidates are 14% more likely to be admitted than female
candidates. The data scientist (who does not have access to the SCM M
described above) might wonder if this disparity (14%) means that female
applicants are discriminated against. Also, she/he might wonder how the
observed disparity relates to the SCM M given in Eq. 2.4-2.6. Our goal in this
manuscript is to address these questions from first principles. O

Next, we define another important family of distributions, over possible coun-
terfactual outcomes, which will be used throughout this manuscript:

Definition 2.5 (Counterfactual Distributions (Bareinboim et al., 2022)). Let
M =(V,U,F, P(u)) bean SCM, and let Y7,..., Yy C V,and X;1,..., X CV
be subsets of the observables, and let x1, ..., ) be specific values of X7, ..., Xj.
Denote by (Y;)., the potential response of variables Y; when setting X; = ;.
The SCM M induces a family of joint distributions over counterfactual events

YD) ays-oor (Yi)ay,:

k

PM (e i)a) = DL AW () =) Pw). (221)

u =1

4The number below was evaluated from the actual real dataset, which is compat-
ible with structural coefficients « = 0,8 = %, and A = %.
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The Lh.s. in Eq. 2.21 contains variables with different subscripts, which syn-
tactically represent different potential responses (Def. 2.3), or counterfactual
worlds. In words, the equation can be interpreted as follows:

1. For each set of subscripts and variables (X1,..., X, and Y7,...,Y%),
replace the corresponding mechanism with appropriate constants to
generate Fy,, ..., Fy, and create submodels Mg, ,..., M,,,

2. For each unit U = u, evaluate the modified mechanisms F,, ..., Fz, to
obtain the potential response of the observables,

3. The probability mass P(U = u) is accumulated for each instance U = u
that is consistent with the events over the counterfactual variables, that
is (Yl)xl = Y1,..., (Yk)xk = yi, that is, Y1 = y; in Manv o Y =y
in Mg,.

Example 2.3 (College Admission Counterfactual Distribution). Consider the
SCM in Eq. 2.4-2.6 and the following joint counterfactual distribution:

P(Yay s Yao)- (2.22)

In the submodel M, (where X = 0 is set by intervention), we have that
D, (u) =1 1is equivalent with Up < 0.5. When D, (u) =1, Y, (u) =1 if and
only if Uy < 0.1 + 8. Similarly, when D, (u) = 0, Yy, (u) = 1 if and only if
Uy < 0.1. Therefore, we have that

Y, (u) =1 < ((Up < 0.5) A (Uy < 0.1+ B3))V (2.23)
((UD > 05) A (Uy < 01))

In the submodel M, , we have

Yo, (u)=1 <= (Up <05+ M)A Uy <0.14+a+p5))V (2.24)
(Up > 05+ M)A Uy <0.1+a)).

Based on this, the expression in Eq. 2.22 can be evaluated using Def. 2.5,
which leads to

P(YarsYao) = D 1Ya, (u) = 1, Yey (u) = 1)P(u) (2.25)

u

=P(Up < 0.5)P(Uy < 0.1+ 8)+ P(Up > 0.5)P(Uy <0.1)

=0.1+ g (2.26)
Interestingly, this distribution is never attainable from observational data,
since it involves both potential responses Y7, Yz, , which can never be observed

simultaneously. O
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In most fairness analysis settings, the data scientist will only have data D in the
form of samples collected from the observational distribution. One significant
result in this context is known as the causal hierarchy theorem (CHT, for short),
which says that it is almost never possible (in an information-theoretic sense)
to recover the counterfactual distribution from the observational distribution
alone (Bareinboim et al., 2022, Thm. 1). Given this impossibility result and the
unavailability of the SCM in most settings, the data scientist needs to resort
to some assumptions in order to possibly make claims about these underlying
mechanisms, which is discussed in the next section.

2.3 Encoding Structural assumptions through Causal Diagrams

Even though SCMs are well defined and provide the semantics to different
families of probability distributions, and are essential for fairness analysis,
one critical observation is that they are usually not observable by the data
scientist. A common way of encoding assumptions about the underlying SCM is
through an object called a causal diagram. We describe below the constructive
procedure that allows one to articulate a diagram from a coarse understanding
of the SCM.

Definition 2.6 (Causal Diagram (Pearl, 2000; Bareinboim et al., 2022)). Let
M =(V,U,F, P(u)) be an SCM. A graph @ is said to be a causal diagram (of
M) if:

1. there is a vertex for every endogenous variable V; € V|
2. there is an edge V; — Vj if V; appears as an argument of f; € F,

3. there is a bidirected edge V; «----+ Vj if the corresponding U;,U; C U
are correlated or the corresponding functions f;, f; share some U;; € U
as an argument.

In words, there is an edge from an endogenous variable V; to V; whenever
V; “listens to” V; for determining its value®. Similarly, the existence of a
bidirected edge between V; and V; indicates there is some shared, unobserved
information affecting how both V; and V; obtain their values. Note that while
the SCM contains explicit information about all structural mechanisms (F) and
exogenous variables (P(u)), the causal diagram, on the other hand, encodes
information only about which functional arguments were possibly used as

5This construction lies at the heart of the type of knowledge causal models
represent, as suggested in (Pearl and Mackenzie, 2018, pp. 129): “This listening
metaphor encapsulates the entire knowledge that a causal network conveys; the rest
can be derived, sometimes by leveraging data.”
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inputs to the functions in F. That is, the diagram abstracts out the specifics
of the functions F and retains information about their possible arguments.

Furthermore, the existence of a directed arrow, e.g., V; — Vj, encodes the
possibility of the mechanism of V; to listen to variable V;, but not the necessity.
In this sense, the edges are non-committal; for instance, f; may decide not to
take the value of V; into account. On the other hand, the assumptions are not
encoded in the arrows present in the diagram but in the missing arrows; each
missing arrow ascertains that one variable is certainly not the argument of the
other. The data scientist, in general, should try to specify as much knowledge
as possible of this type. For concreteness, consider the following example.

Example 2.4 (Admissions Causal Diagram). Consider again the SCM M in
Ex. 2.1, which is unknown to the data scientist trying to analyze the existence
of discrimination in the admission process. To apply the graphical construc-
tion dictated by Def. 2.6, the data scientist starts the modeling process by
examining each of the endogenous variables and the potential arguments of
their corresponding mechanisms. For example, the mechanism

D+ fp(X,Up) (2.27)

suggests that each applicant’s department choice (D) is, possibly, a function of
their gender X, regardless of the specific form of how this happens in reality. If
that is the case, so the causal diagram G will contain the arrow X — D. Again,
an arrow in G does not commit to how the variables X and D interact, which
is significantly less informative than the true mechanism given by Eq. 2.5.
Continuing the causal modeling process, the data scientist may think about
the admission process, and consider that

Y « fy(X,D,Uy), (2.28)

which represents that admission decisions may be influenced by gender and
department choice. If that is the case, the causal diagram G will also contain
the arrows X — Y and D — Y, respectively. Again, this contrasts sharply
with how detailed the knowledge avaiable in the true SCM M is, as delineated
by Eq. 2.6. Interestingly enough, an entirely different functional form than
that in Eq. 2.6, say

Y « 1(Uy < 0.1+ 3XD), (2.29)

is also compatible with the causal diagram in Fig. 1.2.

Lastly, if the coefficient « is equal to 0 in the mechanism described by
Eq. 2.6 (ie.,Y « 1(Uy < 0.1+ aX + D)), this would still be compatible with
the causal diagram G. Again, the arrow allows for the possibility of functional
dependence but does not necessitate it. O
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2.3.1 Standard Fairness Model

Specifying the relationship among all pairs of variables, as required by the
definition of a causal diagram, is possibly non-trivial in many practical settings.
In this section, we will introduce the Standard Fairness Model, which is a
template-like model that represents a collection of causal diagrams and aims
to alleviate the modeling requirements.

Definition 2.7 (Standard Fairness Model (SFM)). The standard fairness model
(SFM) is the causal diagram Gspym over endogenous variables {X, Z, W, Y’}
and given by

-7

-
s
’

v
X

W
where the nodes represent:

« the protected attribute, labeled X (e.g., gender, race, religion),

o the set of confounding variables Z, which are not causally influenced by
the attribute X (e.g., demographic information, zip code),

o the set of mediator variables W that are possibly causally influenced by
the attribute (e.g., educational level or other job-related information),

o the outcome variable Y (e.g., admissions, hiring, salary).

Nodes Z and W are possibly multi-dimensional or empty. Furthermore, for a
causal diagram G, the projection of G onto the SFM is defined as the mapping
of the endogenous variables V appearing in G into four groups X, Z, W, Y, as
described above. The projection is denoted by Ispnm(G) and is constructed by
choosing the protected attribute, the outcome of interest, and grouping the
confounders Z and mediators W.

When X is a singleton (i.e., we have a single protected attribute), constructing
the groups X, Z, W, and Y will be possible for most practical applications. The
key assumptions of the SFM template are encoded in the absence of bidirected
edges other than X «--» Z. When there are multiple protected attributes, the
causal structure that arises may be more complex. In Appendix D we discuss
some possibilities for handling multiple protected attributes.

For simplicity, we assume X to be binary (whereas Z, W, and Y could be
either discrete or continuous). The adaptation of the framework to the setting
of multi-valued or continuous X is discussed in Appendix D, but readers are
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(a) Causal diagram of COMPAS dataset. (b) Causal diagram projected onto the SFM.

Figure 2.1: Causal diagram of COMPAS dataset and its projection onto the SFM.

encouraged to consider the binary case in the main text first, for grounding
the key concepts. Furthermore, in Appendix D.1 we discuss the conceptual
underpinnings of causal manipulations of protected attributes and explain how
one may think about hypothesized manipulations of race, gender or religion.
In this appendix, we also address some considerations from the previous works
of Kohler-Hausmann, 2018; Hu and Kohler-Hausmann, 2020.

We next ground the notion of the SFM through examples. For instance, by
setting Z = () and W = {D}, the causal diagram of the Admissions example
can be represented by Gspym. To ground the definition further, consider the
following well-known example.

Example 2.5 (COMPAS (Larson et al., 2016)). Courts in Broward County,
Florida use machine learning to predict whether individuals released on parole
are at high risk of re-offending within 2 years (Y’). The algorithm is based on the
demographic information Z (Z; for gender, Z5 for age), race X (o denoting
White, 1 Non-White), juvenile offense counts J, prior offense count P, and
degree of charge D. The causal diagram for this setting is shown in Fig. 2.1a.
The bidirected arrows between X and Zi, Z5 indicate that the exogenous
variable Ux possibly shares information with exogenous variables Ugz,,Ugz,.
This diagram can be standardized (projected on the SFM) by grouping the
mediators W = {J, P, D} and confounders Z = {Z;, Z}. Formally, the SFM
projection can be written as

Mspm(9) = (X ={X},Z ={Z1,Z2},W ={J,P,D},Y ={Y}). (2.30)

The projection is shown in Fig. 2.1b. Notice that the complete diagram G is
not needed for determining the SFM projection. The data scientist only needs
to group the confounders and mediators, and determine whether there is latent
confounding between any of the groups.

Going back to Florida, after a period of using the algorithm, it is observed
that Non-White individuals are 9% more likely to be classified as high-risk,
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Ply | 21) - Ply | o) = 9%. (2.31)

The reader may wonder if the disparity of 9% means that racial minorities are
discriminated by the legal justice system in Broward County. An important
consideration here is how much of the disparity is explained by (i) the spurious
association of race with age or gender (which potentially influences the recidi-
vism prediction); (ii) the effect of race on the prediction mediated by juvenile
and prior offense counts; or (iii) the direct effect of race on the prediction. [

As noted in the example, the SFM does not explicitly assume the causal
structure within the possibly multi-dimensional sets Z, W. In causal language,
the SFM can be seen as an equivalence class of causal diagrams®. For instance,
under the SFM, if Z = {Z;, Z5}, the relationship between Z; and Z, is
not fully specified, and it may be the case that Z; — Z5, Z5 — Z1, or the
relationship may be of another type. Secondly, the SFM encodes assumptions
about the lack of hidden confounding, which is reflected through the absence
of bidirected arrows between variable groups. We discuss in Appendix B how
the lack of confounding assumptions can be relaxed.

SA more detailed study on the properties of clustered diagrams can be found in
(Anand et al., 2021).
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Foundations of Causal Fairness Analysis

In this section, we will introduce two main results that will allow us to un-
derstand and possibly solve the problem of fairness using causal tools. First,
we will introduce in Sec. 3.1 a structural definition of fairness, which leads
to a natural way of expressing legal requirements based on the doctrines of
disparate treatment and impact. In particular, we will define the notion of
fairness measure and two key properties called admissibility and decomposabil-
ity. Armed with these new notions, we will then be able to formally state the
fundamental problem of causal fairness analysis. In words, these results suggest
that reasoning about fairness requires an understanding of how to explain
variations, in particular, how the outcome variable Y can be explained in terms
of the structural measures following variations of the protected attribute X. In
Sec. 3.2, we formalize the notion of a contrast, which allows us to understand
the aforementioned variations from a factual-counterfactual perspective. We
then prove how to decompose contrasts and re-express them in terms of the
structural basis, which lead to the explainability plane and the decomposition
of arbitrary types of contrast. The discussion is somewhat theoretical and we
will provide examples to ground and make the main points more concrete.

Example 3.1 (College Admissions, inspired by (Bickel et al., 1975)). During the
process of application to undergraduate studies, prospective students choose a
department to which they want to join (D), report their gender X (z( female,
x1 male), and after a certain period they receive the admission decisions Y
(y1 accepted, yo rejected).

In reality, how applicants pick their department ( fp) and how the university

23
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decides on who to admit (fy) is represented by the SCM M* = (V =

{X,D,Y},U = {Ux,Up,Uy}, F*,P*(U)), where the pair (F*, P*(U)) is
such that

X « Bernoulli (0.5) (3.1)

F*,P*(U):{ D <« Bernoulli (0.5 + 3 X) (3.2)

Y <+ Bernoulli (0.1 +0-X + & D). (3.3)

Based on data that it made available from the previous admissions cycle, the
school is sued by a group of applicants who allege gender discrimination. In
particular, they share with the court the following statistics:

Py | 1) — Py | 20) = 14%, (3.4)

which seems a devastating piece of evidence against the university. In words,
it seems that male candidates are 14% more likely to be admitted than their
female counterparts. The natural question that arises is what could explain
such a disparity in the observed data? Would this be a textbook case of direct,
gender-discrimination?

Despite the fact that the court does not have access to the true M*, in
reality, there is no direct discrimination at all since fy (Eq. 3.3) does not take
gender into account (note the zero coefficient multiplying X). In fact, female
applicants are more likely to apply to arts & humanities departments, which
have lower admission rates, in turn causing a disparity in the overall admission
rates.

The plaintiffs hire a team of (evil) data scientists that conduct their
own study. After some time, the team comes back and claims to have un-
derstood the university decision-making process after a series of interviews
and research, which is given by the SCM M’ = (V = {X,D,Y},U =
{Ux,Up, Uy}, F',P'(U)), where (F', P'(U)) are such that

X <« Bernoulli (0.5) (3.5)
F',P'(U):{ D < Bernoulli(0.5 + &%X) (3.6)
Y« Bernoulli(0.1+ 75 - X +0- D). (3.7)

The only difference between M* (the true set of mechanisms) and M’ (the hy-
pothesized one) is fy . Interestingly enough, the hypothesized fy (Eq. 3.7) takes
gender (X) into account while discarding any information about applicants’
department choices (D). Clearly, if this was indeed the true decision-making
process by which the university selects students, the jury should condemn the
university, since that would be a blatant case of direct discrimination. O

Interestingly, both SCMs M* and M’ generate the same total variation of
14%. Still, M*, which is the true generating model, doesn’t suggest any type of
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gender discrimination, while M’, which is false, suggests that the university’s
admissions decisions are purely based on gender. In summary, SCMs M* and
M’ are qualitatively different (in the sense that the disparity is transmitted
along different causal mechanisms), but they are indistinguishable based on
TV measure. We next formalize this issue in more generality.

3.1 Structural Fairness Criteria

To understand the issue discussed in the previous section, we start by noting
that qualitative distinctions — such as differentiating direct and indirect dis-
crimination — lie at the heart of some of the most important legal doctrines
on discrimination. In particular, the doctrine of disparate treatment asks the
question on whether a different decision would have been reached for an indi-
vidual, had she/he been of a different race or gender, while keeping all other
attributes the same (Barocas and Selbst, 2016). In causal terminology, the
question is about disparities transmitted along the direct causal mechanism
between the attribute X and the outcome Y. On the other hand, the doctrine
of disparate impact considers situations in which a facially neutral policy (that
does not use race or gender explicitly) results in very different outcomes for
racial or gender groups (Rutherglen, 1987). In this case, the concern is also
with disparities transmitted along indirect and spurious causal mechanisms.
Motivated by these legal doctrines, we can mathematically define qualitative
assessments about discrimination based on an SCM:

Definition 3.1 (Structural Fairness Criterion). Let  be a space of SCMs. A
structural criterion @) is a binary operator on the space €2, that is a map
Q : Q2 — {0,1} that determines whether a set of causal mechanisms between
X and Y exist or not, in a given SCM M € Q.

For most of the manuscript, we wish to focus on structural criteria that capture
direct, indirect, and spurious discrimination. We consider these criteria as
elementary. More refined and detailed structural notions are discussed in Sec. 6.
We now formally define the three elementary structural fairness criteria, based
on the functional relationships between X and Y encoded in an SCM.:

Definition 3.2 (Elementary Structural Fairness Criteria). Let pa(V;) and an(V;)
be the observed parents and ancestors of V; in the causal diagram G, respectively.
Let an(V;) denote the extended set of ancestors of V; that also includes the
unobserved, exogenous ancestors of V;. Let Gy denote the causal diagram G
with the outgoing edges from X removed. For an SCM M, define the following
three structural criteria:

(i) Structural direct criterion:

Str-DEx (Y) = 1(X € pa(Y)).
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(if) Structural indirect criterion:

Str-IEx (Y) = 1(X € an(pa(Y))).
(iii) Structural spurious criterion:

Str-SEx (Y) = 1(&(){) Nang, (V) # @).

For Str-DEx(Y) = 0, Str-IEx(Y) = 0, and Str-SEx(Y) = 0, we write DE-
fairx (Y), IE-fairx (Y"), and SE-fairx (Y"), respectively.

In words, the structural direct criterion verifies whether the attribute X is
a function of the mechanism fy, that is, if Y is a function of X. The structural
indirect criterion verifies whether there exist mediating variables, which are
affected by X, that in turn influence Y. These two criteria are defined in terms
of the functional relationships within M, or F. This means that they convey
causal information about the relationship among endogenous variables. Finally,
the structural spurious criterion verifies whether there exist variables (either
observed or unobserved) that both causally affect the attribute X and the
outcome Y, sometimes also referred to as back-door confounding. Different
than the previous ones, this criterion also relies on the relationships among
the exogenous variables U, which relates to the confounding relation among
the observables. We revisit the Admissions example to ground these notions:

Example 3.2 (Admissions — continued). In the SCM M defined in Eq. 2.1-2.3,
the structural direct and indirect effects can be analyzed as follows:

(i) Y is fair w.r.t. X in terms of direct effect if and only if:

a =0in {Y < Bernoulli(0.1 + aX + 8D)}. (3.8)

(ii) Y is fair w.r.t. X in terms of indirect effect if and only if:

A =0in {D « Bernoulli(0.5 + A\X)}, or

B =0 in {Y <« Bernoulli(0.1 + aX + D))} (3:9)
For the SCM M* in Eq. 3.1-3.3, we can see that direct discrimination does
not exist, since @ = 0, and therefore X ¢ pa(Y) (see Def. 3.2(i)). However,
indirect discrimination is present, since A = 1—20 and § = %, and therefore
X € an(pa(Y)) (see Def. 3.2(ii)). In contrast to this, for the SCM M’ in
Eq. 3.5-3.7, direct discrimination is present, since o = % and thus X € pa(Y),
but indirect discrimination is not, since § = 0 and thus X ¢ an(pa(Y)). O
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Other meaningful structural fairness criteria could be defined using different
logical combinations of these three elementary criteria. For instance, Y can be
called totally fair with respect to X (Fairy (Y)) if and only if direct, indirect,
and spurious fairness are simultaneously true (i.e., Fairx (Y) = DE-fairx (Y') A
IE-fairx (Y) A SE-fairx (Y')). Alternatively, causal fairness could be defined
as Causal-fairy (Y) = DE-fairx (Y') A IE-fairx (YY), which encodes the non-
existence of active causal influence from X to Y (neither direct nor mediated).

Structural definitions of fairness represent idealized and intuitive criteria
that can be evaluated whenever the true underlying mechanisms are known,
i.e., the fully specified SCM M. The importance of these measures, encoded
through the structural mechanisms (Def. 3.2), stems from the fact that they
underpin existing legal and societal notions of fairness. Therefore, they will be
used as a benchmark to understand under what conditions, and how close other
measures, which might be estimable from data, approximate these idealized
and intuitive notions.

One central question is whether there exist quantitative measures of
discrimination that can help us assess whether a structural criterion is satisfied
or not. Firstly, we define a general fairness measure that can be computed
from the SCM:

Definition 3.3 (Fairness Measure). Let Q2 be a space of SCMs. A fairness
measure p is a functional on the space €2, that is a map p : © — R, which

quantifies the association of X and Y through any subset of causal mechanisms,
in a given SCM M € Q.

Here, the definition of a fairness measure u is kept as quite general. In Sec. 3.2,
we will restrict our attention to a specific class of measures p and explain
their importance in the context of Causal Fairness Analysis. In the sequel, we
introduce a notion that represents when a fairness measure p is suitable for
assessing a structural criterion Q:

Definition 3.4 (Admissibility). Let Q be a class of SCMs on which a structural
criterion ) and a measure u are defined. A measure p is said to be admissible
w.r.t. the structural criterion @ within the class of models 2, or (Q,2)-
admissible, if:

YMeQ:QM)=0 = pu(M)=0. (3.10)

For simplicity, we will use admissibility instead of (@, Q)-admissibility whenever
the context is clear. The importance of having an admissible measure u stems
from the contrapositive of Eq. 3.10, namely, if u(M) can be measured or
evaluated and p(M) # 0, this means that the structural measure must be
true, i.e., Q(M) = 1. In other words, the measure p will act as a link between
the well-defined but unobservable structural measure and the observable and
estimable world. For concreteness, consider the following result that formalizes
the issue found in Ex. 3.1:
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Proposition 3.1 (TV is not admissible w.r.t. Str-DE, IE, SE). Let Q be the
space of Semi-Markovian SCMs which contain variables X and Y. Let pu be
the total variation measure TV, 4, (y). Then 4 is not admissible with respect
to structural direct, indirect, or spurious criteria. That is,

(Str-DE(M) = 0) =5 (TV.py0, (3) = 0), (3.11)
(Str-IE(M) = 0) =% (TV,q.0, () = 0), (3.12)
(S-SE(M) = 0) =& (TV,, 0, (y) = 0). (3.13)

In fact, the reason why the TV measure is not admissible with respect to
structural direct, indirect, and spurious criteria is because it captures the three
types of variations together.

To formalize this idea, we introduce the notion of decomposability of a
measure f, i.e.:

Definition 3.5 (Decomposability). Let €2 be a class of SCMs and p be a measure
defined over it. u is said to be £2-decomposable if there exist measures

H1s-- -5 Rk SUChthatH:f<M17~-~7Mk)7 (314)
and where f is a non-trivial function vanishing at the origin, f(0,...,0) = 0.

In words, decomposability states that a measure p can be written as a function
of measures (p;)¥_;, and that if all measures (u;)¥_; are equal to 0 for an
SCM M, then the measure p must be 0 as well. For concreteness, consider
the following example.

Example 3.3 (Covariance decomposition, after (Zhang and Bareinboim, 2018c)).
Let p be the covariance measure between random variables X and Y,

Cov(X,Y) = E[XY] - E[X]E[Y], (3.15)

which plays a role somewhat analogous to TV (and, more broadly, the observa-
tional distribution) whenever the system F and P(u) are linear and Gaussian.
Further, let the causal covariance be defined as

Covi(X,Y) =Cov(X,Y — Y,). (3.16)
Furthermore, let the spurious covariance be defined as
Covi(X,Y) = Cov(X,Y,). (3.17)
Then, we can write
Cov(X,Y) = f(Covi(X,Y),Covi(X,Y)), (3.18)
with the function f(a,b) = a + b, which satisfies f(0,0) = 0. O
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Armed with the definitions of admissibility and decomposability, we are ready
to formally define the first version of the problem studied here.

Definition 3.6 (Fundamental Problem of Causal Fairness Analysis (preliminary)).
Consider a class of SCMs €2, and let

e @1,...,Qk be a collection of structural fairness criteria, and
e 1 be a measure,

both defined over €. The Fundamental Problem of Causal Fairness Analysis is
to find a collection of measures pq, ..., px such that the following properties
are satisfied:

(1) p is decomposable w.r.t. w1, ..., fig;
(2) p1,-..,u, are admissible w.r.t. the structural fairness criteria Q1, . . ., Qk.
In other words, find measures
W1, - .., 1 that are admissible w.r.t. Qq, ..., Qx, (3.19)

respectively, and such that

,u:f(:uh'"a,uk)a (320)
where f is a non-trivial function vanishing at the origin, f(0,...,0) = 0.
For grounding this discussion, we will con-

sider that the measure p is given by the
TV! and the structural measures will be . 1
Str-{DE,IE,SE}. We refer to this problem as Wi i Wi
FPCFA(Str-{DE,IE,SE}, TV, 4 (v)). Fig. 3.1
provides a visual summary of the FPCFA
where TV is shown on the top and the struc- [S-5E] [str-DE] [str-15]
tural measures Str-{DE,IE,SE} on the bottom.
As we have just seen in Prop. 3.1, TV is not
admissible relative to each of these structural
measures. Figure 3.1: Fundamental Prob-
The FPCFA asks for the existence of a lem of Causal Fairness Analysis
set of measures (upg, pire, use) that could (TV version).
act as a bridge between TV and the more meaningful, albeit unobservable

| decm;ﬁ)awble

admissible

SCM M*

'Naturally, other types of contrasts can be used as measures instead of TV, such
as the covariance (Zhang and Bareinboim, 2018c¢) or equality of odds (Hardt et al.,
2016; Zhang and Bareinboim, 2018a).
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structural measures Str-{DE,IE,SE}. In fact, the FPCFA is solved whenever
TV can be expressed in terms of (upg, i1E, tsE), and each of these measures
is admissible w.r.t. to the corresponding structural measures. If that is the
case, the measures (upg, t1E, tse) could be seen as explaining the variations
of TV in terms of the most elementary, structural components. Interestingly,
this is both a quantitative and a qualitative exercise. From TV’s perspective,
(11)¥_, should account for all its variations, which is naturally a quantitative
exercise. From the structural measures perspective, we would like to enforce
soundness, namely, discrimination is indeed readable from the corresponding
(pi)k_,, which is a qualitative exercise.

3.2 Explaining Factual & Counterfactual Variations

In this section, the main task is studying how the variations in outcome Y can
be explained by changes of the protected attribute X. The result of this study
is what we call the population-mechanism plane, which we also refer to as the
explainability plane (Fig. 3.3). The methodology introduced by the plane will
allow us to re-express different measures of fairness in a unified manner, which
will facilitate their comparison in terms of admissibility, decomposability, and
possibly other desirable properties.

We start by introducing a quite general type of measure encoding the idea
of contrast.

Definition 3.7 (Contrast). Given a SCM M, a contrast C is any quantity of
the form

C(Co,Ch, Eo, Ev) = Elye, | E1] — Elye, | Eol, (3.21)

where Ey, F; are observed (factual) clauses and Cp,Cy are counterfactual
clauses to which the outcome Y responds. Furthermore, whenever

(a) Ey = E4, the contrast C is said to be counterfactual;
(b) Co = C4, the contrast C is said to be factual.

For simplicity?, we will focus on the binary case, in which a contrast can be
written as

P(ye, | E1) — P(yc, | Eo)- (3.22)

The purpose of a contrast is to compare the outcome of individuals who
coincide with the observed event F; in the factual world and whose values were
intervened on (possibly counterfactually) as defined by Cy, against individuals
who coincide with the observed event FEj in the factual world and whose
values were intervened on (possibly counterfactually) as defined by Cy. The

2The results in this section hold for any real-valued random variable Y.
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definition also distinguishes two special cases of contrasts. A counterfactual
contrast captures only the difference in outcome induced by the difference in
interventions Cy, Cy (since Eg = E). Complementary to this, a factual contrast
captures only the difference induced by the observed events Ey, E; (since
Cp = C1). We now show why contrasts are useful for explaining variations:

Theorem 3.1 (Contrast's Decomposition & Structural Basis Expansion). Let
M be an SCM and let C be a contrast P(yc, | E1) — P(yc, | Eo)- C can be
decomposed into its counterfactual and factual variations, namely:

P(yc, | E1) = P(yc, | B1) + P(yc, | E1) — P(yc, | Eo) -

counterfactual contrast factual contrast

(3.23)

Furthermore, the corresponding counterfactual and factual contrasts admit
the following structural basis expansions, respectively:

(a) Counterfactual contrast (Cets), where Eg = Ey = E, can be expanded as

P(yc, | E) = P(yc, | E) = Z (LYo, (u) = y) = LYo, (u) = y) )
“w unit-level difference
x  P(ul| E), (3.24)
————
posterior

(b) Factual contrast (Cgactual), where Cy = C1 = C, can be expanded as

P(yc | E1) — Pyc | Eo) = Zl Yo(u) =y) (P(u| Er) = P(u| E)).
unit outcome posterior difference
(3.25)
The decomposition and structural basis ex- SCM M*

pansion of contrasts presented in this the-
orem entail a fundamental connection of
causal fairness measures with structural
causal models. In particular, the decomposi- 5;:2&‘)"2)
tion given in Eq. 3.23 allows us to disentangle - S Y :
factual and counterfactual variations within ’ Spaceofum;% Vi hlve -
any contrast.

We note that Eqgs. 3.24 and 3.25 re-

Population P(u) Mechanisms &

step 2.
evaluation

step 1.
sampling
Unitu = (uy, ..., ping

)
Vi )

observables

Figure 3.2: Two-step generative

expresses the variations within the target
quantity in terms of the underlying units
and activated mechanisms, as referenced by
the SCM. We would like to understand these

process includes sampling a unit
from the population (left), and
evaluating it against correspond-
ing structural mechanisms (right).

qualitatively different types of variations separately. First, we will take a
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generative interpretation over how the targeted variations are realized in terms
of the SCM M = (V,U, F, P(u)). Fig. 3.2 illustrates the two-step generative
process that goes as follows:

(1) Sampling: A unit U = u is sampled from the population distributed
according to P(U);

(2) Evaluation: This unit u passes through the sequence of mechanisms F,
in causal order, until the values of the endogenous variables V' are realized.

The Lh.s. of the figure shows the sampling process while the r.h.s. represents
the evaluation process. As discussed in Sec. 2.2, if the system is not submitted
to an intervention, this leads to the observational distribution. On the other
hand, if the values of certain variables are fixed through intervention, this
leads to the corresponding counterfactual distribution.

Considering this two-step generative process, we re-examine the variations
encoded in the structural basis expansion of Thm. 3.1. For convenience, we
reproduce the equation relative to the counterfactual variations in the sequel
(Eq. 3.24), but for simplicity we restrict our attention to the positive outcome
Y =1, and replace 1(Yo(u) = y) terms in Eq. 3.24 with the shorthand ye(u):

P(yc, | E) = Py, | E) = Y (ye,(u) —yo, (u)) P(u | E).
unit-level difference posterior

First, we consider the second factor in the r.h.s. of the expression. Note that
P(u | E = e) represents the first step in the generative process in which units
who naturally arise to value E = e are drawn from the population. In fact,
depending on the granularity of the evidence F, a different fraction of the
population (or types of individuals) will be selected. For instance, if £ = {},
the (posterior) distribution P(u) is somewhat uninformative, and represents
an average when units are drawn at random from the underlying population,
regardless of their predispositions and characteristics. On the other hand, if
E = {X = z}, the posterior distribution P(u | z) would be more informative
since it now includes units that naturally would have X = x. This is less
informative compared to more specific events such as F = {X = 2,7 = z}
or E ={X =2,7 = 2,W = w,Y = y}. In fact, the Lh.s. of the figure
illustrates this increasingly more refined and informative set of events F, i.e.,
starting from picking individuals at random from the general population,
P(u), to a single individual §,, where ¢, is the Dirac delta function. Second,
we note that once the unit U = u is selected, all randomness vanishes, and
the unit will go through the set of mechanisms F. The first factor of the
expression, yc, (u) — yc, (u), describes the difference in response y between
conditions C; and Cj for a fixed realization of exogenous variables u. As
realizations of exogenous variables U determine the identity of different units
in the population, the quantity yc, (u) — Yo, (u) will be an unit-level quantity.
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In the context of fairness discussed here, consider the case when Cy = x;
and Cy = xg, which could represent the protected attribute, for instance, males
and females, or White and African-American. The quantity y., (v) — yu, (1)
measures what the change in outcome Y would be when changing the attribute
X from zq to x1, for a specific unit u. For this particular choice of Cy, C1, the
quantity captures what is known as the total causal effect of X on Y, that is
it includes all the variations from X to Y translated across causal pathways.

In summary, any counterfactual contrast Cqs can be decomposed into two
parts:

1. A unit-level difference comparing the counterfactual worlds C; vs. Cy
for a specific unit U = u. This quantity is determined by the causal
mechanisms F of the SCM, and does not depend on the distribution
P(u).

2. A posterior distribution P(u | E = e) that indicates the probability
mass assigned to unit u whenever the event £ = e. By changing the
granularity of the event FE, the space of included units is restricted,
making the measure more specific to a subpopulation (see Fig. 3.2

(Lh.s.)).

Given that the selection of units is fixed (second factor), and the only thing
that varies is the selection of the mechanisms (first factor) through the choices
of the counterfactual conditions C; and Cy, this will generate downstream
variations that are inherently “causal”. In fact, the specific instantiation of C
and Cy and F = {} (i.e., P(u)) matches the very definition of average causal
effect, P(y | do(z1)) — P(y | do(xg)).

We now re-examine the factual variations encoded in the structural basis
expansion of Thm. 3.1. For convenience, we reproduce the corresponding
equation (Eq. 3.25):

P(yo | B1) = P(yo | Eo) = yo(u) (P(u|Er) - P(u| E))

unit outcome posterior difference

In words, a factual contrast can be expanded as a sum of differences in the
posteria P(u | E1) — P(u | Ey), weighted by unit-level outcomes yc(u). We
note that the difference in posteria represents the first step in the generative
process in which two sets of units that naturally arise to values F; and Ej are
drawn from the population, respectively. Similarly to the previous discussion,
different sub-populations will be selected depending on the granularity of the
evidence E7, Ey. The scope of these events is the same but their instantiations
are different.

This can be seen as complementary when compared to the counterfactual
contrasts. Given that the mechanisms are fixed (first factor), the component



34 Foundations of Causal Fairness Analysis

that generates variations is relative to the choice of units based on the factual
conditions Fy and E7. We suggest this will generate upstream variations, which
will be “non-causal” (also called spurious), as described in more detail later on
in the manuscript. For factual contrasts, we are mostly interested in setting
Cy = Cy = z, so that X = z along all causal pathways. The contrast will then
capture the difference in probability mass assigned to u in events F; and FEj.
By definition, spurious effects are generated by variations that causally precede
X, so these cannot be captured by intervening on X. For this reason, we need
to compare events E; and Ey, which have resulted in a different instantiation
of the value of X. This factorization also suggests mathematically how causal
and spurious effects are inherently different from each other.

TV measure

Explainability plane. By decom-

posing variations via factual and ///ﬁ\\% P
counterfactual contrasts, and expand- Bruv_ o o o
/ S
ing them using the structural basis, \/ jruaT— @ 0 6
we can give the essential structure \\ g fubmm e e e
8, (] (] ]

of the measures used in Causal Fair-
ness Analysis. The approach used for ok sE
decomposing the total variation is mechanism axs
shown in Fig. 3.3, which we call the Figure 3.3: In the population axis, con-
explainability plane. As the figure il- trasts are restricted to smaller subsets of
lustrates, there are two separate axes units v in the domain /. At the same time,
of the decomposition. On the mech- along the mechanism axis, we distinguish
anism axis, we are decomposing the between direct, indirect, and spurious vari-
TV into its direct, indirect, and spu- ations.

rious variations. On the population axis, we are considering increasingly precise
subsets of the space of units I/, which correspond to different posterior distri-
butions. As we will see later, moving along the population axis will correspond
to constructing increasingly more powerful fairness measures that are better
suited for detecting discrimination.
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Total Variation Family

In this section, we introduce a family of measures that populate the explainabil-
ity plane in Fig. 3.3. Since all the measures describe variations included within
the TV measure, we refer to them as the T'V-family (part e of Fig. 1.3). In
particular, this section aims to solve the FPCFA (Str-{DE,IE,SE}, TV, ., (v))
discussed in Sec. 3. The measures in the TV-family are introduced in order.
We start with measures that quantify discrimination in the entire population
of units u (corresponding to the posterior P(u)), and reach measures that
quantify discrimination for a single unit u (corresponding to the posterior d,,,
where ¢ is the Dirac delta function).

4.1 Population-level Contrasts - P(u)

We first recall that the TV measure itself is not admissible with respect to
structural criteria Str-{DE,IE,SE}, as shown in Prop. 3.1. Specifically, the
reason for this is that the TV captures variations between groups generated
by any mechanism of association, both causal and non-causal, and does not
distinguish between them. Our first step is therefore to disentangle these
variations — the causal and non-causal (or spurious) — within the TV.

Definition 4.1 (Total and Spurious Effects). Let the total effect and experimen-
tal spurious effect be defined as follows:

TEIO,Il (y) = P(y:vl) - P(ywo) (41)
Exp-SE, (y) = P(y | #) — P(y2) (4.2)

35
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Further, we write TE-fairx (Y') whenever TE,, ., (y) = 0, or simply TE-fair
when X and Y are clear from the context. Exp-SE-fair is defined analogously.

In words, TE measures the difference in the outcome Y when setting X = z1,
compared to setting X = xy. The measure can be visualized graphically as
shown in Fig. 4.1a. In this case, Y responds to the change in X from xg to z;
through two mechanisms: (i) the direct link, X — Y, and (ii) the indirect link
via W, X — W — Y. In the context of the COMPAS dataset in Ex. 2.5, the
total effect would be the average difference in recidivism prediction had an
individual’s race been set to White (by intervention) compared to had it been
set to Non-White. Since the covariates Z vary naturally in both counterfactual
worlds (both sides of the expression), those are canceled out and Y variations
can be explained in terms of the downstream variations in response to the
change in X'

In a complementary manner, the experimental spurious effect measures the
average difference in outcome Y when simply observing that X = z, compared
to setting X = x by intervention, as shown graphically in Fig. 4.1b. Since from
Y’s perspective X has the same value x in both factors, the Y variations can
be explained in terms of the upstream effect in response to how X naturally
affected Z versus how Z varies free from the influence of X. In the COMPAS
dataset, this would mean the average difference in recidivism prediction for
individuals for whom the race is set to White by intervention, compared to
simply observing the race to be White.

Syntactically, following the discussion in Sec. 3.2, we can write these
quantities in terms of contrasts (Def. 3.7), namely:

TEa:g,wl (ZU) = C($0,$1,@,®) (43)

Based on these two notions, the TV can be decomposed into two distinct
sources of variation, which correspond precisely to its causal and non-causal
mechanisms:

Lemma 4.1 (TV Decomposition I). The total variation measure can be decom-
posed as

TVag2, (Y) = TEsy 2, (y) + (Exp-SE, (y) — Exp-SE, (y)).  (4.5)

The TE measure is also called causal effect and sometimes written in do-notation,
P(y | do(xz1)) — P(y | do(zo)). Obviously, this quantity has well-defined semantics
given an SCM, despite the fact that no one intends or believes to set any of the
protected attributes literally by intervention. Still, through the formal language of
causality, one can contemplate these distinct counterfactual realities. In particular,
one can disentangle and explain the sources of Y variations in response to changes
in X, including the ones through the causal pathways versus the non-causal ones,
along the spurious paths.
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(a) Total effect TEzq, (y)- (b) Experimental spurious effect Exp-SE, (y).
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(c) Natural direct effect NDEg o (y)- (d) Natural indirect effect NIEy; 2 (¥).

Figure 4.1: Graphical representations of measures used in TV decomposition.

Lem. 4.1 shows that the TV measure equals to the total effect on Y when X
transitions from xg to x1 plus the difference between the experimental spurious
effect of X = z; and X = x¢ 2. In other words, TV accounts for the sum of
the directed (causal) and confounding paths from X to Y. More formally, the
lemma shows that the TV is decomposable with respect to TE and Exp-SE
(recall Def. 3.5).

Interestingly, the TE itself is still not admissible w.r.t. Str-{DE,IE}, as
it captures all causal influences of X on Y, including the direct (through the
direct link X — Y) and indirect ones (i.e., paths via W).

Proposition 4.1 (TE Inadmissibility). The total effect measure TE,, ,, (y) is
not admissible with respect to structural criteria Str-DE and Str-IE.

To solve FPCFA(Str-{DE,IE,SE}, TV, 4, (y)), therefore, we will further need
to disentangle the relationships within TE. In particular, we will need to
determine the Y variations that are a direct consequence of the protected
attribute, and the ones that are mediated by other variables. In the literature,
the total effect was shown to be decomposable into the measures known as
the natural direct and indirect effects (Pearl, 2001).

2 An alternative way of interpreting this relation is by flipping TV and TE in the
equation, namely:

TEzq,21 (¥) = TVag,e0 (v) — (Exp-SE,, (y) — Exp-SE, (v)). (4.6)

This means that the total effect of transitioning X from zo to 1 on Y is equal to
the corresponding total variation of Y minus the difference in spurious effects of
X = x1 versus the baseline X = zg.
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Definition 4.2 (Natural Direct and Indirect Effects). The natural direct and
indirect effects are defined, respectively, as follows:

NDEZEo,wl (y) = P(yzl,WzO) - P(yl’o) (47)
NIELEhwo (y) = P(yan,WwO) - P(yl1) (48)

Further, we write NDE-fairx (Y') for NDE, ., (y) = 0, or simply NDE-fair
when the attribute/outcome are clear from the context. The condition NIE-fair
is defined analogously.

There are several important observations about these definitions. First in
terms of semantics, the NDE (Eq. 4.7) captures how the outcome Y changes
when setting X = z1, but keeping the mediators W at whatever value they
would have taken had X been xzy, compared to setting X = xzy by intervention.
This counterfactual statement is shown graphically in Fig. 4.1c. Note that
Y “perceives” X through the direct link (marked in blue) as if it is equal to
x1, written in counterfactual language as y,,, while W perceives X as if it
is z¢, formally, W,,. Putting these two together leads to the first factor in
Eq. 4.7, i.e., yz, w,,- The second factor in the contrast is y,,, which can be
written equivalently as yz, w,, , due to the consistency axiom. It represents
the fact that both Y and W perceive X at the same level, 29%. Whenever we
subtract one from the other, in some sense, the variations coming from X to
Y through W are the same (since it perceives X at the baseline level xg), and
what remains are the variations transmitted through the direct arrows, so the
name direct effect. The qualification natural is because W attains its value
naturally, depending on the value of X, and not by intervention.

Second, in the context of our COMPAS example, the NDE would measure
how much the predicted probability of recidivism would change for an individual
whose race was set by intervention to White, but their juvenile and prior
offense counts took a value they would have attained naturally (that is, a value
naturally attained by Non-White individuals), compared to the race being set
to Non-White. The contrast represented by the NDE (in Eq. 4.7) is known as a
nested counterfactual, since X takes distinct values when influencing different
variables. Albeit not realizable in the real world, it encodes significant types
of variations that can be evaluated from a collection of mechanisms and fully
specified SCM, and which is sometimes computable from data, as discussed in
more details in Sec. 4.3.

Third, the definition of NIE follows a similar logic while flipping the sources
of variations, as illustrated in Eq. 4.8 and Fig. 4.1d. More specifically, the
outcome Y responds to X as being x; through the direct link in both factors
of the contrast (y.,), which means that no direct influence from X to Y

3For further discussion on counterfactuals, see (Pearl, 2000, Sec. 7.2) and (Barein-
boim et al., 2022).
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is “active”. On the other hand, W responds to X when varying from levels
X = z1 to xo, formally written as W,, versus W,,; this, in turn, affects Y,
which formally is written as counterfactuals y,, w,, versus yu, w,, - 4 The NIE
is also a nested counterfactual. For the COMPAS example, the NIE would
measure how much the predicted probability of recidivism would change for
an individual whose race was set to White, had their race been Non-White
along the indirect causal pathway influencing the values of juvenile and prior
offense counts, compared against an individual whose race was set to White.

Syntactically, and following the discussion in Sec. 3.2, we can put these
observations together and write the NDE and NIE as counterfactual contrasts
(Eq. 3.24), namely: °

NDEg, 0, (y) = C(2o0, {x1, Wa, },0,0) (4.11)
NIE;, 2, (y) = C(x1, {1, Wi, },0,0). (4.12)

The notions of NDE and NIE, together with Exp-SE, in fact provide the
first solution to the FPCFA(Str-{DE,IE,SE}, TV, 4, (y)), as shown in the
next result.

Theorem 4.2 (FPCFA(Str-{DE,IE,SE}, TV, 4, (y)) Solution (preliminary)). The

total variation measure can be decomposed as

TV&UO,% (y) = NDEﬂfoﬂ’l (y) - NIExl,xo (y) + (EXp—SExl (y) - EXp—SExU (y))
(4.13)

Furthermore, the measures NDE, NIE, and Exp-SE are admissible with respect
to Str-DE, Str-IE, and Str-SE, respectively. We write

Str-DE-fair —> NDE-fair (4.14)

“The first term Yu1,W,, 1S equivalently written as y,,, which follows from the
consistency axiom (Pearl, 2000, Sec. 7.2).

SFollowing prior discussion and reversing the usual simplification back, based
on the application of the consistency axiom, these contrasts can more explicitly be
written as:

NDEzg,z, (y) = C({"EOvWIU}’{thCEo}?@vw) (49)
NIEz; 20 (y) = C({:C1, Wa, }7 {1'1, W }7 @, @) (4-10)

It’s evident when considering the NDE that the variations through the mediator W,
Wz, coincide in both sides of the contrast and end up canceling out, which means
that all remaining variations are due to the direct change of X from x¢ to x1 in the
first component of the pair. On the other hand, the direct variations in the NIE
are both equal to X = x1, which cancel out, and Y changes are in response to the
change in W, which varies differently depending on whether X = z; and X = zo, or
We, versus Wy, .
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Str-IE-fair = NIE-fair (4.15)
Str-SE-fair = Exp-SE-fair. (4.16)

Therefore, the measures
(,uDEa HIE, ,USE) = (NDEJJO,LH (y)’ NIEJJhwo (y)a EXP'SEQC (y))
solve the FPCFA(Str-{DE,IE,SE}, TV, 4, (v))-

After showing a solution to FPCFA(Str-{DE,IE,SE}, TV, ., (v)), we make
two important remarks. Firstly, the measures discussed so far admit a structural
basis expansion (Thm. 3.1) and can be expanded as follows:

Vg ( Z y(u) [P(ulzy) = P(u | x0)] (4.17)
TEqg .2, (y) = Z (Y () = Y () | P (1) (4.18)

Exp-SE, ( ZyL P(u|xz)— P(u)] (4.19)
NDEJEO,JH (y) = Z [yﬂEthD (U) — Yzo (u)]P(u) (420)
NIEq, 00 (9) = Y [Yas, iy () = Yy (w) | P(u). (4.21)

u

The factorization in the display above connects the measures to the sampling-
evaluation process discussed in Sec. 3.2, explaining the observed contrasts in
terms of unit-level quantities. We revisit this point shortly. Secondly, one of
the significant and practical implications of Thm. 4.2 appears through the
Eq. 4.14’s contrapositive (and Eqs. 4.15, 4.16), i.e

(NDE,, 4, (y) # 0) = —Str-DE-fair. (4.22)
Based on this, we have now a principled way of testing the following hypothesis:
Hy : NDE,, 4 (y) = 0. (4.23)

If the Hy hypothesis is rejected, the fairness analyst can conclude that the
dataset provides evidence of direct discrimination under the assumptions
encoded in the causal diagram. In contrast, any statistics or hypothesis test
based on the TV are insufficient to test for the existence of a direct effect.

We display in Fig. 4.2 the measures TE, NDE, NIE, and Exp-SE along the
population and mechanism axes of the explainability plane (Fig. 3.3). One may
be tempted to surmise that the FPCFA is fully solved based on the results
discussed so far. This is unfortunately not always the case, as illustrated next.
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E’ ﬁ? Ezxp-SE NDE NIE

population azis
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Figure 4.2: Placing the total, experimental spurious, natural direct, and natural
indirect effects along the population and mechanism axes that were first introduced

in Fig. 3.3.

Example 4.1 (Limitation of the NDE). A startup company is currently in hiring
season. The hiring decision (Y € {0, 1} indicates whether the candidate is hired)
is based on gender (X € {0,1} represents females and males, respectively),
age (Z € {0, 1}, indicating younger and older applicants, respectively), and
education level (W € {0, 1} indicating whether the applicant has a PhD). The
true SCM M, unknown to the fairness analyst, is given by:

U<+ N(0,1) (4.24)
X < Bernoulli(expit(U)) (4.25)
Z < Bernoulli(expit(U)) (4.26)
W <+ Bernoulli(0.3) (4.27)
Y + Bernoulh(%(X +7Z-2X7)+ W) (4.28)
where expit(z) = He,. In this case, the NDE can be computed as:
NDEIO,M (y) = P(yw17wzo) - P(ywo) (429)
= P(Bernoulli(é(l -Z)+ éW) =1) (4.30)
- P(Bernoulli(l(Z) + 1VV) =1)
1 1 1
= Z Z 1 —z)+ YT EET éw} (4.31)
z€{0,1} we{0,1}
1
= > > P [£(1=22)] as P(z,w) = P(2) P(w)
z€{0,1} we{0,1}
(4.32)
1 1 1 -1
= > Pz 1—22)] 53Xty x—= =0 (4.33)

z€{0,1}
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In other words, the NDE,, ., (y) is equal to zero. Still, perhaps surprisingly,
the structural direct effect is present in this case, that is Str-DE-fair does
not hold, since the outcome Y is a function of gender X, as evident from the
structural Eq. 4.28. O

This example illustrates that even though the NDE is admissible with respect
to structural direct effect, it may still be equal to 0 while structural direct
effect exists. One can see through Eq. 4.33 that the NDE is an aggregate
measure over two distinct sub-populations. Specifically, when considering junior
applicants, females are 20% less likely to be hired (units with (Z =0, X = 0)),
whereas for senior applicants, males are 20% less likely to be hired (units with
(Z=1,X =1)). Mixing these two groups together results in the cancellation
of the two effects and the NDE equating to 0, in turn making it impossible for
the analyst to detect discrimination using only the NDE. ¢

Another interesting way of understanding this phenomenon is through the
structural basis expansion of the NDE. In Eq. 4.20, the posterior weighting
term is P(u), which means that both younger and older applicants are included
in the contrast. The fact that this contrast mixes somewhat heterogeneous
units of the population, with respect to the decision-making procedure f, that
determines Y, motivates another important notion in fairness analysis:

Definition 4.3 (Power). Let  be a space of SCMs. Let @ be a structural
criterion and p3, po fairness measures defined on 2. Suppose that 1, pe are
(Q, )-admissible. We say that ps is more powerful than p, if

YMeQ: (M) =0 = u;3(M) =0. (4.34)
The notion of power can be useful in the
following context. Suppose there is an SCM I RN
M in the space 2 for which discrimination | decompogable
is present, Q(M) = 1, while the measure 3 : B
is admissible but unable to capture it, i.e., Iil_s;' @ @

w1 (M) = 0. Still, another measure may exist
such that ps(M) # 0. If this is the case, we Dj
would say that discrimination qualitatively el
described by criterion @ can be detected using

powerful

Gl [

admissible
measure jz, but not using 1. We would then
say that ps is more powerful than py. Putting 5= EE28) B
it differently, what Ex. 4.1 showed was that
the measure SOM M~

NDEg 2, (y) = C(xo, {3317 Wwo}a 0, 0) (4.35) Figure 4.3: FPCFA with power.

5This observation is structural, and despite of the number of samples available.
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was not powerful enough. The reason is that for the NDE, the conditioning
events are Eq = F; = (), which is not refined enough to capture the discrimina-
tion in the aforementioned example. We next re-write the definition of FPCFA
to account for the measures’ power:

Definition 4.4 (FPCFA — continued with Power). The Fundamental Problem
of Causal Fairness Analysis is to find a collection of measures p1, ..., g such
that the following properties are satisfied:

(1) p is decomposable w.r.t. p1,. .., fg;
(2) p1,-..,u are admissible w.r.t. the structural fairness criteria Q1, . . ., Qk.
(3) p1,-.., M are as powerful as possible.

We provide in Fig. 4.3 an updated, visual representation of the FPCFA
that accounts for the power relation across measures. In some sense, pick-
ing (NDE,, +, (), NIE, », (v), Exp-SE, (y)) as the measures (uhp, 415, tip)
helped to solve the original problem, but the gap between TV and the structural
measures is so substantive that certain critical instances were left undetected.
In the updated definition, the requirement is to find measures that are as pow-
erful as possible, or in other words, the closest possible to the corresponding
structural ones, Str-{DE,IE,SE}. In the sequel, we discuss how to construct
increasingly more powerful measures by using more specific events E.

4.1.1 X-specific Contrasts - P(u | x)

We will quantify the level of discrimination for a specific subgroup of the
population for which X (u) = z (for example, females) by considering contrasts
with the conditioning event F = {X = x}. In fact, we are moving inwards in
the population axis in Fig. 3.3, following the discussion in Sec. 3.2, and the
sub-population we are focusing on is more specific. More formally, this can
be seen through the structural basis expansion (Eq. 3.24) and the fact that
the posterior after using the new E becomes P(u | X = x), which generates a
family of z-specific measures:

Definition 4.5 (z-specific TE, DE, IE, and SE). The z-{total, direct, indirect,
spurious} effects are defined as follows:

I_TE’EO T (y | €
€T- DEZD,M (y | T
Z- IETl,’I'()(y | €

"T'SErl,wo (y

Py, | #) = P(Ya, | 7)

Pz, ,wey | 2) = P(Yao | @)
P(ym, | I) - P(yfl'l ‘ l’)
(

)
)=
)=
) = P(yax, \fﬂo) P(Ya, | 21).
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> 7 -z .
A %\ AN %
N N NN %
P(ys, | ) P(ya, | ) P(Jm | xo) P(ys, Iarl
(a) ETTug,2; (v | @). (b) Ctf-SEz; a0 (y)-

Figure 4.4: Graphical representations of some x-specific causal fairness measures.
The blue and red color highlight where the contrast between the quantities lies.

The z-TE is a well-known quantity and usually called the effect of treatment
on the treated (ETT, for short), and appeared in (Heckman et al., 1998), while
the z-specific DE, IE, and SE are more recent quantities, introduced in (Zhang
and Bareinboim, 2018b). 7 Some observations ensue from these definitions.
Firstly, these measures can be written as their structural basis and unit-level
factorization (Egs. 3.24 and 3.25), that is

2 TEuo00 (y | 2) = D[y () = e (W) P(u | @) (4.40)
2-DEqg; 0, (y | ) = Zu:[ywl,wzo () = Yo (W)] P(u | 2) (4.41)
1Bz, o (y [ 7) = zu:[yxl,wzo () = Yo, (W] P(u | 2) (4.42)

2-SEz, o0 (y) = z“: Yar (W)[P(u | 20) — Plu| 21)]. (4.43)

u
To simplify the notation and the comparison with the measures discussed
earlier, we re-write them as factual and counterfactual contrasts, namely:

2-TEz 2, (v | ) = C(zo, 1, %, )
DB,y 0, (y | ) = Cz0, {21, Way }, 3, 7)
) = Clay, {z1, W, }, 2, 2)
(

2-SEz, 2, (y) = C(x1, 21, 21, T0).

x-1Eq, z Y|

Secondly, we will consider each of the measures individually. Starting with
the z-TE, we note that it is simply a conditional version of the total effect
(TE) for the subset of units I for which X (u) = x. This can be easily seen by
comparing the contrast representation of the TE (Eq. 4.3) versus the a-TE

"Zhang and Bareinboim, 2018b originally named these quantities the counterfac-
tual DE, IE, and SE, but we highlight here that they are the x-specific counterparts
of their marginal effects.
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(Eq. 4.44), namely:

m_TEfovil (y | .’E) = C(:L'Oaxlaxax)
TEﬂfoﬂ?l(y): C(Sﬁo,l‘l,M),

which make it obvious that the former has Fg = E; = (), whereas the latter has
FEy = E; = x. Both measures, however, use the same counterfactual clauses
Cy = zg and C7 = z1. In terms of the sampling-evaluation process discussed
earlier, even though these measures evaluate each unit in the same way (due
to the same counterfactual clauses), the TE draws units at random from
the population, while the z-TE filters them out based on X’s particular
instantiation. The graphical visualization of the ETT is shown in Fig. 4.4a
and can be compared with that of TE in Fig. 4.1a, for grounding the intuition.
In words, note that the downstream effect of X on Y is the same, but now
Z is no longer disconnected from X, but varies in accordance to the event
X = x. As we will show later on, in the startup hiring example (Ex. 4.1), the
gender will lead to an additional source of information about age, which can
be used in the measure.

Thirdly, the counterfactual measures of direct and indirect effects, z-DE
and z-IE, are conditional versions of the NDE and NIE, respectively. These
observations are also reflected in Eqgs. 4.41-4.42, in which the only difference
compared to the general population measures is in the posterior weighting
term P(u | z), while for the NDE and NIE the weighting term is simply P(u)
(Egs. 4.20-4.21). One difference relative to the natural DE and IE is that here
a reference value, X = z, needs to be picked such that the baseline population
can be selected. For instance, in the context of comparing the direct effect
on Y from transitioning X from zy to x1, one could more naturally set the
baseline population to X = xg.

Fourthly, we consider the z-SE and its graphical representation, as shown
in Fig. 4.4b. This quantity also generalizes that of Exp-SE,(y) shown in
Fig. 4.1b. The difference between these two quantities is in the weighting term,
where P(u) — P(u | ) in Exp-SE,(y) is replaced by P(u | 29) — P(u | 1) in z-
SE4, a0 (y). Despite its innocent appearance, this a substantive difference since
the Exp-SE entails a comparison between the observational and interventional
distributions, while 2-SE is a counterfactual measure. ®

Following the above, we can finally state the main result of this section,
namely, that the quantities 2-{DE, IE, SE} solve the FPCFA.

8In terms of the Pearl Causal Hierarchy (PCH), the Exp-SE entails assumptions
only relative to associational and experimental quantities (PCH’s layers 1 and 2),
while the z-SE requires substantively stronger assumptions regarding counterfactuals
(layer 3). For a more detailed discussion, refer to (Bareinboim et al., 2022).
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Theorem 4.3 (z-specific FPCFA(Str-{DE,IE,SE}, TV, 4, (v)) Solution). The
total variation measure can be decomposed as

TVIval (y) = x_DEIO,Il (y | ‘TO) - w_IEfCl@o (y | l‘o) - x_SEIhIo (y) (448)

Further, the measures z-{DE, IE, SE} are admissible w.r.t. Str-{DE,IE,SE},
respectively. Moreover, the counterfactual family is more powerful than NDE,
NIE, and Exp-SE, respectively. More formally, the admissibility relations can
be written as:

Str-DE-fair = z-DE-fair (4.49)
Str-IE-fair = z-1E-fair (4.50)
Str-SE-fair = z-SE-fair, (4.51)

and the power relations as:

z-DE-fair o— NDE-fair, (4.52)
x-1E-fair o— NIE-fair, (4.53)
xz-SE-fair o— Exp-SE-fair. (4.54)

Therefore, the measures
(/’LDEa HIE, MSE) = (x'DEwo,w1 (y)a x'IEazl ) (y)7 x'SEwl,wo (y))
solve the FPCFA(Str-{DE,IE,SE}, TV, 4, (¥))-

Similarly to the discussion in the general-population measures (i.e., P(u)),
the significance, and practical implications of Thm. 4.3 appear through the
Eq. 4.49’s contrapositive (and Eqgs. 4.50, 4.51), i.e.:

(x-DEgq 4, (y) # 0) = —Str-DE-fair. (4.55)
Based on this, we have now a principled way of testing the following hypothesis:
Hy : 2-DE,, 4, (y) = 0. (4.56)

If the Hy hypothesis is rejected, the fairness analyst can conclude that the
dataset provides evidence of direct discrimination (under the assumptions in
the causal diagram). Naturally, similar tests can be performed regarding the
indirect and spurious structural measures.

Example 4.2 (Revisiting Startup Hiring & NDE Lack of Power). Consider the
SCM M given in Eq. 4.24-4.28. For X = x¢ we compute the z-DE as:

2-DEqq 0, (y | 20) = P (Y1, ., | 20) = P(yay | 20) (4.57)

1 1
= P(Bernoulli(g(l -27Z)+ 6W) =1|zo) (4.58)
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- P(Bernoulli(%(Z) + éW) — 1 ) (4.59)

S Y PP xo)[é(l _ 9+ éw _ éw]

2€{0,1} we{0,1}

(4.60)
-y %(1—2z)P(z\$o)=0.036- (4.61)

z€{0,1}
In words, when considering female applicants (X = xg), they are 3.6% less
likely to be hired than they would be, had they been male. In other words,
direct discrimination is present in the company’s hiring process. O

4.1.2 Z-specific Contrasts - P(u | z)

One might also be interested in capturing discrimination for a specific subset
of U for which Z(u) = z, similarly as for the a-specific measures. Here, we
will consider two possibilities in terms of sub-population selection, first when
event Z(u) = z and then when Z(u) = z, X (u) = z. Before introducing the
corresponding z- and (z, z)-specific quantities, we clarify one major difference
compared to the general and z-specific case, namely in the spurious effects. As
noted in Sec. 3, spurious effects are captured by factual contrasts of the form

P(yz | E1) = P(ya | Eo) Zym P(u| E1) — P(u| Eo)], (4.62)

which rely on comparing different units corresponding to events Ey, E;. These
spurious effects represent variations that causally precede X and Y. Interest-
ingly enough, under the assumptions of the SFM (Sec. 2.3.1), conditioning
on Z(u) = z closes all backdoor paths between X and Y. In other words,
fixing Z also fixes the possible spurious variations, and therefore on a z- or
(x, z)-specific level spurious effects are always equal to zero”. Therefore, we
can consider the following measures:

Definition 4.6 (z- and (z,z)-specific TE, DE, and IE). The z-specific and
(z, z)-specific total, direct and indirect effects are defined as

2TEugu,(y | 2) = PYar | 2) = Py, | 2) (4.65)

9Experienced readers might notice that in the presence of unobserved confounders
(UCs) we could have more explicitly defined the corresponding z-, (z, z)-specific
notions

z-SE:(y) = Py | =, 2) = P(y: | 2), (4.63)
(%, 2)-SEazq,01 (y) = P(ya [ 21,2) = P(ya | @0, 2). (4.64)

Naturally, this would account for the spurious variations brought about by the UCs.
For a more comprehensive treatment of these issues, we refer readers to Sec. 6.
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2-DEo; 0, (Y | 2) = P(Yey,wa, | 2) = Py, | 2) (4.66)
2B, a0 (y | 2) = P(Yar, Wy | 2) = P(Ya, | 2) (4.67)
(#,2)-TEzy 2, (y | 2) = P(Ya, Ix z) = P(yay | 2, 2) (4.68)
(#,2)-DEag 0, (¥ | 2) = P(Yor,wa, | 2,2) = Plyz, | 7, 2) (4.69)
(#,2)-1Ee, 00 (y | 2) = Py, W | #,2) = P(ya, | 2, 2). (4.70)

As before, the measures can be factorized using the corresponding unit-level
outcomes:

#TErg,er (U] 2) = D (Y (0) = g (W) P(u | 2) (4.71)
z-DEqg . (y | 2) = i[yzl,wmo (1) = Yao (w)]P(u | 2) (4.72)
2B 20 (y | 2) = i[yml,wm () = Ya, (w)]P(u | 2) (4.73)
(,2)-TEqgq 0, (y | 2) = zu:[yxl (1) = Yao (W) P(u | 2, 2) (4.74)
(#,2)-DEzg .z, (y | 2) = Xu:[yxl,wzo (1) = Yo (W) P(u | 2, 2) (4.75)
(@, 2)- 1, a0 (y | 2) = zu:[yxl,wm (1) = Yay (WP (u | 2, 2). (4.76)

u

These quantities can also be represented more explicitly as contrasts:

2-TEy) 2, (y | 2 C(xo,x1,2,2)

(y|2)= (4.77)
2-DEg 0, (y | 2) = C(@o, {#1, Wiy}, 2, 2) (4.78)
2-1Eg, o0 (y | 2) = Clz1, {x1, Wy}, 2, 2) (4.79)
(x,2)-TEqg, 2, (y | 2) = C(x0, 21, {x, 2}, {x, 2}) (4.80)
(x, Z)-DEmo o (Y | @,2) = Clxo, {w1, Wao }, {w, 2}, {, 2}) (4.81)
,2) =C( (4.82)

Clay, {z1, Wao 1, {z, 2}, {z, 2}).

The z-TE, 2-DE, and 2-IE (and similarly the (z, z)- counterparts) are simply
conditional versions of TE, NDE, and NIE, respectively, restricted to the
subpopulation of U such that Z(u) = z (or Z(u) = z,X(u) = z), which
is reflected in the posterior weighting term which becomes P(u | z) (or
Pu |z, z)).

Several important remarks are due. Using the sampling of units analogy
from before, we notice that z-specific effects filter on units which have Z(u) = z,
which means they provide us with a more refined lens for detecting discrim-
ination than the general population measures. Similarly, the (z, z)-specific
measures can be seen as additionally filtering the units on Z(u) = z, after they
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were filtered based on X (u) = x, which is precisely what z-specific measures
have done. Therefore, (z, z)-specific measures can be seen as more refined than
z- and z- specific ones. The only uncertainty left in terms of power is about
comparing z-specific and z-specific measures.

Interestingly, under the SFM, the (z, z)-specific measures are equal to the
z-specific measures. This result cannot be deduced from the structural basis
expansions above (Eq. 4.72-4.76), but requires the assumptions encoded in the
SFM (namely the absence of backdoor paths from X to Y conditional on Z).
This equivalence of z- and (x, 2z)-specific measures under the SFM shows that
z-specific measures are in fact more powerful than the z-specific ones, although
this need not be the case in general. Following this discussion, we are ready to
present the main result regarding the measures introduced above (while, as
discussed, for spurious effects we rely on general and a-specific notions):

Theorem 4.4 (z-specific FPCFA(Str-{DE,IE,SE}, TV, 4, (y)) Solution). The
total variation measure can be decomposed as

TVag,e, (¥ ZZ -DE;; 2 (y | 2) Zz 1B, 20 (y | 2)P(2)
— (Exp-SE, (y) — Exp-SE,, (y)) (4.83)
= Z z,2)-DEg o, (y | 2, 2)P(2 | z) (4.84)

—Z ,2)-1Eg, 2o (y [ 2, 2)P(2 [ 2) = 2-SEq, 2 (y)-

Further, the measures %-DE and (z, z)-DE are admissible w.r.t. Str-DE, whereas
z-1E and (z, z)-1E are admissible w.r.t. Str-IE. Moreover, the following power
relations hold:

(z, z)-DE-fair o— z-DE-fair o— NDE-fair, (4.85)
(z, z)-IE-fair o— z-IE-fair o— NIE-fair, (4.86)
and also

(z, z)-DE-fair o— z-DE-fair, (4.87)
(z, z)-1E-fair o— z-IE-fair. (4.88)

Additionally, under the SFM, we can say that:
2-DE-fair o— z-DE-fair, (4.89)
z-1E-fair o— z-IE-fair. (4.90)

Therefore, under the SFM, the measures

(:U'DE7 HIE, ;UfSE) = (Z'DEI07I1 (y)’ Z'IEIhIO (y)7 x'SEIhIo (y))

give a more powerful solution to FPCFA(Str-{DE,IE,SE}, TV, ., (y)) than
the z-specific ones.
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With z-specific measures in hand, we revisit Ex. 4.1, which showed that the
NDE can equal 0 even though direct discrimination exists:

Example 4.3 (Revisiting Startup Hiring & NDE Lack of Power). Consider the
SCM M given in Eq. 4.24-4.28. For Z = 0 we compute the z-specific direct
effects as:

z-DE(y | Z = 0) = P(ye,.w,, | Z=0) = P(ya, | Z=0) (4.91)
- P(Bernoulh(%(l )+ %W) —1|Z=0) (4.92)
- P(Bernoulli(l(Z) + 1VV) =11Z=0)
5 6
= > P(w)[% + éw - éw] = % (4.93)

we{0,1}

In words, when considering younger applicants (Z = 0), females are 20% less
likely to be hired than their male counterparts. O

Interestingly, note that the z-specific DE is able to detect discrimination in
the above example, and finds an even larger disparity transmitted through the
direct mechanism compared to the z-specific DE measure in Ex. 4.2.

4.1.3 More informative contrasts (V' C V-specific).

In case even more detailed measures of fairness are needed, we can consider
specific subsets of the observed variables, V' C V. For example, we might be
interested in quantifying discrimination for specific units u that correspond
to Z(u) = z,W(u) = w (for example quantifying discrimination for a specific
age group with a specific level of education). Other choices of V' than {Z, W}
are possible, but due to a large number of possibilities, we do not cover all
of them here. Instead, we define generic v’-specific measures for an arbitrary
choice of v':

Definition 4.7 (V' C V-specific TE, DE and IE). Let V' C V be a subset of
the observables V. For any fixed value of V' = v/, we define the v’-specific
total, direct, and indirect effects as:

V' -TEzqu,(y | V') = P(Ya, [ V') = P(yay | V') (4.94)
V'-DEyo 0, (y [ V') = P(Yar,w, | V) = P(yay | V) (4.95)
VT, o (Y | V') = P(Yay w,y | V') = Py, | V). (4.96)

Once more, these measures admit a structural basis expansion and can be
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written as contrasts:

’U/'DEwo,ﬂCl (y | U/) = Z[ylhwmo (U') ~ Yo (u)]P(u | ’Ul) (497)
= C(zo, {x1, Wy, },v',0") (4.98)
VT a0 (Y | 0) =D [y wiy (1) = Y, (W) P(u | ') (4.99)
= C(z1, {x1, Wy, },v',0). (4.100)

Similarly as in the z-specific case, the notion of a spurious effect is lacking
whenever Z C V', so once again we rely on previously developed notions of
spurious effects. Importantly, the v’-specific measures give an even stronger
solution to FPCFA than the z- or (z, z)-specific measures:

Theorem 4.5 (v'-specific FPCFA(Str-{DE,IE,SE}, TV, », (y)) Solution). Sup-
pose V! C V is a subset of the observables that contains both X and Z. The
total variation measure can be decomposed as

TVIOJl (y) = Zv/'DEwo,an (y | UI)P(UI ‘ x) (4101)

= VHIEa a0y | V)P | ) = 2-SEay 0, (9).

Further, the measures v'-{DE, IE} are admissible w.r.t. Str-DE, Str-IE, respec-
tively. Moreover, the v’-specific family is more powerful than the (z, z)-specific,
namely:

v'-DE-fair o— (x, 2)-DE-fair, (4.102)
v'-1E-fair o— (z, z)-IE-fair. (4.103)
Therefore, the measures
(MDEv HIE, MSE) - (U/_DE;I:O,JJl (y)a U/_IEa;l,wo (y)a x_SExl o (y))
give a more powerful solution to FPCFA(Str-{DE,IE,SE}, TV, ., (y)) than
the z- or (z, z)-specific ones.
The next example illustrates why having more flexible, v’-specific measures
can be informative, and therefore useful in some practical settings.

Example 4.4 (Startup Hiring — Version Il). A startup company is hiring em-
ployees. Let X € {zg, 21} denote female and male applicants respectively. The
employment decision Y € {0,1} is based on gender and education level W.
The SCM M is given by:

X + Bernoulli(0.5) (4.104)
W« N(14,4) (4.105)

W
Y « Bernoulli(0.1 + 5 TOL X - 1(W < 20)). (4.106)
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Since there are no confounders (Z = (), general, z-specific and z-specific effects
are all equal:

NDE, o, (y) = 2-DEyy o, (y | ) = 2-DEy, o, (v | 2) = 9.2%. (4.107)

Therefore, there is clearly direct discrimination against female employees by
the company.

The company argues in the legal proceedings that in the high-tech industry,
they are mostly concerned with highly educated individuals. In words, they
should be asked whether they discriminate highly educated female applicants,
which is represented through the quantity w-DEg, ., (y | w > 20). The quantity
in fact equals

w-DEg 4, (v | w > 20) = 0%, (4.108)

In words, the company’s claim was accurate since highly educated individuals
were not discriminated against. (I

What the example shows is that v'-specific measures can sometimes capture
aspects of discrimination that otherwise cannot be quantified using general,
x-specific, or z-specific measures.

Probabilities of causation. Remarkably, the v'-specific measures carry a
fundamental connection to what is known in the literature as probabilities of
causation (Pearl, 2000, Ch. 9). For example, by picking event v' = {xo, yo},
the measure v'-TE becomes

(#,9)-TEzy 2, (¥ | 0,%0) = P(Ya, | T0,90) — P(Yao | T0,v0), (4.109)

where y is a shortcut to Y = 1. First, note that P(y., | €o,%0) = P(y | o0, %0),
since by the consistency axiom Y =Y, whenever X = xy. Obviously, P(y |
xo,Yo) = 0 since yg # 1. Putting these together, the r.h.s. of Eq. 4.109 can be
re-written as

(Z‘, y)'TE$0,$1 (y | 360,y0) = P(y911 | x07y0)7 (4110)

which is known as the probability of sufficiency (Pearl, 2000, Def. 9.2.2). The
measure computes the probability that a change in attribute from X = zq to
X = 1 produces a change in outcome from Y = yq to Y = y;, or, in words,
how likely X’s value is to be “sufficient” for producing y;. Along similar lines,
v'-TE for the event v/ = {x1,y1} can be written as

(#,9)-TEzy 2, (¥ | 21,91) = P(Yay | 71,91) — P(Yao | 71, 1) (4.111)
=1~ P(Yzy | 21,91) (4.112)
= P(Yz, = 0] 21,31), (4.113)
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which is known as the probability of necessity (Pearl, 2000, Def. 9.2.1). The
second line of the derivation follows from the consistency axiom, and the fact
that Y =1 in the factual world. The measure computes the probability that a
change in attribute from X = z1 to X = x(y produces a change in outcome
from Y = y; to Y = yp, or how often X’s value is “necessary” for producing
y1. These two types of variations usually appear together and may be modeled
through what is known as the probability of necessity and sufficiency (PNS).
We refer readers to (Pearl, 2000, Ch. 9) for a further discussion.

4.1.4 Unit-level Contrasts - J,,

Finally, the most powerful measures to consider are unit-level measures, as
defined next:

Definition 4.8 (Unit-level TE, DE, and IE). Given a unit U = w, the unit-level
total, direct, and indirect effects are given by
U_TE-@O,QH (y(u)) = Y, (U) — Yo (U) = C(Ilfo, Zy, U, u) (4114)
u-DEgz, 2, (y(u)) = Yz W, (u) — Yz (U) - C(xO’ {xl, Wwo}’ u, u) (4'115)
u-TBq, 00 (Y(1)) = Yoy Wy () = Yo, (u) = C(@1, {21, Wao by u, u). (4116)

For unit-level measures the posterior distribution that is used as a weighting
term is d,, where ¢ is the Dirac delta function. The unit-level measures can
be seen as the canonical basis from which all other measures are expanded.
They also give the strongest theoretical solution to the FPCFA, once again,
with the help of z-specific spurious effect developed earlier:

Theorem 4.6 (Unit-level FPCFA(Str-{DE,IE,SE}, TV, 4, (y)) Solution). The
total variation measure can be decomposed as

TV, () = O u-DEoq 2, (y(w) Plu | ) (4.117)
=3 Ty (y(w) Pt | 7) = 3-SEq, o, (y).

Further, the measures u-{DE, IE} are admissible w.r.t. Str-DE, Str-IE, respec-
tively. Moreover, the u-specific family is more powerful than the v'-specific,
namely:

u-DE-fair = v'-DE-fair, (4.118)
u-1E-fair = o/-IE-fair. (4.119)

Therefore, the measures

(MDE7 MIE, MSE) = (U'DEwo,wl (y)a u-IEJZl,IO (y>7 x'SEwl,xo (y))
give the most powerful solution to FPCFA (Str-{DE,IE,SE}, TV, 4, (y)).



54 Total Variation Family

The unit-level measures represent the most refined level at which discrimination
can be described. In fact, introducing these measures also brings us to the
final level of the population axis of the explainability plane (Fig. 3.3). Recall,
the population axis ranges from the general population measures (with a
posterior P(u)), all the way to the deterministic measures which consider a
single unit (with a posterior J,,), eliciting a range of measures which may be
useful for fairness analysis. We next move onto giving a systematic overview
of the TV-family of measures that was introduced in this section.

4.2 Summary of the TV-family & the Fairness Map

To facilitate comparison and understanding after introducing the measures of
the TV-family, we show how they can be more explicitly written as contrasts:

Lemma 4.7 (TV-family as Contrasts). The TV-family of causal fairness mea-
sures is a collection of contrasts C(Cy,Cy, Ep, E1) (Def. 3.7) that follow the
specific instantiations of counterfactual and factual clauses, Cy, C1, Ey, E1, as
described in Tab. 4.1.

A few things are worth noting rel- ’ H Measure ‘ Co ‘ s ‘ E ‘ E, ‘
ative to this taxonomy. First, the TVoyor 0 0 To | o1
measures are grouped into five cat- | Z|" Exp-SE, | = z 0|z
egories, based on the granularity < TE. .2, 0 ) 010
of the events Ey, F. For each of | NDE,, ., | o | 21, Way | 0 | 0
the contrasts, we define a criterion NIE;2, | @o| 20, Wa, | 0 | 0
based on the resulting measure. ol TEe 0, | 20 ! z |z
Namely, we say Y is fair with re- || 2-SEeqz, | 2o %o To | 71
spect to X in the z-TE measure | ™ x'gg%”"l To *1 rye
if -TEg 2, (y | ) = 0 Vz. We a;—IE e ig i;’%z" i ;

. . . T0o,T1 - ) Z1

W.I‘l.te x-TE-fair X(Y) for this con- o > TEaye | 7o o= P e
dition, or x-TE-fair, for short. I 2DEy 0, | 20| 21, Way | 2 | 2
Further note that Tab. 4.1 | N|T20E, . | 20| 20, Wa, | 2 | 2
has a distinct structure. In par- >V -TEgpz, | @o 1 v | v
ticular, the contrasts correspond- | Y[ v-TE; ., | 2o z1 o
ing to TE, DE, and IE measures > V-DEgya, | @o| 21, Wa, [V |V
have repeating (equal) counterfac- V1B 0, | @0 | 20, Way | V" |V
tual clauses Cy and C4, whereas =L TEwp e | %o o1 u | u
the conditioning event E changes. I N ! upu
Contrasts corresponding to the UDBoyoy | 20| 21, Woy [ u | U
u-1Eg ) o, zo | o, Way | w | u

SE measures, as was noted in
Thm. 3.1 and in previous sections, Table 4.1: Measures of fairness in the TV-
are only possible at the popula- family.

tion and z-specific level. Mathematically, the measures in the table, but for
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the spurious effects, can be written more succinctly as

E-TEqg 0, (y | E) =C(xo,21,E, E)
E-DEg0,(y | E) = C(xo,{z1, Wy, }, E, E)
E-dEz 0, (y | E) = C(zo,{z0, Ws, }, E, E)
for E € {0,z,2,v,u}. (4.120)

Apart from the overarching structure underlying the measures, as described in
Tab. 4.1, there is more structure across them as delineated in the next result,
which comes under the rubric of the fairness map.

Theorem 4.8 (Fairness Map). The total variation (TV) family of causal mea-
sures of fairness admits a number of relations of decomposability, admissibility,
and power, which are represented in what we call the Fairness Map, as shown
in Fig. 4.5.

In words, the measures of the TV-family satisfy an entire hierarchy of
relations in terms of the properties discussed so far, namely, admissibility,
decomposability, and power. This hierarchy is one of the main results of this
manuscript. There are several observations worth making at this point. First,
each arrow in Fig. 4.5 corresponds to an implication, and the full and more
syntactic version of the map is provided in the Appendix A.1, including the
proofs. There are different ways of reading the map, and perhaps the most
natural one is to navigate along the two axes, mechanisms and population,
which match the dimensions of the explainability plane discussed earlier
(Fig. 3.3/Sec. 3.2).

Navigating the Map. Note that the mechanism axis is partitioned into two
categories: Composite and Atomic measures, as indicated by the vertical line
in the map. Atomic measures (direct, indirect, spurious) capture the most
refined notions of fairness when working with the Standard Fairness Model
(SFM). Composite measures, on the other hand, include measures of total (or
causal) effect, and the total variation (TV) measure. Measures of total effect
are composite since they capture both direct and indirect variations, whereas
the TV measure is composite as it includes direct, indirect, and spurious
variations.

In a complementary manner, the population axis can also be divided
into two categories: Structural versus Empirical notions, as indicated by the
horizontal line on the map. First, there are the elementary structural fairness
criteria (as defined in Def. 3.2), representing idealized, qualitative notions of
discrimination that can be directly evaluated using an SCM. Additionally,
the unit-level measures, which quantify discrimination for each unit of the
population, are the measures of fairness closest to the structural notions.
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Figure 4.5: Fairness Map for the TV-family of measures. The horizontal axis
represent the mechanisms (causal, spurious, direct, and indirect), and the vertical
axis the events that capture increasingly more granular sub-populations, from gen-
eral (P(u)) to unit level, and structural. The arrow = indicates relations of
admissibility, o— of power, and --» of decomposability.

While these can be computed directly from the SCM, they are almost never
obtainable in practice. Secondly, the empirical measures are positioned above
the structural notions. These may be estimated from the available dataset
combined with assumptions about the underlying generative processes.

Given this initial structure of the Map, we note this is a preliminary
characterization, and then navigate through the axes in a more detailed
manner, along each of them separately.

Population Axis (vertical) — Admissibility & Power Relations. When read-
ing the map vertically, from bottom to top, one can find all power and admis-
sibility relations from Thm. 4.2 to Thm. 4.6. For example, the last column of
the map (“indirect”) shows that

Str-IE = w-IE o— v-IE o— 2-IE o— z-IE o— NIE. (4.121)
In words, this says that:

(i) unit IE is admissible w.r.t. structural IE;
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(ii) unit IE is more powerful than v'-IE, which is more powerful than z-1E,
which is more powerful than z-1E, which is more powerful than NIE;

(iii) by transitivity of the admissibility and power relations, it follows that
every measure in the column is admissible w.r.t. structural IE.

The other columns of the map can be interpreted in a similar fashion.

Mechanisms Axis (horizontal) — Decomposability Relations. When read-
ing the map horizontally, from the right to the left, the decomposability
relations are encoded. For example, consider the first row of the map (“gen-
eral”), it shows that

TE --» NDE A NIE (4.122)
TV --» TE A Exp-SE, (4.123)

In words, this says that:

(i) the total variation (TV) can be decomposed into the total (TE) and ex-
perimental spurious effects (Exp-SE),

(ii) the total effect (TE) can further be decomposed into natural direct effect
(NDE) and natural indirect effect (NIE),

(iii) More explicitly, these relations can be combined and written as:

TV --» NDE A NIE A Exp-SE. (4.124)

More strongly, this can be stated for every level of the population axis
(i.e., the TE is decomposed into DE and IE at every level), as shown next:

Corollary 4.9 (Extended Mediation Formula). The total effect admits a decom-
position into its direct and indirect parts, at every level of granularity of event
F in the Fairness Map in Fig. 4.5. Formally, we can say that

TEyo,2, (y) = NDEq, 4, (y) — NIEg, 2, (y) (
@-TEqy 2, (y | ©) = 2-DEgq o, (y | ©) — 2-1Eq, 4, (y | @) (4.126
2-TEqq0, (y | 2) = 2DEgq 0, (y | 2) = 2-1Eg, 40 (y | 2) (
V'-"TEqqg e, (y | ') = '-DEgy 4, (y | 0') = 0"-IEqg, 4, (y | ¥') (
u-TEqq 2, (y(1)) = u-DEqg 2, (y(u)) — w-TEq, 4 (y(u)). (4.129
Furthermore, the TV measure admits different expansions into DE, TE,
and SE measures (as shown in Thm. 4.2-4.6). The importance of these decom-

positions was already stated earlier, as they played a crucial role in solving
the decomposability part of the FPCFA.
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In summary, the Fairness Map represents a general, theoretical solution
to the FPCFA, and shows how the gap between the observed (TV in the top
left of the map) and the structural (bottom of the map) can be bridged from
first principles. The map therefore, in principle, closes the problem pervasive
throughout the literature, as formalized earlier in this manuscript.

4.3 The ldentification Problem & the FPCFA in Practice

The Fairness Map introduced in Thm. 4.8 contains various admissible measures
w.r.t. to different structural mechanisms. All these measures are well-defined
and computable from the underlying data-generating model, the true SCM
M. However, M is not available in practice, which was the very motivation
for engaging in the discussions so far, and finding proxies for the structural
measures. One key consideration that follows is which of these measures can be
computed in practice, given (1) a set of assumptions .4 about the underlying
M and (2) data from past decisions generated by M. This question indeed can
be seen as a problem of identifiability (Pearl, 2000, Sec. 3.2.4). We formalize
this notion considering the context of this discussion.

Definition 4.9 (ldentifiability). Let M = (V,U, F, P(u)) be the true, generative
SCM, A a set of assumptions, and P(v) the observational distribution generated
by M. Let Q4 the space of all SCMs compatible with A. Let ¢ be a query
that can be computed from M. The quantity ¢ is said to be identifiable from
Q4 and the observational distribution P(V) if

VM, My € Qy s AM = AM2 and (4.130)
PMi(V) = PM(V) = ¢(My) = $(My). (4.131)

In words, if any two SCMs agree with the set of assumptions (A) and also
generate the same observational distribution (P(v)), then they should agree
with the answer to the query ¢.

A query ¢ is identifiable if it can be uniquely computed from the combination
of qualitative assumptions and empirical data. In fact, the lack of identifiability
means that one cannot compute the value of ¢ from the observational data
and the set of assumptions, i.e., the gap between the true generative process,
M, and the feature that we are trying to obtain from it, ¢, is too large, and
cannot be bridged through the pair (A, P(v)). In practice, one common way
of articulating assumptions about M is through the use of causal diagrams.
Whenever the causal diagram is known, we can then write the following:

QY9 = {M : M compatible with G}, (4.132)
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where compatibility is related to sharing the same causal diagram, which
encodes qualitative assumptions, following the construction in Def. 2.6'°.

Example 4.5 ((Non-)ldentifiability of Measures). Let Q9 be the space of SCMs
that are compatible with the causal diagram G

When considering the quantities TE,, 5, (y) and NIE;, ., (y) in this context,
we can say that:

(i) quantity TE,, 4, () is identifiable over Q,
(ii) quantity NIE,, ., (y) is not identifiable over Q9.
In fact, for any SCM in Q9 we have that TE,, ., (y) is equal to
P(y | z1) = P(y | o). (4.133)

To show that NIE,, ., (y) is not identifiable, consider the following two SCMs:

X <+« Uy (4.134)
M= W <« 1(UD <02404X + O.4Uwy) (4.135)
Y <« 1(UY <0.1X +MW+MUwy), (4.136)
X <« Uy (4.137)
My =« W «—1Up <02+04X +0.4Uwy) (4.138)
Y <+ 1(UY < 02X 4+01W -‘rMUW}/), (4.139)

where Ux,Up,Uwy and Uy are independent, exogenous variables, with
UXaUWY binary with P(UX = 1) = P(UWY = 1) = %, and UD,UY dis-
tributed uniformly Unif[0, 1]. Both M, My are compatible with G and hence
are in Q9. The reader can verify that the two SCMs generate the same

observational distribution. However, computing that

My _ M: _
NIEM, (y) = 28% # NIEX2, (y) = 4% (4.140)
shows lack of identifiability in the given context. O

10For a more formal account of this notion, see discussion on CBNs in Bareinboim
et al., 2022, Sec. 1.3)
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Following the discussion in Sec. 2.3, we noted that one SCM M induces a
particular causal diagram G. Still, specifying the precise G may be non-trivial
in practice, and we hence introduced the standard fairness model (SFM). In
this case, we will be particularly interested in the set of SCMs defined by
the SFM projection of the causal diagram, which is called Q%M. Reasoning
within the Q%M space has two interesting consequences. First, identification
is in principle more challenging since this context is generally larger, containing
more SCMs than the true Q9. Given that more SCMs implies the possibility
of finding an alternative SCM that agrees with the assumptions and P(v),
and disagrees in the query, identifiability will in general be less frequent. Still,
second, since the SFM projection encodes fewer assumptions than the specific
causal diagram G, from the fairness analyst’s perspective, it will be in general
easier to elicit such knowledge to construct a diagram. This situation is more
visibly seen through Fig. 4.6.

We now extend the FPCFA to account for the identifiability issues discussed
above:

Definition 4.10 (FPCFA continued with Identifiability). [, @ as before] Let M
be the true, unobserved generative SCM, A a set of assumptions, and P(v)
the observational distribution generated by M. Let Q4 the space of all SCMs
compatible with A. The Fundamental Problem of Causal Fairness Analysis is
to find a collection of measures p1, ..., ug such that the following properties
are satisfied:

(1) p is decomposable w.r.t. p1,. .., fg;

(2) p1,-.., 1k are admissible w.r.t. the structural fairness criteria Q1, . . ., Q.

(3) w1,-..,u, are as powerful as possible.

(4) p,- .., are identifiable from the observational distribution P(v) and
class QA

The first question we ask is about solving Step (4) of FPCFA when having
the full causal graph G. To this end, we state the following theorem:

Theorem 4.10 (Identifiability over 29). Let G be a causal diagram compatible
with the SFM and let Q9 be the context defined based on G. Then,

(i) TE, NDE, NIE, and Exp-SE are identifiable,
(ii) 2z-TE, z-DE, z-IE, and z-SE are identifiable,

(iii) 2-TE, 2-DE, and 2-IE are identifiable,
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(iv) if {W, Y} NV’ %0, then v'-TE , v/-DE , and v'-IE are not identifiable
except in degenerate cases, and excluding the measures (z,w)-DE and
(z,z,w)-DE which are identifiable,

(v) u-TE, v-DE, and w-IE are not identifiable except in degenerate cases.

By degenerate cases we refer to instances in which a measure is equal to 0 and
identifiable from the absence of pathways (edges) in the graph.

For example, v'-DE or u-DE could be identifiable (and equal to 0) if the causal
diagram G does not contain the arrow X — Y (this is a case we call degenerate
in the above theorem). In summary, we can claim that general, z-specific, and
z-specific measures are identifiable over Q9 whenever G is compatible with
the SFM. However, v’ or unit level measures are in general not identifiable,
without additional assumptions.

The important next question we ask is
whether there is a gap in solving the FPCFA
under the context Q5FM compared to Q9.
In the first instance, as shown in the follow-
ing theorem, the answer is negative, show-
ing formally show why our definition of the
SFM is indeed sensible in the context of
FPCFA(Str-{DE,IE,SE}, TV, 4, (¥)):

SCM Space Causal Diagram Space

Sub-Space
Qs

SFM-compatible,
diagrams

Sub-Space
Qb Diagram -
of M

Figure 4.6: Spaces of SCMs

Theorem 4.11 (Identifiability over Q5FM &
Soundness of SFM). Under the Standard Fair-
ness Model (SFM) the orientation of edges
within possibly multidimensional variable
sets Z and W does not change any of gen-
eral, z-specific or z-specific measures. That
is, if two diagrams G; and G have the same
projection to the Standard Fairness Model,
ie.,

Hsrm(G1) = Hsrm(G2)

then any measure p(P(v),G) will satisfy

(4.141)

(left) and Causal Diagrams (right).
(Left) Each point corresponds to
a fully instantiated SCM. The
SCMs compatible with the dia-
gram G are shown in light blue,
and the ones with the SFM in
dark blue. (Right) Each point cor-
responds to a causal diagram. The
lightest green dot corresponds to
the true diagram G, while the ones
in the light green area correspond
to different diagrams compatible
with the SFM assumption.

p(P(v),G1) = p(P(v), G2) = p(P(v), Gspm)-

That is, if measures 1, .. ., t in Step (4) of FPCFA in Def. 4.10 are identifiable
over the class of SCMs Q9 corresponding to a causal diagram G, then they are
also identifiable over the class of SCMs Q%FM corresponding to the diagram’s
SFM projection Gspym. The notation u(P(v),G) indicates the measures are
computed based on the observational distribution P(v) and the causal diagram
G (as opposed to being computed based on the SCM M as before).

(4.142)



62 Total Variation Family

The proofs of Thm. 4.10 and 4.11 are given in Appendix A.2, together with
a discussion on relaxing the assumptions of the SFM, and a discussion on
the estimation of measures. The theorem shows that the SFM projection of a
diagram Ggpy is equally useful as the fully specified diagram G for computing
any of the general, xz-specific or z-specific measures in Lem. 4.7. That is,
specifying more precisely the causal structure contained in multivariate nodes
Z and W would not change the values of the different measures. The SFM
projection Gspy can be understood as a coarsening of the equivalence class of
SCMs compatible with the graph G. Perhaps surprisingly, this coarsening does
not hurt the identifiability of some of the most interesting measures. Moreover,
for computing the v’-specific and unit-level measures, additional assumptions
would be necessary, even if the full diagram G was available (see Appendix A.2
for more details). The key observation is that v’-specific measures require the
identification of the joint counterfactual distribution P(v} ,v;, ), and these
two potential outcomes are never observed simultaneously. Therefore, unless
we are interested in v’-specific or unit-level measures, we can simply focus on
constructing the Gspy and not worry about full details of the diagram G. The
formulation of FPCFA with identifiability uncovers an interesting interplay of
power and identifiability, in which increasingly strong assumptions are needed
to identify more powerful measures.

Sensitivity Analyses. Identification results derived in the preceding section
are based on the assumptions encoded in the SFM. However, if the lack-of-
confounding assumptions of the SFM (encoded in the absence of bidirected
edges) are violated, estimating effects based on the derived identification
expressions may lead to incorrect results. In such settings, a possible approach
is to perform a type of sensitivity analysis, in which we attempt to understand
how much the effect estimates would change if unobserved confounding was
actually present. For instance, we may be interested in how the estimate of, say,
the direct effect would change for varying strengths of unobserved confounding
between the attribute X and the outcome Y (this would correspond to a
bidirected X «--» Y edge). This type of approach would allow one to quantify
how robust the effect estimates are with respect to violations of the SFM
assumptions. There is important previous literature on this topic, but the most
common focus is on conditional total effects in a setting with no mediators (i.e.,
the z-TE quantity in Eq. 4.65 for an SFM with W = }) (Ding and VanderWeele,
2016). Other interesting works focus mainly on the linear setting (Cinelli and
Hazlett, 2020; Cinelli et al., 2019). Therefore, adapting the existing methods
to the setting of estimating z-specific or population-level direct, indirect,
and spurious in a non-parametric fashion represents an important technical
challenge that we leave for future work.
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4.4 Other relations with the literature

Equipped with the Fairness Map, which was the culmination of understanding
the relationship between a multitude of measures, we can now analyze the
connection of Causal Fairness Analysis with some influential previous works
that articulated other measures in the literature. In particular, we will discuss
the criteria of counterfactual fairness (Sec. 4.4.1), individual fairness (Sec. 4.4.2),
and predictive parity (Sec. 4.4.3).

4.4.1 Criterion 1. Counterfactual Fairness

One criterion that has received considerable attention in the literature is
called counterfactual fairness (Kusner et al., 2017). Noteworthy in terms of
terminology, the name counterfactual fairness is a misnomer, and may be
misleading, as there are various measures that are counterfactual in nature and
could be employed to reason about fairness, following the previous discussion
and the Fairness Map (Fig. 4.5). In this section, we elaborate on some important
limitations of the criterion.

To begin with, the definition of the proposed criterion is somewhat ambigu-
ous in regard to whether it represents a unit-level quantity or a probabilistic-
type of counterfactual'!. To understand the issue, we list in the sequel three
possible definitions compatible with the original paper, and then discuss their
interpretations:

(i) Counterfactual Fairness — Unit-level (Ctf, (u)):

fair

Yo () — yz(u) =0, Va,2';u e l. (4.143)

f(up)):

(ii) Counterfactual Fairness — Unit-level /probabilistic version (Ctfy,;’

P(yz(u) ‘ X:x,W:w) :P(ym’(u) | X :‘T,W:w)a V:z:,:r/,w.
(4.144)

(iii) Counterfactual Fairness — Population-level (thfgr) ):

Ply, | X =2, W =w) =Py | X =2, W =w), Vao,z’,w. (4.145)

In fact, the paper uses the unit-level probabilistic version (thg:if)) as its core

definition (Kusner et al., 2017, Def. 5), which is a direct translation to our
notation so as to make the context and comparisons more transparent. 12

"Eor various reasons, probabilistic measures tend to be discussed in the literature.
12In particular, the original paper uses A for the protected attribute, where we
use X, and it uses X for the remaining attributes where we use W.
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The authors “emphasize that counterfactual fairness is an individual-level
definition, which is substantially different from comparing different individuals
that happen to share the same “treatment” X = x and coincide on the
values of W = w” (Kusner et al., 2017, Sec. 3). Interestingly, this seems a
deliberate choice and suggest a unit-level definition of fairness. Importantly,
the probabilistic unit-level (thfg?rp ) and the unit-level definition (thfalr) are
equivalent, as shown next:

Proposition 4.2 (thf:l':) = thfalr) The unit-level counterfactual fairness
(Eq. 4.143) and the unit-level /probabilistic counterfactual fairness (Eq. 4.144)

criteria are equivalent.

This proposition suggests that the notation used in the original definition of
the counterfactual fairness criterion, thlga]’;), entails some confusion. In words,
once the unit U = u is specified, as originally stated in the criterion, Y, (u) is
fully determined. It is therefore redundant, and there is no need for considering
or conditioning on event X = z, W = w, as this is implied by the choice of
the unit u.

However, the authors also state that “the distribution over possible pre-
dictions for an individual should remain unchanged in a world where an
individual’s protected attributes had been different” (Kusner et al., 2017,
Sec. 1). As explained above, if the unit U = u is known, there are no proba-
bilities involved, and the statements are deterministic. Therefore, under the
alternative description the authors provide, a different formulation of the
criterion is needed. In fact, if the goal is to have a probabilistic counterpart of
Eq. 4.143, as the above statement might lead one to think, then the unit U =u

should be removed altogether, which leads more explicitly to thfalr definition,
as displayed in Eq. 4.145. Interestingly, using structural basis expansion from
Thm. 3.1, we can show the relation of the unit- and the probabilistic-level

definitions:

Proposition 4.3 (Ctf®)

£, IS @ probabilistic average of thfalr) Consider the fol-
lowing measure:

(2,w)-TE; o (y |z, w) =Plyy | X =2, W =w) — Py, | X =2, W = w).
(4.146)

Then, the Ct")

£ Criterion is equivalent to (z, w)-TE, o (y | z,w) =0, Va,2’, w.

f(P

i Criterion can be written as

Furthermore, the measure underlying the Ct
u

In words, Prop. 4.3 shows that probabilistic counterfactual fairness criterion
takes an average of the unit level differences y,/(u) — y.(u), weighted by the
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posterior P(u | z,w), and requires the average to be equal to 0. Note the
difference between this definition and the unit-level definition, which requires
every unit-level difference y, (u) — y.(u) to be 0.

After explaining the difference between the two possible and qualitatively
different interpretations of counterfactual fairness, and clearing up the nota-
tional confusion with respect to fixing a unit U = u, we now discuss somewhat
more serious issues limitations of the criterion, including from a conceptual,
technical, and practical viewpoints. In fact, the issues listed below apply to

both the Ct£") and CtfP)

fair fair
three major points being:

interpretations of counterfactual fairness, with the

1. inadmissibility of thgi)r and CtfP)

fair

with respect to Str-{DE,IE,SE},
2. lack of accounting for spurious effects, and

3. hardness/impossibility of identifiability.

Limitation 1. Inadmissibility w.r.t. Str-{DE,IE,SE}

As formally shown in the following result, the counterfactual fairness measure
is inadmissible w.r.t. any of the structural criteria:

Proposition 4.4 (Unit-TE, (x, w)-TE not admissible). The unit-level total effect
(unit-TE, 4, (y)) and the (z, w)-specific total effect ((z, w)-TEz 4, (y | z,w))
are both not admissible w.r.t. the structural direct, indirect, and spurious
criteria. Formally, we write

Str-DE-fair =& unit-TE-fair, Str-DE-fair =& (z,w)-TE-fair  (4.148)
Str-1E-fair =& unit-TE-fair, Str-IE-fair =4 (z,w)-TE-fair  (4.149)
Str-SE-fair =4 unit-TE-fair, Str-SE-fair =& (z,w)-TE-fair.  (4.150)

The importance of this result stems from the fact that even if one is able to
ascertain that

Ya, (W) =Yg (u) =0 Vu, or
P(ys, | X =2, W =w)=P(ys, | X =2, W =w) =0 Va,uw,

it could still be that case that neither the direct nor the indirect (nor the
spurious) effects are equal to 0. The broader discussion around the Fairness
Map, and the idea of decomposability of measures into admissible ones was
introduced precisely to avoid such situations. The next example highlights this
issue more vividly.
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Example 4.6 (Startup Hiring Continued - Salaries). The startup company from
Ex. 4.1 has closed the hiring season. In the hiring process, the company
achieved demographic parity, which means in this context that 50% of new
hires were female. Now, the company needs to decide on each employee’s salary.
In an attempt of the company to be fair, each employee is evaluated on how
well they perform their tasks. The salary Y is then determined based on this
information, but, due to a subconscious bias of the executive determining
the salaries, gender also affects how salaries are determined. The SCM M*
corresponding to this process is:

X ¢ Uy (4.151)

W+ —-X+Uw (4.152)

Y+~ X+W4+Uy. 4.153

Fo PH(U) - Y (4.153)
Ux € {0,1}, P(Ux = 1) = 0.5, (4.154)

Uw, Uy ~ N(0,1). (4.155)

For any unit u = (uy, Uy, y), We can compute that

Yoy (W) — Yz (u) = (14 (=1 + wy) + uy) — (0 + (=0 + uy) +uy) =0,

Yzq (u) Yz (“)

(4.156)

showing that unit-level total effect is 0. Furthermore, for each choice of X =
x, W = w, it is also true that

Py, | X =2, W=w)—P(ys, | X =2, W =w) =0. (4.157)

Therefore, both interpretations of the counterfactual fairness criterion are
satisfied. However, direct discrimination against female employees still exists
since the f, mechanism in Eq. 4.153 assigns a higher salary to male employees.
On the other hand, the mechanism f,, in Eq. 4.152 shows that female employees
are better at performing their tasks, and should therefore be paid more.
Nevertheless, the superior performance of female employees in performing their
tasks is canceled out by the direct discrimination favoring males (as witnessed
by Eq. 4.156). In effect, they are paid the same as they would be had they
been male. O

The inability of total effect to detect direct and indirect effects stems from
the fact that the total effect is decomposable (see Cor. 4.9). The example
above illustrates the first critical shortcoming of the criterion proposed by
Kusner et al., 2017, as in any other composite measure, and any optimization
procedure based on it, i.e., zeroing the Ctfg,;, measure, may lead to unintended
side effects and discrimination if implemented in the real world.'?

13 A formal result of this form is discussed in Thm. 5.1.
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Limitation 2. Ancestral closure & Spurious effects

The purported criterion rules out, by construction, the possibility of existence
of any spurious types of variations. In particular, the argument relies on the
notion introduced in the paper called ancestral closure (AC, for short) w.r.t.
the protected attribute set. The AC requires that all protected attributes and
their parents, and all their ancestors, should be measured and included in the
set of endogenous variables. This is obviously a very stringent requirement,
which is hard to ascertain in practice. The paper then argues that “the fault
should be at the postulated set of protected attributes rather than with the
definition of counterfactual fairness, and that typically we should expect set
X to be closed under ancestral relationships given by the causal graph. For
instance, if Race is a protected attribute, and Mother’s race is a parent of
Race, then it should also be in X

Conceptually speaking, we contrast this constraint over the space of models
with the very existence of dashed-bidirected arrows in causal diagrams, as
discussed earlier. These arrows in particular allow for the possibility that
there are variations between X and Z that can be left unexplained in the
model, or unmeasured confounders may exist. Practically speaking, assuming
that no bidirected arrows exist is a strong assumption that does not hold in
many settings. For instance, consider the widely recognized phenomenon in the
fairness literature known as redlining (Zenou and Boccard, 2000; Hernandez,
2009). In some practical settings, the location where loan applicants live may
correlate with their race. Applications might be rejected based on the zip code,
disproportionately affecting certain minority groups in the real world.

It has been reported in the literature that correlation between gender and
location, or religion and location, may possibly exist, and should therefore be
acknowledged through modeling. For instance, the one-child policy affecting
mainly urban areas in China had visible effects in terms of shifting the gender
ratio towards males (Hesketh et al., 2005; Ding and Hesketh, 2006). Beyond
race or gender, religious segregation is also a recognized phenomenon in some
urban areas (Brimicombe, 2007). Again, while we make no claim that location
affects race (or religion), or vice-versa, the bidirected arrows give a degree of
modeling flexibility that allows for the encoding of such co-variations. Still,
this is without making any commitment to whatever historical processes and
other complex dynamics took place and generated such imbalance in the first
place. To corroborate this point, consider the following example:

Example 4.7 (Spurious associations in COMPAS & Adult datasets). A data
scientist is trying to understand the correlation between the features in the
COMPAS dataset. The protected attribute X is race, and the demographic
variables Z1, Z5 are age and sex. The data scientist tests two hypotheses,
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COMPAS: age L race rejected (p < 0. 001) COMPAS: race L sex rejected (p < 0. 001)
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Figure 4.7: Testing for independence of the protected attribute (X) and the
confounders (Z) on the Adult and COMPAS datasets.

namely:

HY X127, (4.158)
H® X127, (4.159)

The association of X and Z;, Zy are shown graphically in the bottom row
of Fig. 4.7. Both of the hypotheses are rejected (p-values < 0.001). However,
possible confounders of this relationship are not measured in the corresponding
dataset.

Similarly, the same data scientist is now trying to understand the cor-
relation of the features in the Adult dataset. The protected attribute X is
gender, and the demographic variables Z;, Z5 are age and race. The data
scientist tests the independence of sex and age (X 1L.Z;), and sex and race
(X 1L.Z5), and both hypotheses are rejected (p-values < 0.001, see Fig. 4.7 top
row). Again, possible confounders of this relationship are not measured in
the corresponding dataset, meaning that the attribute X cannot be separated
from the confounders Z7, Z5 using any of the observed variables. O

As the example illustrates, from both a conceptual and practical standpoint,
disallowing the possibility of non-causal relationships and confounding induced
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by some historical or societal context, and the associated spurious effects, can
be an major limitation to any type of fairness analysis.

Limitation 3. Lack of identifiability

An important practical property of any fairness measure is its identifiability
under different sets of causal assumptions. We introduced the notion of identi-
fiability in Sec. 4.3 to better understand when a fairness measure can be used
in practice. We then discussed some necessary assumptions for measures in
the Fairness Map to be identifiable. A significant implication of this prior dis-
cussion in the context of counterfactual fairness is highlighted by the following
result:

Proposition 4.5 (Unit-TE, (z,w)-TE not identifiable). Suppose that M is a
Markovian model and that G is the associated causal diagram. Assume that
the set 