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Abstract

The design of algorithms with a performance guarantee in a new (potentially
different) domain is a fundamental challenge in artificial intelligence. In the
literature, notions of invariance across domains and subsequent modelling choices
to exploit them characterize a large body of work that spans the areas of domain
generalization and causal inference. In the latter, causal diagrams are used to
encode invariances in individual causal mechanisms. Several graphical criteria and
methodologies exploiting causal structure, also known as transportability theory,
have been proposed for point estimation. In this paper, we introduce the task of
partial transportability as a new conceptual approach to the problem of domain
generalization. We seek to derive tight bounds around an optimal prediction
function, e.g. Ep«[Y | X] where P* is the (unobserved) distribution of new
data, using domain knowledge in the form of causal diagrams and data from
source domains. Such bounds explicitly capture the inherent uncertainty in domain
generalization problems and can be used to derive point estimates with a formal
distributional robustness guarantee. In practice, we show that in systems of discrete
observables we can design provably consistent algorithms for inferring bounds,
and that their performance compares favourably with baselines exploiting other
types of invariances across domains.

1 Introduction

A unifying goal of Artificial Intelligence is to design algorithms that generalize, in the sense that
predictions and conclusions learned from one or several source domains (e.g. in controlled laboratory
circumstances, from a specific study or population, etc.) can be applied elsewhere, in a target domain
that may differ in several aspects from source domains. For example, early warning systems in
intensive care units may be developed using patient trajectories from a restricted set of hospitals,
ultimately with the goal of being deployed for the benefit of patient populations in different locations.
The hope (and expectation) is that if certain invariances across patient populations can be identified
and exploited, a prediction algorithm deployed on a new population will perform as intended even if
no data from it is trained on.

This task spans several different lines of research in machine learning, typically studied under the
umbrella of domain generalization [3, 8, 9, 23, 11, 36, 35, 40, 31, 19, 25, 22], and in causal inference,
where it is known as transportability theory [28, 6, 7, 8, 21, 14]. In the former, statistical invariances
in marginal distributions of covariates across domains P(X), in conditional distributions of labels
given covariates across domains P(Y | X), and several variations of them have been proposed as
grounding assumptions under which generalization guarantees can be established. A prominent
technique, for example, trains a model with the intent of capturing invariant associations across
multiple source domains, while ignoring associations that are observed to vary, so called spurious
[3, 29, 23]. In turn, within the transportability literature, domains are associated with an underlying
causal model that is assumed to differ in one or more of its component parts across domains, typically
encoded in causal diagrams that locate discrepancies and invariances. Several criteria, algorithms, and
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Figure 1: Diagrams representing causal structure and differences in causal mechanisms across pairs of domains,
denoted with square indicator nodes. Bi-directed arcs denote unobserved confounding.

estimation methods have been developed to exploit structural invariances in order to point identify a
particular query of interest, e.g. a prediction function Ep[Y | X], from the available source data only
[28, 6, 7, 21, 14]. In both families of methods, however, the explicit objective is to return a single
prediction function that is expected to perform in a potentially large set of candidate target domains.
There is an element of under-identifiability in domain generalization problems that may lead to large
variations in the optimality of chosen prediction functions.

For concreteness, consider a learning scenario depicted
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in Fig. 2 in which a researcher is tasked with the prog-

nosis of Alzheimer’s disease with access to patient data
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treatments for hypertension and clinical depression, re-

spectively, both known to influence Alzheimer’s disease Figure 2: Alzheimer’s prediction task.

Y, and blood pressure W. Their biological mechanisms

are somewhat understood, e.g. the effect of hypertension is mediated by blood pressure W, although
several unobserved factors, such as physical activity levels and diet patterns, are expected to si-
multaneously affect both conditions [34]. Hypertension and clinical depression are not known to
affect each other, although it’s common for patients with clinical depression to simultaneously be
at risk of hypertension [24]. In reality, the prediction engine is to be deployed in a third hospital
7* where no patient data has been recorded. Existing data can be useful but has to be handled with
care, especially if we suspect differences across domains; for example, in the distribution of blood
pressure P*(w) # P%(w) or in the assignment of hypertension medication P*(z1) # P?(x;). Fig. 1
describes the graphical representation of this environment. A naive approach, seeking invariant predic-
tors across source distributions, e.g. f(x1,z2,w) := Epa[Y | 1, z2, w], may be sub-optimal as the
invariance is not expected to hold in the deployment domain, i.e. f(z1, 2, w) # Ep«[Y | 21, 22, w].
Consider an instance where W «— 1-U,Y «— (W®U)-X»,; Y, W, U, X5 € {0, 1}; @ is the exclusive
or operator; U is independently distributed; among patients in the deployment hospital 7*, importantly,
blood pressure is given by W « U. For an individual with characteristics w = 0,29 = 1,27 = 1,
f(z1, 22, w) = 0, which is quite far from the optimal prediction Ep«[Y | 1, 22, w] = 1.

This example shows that differences across domains may be complex and non-trivially influence
the expected performance of prediction algorithms. Invariant predictors can be limited in their
generalization guarantees even if their ability to learn invariant associations across source domains
suggests that they may serve as good predictors without considering the underlying structure of the
phenomenon of interest. This example also emphasizes a pervasive feature of under-identifiability of
optimal prediction functions. Under mean squared errors, for instance, the optimal prediction function
(if target data were available) is given by Ep«[Y" | 21, z2, w] which cannot be uniquely computed
given source data and the qualitative assumptions on causal associations and structural discrepancies
given in the diagrams in Fig. 1, e.g. different assignments of W induce different optimal predictors.
One may be tempted to conclude that little progress can be done. However, several mechanisms are
typically shared / invariant across domains, e.g. the ones associated with Y or X. This implies that
optimal prediction functions (even though not uniquely computable) are rarely totally unconstrained.
For every input, e.g. (21, x2, w), optimal predictions can typically be bounded to lie in a non-trivial
interval; similarly to the manner in which causal effects can be bounded in the causal inference
literature, the so called partial identification problem [42, 4, 12].

In this paper, we start by graphically characterizing the generalization guarantees of (a certain class
of) invariance learning algorithms through a causal lens, showing the type of scenarios in which they
can be expected to extrapolate given a finite set of source datasets. This analysis interprets invariance



learning as solutions to a specific distributionally robust optimization problem [11], with a minimum
performance guarantee over a set of domains. Our main objective is to motivate and introduce a
broader optimization problem — the task of partial transportability — to account for the inherent
uncertainty in domain generalization problems. Partial transportability aims at bounding, instead of
point estimating, a query in an arbitrary target domain of interest, such as Ep«[Y | x], given data from
one or more source domains and qualitative knowledge about the structural changes between domains
in the form of causal diagrams. We then demonstrate that certain derived solutions from this problem
have a wide distributional robustness guarantee and propose a concrete implementation that leverages
canonical parameterizations of causal models to give approximate solutions in systems of discretely-
valued variables using a Bayesian inference approach. The resulting bounds are demonstrated to be
sound and tight asymptotically, in the sense that they leverage all prior information encoded in causal
diagrams.

2 Background

We adopt the setting of domain generalization. We assume access to k source domains 7%, w2, ... 7*

with associated structural causal models (SCMs) M, M?, ... MP that define their underlying data
generating mechanisms [27, Definition 7.1.1]. A SCM M is a tuple M = (V, U, F, P) where V
is a set of endogenous variables and U is a set of exogenous variables. Each exogeneous variable
U € U is distributed according to a probability measure P(u). F is a set of functions where
each fy € F determines the deterministic dependencies of V' on other parts of the system. That
is, v := fy(pay,uy), with Pay < V, and Uy < U, the exogeneous sources of variation that
influence V. Values of U are drawn from an exogenous distribution P(u). We assume the model
to be recursive, i.e. that there are no cyclic dependencies among the variables, such as to define a
distribution P(v) over endogenous variables V.

A SCM induces a causal graph G = (V, £) in which each variable in V is associated with a node;
we draw a directed edge between two variables X — Y € £ if X appears as an argument of
fy in the SCM, and a bi-directed edge X < Y if Ux n Uy # J, thatis X and Y share an
unobserved confounder. The set of parent nodes of X in G is denoted by pa(X)g = | ycx pa(X)g.
Its capitalized version Pa includes the argument as well, e.g. Pa(X)g = pa(X)g u X. We will
make use a special clustering of the nodes in V called c-components [37]: two nodes are in the
same c-component C < V if and only if they are connected by a path of bi-directed edges. c-
components form a partition over exogenous variables: a c-component C € V is said to cover an
exogenous variable U if U € | J;,.c Uy. We denote with Cy; the c-component covering U. As an
example, the diagram in Fig. 1 has c-components { X7, X5} and {W,Y}; and Cle,xz = {X, X5},
Cuy.y = {W,Y}. For a more detailed survey on SCMs, we refer readers to [27, 5].

Our focus is on a query, such as Ep«[Y | X], to be evaluated in a target domain 7* (potentially)
different from source domains. Typically, Y is an outcome variable, X is a set of covariates, and
Y u X = V. Domains are assumed to agree on the set of measured variables but may otherwise
vary. In the literature on transportability theory, see e.g. [28], such differences are called domain
discrepancies and can be encoded in selection diagrams.

Definition 1 (Domain Discrepancy). Let 7@ and w° be domains associated, respectively, with SCMs
M® and M and causal diagrams G* and Gb. We denote by A% =V g set of variables such that,
for every Ve A®Y, there might exist a discrepancy, i.e. f& # fb and/or P*(Uy) # P*(Uy).

Definition 2 (Selection diagram). Given domain discrepancies A" between two domains ©® and
7° and a causal graph G* = (V,&), let S = {Sy : V € A%’} be called selection nodes. Then, a
selection diagram G is defined as a graph (V U S, € U {Sy — V}s,es).

Selection nodes locate the mechanisms where structural discrepancies between the two domains
are suspected to take place. The absence of a selection node pointing to a variable represents the
assumption that the mechanism responsible for assigning value to that variable is identical in both
domains. For the medical example, Fig. 1a shows a selection diagram comparing domains 7* and
7% in which the Sy node indicates a structural difference in the assignment of W, either £, # f{i,
and/or P*(uw ) # P*(uw ), but not in the assignment of other variables, for instance f;: = f¢ and
P*(uy) = P%(uy). Fig. 1b and Fig. Ic are selection diagrams that compare domains (7*, 7°) and
(m®, w°) respectively.
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Figure 3: Graphs used in Sec. 3.1.

3 Domain generalization through the lens of transportability

Domain generalization problems involve a degree of uncertainty around optimal prediction rules in a
target domain depending on the structural differences between it and available source domains. A
natural objective for the design of prediction functions is to minimize "worst-case" losses over an
uncertainty set of potential target distributions.

Definition 3 (Causal robust optimization). For a target domain 7* with causal graph G*, the causal
robust optimization problem is defined as

agmin | max Epu[(Y ~ f(X))’] M

where M(G*) denotes the family of SCMs whose functional associations can be summarized by G*.

In the literature, selection diagrams are mostly implicit. It is common to define predictors without
making (explicit) assumptions on the underlying causal structure of the target domain, and instead
exploit statistical invariances within source domains'.

3.1 Invariance learning for domain generalization

This section studies the generalization guarantees of a common class of invariant predictors in the
language of selection diagrams that will serve to motivate a broader class of domain generalization
tasks.

Definition 4 (Invariant predictor). Given selection diagrams {G*J : i,7 = 1,...,k}, an invariant
predictor is given by Ep[Y | z] where (YIS | Z)gi.; fori,j = 1,...,k and the expectation is
taken with respect to any P among source domain distributions. Let F;,, denote the class of invariant
predictors.

Definition 5 (Domain-independent Markov boundaries). Given a set of selection diagrams {G*7 :
i,j=1,...,k}, aset Z < V is called a domain-independent Markov boundary for Y if for all
,j=1,...0k: 1. (YAS | Z)gis, 2. (WILY | Z\W)gs.; for all W € Z, and 3. for every subset
R c V\Z either Y 1L S | Z,R)gi.; or RALY | Z)gis fori,j=1,...,k.

Domain-independent Markov boundaries Z are designed to be informative for predicting Y, to be
stable conditional distributions across source domains, and minimal, in the sense that no proper subset
of Z is a domain-independent Markov boundary. In general, such a set is not guaranteed to exist.
For example, in Fig. 1a there is no set that separates Y from all selection nodes, i.e. condition (1) in
Def. 5 is violated for any subset of V (and by implication no invariant predictor exists). Moreover,
contrary to the conventional Markov boundary [26], it is not guaranteed to be unique. For example,
in Fig. 3a both {X1, X2, X5} and {X;, X3, X4} are domain invariant Markov boundaries. Which
one is most informative to predict Y is undecidable from the graph structure alone, i.e. it depends the
exact functional associations between variables.

Proposition 1 (Optimal invariant predictor). Given selection diagrams {G*J :i,j = 1,...,k}, an
optimal invariant predictor is defined as,
argmin max Ep:[(Y — f(X))?]. )
fEFim i=1,....k

Such a solution is a function of Z < X, which is a domain-independent Markov boundary forY € V.

'Find a longer discussion of limitations, trade-offs, and additional related work in Appendices A and B.



Invariant predictors may be desirable due to their stability in source domains although the extent to
which predictors will generalize outside of source domains depends on the structure of M(G*) and
on the differences in structure with respect to source domains. In general, structural invariances across
source domains need not hold outside of source domains. For example, given two source domains
m!, 7?2 described by G2 in Fig. 3b, it holds that Ep: [Y | 21, 23] = Ep2[Y | 21, x2] is an optimal
invariant predictor, but it may not be optimal in a target domain 7* if the same invariance doesn’t
hold. For example, given G*! and G*2 in Figs. 3c and 3d Ep:2[Y | 21, 22] # Ep«[Y | 1, 72].

In general, the error in Def. 3 for any predictor f can be written as,

e (Epu[(Y ~Epul¥ | X)) + Epn [(Bpn [Y | X] — F(X))?]).
The second term in this expression quantifies the difference between the chosen predictor f and the
best worst-case target domain predictor. Even if f is an optimal invariant predictor, this term may be
arbitrarily large if a general class of SCMs M (G*) with arbitrary differences with source domains is
under consideration. Optimal invariant predictors are best worst-case solutions in a limited set of
scenarios.

Proposition 2 (Generalization guarantee for optimal invariant predictors). Given a set of selection
diagrams {G%7 :i,j = 1,...,k}, let A = Ui,j A% be the set of variables in V whose causal
mechanisms differ between any two source domains, and let S = {Sy : V € A}. The optimal
invariant predictor is a solution to Eq. (1) if selection nodes in all selection diagrams {G** : i =
1,...,k} are given by S with edges {Sy — V}gs es.

This proposition shows that an optimal invariant predictor has lowest generalization error in the
sense of Eq. (1) only in the space of target SCMs M (G*) with the same structural invariances
observed across source domains. Otherwise, better predictors are achievable. This observation
includes predictors using causal parents as a conditioning set (also often understood as desirable for
domain generalization) which, similarly, define robust predictors for a target domain if invariance in
the association between causal parents and outcomes is assumed. This must not be true in general.
For example, in Fig. 1, Epa[Y | w,z2] # Ep«[Y | w, z2], and Eps [V | w, z2] # Epx[Y | w, z2],
and thus predictors based on causal parents (w, x2) may not be invariant or extrapolate well.

This section aimed at illustrating the challenges around designing predictors with well-defined (worst-
case) generalization guarantees without explicitly encoding the structural differences to be expected
across domains. Moreover, independently of whether solutions to a worst-case optimization problem
can be found, they say nothing about the range of values optimal prediction functions Ep«[Y" | x|
may take in other distributions P* away from the worst-case. In the following section, we attempt to
define predictors and ranges of predictors with guarantees to arbitrary sets M(G*).

4 Partial transportability

The uncertainty and inherent under-identifiability of solutions to domain generalization problems
motivates us to define the task of partial transportability, that extends the literature on domain
generalization by considering bounds on the value of queries Ep«[Y | x] in a target domain 7*.

Task (Partial Transportability). Derive a tight bound [l,u] over Ep«[Y | x| with knowledge
of selection diagrams {G** : i = 1,...,k}, a corresponding collection of data distributions
{P"(v):i=1,...,k}. Algorithmically, this may be written as a solution to,

rjﬁlgj\fl(ngli))( Epm[Y | x], suchthat YV ¢ A®': f& = fi, P*(uy) = P'(uy). 3)

In words, the task is to evaluate the minimum and maximum values over all possible SCMs M
compatible with {G** : i = 1,..., k} that define the structurally invariant mechanisms in the system.
Such a bound, if the optimization problem can be solved, is provably tight, in the sense that there
exist SCMs M*, M? € M(G*) such that E .1 [V | x] and E 2 [y | x] are equal to the lower and
upper bounds, respectively. Similarly, by definition, a particular "worst-case" member M € M (G*)
must be included in the interval returned by the solution to the partial transportability task.

Recall that selection nodes and edges in selection diagrams indicate the potential for a discrepancy of
causal mechanisms across domains and causal effect, respectively. While structural assumptions may



be strong, there is a degree of mis-specification that can be tolerated. In particular, bounds remain
valid, i.e. true query is contained in bound, even if selection diagrams assumed are "super-structures”
of the true underlying system. A selection diagram G%® defined as a graph (Vu S, & ) is said to be a
super-structure of a selection diagram G** = (V U S,E)if S< Sand £ < €.

Proposition 3. Let [I(x),u(x)] be the solution to a partial transportability task with selection

diagrams {G** i = 1,...,k}, and let [I(x), u(x)] be an alternative solution derived with super-
structures of {G*" 1 i = 1,...,k}. Then, [1(x),u(x)] < [I(x), a(x)].

This proposition shows that correct inference is possible even if there is uncertainty in the presence
of edges and selection nodes, by considering super-structures of selection diagrams. For example, if
one is unsure about the presence of a discrepancy or of an unobserved confounder, one may consider
a selection diagram that includes both and still make correct inference. The partial transportability
formalism also opens new avenues for defining point estimates. One alternative that can be argued for
is to consider predictions based on the median across M € M (G*), written . n}\i% *)E pu[Y | x],
€
which has the following extrapolation guarantee.

Proposition 4. Fix x, and let [I(x), u(x)] denote the solution to a partial transportability task. Then,

E Yy — d Epu[Y 2
s Ep( Wi pu[Y | x])7]

1
<\ e (EPM [(V = EparlY | x])?] + {Epul(u(x) - l(x))2]>.
Under the condition that the irreducible error Epm |[(Y — Epum[Y | x])?] is constant across M €
M(G*), mednremgx)Epm[Y | x] is a solution to the problem in Def. 3.

This proposition says that the error of the median is, at most, off from the optimal predictor by "half
the range of possible values of Ep«[Y | x| compatible with the data and assumptions" and that this
error is optimal in the worst case (under restrictions on how the expected conditional variance is
allowed to vary). This result is important because it applies to any set of target causal graph, source
domains, and selection diagrams. It is more difficult, however, to relate to optimal invariant predictors.
In general, there is no reason to believe that the invariant predictor has any special performance
guarantee with respect to other solutions in [{(x), u(x)]. For example, an optimal invariant predictor
may not even be contained in the interval returned by the partial transportability task.

Proposition 5. In general, invariant predictors may lie outside of the solution of the partial trans-
portability task.

This, however, does not mean that the proposed median is always superior to the optimal invariant
predictor, e.g. in settings where the expected conditional variance changes across domains or if the
target SCM M * is far from the worst case member of M(G*) an optimal invariant predictor may
outperform.

5 Algorithms for partial transportability

A query of interest, such as Ep«[Y | x|, may be uniquely expressed in terms of functions F
and exogenous distributions P(U) that parameterize the underlying target domain. For example,
P*(y,w, x1,x2) may be written as

JQ ]]-{fY('LU,x%uwy) = y}]]-{fW(-leuwy) = w}]]-{le,Xg (lexg) = x171'2}dp(u)- “@

The definition of selection diagrams then determines which functions and exogenous probabilities
are invariant across domains. However, selection diagrams don’t determine their parametric form or
distributional family. If V is observed to be continuously-valued a number of (untestable) choices
could be made, e.g. linearity, Gaussian distributions, to eventually define a latent variable model
where inference could be done. In this section, we present an alternative (non-parametric) approach
applicable to discretely-valued endogenous variables, that is each V' € V taking values in a finite
space of outcomes, while each U € U can be associated with an arbitrary probability density function
P(u) and each f € F can be arbitrary.



Definition 6 (Discrete SCMs). Let N denote the set of discrete SCM N = (V, U, F, P) where P
defines exogenous probabilities of discrete variables U € U with cardinality diy = [ [/ Pa(Cu) |Qv|

and each fy is a deterministic mapping between finite domains Qp 4, x Qu, — Qy.

The significance of this definition lies in the generality of this class of SCMs for the purpose of
bounding transportability queries.

Corollary 1. The solution [l,u] to the partial transportability task over the space of discrete SCMs
N compatible with a set of selection diagrams is guaranteed to be a valid and tight bound over the
unknown target query,

mz}r\%/\n}[ax Ep,[Y | x] = mt:}\[é//yax Ep,[Y | x]. )

This corollary to [42, Prop. 2.6] allows us to systematically parameterize transportability queries
without making strong choices on P(u) (as probabilities are discrete with well-defined cardinality
and can be uniquely parameterized) and F (as functions are deterministic mappings between known
finite spaces). This parameterization preserves invariances between domains. We propose a Bayesian
inference algorithm with this discrete parameterization; similar proposals could be developed for
continuously-valued variables with specific functional and distributional choices, e.g. linear Gaussian
latent variable models. The following proposal follows the Gibbs sampling procedure of [12, 42, 10].

5.1 Inferring bounds via credible intervals

Bounds [I(x), u(x)] can be approximated with %100 credible intervals P(I(x) < Ep«[Y | x| <
u(x) | v) = 1 on a query’s posterior distributions. In particular, credible intervals on the posterior of
Ep«[Y | x] can be evaluated by approximating the expectation,

E[1{i(x) < Epx[Y | x] < u(x)} | v] = P(I(x) < Ep«[Y | x] < u(x) | ¥)
provided with finite samples Vv := (V1,...,V k), where vi = {v;{) 2§ =1,...,n;} are n,
independent sampled collected in domain 7’. Given the parameterization in Def. 6, Ep«[Y |
x| is fully determined by its parameters for which we proceed to define prior distributions. In

particular, for every V € V,Vpay,, uy, the functional assignment parameters 5‘(}) avUV)2 are drawn

uniformly in the discrete domain €2y,. For every U € U, exogenous probabilities 8;; with dimension
du = [lvepacy) €2v| are drawn from a prior Dirichlet distribution, 8y = (01,...,0a,) ~

Dirichlet (o, . . ., aqy, ), with hyperparameters as, . . ., aq, .

Only parameters that are shared between the target domain and a particular source domain can be
updated with data from it. For example, given our introductory example Fig. 1 and the parameter-
ization in Eq. (4), it holds that P(€y | Vze) # P(€y) and P(Oy | Vza) # P(€y) as the source
domain 7 is informative for the causal assignment of Y, i.e. no selection node into Y in G*%.
In contrast, P(&w | Vra) = P(&w) and P(Ow | Vza) = P(&w) as the assignment of W differs
across domains. The distributions P(€y | Va), P(By | Vza) are not tractable as both depend on the
value of unobservables U, although P(£y | Ve, Uga), P(By | Ve, Uga), i.e. given the value U of
each observed example in 7%, are analytically tractable. The former is a deterministic quantity in 2y,
and the latter is again a Dirichlet distribution due to conjugacy. One may thus use a recursive Gibbs
sampling procedure to obtain a Markov chain that eventually approximates P(u, &, 0 | Va).

The upper and lower « quantile among 7" samples of this expression gives us a (1 — «) credible
interval [, < Epx[y | X] < 1, defined by,
lo(x) := sup{z : Z HEp+[Y | x]® <z} = a/2},
t
ilo(x) = inf{z: ) H{Ep«[Y | x| <2} = 1—0a/2}.
t
The following Theorem shows that credible intervals [lo(x), 4o (x)] converge to the true (tight)
bounds [I(x), u(x)] for the unknown query Ep=[Y | x| and can be used as approximate solutions to

the partial transportability task in systems of discretely-observed endogenous variables, irrespective
of the form of F or P(U).

We write £&P*V ") .= fy (pay,uy) € Qv and 0, := P(U = u) € [0,1] to emphasize the model
parameters. We refer the reader to Appendix E for all details on posterior computation.



Theorem 1. In systems of discretely-observed endogenous variables, credible interval [ly(x), tio(x)]
contains the solution to the partial transportability task [1(x), u(x)] for any n;, and coincides with
[[(x),u(x)] as n; — o0, in observable domains ', i = 1,... k.

6 Experiments

This section evaluates credible intervals and the performance of solutions derived from it on two
synthetic examples. For the approximation of bounds and expectations, we draw 5,000 samples from
posterior distributions P(- | v). Further details, experiments, and all data generating mechanisms are
given in Appendix D.

6.1 Example on Smoking and Lung Cancer

This experiment is inspired by the debate around the relationship between smoking and lung cancer
in the 1950’s [38]. We use a scientifically-grounded variation of the front-door graph that includes an
individual’s smoking status .S, presence of tar in the lungs 7', wealth W, and lung cancer status C,
acknowledging for the presence of confounding factors, e.g. an individual’s genetic profile.

Coverage, width, and tightness of credible intervals. We consider the task of inferring cancer
probability distributions in the French population 7R from corresponding data in 7UK where the
prevalence of smoking is, however, known to be different. The selection diagram is given in Fig. 6a.
We evaluate the quality of credible intervals for PPR(C' = 1 | S = 1) across a range of different data
generating mechanisms. In particular, we consider 1000 pairs of SCMs M = (V, U, F, P) for the
FR and UK populations designed to cover a large set of possible specifications, including continuous
exogenous distributions for P(U),U € U and non-linear functional associations for fy,V € V,
while being consistent with the given selection diagrams.

Fig. 4 (left) gives, as an example using a cho- %

sen pair of SCMs, posterior samples and corre- Z: Z:
sponding 100% credible intervals, with widths ' ool

equal to 0.78,0.69,0.65. Over all pairs of ‘ 0:10; m O . W
SCMs, 100% credible interval cover the true 005

probability in 100, 99.6, 99.5 percent of exper- n=100 n=1000 - n=10000 ne00 nSI000 10000
iments for sample sizes of 100, 1000, 10000, Figure 4: Posterior samples and credible intervals.
respectively, which empirically validates the

guarantee in Thm. 1. The tightness of 100% credible intervals is harder to evaluate as we do not have
ground truth bounds to any partial transportability task; except when the transportability query is
known to be identifiable in which case it is given by a unique value. For illustration, we provide an
example of "tightness of bounds with increasing sample size" in a model in which we removed the
influence of unobserved confounding; leading to a uniquely computable probability equal to 0.1120.
Fig. 4 (right) shows posterior samples for P*R(C' = 1| S = 1) with increasing sample size which
we observe to converge to its underlying value.

Prediction performance across domains. Next, we consider the task of designing cancer prediction
rules for optimal performance in the french population 7R using source data. We introduce an
additional training domain to be able to define invariant predictors: data from a Swedish population
7SV whose structural differences with 7YX and with 7R are given in Figs. 6b and 6¢. The median

value me dglo7 o) for the optimal prediction rule Epm[C' | ¢, w, s] can be computed using data from
7Y and 7V with the proposed approach. For comparison, across 7V% and 75V, an optimal invariant
predictor (Def. 4) is given by Epuk[C' | t,w, s] = Epsw[C' | t, w, s] which, however, is not equal
to Ep[C' | £, w, s] as no set blocks the open path between the selection node Ss and the cancer
variable C in GFRUK, We consider also the common strategy of using causal parents for prediction,
i.e. using the prediction rule Epux[C | ¢, w](= Epsw[C | ¢,w]) which, similarly, is not invariant
across domains. Fig. 6d reports mean squared errors over multiple datasets drawn from the underlying
SCMs. We observe that, indeed, the prediction rule Epuk[C' | t,w, s] underperforms in 7R as it
is not expected to have any meaningful performance guarantee. Similarly, prediction using causal
parents Epuk [C' | t,w] underperforms. In contrast, the median of the derived bound proves to be
a better predictor in this case and is the only predictor with a guarantee of optimal performance
in the "worst-case" domain compatible with the selection diagrams (Prop. 4). For reference, the
theoretically optimal predictor Epr= [C' | ¢, w, s] has a mean error of .1220.



Sw Sw AR
Ss - s “w “w E pux[c]t, w] 11502 (.005)
NN SN PN E puk [c]t, w, 5] .1448 (.004)
S—>T—>C S—=>T—>C S—>T—C ——
- 7 . 7 ~__ 7 med(lo, io) 1361 (.005)
(a) GFRUK (b) GRSV (c) GSWUK (d) Performance comparisons.

Figure 6: (a-c) Selection diagrams. (d) Mean squared error for cancer prediction on a sample of data from P,

6.2 Prediction of Alzheimer’s disease across hospitals

This experiment reconsiders the introductory example (Fig. 1) ¥
that described the design of prediction rules for the develop- Ep:[y|lw, z1,z2] | 3640 (.003)
ment of Alzheimer’s disease in a target hospital 7* in which Eps[y|w, 22] 4244 (.002)
no data has been recorded. Instead, we have access to data Epo

. ) - h b poly|w, z2] 4013 (.002)
from two related studies conducted in hospitals 7® and 7°. med(lo, o) 2961 (.008)

Invariant predictors are uniquely defined and given by the
function f(w,x1,22) = Epa[Y | w,x1,22] = Eps[Y | Figure 5: Performance comparisons.
w, 1, To| although note that, in this example, this condi-

tional expectation is not invariant in the target domain due to the difference in the causal mechanisms
associated with blood pressure W, see Fig. 1c. Similarly, predictors using causal parents only, given
by Epa[Y | w, 2] and Eps[Y | w, 23], as they are not equal across hospitals 7% and 7° due to the
open path between Sy, and Y once we condition on W, may be considered as prediction functions.
Due to the differences across source and target domains, however, none of these predictors can be
expected to have any special performance guarantee. Fig. 5 gives mean squared errors on random data
samples from 7*. The proposed strategy (median of posterior distributions of Ep«[Y | w, 21, 22])
outperforms. For reference, the underlying function Ep«[Y" | w, z1, 23] has mean error .2434.

7 Conclusion

The domain generalization problem is a fundamental challenge that requires some notion of related-
ness between domains to ensure that algorithms extrapolate as intended. Multiple proposals exist to
exploit selected types of invariances including invariances encoded in individual components of an
underlying causal model. This paper studied the domain generalization problem through a causal
lens, contrasted with data-driven, invariance learning alternatives that are popular in the literature.
Our contribution is to introduce the task of partial transportability that seeks to automatically derive
informative bounds for the value of a conditional expectation Ep«[Y | x] in an unseen domain
7* using domain knowledge, in the form of causal diagrams, and data from source domains. Such
bounds capture the uncertainty in optimal prediction functions and can be used to derive point
estimates with guarantees on extrapolation. In systems of discrete observables, we showed that we
can design provably consistent algorithms for this problem. We hope this work can provide a better
understanding of the assumptions and trade-offs involved in the construction of more robust and
generalizable learning systems.
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