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Abstract

Structural learning is arguably one of the most challenging and pervasive tasks
found throughout the data sciences. There exists a growing literature that studies
structural learning in non-parametric settings where conditional independence
constraints are taken to define the equivalence class. In the presence of unobserved
confounders, it is understood that non-conditional independence constraints are
imposed over the observational distribution, including certain equalities and in-
equalities between functionals of the joint distribution. In this paper, we develop
structural learning methods that leverage additional constraints beyond conditional
independences. Specifically, we first introduce a score for arbitrary graphs combin-
ing Watanabe’s asymptotic expansion of the marginal likelihood and new bounds
over the cardinality of the exogenous variables. Second, we show that the new score
has desirable properties in terms of expressiveness and computability. In terms of
expressiveness, we prove that the score captures distinct constraints imprinted in
the data, including Verma’s and inequalities’. In terms of computability, we show
properties of score equivalence and decomposability, which allows, in principle, to
break the problem of structural learning in smaller and more manageable pieces.
Third, we implement this score using an MCMC sampling algorithm and test its
properties in several simulation scenarios.

1 Introduction

Learning the causal structure underlying a particular phenomenon from data is a fundamental problem
across the data sciences. One of the common approaches in the field of causal discovery models the
underlying system as a causal model represented by a causal graph, where nodes denote random
variables (measured or latent) and directed edges denote causal effects from tails to arrowheads
[26, 36, 27]. The task is then to piece together the constraints found in the data (and implied by the
underlying, unobserved causal system) to infer the corresponding causal graph.

There are a variety of different types of statistical constraints imposed by the underlying causal system
into the observed data with distribution P pV q. For example, a d-separation between nodes in a
causal graph induces a corresponding conditional independence between variables in V . The reverse
implication, i.e. that each conditional independence in data implies a corresponding d-separation in
the underlying causal graph (known as faithfulness), serves as a statistically testable constraint to
narrow the class of compatible graphs [24, 23, 39, 46, 22]. This is the cornerstone assumption for
a plethora of structure learning algorithms [40, 16, 36]. In fact, when all variables are observable,
d-separation statements capture all testable constraints implied by the underlying causal model [40].
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Figure 1: Example of graphs. Bi-directed edges denote the presence of an unobserved confounder.

This is not the case in the presence of latent variables that are typically used to represent systems
involving unobserved confounding. Such causal models are known to induce distributions over
observed variables that are defined by more complex statistical constraints, not necessarily of the
conditional independence type. The earliest example was given by Verma and Pearl [40], in which
two graphs, shown in Figs. 1c and 1d, imply the same set of conditional independence constraints
and yet can be distinguished because they imply an equality between different functionals of P pV q.
In particular, only the Verma graph in Fig. 1c entails the equality

ÿ

x

P pz | x, yqP pxq “
ÿ

x

P pz | x, y, wqP px | wq. (1)

Another example is given by the Instrumental Variable (IV) graph in Fig. 1a. While the IV graph
does not impose any conditional independencies between variables, compatible data distributions
(with discretely-valued observables) P px, y, zq must satisfy the inequality, first shown by Pearl [25],

ÿ

y

max
z

P px, y | zq “
ÿ

u2,y

max
z

P px | z, u2qP py | x, u2qP pu2q ď 1. (2)

The same inequality does not hold in the (otherwise statistically equivalent) unconstrained graph
in Fig. 1b. In systems with discrete observables, distributions induced by causal graphs are indeed
always restricted whenever two observed variables are not directly connected, that is are neither
adjacent, nor subject to unobserved confounding[13]. For example, it is the structural separation
between Z and Y in Fig. 1a that induces an inequality constraint, not present in Fig. 1b due to the bi-
directed edge Z L9999K Y . By adopting the reverse implication, any statistical (in)equality constraint
could in fact be used to distinguish between competing causal explanations from observational data.

Early structure learning approaches, starting with the IC/PC algorithms in the context of full observ-
ability, and the IC˚/FCI algorithms in the presence of unobserved confounding, developed themselves,
as well as the causal abstractions involved, around conditional independence testing and faithfulness
assumptions [40, 36]. In particular, to reason about unobserved confounding, the latter class of
methods considers a special class of graphs, known as Maximal Ancestral Graphs (MAGs), that
explicitly associates every separation in the graph with a corresponding conditional independence
in P pV q [29]. The MAG representation of equivalence classes of causal graphs thus loses the finer
granularity in induced distributions encoded by (in)equality constraints. For example, both pairs of
causal graphs in Fig. 1 are given by the same MAGs, as both encode the same set of conditional
independencies (and ancestral relations). MAGs are also a popular construct for an alternative class of
algorithms known as score-based, that instead search for the MAG G maximizing the model posterior
P pG | V q or an approximation thereof [15, 19, 6, 7]. The most notable example is the Bayesian
Information Criterion (BIC) that can be derived as an asymptotic approximation to P pG | V q for
distributions defined by MAGs with a Gaussian latent structure (and more general curved exponential
models [18, 34]). Several more general causal abstractions, such as discrete chain graph models [8],
fully bi-directed graph models [11], and discrete nested Markov models [30] have also been shown to
be curved exponential models and can be scored consistently with the BIC.

Despite the progress achieved so far, there exists no causal discovery algorithm that accounts for
inequality constraints in the space of general causal graphs. This paper proposes a new score that
distinguishes between causal graphs leveraging both equality and inequality constraints in data and is
applicable to systems with discretely-valued observables and arbitrarily defined exogenous variables.
Building on Watanabe’s asymptotic expansion of the marginal likelihood [43] and bounds over the
cardinality of exogenous variables [31, 47], our score generalizes the BIC to the more general class
of discrete models with arbitrary latent variables. We further prove the expressiveness power of our
score, in the sense that it captures all observable constraints in P pV q. This implies that, in principle,
any two graphs that are distinguishable based on P pV q can be distinguished with the proposed score.
We show also several properties that make the search over the space of causal graphs feasible, such
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as decomposability (only a smaller subgraph needs to be updated in each iteration of the search
procedure) and equivalence (graphs defining the same family of observational distributions have the
same score), and propose a tractable approximation using an MCMC sampling algorithm and can
be plugged into a search procedure for computations in practice. Finally, we evaluate our method
through simulations using various synthetic datasets.

1.1 Preliminaries

We use capital letters to denote variables (X), small letters for their values (x), bold letters for sets of
variables (X) and their values (x), and Ω for their domains of definition (x P ΩX ). The probability
distribution over variables X is denoted by P pXq. We consistently use P pxq as abbreviations for
probabilities P pX “ xq. Finally, 1t¨u is the indicator function that equals 1 if the statement in t¨u

evaluates to be true, and equals 0 otherwise.

The basic framework of our analysis rests on structural causal models (SCMs) [26, Def. 7.1.1].
An SCM M is a tuple xV ,U ,F , P y where V is a set of endogenous variables and U is a set of
exogenous variables. F is a set of functions where each fV P F decides values of an endogenous
variable V P V taking as argument a combination of other variables in the system. That is,
V Ð fV pPaV ,UV q,PaV Ď V ,UV Ď U . Drawing values of exogenous variables U following
P pUq induces the observational distribution over endogenous variables V ,

P pvq “

ż

ΩU

ź

V PV

1tfV ppaV ,uV q “ vudP puq. (3)

Each SCM M is associated with a causal graph G (e.g., Fig. 1), that is a Directed Acyclic Graph
(DAG) where nodes represent endogenous variables V and exogenous variables U , and arrows
represent the arguments PaV ,UV of each function fV . A path from a node X to a node Y in G is a
sequence of edges which does not include a particular node more than once. For convenience, we
will consider projections of G onto V, in which exogenous variables are made implicit. In particular,
we represent a path of the form Vi Ð Uk Ñ Vj between endogenous Vi, Vj P V via an exogenous
Uk P U as a bi-directed edge between Vi and Vj , denoted by Vi L99 ¨ 99K Vj .

We will leverage a special type of clustering of nodes in the graph G called the confounded-component
(or c-component for short) from Tian and Pearl [37]. For a causal graph G, a subset C Ď V is
a c-component if any pair Vi, Vj P C is connected by a bi-directed path in G. For example, the
(implicit) exogenous variables UZ , UXY in the IV graph in Fig. 1a corresponds to c-components
CpUZq “ tZu and CpUXY q “ tX,Y u, respectively. Lastly, we will use standard graph-theoretic
family abbreviations to represent graphical relationships. In particular, the set of parent nodes of X
in G is denoted by papXqG “ YXPXpapXqG ; and its capitalized version Pa includes the argument
as well, e.g. PapXqG “ papXqG Y X . For a more detailed survey on SCMs, we refer readers to
[26, 1].

2 Expressiveness of Scores in the Presence of Unobserved Confounders

We will focus on Bayesian methods and their asymptotic behaviour for scoring causal graphs G. Let
P pG | v̄q be the probability that G defines the causal structure in the underlying SCM given an i.i.d
sample v̄ “

␣

vpsq : s “ 1, . . . , n
(

.
Definition 1 (Bayesian scoring criterion). The Bayesian scoring criterion is defined as the posterior,

P pG | v̄q 9 P pGqP pv̄ | Gq “ P pGq

ż

Ωω

P pv̄ | G,ωqdP pω | Gq. (4)

where ω refers a particular parameterization, i.e. F , P pUq, of the set of SCMs compatible with the
functional dependencies specified by G.

In systems described by arbitrary causal graphs, an explicit approximation of the marginal likelihood
P pv̄ | Gq is typically intractable from both a conceptual and computational perspective. From a
conceptual perspective, the graph G does not define a specific latent variable structure, i.e. domain of
U and distribution P pUq, which, in principle, may be arbitrarily complex. The space of distributions
P pV q encoded by such a system does not necessarily have a systematic, generic parameterization ω
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without making strong assumptions on the form of F and P pUq. From a computational perspective,
for large classes of SCMs, likelihoods are typically multi-modal and complex and are challenging to
integrate over potentially high-dimensional parameter spaces. In the following sections, we present
several results to consistently parameterize and estimate marginal likelihoods for arbitrary causal
graphs.

2.1 Parameterizations capturing all observational constraints

We seek to develop general results without (untestable) assumptions over unobserved features of the
underlying SCMs, i.e. P pUq and F . In systems of discrete observables, P pV q has the particularity
of being consistently defined by a finite set of probabilities, irrespective of the underlying structure
P pUq and F from which it is derived. We focus our attention on SCMs with discrete endogenous
(observed) variables, that is, each V P V taking values in a finite space of outcomes, while each
U P U is arbitrarily defined, e.g. taking values in R, and each f P F is similarly arbitrary. For a
given arbitrary graph there exists a general parameterization that is expressive enough to model any
data distribution P pV q. Our analysis rests on this special parameterization.

Proposition 1 (Prop. 2.6 [47]). For any causal graph G, let M be an arbitrary SCM compatible with
G. The observational distribution P pV q induced by M could be parameterized as

P pv | G,ωq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu, (5)

where θu :“ P pU “ uq defines exogenous probabilities of discrete variables U P U with cardinality
dU “

ˇ

ˇΩPapCpUqq

ˇ

ˇ; and each ξ
ppaV ,uV q

V is a deterministic mapping between finite domains ΩPaV
ˆ

ΩUV
ÞÑ ΩV .

For the sake of space, all proofs are provided in Appendix B. In other words, for any SCM M
there exists a SCM N defined by ω “ pξ,θq, given by Prop. 1, such that PM pV q “ PN pV q. A
similar reasoning does not apply for continuously-valued endogenous variables that would require
continuously-valued exogenous variables and therefore a (untestable) choice of parametric family for
all variables.

For example, in the IV graph in Fig. 1a, let an observational distribution P pX,Y, Zq over binary
variables X,Y, Z be induced by an arbitrary distribution P pU1, U2q over a continuous domain of
the exogenous variables U1, U2, i.e. given by Eq. (3). Prop. 1 implies that any P px, y, zq can be
equivalently expressed as

ÿ

u1,u2

1tξ
pu1q

Z “ zu1tξ
pz,u2q

X “ xu1tξ
px,u2q

Y “ yuθu1θu2 , (6)

for some value of pξZ , ξX , ξY , θu1
, θu2

q. In particular, θu1
defines a distribution over a binary domain

t1, 2u since |ΩU1
| “ |ΩX | “ 2; θu2

defines a discrete distribution over a finite domain t1, . . . , 8u

since |ΩU2
| “ |ΩX | ¨ |ΩY | ¨ |ΩZ | “ 8; ξZ : ΩU2

ÞÑ ΩZ is a deterministic mapping between discrete
domains, etc. Statistical constraints between functionals of P pV q, e.g. conditional independencies,
automatically correspond to explicit constraints on the parameters that define the joint distribution.
For example, any parameterization ω “ pξ,θq of P pV q compatible with the IV graph must satisfy,

ÿ

u2,y

max
z

1tξ
pz,u2q

X “ xu1tξ
px,u2q

Y “ yuθu2 ď 1. (7)

In turn, in causal graphs such as Fig. 1b the corresponding parameters are unconstrained.

2.2 Singular asymptotics of the marginal likelihood

For marginal likelihood computations in practice, large-sample theory has played an overwhelming
role to define tractable approximations, i.e. scores. Schwarz’s Bayesian Information Criterion (BIC),
for example, is derived from an asymptotic approximation around maximum likelihood estimates
in curved exponential graphical models [18, 34]. This asymptotic approximation, however, does
not necessarily hold in arbitrary graphs with unobserved confounders; especially those defined by
inequality constraints.
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In particular, inequalities such as Eq. (2) introduce a boundary in the space of distributions entailed by
the underlying graph that induce non-regular likelihood surfaces. For example, in a system described
by the IV graph, a distribution such that P pY “ 0, X “ 0 | Z “ zq “ P pY “ 1, X “ 0 | Z “

zq “ 0.5 for z P t0, 1u, lies on this boundary. By Prop. 1, |ΩUXY
| “ 8, and it can be shown that

changing P puXY q while preserving the sums
ř

u2“0,1,2,3 P puXY q and
ř

u2“4,5,6,7 P puXY q (up to
relabelling) does not change the likelihood P pv̄ | ω,Gq.

Figure 2: ´ logP pv̄ | ω,Gq.

The corresponding log-likelihood, using simulated data from a
boundary distribution, is given in Fig. 2 as a function of parameters
P pUXY “ 0q and P pUXY “ 1q. The colored pattern represents
the likelihood surface that concentrates in a ridge shape along a
diagonal line and defines a singular point in the model. In effect,
we are loosing degrees of freedom in our model and the asymptotic
consequences of this fact can be quite severe as approximations
can no longer rely on the likelihood around the maximum being a
quadratic surface. In general, the BIC will not reflect the asymptotic
scaling of P pv̄ | Gq defined by (in)equality constraints.

Watanabe reformulated the foundations of asymptotic theory of singular models using the Hironaka
resolution on singularities [20, 41, 42, 43]. A distinct notion of model dimension emerges in singular
models driven by the so called learning coefficient λG ą 0 that describes how fast the posterior
distribution shrinks with increasing sample size. In the following corollary, we establish the correct
approximation to the log marginal likelihood defined by a general causal graphs with joint distributions
parameterized by discrete SCMs.
Theorem 1. In discrete SCMs parameterized by Prop. 1,

´ logP pv̄ | Gq “ ´ logP pv̄ | G,ω0q ` λG log n ` Opplog log nq, (8)

where ω0 is a set of parameters that produces the true distribution, and λG , called the learning
coefficient, is a rational number.

This is a corollary to [41, Thm. 1]. In curved exponential models, λG is directly proportional
the number of free model parameters but it might not be in general (in fact λG is strictly smaller
that the penalty given by the BIC in distributions with this parameterization involving (in)equality
constraints)1). In general, λG depends on the true (unknown) data generating system G that makes
this particular expression difficult to evaluate in practice.

2.3 Approximations to the Bayesian score and consistency for structure learning

A tractable score remains elusive due to computational and conceptual challenges of evaluating multi-
modal integrals and asymptotic approximations, respectively. This section proposes a compromise
that involves sampling based on a tempered, i.e. less modal, version of the likelihood and prior that,
however, can be shown to relate directly to Thm. 1 and enjoy consistency guarantees. Following
[14, 44], the idea is to estimate some expectation Eω„P rP pv̄ | ω,Gqs by evaluating a less modal
distribution P β with β ă 1. We define a score SWBIC

2 for a causal graph G and data v̄ as

SWBICpG, v̄q :“ ´Eβ logP pv̄ | G,ωq “

ş

Ωω
logP pv̄ | G,ωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

. (9)

The significance of this definition lies in the fact that for a consistent parameterization of P pv̄ | G,ωq,
the marginal likelihood P pv̄ | Gq is provably equal to ´Eβ logP pv̄ | G,ωq for some value β˚ P

r0, 1s, with the property that, for the choice β “ 1
logn it holds, asymptotically by [44, Thm. 4] that,

SWBICpG, v̄q “ ´ logP pv̄ | Gq ` Opp
a

log nq. (10)

This result shows that model selection using SWBIC approximates a Bayesian procedure seeking the
model with highest posterior probability, i.e. Thm. 1. However, SWBIC may deviate from the marginal

1A more detailed exposition of asymptotics in singular models, including of details on thermodynamic
integration and path sampling techniques used in the following section are given in Appendix A.

2In the Bayesian model selection literature, this expression is known as the Widely applicable Bayesian
Information Criterion (WBIC) [44].
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likelihood by a constant term times
?
log n. For consistency of model selection this difference must

be of lower order than the difference in logP pv̄ | Gq between two different models, which is made
precise in the following assumptions.

Assumption 1. If G1 is compatible with the data generating distribution P and G2 is not, then there
exists a scalar c12 ą 0 such that logP pv̄ | G1q ´ logP pv̄ | G2q ą c12n, with probability tending to
1 as n Ñ 8.

Assumption 2. Let causal graphs G1 and G2 be defined such that the set of distributions P1

compatible with G1 is included in the set of distributions P2 compatible with G2. Then, λG1
ă λG2

with probability tending to 1 as n Ñ 8, where λG1
, λG2

are the learning coefficients in Thm. 1
corresponding to G1,G2 respectively.

As the log likelihood is the sum of logarithmic probabilities for i.i.d observations, if causal graphs G1

and G2 encode a similar number of unobserved confounders with a similar underlying parameteri-
zation, we can expect the difference in log likelihoods for G1 and G2 to scale linearly with sample
size so that Assumption 1 generally holds (if close enough models are compared). The learning
coefficient λG in Thm. 1 acts as a measure of complexity of the set of distributions induced by a
SCM. Assumption 2 states that SCMs inducing more probabilistic constraints also induce families of
distributions that are less general and thus an underlying graphical model that is less complex in the
sense of λG . Both assumptions can be found in other treatments of model selection, see e.g. [10].
These assumptions, SWBIC coupled with the discrete parameterization of the likelihood assigns the
lowest (best) score to the model imposing the fewest constraints that can represent the generative
distribution.

Theorem 2. Let P pv̄ | G,ωq be parameterized as in Prop. 1. Under Assumptions 1 and 2, with
probability tending to 1 as n Ñ 8,

1. (Soundness) If the family of distribution compatible with G1 includes P pV q but the family of
distributions compatible with G2 does not, SWBICpG1, v̄q ă SWBICpG2, v̄q.

2. (Parsimony) If the family of distributions compatible with G1 is included in that compatible with
G2 and both contain P pV q, SWBICpG1, v̄q ă SWBICpG2, v̄q.

The first part of the proposition encodes the soundness of the parametrization, i.e., a graph that
encodes the constraints of the original model will have a higher score than a graph that disagrees
with these constraints. The second part encodes the idea of simplicity, which means that among two
structures that have the same generative capabilities, the simpler one will be preferred over the more
complex one. This property is also called consistency of a score and is key to ensure convergence
to the underlying graph that summarizes the SCM that generated the data. As a consequence of
the consistency of the score in the space of arbitrary causal graphs, the score captures all statistical
constraints over observational probabilities encoded by the structure of the causal graph.

Proposition 2. SWBICpG, v̄q distinguishes between candidate causal graphs differing on an
(in)equality constraint between functionals of P pV q with probability tending to 1 as n Ñ 8.

Intuitively, if Prop. 2 were not to hold, SWBICpG, v̄q would not be sound or parsimonious as two
candidate graphs that disagree on (in)equality constraints also define two different sets of compatible
distributions. If the in(equality) is satisfied in P pV q, a parsimonious score chooses the graph entailing
the (in)equality, else if the inequality is not satisfied a sound score chooses the graph not entailing
the (in)equality. It is worth noting also that SWBIC may be interpreted as a generalization of the BIC
score, denoted SBIC.

Proposition 3 (Eq. (32) in [44]). Let P pV q and G be the joint distribution and causal graph induced
by a SCM parameterized by curved exponential models. Then, with probability tending to 1 as
n Ñ 8, SWBICpG, v̄q “ SBICpG, v̄q ` Opp1q.

3 Properties of Score for Causal Discovery and Computation

This section describes properties of the proposed score SWBIC which will be desirable for causal
discovery. Our next result shows that SWBIC decomposes over c-components in the causal graph.
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Definition 2 (Decomposability). The score S is decomposable if it can be written as a sum of
measures, each of which is a function only of the variables in the c-component C and its parents,

SpG, v̄q “
ÿ

CPCpGq

SpGPapCq, v̄PapCqq. (11)

Here GPapCq and VPapCq denote the subgraph and data, respectively, restricted to PapCq Ď V .

Proposition 4. SWBIC is decomposable.

Decomposability will avoid the need of recomputing the entire score when examining a new graphical
structure, which makes the search feasible in principle. For example, to score the IV graph in Fig. 1a,
we may separately score c-components tZu and tX,Y u, the first one being a function of Z only
while the second one being a function of tX,Y, Zu. If we were to add an edge Z Ñ Y we would
only need to recompute the updated c-component tX,Y u as the one for tZu can be re-used. An
important observation is that statistical constraints in data are usually not sufficient to narrow down a
unique causal graph and, in practice, multiple graphs may encode the same constraints as those of the
true graph. This set forms an equivalence class that can be defined by the SWBIC.
Definition 3 (Score equivalence). A scoring criterion S is score equivalent if, for any pair of causal
graphs G1 and G2 that are compatible with the same family of distributions, SpG1, v̄q “ SpG2, v̄q

with probability tending to 1 as n Ñ 8.

Proposition 5. SWBIC is score equivalent.

This proposition formalizes the intuition that if the family of distributions entailed by two graphs
are equal then also their scores will be equal. For example, adding a bi-directed edge Z Ø X to the
graph in Fig. 1a does not remove / add any constraints on the set of induced distributions P pV q and
has therefore the same score.

3.1 Computing the score

We present in this section a MCMC sampler to approximate the expectation defining SWBIC in Eq. (9).
Let ω “ pξ,θq, where ξ “ tξ

ppaV ,uV q

V : V P V ,PaV Ă V ,UV Ă Uu and θ “ tθU : U P

Uu denote all possible functional assignments and exogenous probabilities, respectively. More
specifically, ξppaV ,uV q

V are parameters that take values in ΩV and represent the assignment of V given
its parents and exogenous variables, i “ 1, . . . , d. There is one such parameter of dimensionality
|ΩV | for each combination of realization of parent variables paV and exogenous variables uV that
are defined by the candidate causal graph G. θU stands for the vector of probabilities that defines the
discrete distribution P pU “ uq over its finite domain u P t1, . . . , dUu.

SWBIC is computed by setting the tempering temperature β :“ 1{ log n and prior over parameters
given G (possibly uninformative), and drawing Monte Carlo samples of the posterior distribution
P pξ,θ | v̄,Gqβ at temperature β. All parameters, their dimensionalities, and space of potential
values are determined by the structure of the candidate graph and the observed data v̄, but also depend
on (unobserved) exogenous variables ū “ tupsq : s “ 1, . . . , nu. For every V P V ,@paV ,uV ,
the functional assignment parameters ξ

ppaV ,uV q

V are drawn uniformly in the discrete domain ΩV .
For every U P U , exogenous probabilities θU with dimension dU “

ś

V PCU

ˇ

ˇΩPapV q

ˇ

ˇ are drawn
from a prior Dirichlet distribution θU “ pθ1, . . . , θdU

q „ Dirpα1, . . . , αdU
q, with hyperparameters

α1, . . . , αdU
. Fix some initial value for all unobserved quantities pu, ξ,θq, and sample each one

iteratively conditioned on the current values of the remaining terms with a Metropolis step.

• Exogenous variables U psq are mutually independent given V psq, ξ,θ and thus we can sample each
separately using the conditional

P pupsq | vpsq, ξ,θq 9 P pupsq,vpsq | ξ,θq “
ź

V PV

1tξ
pu

psq

V ,pa
psq

V q

V “ vpsqu
ź

UPU

θupsq .

• Similarly, for fixed paV ,uV , parameters ξppaV ,uV q

V are mutually independent given v̄, ū,θ. As
they represent a mapping between variables, its conditional distribution is given by P pξ

ppaV ,uV q

V “
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(a) IV vs DAG. (b) IV vs Front-door. (c) IV vs Unconstrained. (d) IV vs Equivalent.

Figure 3: Quality of scores. The horizontal gray line indicates the theoretical optimum.

v | v̄, ūq “ 1 if there exists a sample pvpsq,pa
psq

V ,u
psq

V q that fixes the mapping pa
psq

V ,u
psq

V ÞÑ vpsq.
Otherwise, P pξ

puV ,paV q

V “ vq “ qv, where q “ tqv : v P ΩV u is a proposal distribution that
samples ξpuV ,paV q

V in ΩV with probabilities that are uniformly updated in a small neighbourhood
of the previous parameter value in each iteration of the sampler.

• Fix U P U . Given v̄, ū, θU is independent of ξ and is given by a Dirichlet distribution θU | v̄, ū „

Dir pβ1, . . . , βdU
q where βj :“ αj ` cj where cj is updated in each iteration of the sampler using

a uniform proposal distribution, e.g. cj „ Uniformpcj ´ ϵ, cj ` ϵq and ϵ ą 0 a small scalar.

Let pξptq,θptqq be the t-th sample in the Markov chain. A new sample pξpt`1q,θpt`1qq is recorded
with an acceptance ratio given by P pξpt`1q,θpt`1q | v̄,Gqβ{P pξptq,θptq | v̄,Gqβ where,

P pξ,θ | v̄,Gqβ 9 exp t´β logP pv̄ | ξ,θ,Gq ` logP pξ,θ | Gqu .

Finally, SWBIC’s approximation: ŜWBICpG, v̄q :“ ´ 1
T

řT
t“1 logP pv̄ | G, ξptq,θptqq.

4 Experiments: Quality of scores

This section evaluates the ability of the proposed score to distinguish between graphs that differ in
equality and inequality constraints3.

We consider variations of the IV (Fig. 1a) graph designed to consider the presence and absence
of inequality constraints4. The task is to score these variations, and compare them to scores of
the ground truth IV graph, based data generated from 100 different SCMs M “ xV ,U ,F , P y

compatible with ground truth graph. Each SCM is specified as follows. Exogenous distributions
P pUq, U P U are randomly chosen from a set of continuous distributions tGaussian, Exponential,
Gumbel, Uniformu; functional associations are defined by V Ð gpfpβPaV ` αUV qq, V P V ,
with f randomly chosen as a linear, trigonometric (cos, sin), or logarithmic function; α, β uniformly
chosen in r0, 1s with the required dimensionality; and g a step function used to define a binary
outcome. For comparison, we consider two implementations of the BIC used in the literature:
SBIC1 :“ ´2 logP pv̄ | G, ω̂q ` |Ωω| log n, and SBIC2 :“ ´2 logP pv̄ | G, ω̂q ` p2|V | ` |E |q log n,
where |E | denotes the number of directed and bi-directed edges. Our results are summarized in Fig. 3.
Each bar gives the proportion of experiments (out of 100) in which the correct causal explanation, i.e.
the IV graph, is scored better than a competing graph that differs in subtle ways.

By design, baseline scores do not correctly appreciate the complexity of the class of distributions
implied by the graphs which can be illustrated in specific comparisons. For instance, Fig. 3a compares
the ground truth IV graph with an unconstrained DAG that voids the inequality constraint while
having the same number of edges but fewer parameters. In particular, SBIC1 incorrectly favours the
DAG in most cases as a consequence of its lower complexity term |Ωω| log n, and SBIC2 scores both
graph equally on average as both graphs have equal fit and number of edges |E |. In turn, Fig. 3b
considers an unconstrained graph with both the same number of edges and parameters as the IV model
(therefore equal, on average, SBIC1

and SBIC2
scores) although IV and unconstrained graphs can be

distinguished empirically due to the differing inequality constraint. In contrast, Fig. 3c is also consider
an unconstrained graph although this time with fewer edges and fewer parameters: and thus better

3Evaluations of decomposability and equivalence, as well as details on data generating mechanisms, causal
graphs, algorithm implementations, and run time experiments can be found in Appendices C and D.

4Due to space constraints, competing graphs are briefly described for intuition here and plots are given in
Fig. 5 (Appendix C). A similar analysis comparing scores on variations of the Verma graph (Fig. 1c), designed
to consider the presence and absence of equality constraints, is given in Appendix D.
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n GS-SWBIC DCD (Bow.) DCD (Anc.) GSMAG GES

Sachs 200 1077 (13) 1132 (15) 1157 (15) 1198 (13) 1236 (11)

Sachs 500 2653 (28) 2635 (29) 2643 (31) 2791 (25) 3311 (21)

Sachs 1000 5393 (51) 5401 (40) 5405 (40) 5412 (84) 6610 (32)

Lung 200 350 (18) 347 (16) 360 (20) 387 (10) 329 (5)

Lung 500 825 (31) 827 (31) 852 (32) 856 (27) 821 (13)

Lung 1000 1656 (60) 1653 (56) 1663 (69) 1668 (55) 1656 (12)

(a) Mean score and standard deviation. Lower values indicate better fit. (b) Bayes factor vs optimal DAG.

Figure 4: Structure learning evaluations.

SBIC1
and SBIC2

scores. Fig. 3d considers a model for P pV q that is equivalent to the IV model, i.e.
Z Ñ X is replaced with Z L9999K X (and thus have different number of parameters) as both induce
a single inequality constraint. Theoretically, the two alternatives cannot be distinguished and we
would expect scores to be equal on average. We conclude with the observation that empirically, across
variations of different graphs and sample sizes, SWBIC correctly scores graphs based on inequality
constraints and appreciates equivalence in the space of distributions P pV q induced by graphs even if
those have differing number of edges or parameters.

5 Experiments: Structure learning

This section explores the use of SWBIC within search algorithms to recover the causal graph that
best describes the statistical constraints found in data. We adapt a greedy search algorithm to use
the decomposable nature of SWBIC, denoted GS-SWBIC; pseudocode is given in Appendix C.1. An
extensive set of methods exist for searching over spaces of graphs, including greedy search [38],
exact dynamic programming [28], integer programming [5], and gradient-based optimization [2]
methods. Existing implementations rely on Drton’s Residual Iterative Conditional Fitting algorithm
for maximum likelihood estimation of the BIC score which applies to linear Gaussian models [12].
Empirical comparisons are made with Gaussian-based continuous-optimization algorithm (DCD) [2]
for the recovery of ancestral and bow-free graphs, the GES algorithm [6] for the recovery of directed
graphs, and the GSMAG algorithm [38] for the recovery of maximally ancestral graphs.

We start by considering graphs returned by each method fit on random datasets from the IV, Verma,
and frontdoor models defined in Sec. 4. The objective is understand the relative gain of searching
over larger spaces of graphs, beyond the spaces of bow-free, ancestral, and directed graphs considered
in the literature. The IV graph is in neither of these classes, the Verma graph is bow-free, and the
frontdoor graph is bow-free. Fig. 4 plots Bayes factors in comparison to the optimal DAG (inferred
with GES). There is some variation over different datasets although we observe that on average
searching over larger spaces eventually returns graphs that are more likely for the IV and Verma
models (Bayes factor larger than 1). The frontdoor graph is the only model that is empirically
indistinguishable from a fully connected DAG, which sets a bound of 1 in theory on the Bayes
factor. Next, we consider comparisons on Sachs [33] and Lung cancer [21] benchmark datasets
(with some variables omitted to induce unobserved confounding). Fig. 4 gives mean and standard
deviation of SWBIC scores of the graph returned by each method on 5 random draws of the simulators.
There is variability for all methods on different datasets due to the returned graph and due to the
score evaluation. No method significantly outperforms, which is expected as these graphs, to our
knowledge, do not entail (in)equality constraints beyond conditional independencies. There is some
evidence that greedy search in the space of arbitrary causal graphs can be viable for causal discovery.

6 Conclusions

We investigated the problem of learning the causal structure underlying a phenomenon of interest
in discrete models with arbitrary latent dependencies. Our contribution is a new score based on the
asymptotic expansion of the marginal likelihood using a parameterization that is expressive enough
to capture consistently both equality and inequality constraints in the observational data. To our
knowledge, this score is the first to apply to arbitrary models of unobserved confounding. We then
proposed a tractable approximation to this score that involves a posterior sampling algorithm using
power posteriors and that enjoys desirable properties for causal discovery such as score decomposition
and score equivalence that make searching over the space of causal graphs feasible.
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Appendix for "Scores for Learning Discrete Causal Graphs with
Unobserved Confounders"

This Appendix includes

• Derivation of (in)equality constraints and background on asymptotic theory in Appendix A.
• Proofs in Appendix B.
• Experimental and implementation details in Appendix C.
• Additional experiments in Appendix D.

A Background

A.1 (In)equality derivations

The instrumental variables (IV) model Fig. 1a is perhaps to most extensively studied system in
the causal inference literature. It arises naturally in randomized trials with imperfect compliance,
in which Z represents a randomized treatment assignment, X the treatment actually taken by the
subject, and Y an outcome; U represents unmeasured confounding factors which may affect both the
probability of the subject taking the treatment and the outcome of interest.

Making no assumptions on the space of definition of U , and if X is continuous, P pV q is unconstrained
[3]. However, if the observed variables have finite and discrete state spaces, then the observed
distribution obeys the instrumental inequality,

ÿ

y

max
z

P px, y | zq ď 1.

Following [25], it can be shown with the following argument. Note that,

P px, y | zq “
ÿ

u2

P px | z, u2qP py | x, u2qP pu2q.

For a particular value of px, yq, let z˚ “ maxz P px, y | zq. Thus,
ÿ

y

P px, y | z˚q “
ÿ

y,u2

P px | z˚, u2qP py | x, u2qP pu2q.

For each y, P px | z˚, u2q ď 1,
ÿ

y

P px, y | z˚q ď
ÿ

y,u2

P py | x, u2qP pu2q ď 1.

Substituting z˚ and noting that this relationship holds for any x we get,
ÿ

y

max
z

P px, y | zq ď 1.

Verma or "dormant" constraints can be derived by considering statistical independence statements
in interventional distributions P pV | dopxqq that can nevertheless be written as functionals of
observational distributions P pV q. In other words, Verma constraints can be reasoned with by
considering d-separation statements in graphs in which incoming edges into selected nodes are
removed. For the Verma graph (Fig. 1c) in particular it holds that under intervention on Y , W and Z
are d-separated, which implies by Rule 1 of the do-calculus that

P pz | w, dopyqq “ P pz | dopyqq.

Both of this quantities are identifiable,

P pz | dopyqq “
ÿ

x

P pz | x, yqP pxq

P pz | w, dopyqq “
ÿ

x

P pz | x, y, wqP px | wq

which delivers the equality constraint.
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A.2 Regular models

This section states the asymptotic expansion of the marginal likelihood for regular models. A
statistical model is called regular if the parameter which minimizes the Kullback-Leibler (KL)
divergence of a true distribution and the statistical model is unique and the Hessian matrix of the
KL divergence at the minimum point is regular. The technique that is commonly used is Laplace’s
method, which is to expand the log likelihood of the data around the maximum likelihood value, and
then approximate the peak using a multivariate-normal distribution.

Theorem 3 (Laplace’s Approximation). Suppose that logP pv | G,ωq as a function of ω is twice
differentiable and convex, i.e., the Hessian of logP pv | G,ωq is positive definite, the minimum of
logP pv | G,ωq on Ωω is achieved on a single internal point ω0, and P pω | Gq is continuous and
P pω0 | Gq ‰ 0. The marginal likelihood can be written

´P pv̄ | Gq “

ż

Ωω

expt´ logP pv̄ | G,ωqudP pω | Gq,

If the integral absolutely converges, then, as n Ñ 8,

´P pv̄ | Gq 9 expt´ logP pv̄ | G,ω0qund{2. (12)

where Ωω Ă Rd.

See for example [35] for a proof of this statement. The Bayesian Information Criterion (BIC) is
defined by taking logarithms from this expression [34, 18].

In systems parameterized by Gaussian distributions, Laplace’s approximation holds [29] and the BIC
can be shown to take the convenient form,

´ logP pv̄ | G,ω0q ` p|E | ` 2|V |q{2 log n, (13)

where |E | denotes the number of edges and |V | the number of endogenous variables as the number
of parameters correspond to the mean and variance for each node, and one coefficient per directed or
bi-directed edge. BIC is an asymptotically consistent scoring criterion for MAGs [29] and returns
the same score for all Markov equivalent MAGs, i.e. MAGs that encode the same d-separation
statements, as Markov equivalent MAGs share adjacencies. This further justifies the fact that existing
scores, most often based on this asymptotic approximation of the marginal likelihood, will not capture
differences in more general (in)equality constraints.

A.3 Singular models

A statistical model is singular if either the parameter which minimizes the Kullback-Leibler (KL)
divergence of a true distribution and the statistical model is not unique or the Hessian matrix of the
KL divergence at the minimum point is singular. One of the difficulties in the analysis of singular
models is that the optimal parameter set is not a single point anymore but an analytic set or variety.
Such a set usually involves multiple singularities (i.e. points in that set that form a cusp in the
manifold) that render the fisher information matrix singular. The log-likelihood can non longer be
approximated by a quadratic form of the parameter in the neighbourhood of these singularities. A
model is singular if there are parts of the parameter space in which the fisher information is singular. A
lot of statistical models are singular, for example, neural networks, reduced rank regressions, normal
mixtures, binomial mixtures, hidden Markov models, stochastic context-free grammars, Bayesian
networks, and so on. In general, if a statistical model contains hierarchical structure, sub-module, or
hidden variables, then it is singular [43]

A.3.1 Example of singularity in graphical model with unobserved confounders

For example, consider a simple graphical model defined by the graph tY Ð U Ñ Xu where U is
an implicit latent variable that causally influences binary observables X and Y . As given by the
canonical parameterization in Prop. 1, without loss of generality we may assume the domain of U to
be finite and of cardinality 4. The true observational distribution is given by the following expression,

P px, yq “ ωx
Xp1 ´ ωXq1´xωy

Y p1 ´ ωY q1´y
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whereas, the joint distribution parameterization according to our latent variable model is given by:

P px, yq

“ P pU “ 0q ¨ P px | U “ 0qxp1 ´ P px | U “ 0qq1´xP py | U “ 0qyp1 ´ P py | U “ 0qq1´y

` P pU “ 1q ¨ P px | U “ 1qxp1 ´ P px | U “ 1qq1´x ˆ P py | U “ 1qyp1 ´ P py | U “ 1qq1´y

` P pU “ 2q ¨ P px | U “ 2qxp1 ´ P px | U “ 2qq1´xP py | U “ 2qyp1 ´ P py | U “ 2qq1´y

` P pU “ 3q ¨ P px | U “ 3qxp1 ´ P px | U “ 3qq1´xP py | U “ 3qyp1 ´ P py | U “ 3qq1´y

“ θ0 ¨ pξ
p0q

X qxp1 ´ ξ
p0q

X q1´xpξ
p0q

Y qyp1 ´ ξ
p0q

Y q1´y ` θ1 ¨ pξ
p1q

X qxp1 ´ ξ
p1q

X q1´xpξ
p1q

Y qyp1 ´ ξ
p1q

Y q1´y

` θ2 ¨ pξ
p2q

X qxp1 ´ ξ
p2q

X q1´xpξ
p2q

Y qyp1 ´ ξ
p2q

Y q1´y ` θ3 ¨ pξ
p3q

X qxp1 ´ ξ
p3q

X q1´xpξ
p3q

Y qyp1 ´ ξ
p3q

Y q1´y

The variety of optimal parameters are given by the union of the following sets:

tθ0 “ 1, ξ
p0q

X “ ωX , ξ
p0q

Y “ ωY u Y tθ1 “ 1, ξ
p1q

X “ ωX , ξ
p1q

Y “ ωY u Y tθ2 “ 1, ξ
p2q

X “ ωX , ξ
p2q

Y “ ωY u

Y tθ3 “ 1, ξ
p3q

X “ ωX , ξ
p3q

Y “ ωY u Y tξ
p0q

X “ ξ
p1q

X “ ξ
p2q

X “ ξ
p3q

X “ ωX , ξ
p0q

Y “ ξ
p1q

Y “ ξ
p2q

Y “ ξ
p3q

Y “ ωY u,

which has singularities, for example, at the point:

pθ0, ξ
p0q

X , ξ
p0q

Y , ξ
p1q

X , ξ
p1q

Y , ξ
p2q

X , ξ
p2q

Y , ξ
p3q

X , ξ
p3q

Y q “ p1, ωX , ωY , ωX , ωY , ωX , ωY , ωX , ωY q. (14)

Effectively whenever the parameters of P px, y | U “ uq for all u agree we lose a degree of freedom
in our model: changing P pU “ uq no longer affects the joint distribution of our data. The asymptotic
consequences of this behaviour are important.

A.3.2 Asymptotic approximations in singular models

Watanabe reformulated the foundations of asymptotic theory of singular models relying on the [20]’s
resolution on singularities. Two distinct concepts of dimension of a model emerge from singular
learning theory: the singular fluctuation that shows how strongly the posterior distribution fluctuates,
and the learning coefficient and multiplicity that show how fast the posterior distribution shrinks with
increasing sample size. The singularities in the parameter space can be analyzed using algebraic
geometry with dependencies on the zeta function of the Kullback-Leibler (KL) distance from the true
distribution to the model distribution and of the prior parameter distribution [20, 41, 42, 43].

Watanabe’s results apply to a large class of models, including reduced-rank regression, factor analysis,
Binomial mixtures, and latent class analysis.

For regular models, λ corresponds to an explicit parameter count (recovering Schwarz’s Bayesian
information Criterion). This is no longer necessarily the case in singular models where λ in general
depends on the underlying data generating mechanism which is unknown and in general will be less
than Schwarz’s factor "half the number of free parameters". Specifically, for priors with smooth and
positive densities it holds that λ ď |Ωω|{2 for any data generating distribution. This implies that,

nλ ď n|Ωω |{2. (15)

Consequently, the asymptotic marginal likelihood is of the form

logP pv̄ | G,ω0q ´ penaltypGq, (16)

where,

penaltypGq ď |Ωω|{2, (17)

and is therefore milder than that in the usual BIC.

A.4 Path sampling and thermodynamic integration

Other techniques exist for approximating marginal likelihoods
ş

Ωω
P pv̄ | G,ωqdP pω | Gq.

One that is particularly relevant to our discussion and underlies the SWBIC is a method inspired by
ideas from path sampling and thermodynamic integration that introduces a distribution proportional

15



to the likelihood raised to a power β P r0, 1s times the prior, called the power posterior. The expected
marginal likelihood can then be expressed as an integral with respect to β from 0 to 1, where the
expectation is taken with respect to the power distribution at power t. This is useful because of the
properties of the value of the integrand at its end points β “ 0 to β “ 1. We describe the argument
briefly below and refer readers to [14] for more details.

Consider the integral of a power distribution defined as,

fpβq “

ż

Ωω

P pv̄ | G,ωqβdP pω | Gq. (18)

β is also called a temperature parameter. For β “ 1 this expression reduces to the marginal likelihood
and for β “ 0 we are simply integrating over the prior which is equal to 1. The key observation is
that by explicitly differentiating with respect to β it holds that,

d log fpβq

dβ
“

ş

Ωω
logP pv̄ | G,ωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

“ Eβ logP pv̄ | G,ωq, (19)

which can also be written as an expectation of the data log-likelihood with respect to the power
posterior distribution. By the mean value theorem for differentiable functions, there must exists some
temperature β˚ P r0, 1s such that,

d log fpβ˚q

dβ
“

logpfp1qq ´ logpfp0qq

1 ´ 0

“ log

ż

Ωω

P pv̄ | G,ωqdP pω | Gq, (20)

which is the logarithm of the marginal likelihood of interest. With knowledge of this optimal
temperature β˚ P r0, 1s we could approximate the log marginal likelihood by sampling from the
power posterior and approximating the expectation with Monte Carlo samples.

Watanabe’s main result in [44] is to show that asymptotically β˚ Ñ 1
logn which defines the SWBIC as

the following approximation to the log marginal likelihood,

SWBICpG, v̄q :“ ´Eβ logP pv̄ | G,ωq, (21)

Eβgpωq :“

ş

Ωω
gpωqP pv̄ | G,ωqβdP pω | Gq

ş

Ωω
P pv̄ | G,ωqβdP pω | Gq

, (22)

where β “ 1
logn . The accuracy of the approximation can be quantified explicitly and found in [44,

Thm. 4],

SWBICpG, v̄q “ ´ logP pv̄ | Gq ` Opp
a

log nq. (23)

An important observation here is that the prior is explicitly required for SWBIC whereas it is only
used implicitly in the BIC. The performance of WBIC can thus be sensitive to the prior (which is not
immediately problematic as it is a basic characteristic of Bayesian model choice which we adhere to
in this paper).
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B Proofs

We restate statements for convenience.

Prop. 1 restated. For any causal graph G, let M be an arbitrary SCM compatible with G. The
observational distribution P pV q induced by M could be parameterized as

P pv | ω,Gq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu, (24)

where θu :“ P pU “ uq defines exogenous probabilities of discrete variables U P U with cardinality
dU “

ˇ

ˇΩPapCpUqq

ˇ

ˇ; and each ξ
ppaV ,uV q

V is a deterministic mapping between finite domains ΩPaV
ˆ

ΩUV
ÞÑ ΩV .

Proof. This proposition appears in related formulations in [31] and [47]. For completeness we adapt
the proofs to our setting in this section.

We first introduce some necessary notations and concepts. The probability distribution for every
exogenous variables U Ă U is characterized with a probability space. It is frequently designated
xΩU ,FU , PU y where ΩU is a sample space containing all possible outcomes; FU is a σ-algebra
containing subsets of ΩU ; PU is a probability measure on FU normalized such that PU pΩU q “ 1.
Elements of FU are called events, which are closed under operations of set complement and unions
of countably many sets. By means of PU a real number PU pAq P r0, 1s is assigned to every event
A P FU ; it is called the probability of event A. For an arbitrary set of exogenous variables U ,
its realization U “ u is an element in the Cartesian product

Ś

UPU ΩU . We may be interested in
inferring whether a sequence of events A for every U P U occurs. Such an event is represented by a
subset

Ś

UPU AU Ď
Ś

UPU ΩU which in turn generate a product of σ-algebras
Â

UPU FU . Define
the product measure

Â

UPU PU to satisfy the following mutual independence condition given by the
definition of the SCM,

P

˜

ą

UPU

AU

¸

“
ź

UPU

PU pAU q. (25)

Such P is a probability measure. Moreover,
C

ą

UPUq

ΩU ,
â

UPU

FU ,
â

UPU

PU

G

, (26)

defines a product of probability spaces xΩU ,FU , PU y that describes measurable events over all
exogeneous variables U partitioned into c-components.

Let C be the collection of all c-components in G. c-components in C form a partition t
Ť

V PC UV |

C P Cu over exogenous variables U . Therefore, for every U P U , there must exist a unique
c-component denoted by CU containing U . For any c-component C P C, let UC “

Ť

V PC UV the
set of exogenous variables affecting (at least one of) endogenous variables in C. By the definition of
c-components, the exogeneous variables do not overlap between c-components and it holds that,

P

˜

č

UPU

AU

¸

“
ź

CPCpGq

PU

˜

č

UPC

AU

¸

.

For any SCM M compatible with the causal graph G the joint distribution may be factorized into
c-components [37],

P pvq “
ź

CPC
QrCspc,paCq,

where QrCs is a C-factor and is a function of pc,paCq. We often omit the input for readability.

To parameterize this joint distribution it is thus sufficient to look at each C-factor separately. Let C
be a generic c-component in G. Denote by m “ |UC | the number of exogeneous variables related to

17



C. For convenience, we consistently write xΩi,Fi, Piy as the probability space of i-th exogeneous
variable in C. The product of these probability spaces is thus written,

C

m
ą

i“1

Ωi,
m
â

i“1

Fi,
m
â

i“1

Pi

G

.

Each C-factor may thus be written,

QrCs “

ż

Śm
i“1 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“1

Pi.

Our goal is to show that all probabilities QrCs, induced by exogenous variables described by arbitrary
probability spaces could be produced by a “simpler” generative process with discrete exogenous
domains. QrCs defines a mapping between the space of possible realizations of the variables PapCq

to the r0, 1s interval. Since PapCq are discrete variables with finite domains, the cardinality of the
class of probability assignments that must be defined is also finite. It is given at most by the number
of possible combinations of realizations of PapCq which is given by

ś

V PPapCq |ΩV |.

Let P̄ be a vector representing probabilities QrCspc,paCq. Counting all possible combina-
tions of outcomes for all possible conditioning sets, P̄ is therefore a vector of at most size
d “

ś

V PPapCq |ΩV |. And since QrCspc,paCq is a probability mass function, it only takes a
vector with d ´ 1 dimensions to uniquely determine it. P̄ may thus be interpreted as a point in the
pd ´ 1q-dimensional real space. Similarly, pP, 1q is vector in d-dimensional space where the d-th
element is equal to 1.

Now consider sampling a value U1 “ u1 from the underlying SCM and let Qu1
be the probability

model with U1 “ u1.

Qu1
rCs “

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1

,

and P̄u1
is a pd ´ 1q-dimensional probability vector representing the probabilities of each one of the

combinations PapCq given that U1 “ u1. We will show that P1 may equally well be represented by
a discrete distribution. For this, let U “ tP̄u1

: u1 P Ω1u Ă Rd be the set of probability points that
can be constructed as u1 varies in Ω1. The average

ş

Ω1
P̄u1

dP1 is a convex mixture of points in U by
[32] that equals Q̄ since,

P̄ “

ż

Ω1

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1

dP1.

By construction, P̄ itself is a convex mixture of at most d ` 1 points in U . That is, by using
Carathéodory’s theorem [4],

P̄ “

d`1
ÿ

k“1

wkP̄u1,k
.

Replacing the definition of P̄u1,k
we obtain P̄ equal to,

d`1
ÿ

k“1

wk

«

ż

Śm
i“2 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“2

Pi

ff

U1“u1,k

.

This means that we can replace the continuous measure P1 with a discrete probability set with
outcomes tu1,1, . . . , u1,du and corresponding probabilities tw1, . . . , wdu with cardinality d and
obtain a probability model that is equivalent to the original P̄ . This procedure can be repeated for all
m exogeneous variables in the c-component C. We are thus left with a model,

QrCs “

ż

Śm
i“1 Ωi

ź

V PC

1tfV ppaV ,uV q “ vud
m
â

i“1

Pi,
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equivalent to its discrete counterpart,

QrCs “
ÿ

uPuc

ÿ

u“1,...,d

ź

V PC

1tfV ppaV ,uV q “ vu
ź

uPuc

P puq,

where d “
ś

V PPapCq |ΩV |.

This process may now be applied to each C-factor separately to obtain a parameterization for the
joint distribution P pvq given by,

P pvq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tfV ppaV ,uV q “ vu
ź

UPU

P puq,

where for every exogenous variable U P U , its cardinality dU “
ˇ

ˇΩPapCpUqq

ˇ

ˇ; for every endogenous
variable V P V , function fV is a mapping between finite domains ΩPAV

ˆΩUV
ÞÑ ΩV . Equivalently,

P pv | ω,Gq “
ÿ

UPU

ÿ

u“1,...,dU

ź

V PV

1tξ
ppaV ,uV q

V “ vu
ź

UPU

θu,

to stress the underlying parameterization.

Thm. 1 restated. In discrete SCMs parameterized by Prop. 1,

´ logP pv̄ | Gq “ ´ logP pv̄ | G,ω0q ` λG log n ` Opplog log nq, (27)

where ω0 is a set of parameters that produces the true distribution, and λG , called the learning
coefficient, is a rational number.

Proof. This result is a consequence on Watanabe’s asymptotic expansion of the marginal likelihood
[41, Thm. 1 ]. We prove that its conditions, also stated as [43, Definitions 6.1 and 6.3], apply to
singular models parameterized by Prop. 1. We require that,

1. The distributions in all candidate graphs share a common support and have densities with respect
to a dominating measure.

2. The parameter space Ωω is compact and defined by real analytic constraints.

3. The log-likelihood ratios of P pv̄ | ω0,Gq, the true parameter, with respect to the distributions
P pv̄ | ω,Gq can be bounded by a function that is square integrable under P pω | Gq and satisfy a
requirement of analyticity that allows for power series expansions in ω.

4. The prior distribution P pω | Gq has a density that is the product of a smooth positive function and
a non-negative analytic function.

For (1), in systems of latent variables paramterized by Prop. 1 both the latent and observed variables
are discrete and share a common support which is the set of all possible values that the variables
can take. In this case, local conditional distributions are discrete probability distributions and have a
density with respect to the counting measure.

For (2), the importance of compactness of the parameter space comes from the need to define
neighbourhoods around each value in the parameter space allowing for local analysis. The parameter
space pΩω,Ωξq is a subset of a finite-dimensional Euclidean space which is itself a compact set, and
therefore the parameter space is also compact and, specifically, it is closed and bounded.

For (3), note that in structural causal models defined by discretely-valued parameters, the correspond-
ing probability distribution over all variables can be represented as a discrete exponential family.
As some variables are latent, the joint probability distribution over observed variables corresponds
to a marginalization which might result in a singular submodel of an exponential family with a
non-invertible natural parameter function. For this class of systems, [9] showed that the sequence of
likelihood ratios P pv̄ | G1,ω0q{P pv̄ | G2,ω0q “ Opp1q for two causal graphs G1,G2.

For (4) the prior density P pω | Gq can be chosen by the investigator. For example, for the prior
Dirichlet distribution used to parameterize distributions of exogenous probabilities, it holds that the
probability density function is given by a product of gamma functions and a power function. The
product of gamma functions is a smooth positive function, and the power function is a non-negative
analytic function (depending on the value of concentration parameters).
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Assumption 1. If G1 is compatible with the data generating distribution P and G2 is not, then there
exists a scalar c12 ą 0 such that logP pv̄ | G1q ´ logP pv̄ | G2q ą c12n, with probability tending to
1 as n Ñ 8.

Assumption 2. Let causal graphs G1 and G2 be defined such that the set of distributions P1

compatible with G1 is included in the set of distributions P2 compatible with G2. Then, λG1
ă λG2

with probability tending to 1 as n Ñ 8, where λG1 , λG2 are the learning coefficients corresponding
to G1,G2 respectively.

Thm. 2 restated. Let P pv̄ | G,ωq be parameterized as in Prop. 1. Under Assumptions 1 and 2, with
probability tending to 1 as n Ñ 8,

1. (Soundness) If the family of distribution compatible with G1 includes P pV q but the family of
distributions compatible with G2 does not, SWBICpG1, v̄q ă SWBICpG2, v̄q.

2. (Parsimony) If the family of distributions compatible with G1 is included in that compatible with
G2 and both contain P pV q, SWBICpG1, v̄q ă SWBICpG2, v̄q.

Proof. For the soundness part, let G1 be compatible with a SCM that is able to generate the data
distribution P and assume G2 is not compatible with any SCM that is able to generate P . By
Prop. 1, the discrete parameterization of SCMs compatible with G1 and G2 is rich enough to define
a set of distributions that contains any distribution compatible with G1 and G2. By [44, Thm. 4],
for SWBICpG, v̄q defined by the proposed discrete parameterization it holds then that there exists a
constant c ą 0 such that,

SWBICpG, v̄q “ ´ logP pG | v̄q ` c
a

log n. (28)

with probability 1 as n Ñ 8.

Then, for constants c1, c2 ą 0,

SWBICpG1, v̄q ´ SWBICpG2, v̄q “ ´ logP pG | v̄q ` logP pG | v̄q ` pc1 ´ c2q
a

log n

“ ´ log
P pv̄ | G1qP pG1q

P pv̄q
` log

P pv̄ | G2qP pG2q

P pv̄q
` pc1 ´ c2q

a

log n,

“ ´ logP pv̄ | G1q ` logP pv̄ | G2q ´ logP pG1q ` logP pG2q ` pc1 ´ c2q
a

log n

“ ´c3n ` pc1 ´ c2q
a

log n ` c4,

with probability tending to 1 as n Ñ 8. c3 ą 0 is a constant corresponding to Assumption 1.
Therefore, with sufficiently large values of n, SWBICpG1, v̄q ă SWBICpG2, v̄q.

For the parsimony part, note that in structural causal models defined by discretely-valued parameters,
the likelihood function can be expressed as a singular submodel of an exponential family. Therefore,
for any two graphical models G1 and G2 that induce the data generating distribution, the sequence of
likelihood ratios P pv̄ | G1,ω0q{P pv̄ | G2,ω0q “ Opp1q [9].

Fix a data generating distribution. Let causal graphs G1 and G2 be defined such that the set of
distributions P1 compatible with G1 is included in the set of distributions P2 compatible with G2.
Given Assumption 2, SCMs inducing more probabilistic constraints are also less complex in this
sense, which yields λG1

ă λG2
.

Following a similar decomposition of the SWBIC together with Thm. 1,

SWBICpG1, v̄q ´ SWBICpG2, v̄q

“ ´ logP pG | v̄q ` logP pG | v̄q ` pc1 ´ c2q
a

log n

“ ´ logP pv̄ | G1q ` logP pv̄ | G2q ` pc1 ´ c2q
a

log n ` c3

“ ´ logP pv̄ | G1,ω0q ` logP pv̄ | G1,ω0q ` λG1 log n ´ λG2 log n ` pc1 ´ c2q
a

log n ` c3

“ pλG1
´ λG2

q log n ` pc1 ´ c2q
a

log n ` c3 ` c4

asymptotically with probability tending to 1, where c1, c2, c3, c4 ą 0 are constants. For sufficiently
large n, therefore, SWBICpG1, v̄q ă SWBICpG2, v̄q.
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Prop. 2 restated. Under the assumption of extended faithfulness, as n Ñ 8, SWBICpG, v̄q distin-
guishes between candidate causal graphs differing on a (in)equality constraint between margins of
P pV q with probability 1.

Proof. For a contradiction, assume that SWBICpG, v̄q does not distinguish between two graphs, G1

and G2 that differ on a (in)equality constraint. By Prop. 1, the family of observational distributions
defined by discrete parameterizations of SCMs will be different for G1 and G2. Thus also the scores
SWBICpG, v̄q must be different if SWBICpG, v̄q is sound and parsimonious. This is a contradiction of
Thm. 2.

Prop. 3 restated. Let P pV q and G be the joint distribution and causal graph implied by an SCM
parameterized by curved exponential models. Then, asymptotically,

SWBICpG, v̄q “ SBICpG, v̄q ` Opp1q.

Proof. The proof can be found in [44, Eq. (32)].

Prop. 4 restated. SWBIC is decomposable.

Proof. We use the concept of C-factors. Following [37], for any C Ď V , we define function
QrCspvq “ P pc | dopvzcqq. For convenience, we omit input v and write QrCs. In particular,
Qrvs “ P pP pv | G,ωqq if parameterized by ω, and any QrCs is a function of C and its parents
PapCq. Recall that SWBIC is defined as,

SWBICpG,vq :“ ´

ş

Ωω
logP pv | G,ωqP pv | G,ωqβdP pω | Gq

ş

Ωω
P pv | G,ωqβdP pω | Gq

,

which can be re-written as

SWBICpG,vq :“ ´

ş

Ωω
logpQrvsqQrvsβdP pω | Gq
ş

Ωω
QrvsβdP pω | Gq

,

in terms of C-factors, where the dependence of Q on ω is implicit. Let Ci denote the set of
endogenous variables contained in the i-th c-component, i “ 1, . . . ,m. Following [37], the likelihood
can then be decomposed in terms of C-factors associated to c-components in the graph,

P pv | ω,Gq “

m
ź

i“1

QrCis. (29)

Notice that the parameter space is similarly partitioned across C-factors as each exogenous variable
is associated to a single c-component. Let ωi P Ωi be the parameters that define the probability of
exogenous variables in c-component Ci and functional assignments of endogeneous variables in
c-component Ci. SWBIC may then be written as a sum of integrals, where the numerator takes the
form,

´
ÿ

i

ż

Śm
j“1 Ωj

logQrCis ˆ

m
ź

j“1

QrCjsβd
m
â

j“1

P pωj | Gq.

With the assumption that the prior on ω factors similarly across c-components, all terms that corre-
spond to c-components other than Ci can be taken out of the integral with respect to Ωi and cancel
with equal integrals of the denominator of the definition of SWBIC. Thus,

SWBIC “

m
ÿ

i“1

´
ş

Ωi
logpQrCisqQrCis

βdP pωi | Gq
ş

Ωi
QrCis

βdP pωi | Gq
,

which we recognise as SWBICpGPapCiq,vPapCiqq where GPapCiq and vPapCiq denote the subgraph
and data, respectively, with restriction to the variables in PapCiq Ď V .

Prop. 5 restated. SWBIC is score equivalent.

Proof. SWBIC is defined based on model likelihoods and parameter priors. Under assumptions 1
and 2. If the prior probability of two graphical models are equal and they encode exactly the same
probabilistic constraints that the likelihoods are equal up to constant terms and thus also the values of
SWBIC are equal up to constant terms asymptotically.
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(c) Unconstrained
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Figure 5: Graphs used in Sec. 3.

Figure 6: GSachs and GLung .

C Experimental and implementation details

In this section we give details of the data generating mechanisms for the synthetic simulations and
real data.

The graphs used in Sec. 3 are given in Fig. 5.

Sachs data is downloaded with the discretization procedure of [17], with 3 levels, from the bnlearn
data repository. The corresponding graph is given in Fig. 6.

The lung cancer data is downloaded from the bnlearn data repository. The corresponding graph is
given in Fig. 6.

Algorithm 1 Hill climbing greedy search

Input: A dataset v̄, a score function S.
Output: The graph G˚ that maximizes the score.
Initialize: Set G˚ to the empty graph and compute S on G˚, denoted SpG˚q.
1. While SpG˚q decreases, for every possible edge addition, deletion or modification that

does not prevent acyclicity.
(a) Let G be the updated graph.
(b) If SpGq ă SpG˚q then set G˚ “ G.

2. Tabu list. Repeat step 1 but choose the graph G with highest score that has not been
considered in the last steps.

3. Random restart. Repeat step 1 a fixed number of times by adding or removing multiple
random edges to G˚.

C.1 Implementation details

All experiments were run on a 3.2 GHz M1 Apple processor with 8 cores under 16-GB memory limit.

We use a standard Hill climbing greedy search implementation that is given in Alg. 1. The greedy
search starts from an empty graph and proceeds iteratively. At each stage, SWBIC evaluates neighbour-
ing graphs by considering every pair of variables to which one can remove, change, or add a directed
or bi-directed edge, or expand a bi-directed edge denoting an unobserved confounder to have three or
more children, without violating the acyclicity constraint. In each step of the search, all the graphs
that occur with single changes of the current graph are considered. One only needs to recompute
the scores of c-components that are affected by the change. The algorithm terminates whenever no
change can be found that improves the score. Note that greedy search in the space of arbitrary graphs,
even with an oracle scoring method is not known to converge to a globally optimal graph, and may
get stuck in local optima.

22



C.2 Example parameterization and MCMC

In this example, we show how to compute all steps of the MCMC for a specific graph and joint
distribution of data. We consider the IV graph presented in Fig. 1a.

The parameterization of the joint distribution is given by

P pz, x, yq “
ÿ

uxy,uz

1tξ
px,uxyq

Y “ yu1tξ
pz,uxyq

X “ xu1tξ
puzq

Z “ zuθuxy
θuz

where e.g. ξpx,uxyq

Y represents the causal assignment of Y given its observed and latent parents and
θuxy

represents the exogenous probability P pUXY “ uxyq. To compute SWBIC we approximate the
power posterior of all relevant parameters, that is ξ,θ,u given v̄, with a metropolis step.

1. Sampling from P pu
pnq
xy , u

pnq
z | v̄, ξ,θq. The complete conditional can be derived following the

functional dependencies in the underlying SCM given by the causal graph,

P pupnq
xy , upnq

z | v̄, ξ,θq “ P pupnq
xy , upnq

z | vpnq, ξ,θq

9 P pupnq
xy , upnq

z ,vpnq | ξ,θq

“ P pypnq | xpnq, upnq
xy qP pxpnq | zpnq, upnq

xy qP pzpnq | upnq
z qP pupnq

z qP pupnq
xy q

“ 1tξ
pxpnq,uxyq

Y “ ypnqu1tξ
pzpnq,upnq

xy q

X “ xpnqu1tξ
pupnq

z q

Z “ pzpnquθ
u

pnq
xy

θ
u

pnq
z

,

where we have replaced the probabilities with the corresponding parameters that are used to define
them. Let ū denote n instantiations of latent variables sampled according to the probabilities
above.

2. Sampling from deterministic causal mechanisms. We consider P pξ
px,uxyq

Y | v̄, ū,θq for illustration
as other parameters are sampled similarly. For fixed x, uxy, parameter ξ

px,uxyq

Y is mutually
independent of any other parameter in ξ given v̄, ū,θ and can be sampled separately. Recall
that by definition of the underlying SCM ξ

px,uxyq

Y represent a deterministic mapping between
inputs x, uxy and output y P ΩY . The value ξ

px,z,uxyq

Y P ΩY is therefore implicitly determined
by the current values v̄, ū: if there exists a tuple pxpnq “ x, u

pnq
xy “ uxy, y

pnq “ yq for some
n “ 1 . . . , N , then by definition ξ

px,uxyq

Y :“ y with probability 1. If no such tuple exist, then
ξ

px,z,uxyq

Y is sampled from its domain ΩY with proposal probability q “ tqy : y P ΩY u that are
uniformly updated in a small neighbourhood of the previous parameter value.

3. Sampling from P pθuxy
| v̄, ū,θq. The conditional distribution over θuxy

given v̄, ū is given
by a Dirichlet distribution θU | v̄, ū „ Dir pβ1, . . . , βdU

q where βj :“ αj ` cj where cj
is updated in each iteration of the sampler using a uniform proposal distribution, e.g. cj „

Uniformpcj ´ ϵ, cj ` ϵq and ϵ ą 0 a small scalar.

This process eventually forms a chain of samples from the correct posterior distribution of each
parameter. At this stage, we record the current t ` 1-th sample pξpt`1q,θpt`1qq with an acceptance
ratio given by P pξpt`1q,θpt`1q | v̄,Gqβ{P pξptq,θptq | v̄,Gqβ where,

P pξ,θ | v̄,Gqβ exp t´β logP pv̄ | ξ,θ,Gq ` logP pξ,θ|Gqu ,

where P pv̄ | ξ,θ,Gq evaluates to,
n
ź

i“1

ÿ

uxy,uz

1tξ
pxpiq,uxyq

Y “ ypiqu1tξ
pzpiq,uxyq

X “ xpiqu1tξ
puz

Z “ zpiquθuxy
θuz

,

And finally, we approximate SWBIC with MCMC samples,

ŜWBICpG, v̄q :“ ´
1

T

T
ÿ

t“1

logP pv̄ | G, ξptq,θptqq.
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(a) Verma vs Equivalent 1. (b) Verma vs Unconst. (c) Verma vs DAG. (d) Verma vs Equivalent 2.

Figure 7: Quality of scores. The horizontal gray line indicates the theoretical optimum.

W X Y Z

(a) Equivalent 1.

W X Y Z

(b) Unconstrained.

W X Y Z

(c) DAG.

W X Y Z

(d) Equivalent 2

Figure 8: Graphs used in Appendix D.1.

D Additional experiments

This section provides additional experiments to illustrate score consistency in the presence of equality
constraints, score decomposability, an an illustration of the expressiveness of discrete SCMs, and an
empirical run time analysis of the proposed score.

D.1 Scores on variations of the Verma graph

We consider variations of the Verma graph (Fig. 1c) given in Fig. 8. The task is to score these
variations, and compare them to scores of the ground truth IV graph, based data generated from
different random SCMs M “ xV ,U ,F , P y compatible with ground truth graph.

Comparisons between Verma graphs and its variations emphasize the trends observed in the main
body of this paper. For instance, we highlight Fig. 7a that considers an equivalent graph that adds
a bi-directed edge W L9999K X to the Verma graph in Fig. 1c, and results in a model with more
edges and parameters which has worse SBIC1 ,SBIC2 scores even though defining the same model for
P pV q. Figs. 7b and 7c both consider unconstrained variations of the Verma graph with more edges
(but Fig. 7c fewer parameters) and Fig. 7d considers an equivalent graph with the same number of
edges but more parameters which results in the expected scoring pattern observed in Figs. 7b to 7d.
We conclude with the observation that empirically, across variations of different graphs and sample
sizes, SWBIC correctly scores graphs based on (in)equality constraints and appreciates equivalence in
the space of distributions P pV q induced by graphs even if those have differing number of edges or
parameters.

D.2 Illustration of score consistency and equivalence

We consider in this subsection additional experiments to illustrate the consistency of our score in
systems that differ on an (in)equality constraint but also more exotic constraints that have been studied
in the literature.

Our results are summarized in Table 1, itself sub-divided into 3 sections. Each section involves data
sampled from a different SCM shown in the row labeled "✓" that is to be compared in terms of
SWBIC and SBIC with alternative (erroneous "ˆ") causal graphs. In particular, the Verma graph in
the first row specifies an equality constraint over P pvq that is violated in the second graph. The
graph in the third row is unconstrained, i.e. compatible with any probability distribution P px, y, zq.
We generate data in a manner that P px “ y “ zq “ P puq „ Bernoullip0.5q chosen because it
cannot be generated by the triple bi-directed graph in the fourth row, see e.g. [45], while both models
specify exactly the same constraints otherwise. The last section of Table 1 considers data from the
IV graph that encodes an inequality constraint in P px, y, zq. The last two graphs are compatible
with any distribution P px, y, zq which we include here to demonstrate that SWBIC gives the same
score to equivalent graphs. We observe that in all examples, SWBIC gives a lower score to the correct
graph, illustrating empirically that the proposed score is able to leverage (in)equality as well as more
general constraints to correctly infer the correct graph. This is not the case for SBIC1

, especially
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in comparisons to the IV example where the free parameter count does not reflect the asymptotic
complexity P pv | Gq.

Graph SWBIC SBIC1 True Graph?

2770.8 2707.7 ✓

2778.7 2709.0 ˆ

697.7 709.9 ✓

1293.2 1453.3 ˆ

1557.7 1570.8 ✓

1559.8 1578.4 ˆ

1559.7 1564.2 ˆ

Table 1: SWBIC on graphs imposing different constraints on data. Lower values indicate a better fit.

D.3 Illustration of score decomposability and equivalence

We consider in this subsection additional experiments to illustrate the decomposability features of the
score

Table 2 exemplifies these facts by showing that scores of separate c-components can be added to
generate a total score, that equivalent graphs have equivalent scores, and that incorrectly adding or
removing statistical independencies worsens the score due to the worse fit of the resulting graph to
the data generating distribution.

Graph SWBIC Interpretation

3426.1 Data generating graph G

1388.1 c-component of G

2038.3 c-component of G

3426.4 Equivalent graph to G

3431.0 G with incorrect dependence

4167.9 G with incorrect independence

Table 2: Examples of decomposition, equivalence, and consistency.

D.4 Collider graph to illustrate upperbound on cardinality of exogenous

We use the graph illustrated in Table 3 to show that the upperbound on the dimensionality of
exogenous variables in an observational equivalent discrete SCM correctly encodes the required
complexity to generate the class of observational distributions implied by the underlying SCM
(with continuously-valued exogeneous variables). Data is generated according to the graph with the
following parameterization: x Ð 1tux ą 0u, y Ð 1tx ą 0.5,´0.5 ă uyz ă 1u, z Ð 1tuyz ą 0u.

Observe that for parameterizations of the likelihood given by the upper-bound in Prop. 1, i.e.
|ΩUyz

| “ |ΩX | ¨ |ΩY | ¨ |ΩZ | “ 8, SWBIC reports a score of 2003 which is the same as that given
for any model with a larger dimensionality of exogeneous variables but that the score worsens for
models with a dimensionality |ΩUyz | “ 4 for example, with score 2033. Prop. 1 only specifies
an upper-bound to the dimensionality of exogeneous variables such that we are able to reproduce
any observational distribution given by the continuous SCM but these may be over-parameterized
as can be seen by computing SWBIC for a model with |ΩUyz | “ 6 that, it turns out, is expressive
enough to encode the observed data distribution. The score SWBIC penalizes based on the effective
dimensionality of the parameter space and is thus insensitive to increasing the dimensionality of
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Figure 9: Run time experiments.

exogenous variables if this does not change the family of distributions that such a parameterization
induces.

Graph |ΩUY Z
| SWBIC

8 2003.2

10 2003.4

6 2003.2

4 2033.4

Table 3: Varying the dimensionality of uY Z .

D.5 Run time performance

This section describes the run time complexity (run here for illustration on a standard 3.2 GHz M1
Apple processor with 8 cores under 16-GB memory limit) of scoring causal graphs with SWBIC,SBIC1

and SBIC2
as a function of the number of parameters that define the underlying model and as a

function of the number of samples. Fig. 9 (LHS) gives the time in seconds on this machine needed to
score a graph G “ tX Ñ Y,X Ø Y u in which we set the cardinality of X and Y to 4, 5, 7, 9 which
results in a total of 96, 175, 441, 891 parameters. We use a sample size of 1000 and 5000 iterations
of the MCMC sampler. Fig. 9 (RHS) gives the time in seconds on this machine needed to score a
graph G “ tX Ñ Y,X L9999K Y u with X and Y of cardinality 3 with increasing sample size and
5000 iterations of the MCMC sampler. Due to the decomposable nature of the proposed score all
relevant c-components may be scored in parallel.
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