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Abstract

One common task in many data sciences applications is to answer questions about
the effect of new interventions, like: ‘what would happen to Y if we make X equal
to x while observing covariates Z = z?’. Formally, this is known as conditional
effect identification, where the goal is to determine whether a post-interventional
distribution is computable from the combination of an observational distribution
and assumptions about the underlying domain represented by a causal diagram.
A plethora of methods was developed for solving this problem, including the
celebrated do-calculus [Pearl, 1995]. In practice, these results are not always
applicable since they require a fully specified causal diagram as input, which is
usually not available. In this paper, we assume as the input of the task a less
informative structure known as a partial ancestral graph (PAG), which represents a
Markov equivalence class of causal diagrams, learnable from observational data.
We make the following contributions under this relaxed setting. First, we introduce
a new causal calculus, which subsumes the current state-of-the-art, PAG-calculus.
Second, we develop an algorithm for conditional effect identification given a PAG
and prove it to be both sound and complete. In words, failure of the algorithm to
identify a certain effect implies that this effect is not identifiable by any method.
Third, we prove the proposed calculus to be complete for the same task.

1 Introduction

Despite the recent advances in AI and machine learning, the current generation of intelligent systems
still lacks the pivotal ability to represent, learn, and reason with cause and effect relationships. The
discipline of causal inference aims to ‘algorithmitize’ causal reasoning capabilities towards producing
human-like machine intelligence and rational decision-making [Pearl and Mackenzie, 2018, Pearl,
2019, Bareinboim and Pearl, 2016]. One fundamental type of inference in this setting is concerned
with the effect of new interventions, e.g., ‘what would happen to outcome Y if X were set to x?’
More generally, we may be interested in Y ’s distribution in a sub-population picked out by the value
of some covariates Z = z’. For example, a legislator might be interested in the impact that increasing
the minimum wage (X = x) has on profits (Y ) in small businesses (Z = z), which is written in
causal language as the interventional distribution P (y|do(x), z), or Px(y|z). One method capable of
answering such questions is through controlled experimentation [Fisher, 1951].

In many practical settings found throughout the empirical sciences, AI, and machine learning, it
is not always possible to perform a controlled experiment due to ethical, financial, and technical
considerations. This motivates the study of a problem known as causal effect identification [Pearl,
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Figure 1: Sample causal diagrams (a,b) and the corresponding inferred PAG (c).

2000, Ch. 3]. The idea is to use the observational distribution P (V) along with assumptions about
the underlying domain, articulated in the form of a causal diagram D, to infer the interventional
distribution Px(y|z) when possible. For instance, Fig. 1a represents a causal diagram in which nodes
correspond to measured variables, directed edges represent direct causal relations, and bidirected-
dashed edges encode spurious associations due to unmeasured confounders. A plethora of methods
have been developed to address the identification task including the celebrated causal calculus
proposed by Pearl [1995] as well as complete algorithms [Tian, 2004, Shpitser and Pearl, 2006,
Huang and Valtorta, 2006]. For instance, given the causal diagram in Fig. 1a and the query Px(y|z),
the calculus sanctions the identity Px(y|z) = P (y|z, x). In words, the interventional distribution on
the l.h.s. equates to the observational distribution on the right, which is available as input. Despite
the power of these results, requiring the diagram as the input of the task is an Achilles heel for those
methods, since background knowledge is usually not sufficient to pin down the single, true diagram.

To circumvent these challenges, a growing literature develops data-driven methods that attempt to
learn the causal diagram from data first, and then perform identification from there. In practice,
however, only an equivalence class (EC) of diagrams can be inferred from observational data without
making substantial assumptions about the causal mechanisms [Verma, 1993, Spirtes et al., 2001,
Pearl, 2000]. A prominent representation of this class is known as partial ancestral graphs (PAGs)
[Zhang, 2008b]. Fig. 1c illustrates the PAG learned from observational data consistent with both
causal diagrams in Figs. 1a and 1b since they are in the same Markov equivalence class. The directed
edges in a PAG encode ancestral relations, not necessarily direct, and the circle marks stand for
structural uncertainty. Directed edges labeled with v signify the absence of unmeasured confounders.

Causal effect identification in a PAG is usually more challenging than from a single diagram due to
the structural uncertainties and the infeasibility of enumerating each member of the EC in most cases.
The do-calculus was extended for PAGs to account for the inherent structure uncertainties without
the need for enumeration [Zhang, 2007]. Still, the calculus falls short of capturing all identifiable
effects as we will see in Sec. 3. On the other hand, it is computationally hard to decide whether
there exists (and, if so, to find) a sequence of derivations in the generalized calculus to identify an
effect of interest. In a more systematic manner, a complete algorithm has been developed to identify
marginal effects (i.e., Px(y)) given a PAG [Jaber et al., 2019a]. This algorithm can be used to identify
conditional effects whenever the joint distribution Px(y ∪ z) is identifiable. Still, many conditional
effects are identifiable even if the corresponding joint effect is not (Sec. 4.2). Finally, an algorithm to
identify conditional effects has been proposed in [Jaber et al., 2019b], but not proven to be complete.1

In this paper, we pursue a data-driven formulation for the task of identification of any conditional
causal effect from a combination of an observational distribution and the corresponding PAG (instead
of a fully specified causal diagram). Accordingly, we makes the following contributions:

1. We propose a causal calculus for PAGs that subsumes the stat-of-the-art calculus introduced
in [Zhang, 2007]. We prove the rules are atomic complete, i.e., a rule is not applicable in
some causal diagram in the underlying EC whenever it is not applicable given the PAG.

2. Building on these results, we develop an algorithm for the identification of conditional causal
effects given a PAG. We prove the algorithm is complete, i.e., the effect is not identifiable in
some causal diagram in the equivalence class whenever the algorithm fails.

3. Finally, we prove the calculus is complete for the task of identifying conditional effects.

1Another approach is based on SAT (Boolean constraint satisfaction) solvers [Hyttinen et al., 2015]. Given
its somewhat distinct nature, a closer comparison lies outside the scope of this paper.
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2 Preliminaries

In this section, we introduce the basic setup and notations. Boldface capital letters denote sets of
variables, while boldface lowercase letters stand for value assignments to those variables.2

Structural Causal Models. We use Structural Causal Models (SCMs) as our basic semantical
framework [Pearl, 2000]. Formally, an SCM M is a 4-tuple ⟨U,V,F, P (U)⟩, where U is a set of
exogenous (unmeasured) variables and V is a set of endogenous (measured) variables. F represents a
collection of functions such that each endogenous variable Vi ∈ V is determined by a function fi ∈ F.
Finally, P (U) encodes the uncertainty over the exogenous variables. Every SCM is associated with
one causal diagram where every variable in V ∪U is a node, and arrows are drawn between nodes in
accordance with the functions in F. Following standard practice, we omit the exogenous nodes and
add a bidirected dashed arc between two endogenous nodes if they share an exogenous parent. We
only consider recursive systems, thus the corresponding diagram is acyclic. The marginal distribution
induced over the endogenous variables P (V) is called observational. The d-separation criterion
captures the conditional independence relations entailed by a causal diagram in P (V). For C ⊆ V,
Q[C] denotes the post-intervention distribution of C under an intervention on V \C, i.e. Pv\c(c).

Ancestral Graphs. We now introduce a graphical representation of equivalence classes of causal di-
agrams. A MAG represents a set of causal diagrams with the same set of observed variables that entail
the same conditional independence and ancestral relations among the observed variables [Richardson
and Spirtes, 2002]. M-separation extends d-separation to MAGs such that d-separation in a causal
diagram corresponds to m-separation in its unique MAG over the observed variables, and vice versa.

Definition 1 (m-separation). A path p between X and Y is active (or m-connecting) relative to Z
(X,Y ̸∈ Z) if every non-collider on p is not in Z, and every collider on p is an ancestor of some
Z ∈ Z. X and Y are m-separated by Z if there is no active path between X and Y relative to Z.

Different MAGs entail the same independence model and hence are Markov equivalent. A PAG
represents an equivalence class of MAGs [M], which shares the same adjacencies as every MAG in
[M] and displays all and only the invariant edge marks. A circle indicates an edge mark that is not
invariant. A PAG is learnable from the independence model over the observed variables, and the FCI
algorithm is a standard method to learn such an object [Zhang, 2008b]. In this work, an oracle for
conditional independences is assumed to be available, which leads to the true PAG.

Graphical Notions. Given a PAG, a path between X and Y is potentially directed (causal) from X
to Y if there is no arrowhead on the path pointing towards X . Y is called a possible descendant of
X and X a possible ancestor of Y if there is a potentially directed path from X to Y . For a set of
nodes X, let An(X) (De(X)) denote the union of X and the set of possible ancestors (descendants)
of X. Given two sets of nodes X and Y, a path between them is called proper if one of the endpoints
is in X and the other is in Y, and no other node on the path is in X or Y. Let ⟨A,B,C⟩ be any
consecutive triple along a path p. B is a collider on p if both edges are into B. B is a (definite)
non-collider on p if one of the edges is out of B, or both edges have circle marks at B and there is
no edge between A and C. A path is definite status if every non-endpoint node along it is either a
collider or a non-collider. If the edge marks on a path between X and Y are all circles, we call the
path a circle path. We refer to the closure of nodes connected with circle paths as a bucket.

A directed edge X → Y in a PAG is visible if there exists no causal diagram in the corresponding
equivalence class where the relation between X and Y is confounded. Which directed edges are
visible is easily decidable by a graphical condition [Zhang, 2008a], so we mark visible edges by v.

Manipulations in PAGs. Let P denote a PAG over V and X ⊆ V. PX denotes the induced
subgraph of P over X. The X-lower-manipulation of P deletes all those edges that are visible in P
and are out of variables in X, replaces all those edges that are out of variables in X but are invisible in
P with bi-directed edges, and otherwise keeps P as it is. The resulting graph is denoted as PX. The
X-upper-manipulation of P deletes all those edges in P that are into variables in X, and otherwise
keeps P as it is. The resulting graph is denoted as PX.

2A more comprehensive discussion about the background is provided in Appendix ??.
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Figure 3: Alternative methods to read ancestral relations under interventions from PAGs.

3 Causal Calculus for PAGs

The causal calculus introduced in [Pearl, 1995] is a seminal work that has been instrumental for
understanding and eventually solving the task of effect identification from causal diagrams. Zhang
[2007] generalized this result to the context of ancestral graphs, where a PAG is taken as the input
of the task, instead of the specific causal diagram. In Sec. 3.1, we discuss Zhang’s rules and try
to understand the reasons they are insufficient to solve the identification problem in full generality.
Further, in Sec.3.2, we introduce another generalization of the original calculus and prove that it is
complete for atomic identification. This result will be further strengthened in subsequent sections.

3.1 Zhang’s Calculus

An obvious extension of the m-separation criterion shown in Def. 1 to PAGs blocks all possibly
m-connecting paths, as defined next.

Definition 2 (Possibly m-connecting path). In a PAG, a path p between X and Y is a possibly m-
connecting path relative to a (possibly empty) set of nodes Z (X,Y /∈ Z) if every definite non-collider
on p is not a member of Z, and every collider on p is a possible ancestor of some member of Z. X
and Y are m̂-separated by Z if there is no possibly m-connecting path between them relative to Z.

Using this notion of separation, Zhang [2007] proposed a calculus given a PAG as shown next.

Proposition 1 (Zhang’s Calculus). Let P be the PAG over V, and X,Y,W,Z be disjoint subsets
of V. The following rules are valid, in the sense that if the antecedent of the rule holds, then the
consequent holds in every MAG and consequently every causal diagram represented by P .

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are m̂-separated by W ∪ Z in PW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are m̂-separated by W ∪ Z in PW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are m̂-separated by W∪Z inP
W,X(Z)

.
where X(Z) := X \ PossAn(Z)PW

.

In words, rule 1 generalizes m-separation to interventional settings. Further, rule 2 licenses alternating
a subset X between intervention and conditioning. Finally, rule 3 allows the adding/removal of an
intervention do(X = x). The next two examples illustrate the shortcomings of this result, where the
first reveals the drawback of using Def. 2 to establish graphical separation and the second inspects
evaluating X(Z) in rule 3 (where the notion of possible ancestors are evoked).

Example 1. Consider the PAG P shown in Fig. 2. Since X and Y
are not adjacent in P , it is easy to show that X and Y are separable
given {Z1, Z2} in every causal diagram in the equivalence class. If
rule 3 of Pearl’s calculus is used in each diagram, then Px(y|z1, z2) =
P (y|z1, z2). Further, applying rule 2 of do-calculus in each diagram,
it’s also the case that Px(y|z1, z2) = P (y|z1, z2, x). However, due to
the possibly m-connecting path ⟨X,Z1, Z2, Y ⟩, rules 3 and 2 in Prop. 1
are not applicable to P . In other words, even though Pearl’s calculus
rules 2 and 3 are applicable to each diagram in the equivalence class,
the same results cannot be established by Zhang’s calculus.

X Y

Z1 Z2

◦

◦
◦ ◦

◦

◦◦

◦◦

◦

Figure 2: Sample PAG
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Example 2. Consider the PAG in Fig. 3a, and the evaluation on whether the equality Pw,x1,x2(y|z) =
Pw(y|z) holds. In order to apply rule 3 of Prop. 1, we need to evaluate whether {X1, X2} is separated
from {Y } given {W,Z} in the manipulated graph in Fig. 3b, which is not true in this case. However,
the rule can be improved to be applicable in this case, as we will show later on (Sec. 3.2). The critical
step will be the evaluation of the set X(Z) from PW.

3.2 A New Calculus

Building on the analysis of the calculus proposed in [Zhang, 2007], we introduce next a set of rules
centered around blocking definite m-connecting paths, as defined next.

Definition 3 (Definite m-connecting path). In a PAG, a path p between X and Y is a definite
m-connecting path relative to a (possibly empty) set Z (X,Y ̸∈ Z) if p is definite status, every definite
non-collider on p is not a member of Z, and every collider on p is an ancestor of some member of Z.
X and Y are m-separated by Z if there is no definite m-connecting path between them relative to Z.

It is easy to see that every definite m-connecting path is a possibly m-connecting path, according
to Def. 2; however, the converse is not true. For example, given the PAG in Figure 2, we have two
definite status paths between X and Y . The first is X ◦−◦Z1 ◦−◦Y and the second is X ◦−◦Z2 ◦−◦Y
where Z1 and Z2 are definite non-colliders. Given set Z = {Z1, Z2}, Z blocks all definite status
paths between X and Y . Alternatively, the path X ◦−◦ Z1 ◦−◦ Z2 ◦−◦ Y is not definite status since
Z1, Z2 are not colliders or non-colliders on this path. Hence, the path is a possibly m-connecting
path relative to Z by Def. 2 but not a definite m-connecting path by Def. 3.

We are now ready to use this new definition and formulate a more powerful calculus.

Theorem 1. Let P be the PAG over V, and X,Y,W,Z be disjoint subsets of V. The following
rules are valid, in the sense that if the antecedent of the rule holds, then the consequent holds in every
MAG and consequently every causal diagram represented by P .3

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are m-separated by W ∪ Z in PW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are m-separated by W ∪ Z in PW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are m-separated by W∪Z inP
W,X(Z)

.
where X(Z) := X \ PossAn(Z)PV\W .

A few observations are important at this point. Despite the visual similarity to Prop. 1, there are two
pivotal differences between these calculi. First, Thm. 1 only requires blocking the definite status
paths, hence the use of ‘m-separation’ in Thm. 1 instead of ‘m̂-separation’. Consider the PAG P in
Fig. 2. We want to evaluate whether Px(y|z1, z2) = P (y|x, z1, z2) by applying Rule 2 in Theorem
1. Since all the edges in the PAG are circle edges, then PX = P . As discussed earlier, the set
Z = {Z1, Z2} blocks all the definite status path between X and Y . Hence, X and Y are m-separated
by Z and Px(y|z1, z2) = P (y|x, z1, z2) holds true by Rule 2.

Second, Thm. 1 defines X(Z) as the subset of X that is not in the possible ancestors of Z in PV\W,
as opposed to PW in Prop. 1. We revisit the query in Ex. 2 to clarify this subtle but significant
difference. Given the PAG in Fig. 3a, we want to evaluate whether Pw,x1,x2

(y|z) = Pw(y|z) by
applying Rule 3 from Thm. 1 instead of Prop. 1. Fig. 3c shows PV\{W} where X = {X1, X2} are
not possible ancestors of Z. Therefore, X(Z) = X, the edges into X1 are cut in P

W,X(Z)
, and X

and Y are m-separated therein.

Third, the proof of the Theorem 1 is provided in the appendix, but it follows from the relationship
between m-connecting path in a manipulated MAG to a definite m-connecting path in the correspond-
ing manipulated PAG. It was conjectured in [Zhang, 2008a, Footnote 15] that, for X,Y ⊂ V, if there
is an m-connecting path inMY,X, then there is a definite m-connecting path in PY,X. In this work,
we prove that conjecture to be true for the special class of manipulations required in the rules of the
calculus. Finally, the next proposition establishes the necessity of the antecedents in Thm. 1 in order
to apply the corresponding rule given every diagram in the equivalence class.

3All the proofs can be found in the appendix.
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Theorem 2 (Atomic Completeness). The calculus in Theorem 1 is atomically complete; meaning,
whenever a rule is not applicable given a PAG, then the corresponding rule in Pearl’s calculus is not
applicable given some causal diagram in the Markov equivalence class.

For instance, considering PAG P in Fig. 1c, we note that (Z��⊥⊥Y |X)PX,Z
, which means rule 2 is not

applicable. Clearly, the diagram in Fig. 1a is in the equivalence class of P and the corresponding rule
of Pearl’s calculus is not applicable due to the latent confounder between Z and Y .

4 Effect Identification: A Complete Algorithm

It is challenging to use the calculus rules in Thm. 1 to identify causal effects since it is computationally
hard to decide whether there exists (and, if so, to find) a sequence of derivations in the generalized
calculus to identify an effect of interest. The goal of this section is to formulate an algorithm to
identify conditional causal effects. The next definition formalizes the notion of identifiability from a
PAG, generalizing the causal-diagram-specific notion introduced in [Pearl, 2000, Tian, 2004].
Definition 4 (Causal-Effect Identifiability). Let X,Y,Y be disjoint sets of endogenous variables, V.
The causal effect of X on Y conditioned on Z is said to be identifiable from a PAG P if the quantity
Px(y|z) can be computed uniquely from the observational distribution P (V) given every causal
diagram D in the Markov equivalence class represented by P .

The remainder of the section is organized as follows. Sec. 4.1 introduces a version of the IDP
algorithm [Jaber et al., 2019a] to identify marginal causal effects. The attractiveness of this version
is that it yields simpler expressions whenever the effect is identifiable while preserving the same
expressive power, i.e., completeness for marginal identification. Sec. 4.2 utilizes the new algorithm
along with the calculus in Thm. 1 to formulate a complete algorithm for conditional identification.

4.1 Marginal Effect Identification

We introduce the notion of pc-component next, which generalizes the notion of c-component that is
instrumental to solve identificaiton problems in a causal diagram [Tian and Pearl, 2002].
Definition 5 (PC-Component). In a PAG, or any induced subgraph thereof, two nodes are in the same
possible c-component (pc-component) if there is a path between them such that (1) all non-endpoint
nodes along the path are colliders, and (2) none of the edges is visible.

Following Def. 5, e.g., W and Z in Fig. 1c are in the same pc-component due to W◦→ X ←◦Z. By
contrast, X,Y are not in the same pc-component since the direct edge between them is visible and Z
along ⟨X,Z, Y ⟩ is not a collider. Building on pc-components, we define the key notion of regions.
Definition 6 (RegionRC

A). Given PAG P over V, and A ⊆ C ⊆ V. The region of A with respect
to C, denotedRC

A, is the union of the buckets that contain nodes in the pc-component of A in PC.

A region expands a pc-component and will prove to be useful in the identification algorithm. For
example, the pc-component of X in Fig. 2 is {X,Z1, Z2} and the region RV

X = {X,Z1, Z2, Y }.
Building further on these definitions and the new calculus, we derive a new identification criterion.
Proposition 2. Let P denote a PAG over V, T be a union of a subset of the buckets in P , and X ⊂ T
be a bucket. Given Pv\t (i.e., an observational expression for Q[T]), Q[T \X] is identifiable by the
following expression if, in PT, CX ∩ PossDe(X) ⊆ X, where CX is the pc-component of X.

Q[T \X] =
Pv\t

Pv\t(X|T \ PossDe(X))
(1)

Note the interventions are over buckets which may or may not be single nodes. Since there is little
to no causal information inside a bucket, marginal effects of interventions over subsets of buckets
are not identifiable. Also, the input distribution is possibly interventional which licenses recursive
applications of the criterion. The next example illustrates the power of the new criterion.
Example 3. Consider PAG P in Fig. 3a and the query Px1,x2,w(y, z, a). Starting with the observa-
tional distribution P (V) as input, let T = V and X = {X1,W}. We have CX = {X1,W,A,X2},
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Algorithm 1 IDP(P,x,y)
Input: PAG P and two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = PossAn(Y)PV\X

2: return
∑

d\y IDENTIFY(D,V, P )

3: function IDENTIFY(C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

/* In PT, let B denote a bucket, and let CB denote the pc-component of B */
6: if ∃B ⊂ T \C such that CB ∩ PossDe(B)PT

⊆ B then
7: Compute Q[T \B] from Q; ▷ via Prop. 2
8: return IDENTIFY(C,T \B,Q[T \B])
9: else if ∃B ⊂ C such thatRB ̸= C then ▷RB is equivalent toRC

B

10: return
IDENTIFY(RB,T,Q) × IDENTIFY(RC\RB

,T,Q)

IDENTIFY(RB∩RC\RB
,T,Q)

11: else throw FAIL

PossDe(X) = {X1,W,Z, Y }, and CX ∩ PossDe(X) = X. Hence, the criterion in Prop. 2 is ap-
plicable and we have Px(y, z, a, x2) =

P (V)
P (x1,w|a,x2)

= P (a, x2)× P (y, z|a,w) after simplification.
Next, we consider intervening on X2 given Px1,w(y, z, a, x2). Notice X2 is disconnected from the
other nodes in PV\{X1,W} and it trivially satisfies the criterion in Prop. 2. Therefore, we get the

expression Px1,x2,w(y, z, a) =
Px1,w(y,z,a,x2)

Px1,w(x2|y,z,a) = P (a)× P (y, z|w, a) after simplification.

A more general criterion was introduced in [Jaber et al., 2018, Thm. 1] based on the possible children
of the intervention bucket X instead of the possible descendants. However, the corresponding
expression is convoluted and usually large, which could be intractable even if the effect is identifiable.
Alg. 1 shows the proposed version of IDP, which builds on the new criterion (Prop. 2). Specifically,
the key difference between this algorithm and the one proposed in [Jaber et al., 2019a] is in Lines 6-7,
where the criterion in Prop. 2 is used as opposed to that in [Jaber et al., 2018, Thm. 1]. Interestingly
enough, the new criterion is “just right,” namely, it is also sufficient to obtain a complete algorithm
for marginal effect identification, as shown in the next result.4

Theorem 3 (completeness). Alg. 1 is complete for identifying marginal effects Px(y). Moreover, the
calculus in Thm. 1, together with standard probability manipulations are complete for the same task.

4.2 Conditional Effect Identification

We start by making a couple of observations, and then build on those observations to formulate
an algorithm to identify conditional causal effects. The proposed algorithm leverages the calculus
in Thm. 1 and the IDP algorithm in Alg. 1. Obs. 1 notes that a conditional effect Px(y|z) can be
rewritten as Px(y,z)∑

y Px(y,z)
, and hence it is identifiable if Px(y, z) is identifiable by Alg. 1.

Observation 1 (Marginal Effect). Consider PAG P1 in Fig. 4a where the goal is to identify the
causal effect Pb(a, c|d). We notice that the effect Pb(a, c, d) is identifiable using the IDP algorithm.
Let E := P (a, d)× P (c|b, d) denote the expression for the marginal effect Pb(a, c, d) which can be
obtained from IDP. Consequently, the target effect can be computed using the expression E/

∑
a,c E.

Whenever the marginal effect Px(y, z) is not identifiable using Alg. 1, Observations 2 and 3 propose
techniques to identify the conditional effect using the calculus in Thm. 1, namely rule 2. Obs. 2 uses
rule 2 of Thm. 1, when applicable, to move variables from the conditioning to the intervention set.
The marginal effect of the resulting conditional query turns out to be identifiable, and consequently
does the conditional effect. We note that the work in [Shpitser and Pearl, 2006] uses the same trick to
formulate an algorithm for conditional effect identification given a causal diagram.

4A more detailed comparison of the two algorithms along with illustrative examples is provided in Appx. ??.

7



A B C

D

◦ v

◦

(a) PAG P1.

X Z

T

W

Y

◦ ◦

◦ ◦

◦ ◦ v

(b) PAG P2

X Z

T

W

Y

(c) Causal Diagram G.

Figure 4: (a,b) Two sample PAGs, and (c) a causal diagram in the equivalence class of (b).

Algorithm 2 CIDP(P,x,y, z)
Input: PAG P and three disjoint sets X,Y,Z ⊂ V
Output: Expression for Px(y|z) or FAIL

1: D← PossAn(Y ∪ Z)PV\X
/* Let B1, . . . ,Bm denote the buckets in P */

2: while ∃Bi s.t. Bi ∩D ̸= ∅ ∧Bi ̸⊆ D do
3: X′ ← Bi ∩X
4: if (X′ ⊥⊥ Y|(X \X′) ∪ Z)P

X\X′,X′ then
5: x← x \ x′; z← z ∪ x′ ▷ Apply rule 2 of Thm. 1
6: D← PossAn(Y ∪ Z)PV\X

7: else throw FAIL

/* Let Z1, . . . ,Zm partition Z such that Zi := Z ∩Bi */
8: while ∃Zi s.t. (Zi ⊥⊥ Y|X ∪ (Z \ Zi))PX,Zi

do
9: x← x ∪ zi; z← z \ zi ▷ Apply rule 2 of Thm. 1

10: E ← IDP(P,x,y ∪ z)
11: return E/

∑
y E

Observation 2 (Flip Observations to Interventions). Consider PAG P1 in Fig. 4a and the causal
query Pa(c|b, d). Unlike the case in Obs. 1, the marginal effect Pa(b, c, d) is not identifiable by the
IDP algorithm. Using rule 2 of Thm. 1, we have (B ⊥⊥ C|D)PA,B

and we move B from conditioning
to intervention, i.e., Pa(c|b, d) = Pa,b(c|d). The marginal effect Pa,b(c, d) is identifiable by IDP and
we get the expression E := P (d)× P (c|b, d). Hence, we have Pa(c|b, d) = Pa,b(c|d) = E/

∑
c E.

Finally, Obs. 3 comes as a surprise since it requires flipping interventions to observations, contrary
to Obs. 2. A key graphical structure in the PAG that requires such a treatment is the presence of a
proper possibly directed path from X to Y ∪ Z that starts with a circle edge.

Observation 3 (Flip Interventions to Observations). We revisit the query in Example. 1. First, the
marginal effect Px(y, z1, z2) is not identifiable by the IDP algorithm. Also, we cannot use rule 2 in
Thm. 1 to flip Z1 or Z2 into interventions since they are both adjacent to Y with a circle edge (◦−◦).
However, we can use rule 2 to flip X to the conditioning set since there are no definite m-connecting
paths between X and Y given {Z1, Z2} in the PAG. Hence, we obtain Px(y|z1, z2) = P (y|z1, z2, x).
Alternatively, consider PAG P2 in Fig. 4b with the causal query Px(y|z). We cannot use rule 2 to
flip X to an observation since ⟨X,W, Y ⟩ is active given Z in P2X . In fact, the causal diagram G in
Fig. 4c is in the equivalence class of P2 and such that Px(y|z) is provably not identifiable [Shpitser
and Pearl, 2006, Corol. 2]. Hence, the effect is not identifiable given P2 according to Def. 4.

Putting these observations together, we formulate the CIDP algorithm (Alg. 2) for identifying
conditional causal effects given a PAG. The algorithm is divided into three phases. In Phase I
(lines 1-7), Obs. 3 is used to check for proper possibly directed paths from X to Y ∪Z that start with
a circle edge. This is checked algorithmically by computing D = PossAn(Y ∪ Z)PV\X , iteratively,
and checking if some bucket Bi in P intersects with, but is not a subset of, D. If such a bucket
exists, CIDP flips Bi ∩X from interventions to observations using rule 2, when applicable, else
the algorithm throws a fail and the effect is not computable. In Phase II (lines 8-9), Obs. 2 is used
to flip the subset of observations in each bucket into interventions by applying rule 2 of Thm. 1,
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Figure 5: Illustrating example for Alg. 2.

whenever applicable. Finally, in Phase III (line 10), the marginal effect Px(y ∪ z) is computed from
the modified sets X and Z, using the IDP algorithm in Alg. 1. If the call is successful, an expression
for the conditional effect is returned at line 11. The example below illustrates CIDP in action. An
empirical evaluation of CIDP is provided in App. ??; the R package will be made available.
Example 4. Consider PAG P in Fig. 5a and the conditional query Px(y|z) := Pa,f (y|b, e). In
Phase I, we have D = PossAn(Y ∪Z)PV\X = {Y,B,E,C,G}, and the bucket {A,B} satisfies the
conditions at line 2 since A ̸∈ D. In PF,A (as shown in Fig. 5b), X′ = {A} is m-separated from Y

given {B,E, F} which satisfies the if condition at line 4. Hence, we flip A to the conditioning set Z
via rule 2 of Thm. 1 to obtain the updated query Px(y|z) = Pf (y|a, b, e). In Phase II (lines 8-9), let
Z1 = {E} and Z2 = {A,B}. In PF,E (see Fig. 5c), we have E m-separated from Y given {F}∪Z2

which satisfies the if condition at line 8. Hence, we flip E to the intervention set using rule 2 of Thm. 1
and we get the updated query Px(y|z) = Pe,f (y|a, b). Next, we check if Z2 is m-separated from Y
given Z1 in PZ1,Z2

which does not hold due to a bidirected edge between B and E. Hence, rule 2
is not applicable and Z2 remains in the conditioning set. Finally, we call IDP in Alg. 1 to compute
the marginal effect Pe,f (y, a, b), if possible. The effect is identifiable with the simplified expression
P (y|b, e, f)× P (a, b). Hence, Pa,f (y|b, e) = Pe,f (y|a, b) = P (y|b,e,f)×P (a,b)∑

y P (y|b,e,f)×P (a,b) = P (y|b, e, f).

The soundness of Alg. 2 follows from that of Alg. 1 and Thm. 1. Next, we turn to its completeness.
According to Def. 4, whenever CIDP fails, we need to establish one of two conditions for complete-
ness. Either there exist two causal diagrams in the equivalence class with different identifications, or
the effect is not identifiable in some causal diagram according to the criterion in [Shpitser and Pearl,
2006, Corol. 2]. Thm. 4 establishes completeness by proving that the latter is always the case. This
result along with the completeness of the calculus rules for the identification of marginal effects (see
Thm. 3) implies that the rules are complete for conditional effects as well.
Theorem 4 (completeness). Alg. 2 is complete for identifying conditional effects Px(y|z). Also, the
calculus in Thm. 1, together with standard probability manipulations are complete for the same task.

5 Conclusions
In this work, we investigate the problem of identifying conditional interventional distributions
given a Markov equivalence class of causal diagrams represented by a PAG. We introduce a new
generalization of the do-calculus for identification of interventional distributions in PAGs (Thm. 1)
and show it to be atomically complete (Thm. 2). Building on these results, we develop the CIDP
algorithm (Alg. 2), which is both sound and complete, i.e., it identifies any conditional effects of the
form Px(y|z) that is identifiable (Thm. 4). Finally, we show that the new calculus rules, along with
standard probability manipulations, are complete for the same task. These results close the problem
of effect identification under Markov equivalence in that they completely delineate the theoretical
boundaries of what is, in principle, computable from a certain data collection. We expect the newly
introduced machinery to help data scientists to identify novel effects in real world settings.
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