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Abstract

One common task in many data sciences applications is to answer questions about
the effect of new interventions, like: ‘what would happen to Y if we make X equal
to x while observing covariates Z = z?’. Formally, this is known as conditional
effect identification, where the goal is to determine whether a post-interventional
distribution is computable from the combination of an observational distribution
and assumptions about the underlying domain represented by a causal diagram.
A plethora of methods was developed for solving this problem, including the
celebrated do-calculus [Pearl, 1995]. In practice, these results are not always
applicable since they require a fully specified causal diagram as input, which is
usually not available. In this paper, we assume as the input of the task a less
informative structure known as a partial ancestral graph (PAG), which represents a
Markov equivalence class of causal diagrams, learnable from observational data.
We make the following contributions under this relaxed setting. First, we introduce
a new causal calculus, which subsumes the current state-of-the-art, PAG-calculus.
Second, we develop an algorithm for conditional effect identification given a PAG
and prove it to be both sound and complete. In words, failure of the algorithm to
identify a certain effect implies that this effect is not identifiable by any method.
Third, we prove the proposed calculus to be complete for the same task.

1 Introduction

Despite the recent advances in AI and machine learning, the current generation of intelligent systems
still lacks the pivotal ability to represent, learn, and reason with cause and effect relationships. The
discipline of causal inference aims to ‘algorithmitize’ causal reasoning capabilities towards producing
human-like machine intelligence and rational decision-making [Pearl and Mackenzie, 2018, Pearl,
2019, Bareinboim and Pearl, 2016]. One fundamental type of inference in this setting is concerned
with the effect of new interventions, e.g., ‘what would happen to outcome Y if X were set to x?’
More generally, we may be interested in Y ’s distribution in a sub-population picked out by the value
of some covariates Z = z’. For example, a legislator might be interested in the impact that increasing
the minimum wage (X = x) has on profits (Y ) in small businesses (Z = z), which is written in
causal language as the interventional distribution P (y|do(x), z), or Px(y|z). One method capable of
answering such questions is through controlled experimentation [Fisher, 1951].

In many practical settings found throughout the empirical sciences, AI, and machine learning, it
is not always possible to perform a controlled experiment due to ethical, financial, and technical
considerations. This motivates the study of a problem known as causal effect identification [Pearl,
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Figure 1: Sample causal diagrams (a,b) and the corresponding inferred PAG (c).

2000, Ch. 3]. The idea is to use the observational distribution P (V) along with assumptions about
the underlying domain, articulated in the form of a causal diagram D, to infer the interventional
distribution Px(y|z) when possible. For instance, Fig. 1a represents a causal diagram in which nodes
correspond to measured variables, directed edges represent direct causal relations, and bidirected-
dashed edges encode spurious associations due to unmeasured confounders. A plethora of methods
have been developed to address the identification task including the celebrated causal calculus
proposed by Pearl [1995] as well as complete algorithms [Tian, 2004, Shpitser and Pearl, 2006,
Huang and Valtorta, 2006]. For instance, given the causal diagram in Fig. 1a and the query Px(y|z),
the calculus sanctions the identity Px(y|z) = P (y|z, x). In words, the interventional distribution on
the l.h.s. equates to the observational distribution on the right, which is available as input. Despite
the power of these results, requiring the diagram as the input of the task is an Achilles heel for those
methods, since background knowledge is usually not sufficient to pin down the single, true diagram.

To circumvent these challenges, a growing literature develops data-driven methods that attempt to
learn the causal diagram from data first, and then perform identification from there. In practice,
however, only an equivalence class (EC) of diagrams can be inferred from observational data without
making substantial assumptions about the causal mechanisms [Verma, 1993, Spirtes et al., 2001,
Pearl, 2000]. A prominent representation of this class is known as partial ancestral graphs (PAGs)
[Zhang, 2008b]. Fig. 1c illustrates the PAG learned from observational data consistent with both
causal diagrams in Figs. 1a and 1b since they are in the same Markov equivalence class. The directed
edges in a PAG encode ancestral relations, not necessarily direct, and the circle marks stand for
structural uncertainty. Directed edges labeled with v signify the absence of unmeasured confounders.

Causal effect identification in a PAG is usually more challenging than from a single diagram due to
the structural uncertainties and the infeasibility of enumerating each member of the EC in most cases.
The do-calculus was extended for PAGs to account for the inherent structure uncertainties without
the need for enumeration [Zhang, 2007]. Still, the calculus falls short of capturing all identifiable
effects as we will see in Sec. 3. On the other hand, it is computationally hard to decide whether
there exists (and, if so, to find) a sequence of derivations in the generalized calculus to identify an
effect of interest. In a more systematic manner, a complete algorithm has been developed to identify
marginal effects (i.e., Px(y)) given a PAG [Jaber et al., 2019a]. This algorithm can be used to identify
conditional effects whenever the joint distribution Px(y ∪ z) is identifiable. Still, many conditional
effects are identifiable even if the corresponding joint effect is not (Sec. 4.2). Finally, an algorithm to
identify conditional effects has been proposed in [Jaber et al., 2019b], but not proven to be complete.1

In this paper, we pursue a data-driven formulation for the task of identification of any conditional
causal effect from a combination of an observational distribution and the corresponding PAG (instead
of a fully specified causal diagram). Accordingly, we makes the following contributions:

1. We propose a causal calculus for PAGs that subsumes the stat-of-the-art calculus introduced
in [Zhang, 2007]. We prove the rules are atomic complete, i.e., a rule is not applicable in
some causal diagram in the underlying EC whenever it is not applicable given the PAG.

2. Building on these results, we develop an algorithm for the identification of conditional causal
effects given a PAG. We prove the algorithm is complete, i.e., the effect is not identifiable in
some causal diagram in the equivalence class whenever the algorithm fails.

3. Finally, we prove the calculus is complete for the task of identifying conditional effects.

1Another approach is based on SAT (Boolean constraint satisfaction) solvers [Hyttinen et al., 2015]. Given
its somewhat distinct nature, a closer comparison lies outside the scope of this paper.
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2 Preliminaries

In this section, we introduce the basic setup and notations. Boldface capital letters denote sets of
variables, while boldface lowercase letters stand for value assignments to those variables.2

Structural Causal Models. We use Structural Causal Models (SCMs) as our basic semantical
framework [Pearl, 2000]. Formally, an SCM M is a 4-tuple ⟨U,V,F, P (U)⟩, where U is a set of
exogenous (unmeasured) variables and V is a set of endogenous (measured) variables. F represents a
collection of functions such that each endogenous variable Vi ∈ V is determined by a function fi ∈ F.
Finally, P (U) encodes the uncertainty over the exogenous variables. Every SCM is associated with
one causal diagram where every variable in V ∪U is a node, and arrows are drawn between nodes in
accordance with the functions in F. Following standard practice, we omit the exogenous nodes and
add a bidirected dashed arc between two endogenous nodes if they share an exogenous parent. We
only consider recursive systems, thus the corresponding diagram is acyclic. The marginal distribution
induced over the endogenous variables P (V) is called observational. The d-separation criterion
captures the conditional independence relations entailed by a causal diagram in P (V). For C ⊆ V,
Q[C] denotes the post-intervention distribution of C under an intervention on V \C, i.e. Pv\c(c).

Ancestral Graphs. We now introduce a graphical representation of equivalence classes of causal di-
agrams. A MAG represents a set of causal diagrams with the same set of observed variables that entail
the same conditional independence and ancestral relations among the observed variables [Richardson
and Spirtes, 2002]. M-separation extends d-separation to MAGs such that d-separation in a causal
diagram corresponds to m-separation in its unique MAG over the observed variables, and vice versa.

Definition 1 (m-separation). A path p between X and Y is active (or m-connecting) relative to Z
(X,Y ̸∈ Z) if every non-collider on p is not in Z, and every collider on p is an ancestor of some
Z ∈ Z. X and Y are m-separated by Z if there is no active path between X and Y relative to Z.

Different MAGs entail the same independence model and hence are Markov equivalent. A PAG
represents an equivalence class of MAGs [M], which shares the same adjacencies as every MAG in
[M] and displays all and only the invariant edge marks. A circle indicates an edge mark that is not
invariant. A PAG is learnable from the independence model over the observed variables, and the FCI
algorithm is a standard method to learn such an object [Zhang, 2008b]. In this work, an oracle for
conditional independences is assumed to be available, which leads to the true PAG.

Graphical Notions. Given a PAG, a path between X and Y is potentially directed (causal) from X
to Y if there is no arrowhead on the path pointing towards X . Y is called a possible descendant of
X and X a possible ancestor of Y if there is a potentially directed path from X to Y . For a set of
nodes X, let An(X) (De(X)) denote the union of X and the set of possible ancestors (descendants)
of X. Given two sets of nodes X and Y, a path between them is called proper if one of the endpoints
is in X and the other is in Y, and no other node on the path is in X or Y. Let ⟨A,B,C⟩ be any
consecutive triple along a path p. B is a collider on p if both edges are into B. B is a (definite)
non-collider on p if one of the edges is out of B, or both edges have circle marks at B and there is
no edge between A and C. A path is definite status if every non-endpoint node along it is either a
collider or a non-collider. If the edge marks on a path between X and Y are all circles, we call the
path a circle path. We refer to the closure of nodes connected with circle paths as a bucket.

A directed edge X → Y in a PAG is visible if there exists no causal diagram in the corresponding
equivalence class where the relation between X and Y is confounded. Which directed edges are
visible is easily decidable by a graphical condition [Zhang, 2008a], so we mark visible edges by v.

Manipulations in PAGs. Let P denote a PAG over V and X ⊆ V. PX denotes the induced
subgraph of P over X. The X-lower-manipulation of P deletes all those edges that are visible in P
and are out of variables in X, replaces all those edges that are out of variables in X but are invisible in
P with bi-directed edges, and otherwise keeps P as it is. The resulting graph is denoted as PX. The
X-upper-manipulation of P deletes all those edges in P that are into variables in X, and otherwise
keeps P as it is. The resulting graph is denoted as PX.

2A more comprehensive discussion about the background is provided in Appendix A.
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Figure 3: Alternative methods to read ancestral relations under interventions from PAGs.

3 Causal Calculus for PAGs

The causal calculus introduced in [Pearl, 1995] is a seminal work that has been instrumental for
understanding and eventually solving the task of effect identification from causal diagrams. Zhang
[2007] generalized this result to the context of ancestral graphs, where a PAG is taken as the input
of the task, instead of the specific causal diagram. In Sec. 3.1, we discuss Zhang’s rules and try
to understand the reasons they are insufficient to solve the identification problem in full generality.
Further, in Sec.3.2, we introduce another generalization of the original calculus and prove that it is
complete for atomic identification. This result will be further strengthened in subsequent sections.

3.1 Zhang’s Calculus

An obvious extension of the m-separation criterion shown in Def. 1 to PAGs blocks all possibly
m-connecting paths, as defined next.

Definition 2 (Possibly m-connecting path). In a PAG, a path p between X and Y is a possibly m-
connecting path relative to a (possibly empty) set of nodes Z (X,Y /∈ Z) if every definite non-collider
on p is not a member of Z, and every collider on p is a possible ancestor of some member of Z. X
and Y are m̂-separated by Z if there is no possibly m-connecting path between them relative to Z.

Using this notion of separation, Zhang [2007] proposed a calculus given a PAG as shown next.

Proposition 1 (Zhang’s Calculus). Let P be the PAG over V, and X,Y,W,Z be disjoint subsets
of V. The following rules are valid, in the sense that if the antecedent of the rule holds, then the
consequent holds in every MAG and consequently every causal diagram represented by P .

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are m̂-separated by W ∪ Z in PW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are m̂-separated by W ∪ Z in PW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are m̂-separated by W∪Z inP
W,X(Z)

.
where X(Z) := X \ PossAn(Z)PW

.

In words, rule 1 generalizes m-separation to interventional settings. Further, rule 2 licenses alternating
a subset X between intervention and conditioning. Finally, rule 3 allows the adding/removal of an
intervention do(X = x). The next two examples illustrate the shortcomings of this result, where the
first reveals the drawback of using Def. 2 to establish graphical separation and the second inspects
evaluating X(Z) in rule 3 (where the notion of possible ancestors are evoked).

Example 1. Consider the PAG P shown in Fig. 2. Since X and Y
are not adjacent in P , it is easy to show that X and Y are separable
given {Z1, Z2} in every causal diagram in the equivalence class. If
rule 3 of Pearl’s calculus is used in each diagram, then Px(y|z1, z2) =
P (y|z1, z2). Further, applying rule 2 of do-calculus in each diagram,
it’s also the case that Px(y|z1, z2) = P (y|z1, z2, x). However, due to
the possibly m-connecting path ⟨X,Z1, Z2, Y ⟩, rules 3 and 2 in Prop. 1
are not applicable to P . In other words, even though Pearl’s calculus
rules 2 and 3 are applicable to each diagram in the equivalence class,
the same results cannot be established by Zhang’s calculus.

X Y

Z1 Z2

◦

◦
◦ ◦

◦

◦◦

◦◦

◦

Figure 2: Sample PAG
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Example 2. Consider the PAG in Fig. 3a, and the evaluation on whether the equality Pw,x1,x2(y|z) =
Pw(y|z) holds. In order to apply rule 3 of Prop. 1, we need to evaluate whether {X1, X2} is separated
from {Y } given {W,Z} in the manipulated graph in Fig. 3b, which is not true in this case. However,
the rule can be improved to be applicable in this case, as we will show later on (Sec. 3.2). The critical
step will be the evaluation of the set X(Z) from PW.

3.2 A New Calculus

Building on the analysis of the calculus proposed in [Zhang, 2007], we introduce next a set of rules
centered around blocking definite m-connecting paths, as defined next.

Definition 3 (Definite m-connecting path). In a PAG, a path p between X and Y is a definite
m-connecting path relative to a (possibly empty) set Z (X,Y ̸∈ Z) if p is definite status, every definite
non-collider on p is not a member of Z, and every collider on p is an ancestor of some member of Z.
X and Y are m-separated by Z if there is no definite m-connecting path between them relative to Z.

It is easy to see that every definite m-connecting path is a possibly m-connecting path, according
to Def. 2; however, the converse is not true. For example, given the PAG in Figure 2, we have two
definite status paths between X and Y . The first is X ◦−◦Z1 ◦−◦Y and the second is X ◦−◦Z2 ◦−◦Y
where Z1 and Z2 are definite non-colliders. Given set Z = {Z1, Z2}, Z blocks all definite status
paths between X and Y . Alternatively, the path X ◦−◦ Z1 ◦−◦ Z2 ◦−◦ Y is not definite status since
Z1, Z2 are not colliders or non-colliders on this path. Hence, the path is a possibly m-connecting
path relative to Z by Def. 2 but not a definite m-connecting path by Def. 3.

We are now ready to use this new definition and formulate a more powerful calculus.

Theorem 1. Let P be the PAG over V, and X,Y,W,Z be disjoint subsets of V. The following
rules are valid, in the sense that if the antecedent of the rule holds, then the consequent holds in every
MAG and consequently every causal diagram represented by P .3

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are m-separated by W ∪ Z in PW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are m-separated by W ∪ Z in PW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are m-separated by W∪Z inP
W,X(Z)

.
where X(Z) := X \ PossAn(Z)PV\W .

A few observations are important at this point. Despite the visual similarity to Prop. 1, there are two
pivotal differences between these calculi. First, Thm. 1 only requires blocking the definite status
paths, hence the use of ‘m-separation’ in Thm. 1 instead of ‘m̂-separation’. Consider the PAG P in
Fig. 2. We want to evaluate whether Px(y|z1, z2) = P (y|x, z1, z2) by applying Rule 2 in Theorem
1. Since all the edges in the PAG are circle edges, then PX = P . As discussed earlier, the set
Z = {Z1, Z2} blocks all the definite status path between X and Y . Hence, X and Y are m-separated
by Z and Px(y|z1, z2) = P (y|x, z1, z2) holds true by Rule 2.

Second, Thm. 1 defines X(Z) as the subset of X that is not in the possible ancestors of Z in PV\W,
as opposed to PW in Prop. 1. We revisit the query in Ex. 2 to clarify this subtle but significant
difference. Given the PAG in Fig. 3a, we want to evaluate whether Pw,x1,x2

(y|z) = Pw(y|z) by
applying Rule 3 from Thm. 1 instead of Prop. 1. Fig. 3c shows PV\{W} where X = {X1, X2} are
not possible ancestors of Z. Therefore, X(Z) = X, the edges into X1 are cut in P

W,X(Z)
, and X

and Y are m-separated therein.

Third, the proof of the Theorem 1 is provided in the appendix, but it follows from the relationship
between m-connecting path in a manipulated MAG to a definite m-connecting path in the correspond-
ing manipulated PAG. It was conjectured in [Zhang, 2008a, Footnote 15] that, for X,Y ⊂ V, if there
is an m-connecting path inMY,X, then there is a definite m-connecting path in PY,X. In this work,
we prove that conjecture to be true for the special class of manipulations required in the rules of the
calculus. Finally, the next proposition establishes the necessity of the antecedents in Thm. 1 in order
to apply the corresponding rule given every diagram in the equivalence class.

3All the proofs can be found in the appendix.
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Theorem 2 (Atomic Completeness). The calculus in Theorem 1 is atomically complete; meaning,
whenever a rule is not applicable given a PAG, then the corresponding rule in Pearl’s calculus is not
applicable given some causal diagram in the Markov equivalence class.

For instance, considering PAG P in Fig. 1c, we note that (Z��⊥⊥Y |X)PX,Z
, which means rule 2 is not

applicable. Clearly, the diagram in Fig. 1a is in the equivalence class of P and the corresponding rule
of Pearl’s calculus is not applicable due to the latent confounder between Z and Y .

4 Effect Identification: A Complete Algorithm

It is challenging to use the calculus rules in Thm. 1 to identify causal effects since it is computationally
hard to decide whether there exists (and, if so, to find) a sequence of derivations in the generalized
calculus to identify an effect of interest. The goal of this section is to formulate an algorithm to
identify conditional causal effects. The next definition formalizes the notion of identifiability from a
PAG, generalizing the causal-diagram-specific notion introduced in [Pearl, 2000, Tian, 2004].
Definition 4 (Causal-Effect Identifiability). Let X,Y,Y be disjoint sets of endogenous variables, V.
The causal effect of X on Y conditioned on Z is said to be identifiable from a PAG P if the quantity
Px(y|z) can be computed uniquely from the observational distribution P (V) given every causal
diagram D in the Markov equivalence class represented by P .

The remainder of the section is organized as follows. Sec. 4.1 introduces a version of the IDP
algorithm [Jaber et al., 2019a] to identify marginal causal effects. The attractiveness of this version
is that it yields simpler expressions whenever the effect is identifiable while preserving the same
expressive power, i.e., completeness for marginal identification. Sec. 4.2 utilizes the new algorithm
along with the calculus in Thm. 1 to formulate a complete algorithm for conditional identification.

4.1 Marginal Effect Identification

We introduce the notion of pc-component next, which generalizes the notion of c-component that is
instrumental to solve identificaiton problems in a causal diagram [Tian and Pearl, 2002].
Definition 5 (PC-Component). In a PAG, or any induced subgraph thereof, two nodes are in the same
possible c-component (pc-component) if there is a path between them such that (1) all non-endpoint
nodes along the path are colliders, and (2) none of the edges is visible.

Following Def. 5, e.g., W and Z in Fig. 1c are in the same pc-component due to W◦→ X ←◦Z. By
contrast, X,Y are not in the same pc-component since the direct edge between them is visible and Z
along ⟨X,Z, Y ⟩ is not a collider. Building on pc-components, we define the key notion of regions.
Definition 6 (RegionRC

A). Given PAG P over V, and A ⊆ C ⊆ V. The region of A with respect
to C, denotedRC

A, is the union of the buckets that contain nodes in the pc-component of A in PC.

A region expands a pc-component and will prove to be useful in the identification algorithm. For
example, the pc-component of X in Fig. 2 is {X,Z1, Z2} and the region RV

X = {X,Z1, Z2, Y }.
Building further on these definitions and the new calculus, we derive a new identification criterion.
Proposition 2. Let P denote a PAG over V, T be a union of a subset of the buckets in P , and X ⊂ T
be a bucket. Given Pv\t (i.e., an observational expression for Q[T]), Q[T \X] is identifiable by the
following expression if, in PT, CX ∩ PossDe(X) ⊆ X, where CX is the pc-component of X.

Q[T \X] =
Pv\t

Pv\t(X|T \ PossDe(X))
(1)

Note the interventions are over buckets which may or may not be single nodes. Since there is little
to no causal information inside a bucket, marginal effects of interventions over subsets of buckets
are not identifiable. Also, the input distribution is possibly interventional which licenses recursive
applications of the criterion. The next example illustrates the power of the new criterion.
Example 3. Consider PAG P in Fig. 3a and the query Px1,x2,w(y, z, a). Starting with the observa-
tional distribution P (V) as input, let T = V and X = {X1,W}. We have CX = {X1,W,A,X2},
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Algorithm 1 IDP(P,x,y)
Input: PAG P and two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = PossAn(Y)PV\X

2: return
∑

d\y IDENTIFY(D,V, P )

3: function IDENTIFY(C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

/* In PT, let B denote a bucket, and let CB denote the pc-component of B */
6: if ∃B ⊂ T \C such that CB ∩ PossDe(B)PT

⊆ B then
7: Compute Q[T \B] from Q; ▷ via Prop. 2
8: return IDENTIFY(C,T \B,Q[T \B])
9: else if ∃B ⊂ C such thatRB ̸= C then ▷RB is equivalent toRC

B

10: return
IDENTIFY(RB,T,Q) × IDENTIFY(RC\RB

,T,Q)

IDENTIFY(RB∩RC\RB
,T,Q)

11: else throw FAIL

PossDe(X) = {X1,W,Z, Y }, and CX ∩ PossDe(X) = X. Hence, the criterion in Prop. 2 is ap-
plicable and we have Px(y, z, a, x2) =

P (V)
P (x1,w|a,x2)

= P (a, x2)× P (y, z|a,w) after simplification.
Next, we consider intervening on X2 given Px1,w(y, z, a, x2). Notice X2 is disconnected from the
other nodes in PV\{X1,W} and it trivially satisfies the criterion in Prop. 2. Therefore, we get the

expression Px1,x2,w(y, z, a) =
Px1,w(y,z,a,x2)

Px1,w(x2|y,z,a) = P (a)× P (y, z|w, a) after simplification.

A more general criterion was introduced in [Jaber et al., 2018a, Thm. 1] based on the possible
children of the intervention bucket X instead of the possible descendants. However, the corresponding
expression is convoluted and usually large, which could be intractable even if the effect is identifiable.
Alg. 1 shows the proposed version of IDP, which builds on the new criterion (Prop. 2). Specifically,
the key difference between this algorithm and the one proposed in [Jaber et al., 2019a] is in Lines 6-7,
where the criterion in Prop. 2 is used as opposed to that in [Jaber et al., 2018a, Thm. 1]. Interestingly
enough, the new criterion is “just right,” namely, it is also sufficient to obtain a complete algorithm
for marginal effect identification, as shown in the next result.4

Theorem 3 (completeness). Alg. 1 is complete for identifying marginal effects Px(y). Moreover, the
calculus in Thm. 1, together with standard probability manipulations are complete for the same task.

4.2 Conditional Effect Identification

We start by making a couple of observations, and then build on those observations to formulate
an algorithm to identify conditional causal effects. The proposed algorithm leverages the calculus
in Thm. 1 and the IDP algorithm in Alg. 1. Obs. 1 notes that a conditional effect Px(y|z) can be
rewritten as Px(y,z)∑

y Px(y,z)
, and hence it is identifiable if Px(y, z) is identifiable by Alg. 1.

Observation 1 (Marginal Effect). Consider PAG P1 in Fig. 4a where the goal is to identify the
causal effect Pb(a, c|d). We notice that the effect Pb(a, c, d) is identifiable using the IDP algorithm.
Let E := P (a, d)× P (c|b, d) denote the expression for the marginal effect Pb(a, c, d) which can be
obtained from IDP. Consequently, the target effect can be computed using the expression E/

∑
a,c E.

Whenever the marginal effect Px(y, z) is not identifiable using Alg. 1, Observations 2 and 3 propose
techniques to identify the conditional effect using the calculus in Thm. 1, namely rule 2. Obs. 2 uses
rule 2 of Thm. 1, when applicable, to move variables from the conditioning to the intervention set.
The marginal effect of the resulting conditional query turns out to be identifiable, and consequently
does the conditional effect. We note that the work in [Shpitser and Pearl, 2006] uses the same trick to
formulate an algorithm for conditional effect identification given a causal diagram.

4A more detailed comparison of the two algorithms along with illustrative examples is provided in Appx. F.
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Figure 4: (a,b) Two sample PAGs, and (c) a causal diagram in the equivalence class of (b).

Algorithm 2 CIDP(P,x,y, z)
Input: PAG P and three disjoint sets X,Y,Z ⊂ V
Output: Expression for Px(y|z) or FAIL

1: D← PossAn(Y ∪ Z)PV\X
/* Let B1, . . . ,Bm denote the buckets in P */

2: while ∃Bi s.t. Bi ∩D ̸= ∅ ∧Bi ̸⊆ D do
3: X′ ← Bi ∩X
4: if (X′ ⊥⊥ Y|(X \X′) ∪ Z)P

X\X′,X′ then
5: x← x \ x′; z← z ∪ x′ ▷ Apply rule 2 of Thm. 1
6: D← PossAn(Y ∪ Z)PV\X

7: else throw FAIL

/* Let Z1, . . . ,Zm partition Z such that Zi := Z ∩Bi */
8: while ∃Zi s.t. (Zi ⊥⊥ Y|X ∪ (Z \ Zi))PX,Zi

do
9: x← x ∪ zi; z← z \ zi ▷ Apply rule 2 of Thm. 1

10: E ← IDP(P,x,y ∪ z)
11: return E/

∑
y E

Observation 2 (Flip Observations to Interventions). Consider PAG P1 in Fig. 4a and the causal
query Pa(c|b, d). Unlike the case in Obs. 1, the marginal effect Pa(b, c, d) is not identifiable by the
IDP algorithm. Using rule 2 of Thm. 1, we have (B ⊥⊥ C|D)PA,B

and we move B from conditioning
to intervention, i.e., Pa(c|b, d) = Pa,b(c|d). The marginal effect Pa,b(c, d) is identifiable by IDP and
we get the expression E := P (d)× P (c|b, d). Hence, we have Pa(c|b, d) = Pa,b(c|d) = E/

∑
c E.

Finally, Obs. 3 comes as a surprise since it requires flipping interventions to observations, contrary
to Obs. 2. A key graphical structure in the PAG that requires such a treatment is the presence of a
proper possibly directed path from X to Y ∪ Z that starts with a circle edge.

Observation 3 (Flip Interventions to Observations). We revisit the query in Example. 1. First, the
marginal effect Px(y, z1, z2) is not identifiable by the IDP algorithm. Also, we cannot use rule 2 in
Thm. 1 to flip Z1 or Z2 into interventions since they are both adjacent to Y with a circle edge (◦−◦).
However, we can use rule 2 to flip X to the conditioning set since there are no definite m-connecting
paths between X and Y given {Z1, Z2} in the PAG. Hence, we obtain Px(y|z1, z2) = P (y|z1, z2, x).
Alternatively, consider PAG P2 in Fig. 4b with the causal query Px(y|z). We cannot use rule 2 to
flip X to an observation since ⟨X,W, Y ⟩ is active given Z in P2X . In fact, the causal diagram G in
Fig. 4c is in the equivalence class of P2 and such that Px(y|z) is provably not identifiable [Shpitser
and Pearl, 2006, Corol. 2]. Hence, the effect is not identifiable given P2 according to Def. 4.

Putting these observations together, we formulate the CIDP algorithm (Alg. 2) for identifying
conditional causal effects given a PAG. The algorithm is divided into three phases. In Phase I
(lines 1-7), Obs. 3 is used to check for proper possibly directed paths from X to Y ∪Z that start with
a circle edge. This is checked algorithmically by computing D = PossAn(Y ∪ Z)PV\X , iteratively,
and checking if some bucket Bi in P intersects with, but is not a subset of, D. If such a bucket
exists, CIDP flips Bi ∩X from interventions to observations using rule 2, when applicable, else
the algorithm throws a fail and the effect is not computable. In Phase II (lines 8-9), Obs. 2 is used
to flip the subset of observations in each bucket into interventions by applying rule 2 of Thm. 1,
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Figure 5: Illustrating example for Alg. 2.

whenever applicable. Finally, in Phase III (line 10), the marginal effect Px(y ∪ z) is computed from
the modified sets X and Z, using the IDP algorithm in Alg. 1. If the call is successful, an expression
for the conditional effect is returned at line 11. The example below illustrates CIDP in action. An
empirical evaluation of CIDP is provided in App. G; the R package will be made available.
Example 4. Consider PAG P in Fig. 5a and the conditional query Px(y|z) := Pa,f (y|b, e). In
Phase I, we have D = PossAn(Y ∪Z)PV\X = {Y,B,E,C,G}, and the bucket {A,B} satisfies the
conditions at line 2 since A ̸∈ D. In PF,A (as shown in Fig. 5b), X′ = {A} is m-separated from Y

given {B,E, F} which satisfies the if condition at line 4. Hence, we flip A to the conditioning set Z
via rule 2 of Thm. 1 to obtain the updated query Px(y|z) = Pf (y|a, b, e). In Phase II (lines 8-9), let
Z1 = {E} and Z2 = {A,B}. In PF,E (see Fig. 5c), we have E m-separated from Y given {F}∪Z2

which satisfies the if condition at line 8. Hence, we flip E to the intervention set using rule 2 of Thm. 1
and we get the updated query Px(y|z) = Pe,f (y|a, b). Next, we check if Z2 is m-separated from Y
given Z1 in PZ1,Z2

which does not hold due to a bidirected edge between B and E. Hence, rule 2
is not applicable and Z2 remains in the conditioning set. Finally, we call IDP in Alg. 1 to compute
the marginal effect Pe,f (y, a, b), if possible. The effect is identifiable with the simplified expression
P (y|b, e, f)× P (a, b). Hence, Pa,f (y|b, e) = Pe,f (y|a, b) = P (y|b,e,f)×P (a,b)∑

y P (y|b,e,f)×P (a,b) = P (y|b, e, f).

The soundness of Alg. 2 follows from that of Alg. 1 and Thm. 1. Next, we turn to its completeness.
According to Def. 4, whenever CIDP fails, we need to establish one of two conditions for complete-
ness. Either there exist two causal diagrams in the equivalence class with different identifications, or
the effect is not identifiable in some causal diagram according to the criterion in [Shpitser and Pearl,
2006, Corol. 2]. Thm. 4 establishes completeness by proving that the latter is always the case. This
result along with the completeness of the calculus rules for the identification of marginal effects (see
Thm. 3) implies that the rules are complete for conditional effects as well.
Theorem 4 (completeness). Alg. 2 is complete for identifying conditional effects Px(y|z). Also, the
calculus in Thm. 1, together with standard probability manipulations are complete for the same task.

5 Conclusions
In this work, we investigate the problem of identifying conditional interventional distributions
given a Markov equivalence class of causal diagrams represented by a PAG. We introduce a new
generalization of the do-calculus for identification of interventional distributions in PAGs (Thm. 1)
and show it to be atomically complete (Thm. 2). Building on these results, we develop the CIDP
algorithm (Alg. 2), which is both sound and complete, i.e., it identifies any conditional effects of the
form Px(y|z) that is identifiable (Thm. 4). Finally, we show that the new calculus rules, along with
standard probability manipulations, are complete for the same task. These results close the problem
of effect identification under Markov equivalence in that they completely delineate the theoretical
boundaries of what is, in principle, computable from a certain data collection. We expect the newly
introduced machinery to help data scientists to identify novel effects in real world settings.
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A Extended Preliminaries

In this section, we introduce the basic setup and notations. Boldface capital letters denote sets of
variables, while boldface lowercase letters stand for value assignments to those variables.

Structural Causal Models. We use Structural Causal Models (SCMs) [Pearl, 2000, pp. 204-207]
as our basic semantical framework. Formally, an SCM M is a 4-tuple ⟨U,V,F, P (U)⟩, where U is
a set of exogenous (unmeasured) variables and V is a set of endogenous (measured) variables. F
represents a collection of functions such that each endogenous variable Vi ∈ V is determined by a
function fi ∈ F, where fi is a mapping from the respective domain of Ui ∪ Pai to Vi, Ui ⊆ U,
Pai ⊆ V \ Vi. The uncertainty is encoded through a probability distribution over the exogenous
variables, P (U). Every SCM is associated with one causal diagram where every variable in V ∪U
is a node, and an arrow is drawn from each member of Ui ∪Pai to Vi. Following standard practice,
when drawing a causal diagram, we omit the exogenous nodes and add a bidirected dashed arc
between two endogenous nodes if they share an exogenous parent. We restrict our study to recursive
systems, which means that the corresponding diagram will be acyclic. The marginal distribution
induced over the endogenous variables P (V) is called observational, and factorizes according to the
causal diagram. D-separation criterion captures the conditional independence relations entailed by a
causal diagram in P (V). Within the structural semantics, performing an action X=x is represented
through the do-operator, do(X=x), which encodes the operation of replacing the original equation
for X by the constant x and induces a submodel Mx. The resulting distribution is denoted by Px,
which is the main target for identification in this paper. For any set C ⊆ V, the quantity Q[C] is
defined to denote the post-intervention distribution of C under an intervention on V \C, i.e. Pv\c(c).

Ancestral Graphs. We now introduce a graphical representation of equivalence classes of causal
diagrams. A mixed graph can contain directed and bi-directed edges. A is an ancestor of B if there
is a directed path from A to B. A is a spouse of B if A↔ B is present. An almost directed cycle
happens when A is both a spouse and an ancestor of B. An inducing path is a path on which every
non-endpoint node is a collider on the path (i.e., both edges incident to the node are into it) and is
an ancestor of an endpoint of the path. A mixed graph is ancestral if it does not contain directed or
almost directed cycles. It is maximal if there is no inducing path between any two non-adjacent nodes.
A Maximal Ancestral Graph (MAG) is a graph that is both ancestral and maximal [Richardson and
Spirtes, 2002]. In general, a MAG represents a set of causal diagrams with the same set of observed
variables that entail the same conditional independence and ancestral relations among the observed
variables. M-separation extends d-separation to MAGs such that d-separation in a causal diagram
corresponds to m-separation in its unique MAG over the observed variables, and vice versa.

Different MAGs may be Markov equivalent in that they entail the exact same independence model.
A partial ancestral graph (PAG) represents an equivalence class of MAGs [M], which shares the
same adjacencies as every MAG in [M] and displays all and only the invariant edge marks (i.e., edge
marks that are shared by all members of [M]). A circle indicates an edge mark that is not invariant.
A PAG is learnable from the independence model over the observed variables, and the FCI algorithm
is a standard method to learn such an object [Zhang, 2008b]. In short, a PAG represents a class of
causal diagrams with the same observed variables that entail the same independence model.

Graphical Notions. Given a causal diagram, a MAG, or a PAG, a path between X and Y is
potentially directed (causal) from X to Y if there is no arrowhead on the path pointing towards X . Y
is called a possible descendant of X and X a possible ancestor of Y if there is a potentially directed
path from X to Y . Y is called a possible child of X and X a possible parent of Y if they are adjacent
and the edge is not into X . For a set of nodes X, let An(X) (De(X)) denote the union of X and the
set of possible ancestors (descendants) of X. Given two sets of nodes X and Y, a path between them
is called proper if one of the endpoints is in X and the other is in Y, and no other node on the path is
in X or Y. For convenience, we use an asterisk (*) as a wildcard to denote any possible mark of a
PAG (◦, >,−) or a MAG (>,−). Let p be any path in a PAG, and ⟨A,B,C⟩ be any consecutive triple
along p. B is a collider on p if both edges are into B (i.e., A∗→ B ←∗C). B is a non-collider on p if
one of the edges is out of B (A← B ∗−∗ C or A ∗−∗B → C), or both edges have a circle mark at
B and there is no edge between A and B (i.e., A ◦−◦ B ◦−◦ C , where A and B are not adjacent).
A path is definite status if every non-endpoint node along it is either a collider or a non-collider. If
the edge marks on a path between X and Y are all circles, we call the path a circle path. We refer
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to the closure of nodes connected with circle paths as a bucket. Obviously, given a PAG, nodes are
partitioned into a unique set of buckets.

A directed edge X → Y in a MAG or a PAG is visible if there exists no causal diagram in the
corresponding equivalence class where there is an inducing path between X and Y that is into X .
This implies that a visible edge is not confounded (X L9999K Y does not exist). Which directed edges
are visible is easily decidable by a graphical condition [Zhang, 2008a], so we simply mark visible
edges by v. For brevity, we refer to any edge that is not a visible directed edge as invisible.

Manipulations in PAGs. Let P denote a PAG over V and X ⊆ V. The X-lower-manipulation of
P deletes all those edges that are visible in P and are out of variables in X, replaces all those edges
that are out of variables in X but are invisible in P with bi-directed edges, and otherwise keeps P as
it is. The resulting graph is denoted as PX. The X-upper-manipulation of P deletes all those edges in
P that are into variables in X, and otherwise keeps P as it is. The resulting graph is denoted as PX.

B Background Results

Lemma 1 (Lemma A.1 in [Zhang, 2008b]). In a PAG, the following property holds:

For any three nodes A,B,C, if A∗→ B ◦−∗ C, then there is an edge between A and C with an
arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the
edge between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).
Lemma 2 (Lemma 3.3.2 in [Zhang, 2006]). In a PAG P , for any two nodes A and B, if there is a
circle path, i.e., a path consisting of ◦−◦ edges, between A and B, then:

i. if there is an edge between A and B, the edge is not into A or B.

ii. for any other node C, C∗→ A if and only if C∗→ B. Furthermore, C ↔ A if and only if
C ↔ B.

Lemma 3 (Lemma 7.5 in [Maathuis and Colombo, 2015]). Let X and Y be two distinct nodes in
a PAG P . Then P cannot have both a possibly directed path from X to Y and an edge of the form
Y ∗→ X .
Lemma 4 (Lemma B.1 in [Zhang, 2008b]). If p = ⟨A, . . . , B⟩ is a possibly directed path from A to
B in a PAG P , then some subsequence of p forms an uncovered possibly directed path from A to B
in P .
Lemma 5 (cf. Lemma B.2 in [Zhang, 2008b], Lemma 7.2 in [Maathuis and Colombo, 2015]). Let
X and Y be distinct nodes in a PAG P . If p = ⟨X = V0, . . . , Vk = Y ⟩, k ≥ 2, is an unshielded
possibly directed path from X to Y in P , and Vi−1∗→ Vi for some i ∈ {1, . . . , k}, then Vj−1 → Vj

for all j ∈ {i+ 1, . . . , k}.
Lemma 6 (cf. Thm. 2 in [Zhang, 2008b], Lemma 7.6 in [Maathuis and Colombo, 2015]). Let P be a
PAG. LetM be the graph resulting from the following procedure applied to a P:

i. replace all partially directed edges ◦→ in P with directed edges→, and

ii. orient the subgraph of P consisting of all non-directed edges ◦−◦ into a DAG with no
unshielded colliders.

ThenM is in the Markov equivalence class of P . Moreover, if X is a node in P , then one can always
find an orientation of (ii) that does not create any new edges into X .
Lemma 7 (Lemma 48 in [Perković et al., 2018]). Let X be a node in a PAG P . LetM be a MAG in
the equivalence class of P that satisfies Lemma 6. Then any edge that is either X ◦−◦ Y , X◦→ Y or
invisible X → Y in P is invisible X → Y inM.
Lemma 8 (Proposition 1 in [Jaber et al., 2018a]). Let P be a PAG over V, and D be any causal
diagram in the equivalence class represented by P . Let X ̸= Y be two nodes in A ⊆ V. If X is an
ancestor of Y in DA, then X is a possible ancestor of Y in PA.
Lemma 9 (Lemma 49 in [Perković et al., 2018]). Let X and Y be distinct nodes in a PAG P such
that there is a possibly directed path p∗ from X to Y in P that does not start with a visible edge
out of X . Then there is a MAGM in the Markov equivalence class of P (constructed according to
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Lemma 6) such that the path p inM, consisting of the same sequence of nodes as p∗ in P , contains a
subsequence p′ that is a directed path from X to Y starting with an invisible edge inM.
Lemma 10 (Lemma 10 in [Zhang, 2008a]). LetM be any MAG over a set of variables V and edge
set E, and A→ B be any directed invisible edge inM. Let E′ be a set of edges such that X → Y is
in E′ iff it is in E and X L9999K Y is in E′ iff X ↔ Y is in E for any X,Y ∈ V. Finally, let G be a
causal diagram over V with edge set E′ ∪ {A L9999K B}. Then,M is the MAG corresponding to G.
Lemma 11. Let p be a path m-connecting X and Y given Z in MAGM such that no path over a
subsequence of the vertices along p is m-connecting. Let p∗ denote the corresponding path constituted
by the same sequence of vertices in P . Then, every non-endpoint vertex on p∗, if any, is of a definite
status, i.e., either a definite collider or a definite non-collider.

Proof. The exact same proof of [Zhang, 2006, Lemma 1; p. 208] applies here.

Lemma 12. Let p be a path m-connecting X and Y given Z in MAGM whose corresponding path
in PAG P , denoted by p∗, is not out of X with a definitely visible edge and such that no similar path
over a subsequence of nodes along p is m-connecting. Then, every non-endpoint node on p∗, if any,
is of a definite status, i.e., either a definite collider or a definite non-collider.

Proof. The exact same proof of [Zhang, 2006, Lemma 1’; p. 217] applies here.

Definition 7 (C-forest). Let G be a causal diagram, where Y is the root set. Then, G is a Y-rooted
C-forest if all nodes in G form a C-component, and all nodes have at most one child.
Definition 8 (Hedge). Let X,Y be sets of nodes in G. Let F,F′ be R-rooted C-forests such that
F ∩X ̸= ∅, F′ ∩X = ∅, F′ ⊂ F, and R ⊆ PossAn(Y)GV\X . Then, F,F′ form a hedge for Px(y).

Theorem 5 (Back-Door Hedge Criterion [Shpitser and Pearl, 2006]). Let W ⊆ Z be the unique
maximal set such that Px(y|z) = Px,w(y|z \w). Then Px(y|z) is identifiable from P (V) if and
only if there does not exist a hedge for Px′(y′), for any Y′ ⊆ (Y ∪ Z) \W,X′ ⊆ X ∪W.
Definition 9 (DC-Component). In a MAG, a PAG, or any induced subgraph thereof, two nodes are
in the same definite c-component (dc-component) if they are connected with a bi-directed path, i.e. a
path of bi-directed edges.
Definition 10 (DC-forest). Let P denote a subgraph of a PAG over C. Y is a root set of P if
C = PossAn(Y)P and it is maximal if no subset satisfies the property. Let Y be the maximal root
set of P . Then P is a Y-rooted DC-forest if P is a dc-component and all nodes have at most one
possible child via a directed (→) or partially directed (◦→) edge.
Definition 11 (P-Hedge). Let X, Y disjoint sets of nodes in PAG P . Let F, F′ be R-rooted DC-
forests such that F ∩ X ̸= ∅, F′ ∩ X = ∅, F′ ⊂ F, R ⊆ An(Y)PV\X . Then F and F′ form a
P-hedge for Px(Y) in P .
Theorem 6 (Non-Identifiability Criterion for PAGs [Jaber et al., 2019a]). Given a PAG P , Px(y) is
non-identifiable in P if and only if there exist:

1. proper possibly directed path from X to Y that starts with an invisible edge; or

2. dc-forests F, F′ forming a P-hedge for Px(y).
Theorem 7 (Corol. 2 in [Jaber et al., 2019a]). IDP (Alg. 1) is complete for marginal effect
identification.
Lemma 13 (Lemma 4 in [Jaber et al., 2019a]). Given a PAG P over V, A ⊂ C ⊆ V, there doesn’t
exist a node Z ∈ C such that Z ̸∈ RC

A ∧ Y ∈ RC
A ∧ invisible Z∗→ Y .

Theorem 8 (Do-Calculus for MAGs; Thm. 1 in [Zhang, 2007]). LetM be the MAG over V, and
X,Y,W,Z be disjoint subsets of V. The following rules are valid, in the sense that if the antecedent
of the rule holds, then the consequent holds in every causal diagram represented byM.

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are m-separated by W ∪ Z inMW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are m-separated by W∪Z inMW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are m-separated by W∪Z inM
W,X(Z)

.

where X(Z) := X \ An(Z)MV\W .
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Theorem 1

Lemma 14
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Lemma 16

Figure 6: Roadmap to proving the do-calculus in Thm. 1.

Theorem 9 (Do-Calculus for Causal Diagrams; Thm. 3.4.1 in [Pearl, 2000]). Let G be a causal
diagram compatible with a structural causal model M , with endogenous variables V. For any
disjoint X,Y,W,Z ⊆ V, the following rules are valid.

1. P (y|do(w),x, z) = P (y|do(w), z), if X and Y are d-separated by W ∪ Z in GW.

2. P (y|do(w), do(x), z) = P (y|do(w),x, z), if X and Y are d-separated by W ∪ Z in GW,X.

3. P (y|do(w), do(x), z) = P (y|do(w), z), if X and Y are d-separated by W∪Z in G
W,X(Z)

.
where X(Z) := X \ An(Z)GV\W .

C Proofs of Section 3.2

Figure 6 shows the results involved in proving the calculus in Thm. 1.

Proof of Theorem 1. Rule 1. By Lemma 14, if X and Y are m-separated by W ∪Z in PW, then X
and Y are m-separated by W ∪ Z inMW. Hence, the consequent follows by rule 1 of Theorem 8.

Rule 2. By Lemma 15, if X and Y are m-separated by W ∪ Z in PW,X, then X and Y are
m-separated by W ∪ Z inMW,X. Hence, the consequent follows by rule 2 of Theorem 8.

Rule 3. By Lemma 17, if X and Y are m-separated by W∪Z inP
W,X(Z)

, X and Y are m-separated
by W ∪ Z inM

W,X(Z)
. Hence, the consequent follows by rule 3 of Theorem 8.

Lemma 14. LetM be a MAG over V, and let P be the PAG that represents the Markov equivalence
class of M, i.e., [M]. For X,Y ⊂ V, and disjoint sets Z,W ⊆ V \ (X ∪ Y), if there is a
proper path m-connecting X and Y given W ∪ Z inMW, then there is a proper path definitely
m-connecting X and Y given W ∪ Z in PW.

Proof. We derive the following weaker claim first.

lemma I: Let p be a shortest proper path m-connecting X and Y given W ∪ Z inMW. Let p∗
denote the corresponding path constituted by the same sequence of variables in PW. Then every
non-endpoint node on p∗, if any, is of a definite status, i.e., either a definite collider or a definite
non-collider.

Proof. First, if p is an active path inMW, then it is also active inM. If p satisfies the if condition
of Lemma 11, then p is a definite status path in P and consequently in PW. Otherwise, there is a
subsequence of the nodes along p that constitutes an active path given W ∪ Z inM but not inMW.
In what follows, we argue that such a path does not exist which concludes the proof.

Assume for the sake of contradiction that there is a subsequence of the nodes along p that constitutes
an active path between X ∈ X and Y ∈ Y given W ∪ Z inM, but not inMW, and let p′=⟨X=
O0, . . . , Om=Y ⟩ denote any such path. We have two cases to consider.

In the first case, p′ is not defined inMW which means that at least one of the edges along p′ is into
a node, denoted Ok, and Ok ∈W. Hence, Ok along p has two edges out of it, otherwise p is not
defined inMW which is a contradiction. However, this also leads to a contradiction since p is not
active inMW given W ∪ Z since Ok ∈W and Ok is a non-collider.

In the second case, p′ is defined inMW, but it is not m-connecting given Z∪W. Let Ok denote any
inactive node along p′ inMW, and recall that Ok is active along p given W ∪ Z inMW since p is
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active inMW by definition. Hence, Ok must have different status (collider or non-collider) along p
and p′. If Ok is a non-collider along p′ and it is active given Z ∪W inM by definition, then it must
be also active inMW which is a contradiction. Hence Ok is a collider along p′ and a non-collider
along p. Let Op denote the node that is adjacent to Ok along p′ and closest to X , and let p′′ denote
the subpath of p between Ok and Op. Since Ok is a non-collider along p, one of the edges incident
on Ok must be out of it. Assume without loss of generality that p′′ is out of Ok. We have two cases
to consider here both of which lead to contradictions. If p′′ is a directed path from Ok to Op then we
have a cycle or almost directed cycle due to Ok 99K Op and one of Op → Ok or Op ↔ Ok. This
violates the ancestral property in MAGs and hence it is not possible. Otherwise, let Ol denote the first
collider along p′′ starting from Ok. Recall Ol is active along p given W ∪ Z inMW by definition,
then Ol has a descendant in Z inMW. Therefore, inMW, Ok has a descendant in Z through Ol

due to Ok 99K Ol. This contradicts the choice of Ok as being inactive along p′ given W∪Z inMW
which This concludes the proof.

Given any path p m-connecting X and Y given Z inM, for every collider Q on p, there is a directed
path (possibly of length 0) from Q to a member of Z. Define the distance-from-Z of Q to be the
length of a shortest directed path (possibly of length 0) from Q to Z, and define the distance-from-Z
of p to be the sum of the distances from Z of the colliders on p.

lemma II: Let p be a shortest path m-connecting X and Y given W ∪ Z in MW such that no
equally short m-connecting path has a shorter distance-from-W ∪ Z than p does. Let p∗ denote
the corresponding path constituted by the same sequence of nodes in PW. Then, p∗ is a definite
m-connecting path between X and Y given W ∪ Z in PW.

Proof. Since p is a shortest m-connecting path inMW, then by Lemma I, every non-endpoint vertex
on p∗, if any, is of a definite status, i.e., either a definite collider or a definite non-collider. We note
here that all the nodes along p including the endpoints are are not in W since (1) X ∩W = ∅ and
(2) the path would not be connecting given W ∪ Z inMW. The rest of the proof follows exactly
as [Zhang, 2006, Lemma 2; p. 213] while considering p inMW instead ofM.

Finally, the main result follows from Lemma II.

Lemma 15. LetM be a MAG over V, and let P be the PAG that represents the Markov equivalence
class of M, i.e., [M]. For X,Y ⊂ V, and disjoint sets Z,W ⊆ V \ (X ∪ Y), if there is a
proper path m-connecting X and Y given W ∪ Z inMW,X, then there is a proper path definitely
m-connecting X and Y given W ∪ Z in PW,X.

Proof. Let p = ⟨O0, . . . , Om⟩ denote a proper active path between X and Y given W∪Z inMW,X.
Then, p must be into O0 ∈ X by definition of X-lower manipulation of MAGs. The same path is
defined and active inMW with the only possible difference of having O0 ↔ O1 inMW,X and
O0 → O1 inMW if O0 → O1 is invisible inM. It follows that the corresponding path of p inMW
is not out of O0 ∈ X with a visible edge. By Lemma 16, there is a proper path definitely m-connecting
X and Y given W∪Z in PW that is not out of X with a visible edge. Let p∗ = ⟨A0, . . . , Ap⟩ denote
one such path in PW. Note that, except for A0, none of the nodes along p∗ and the corresponding
directed paths from colliders to Z belong to X else the path is not proper. Since the edge between A0

and A1 is not a visible edge out of A0 in P ( and PW), then the corresponding path of p∗ in PW,X is
defined and definitely m-connecting with the only possible difference of having A0 ↔ A1 in PW,X

and A0 → A1 in PW if A0 → A1 is defined and invisible in P . This concludes the proof.

Lemma 16. LetM be a MAG over V, and let P be the PAG that represents the Markov equivalence
class ofM, i.e., [M]. For X,Y ⊂ V, and disjoint sets Z,W ⊆ V \ (X ∪Y), if there is a proper
path m-connecting X and Y given W ∪ Z inMW such that the path is not out of X with a visible
edge, then there is a proper path definitely m-connecting X and Y given W ∪ Z in PW that is not
out of X with a visible edge.

Proof. In order to prove the lemma, we start with the following weaker result.
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lemma I: Let p be a shortest proper path m-connecting X and Y given W ∪ Z in MW whose
corresponding path in P , denoted by p∗, is not out of X with a visible edge. Then every non-endpoint
node on p∗, if any, is of a definite status, i.e., either a definite collider or a definite non-collider.

Proof. If p satisfies the conditions of Lemma 12 in M, then p∗ is a definite status path in P by
consequent of the same lemma. Otherwise, there exists a shorter m-connecting path inM over a
subsequence of the nodes along p. Following the same argument as that of Lemma I in Lemma 14,
we show that such a shorter path does not exist inM.

Given any path p m-connecting X and Y given Z inM, for every collider Q on p, there is a directed
path (possibly of length 0) from Q to a member of Z. Define the distance-from-Z of Q to be the
length of a shortest directed path (possibly of length 0) from Q to Z, and define the distance-from-Z
of p to be the sum of the distances from Z of the colliders on p.

lemma II: Let p be a shortest proper path m-connecting X and Y given W ∪ Z inMW whose
corresponding path in P , denoted by p∗, is not out of X with a visible edge and such that no equally
short proper m-connecting path has a shorter distance-from-W ∪ Z than p does inMW. Then, p∗ is
a definite m-connecting path between X and Y given W ∪ Z in PW.

Proof. Since p is a shortest proper m-connecting path inMW, then by Lemma I, every non-endpoint
vertex on p∗, if any, is of a definite status in P and consequently in PW. We note here that all
the nodes along p including the endpoints are not in W for two reasons: (1) sets X,Y,W are
disjoint, and (2) if any non-endpoint node along p is in W, p would not be active given W ∪ Z in
MW. Also, for any collider Q along p, the shortest directed path from Q to Z inMW, denoted d,
remains a shortest directed path from Q to Z inM over any subsequence of nodes along d since
none of the nodes along it are in W. It follows by the above two observations that every adjacency
inMW between nodes along p and/or the respective shortest directed paths from colliders along p
to Z also exists inM and vice versa. Therefore, the rest of the proof follows exactly as in [Zhang,
2006, Lemma 2’; p. 218] while considering p inMW instead ofM and deriving a contradiction by
establishing a shorter active path or an equally-long active path with a shorter distance to W ∪ Z in
MW.

Finally, the main result follows from Lemma II.

Lemma 17. LetM be a MAG over V, and let P be the PAG that represents the Markov equivalence
class ofM, i.e., [M]. For X,Y ⊂ V, and disjoint sets Z,W ⊆ V \ (X ∪Y), if there is a path
m-connecting X and Y given W ∪ Z inM

W,X(Z)
, then there is a path definitely m-connecting X

and Y given W ∪ Z in P
W,X(Z)

.

Proof. First, for any X ∈ X, if X ̸∈ X(Z) givenM according to the definition in rule 3 of Thm. 8,
then X ∈ An(Z)MV\W . It follows, by Lemma 8, that X ∈ PossAn(Z)PV\W , and consequently
X ̸∈ X(Z) given P according to the definition in rule 3 of Thm. 1. Hence, every path inM

W,X(Z)

is also defined in P
W,X(Z)

since the adjacencies in latter are a subset of the ones in the former. Next,
we derive the following weaker claim.

lemma I: Let p be a shortest proper path m-connecting X and Y given W ∪ Z inM
W,X(Z)

. Let p∗

denote the corresponding path constituted by the same sequence of variables in P
W,X(Z)

. Then every
non-endpoint vertex on p∗, if any, is of a definite status, i.e., either a definite collider or a definite
non-collider.

Proof. First, if p is an active path in M
W,X(Z)

, then it is also active in M. If p satisfies the
if condition of Lemma 11, then p∗ is a definite status path in P and consequently in P

W,X(Z)
.

Otherwise, there is a subsequence of the nodes along p that constitutes an active path between X and
Y given W ∪ Z inM but not inM

W,X(Z)
. In what follows, we argue that such a path does not

exist which concludes the proof.
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Assume for the sake of contradiction that there is a subsequence of the nodes along p that constitutes
an active path between X and Y given W ∪ Z in M but not in M

W,X(Z)
, and let p′ = ⟨X =

O0, . . . , Om=Y ⟩ denote any such path, where X ∈ X, Y ∈ Y. We have two cases to consider.

In the first case, p′ is not defined inM
W,X(Z)

which means that at least one of the edges along p′ is
into a node, denoted Ok, and Ok ∈W ∪X(Z). If Ok ̸= X , then Ok is a non-collider along p with
both edges out of Ok, otherwise the edges into Ok are removed inM

W,X(Z)
and p is not defined

inM
W,X(Z)

which is a contradiction. However, if Ok ∈ W is a non-collider along p, then p is
blocked given W ∪ Z inM

W,X(Z)
. This contradicts the choice of p as a proper active path between

X and Y given W ∪ Z inM
W,X(Z)

. Alternatively, we have Ok = O0 = X and X ∈ X(Z). Let
Op denote the node adjacent to Ok along p′, and note that Op is along path p as well. Then, the first
edge along p starting from Ok, i.e. X , is out of Ok, else the edge would be removed inM

W,X(Z)

and path p is not defined because Ok ∈ X(Z). Given the presence of Ok ←∗Op inM, the subpath
of p between Ok and Op cannot be a directed path out of Ok since this creates a directed or almost
directed cycle and violates the ancestral property of MAGs. Hence, there is a collider along the
subpath of p between Ok and Op and this collider is active inM

W,X(Z)
. Let C denote the first

collider along p starting from Ok. Since the first edge along p is out of X , then C is a descendant of
X inM

W,X(Z)
and X ̸∈ X(Z) which is a contradiction.

In the second case, p′ is defined inM
W,X(Z)

, but it is not active given W ∪ Z. Let Ok denote any
inactive node along p′ inM

W,X(Z)
, and recall that Ok is active along p given W ∪ Z inM

W,X(Z)

since p is active in M
W,X(Z)

by definition. Hence, Ok must have different status (collider or
non-collider) along p and p′. If Ok is a non-collider along p′ and it is active inM given W ∪ Z by
definition, then it must be active inM

W,X(Z)
as well, which contradicts the choice of Ok. Hence, Ok

is a collider along p′ and a non-collider along p. Let Op denote the node that is adjacent to Ok along
p′ and closest to X , and let p′′ denote the subpath of p between Ok and Op. Since Ok is a non-collider
along p, one of the edges incident on Ok must be out of it. Assume without loss of generality that
p′′ is out of Ok. We have two cases to consider here both of which lead to contradictions. If p′′ is a
directed path from Ok to Op then we have a cycle or almost directed cycle due to Ok 99K Op and one
of Op → Ok or Op ↔ Ok. This violates the ancestral property in MAGs and hence it is not possible.
Otherwise, let Ol denote the first collider along p′′ starting from Ok. Recall Ol is active along p
given W ∪ Z inM

W,X(Z)
by definition, then Ol has a descendant in Z inM

W,X(Z)
. Therefore, in

M
W,X(Z)

, Ok has a descendant in Z due to Ok 99K Ol. This contradicts the choice of Ok as being
inactive along p′ given W ∪ Z inM

W,X(Z)
which concludes the proof.

Given any proper path p m-connecting X and Y given Z inM, for every collider Q on p, there
is a directed path (possibly of length 0) from Q to a member of Z. Define the distance-from-Z of
Q to be the length of a shortest directed path (possibly of length 0) from Q to Z, and define the
distance-from-Z of p to be the sum of the distances from Z of the colliders on p.

lemma II: Let p be a shortest proper active path between X and Y given W ∪ Z inM
W,X(Z)

such
that no equally short active path has a shorter distance-from-W ∪ Z than p does. Let p∗ denote the
corresponding path constituted by the same sequence of nodes in P

W,X(Z)
. Then, p∗ is a definite

m-connecting path between X and Y given W ∪ Z in P
W,X(Z)

.

Proof. This proof follows almost exactly as [Zhang, 2006, Lemma 2; p. 213] while accounting
for a few special cases. We note first that all the nodes along p, except for the one in X, are not
in W, or else the path would not be connecting inM

W,X(Z)
. Since p is a shortest active path in

M
W,X(Z)

, then by Lemma I, every non-endpoint vertex on p∗, if any, is of a definite status, i.e., either
a definite collider or a definite non-collider. Since P is the PAG ofM, every definite non-collider
on p∗ corresponds to a non-collider on p, and hence is not in W ∪ Z, for otherwise p would not be
m-connecting given W ∪ Z inM

W,X(Z)
.

Similarly, for any definite collider Q on p∗, Q is also a collider on p. Hence, there is a directed path
(possibly of length 0) from Q to a member of W ∪Z inM

W,X(Z)
and consequently inM. Let d be

a shortest such path from Q to, say, C ∈W∪Z inM
W,X(Z)

. Note that this directed path is also the
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shortest inM over any subsequence of d or else d would not exist inM
W,X(Z)

. Let d∗ denote the
corresponding path in P . Because P is a PAG ofM, d∗ is a potentially directed path from Q to C in
P and P

W,X(Z)
. We now show that no circle mark (◦) appears on d∗, i.e., that d∗ is (fully) directed.

Suppose for contradiction that there is a circle on d∗. Then, the mark at Q on d∗ must be a circle,
for otherwise, an arrowhead would meet a circle on d∗, and by the property in Lemma 1, a proper
subpath of d∗ would constitute a potentially directed path from Q to C, which in turn implies that
there is a shorter directed path from Q to C inM

W,X(Z)
than d is, a contradiction with our choice

of d.

Let Q ◦−−∗S be the first edge along d∗. Suppose S is not on p∗ for the moment. Since Q is a definite
collider on p∗, we have Ql∗→ Q←∗Qr in P , Ql, Qr being the two nodes adjacent to Q on p∗. By
Lemma 1, there is an edge between Ql and S that is into S, and there is an edge between Qr and S
that is into S, i.e., Ql∗→ S ←∗Qr in P .

Now we show that there exists a node W (distinct from Q) on p(X,Q) such that (i) there is an edge
between W and S inM andM

W,X(Z)
that is into S; and (ii) inM

W,X(Z)
, the collider/non-collider

status of W on p is the same as the collider/non-collider status of W on p(X,W )⊕ ⟨W,S⟩. To show
this, it suffices to demonstrate that if no node between X and Q on p satisfies the two conditions,
then X must satisfy them. Suppose no vertex between X and Q on p satisfies the two conditions.
First, consider Ql = X . X satisfies (i) and (ii) trivially inM

W,X(Z)
if the edge is out of X , i.e.,

we have X → S, or X ̸∈ X(Z). Suppose for the sake of contradiction that we have X ↔ S and
X ∈ X(Z). Then, we have X → Q or else the edge would be cut as part of the operation X(Z)
and p is not defined inM

W,X(Z)
. However, inM

W,X(Z)
, X would have a descendant in Z due to

X → Q and Q being an active collider along d; a contradiction. Next, suppose Ql ̸= X . We argue
by induction that every vertex between X and Q is a collider on p and is a parent of S inM

W,X(Z)
.

The rest of the proof follows almost exactly like [Zhang, 2006, Lemma 2; p. 213] in addition to the
earlier argument for X ̸∈ X(Z) to show that X satisfies conditions (i) and (ii) inM

W,X(Z)
if no

node along p(X,Q) satisfies them.

By symmetry, it follows that there exists a vertex V (distinct from Q) on p(Q,Y ) such that (i) there
is an edge between V and S inM

W,X(Z)
that is into S; and (ii) the collider/non-collider status

of V on p is the same as the collider/non-colllider status of V on ⟨S, V ⟩ ⊕ p(V, Y ). Then, the
path p′ = p(X,W ) ⊕ ⟨W,S, V ⟩p(V, Y ) (it could be that X = W and/or V = Y ) is obviously
m-connecting given W ∪ Z inM

W,X(Z)
. It is easy to check that either p′ is shorter than p is, or p′

is as long as p is (when W = Ql and V = Qr) but has a shorter distance-from-W ∪Z than p. Either
case is a contradiction with our assumption about p.

Finally, if S is on p∗, the argument follows same as in [Zhang, 2006, Lemma 2; p. 213].

Finally, the main result follows from Lemma II.

Proof of Theorem 2. Rule 1. If the condition fails, then there exists a proper definite m-connecting
path p between some X ∈ X and some Y ∈ Y given W ∪ Z in PW. We use Lemma 6 to construct
a MAGM in the equivalence class of P . Since p is a definite m-connecting path in PW, then the
corresponding path in PW, denoted p′, is m-connecting as well. Next, we construct a causal diagram
G in the equivalence class ofM by keeping the directed edges and replacing bidirected edges with
bidirected dashed arcs (special case of Lemma 10). It follows easily that the corresponding path to p′

in GW is active given W ∪ Z. Hence, rule 1 of Theorem 9 is not applicable in G.

Rule 2. If the condition fails, then there exists a proper definite m-connecting path between some
X ∈ X and some Y ∈ Y given W ∪ Z in PW,X. Let p denote the path in P corresponding to the
same sequence of nodes along the m-connecting path in PW,X. We use Lemma 6 to construct a
MAGM in the equivalence class of P such that there are no additional edges into X inM. Let p′
denote the path corresponding to p inM. If the first edge along p incident on X is not into X in P ,
then the corresponding edge inM is out of X by the construction in Lemma 6, denoted X → J , and
invisible by Lemma 7. Next, we construct a causal diagram G in the equivalence class ofM using
Lemma 10 such that we add X L9999K J in G if X → J is along p′ else we follow the special case as
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in Rule 1. It follows that there exists an active path between X and Y given W∪Z in GW,X. Hence,
rule 2 of Theorem 9 is not applicable in G.

Rule 3. If the condition fails, then there exists a proper definite m-connecting path p between some
X ∈ X and some Y ∈ Y given W ∪ Z in P

W,X(Z)
. We use Lemma 6 to construct a MAGM in

the equivalence class of P such that there are no additional edges into X inM. If X is a possible
ancestor of Z in PV\W, then by Lemma 4, there exists in P an uncovered possibly directed path from
X to a node in Z, denoted pd, such that no node along the path is in W. It follows by the construction
in Lemma 6 that the path corresponding to pd inM is directed from X to the same node in Z. Hence,
the path corresponding to p inM

W,X(Z)
, denoted p′, is defined and is also m-connecting given

W ∪ Z. Finally, we construct a causal diagram G in the equivalence class ofM by keeping the
directed edges and replacing bidirected edges with bidirected dashed arcs (special case of Lemma 10).
It follows easily that the corresponding path to p′ in G

W,X(Z)
is active given W ∪ Z. Hence, rule 3

of Theorem 9 is not applicable in G.

D Proof of Theorem 3

Figure 7 shows the results involved in proving Theorem 3.

Lemma 20

Proposition 2

Proposition 5

Proposition 3

Proposition 4 Theorem 3

Figure 7: Roadmap to proving Theorem 3.

Proof of Theorem 3. Prop. 3 shows that IDP, as formulated in [Jaber et al., 2019a], fails whenever
Alg. 1 fails. Following the completeness of the earlier [Jaber et al., 2019a, Corol. 2], we have Alg. 1
complete. This result along with Prop. 4 establishes the second part of the claim.

Proposition 3. Given a PAG P and a target causal effect Px(y), if Alg. 1 fails to identify the effect,
then IDP in [Jaber et al., 2019a] fails to identify it as well.

Proof. Suppose Alg. 1 fails to identify the target effect, and let IDENTIFY(C,T, Q) be the recursive
call that throws a fail. If any bucket/circle component is split between C and T \C, then the original
IDP algorithm would fail as well. Otherwise, each bucket in T is either a subset of C or T\C. Since
Alg. 1 fails the condition at line 6, then every bucket in T \C is in the same pc-component with a
descendant. Also, since Alg. 1 fails the condition at line 9, thenRB = C for all buckets B ⊆ C. Let
C∗ be any node in any sink bucket in PC, i.e., a bucket with only arrowheads incident on. Node C∗

is in the same pc-component with at least one node from every bucket in PC due to [Zhang, 2006,
Lem. 3.3.2], and the paths consistent with Def. 5 are into C∗.

To prove our claim, we start with the following observation. Let A denote any bucket in T \ C
and B denote a descendant node such that B is in the pc-component of A. Suppose B is in the
pc-component of A due to collider path that is not into B, and let D denote the second last node
along the path before B. According to the PAG properties in [Zhang, 2008b, Lems. B.1 & B.2],
there is a potentially directed from A to B that is into B (E∗→ B). If we have B◦→ D, then
we have E → D or E◦→ D by [Zhang, 2008b, Lem. A.1]. Also, if we have B → D, then we
have E → D or E◦→ D by [Zhang, 2008b, FCI:R2] and since B → D is invisible. It follows
that A has a descendant (D) that is in the same pc-component with it and the corresponding path
consistent with Def. 5 is into that descendant. By the above observation, for every bucket A in PT

we have a sequence of nodes ⟨T1 ∈ A, T2, . . . , Tp = C∗⟩ such that every consecutive pair ⟨Ti, Ti+1⟩
is connected with a path consistent with Def. 5 that is into Ti+1.

19



Finally, we show that every bucket in T \C is in the same pc-component with a possible child, and
hence fails the condition of Prop. 2. This concludes the proof as the original IDP algorithm would
fail as well. Let A denote any bucket in T \C and consider a sequence of nodes discussed earlier
⟨T1 ∈ A, T2, . . . , Tp = C∗⟩. We show by induction on the number of nodes in the latter sequence
that A, i.e., some node in A, is in the same pc-component with C∗ and the corresponding path is
into C∗. The claim trivially holds for a sequence of two. Assume the claim holds for a sequence of i
nodes, we prove it for i+ 1 nodes. Consider the first three nodes ⟨T1, T2, T3⟩. If T2 and T3 share a
bi-directed path, then T1 and T3 share a collider path that is into T3 and we obtain a sequence of i
nodes excluding T2 which concludes the proof. Otherwise, the path between T2 and T3 consistent
with Def. 5 is not into T2. Let T2∗→ B denote the first edge along such path. If any node along the
path between T1 and T2 is adjacent to B with a bi-directed edge, then we are done as we can exclude
T2 and obtain a shorter sequence of nodes. Otherwise, by applying Lemma 18 recursively, every
node along the path between T1 and T2 has an invisible edge into B, including T1. This concludes
the proof as we obtain a shorter sequence by excluding T2 since T1 and B share an invisible edge
into B. It follows from the above that every bucket in T \C is in the same pc-component with C∗

and the corresponding path is into C∗. Also, note that every bucket A in T \C has a possible child
in another bucket B by the failing of the algorithm (line 6), and consequently every node in B is a
possible child of A by [Zhang, 2008b, Lem. A.1]. Therefore, every bucket in T \C is in the same
pc-component with a possible child which concludes the proof.

Lemma 18. In PA, where P is a PAG over V and A ⊆ V, the following property holds:

For any three vertices A, B, C, if A∗→ B?→ C and both edges are invisible, then we have A∗→ C
and the edge is invisible.5

Proof. We prove this property for A = V. The same trivially holds for A ⊂ V since PA is an
induced subgraph of P . If B◦→ C, then we have A∗→ C by [Zhang, 2008b, Lemma A.1]. Also, if
B → C and the edge is invisible, then A and C are adjacent and the edge is into C by [Zhang, 2008b,
FCI:R2].

We still need to show that the edge between A and C is invisible if it was oriented out of A. Suppose
for the sake of contradiction that A→ C is visible. We can construct a MAGM in the equivalence
class of P using [Perković et al., 2018, Lem. 43] with possible circles incident on A and B oriented
out of both. Note that the construction is possible since A and B are in different circle components
in P . It follows by [Perković et al., 2018, Lem. 48] that, inM, we have A∗→ B → C and both
edges are invisible while A→ C is visible. This violates the MAG property in Lemma 19, and hence
it is not possible. Therefore, a directed edge A → C would be invisible in P . This concludes the
proof.

Lemma 19 ([Jaber et al., 2018b], Lemma 6). InMA, whereM is a MAG over V and A ⊆ V, the
following property holds:

For any three vertices A, B, C, if A∗→ B → C and both edges are invisible, then we have A∗→ C
and the edge is invisible.

Proposition 4. Alg. 1 can be mapped to a sequence of calculus rules from Thm. 1 along with standard
probability manipulations.

Proof. This follows from the derivation of Lem. 20, Prop. 2, and Prop. 5.

Lemma 20. Let D = PossAn(Y)PV\X , then we have Px(y) = Pv\d(y) =
∑

d\y Q[D].

Proof. We use rule 3 of Thm. 1 to prove that Px(y) = Pv\d(y). Let W = V\(D∪X) and consider,
for the sake of contradiction, p to be any proper definite m-connecting path between W ∈W and
Y ∈ Y given X in PX,W. If p is possibly directed from W to Y then no node in X is along pW ∈ D
which is a contradiction. Else, let C be the collider along p that is closest to W . Since C is active
then there is a directed path from C to X in PX,W. This is not possible since we cut the incoming to
X and we have a contradiction. Therefore, rule 3 is applicable and we get Px(y) = Pv\d(y). Finally,
the second identity follows by standard probability manipulation.

5∗ is a wildcard for any of the possible marks (−, ◦, >) and ? is a wildcard for tail or circle.
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Proof of Proposition 2. Let V− = T \ PossDe(X), V+ = T \ (V− ∪X), and W = V \T. Let
B1 < · · · < Bm be a topological order of the circle components in PT relative to X such that all the
circle components after X are possible descendants of X, and let Bi denote

⋃
{k|k≤i} Bk.

Q[T \X] = Pw∪x(T \X) (2)

=
∏

{i|Bi⊆V−}

Pw∪x(Bi|B(i−1))×
∏

{i|Bi⊆V+}

Pw∪x(Bi|B(i−1) \X) (3)

=
∏

{i|Bi⊆V−}

Pw(Bi|B(i−1))×
∏

{i|Bi⊆V+}

Pw∪x(Bi|B(i−1) \X) (4)

=
∏

{i|Bi⊆V−}

Pw(Bi|B(i−1))×
∏

{i|Bi⊆V+}

Pw(Bi|B(i−1)) (5)

=
Pv\t

Pv\t(X|T \ PossDe(X))
(6)

Line 3 follows by standard probability manipulations.

Line 4 follows by rule 3 of Thm. 1 since (Bi ⊥⊥ X|W ∪B(i−1))PW,X
where Bi ⊆ V−. This is

because any definite status path between X and Bi in PW,X will not be into X and hence it includes
a collider with no descendants in W ∪B(i−1).

Line 5 follows by applying rule 2 of Thm. 1, i.e., (Bi ⊥⊥ X|W∪B(i−1) \X)PW,X
, where Bi ⊆ V+.

First, the condition CX ∩ PossDe(X) ⊆ X implies that all the edges incident on X in PT are either
into X or out of it and visible. Next, for the sake of contradiction, let p denote any proper definitely
m-connecting path between X and Bi ⊆ V+ in PW,X. It follows by the earlier observation that p is
not a direct adjacency and it is into X since all visible edges incident on X are removed by definition
of the lower manipulation in PAGs. If p contains any non-collider, then either it is in B(i−1) which
blocks the path or it lies after Bi in the partial order which leads to an inactive collider along p.
Hence, every non-endpoint node along p must be a collider for it to be connecting. Finally, let D
denote the last non-endpoint node along p and closest to Bi. Either the edge between Bi and D
is bidirected or D is a possible child of Bi and consequently a possible descendant of X. In the
earlier case, Bi violates the condition CX ∩ PossDe(X) ⊆ X while D violates it in the latter case.
Therefore, path p does not exists which concludes the proof.

Proposition 5. Given a PAG P over V and set C ⊆ V, Q[C] can be decomposed as follows where
A ⊆ C andR(.) = RC

(.).

Q[C] =
Q[RA].Q[RC\RA

]

Q[RA ∩RC\RA
]

Proof. Let B1 < · · · < Bm be a topological order of the circle components in PC following the
procedure in Lemma 21, and let Bi denote

⋃
{m|m≤i} Bm. Also, letRC

RA
,RRA

for short, denote
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the setRC\RA
. In what follows, we argue for the following derivation.

Pv\c(C) =
∏

{i|Bi⊆C}

Pv\c(Bi|B(i−1)) (7)

=

∏
{i|Bi⊆RA} Pv\c(Bi|B(i−1))×

∏
{i|Bi⊆RRA

} Pv\c(Bi|B(i−1))∏
{i|Bi⊆RA∩RRA

} Pv\c(Bi|B(i−1))
(8)

=

∏
{i|Bi⊆RA} Pv\(RA∪Bi)(Bi|B(i−1))×

∏
{i|Bi⊆RRA

} Pv\(RRA
∪Bi)(Bi|B(i−1))∏

{i|Bi⊆RA∩RRA
} Pv\(RA∩RRA

∪Bi)(Bi|B(i−1))

(9)

=

∏
{i|Bi⊆RA} Pv\RA

(Bi|B(i−1) ∩RA)×
∏

{i|Bi⊆RRA
} Pv\RRA

(Bi|B(i−1) ∩RRA
)∏

{i|Bi⊆RA∩RRA
} Pv\(RA∩RRA

)(Bi|B(i−1) ∩ (RA ∩RRA
))

(10)

=
Q[RA]×Q[RRA

]

Q[RA ∩RRA
]

(11)

Lines 7 & 8 follow by standard probability manipulations assuming the quantities in the denominator
of Eq. 8 are not zero.

Line 9 holds by applying rule 3 of Thm. 1 to each conditional term as follows. Consider the
term Pv\c(Bi|B(i−1)) for Bi ⊆ RA and let W = C \ (RA ∪ Bi). We claim that (W ⊥⊥
Bi|B(i−1) ∪ (V \ C))P

V\C,W(B(i−1))
, where W(B(i−1)) = W \ PossAn(B(i−1))PC

= W by
definition of W. For the sake of contradiction, let p denote any proper definitely m-connecting path
between W and Bi in P

V\C,W
. Since C is an arbitrary subset of V, then W can include strict

subsets of circle component in P
V\C,W

. If p starts with a circle edge ◦−◦ incident on W, then the
other end of the circle edge is in V \C by construction of W as a subset of the buckets in PC. It
follows that p is blocked since we condition on V \C. So p starts with a directed or partially directed
edge out of W. Since W comes after Bi in the partial order, p must include an inactive collider
and it is blocked, a contradiction. Hence, the separation holds. The same argument applies to the
conditional terms where Bi ⊆ RRA

and W = C \ (RRA
∪Bi), and where Bi ⊆ RA ∩RRA

and
W = C \ (RA ∩RRA

∪Bi).

Line 10 holds by applying rule 2 of Thm. 1 to each conditional term as follows. Consider the
term Pv\(RA∪Bi)(Bi|B(i−1)) for Bi ⊆ RA and let W = Bi \ RA. We claim that (W ⊥⊥
Bi|V \ (RA ∪Bi)∪B(i−1) \W))P

V\(RA∪Bi),W
. Suppose for the sake of contradiction there exists

a definitely m-connecting path between W and Bi in P
V\(RA∪Bi),W

, and let p denote any such
path. Since W comes before Bi in the partial order over PC, then any direct adjacency between
the sets in P

V\(RA∪Bi),W
must be into Bi. The edge cannot be visible since we cut the outgoing

edges of W. Also, the edge cannot be invisible by Lemma 13. Hence, p is not a direct edge and
contains at least one non-endpoint node along it. Path p does not have a non-collider along it because
(1) we condition on it if the non-collider comes before Bi and (2) p will have an inactive collider
if the non-collider comes after Bi. Hence, every non-endpoint node along p is a collider. Also, p
is into Bi else it contains an inactive collider than comes after Bi in the partial order. Moreover,
the first edge along p incident on W cannot be visible since we cut them in P

V\(RA∪Bi),W
. The

resulting collider path into Bi violates the property in Lemma 13. Hence, p does not exist and the
separation holds. Finally, we note that the property of regions in Lemma 13 applies toRA ∩RRA

as
well since a violation for the intersection implies the same in one of the two regions. Therefore, the
same argument applies to the conditional terms where Bi ⊆ RRA

and W = Bi \ RRA
, and where

Bi ⊆ RA ∩RRA
and W = Bi \ (RA ∩RRA

). This concludes the proof.

Lemma 21. Given a PAG P over V, set C ⊆ V, and a partial topological order O := B1 < · · · <
Bm over the circle components in P , then the following procedure constructs a sound partial order
O′ over the circle components in PC.

1. Initialize O′ = O.
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2. For every bucket Bi ∈ O′ such that Bi ∩C = ∅, set O′ = O \Bi.

3. For every bucket Bi ∈ O′ such that Bi \C ̸= ∅, replace Bi with the buckets in PBi\C.

Proof. The partial order over the circle components after step 2 is sound by the soundness of the input
partial topological order over V in P . Given any bucket Bi ∈ O′ in step 3 such that Bi \C ̸= ∅, let
D1, . . . ,Dp denote the resultant circle components in PBi\C.

To prove the soundness of step 3, it suffices to show that there are no possibly directed paths between
any pair Dj ,Dk outside Bi in P , and consequently in PC. Suppose for the sake of contradiction
there exists a possibly directed path from Dj to Dk in P that goes outside Bi. Then such a path
includes at least one directed or partially directed edge (→ or ◦→). Also, there is a possibly directed
path from Dk to Dj composed of circle edges since both Dj ,Dk are subsets of the circle component
Bi. This violates the property in Lemma 3 and hence it is not possible. This concludes the proof.

E Proof of Theorem 4

Lemma 23

Lemma 22

Proposition 6

Proposition 7 Theorem 4

Figure 8: Roadmap to proving Theorem 4.

Proof of Theorem 4. The result follows by Propositions 6 and 7.

Proposition 6. If Alg. 2 fails at line 7, we can construct a causal diagram in the Markov equivalence
class of the PAG P such that the input query Px(y|z) is not identifiable by Thm. 5.

Proof. If the algorithm fails at line 7, then we have (X′��⊥⊥Y|(X \X′) ∪ Z)P
X\X′,X′ . Let p denote

any proper definitely m-connecting path between X ∈ X′ and Y ∈ Y. Path p′ in P corresponding to
the same sequence of nodes is also active given (X \X′) ∪ Z. We have two cases to consider.

Case (1): p′ is not into X and the edge incident on X is not visible.

Case (1a): If there is no collider along p′, then p′ is a possibly directed path from X to Y . By
Lemma 9, we obtain a MAG in the equivalence class of P where there is a directed path from X to
Y over a subsequence of the nodes in p′, and where the path starts with an invisible edge out of X .
Then, by Lemma 10, we construct a causal diagram G in the Markov equivalence class where the
invisible edge is confounded. Let A denote the node adjacent to X along the directed path from X to
Y . Then, F = {X,A},F′ = {A} form a hedge for Px(y) (by Def. 8) and Px(y|z) is not identifiable
in G by Thm. 5.

Case (1b): There is at least one collider along p′ (and consequently p). Let C denote the first
collider along p′ starting from X . Since the subpath of p′ from X to C, denoted p′XC , is a possibly
directed path that starts with an invisible edge, then by Lemma 9, we can construct a MAGM in
the equivalence class of P with a directed path from X to C over a subsequence of the nodes along
p′XC and such that the directed path starts with an invisible edge inM. We denote the directed path
from X to C inM as pdXC . Next, we use Lemma 10 to construct a causal diagram G in the Markov
equivalence class where the first edge along pdXC is confounded. Let A denote the node adjacent to
X along the directed path from X to C inM and let Z∗ denote the descendant of C such that C is
active along p′ in P . Then, F = {X,A},F′ = {A} form a hedge for Px(z

∗) (by Def. 8). It is left
to show that Z∗ is not in the unique maximal set W according to Thm. 5. Since p′ is a definitely
m-connecting path in P , then the path corresponding to the same sequence of nodes inM is also
active, and consequently in G. Finally, in G, let p∗ denote the concatenated path composed of the
directed path from C to Z∗ and the subpath of p′ between C and Y . It is easy to see that p∗ is active
given X ∪ (Z \ {Z∗}) in GX,Z∗ since p′ is active given X \ {X ′} ∪ Z in G

X\{X′},Z. Therefore, Z∗

does not belong to the unique maximal set W in Thm. 5. This concludes Case (1b).
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Case (2): p′ is into X .

Case (2a) If there exists a node X∗ ∈ Bi ∩ X (where Bi is the bucket of X) such that X∗ ∈
PossAn(Y)PV\(X∪Z)

, then we proceed as in Case (1a).

Case(2b): Let X∗ ∈ Bi ∩X such that X∗ ◦−◦ Vj and Vj ∈ PossAn(Y ∪ Z)PV\X , where Vj ∈ V.
Such an intervention node exists by the condition in Line 2. Hence, consider a possibly directed path
p = ⟨X∗, Vj , . . . , Z

∗⟩, where Z∗ ∈ Z, let A denote the node closest to Z∗ along p such that A is in
the same bucket as X∗ in P , and let D denote the node adjacent to A along p that is closest to Z∗.
Note that D is not in the same bucket as A and the edge between them is into D.

Next, we construct a MAGM following the procedure in Lemma 6 such that we have no new edges
into X∗ and D. The step of not having additional arrowheads incident on both X∗ and D inM is
possible because the two nodes are in different buckets in P . InM, we have a directed path from
X∗ to A that does not start with a visible edge. This follows by Lemma 9 as the claim is based
on applying the procedure in Lemma 6 and not orienting further arrowheads into X∗. Also, inM,
we have a directed path from D to Z∗ due to the following. There is a possibly directed path from
D to Z∗ in P , then by Lemma 4, there is an uncovered possibly directed path from D to Z∗ in P .
Also, since we orient the PAG according to Lemma 6 such that there are no additional arrowheads
into D, then the uncovered possibly directed path from D to Z∗ is oriented as a directed path in
the MAGM. It follows that there is a directed path ⟨X∗, . . . , A,D, . . . , Z∗⟩ inM that starts with
an invisible edge. Finally, we use Lemma 10 to construct a causal diagram G such that the first
edge along the directed path from X∗ to Z∗, i.e. X∗ → C is confounded. This leads to the hedge
F = {X∗, C},F′ = {C} for P ∗

x (z
∗). It is left to show that Z∗ does not belong to the maximal set

W such that Px(y|z) = Px,w(y|z \w) according to Thm. 5.

Back to p′, the definitely m-connecting path between X and Y given (X \X′) ∪ Z in P . Let B
denote the node closest to X along p′. Since p′ is into X , then B is adjacent to every node in the
bucket of X including A and the edge is into A by Lem. 2. Also, by Lem. 2, the edge between B and
A is bi-directed if and only if the edge between B and X is bi-directed in P . It follows that B and A
are adjacent in G and the edge is bi-directed if and only if the same is bi-directed in P . Let p∗ denote
the concatenated path in G composed of p′BY (the subpath of p′), B∗→ A, and the directed path from
A to Z∗. First, p′BY is active given (X \X′) ∪ Z in G

X\X′,X′ since the same is active in P
X\X′,X′ .

Then, p′BY is active given X ∪ Z in GX since no node in X′ is along p′BY . If p′BY is not active in
GX,Z∗ given X∪ (Z \ {Z∗}), then ({Z∗}��⊥⊥Y|X∪ (Z \ {Z∗}))GX,Z∗ and {Z∗} does not belong to
the maximal set W in Thm. 5 which concludes the proof. Otherwise, p′BY is active in GX,Z∗ given
X ∪ (Z \ {Z∗}). Second, B is a collider along p∗ if and only if it is a collider along p′ due to the
PAG property in Lem. 2 and the construction of the MAG from the PAG by Lem. 6 and the causal
diagram from the MAG by Lem. 10. Similar to the argument in the first point, B is active along p∗

given X ∪ (Z \ {Z∗}) in GX,Z∗ else Z∗ does not belong to the maximal set W in Thm. 5 which
concludes the proof. Third, the subpath p∗BZ has no colliders along it and all the non-endpoint nodes
are not in X ∪ Z. Therefore, p∗ is active in GX,Z∗ given X ∪ (Z \ {Z∗}) and Z∗ does not belong to
the maximal set W in Thm. 5. This concludes the proof.

Proposition 7. If the call to IDP(·) in Alg. 2 fails, we can construct a causal diagram in the Markov
equivalence class of the PAG P such that the input query Px(y|z) is not identifiable by Thm. 5.

Proof. Since IDP(·) is complete for marginal effect identification (Thm. 7), one of the two graphical
conditions in Thm. 6 is true whenever the call in Line 10 of Alg. 2 fails.

Case 1: There exists a proper possibly directed path from A ∈ X to B ∈ Y ∪ Z in P that starts with
an invisible edge. We have three sub-cases to consider.

Case 1a: B ∈ Y. Hence, we have a possibly directed path from A to B ∈ Y, denoted p, that starts
with an invisible edge. By Lemma 9, there is a MAGM in the Markov equivalence class of P such
that the path inM, consisting of the same sequence of nodes as p in P , contains a subsequence
p∗ that is a directed path from A to B starting with an invisible edge in M. By Lemma 10, we
construct a causal diagram in the Markov equivalence class ofM, and consequently P , where p∗

is directed from A to B and the first edge is confounded. Let C denote the first node along p∗ after
A. It follows easily that F = {A,C},F′ = {C} form a hedge for Pa(b) in G while A ∈ X′ and
B ∈ Y′ according to Thm. 5. Hence, the input query is not identifiable in G, and consequently in P .
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Alternatively, B ∈ Z and we have a possibly directed path from A to B ∈ Z, denoted p, that starts
with an invisible edge. Since B remains in Z after Lines 8- 9 in Alg. 2, there exists a definitely
m-connecting path between B and some Y ∈ Y given X∪Z \B in PX,B . Let p† denote the path in
P corresponding to the same sequence of nodes as the definitely m-connecting path between B and
Y in PX,B . We have two cases to consider.

Case 1b: p† is into B in P . By Lemma 9, we construct a MAG M in the Markov equivalence
class of P such that the path inM, consisting of the same sequence of nodes as p in P , contains
a subsequence p∗ that is a directed path from A to B starting with an invisible edge in M. By
Lemma 10, we construct a causal diagram G in the Markov equivalence class such that p∗ remains in
G and the first edge out of B is confounded. Since p† is a definitely m-connecting path between B
and Y given X ∪ Z \ {B} in P that is into B, then the same corresponding path is also active and
into B in M, and consequently in G. It follows that B is not in the maximal set W in Thm. 5. Let C
denote the node adjacent to A along p∗ in G. Then, the pair F = {A,C},F′ = {C} form a hedge
for Pa(b) while A ∈ X′ and B ∈ Y′ according to Thm. 5. Hence, the input query is not identifiable
in G, and consequently in P .

Case 1c: p† is not into B in P . Then p† starts from B with ◦−◦, ◦→, or invisible→. By Lemma 23,
there exists an uncovered possibly directed path from A to B in P , denoted p∗, that starts with an
invisible edge. Let C denote the node along the uncovered possibly directed path that is adjacent
to A. An important note here is that A and B are not in the same circle component in P following
Lemma 22. So, we construct a MAGM following the procedure in Lemma 6 and such that no new
edges are into A and B. This is possible since A and B are in different circle components and each
circle component can be oriented independently. First, p′, the path corresponding to P ∗ inM, is a
directed path out of A since the edge between A and C is out of A inM and every non-endpoint
node along p∗ is a definite non-collider in P . Second, p‡, the path corresponding to p† inM, is
out of B. Third, by Lemma 7, we have invisible A→ C inM and the first edge out of B along p′

is also invisible. Let D denote the node along p′ inM that is adjacent to B and let E denote the
node along p‡ that is adjacent to B. InM, we have invisible B → E and D → B → E, then D
and E are adjacent inM by [Zhang, 2008a, Def. 8]. Also, we have D → E inM else we have
D → B → E and E∗→ D and we violate the ancestral property inM. Finally, we construct a
causal diagram G in the equivalence class ofM following Lemma 10 where A→ C is confounded.
Since p† is a definitely m-connecting path between B and Y given X ∪ Z \ {B} in P , then the same
corresponding path is also active in M, and consequently in G. Recall B → E and D → E are in
M, and consequently G. Also, D ̸∈ Z since D is along a proper causal path from A ∈ X to B ∈ Z.
Then, the concatenated path composed of B ← D → E and p‡(E, Y ), the subpath of p‡ between E
and Y , is active given X ∪ Z \ {B} in GX,B and B does not belong to the unique maximal set W
in Thm. 5. Therefore, the pair F = {A,C},F′ = {C} form a hedge for Pa(b) while A ∈ X′ and
B ∈ Y′ according to Thm. 5. Thus, the input query is not identifiable in G, and consequently in P .

Case 2: There exist dc-forests F,F′ in P forming a P-hedge for Px(y∪z) such that X and Z are the
sets obtained right before executing Line 10 in Alg. 2. Recall by Def. 11 that dc-forests F,F′ have a
subset R ⊆ PossAn(Y ∪Z)PV\X as a root set in P . Let R′ ⊆ R be such that no pair of nodes in R′

belong to the same bucket in P . Also, let F ,F ′ denote the corresponding induced subgraphs of P
over the nodes in F,F′, respectively, excluding R \R′. Finally, let I be any node in F (or F′), J be
any node in R \R′, and J∗ ∈ R′ such that J and J∗ are in the same bucket in P . By the property in
Lemma 2, if I → J or I◦→ J is in P then I → J∗ or I◦→ J∗ is in P as well. Moreover, we have
I ↔ J in P iff I ↔ J∗ is in P as well. It follows that F ,F ′ preserve the properties of a P-Hedge
for Px(y ∪ z) except for the one where each node has at most a single possible child via→ or ◦→.
This can be easily obtained by dropping unnecessary edges from the subgraphs F ,F ′. Next, we have
a couple of cases to consider.

Case 2a: R′∩PossAn(Y)PV\(X∪Z)
̸= ∅. Using Lemma 6, we construct a MAGM in the equivalence

class of P with no additional arrowheads into all the nodes inR′. This is possible since each node in
R′ is in a different circle component in P . By Lemma 4 and the above construction of the MAG,
there exists a directed path from each node inR′ to some node in Z ∪Y such that the directed paths
do not go through X. Also, at least one node in R′ has a directed path to Y that is not intercepted
by Z ∪X. Next, a causal diagram G can be trivially constructed fromM by keeping every directed
edge and replacing bi-directed edges with dashed arcs (a special case of Lemma 10). Let A = F ∩X
and let B ⊆ Y ∪ Z be a minimal set such that R′ ⊆ An(B)GX,Y,Z

and such that B ∩Y ̸= ∅. The
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subgraphs corresponding to F ,F ′ in G form a hedge for Pa(b). Next, let Z ′ denote any node in
B∩Z and consider the path Z ′ L99 Vi L9999K Vj 99K Y where Y ∈ B∩Y, Vi, Vj ∈ R′, and every
node along the bi-directed path between Vi and Vj , inclusive, is in F ′. The directed paths Z ′ L99 Vi

and Vj 99K Y are not intercepted by X∪Z by definition of B, and all the nodes along the bi-directed
path between Vi and Vj are not in X by definition of F ′ and have descendants in Z. Hence, this path
is active in GX,Z′ given X ∪ Z \ {Z ′}. Following Thm. 5, F ,F ′ forms a hedge for Pa(b) and no
node in B is in the maximal set W. Hence, the input query Px(y|z) is not identifiable.

Case 2b: R′∩PossAn(Y)PV\(X∪Z)
= ∅, and there exists a node J ∈ Z such that ({J}��⊥⊥Y|X∪Z\

{J})PX,J
and J is in the same bucket as some node in R′, denoted Q. We can replace Q with J in R′

while still ensuring that the pairF ,F ′ forms aP-Hedge for Px(y∪z) (as argued earlier via Lemma 2).
Similar to case 2a, we use Lemma 6 to construct a MAGM in the equivalence class of P . Next, we
construct a causal diagram G as follows. Recall that J ∈ R′ and ({J}��⊥⊥Y|X∪Z \ {J})PX,J

. Let p
denote a corresponding active path between J and Y given X∪Z\{J} in PX,J and let p′ denote the
corresponding path in P . If p′ starts with an edge that is not into J in P , then the corresponding path
inM starts with an invisible edge out of J . If so, then we add a latent confounder to the invisible
edge out of J in the construction of G using Lemma 10. Otherwise, p′ is into J in P and consequently
M, and we construct the causal diagram G similar to case 2a. The rest follows like in case 2a to
show the presence of a hedge and that every node in Z involved in the hedge has a backdoor active
path to Y through J .

Case 2c: The last case is that R′ ∩ PossAn(Y)PV\(X∪Z)
= ∅, and the buckets in P corresponding to

the nodes in R′ do not intersect with Z. The latter condition holds due to Lines 8-9 of Alg. 2 and
the absence of a node J satisfying the conditions in Case 2b. Fix B ⊆ Z as a minimal set such
that R′ ⊆ PossAn(B)PX,Y,Z

, and let I be an arbitrary node in B. If ({I} ⊥⊥ Y|X ∪ Z \ {I})PX,I
,

then Lines 8-9 of Alg. 2 dictate the existence of a node J ∈ Z in the same bucket as I where
({J}��⊥⊥Y|X ∪ Z \ {J})PX,J

. Then, by the property in Lemma 2, we can select J instead of I to be
in B and still maintain R′ ⊆ PossAn(B)PX,Y,Z

. Using Lemma 6, we construct a MAGM in the
equivalence class of P with no additional arrowheads into all the nodes inR′ and J . This is possible
since each of those nodes is in a different bucket in P . By Lemma 4 and the above construction of
the MAG, there exists a directed path from each node inR′ to some node in B such that the directed
paths do not go through X. Next, we construct a causal diagram G via Lemma 10 similar to case 2b
while ensuring that the active path between J and Y in G is either into J or out of J and the edge is
confounded. The rest follows as in previous cases to establish a hedge and the presence a backdoor
active path from each node in Z involved in the hedge to Y. This concludes the proof.

Lemma 22. Right before executing Line 10 of Alg. 2, let D = PossAn(Y ∪ Z)PV\X . Then, every
bucket B in P is such that either B ⊆ D or B ∩D = ∅.

Proof. After the while loop at Lines 2-7, every bucket B in P satisfies the condition in the lemma.
Then any violation of the condition must be due to Lines 8-9. In what follows, we show that the
routine at Lines 8-9 does not violate the condition.

Suppose for the sake of contradiction that the condition of the lemma is violated right before
executing Line 10. Then, we have two nodes A,B in the same bucket in P such that A ∈ X,
B ∈ PossAn(Y ∪ Z)PV\X , and A,B are adjacent with a circle edge A ◦−◦ B. Now A does not
belong to the initial input set X for the following reason. We note that Lines 8-9 only move nodes
from the conditioning to the intervention set. So, at Line 10, if there exists a possibly directed path
from A to Y ∪ Z through B such that A is the only node along this path that is in X, then the same
path exists in P before executing the routine at Lines 8-9. This is not possible since the condition in
the lemma holds after the while loop at Lines 2-7.

Alternatively, assume for the sake of contradiction that A is a node in the conditioning set that was
moved to the intervention set while executing the loop at Line 8. We exhaust the cases and show that
all lead to contradictions which asserts the lemma.

Case 1: B ∈ PossAn(Y)PV\(X∪Z)
. Hence, we have a possibly directed path from A to Y ∗ ∈ Y,

denoted p, that starts with an invisible edge. It follows by Lemma 23 that a subsequence of p
constitutes an uncovered possibly directed path from A to Y ∗ that does not start with a visible edge
out of A. The same path is a definitely m-connecting path between A and Y ∗ given X ∪ Z in PX,Z
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and we have (A��⊥⊥Y ∗|X ∪ Z \ {A})PX,A
. This contradicts the assumption that A was moved from

conditioning to intervention because it satisfies the condition at Line 8.

Case 2: B ∈ PossAn(Z)PV\X . Then there is a possibly directed path from A to Z ∈ Z, denoted p,
that starts with an invisible edge and such that Z is the only node along the path that is in Z. By
Lemma 23, a subsequence of p, denoted p′, constitutes an uncovered possibly directed path from A
to Z that does not start with a visible edge out of A. Since Z ∈ Z and has not been moved to the
intervention set, then (1) A and Z are in different buckets in P and (2) there exists a node Z∗ in the
same bucket of Z such that (Z∗��⊥⊥Y|X ∪ Z \ {Z∗})PX,Z∗ . Point (1) implies that p′ is into Z by
Lemma 5. Let ⟨A = V0, . . . , Vk−2, Vk−1, Vk = Z⟩ denote the sequence of nodes along p′. Since
Vk−1∗→ Z is in P and Z,Z∗ are in the same bucket, then Vk−1∗→ Z∗ is in P . Also, Vk−1∗→ Z∗

is not into Vk−1 else we have a possibly directed path ⟨Vk−1, Z, . . . , Z
∗⟩ and Vk−1∗→ Z∗ which

contradicts Lemma 3. Then, the subpath p′(A, Vk−1) concatenated with Vk−1∗→ Z∗ forms a possibly
directed path, denoted p∗, that starts with an invisible edge. Since p∗(A, Vk−1) is uncovered, then p∗

is uncovered if Vk−2 and Z∗ are not adjacent. Suppose for the sake of contradiction that Vk−2 and
Z∗ are adjacent. Then, Vk−2∗→ Z∗ is in P else we have a possibly directed path ⟨Z∗, Vk−2, Vk−1⟩
and Vk−1∗→ Z∗ which contradicts Lemma 3. By Lemma 1, Vk−2 and Z are adjacent as well which
contradicts p′ being uncovered. Therefore, p∗ is an uncovered possibly directed path from A to Z∗

that starts with an invisible edge. Recall we have (Z∗��⊥⊥Y|X∪Z \ {Z∗})PX,Z∗ , so let p† denote the
path in P corresponding to a definitely m-connecting path between Z∗ and Y ∈ Y in PX,Z∗ . We
have two sub-cases to consider:

Case 2a: p† is into Z∗ in P . Consider the concatenation of p∗ and p† given X ∪ Z \ {A}. Path p∗ is
uncovered possibly directed from A to Z∗, starts with an invisible edge, and is proper. Also, Z∗ is
a collider along the concatenated path. Hence, the concatenated path is active given X ∪ Z \ {A}
in PX,A and we have (A��⊥⊥Y|X ∪ Z \ {A})PX,A

. This contradicts that assumption that A satisfies
the condition in Line 8 of Alg. 2 and has been moved from the conditioning to the intervention set
concluding this case.

Case 2b: p† is not into Z∗ in P . Let L be the node along p∗ that is closest to Z∗ and let J∗→ K
denote such an edge along p† that is closest to Z∗. Since p† is of definite status and not into Z∗, then
J∗→ K, if defined, is either J → K or J◦→ K (,and not J ↔ K). We have three sub-cases to
consider:

(i) If J∗→ K is not defined, then p† is an uncovered circle path between Z∗ and Y . Since L∗→ Z∗

is in P , L is adjacent to and into every node along p† including Y by Lemma 1. Also, L∗→ Y is not
bi-directed since the path ⟨L,Z∗, . . . , Y ⟩ is possibly directed and having L↔ Y in P contradicts the
property in Lemma 3. LetM be the MAG constructed following Lemma 6 such that no additional
edges are into A. The corresponding subpath of p∗(A,L) inM is directed out of A and starts with an
invisible edge due to Lemma 7 and the fact that every non-endpoint node along p∗ is a non-collider.
Also, the edge between L and Y is directed out of L inM following the construction in Lemma 6.
It follows, inM, we have a directed path from A to Y that starts with an invisible edge and does
not include, except for A, any node in X ∪ Z. Hence, the same path is active given X ∪ Z \ {A} in
MX,A.Then, by Lemma 15, we have (A��⊥⊥Y|X ∪ Z \ {A})PX,A

, a contradiction.

(ii) J∗→ K is defined and J ̸= Z∗. We note that every edge before J∗→ K along p† is a circle
edge. Then L is adjacent to and into every node along the subpath p†(Z∗, J) by Lemma 1. LetM
be the MAG constructed following Lemma 6 such that no additional edges are into A. Similar to
the argument in (i), we have a directed path from A to J that starts with an invisible edge and does
not include, except for A, any node in X ∪ Z. Also, the edge between J and K is directed out of J
inM due to the construction in Lemma 6 and the earlier conclusion that J ↔ K is not in P . Next,
consider the concatenation of the directed path from A to J , J → K, and the corresponding subpath
p†(K,Y ), possibly K = Y . By definition of J∗→ K in P , J is a non-collider along p† and J ̸∈ Z
else p† is not active. It follows that the concatenated path is active given X ∪ Z \ {A} inMX,A.
Then, by Lemma 15, we have (A��⊥⊥Y|X ∪ Z \ {A})PX,A

, a contradiction.

(iii) J∗→ K is defined and J = Z∗. Recall that the first edge along p†, i.e., J∗→ K, is not a directed
visible edge. Since L∗→ Z∗(= J) is in P and J∗→ K is J◦→ K or invisible J → K, then L and
K are adjacent in P by Lemma 1 or [Zhang, 2008a, Def. 8], respectively. Also, the edge between
L and K is into K else we have a possibly directed path ⟨K,L, J⟩ and J∗→ K which contradicts
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Lemma 3. LetM be the MAG constructed following Lemma 6 such that no additional edges are into
A. InM, similar to (ii), we argue that the concatenation of the directed path from A to K and the
corresponding subpath p†(K,Y ), possibly K = Y , is active given X ∪ Z \ {A} inMX,A. Then, by
Lemma 15, we have (A��⊥⊥Y|X ∪ Z \ {A})PX,A

, a contradiction.

Lemma 23. Let X and Y be distinct nodes in a PAG P such that there is a possibly directed path p
from X to Y that does not start with a visible edge out of X . Then, a subsequence of p constitutes an
uncovered possibly directed path from X to Y that does not start with a visible edge out of X .

Proof. Let p∗ be a shortest subsequence of p such that p∗ is also a possibly directed path from
X to Y in P that does not start with a visible edge out of X . We denote p∗ by the sequence
⟨X = V0, V1, . . . , Vr = Y ⟩, r ≥ 1. If p∗ is a definite status path in P , then we are done.

Else, p∗ is not of definite status in P and r ≥ 2. Note that by the choice of p∗, p∗(V1, Y ) is a shortest
possibly directed path from V1 to Y in P . Hence, it is uncovered by Lemma 4. If X and V2 are not
adjacent or V1 → V2 is in P , then V1 is of definite status and the lemma holds. In what follows, we
show that the alternative options lead to a contradiction which concludes the proof.

Suppose for the sake of contradiction that X and V2 are adjacent and the edge between V1 and V2 is
not out of V1, i.e., V1 ◦−◦ V2 or V1◦→ V2. First, the edge between X and V2 is a visible edge out
of X for the following reason. Since ⟨X,V1, V2⟩ is possibly directed in P , then X ←∗V2 cannot
exist as it violates the property in Lemma 3. Also, if the edge between X and V2 is invisible, then we
contradict the choice of p∗ as the shortest subsequence of p that is possibly directed from X to Y and
does not start with a visible edge out of X . Since X → V2 is visible, there is a node D that is not
adjacent to V2 and such that (1) D∗→ X is in P , or (2) there is a collider path ⟨D0, D1, . . . , Dk, X⟩,
k ≥ 1, that is into X in P such that every Di, 1 ≤ i ≤ k is a parent of V2. We consider these cases
separately and show that we arrive at a contradiction.

(1) Since D∗→ X and X ◦−◦ V1, X◦→ V1, or X → V 1 is invisible in P , by Lemma 1 and the
graphical condition of visibility [Zhang, 2008a, Def. 8], an edge between D and V1 is in P . This
edge is into V1, otherwise both a possibly directed path ⟨X,V1, D⟩ and D∗→ X are in P (contrary
to Lemma 3). Then, D∗→ V1 ◦−∗ V2 is in P and Lemma 1 implies that D and V2 are adjacent, a
contradiction.

(2) First, Di ↔ V1, 1 ≤ i ≤ k, does not exist in P for the following reason. Suppose for the sake of
contradiction that such an edge does exist in P for some Dj , 1 ≤ j ≤ k. Then, ⟨D0, . . . , Dj , V1, V2⟩
forms a discriminating path for V1 and we have V1 → V2 in P by [Zhang, 2008b, FCI:R4], a
contradiction. Note that we rule out the case of V1 ↔ V2 in P by [Zhang, 2008b, FCI:R4] since the
edge is along p∗, a possibly directed path from X to Y . Next, we argue by induction that Di∗→ V1

is in P for all 0 ≤ i ≤ k. In the base case, Dk is adjacent to V1 else we have X → V1 by [Zhang,
2008a, FCI:R1] and X → V1 is visible by [Zhang, 2008a, Def. 8], a contradiction. Also, if the
edge between Dk and V1 is not into V1, then we have a possibly directed path ⟨X,V1, Dk⟩ and
Dk ↔ X which contradicts Lemma 3. In the induction step, we assume the property holds for
j + 1 ≤ i ≤ k, and prove it for Dj . If Dj and V1 are not adjacent, ⟨Dj , Dj+1, V1⟩ is an uncovered
triple and Dj+1 → V1 is in P by [Zhang, 2008b, FCI:R1] (the edge cannot be bi-directed as argued
earlier). It follows that ⟨Dj , Dj+1, Dj+2, V1⟩ forms a discriminating path for Dj+2 and we have
Dj+2 → V1 in P by [Zhang, 2008b, FCI:R4]. The last argument applies recursively for each Di,
j + 2 ≤ i ≤ k, where ⟨Dj , . . . , Di, V1⟩ forms a discriminating path for Di and we have Di → V1 in
P . Therefore, ⟨Dj , . . . , Dk, X, V1⟩ forms a discriminating path for X and we have X → V1 in P .
We rule out X ↔ V1 again since the edge is along p∗, a possibly directed path from X to Y . Also,
the collider path ⟨Dj , . . . , Dk, X⟩ implies that X → V1 is visible by [Zhang, 2008a, Def. 8]. This
contradicts the choice of p∗ where the edge between X and V1 is invisible, thus Dj is adjacent to V1.
If the edge between Dj and V1 is not into V1, then we have a possibly directed path ⟨Dj+1, V1, Dj⟩
and Dj∗→ Dj+1 which contradicts Lemma 3. Finally, consider the uncovered triple ⟨D0, V1, V2⟩
where D0∗→ V1 is in P by the induction argument. Then, we have V1 → V2 in P by [Zhang, 2008b,
FCI:R1] and we reach a contradiction since the edge between V1 and V2 is assumed not to be out of
V1. This concludes the proof.
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Figure 9: A query Px(v \ {x}) where the criterion in Prop. 8 is applicable and that in Prop. 2 is not.

F Comparison between the IDP Versions

Jaber et al. [2018a] derived the identification criterion shown in Prop. 8 where the intervention is
on a bucket rather than a single node and the input distribution is possibly interventional. Note that
the criterion in Prop. 8 is equivalent to testing the condition CX ∩ PossCh(X) ⊆ X, by Lemma 24.
Obviously, the condition in Prop. 2, i.e, CX ∩ PossDe(X) ⊆ X, implies CX ∩ PossCh(X) ⊆ X;
however, the opposite is not true. In words, if a bucket’s pc-component does not intersect with its
possible descendants except for itself, i.e., the bucket, then the bucket’s pc-component does not
intersect with its possible children except for itself. Therefore, the criterion in Prop. 8 is superior to
that in Prop. 2 in that the earlier allows us to identify more causal effects than the latter. On the other
hand, whenever the causal effect is identifiable by Prop. 8, the resulting expression is convoluted and
usually large as we see in Eq. 12. The following example illustrates the above points.
Proposition 8. Let P denote a PAG over V, T be a union of a subset of the buckets in P , and X ⊂ T
be a bucket. Given Pv\t (i.e., Q[T]), and a partial topological order B1 < · · · < Bm with respect
to PT, Q[T \X] is identifiable if and only if, in PT, there does not exist Z ∈ X such that Z has a
possible child C /∈ X that is in the pc-component of Z. If identifiable, then the expression is given by

Q[T \X] =
Pv\t∏

{i|Bi⊆SX} Pv\t(Bi|B(i−1))
×

∑
x

∏
{i|Bi⊆SX}

Pv\t(Bi|B(i−1)), (12)

where SX =
⋃

Z∈X SZ , SZ being the dc-component of Z in PT, and B(i−1) denoting the set of
nodes preceding bucket Bi in the partial order.

Consider PAG P in Fig. 9 and the causal query Px(v \ {x}). In P , we have CX = {W,X,B,C} as
the set of nodes in the pc-component of X , PossCh(X) = {X,A} as the possible children of X , and
PossDe(X) = {X,A,C, Y } as the possible descendants of X . First, we try to use the criterion in
Prop. 2 to compute Px(v \{x}) = Q[V \{X}] from P (V) = Q[V]; however, CX ∩PossDe(X) =
{X,C} ̸⊆ {X} and the criterion is not applicable. However, CX ∩ PossCh(X) = {X} and the
criterion in Prop. 8 is applicable to compute Q[V \ {X}] from P (V). The dc-component of X in P
is SX = {X,B,C} and we assume the following partial topological order W<X<B<A<C<Y .
Accordingly, we have the following expression.

Px(v \ {x}) =
P (v)

P (x|w)P (b|w, x)P (c|w, x, b, a)
×
∑
x

P (x|w)P (b|w, x)P (c|w, x, b, a)

Alternatively, if we use the partial order W<B<X<A<C<Y , we get the following expression
which can be simplified to Eq. 14 since the term P (b|w) is independent of X and can be cancelled
out with the corresponding term in the denominator. This shows that the complexity of the expression
is partially dependent on the choice of the partial order, among other factors.

Px(v \ {x}) =
P (v)

P (b|w)P (x|w, b)P (c|w, b, x, a)
×
∑
x

P (b|w)P (x|w, b)P (c|w, b, x, a) (13)

=
P (v)

P (x|w, b)P (c|w, b, x, a)
×
∑
x

P (x|w, b)P (c|w, b, x, a) (14)

The above example illustrates that the criterion in Prop. 8 is more powerful than that in Prop. 2.
However, the expression is somewhat convoluted and possibly intractable. This earlier criterion is
utilized in [Jaber et al., 2019a] to formulate an algorithm for marginal effect identification as shown
in Alg. 3. This algorithm is almost identical to the one proposed in Alg. 1 except for line 6 where it
tests for the criterion in Prop. 8 as opposed to Prop. 2 in Alg. 1. Interestingly, the proposed version in
Alg. 1 remains as expressive as Alg. 3 and complete, by Thm. 3, despite using the weaker criterion in
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Algorithm 3 IDP(P,x,y)
Input: PAG P and two disjoint sets X,Y ⊂ V
Output: Expression for Px(y) or FAIL

1: Let D = PossAn(Y)PV\X

2: return
∑

d\y IDENTIFY(D,V, P )

3: function IDENTIFY(C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

/* In PT, let B denote a bucket, and let CB denote the pc-component of B */
6: if ∃B ⊂ T \C such that CB ∩ PossCh(B)PT

⊆ B then
7: Compute Q[T \B] from Q; ▷ via Prop. 8
8: return IDENTIFY(C,T \B,Q[T \B])
9: else if ∃B ⊂ C such thatRB ̸= C then ▷RB is equivalent toRC

B

10: return
IDENTIFY(RB,T,Q) × IDENTIFY(RC\RB

,T,Q)

IDENTIFY(RB∩RC\RB
,T,Q)

11: else throw FAIL

Prop. 2. The advantage of using Prop. 2 is dealing with a simpler expression as shown in Eq. 1. This
is illustrated in the following example.

Consider again PAG P in Fig. 9 and causal query Px(y). We follows the steps in Alg. 1 to try and
identify the target effect. We have D = {Y,A,B,C} and Px(y) =

∑
a,b,c Q[V \ {W,X}]. Then,

we call IDENTIFY(·) to compute Q[V \ {W,X}] from P (V). In IDENTIFY(·), we first check in
line 6 if there exists a bucket, a singleton node in this case, in {W,X} that satisfies the criterion in
Prop. 2. Node X does not satisfy the criterion as discussed in the earlier example and node W is in
the same pc-component with its possible child/descendant X . Next we try to decompose the query in
line 9 using Prop. 5. Assuming B in line 9 is equal to {A}, we haveRD

B = {A} ≠ D and we get the
decomposition Q[V\{W,X}] = Q[A] ·Q[{B,C, Y }] sinceRB∩RD\RB

= {A}∩{B,C, Y } = ∅.
Subsequently, IDP calls IDENTIFY(·) at line 10 to compute Q[A] and Q[{B,C, Y }] from P (V).
Starting with Q[A], node Y trivially satisfies the criterion of Prop. 2 as it has no descendants
and we compute Q[V \ {Y }] = P (v)

P (y|v\{y}) = P (v \ {y}). Similarly in the subsequent calls to
IDENTIFY(·), we intervene on C and B to obtain Q[W,X,A] = P (w, x, a). Next, X satisfies the
criterion of Prop. 2 in the induced subgraph PW,X,A and Q[W,A] = P (w,x,a)

P (x|w) = P (w)× P (a|w, x).
Finally W satisfies the criterion and we get Q[A] = P (w)×P (a|w,x)

P (w)×P (a|w,x)∑
w P (w)×P (a|w,x)

=
∑

w P (w) × P (a|w, x).

Similarly, IDP computes Q[B,C, Y ] by intervening on A, X , then W . Hence, we get the expression
Q[B,C, Y ] =

∑
w,x P (y, c|w, x, a, b)× P (w, x, b). The final expression for Px(y) is shown below.

Px(y) =
∑
a,b,c

Q[A] ·Q[B,C, Y ] =
∑
a,b,c

(∑
w

P (w) ·P (a|w, x)
)(∑

w,x

P (y, c|w, x, a, b) ·P (w, x, b)
)

Lemma 24. Let P denote a PAG over V, let T ⊆ V be a subset of the buckets in P , and let X ⊂ T
be a bucket. Then, the following two conditions are equivalent:

1. CX ∩ PossCh(X) ⊆ X.

2. there does not exist Z ∈ X such that Z has a possible child C ̸∈ X that is in the pc-
component of Z.

Proof. 1 =⇒ 2. This direction follows trivially.

2 =⇒ 1. We prove this by contrapositive. Suppose CX ∩ PossCh(X) ̸⊆ X. If there exists a node
Z ∈ X that has a possible child C ̸∈ X such that Z ◦−◦ C, Z◦→ C, or an invisible Z → C, then C
is in the pc-component of Z which concludes the proof.

Alternatively, assume that every possible child of X is due to a visible edge out of X. Following
the initial assumption (CX ∩ PossCh(X) ̸⊆ X), there exists at least one child of X, denoted C,
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Figure 10: (a) P1, a PAG
(same as P in Fig. 3a);
(b) G1, a causal diagram
in the Markov equiva-
lence class of P1; (c) P2,
a PAG (same as P in
Fig. 5a); (d) G2, a causal
diagram in the Markov
equivalence class of P2.

(Xi → C) such that the edge is visible and C is also in the pc-component of X. Next, we prove that
C is in the pc-component of Xi which concludes the proof. Let Xj ̸= Xi denote the node in X such
that Xj and C are in the same pc-component. First, Xj and C can not be in the same pc-component
due to Xj ◦−◦ C, C◦→ Xj , or invisible C → Xj as it violates a PAG property [Maathuis and
Colombo, 2015, Lemma 7.5]. Also, Xj and C can not be in the same pc-component due to an
invisible Xj → C since we assume that every possible child of X is due to a visible edge out of
X. Hence, Xj and C are in the same pc-component due to a collider path p consistent with [Jaber
et al., 2019a, Def. 4]. The first edge along p starting from Xj has to be into Xj (Xj ↔ A), else Xj

has a possible child (A) which is also in the pc-component of X violating our assumption that every
possible child of X is due to a visible edge out of X. Hence, it follows by [Zhang, 2006, Lemma
3.3.2] that there exists a bi-directed edge between A and every node in X, including Xi. Therefore,
C is a possible child of Xi and C is in the same pc-component of Xi. This concludes the proof.

G Experiments

In this section, we empirically evaluate the soundness and performance of CIDP (Algorithm 2).
CIDP and the auxiliary functions were implemented in R v4.1.2 [R Core Team, 2021], using
standard graph and causal inference packages, including dagitty v0.3.1 [Textor et al., 2016], igraph
v1.2.8.9014 [Csardi and Nepusz, 2006], pcalg v2.7.3 [Hauser and Bühlmann, 2012], and causaleffect
v1.3.13 [Tikka and Karvanen, 2017]. The experiments were performed on an Intel® Core™ i9
processor at 2.3 GHz with 16 GB RAM. The R package will be made freely available.

G.1 Empirical Evaluation of the CIDP Algorithm

We first empirically evaluate CIDP (Alg. 2) in its ability to soundly identify the interventional
distribution Px(y|z) from a PAG P . Given a causal diagram G in the equivalence class of P ,
we randomly generated 30 datasets of binary variables according to G consisting of N observa-
tions, with N = {5000, 10000, 50000, 100000, 500000}. This was performed using the function
simulateLogistic of the dagitty R package. Then we generated the PAG using the FCI algo-
rithm [Zhang, 2008b] with the true oracle and estimated Px(y|z) for all possible values of x,y, and
z using both the identification formula given G, provided by the conditional ID algorithm [Tian,
2004, Shpitser and Pearl, 2006] and the identification formula given P , provided by CIDP. Fig. 11
shows the average absolute differences and standard errors in the estimates of the conditional query
Px(y|z) := Px1,x2,w(y|z) given the causal diagram G1 in Fig. 10b and given the corresponding PAG
P1 in Fig. 10a (same as PAG P in Fig. 3a). Similarly, Fig. 12 shows the average absolute differences
and standard errors in the estimates of the conditional query Px(y|z) := Pa,f (y|b, e) given the causal
diagram G2 in Fig. 10d and given the corresponding PAG P2 in Fig. 10c (same as PAG P in Fig. 5a).

As expected, results show a negligible average difference between the estimates derived given the true
causal diagram and given the corresponding PAG. Additionally, the standard errors greatly decreases
as the number of samples in the dataset increases. This illustrates that CIDP accurately identifies
target causal effects given a PAG learned from observational data whenever the causal knowledge in
the PAG is sufficient for identification.
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Figure 11: Average and standard deviation of the absolute difference between the estimates of
Px1,x2,w(y|z) computed using the identification formula provided by CIDP given the PAG P in
Fig. 3a, and using the identification formula provided by IDC given the true underlying causal
diagram G, a member of P . The average is over 30 randomly generated data sets of binary variables
consisting of N observations, with N = {5000, 10000, 50000, 100000, 500000}.

G.2 Comparison to Hyttinen et al. (2015)’s Algorithm

Hyttinen et al. [2015] propose an alternative approach, henceforth denoted by HEJ, to identify
conditional causal effects P (y|do(x), z) from the Markov equivalence class. HEJ determines effect
identifiability by attempting to identify the effect in each causal diagram in the equivalence class. First,
it translates the set of d-separation constraints of the equivalence class into a logical representation
using an answer set programming (ASP) solver. Then, it repeatedly queries the constraint solver for a
causal diagram G in the equivalence class and calls the IDC algorithm [Shpitser and Pearl, 2006] on
G to identify the desired effect. The effect is determined as identifiable from the Markov equivalence
class if all returned formulae are the same.

Even though some constraints are applied in the sampling procedure to avoid an explicit enumeration
of all members of the equivalence class, HEJ is still very time-consuming. To witness, we next
show a comparison of the running times to demonstrate the advantage in performance of CIDP
over HEJ. We use the implementation of HEJ as provided from the first author’s website at https:
//www.cs.helsinki.fi/u/ajhyttin/ on April 18th, 2022, and we executed it using the ASP
solver clingo v5.5.2 [Gebser et al., 2017].

In Fig. 13, we show boxplots of the running times (in seconds and in log scale) for identifying
the causal effect P (y|do(x), z) in 30 randomly generated PAGs with number of variables n =
{5, 6, . . . , 12}. Each PAG was generated using the true oracle corresponding to a random causal
diagram with a fixed edge probability of 0.4. Running times for both algorithms do not include the
time spent generating the PAG. We set a timeout of 90 minutes (5400 seconds) for each instance.

Clearly, the average running time of HEJ increases exponentially with the number of observed
variables. Note that it ran out of time for models with more than 10 variables when the causal effect
is identifiable and for models with more than 5 variables when the causal effect is not identifiable.
Consistently, CIDP determines the identifiability of the causal effect much faster than HEJ. For
all instances, a result is obtained in less than a second. To ensure efficiency, we implemented a
linear-time algorithm for testing definite m-separability in PAGs based on the Bayes-Ball algorithm
[Shachter, 1998]. A similar algorithm has been proposed by [Perković et al., 2018] for deciding
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Figure 12: Average and standard deviation of the absolute difference between the estimates of
Pa,f (y|b, e) computed using the identification formula provided by CIDP given the PAG P in Fig. 5a,
and using the identification formula provided by IDC given the true underlying causal diagram G, a
member of P . The average is over 30 randomly generated data sets of binary variables consisting of
N observations, with N = {5000, 10000, 50000, 100000, 500000}.

m-separability when testing whether a set is admissible for adjustment in PAGs and by [van der
Zander et al., 2019] for deciding m-separability in MAGs.
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