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Abstract
Causal contributions measure the strengths of dif-
ferent causes to a target quantity. Understanding
causal contributions is important in empirical sci-
ences and data-driven disciplines since it allows to
answer practical questions such as “what are the
contributions of each cause to the effect?” In this
paper, we develop a principled method for quan-
tifying causal contributions. First, we provide
desiderata in terms of axioms that causal contri-
bution measures should satisfy and propose the
do-Shapley values (inspired by do-interventions
(Pearl, 2000)) as a method satisfying these proper-
ties. Next, we develop a criterion under which the
do-Shapley values can be efficiently inferred from
non-experimental data. Finally, we introduce do-
Shapley estimators exhibiting consistency and sta-
tistical robustness. Simulation results corroborate
with the proposed theory.

1. Introduction
Inferring causal effects is a fundamental problem through-
out the data sciences since it can answer queries like “what
would be the expected outcome if inputs had been fixed to
certain values?”. There is a growing literature that investi-
gates the conditions under which causal conclusions can be
drawn from observational and experimental data (causal ef-
fect identification) (Pearl, 1995; Tian & Pearl, 2003; Huang
& Valtorta, 2006; Shpitser & Pearl, 2006; Bareinboim &
Pearl, 2012; 2016; Jaber et al., 2018; Lee et al., 2019; 2020;
Lee & Bareinboim, 2020), and in estimating the identified
causal functions from data (causal effect estimation) (Jung
et al., 2020; Bhattacharya et al., 2020; Jung et al., 2021a;b;
Bhattacharyya et al., 2020; 2021; Xia et al., 2021). Beyond
these tasks, interpreting the results of causal inference, in-
cluding answering “what is the most important cause of the
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effects?”, or more generally, “what are the contributions of
each cause to the effect?” are also of practical importance.
Answering these queries falls under the task of measuring
causal contributions, which aims to quantify the degree of
contribution of different causes to a target effect. As a moti-
vational example, consider the following scenario described
in (Lundberg, 2021):

Example 1. A video streaming service company has col-
lected data that contains various features including sales
call (S), product needs (P ), interaction with customers (I),
monthly usage (M), discounts provided (D), last upgrade
(L), economic factors (E), ad spend (A), and bugs reported
(B). These features are causally related and affect the out-
come: customers retention (Y ) (also, for further details, see
Fig. 1). The company aims to measure the causal contri-
butions of these features to the target effect – the expected
customer retention if each feature had been fixed to a certain
value (e.g., set to lower sales calls, higher product needs,
etc.).

Example 1 captures practical cases where the target quantity
is related to the query ‘what would be the output if inputs had
been fixed to certain values?’ This includes cases where the
target quantity is a machine learning (ML) model’s output,
which is derived by fixing inputs to specific values (see
Remark 1).

In the area of explainable AI (XAI), there is a series of works
concerned with measuring the contributions of features to
an ML model output (Lundberg & Lee, 2017; Schwab &
Karlen, 2019; Janzing et al., 2020b; Heskes et al., 2020;
Covert et al., 2021). Most of these methods have focused on
queries where the target quantity is induced from an acces-
sible model – a model for target Y is said to be accessible
if the model can be evaluated to obtain Y value for arbi-
trary input features – with less attention has been paid to
settings where the target is induced by nature (i.e., the data-
generating process is inaccessible, such as the customer
retention in Example 1). Also, many existing techniques are
based on the correlation between the features and the ML
model output, including, (Lundberg & Lee, 2017; Frye et al.,
2020) to cite a few. Another thread of this approach focused
on measuring contributions based on causation (Schwab &
Karlen, 2019; Janzing et al., 2020b; Heskes et al., 2020),
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but often assumes that the data generating process for the
target is known and accessible, allowing that an outcome
corresponding to any arbitrary features can be generated.
This rules out scenarios where the target quantity is induced
from an inaccessible model (such as Example 1). A more
detailed comparison with the existing literature is presented
in Sec. 3.1.

In this paper, we generalize previous approaches to measure
the causal contributions of each feature to a target effect
induced by an inaccessible model and described by a joint
interventional distribution. Our proposed method is applica-
ble to the task of quantifying causal contributions of input
features of an ML model prediction as well. More specifi-
cally, our contributions are as follows:

1. [Sec. 3] We axiomatize causal contribution measures.
Specifically, we propose desiderata for causal contribution
measures (a set of axioms), and introduce the do-Shapley,
a Shapley value-based method (Shapley, 1953) specialized
for quantifying the causal contributions described by do-
interventions (Pearl, 2000).1 Our axiomatic characterization
provides a theoretical justification for using the do-Shapley
for quantifying causal contributions.

2. [Sec. 4] We provide conditions under which the do-
Shapley values can be inferred from observational data
(identifiability) in polynomial time. Even if verifying the
identifiability can be done through existing causal-effect
identification results, determining the identifiability of do-
Shapley values is, in practice, not computationally feasi-
ble. In particular, we introduce sufficient conditions under
which the identifiability of do-Shapley values is determined
in polynomial time.

3. [Sec. 5] We develop estimators for the do-Shapley
values, exhibiting consistency, identifiability, and statistical
robustness. We developed three estimators based on the
inverse probability weighting (IPW) (Rosenbaum & Rubin,
1983), outcome regression (REG) (Rubin, 1979), and dou-
ble/debiased machine learning (DML) (Chernozhukov et al.,
2018), respectively. We also show that the DML estimator
displays statistical robustness to model misspecification and
bias.

4. [Sec. 6]. Finally, we present simulation results on
these estimators that corroborate with the theory.

Due to space constraints, the proofs and other omitted details
are provided in the appendix.

1The do-Shapley is a generalization of the causal Shapley
(Heskes et al., 2020), which also uses the do-interventions to the
case where the target quantity is induced by an inaccessible model.
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Figure 1: Causal graph for Example 1 (Lundberg, 2021).

2. Preliminaries
Notation. Each variable is represented with a capital letter
(V ) and its realized value with a small letter (v). We use bold
letters V and v to denote a set of variables and their realized
value, respectively. For any set S, we use |S| to denote its
cardinality. Given a topological order ≺ over the vertices
V := {V1, . . . , Vn} of a graph G, we will use pre(Vi) to
denote the predecessors of Vi and use pre(vi) to denote a
realization of pre(Vi); i.e., pre(vi) = wi for pre(Vi) = Wi.
We use Ch(Vi) to represent the children of a variable Vi in
G. For an index set [n] := {1, · · · , n} and a subset S ⊆ [n],
we use VS := {Vk}k∈S and VS := {Vk}k ̸∈S . We use D
to denote N samples from a distribution P over V; i.e.,
D := {V(i)}Ni=1 ∼ P , where V(i) denotes the ith sample.
For a function f , we use E [f(V)] as an expectation of f(V)

over P , and ED [f(V)] := (1/N)
∑N

i=1 f(V(i)). We use
∥f(V)∥ :=

√
E [(f(V))2] to denote the L2(P ) norm of

f(V). OP (·) and oP (·) denotes the big O and little O in
probability, respectively.

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl, 2000). A structural causal model (SCM) is
a tuple M := ⟨V,U,F, P (u)⟩, where V,U are sets of
endogenous (observables) and exogenous variables (latents)
respectively, F is a set of functions fVi

one for each Vi ∈ V
where Vi ← fVi

(PAVi
, UVi

) for some PAVi
⊆ V and

UVi
⊆ U, and P (u) is a strictly positive probability mea-

sure for U. Each SCM M is associated to a causal dia-
gram G over the node set V where Vi → Vj if Vi is an
argument of fVj , and Vi ↔ Vj if the corresponding UVi

and UVj
are not independent. Performing an intervention

X = x is represented through the do-operator, do(X = x)
(shortly, do(x)), which encodes the operation of replacing
the original equations of X by the constant x in the SCM
M, inducing a submodelMx and an interventional distribu-
tion P (V = v|do(x)) (shortly, P (v|do(x))) (Bareinboim
et al., 2020).

Causal Effect Identification. Given a causal graph G
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over V, an effect P (y|do(x)) where X,Y ⊆ V is iden-
tifiable if P (y|do(x)) is computable from the distribu-
tion P (v) in any SCM M that induces G (Pearl, 2000,
p. 77). One key notion for identification is confounded
components (in short, C-components): a set of nodes con-
nected with a path composed solely of bi-directed edges
Vi ↔ Vj (Tian & Pearl, 2003). For any C ⊆ V, the quan-
tity Q [C] := P (c|do(v\c)), called a C-factor (Tian &
Pearl, 2003), is defined as an interventional distribution of
C under an intervention on V\C. We use C(Vi)G (shortly,
C(Vi)) to denote the C-component of Vi in G, the set of
variables belonging to the same C-component as Vi. We
use C(W) :=

⋃
Vi∈W C(Vi) to denote the C-component

of a set W ⊆ V.

Shapley Value. The Shapley value (Shapley, 1953) seeks
to allocate the contribution of each player i ∈ [n] on some
function value f([n]) given a value function ν(S) that mea-
sures the value of coalition of players i ∈ S ⊆ [n]. The
Shapley value is given by

ϕi(ν) :=
∑

S⊆[n]\{i}

ω(S) {ν(S ∪ {i})− ν(S)} , (1)

where ω(S) := 1
n

(
n−1
|S|

)−1
. The Shapley value is uniquely

satisfying a set of some desiderata for fair allocation (Young,
1985) (See Appendix A for more details).

2.1. Problem Definition

We are given samplesD drawn from a distribution P := PM
and a compatible causal diagram G := GM, induced by
the SCM M, on topologically ordered variables (V, Y ),
with Y the final variable in the order. We assume that Y is
bounded, and V is a set of discrete variables.

Given (G,D,v) where v is a realization of V, the task is
to measure the contribution of each vi ∈ v to the target
causal effect2 E[Y |do(v)] based on their impact on Y if
the SCMM has fixed the value of the variable as Vi = vi.
We set E [Y ] = 0 without loss of generality. We make no
assumptions regarding the data generating process of Y for
generality. With the following additional assumption on f ,
our problem is reduced to the problem of attributing the
importance of features in an ML prediction model:

Remark 1 (Reduction to ML models). If Y is generated
by a deterministic function, e.g., Y is an output of an ML
prediction model f s.t. Y := f(V), then our task reduces to
measuring the causal contribution of each features vi ∈ v

2We focus on the average causal effect E[Y |do(v)], one of the
most commonly used quantities in practice. Our method is appli-
cable for any function of the causal distribution P (y|do(v)). A
condition whether the target quantity E[Y |do(v)] (or P (y|do(v)))
can be determined using non-experimental data is discussed in
Sec. 4.

on the ML prediction f(v), since E[Y |do(v)] = f(v), the
deterministic function.

3. Axioms for Causal Contribution
We start by asking the question: “What would be a good
measure for causal contribution?” To answer this question,
we propose the following desiderata inspired by previous
works (Young, 1985; Friedman & Moulin, 1999; Sundarara-
jan et al., 2017; Sundararajan & Najmi, 2020):

Axiom 1 (Desiderata for Causal Contribution). Causal
contributions {ϕvi}ni=1 is considered desirable if the follow-
ing properties are satisfied:

1. Perfect assignment: The contributions are perfectly
assigned; formally, E[Y |do(v)] =

∑
vi∈v ϕvi .

2. Causal irrelevance: If Vi is causally irrelevant to Y for
all witness w ⊆ v\{vi}; formally, ∀y, P (y|do(vi,w)) =
P (y|do(w)))3, then ϕvi = 0.

3. Causal symmetry: If (vi, vj) ∈ v have the same
causal explanatory power4 to Y , ∀w ⊆ v\{vi, vj} (∀y,
P (y|do(vi,w))=P (y|do(vj ,w))), then ϕvi =ϕvj .

4. Causal approximation: For any S ⊆ [n]
and vS := {vi}i∈S ,

∑
i∈S ϕvi well approximates

E[Y |do(vS)]. Formally, {ϕvi}ni=1 is a solution to
the following weighted least square; i.e., {ϕvi}ni=1 =
argmin{ϕ′

vi
}n
i=1

∑
S⊆[n](E[Y |do(vS)]−

∑
i∈S ϕ′

vi)
2ω(S)

for some positive and bounded function ω(S).

The rationale behind Axioms 1 is the following: (1) Per-
fect assignment is a natural requirement since we aim to
attribute the degree of contributions of each feature vi ∈ v
to the target causal effect. (2) Causal irrelevance reflects
a desire to understand the cause of the outcome by forcing
zero contributions for variables not causing the outcome. (3)
Causal symmetry enforces the equal contribution for a pair
of features if they have the same causal explanatory power.
(4) Causal approximation allows ϕvi to be interpreted as
a proxy for the causal effect s.t.

∑
i∈S ϕvi ≈ E[Y |do(vS)]

for any S ⊆ [n].

Perhaps surprisingly, there is a unique causal contribution
measure {ϕvi

} satisfying the above four properties.
Definition 1 (do-Shapley). The do-Shapley5 is a causal
contribution measure {ϕvi}ni=1 of v on E[Y |do(v)] w.r.t. G

3Vi is causally irrelevant to Y given VS if P (y|do(vi,vS))=
P (y|do(vS)) (Galles & Pearl, 1997, Def. 7).

4A causal explanatory power of X = x to Y = y is a measure
of making Y = y ‘more likely’ if X had been fixed to x; i.e.,
P (y|do(x))− P (y) (Eva & Stern, 2019).

5Heskes et al. (2020) proposed the same equation for measuring
contributions in the accessible model setting and referred to as the
causal Shapley. In this paper, we use the term do-Shapley to make
it clearer that the definition is based on the do-intervention.
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defined as:

ϕvi
:=

∑
S⊆[n]\{i}

ω(S){E[Y |do(vS,i)]− E[Y |do(vS)]}, (2)

where ω(S) := (1/n)
(
n−1
|S|

)−1
.

Theorem 1 (Uniqueness of the do-Shapley). The do-
Shapley is a unique causal contribution measure satisfying
all the properties in Axiom 1.

Remark 2. Thm. 1 is significant because Axiom 1 do not
restrict the value function to any fixed form. Thm. 1 instead
characterizes the do-Shapley as the unique causal contribu-
tion measure satisfying Axiom 1 among any arbitrary value
functions and corresponding contribution measures, as in
(Sundararajan & Najmi, 2020).

The do-Shapley, as the name suggests, is a specialization
of the Shapley value in Eq. (1) for ν(S) = E[Y |do(vS)].
The do-Shapley can be alternatively viewed as a marginal
causal effect of vi ∈ v (i.e., E[Y |do(vS,i)]−E[Y |do(vS)])
weighted-averaging over a set S. The significance of Thm. 1
stems from that it codifies the guarantees of the do-Shapley,
and provides a tool to compare and contrast with alternative
contribution metrics.

Remark 3 (Attribution of contributions for a subset of
variables). It is worth noting that the do-Shapley allocates
contributions to all vi ∈ v from a joint interventional distri-
bution. In practice, assigning contributions exclusively to
a subset x ⊆ v may lead to more interpretable results. For
example, when X := Pa(Y ) ⊊ V, assigning contributions
only to the features in x ⊆ v might be more interpretable
if it is needed that features indirectly affecting the outcome
should be assigned zero contributions. Enforcing the do-
Shapley to assign contributions only for the subset x can
be simply done (without loss of generality) by the follow-
ing procedure: (1) Derive a causal graph G[X] compatible
with P (x) by applying the projection of a graph6; and (2)
Compute the do-Shapley w.r.t. G[X]. See Appendix B for
more details.

3.1. Relation with Other Work

In this section, we compare the do-Shapley in Def. 1 with
other known methods aiming to measure contributions of
features on the outcome. Table 1 summarizes the compari-
son.

Conditional Shapley. The conditional Shapley (ϕcond
vi ) is a

specialization of the Shapley value with ν(S) = E [Y |vS ]

6G[X] is constructed as follow: For any Vi, Vj ∈ X, (1) add a
directed edge Vi → Vj in G[X] if there exists a directed path from
Vi to Vj in G such that every vertex on the path is not in X; (2)
add a bidirected edge Vi ↔ Vj in G[X] if there exists a divergent
path between Vi and Vj in G such that every vertex on the path is
not in X (Tian & Pearl, 2003).

Causality Inaccessibility Axioms
Conditional ✗ ✓ ✗

Marginal ✓ ✗ ✓
Causal ✓ ✗ ✓

ICC ✓ ✓ ✗

do-Shapley ✓ ✓ ✓

Table 1: Summary of comparisons of the conditional,
marginal, causal Shapley values, and the ICC with our
method (do-Shapley) w.r.t. consideration of causality, ca-
pability in handling outcomes induced by an inaccessible
model (e.g., Example 1), and having justification from ax-
ioms.

(Lundberg & Lee, 2017; Frye et al., 2020). The conditional
Shapley measures contributions based on associations rather
than causation. In general, the conditional Shapley doesn’t
match with the do-Shapley; The causal irrelevance property
doesn’t hold in the conditional Shapley (see Example C.1).

Marginal Shapley. The marginal Shapley is another widely
used contribution measure in the XAI in which the target
variable is a model prediction Y = f(V), where f is a deter-
ministic (refer Remark 1) and accessible prediction model.
The marginal Shapley is a specialization of the Shapley
value with ν(S) = E [f(vS ,VS)] (Janzing et al., 2020b).
The marginal Shapley is known to satisfy certain desiderata
in attributing the feature importance (Sundararajan & Najmi,
2020). With access to the model f , and a particular graphi-
cal assumption that features are not causally affecting each
other, the marginal Shapley matches with the do-Shapley
(Janzing et al., 2019, Eq. (14)). In general settings where
features are causally related as in Example 1, the marginal
Shapley doesn’t match with the do-Shapley.

Causal Shapley. The causal Shapley (Heskes et al., 2020) is
most closely related to the do-Shapley. Specifically, (Heskes
et al., 2020) proposed the same equation as the do-Shapley
proposed here for measuring the contributions when the
outputs are generated by the accessible models, and the
graph is unknown (only a partial topological ordering of
the graph is known). While the do-Shapley doesn’t have
a restriction that the output is induced by the accessible
models and is defined specifically on causal with bidirected
edges induced by SCM M (See Sec. 2) for which rich
theories on causal effect identification and estimation are
available.

Intrinsic Causal Contribution (ICC). Janzing et al.
(2020b) proposed a new method called Intrinsic Causal
Contribution (ICC) (ϕicc

vi ) to measure the causal contribu-
tion under the setting where the causal graph is Markovian,
and the structural functions are invertible in the sense that
the noise values can be reconstructed from the observations.
The ICC relies on so-called a structure-based intervention,
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which intervenes to features while keeping a causal structure
and a joint distribution unaffected, to measure the contri-
bution of Vi on Y . By doing so, the ICC can measure the
contribution of Vi on Y that is not via upstream variables.
However, there is no axiomatic characterization of the ICC
to the best of our knowledge. It is easy to show that ICC
does not satisfy the causal symmetry property (see Exam-
ple C.2).

Other Contribution Measures. Wang et al. (2021a) fo-
cused on measuring the relevance of paths in a causal graph
to a target node, whereas Singal et al. (2021) provided a re-
cursive approach to capture the flow of importance through
the graph. The causal influence defined in Janzing et al.
(2013) is based on an operation called ‘deletion of edges’
and measures the relevance of edges with respect to the
joint distribution, but not the relevance of edges for a certain
target node. Schamberg et al. (2020) describes a generaliza-
tion of the information-theoretic approach of Janzing et al.
(2013) which quantifies relevance of paths or edges for a
target node, based on operations on edges. Under some par-
ticular graphical assumptions, e.g., flat graphs, (Singal et al.,
2021, Def. 8), the path/edge-based Shapley values (Wang
et al., 2021a; Singal et al., 2021) match with the do-Shapley.
In general, however, the link between these lines of work is
yet to be fully established.

4. Identification of the do-Shapley
In this section, we investigate the question of evaluating
the do-Shapley values. To evaluate the do-Shapley, express-
ing E[Y |do(vS)] as a functional of an observational distri-
bution P using G is essential because we are only given
non-experimental dataset D drawn from the observational
distribution P . For each S ⊆ [n], complete causal effect
identification algorithms E[Y |do(vS)] are already available
(Tian & Pearl, 2003; Huang & Valtorta, 2006; Shpitser &
Pearl, 2006). A major practical challenge still remains, how-
ever, in using them because determining the identifiability
for all subsets S ⊆ [n] takes exponential computation time.
In this section, we address this challenge in determining the
identifiability by presenting a graphical criterion where the
identifiability can be determined in polynomial time, which
makes this procedure feasible in practice. Formally,
Definition 2 (Identifiability & Feasibility). The do-
Shapley values {ϕvi}ni=1 w.r.t. G are said to be identifiable
if all elements in {E[Y |do(vS)]}S⊆[n] are identifiable in the
causal graph G. The identification of the do-Shapley values
are said to be (computationally-) feasible if the identification
can be done in O(poly(n)).

Since näively applying the existing causal effect identifica-
tion algorithms to determine the identifiability of the do-
Shapley values is not computationally feasible (requires
O(2n) computations), we provide a simple sufficient graph-

ical criterion under which determining the do-Shapley iden-
tifiability is feasible. We start with a definition (refer Sec. 2
for C-component, C-factor):

Definition 3 (C-partition). For a set of variables X ⊆ V,
{Xk}ck=1 is said to be the C-partition if X = ∪ck=1Xk

(where Xa ∩ Xb = ∅ for a ̸= b) where ∀k ∈ [c],Xk is
a set s.t. any two pairs Xi, Xj ∈ Xk are in the same C-
component. in G.

Theorem 2 (Identifiability & Feasibility of do-Shapley).
The do-Shapley is identifiable if no variable in Vi ∈ {V}
is connected to its child Ch(Vi) by bidirected paths in G.
Suppose Y is not connected by bidirected paths. In this case,
for any S ⊆ [n],

E[Y |do(vS)] =
∑

vS

E [Y |v]Q [V\VS] ,

where Q [V\VS] := Q [V\VS] (v) is given as

Q [V\VS] =
P (v)

Q [C(VS)]

c∏
k=1

∑
sk

Q [C(Sk)] ,

where Q [C(VS)] =
∏

Va∈C(VS) P (va|pre(va))
is a C-factor of a C-component VS (C(VS));
{Sk}ck=1 is a C-partition of VS; and Q [C(Sk)] :=∏

Va∈C(Sk)
P (va|pre(va)) is a C-factor of a C-component

C(Sk) for Sk.

Fig. 2a is an example graph where a graph satisfies the
conditions in Thm. 2. Specifically, for all computations
VS ⊆ V := {V1, V2, V3}, the causal effects are identified
through Thm. 2 as

E [Y |do(vS)]

=



∑
vS

E [Y |v]P (v2|v1, v3)P (vS), if S ∈ {1, 3},∑
vS

E [Y |v]P (vS), if S ∈ {∅, 2, {1, 2}, {2, 3}},∑
vS

E [Y |v]P (vS |vS), if S ∈ {{1, 3}},
E [Y |v] if S = {1, 2, 3}.

(3)

Thm. 2 suggests the feasibility of the do-Shapley values
since the proposed graphical criteria (checking whether Vi

and Ch(Vi) are connected by bidirected paths) can be done
in O(n3) by applying the breadth-first-search for each vari-
able Vi ∈ V.

To demonstrate the applicability of Theorem 2, we provide
two special cases which are commonly considered in the
literature:

1. Markovian case: All latent variables in the SCM is
independent; i.e., G is given as a DAG (Janzing et al., 2013;
2019; Heskes et al., 2020; Basu, 2020; Wang et al., 2021b;
Singal et al., 2021).
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2. Direct-cause case: No pair of variables (Vi, Vj) ∈ V
(i ̸= j) is connected by a directed path, no Vi are connected
to Y via bidirected edges, and no directed edge from Y
to Vi exists (i.e, only Vi → Y is allowed) (Janzing et al.,
2020a;b).

For each of these cases, the identification result in Theo-
rem 2 can be simplified as follows.

Corollary 1 (Identification – Markovian). In the Marko-
vian case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]
∏
i ̸∈S

P (vi|pre(vi)).

Corollary 2 (Identification – Direct-cause). In the Direct-
cause case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]P (vS).

Figs. (2b,2c) provide example graphs for Markovian and
Direct-cause cases. For Fig. 2b, Coro. 1 gives

E [Y |do(vS)]

=


∑

vS
E [Y |v]P (vS |vS), if S ∈ {1, 3, {1, 3}},∑

vS
E [Y |v]P (vS), if S ∈ {∅, 2, {2, 3}, {1, 2}},

E [Y |v] if S = {1, 2, 3}.
(4)

For Fig. 2c, Coro. 2 gives

E [Y |do(vS)] =
∑
vS

E [Y |v]P (vS) (5)

for all vS ⊆ {v1, v2, v3}.

5. Estimation of the do-Shapley
Estimating the do-Shapley values in Eq. (2) is computation-
ally and statistically challenging because (1) Iterating over
all S ⊆ [n] takes time exponential in n, and (2) Estimating
E[Y |do(vS)] might be vulnerable to bias due to finiteness
of the sample dataset. In this section, we design computa-
tionally efficient and statistically robust estimators for the
do-Shapley values to overcome these challenges, using three
different techniques. For ease of presentation, we focus only
on the Markovian & Direct-cause cases discussed in Sec. 4.

We first introduce estimators leveraging the idea of the in-
verse probability weighting (IPW) (Rosenbaum & Rubin,
1983). Our construction of the IPW estimator is based on
the following result.

V1 V3

V2

Y

(a) Thm. 2

V1 V3

V2

Y

(b) Markovian

V1 V3

V2

Y

(c) Direct-cause

Figure 2: Example graphs for Thm. 2 and two special cases:
Markovian and Direct-cause.

Lemma 1 (Representation using IPW). Let S =
{m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let

ωS
k :=

k∏
r=1

1vmr
(Vmr )/h

S
r , for k = s, · · · , 1;

ωS := 1vS
(VS)/h

S ,

where hS
r := P (Vmr

|pre(Vmr
)) and hS := P (VS |VS).

Then, E[Y |do(vS)] = E [Y ω] where ω = ωS
k for the Marko-

vian case, and ω = ωS for the Direct-cause case.

Using Lemma 1, we construct the IPW estimators.

Definition 4 (IPW for E[Y |do(vS)]). The IPW estimator
T ipw(S) for E[Y |do(vS)] is constructed as:

1. Split D randomly into two halves: D0 and D1;

2. Let ω̂S
s,p, ω̂

S
p denote estimators for ωS

s , ω
S from Dp ∈

{D0,D1}, respectively.

3. For each p ∈ {0, 1}, set

T ipw
p (S) :=

{
ED1−p

[
Y ω̂S

s,p

]
(Markovian)

ED1−p

[
Y ω̂S

p

]
(Direct-cause)

4. T ipw(S) := {T ipw
0 (S) + T ipw

1 (S)}/2.

The data-splitting (also known as sample-splitting) tech-
nique (Klaassen, 1987; Robins & Ritov, 1997; Robins et al.,
2008; Zheng & van der Laan, 2011; Chernozhukov et al.,
2018) will be employed in constructing all do-Shapley es-
timators discussed in this section. Without data-splitting,
some restriction on the complexity of the estimator function
class must be imposed to guarantee statistical consistency.

We introduce estimators leveraging the idea of outcome
regression (REG) (Rubin, 1979). Our REG estimator is
based on the following result.

Lemma 2 (Representation using REG). Let S :=
{m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let
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θSs,1 := Y . For k = s, s− 1, · · · , 1,

θSk,2 := E
[
θSk,1|Vmk

, pre(Vmk
)
]

θSk−1,1 := E
[
θSk,1|vmk

, pre(Vmk
)
]
,

θSa := E [Y |vS ,VS ] ,

θSb := E [Y |VS ,VS ] .

Then, E[Y |do(vS)] = E [θ] where θ = θS0,1 for the Marko-
vian case, and θ = θSa for the Direct-cause case.

We construct the REG estimator based on Lemma 2.

Definition 5 (REG for E[Y |do(vS)]). The REG estimator
T reg(S) for E[Y |do(vS)] is constructed as:

1. Split D randomly into two halves: D0 and D1.

2. Let θ̂Sk,2,p, θ̂
S
k−1,1,p, θ̂

S
a,p denote an estimator for

θSk,2, θ
S
k−1,1, θ

S
a from Dp ∈ {D0,D1}, respectively.

3. For each p ∈ {0, 1},

T reg
p (S) :=

ED1−p

[
θ̂S0,1,p

]
(Markovian)

ED1−p

[
θ̂Sa,p

]
(Direct-cause).

4. T reg(S) := {T reg
0 (S) + T reg

1 (S)}/2.

For IPW and REG estimators to be consistent, one needs
to estimate each individual functional (called nuisances)
including E [Y |vS ,vS ] or P (vi|pre(vi)) consistently. A de-
sirable robust estimator is one that converges to the ground-
truth at a fast rate even when estimates for nuisances are mis-
specified (i.e., wrongly specified) or converging relatively
slowly. Double/Debiased Machine Learning (DML) (Cher-
nozhukov et al., 2017) is a recently introduced technique to
construct such estimators.

Lemma 3 (Representation using DML). Let

ηS :=

{
{θS0,1} ∪ {θSk,1, θSk,2}sk=1 ∪ {hS

r }sr=1 (Markovian)
{θSa , θSb , hS} (Direct-cause),

defined in Defs. (4, 5) above, and

VS(V′; ηS) :=

θS0,1 +
s∑

k=1

ωS
k (θ

S
k,1 − θSk,2) (Markovian)

θSa + ωS
(
Y − θSb

)
(Direct-cause),

where ωS
k :=

∏k
r=1 1vmr

(Vmr
)/hS

r and ωS :=

1vS
(VS)/h

S . Then, E[Y |do(vS)] = E
[
VS(V′; ηS)

]
.

We construct the DML estimators based on Lemma 3:

Definition 6 (DML for E[Y |do(vS)]). The DML estimator
T dml(S) is constructed as:

1. Split D randomly into two halves: D0 and D1;

Algorithm 1 do-Shapley(M,T est(·))
1: Input: M , Estimators T est(·) in Defs. (4,5,6).
2: Output: Estimates {ϕ̂vi}ni=1.
3: Initialize ϕ̂vi = 0 for all Vi ∈ V.
4: for j = 1 to M do
5: Generate the random permutation π over [n].
6: for i = 1 to n do
7: ϕ̂vi ← ϕ̂vi + T est ({i, preπ(i)})− T est(preπ(i))
8: end for
9: end for

10: return {ϕ̂vi/M}ni=1

2. Construct η̂Sp , estimates of ηS from Dp, p ∈ {0, 1}.

3. T dml
p (S) := ED1−p

[
VS(V; η̂Sp )

]
for p ∈ {0, 1}.

4. T dml(S) := {T dml
0 (S) + T dml

1 (S))/2.

Based on estimators in Defs. (4,5,6), we now propose a com-
putationally efficient estimator for the do-Shapley values
based on random permutations:

Definition 7 (do-Shapley estimators – Two cases). Let
T est(S) ∈ {T ipw(S), T reg(S), T dml(S)} denote an estima-
tor for E[Y |do(vS)] defined in Defs. (4,5,6), respectively.
The do-Shapley estimator is given as

ϕest
vi

:=
1

M

M∑
j=1

(T est({i, preπj
(i)})− T est(preπj

(i))),

where M is the number of randomly generated permutation
of [n], πj denotes the jth permutation, and preπj

(i) is the
set of elements that precedes i in πj .

A systematic procedure for constructing do-Shapley esti-
mators is provided in Algorithm 1. The following theorem
summarizes the error analyses of all the three do-Shapley
estimators.

Theorem 3 (Bias Analysis). Let {πj}Mj=1 denote M ran-
domly generated permutations of [n]. For the fixed in-
dex i, let Sj,0 := preπj

(i) and Sj,1 := {i} ∪ Sj,a. Let
{η̂Sj,0 , η̂Sj,1}Mj=1 denote L2-consistent estimates for all nui-
sances {ηSj,0 , ηSj,1}Mj=1 defined in Def. 6. Let RM,N :=

OP (M
−1/2 +N−1/2). Let e(ĝ) := ∥ĝ − g∥ denote an er-

ror for a nuisance estimates for any ĝ ∈ η̂ and g ∈ η. For
the do-Shapley estimators defined in Def. 7, suppose the
estimators T est(S) are bounded. Let ϵestvi

:= ϕest
vi − ϕvi

(where est ∈ {ipw, reg,dml}).
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(a) Thm. 2, Non-noisy (b) Thm. 2, Noisy (c) Thm. 2, Incorrect REG (d) Thm. 2, Incorrect IPW

(e) Markovian, Non-noisy (f) Markovian, Noisy (g) Markovian,
Incorrect REG

(h) Markovian,
Incorrect IPW

(i) Direct, Non-noisy (j) Direct, Noisy (k) Direct, Incorrect REG (l) Direct, Incorrect IPW

Figure 3: The L1-error plots. Plots are rendered in high resolution and can be zoomed in.

Under the Markovian case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p
sj )},

ϵregvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

0,1 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

sj∑
k=1

e(ĥ
Sj,p

k )e(θ̂
Sj,p

k,2 )}.

Under the Direct-cause case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p)},

ϵregvi
= RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

2 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(ĥSj,p)e(θ̂
Sj,p

b )}.

Remark 4 (Properties of the Proposed Estimators). Er-
ror analyses in Thm. 3 exhibit consistency of IPW, REG,

DML estimators. Specifically, if nuisances are consistently
estimated, ϵipwvi = ϵregvi = ϵdml

vi = OP (1), indicating that
the estimators converge to the true quantity. Furthermore,
the result presents the statistical robustness property of the
DML. In particular, the DML estimates ϕ̂dml

vi converges to
the true value if either e(ĥ

Sj,p

k ) or e(θ̂
Sj,p

k,2 ) under Marko-

vian, and either e(ĥSj,p) or e(θ̂Sj,p

b ) under Direct-cause are
accurate (doubly robustness). Also, ϕ̂dml

vi
converges at the

root-N rate if all nuisances ĥSj,p

k , θ̂
Sj,p

k,2 under Markovian,

and all nuisances ĥSj,p , θ̂
Sj,p

b under Direct-cause converge
at least at N−1/4 rate (debiasedness).

6. Experiments
In this section, we empirically compare the performance of
the proposed do-Shapley estimators from the previous sec-
tion. Details of the experiments and a different simulation
example are provided in Appendices E and F.

Experimental Setup. We use synthetic datasets based on
Figs. (2a, 2b, 2c) where each figures matches with Thm. 2,
Markovian, and Direct-cause cases. We note that causal
effects are identified as in Eqs. (3, 4, 5), respectively. Even
if no known estimators for Thm. 2 exist generally, we note
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that Eq. (3) is in an amenable form for which results in
Sec. 5 are applicable. Throughout the simulation, we denote
{ϕvi}ni=1 as the ground-truth do-Shapley values.

Comparison Between Estimators. We compare
the three estimators (IPW, REG, DML), denoted by
{ϕipw

vi , ϕreg
vi , ϕdml

vi } respectively, for scenarios depicted in
graphs in Figs. (2a, 2b, 2c). Nuisances are estimated using
gradient boosting model (Friedman, 2001).

Let ϕest
vi,k
∈ {ϕdml

vi,k
, ϕipw

vi,k
, ϕreg

vi,k
} denote an estimated impor-

tance of the ith feature of jth samples (i.e., Vi,k ∈ V(k) ∈
D). We assess the quality of the estimator by computing
the L1 error as L1(est, k) := (1/n)

∑n
i=1

∣∣∣ϕest
vi,k
− ϕvi,k

∣∣∣
(where n is the number of features). We ran the sim-
ulation for 50 randomly generated sets of samples; i.e.,
k ∈ {1, 2, · · · , 50}, and with sample size N := |D| ∈
{100, 250, 500, 750, 1000} to observe convergence behav-
iors of estimators. We fix M = 20. We refer the box-plot
for L1(est, k) as the ‘L1-error plot’.

For all {Thm. 2, Markovian, Direct-cause} cases, we com-
pare the performances of the three do-Shapley estimators
for (1) ‘Non-noisy’ where no noises are introduced in the
model; (2) ’Noisy’ where a ‘converging noise’ ϵ, decaying at
a N−α rate (i.e., ϵ ∼ Normal(N−α, N−2α)) for α = 1/4,
is added to the estimated nuisance to control the conver-
gence rate, following the technique in (Kennedy, 2020); (3)
‘Incorrect REG’ where the model for the REG estimator in
Def. 5 is wrongly specified; and (4) ‘Incorrect IPW’ the
model for the IPW estimator in Def. 4 is wrongly specified.

Experimental Results. The L1-error plots for all cases are
presented in Fig. 3. For the non-noisy setting, performances
of all three models {DML, REG, IPW} are similar. In the
noisy setting where the estimated nuisances are controlled
to converge at N−1/4 rate, the DML estimators outperform
the other two estimators by achieving a fast convergence
with the smallest variance. This result corroborates the
robustness property of the DML (Remark 4). Also, the
DML estimator exhibits the doubly robustness property;
the estimator converges in both the ‘Incorrect IPW’ and
‘Incorrect REG’ settings where each corresponding nuisance
is wrongly specified.

Contrasting with Conditional Shapley. We contrast the
do-Shapley and conditional Shapley in the non-noisy set-
ting. We compare the importance ranking measured by the
true do-Shapley with the ranks from the do-DML and con-
ditional Shapley through the Spearman’s rank correlation.
The correlation is close to 1 if two ranks are similar and -1
if the ranks are opposite. The true data generating function
is Y = 3V1 + 0.4V2 + V3 + UY and the true-do-Shapley
identifies V1 having the largest coefficient as the most im-
portant. As shown in Table 2, the do-DML-Shapley ranks
the feature importance closer to the true rank. As noted,

do-DML-Shapley identifies V1 as the most important.

Thm. 2 Markovian Direct
DML 1.0 0.8 0.93

Conditional -0.28 -0.74 0.52

Table 2: Comparison of the rank correlation.

7. Conclusion
We proposed the do-Shapley for measuring causal contri-
bution and provided a theoretical justification through the
axiomatic characterization (Thm. 1). Next, we developed
conditions under which do-Shapley values can be inferred
from non-experimental data in polynomial time (Thm. 2).
We then proposed three do-Shapley estimators (IPW, REG,
DML) that are consistent. We showed that the DML es-
timator has additional robustness property called doubly
robustness and debiasedness (Thm. 3). We expect the pro-
posed contribution measure will help empirical scientists
to answer “what are the contributions of each cause to the
effect?”

Acknowledgements
We thank the reviewers for their feedback and help in im-
proving this manuscript. This work was done in part while
Jin Tian was visiting the Simons Institute for the Theory
of Computing. Elias Bareinboim and Yonghan Jung were
partially supported by funding from the NSF, ONR, DoE,
Amazon, JP Morgan, and The Alfred P. Sloan Foundation.

References
Bareinboim, E. and Pearl, J. Causal inference by surrogate

experiments: z-identifiability. In In Proceedings of the
28th Conference on Uncertainty in Artificial Intelligence,
pp. 113–120. AUAI Press, 2012.

Bareinboim, E. and Pearl, J. Causal inference and the data-
fusion problem. Proceedings of the National Academy of
Sciences, 113(27):7345–7352, 2016.

Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. On
pearl’s hierarchy and the foundations of causal inference.
In Probabilistic and Causal Inference: The Works of
Judea Pearl, pp. 507–556. 2020.

Basu, D. On shapley credit allocation for interpretability.
arXiv preprint arXiv:2012.05506, 2020.

Bhattacharya, R., Nabi, R., and Shpitser, I. Semiparamet-
ric inference for causal effects in graphical models with
hidden variables. arXiv preprint arXiv:2003.12659, 2020.



On Measuring Causal Contributions via do-interventions

Bhattacharyya, A., Gayen, S., Kandasamy, S., Maran, A.,
and Variyam, V. N. Learning and sampling of atomic
interventions from observations. In International Confer-
ence on Machine Learning, pp. 842–853. PMLR, 2020.

Bhattacharyya, A., Gayen, S., Kandasamy, S., Raval, V., and
Vinodchandran, N. Efficient inference of interventional
distributions. arXiv preprint arXiv:2107.11712, 2021.

Charnes, A., Golany, B., Keane, M., and Rousseau, J. Ex-
tremal principle solutions of games in characteristic func-
tion form: Core, chebychev and shapley value generaliza-
tions. 1988.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., and Newey, W. Double/debiased/neyman ma-
chine learning of treatment effects. American Economic
Review, 107(5):261–65, 2017.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., Newey, W., and Robins, J. Double/debiased
machine learning for treatment and structural parameters:
Double/debiased machine learning. The Econometrics
Journal, 21(1), 2018.

Covert, I., Lundberg, S., and Lee, S.-I. Explaining by remov-
ing: A unified framework for model explanation. Journal
of Machine Learning Research, 22(209):1–90, 2021.

Eva, B. and Stern, R. Causal explanatory power. The British
Journal for the Philosophy of Science, 70(4):1029–1050,
2019.

Friedman, E. and Moulin, H. Three methods to share joint
costs or surplus. Journal of economic Theory, 87(2):
275–312, 1999.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Frye, C., Rowat, C., and Feige, I. Asymmetric shapley val-
ues: incorporating causal knowledge into model-agnostic
explainability. Advances in Neural Information Process-
ing Systems, 33, 2020.

Galles, D. and Pearl, J. Axioms of causal relevance. Artifi-
cial Intelligence, 97(1-2):9–43, 1997.

Heskes, T., Sijben, E., Bucur, I. G., and Claassen, T. Causal
shapley values: Exploiting causal knowledge to explain
individual predictions of complex models. Advances in
Neural Information Processing Systems, 33, 2020.

Huang, Y. and Valtorta, M. Pearl’s calculus of intervention
is complete. In Proceedings of the 22nd Conference on
Uncertainty in Artificial Intelligence, pp. 217–224. AUAI
Press, 2006.

Jaber, A., Zhang, J., and Bareinboim, E. Causal identifi-
cation under markov equivalence. In Proceedings of the
34th Conference on Uncertainty in Artificial Intelligence,
2018.

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., and
Schölkopf, B. Quantifying causal influences. The Annals
of Statistics, 41(5):2324–2358, 2013.

Janzing, D., Budhathoki, K., Minorics, L., and Blöbaum,
P. Causal structure based root cause analysis of outliers.
arXiv preprint arXiv:1912.02724, 2019.

Janzing, D., Blöbaum, P., Minorics, L., and Faller, P. Quan-
tifying causal contributions via structure preserving inter-
ventions. arXiv preprint arXiv:2007.00714, 2020a.

Janzing, D., Minorics, L., and Blöbaum, P. Feature rele-
vance quantification in explainable ai: A causal problem.
In International Conference on Artificial Intelligence and
Statistics, pp. 2907–2916. PMLR, 2020b.

Jung, Y., Tian, J., and Bareinboim, E. Learning causal ef-
fects via weighted empirical risk minimization. Advances
in Neural Information Processing Systems, 33, 2020.

Jung, Y., Tian, J., and Bareinboim, E. Estimating identifi-
able causal effects on markov equivalence class through
double machine learning. In Proceedings of the 38th
International Conference on Machine Learning, 2021a.

Jung, Y., Tian, J., and Bareinboim, E. Estimating identifi-
able causal effects through double machine learning. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence, 2021b.

Kennedy, E. H. Optimal doubly robust estimation of hetero-
geneous causal effects. arXiv preprint arXiv:2004.14497,
2020.

Kennedy, E. H., Balakrishnan, S., G’Sell, M., et al. Sharp
instruments for classifying compliers and generalizing
causal effects. Annals of Statistics, 48(4):2008–2030,
2020.

Klaassen, C. A. Consistent estimation of the influence
function of locally asymptotically linear estimators. The
Annals of Statistics, pp. 1548–1562, 1987.

Koster, J. T. et al. Marginalizing and conditioning in graphi-
cal models. Bernoulli, 8(6):817–840, 2002.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.



On Measuring Causal Contributions via do-interventions

Lee, S. and Bareinboim, E. Causal effect identifiability
under partial-observability. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Lee, S., Correa, J. D., and Bareinboim, E. General identifia-
bility with arbitrary surrogate experiments. In Proceed-
ings of the 35th Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 2019.

Lee, S., Correa, J., and Bareinboim, E. Generalized trans-
portability: Synthesis of experiments from heterogeneous
domains. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence, 2020.

Lundberg, S. Be careful when interpreting predictive models
in search of causal insights. 2021. URL https://bit.
ly/3gcZmgl.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Proceedings of the 31st
international conference on neural information process-
ing systems, pp. 4768–4777, 2017.

Molnar, C. Interpretable machine learning. Lulu. com,
2020.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–710, 1995.

Pearl, J. Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, NY, 2000. 2nd edition, 2009.

Robins, J. A new approach to causal inference in mortality
studies with a sustained exposure period—application to
control of the healthy worker survivor effect. Mathemati-
cal modelling, 7(9-12):1393–1512, 1986.

Robins, J., Li, L., Tchetgen, E., van der Vaart, A., et al.
Higher order influence functions and minimax estimation
of nonlinear functionals. In Probability and statistics:
essays in honor of David A. Freedman, pp. 335–421.
Institute of Mathematical Statistics, 2008.

Robins, J. M. and Ritov, Y. Toward a curse of dimensionality
appropriate (coda) asymptotic theory for semi-parametric
models. Statistics in medicine, 16(3):285–319, 1997.

Rosenbaum, P. R. and Rubin, D. B. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

Rubin, D. B. Using multivariate matched sampling and
regression adjustment to control bias in observational
studies. Journal of the American Statistical Association,
74(366a):318–328, 1979.

Schamberg, G., Chapman, W., Xie, S.-P., and Coleman,
T. P. Direct and indirect effects—an information theoretic
perspective. Entropy, 22(8):854, 2020.

Schwab, P. and Karlen, W. Cxplain: Causal explanations
for model interpretation under uncertainty. Advances in
Neural Information Processing Systems 32, pp. 10220–
10230, 2019.

Shapley, L. Annals of mathematics study no. 28. 1953.

Shapley, L. S. and Shubik, M. A method for evaluating the
distribution of power in a committee system. American
political science review, 48(3):787–792, 1954.

Shpitser, I. and Pearl, J. Identification of joint interventional
distributions in recursive semi-markovian causal models.
In Proceedings of the 21st AAAI Conference on Artificial
Intelligence, pp. 1219, 2006.

Singal, R., Michailidis, G., and Ng, H. Flow-based attribu-
tion in graphical models: A recursive shapley approach.
Available at SSRN 3845526, 2021.

Štrumbelj, E. and Kononenko, I. Explaining prediction
models and individual predictions with feature contribu-
tions. Knowledge and information systems, 41(3):647–
665, 2014.

Sundararajan, M. and Najmi, A. The many shapley values
for model explanation. In International Conference on
Machine Learning, pp. 9269–9278. PMLR, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning, pp. 3319–3328. PMLR, 2017.

Tian, J. and Pearl, J. On the identification of causal effects.
Technical Report R-290-L, 2003.

Wang, J., Wiens, J., and Lundberg, S. Shapley flow: A
graph-based approach to interpreting model predictions.
In Banerjee, A. and Fukumizu, K. (eds.), The 24th Inter-
national Conference on Artificial Intelligence and Statis-
tics,, volume 130 of Proceedings of Machine Learning
Research, pp. 721–729. PMLR, 2021a.

Wang, L., Zhang, Y., Richardson, T. S., and Robins, J. M.
Estimation of local treatment effects under the binary
instrumental variable model. Biometrika, 2021b.

Winter, E. The shapley value. Handbook of game theory
with economic applications, 3:2025–2054, 2002.

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. The
causal-neural connection: Expressiveness, learnability,
and inference. Advances in Neural Information Process-
ing Systems, 34:10823–10836, 2021.

Young, H. P. Monotonic solutions of cooperative games. In-
ternational Journal of Game Theory, 14(2):65–72, 1985.

Zheng, W. and van der Laan, M. J. Cross-validated targeted
minimum-loss-based estimation. In Targeted Learning,
pp. 459–474. Springer, 2011.

https://bit.ly/3gcZmgl
https://bit.ly/3gcZmgl


Appendix – On Measuring Causal Contributions via do-interventions

A. Fundamentals of the Shapley Value
The Shapley value (Shapley, 1953) in Eq. (1) seeks to allocate the contribution of each i ∈ [n] on some function value f([n])
given a coalition function ν(S) that measures the value of coalition of values of players i ∈ S (where ν([n]) = f([n])). The
Shapley value uniquely satisfying the following desiderata:

Theorem A.1 (Axiomatization of the Shapley Value (Shapley, 1953; Shapley & Shubik, 1954; Young, 1985)). For any
subset S of the players indexed [n] = {1, 2, · · · , n} and the value function of S, denoted ν(S), the Shapley value of the
player i, denoted ϕi = ϕi(ν), equals

ϕi(ν) :=
1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1

{ν(S ∪ {i})− ν(S)} , (A.1)

is the unique attribution methods satisfying the following axioms (properties):

1. Efficiency:
∑

i∈[n] ϕi = ν([n]);

2. Dummy: For some i ∈ [n], if ν(S ∪ {i}) = ν(S) for all S ⊆ [n]\{i}, then ϕi = 0;

3. Symmetry: For some distinct (i, j) ∈ [n], if ν(S ∪ {i}) = ν(S ∪ {j}) for all S ⊆ [n]\{i, j}, then ϕi = ϕj;

4. Linearity: For all i ∈ [n], for any two coalition functions ν1 and ν2, ϕi(ν1 + ν2) = ϕi(ν1) + ϕi(ν2).

B. Details on Remark 3
Given a semi-Markovian causal graph G, a realized vector (v, y) corresponding to a set of variables (V, Y ) and its subset
x ⊆ v corresponding to a set of variables X ⊆ V, a procedure for assigning contributions only to xi ∈ x is the following:

1. Construct a graph G[X] composed of nodes in X and edges added as follows (Tian & Pearl, 2003).

(a) add a directed edge Vi → Vj in G[C] if there exists a directed path from Vi to Vj in G such that every vertex on
the path is not in C;

(b) add a bidirected edge Vi ↔ Vj in G[C] if there exists a divergent path between Vi and Vj in G such that every
vertex on the path is not in C.

2. Construct the do-Shapley w.r.t. {y,x} on G[X]. Specifically, for all xi ∈ x

ϕxi
:=

∑
xS⊆x\xi

ωx(S) {E[Y |do(xS,i)]− E[Y |do(xS)]} , (B.1)

where ωx(S) := (1/ |x|)
(|x|−1

|xS |
)−1

.

Then, {ϕxi
}xi∈x is a unique causal contribution measure:

Proposition S.1. {ϕxi}xi∈x is a unique causal contribution measure w.r.t. {y,x} on G.

Proof. It suffices to show that G[X] is a graph corresponding to P (X), because of ϕxi is the do-Shapley value defined on a
graph corresponding to P (X). By (Koster et al., 2002), G[X] is a graph corresponding to P (X).
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C. Relation with Other Work - Examples
In this section, we provide examples to demonstrate that other types of Shapley values doesn’t satisfy the Axiom 1. We first
note that the conditional Shapley doesn’t satisfy the causal irrelevance property in Axiom 1.
Example C.1 (Causal Irrelevance Property doesn’t hold for the conditional Shapley (Janzing et al., 2020b)). Consider
G = {V1 ↔ V2 → Y } where V1, V2 ∈ {0, 1}, and the bidirected edge means the existence of hidden confounders. Suppose
P (v1, v2) = 1/2 whenever v1 = v2. Note V1 and Y is causally irrelevant. Causal irrelevance property doesn’t hold in the
conditional Shapley. Specifically, for any v1, v2, E [Y |v1]−E [Y ] = v1 − 1/2 ̸= 0, which leads that ϕcond

v1 ̸= 0. In contrast,
E[Y |do(v1)] − E [Y ] = E[Y |do(v1, v2)] − E[Y |do(v2)] = 0. Therefore, ϕv1 = 0, implying that do-Shapley satisfies the
causal irrelevance property, unlike to the conditional Shapley.

The ICC doesn’t satisfy the causal symmetry property in Axiom 1.
Example C.2 (Causal Symmetry Property doesn’t hold for the ICC Approach). Consider a following SCMM: For
all binary variables UV1

, UV2
, UY , V1, V2, Y ∈ {0, 1}, P (U1 = 1) = 0.5, P (U2 = 1) = 0.2, and P (UY = 1) = 0.8.

Also, V1 ← fV1
(UV1

) = UV1
; V2 ← fV2

(V1, U2) = V1 ∨ UV2
; and Y ← fY (V2, UY ) = V2 ⊕ UY . A corresponding

causal diagram is G = {V1 → V2 → Y, {UV → V for all V ∈ {V1, V2, Y }}}. Let y = v1 = v2 = 1. Then,
P (y|do(v1)) = P (y|v1) = 0.8, P (y|do(v2)) = P (y|v2) = 0.8, P (y|do(v1, v2)) = P (y|v2) = 0.8, and P (y) = 0.65. We
first note that v1 and v2 have the same causal explanatory power to Y since P (y|do(v1)) = P (y|do(v2)) = 0.8. Also, the
do-Shapley values for v1, v2 are the same as ϕv1 = ϕv2 = 0.075, which exhibits the causal symmetry. To compute the
ICC of the features v1 = v2 = 1, we fix u1 = 1 and u2 = 0, which makes v1 = v2 = 1. Let ϕicc

vi denote the ICC of vi.
Then, ϕicc

v1 = 0.225 and ϕicc
v2 = 0.075 even if v1, v2 have the same causal explanatory power. This implies that the causal

symmetry doesn’t hold.

D. Proofs
We provide complete proofs and additional missing details here.

D.1. Proofs from Section 3

We use
νdo(S) := E[Y |do(vS)]

in the proof.
Theorem D.1 (Restated Theorem 1). The do-Shapley is a unique causal contribution measure satisfying all the properties
in Axiom 1.

Proof. We first prove that do-Shapley satisfies all the properties in Axiom 1.

Lemma S.1 (Soundness of do-Shapley). The do-Shapley satisfies all properties in Axiom 1.

Proof. First, consider the perfect assignment property. By the result of (Štrumbelj & Kononenko, 2014), we can represent
the do-Shapley as

ϕvi(νdo) =
1

n!

∑
π∈Π([n])

{νdo ({i} ∪ preπ(i))− νdo (preπ(i)))} ,

where Π([n]) is a set of all possible permutations of [n], π is an individual permutation in Π([n]), and preπ(i) := {k ∈
[n] such that k < i in π([n])}. Then,

n∑
i=1

ϕvi(νdo) =
1

n!

∑
π∈Π([n])

n∑
i=1

{νdo ({i} ∪ preπ(i))− νdo (preπ(i)))}

=
1

n!

∑
π∈Π([n])

{νdo([n])− νdo(∅)}

= νdo([n])− νdo(∅) = E[Y |do(v)]− E [Y ] = E[Y |do(v)].
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Now we consider the causal irrelevance property. Suppose Vi is causally irrelevant to Y in expectation for all witness
w ⊆ v\{vi}. Then, the equality νdo(S ∪ i)− νdo(S) = 0 holds immediately for all S ⊆ [n]\{i}.
Next we consider the causal symmetry property. Suppose vi, vj has the same causal explanatory power w.r.t. any witnesses
w ⊆ v\{vi, vj}. This leads νdo({i} ∪ S) = νdo({j} ∪ S) for any S ⊆ [n]\{i, j}. Then,

ϕvi(νdo) =
1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1

{νdo(S ∪ i)− νdo(S)}

=
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|

)−1

{νdo(S ∪ i)− νdo(S)}+
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|+ 1

)−1

{νdo(S ∪ {i, j})− νdo(S ∪ {j})}

=
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|

)−1

{νdo(S ∪ j)− νdo(S)}+
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|+ 1

)−1

{νdo(S ∪ {i, j})− νdo(S ∪ {i})}

=
1

n

∑
S⊆[n]\{j}

(
n− 1

|S|

)−1

{νdo(S ∪ j)− νdo(S)} = ϕvj (νdo),

where the third equality holds since (vi, vj) has the same causal explanatory power.

Now, we prove that the do-Shapley satisfies the causal approximation property by showing that there exists ω(S) that
makes the do-Shapley as the solution of the weighted least square problem defined in Axiom 1. For a coalition function ν(S)
(see the “Shapley value” paragraph in Sec. 2), it’s known that there exists a specific weight function ω(S) that makes the
Shapley value in Eq. (1) as the solution of the following WLS problem: argmin{ϕ′

vi
}n
i=1

∑
S⊆[n](ν(S)−

∑
i∈S ϕ′

vi)
2ω(S)

( by (Charnes et al., 1988, Thm. 4) and (Lundberg & Lee, 2017, Theorem 2)). This implies that such an ω(S) is the weight
function that makes the do-Shapley as the solution of the weighted least square problem defined in Axiom 1.

We now show the other direction that a measure satisfying all properties in Axiom 1 is the do-Shapley.

Lemma S.2 (Completeness of do-Shapley). A vector {ϕvi}vi∈v satisfying Axiom 1 is the do-Shapley value.

Proof. Throughout the proof, we will define a canonical SCM as follow: Let T ⊆ [n] denote any fixed index set. A SCM is
called canonical for T if E[Y |do(VS = 1)] = 1 iff T ⊆ S, and 0 otherwise. We use νTdo(S) denote the causal coalition
function induced by the canonical SCM. Note νTdo(S) = 1 iff T ⊆ S, and 0 otherwise, by the definition of the canonical
SCM.

We first note that a vector ϕvi that satisfies the causal approximation property can be represented as a linear function of
νdo(S), because ϕvi is a solution of the weighted least square linear regression problem. Therefore,

ϕvi =
∑
S⊆[n]

aiSνdo(S). (D.1)

for some constants {aiS}.

Now we focus on the causal irrelevance property. Suppose T ⊆ [n]\{i}. For any S ⊆ [n], (T ⊆ S) =⇒ (T ⊆ S ∪ {i}).
With i ̸∈ T , (T ̸⊆ S) =⇒ (T ̸⊆ S ∪{i}). Therefore, νTdo(S) = νTdo(S ∪ i) for all S ⊆ [n]. Then, by the causal irrelevance
property, ϕvi(ν

T
do) = 0 if T ⊆ [n]\i. Then, ϕvi(ν

[n]\i
do ) = ai[n] + ai[n]\i = 0.

Suppose it has been shown that aiT∪i + aiT = 0 for T ⊆ [n]\i such that |T | ≥ k for some k. Then, for any S ⊆ [n]\i such
that |S| = k − 1,

ϕvi(ν
S
do) =

∑
T⊆[n]

aiT ν
S
do(T ) =

∑
T⊆[n]
T⊇S

aiT =
∑

T⊆[n]\{i}
T⊇S

(
aiT∪i + aiT

)

=


∑

T⊆[n]\i
T⊃S but T ̸=S

(
aiT∪i + aiT

)+
(
aiS∪i + aiS

)
= aiS∪i + aiS ,
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where the first equality by Eq. (D.1), the second by the property of the canonical SCM, the third and fourth by the standard
algebra, and the fifth by the inductive hypothesis. Since S ⊆ [n]\{i}, by causal irrelevance property, ϕvi(ν

S
do) = 0. This

implies that aiS∪i + aiS = 0. Therefore, for any T ⊆ [n]\i, aiT∪i + aiT = 0.

Fix piT := aiT∪i = −aiT . Then,

ϕvi(νdo) =
∑

T⊆[n]

aiT νdo(T ) =
∑

T⊆[n]\i

(
aiT∪iνdo(T ∪ i) + aiT νdo(T )

)
=

∑
T⊆[n]\i

piT (νdo(T ∪ i)− νdo(T )) .

Now we focus on the causal symmetry property. Suppose vi and vj have the same causal explanatory power with any given
witness w ⊆ v\{vi, vj} in the canonical SCM for [n]; i.e., ν[n]do (S ∪ i) = ν

[n]
do (S ∪ j) for S ⊆ [n]\{i, j}. We note that

ϕvi(ν
[n]
do ) = pi[n]\i = ϕvj (ν

[n]
do ) = pj[n]\j . This implies that there exists pn−1 := pi[n]\i = pj[n]\j .

Again, suppose vi, vj have the same causal explanatory power with any given witness w ⊆ v\{vi, vj} in the canonical
SCM for [n]\k for any fixed k ̸∈ {i, j}. Then,

ϕvi(ν
[n]\k
do ) = pi[n]\{i,k} + pn−1 = ϕvj (ν

[n]\k
do ) = pj[n]\{j,k} + pn−1.

This implies that there exists a constant pn−2 := pi[n]\{i,k} = pj[n]\{j,k}. By repeating this, we can have a p1, · · · , pn−1

where p|T | is a constant applying to all pjT for any T ⊆ [n]\i. Therefore, there are constants {p|T |}T⊆[n]\i such that

ϕvi :=
∑

T⊆[n]\i

p|T | (νdo(T ∪ i)− νdo(T )) .

Finally, we focus on the perfect assignment property. An attribution ϕvi satisfies the perfect assignment property if and
only if

∑
i∈N pn−1 = 1, and for any nonempty T ⊆ [n],

∑
i∈T p|T |−1 =

∑
j ̸∈T p|T | (Winter, 2002, Chap. 7, Theorem 11).

This gives pn−1 = 1/n, and for any nonempty T ⊆ [n], |T | p|T |−1 = (n−|T |)p|T |. Then, a closed form for p|T | is given as

p|T | =
(n− |T | − 1)! |T |!

n!
=

1

n

(
n− 1

|T |

)
.

Taking a conjunction of Lemmas (S.1,S.2) completes the proof of the Theorem D.1.

D.2. Proofs from Section 4

Theorem D.2 (Restated Theorem 2). The do-Shapley is identifiable if no variable in Vi ∈ {V} is connected to its child
Ch(Vi) by bidirected paths in G. Suppose Y is not connected by bidirected paths. In this case, for any S ⊆ [n],

E[Y |do(vS)] =
∑

vS

E [Y |v]Q [V\VS] ,

where Q [V\VS] := Q [V\VS] (v) is given as

Q [V\VS] =
P (v)

Q [C(VS)]

c∏
k=1

∑
sk

Q [C(Sk)] ,

where Q [C(VS)] =
∏

Va∈C(VS) P (va|pre(va)) is a C-factor of a C-component VS (C(VS)); {Sk}ck=1 is a C-partition
of VS; and Q [C(Sk)] :=

∏
Va∈C(Sk)

P (va|pre(va)) is a C-factor of a C-component C(Sk) for Sk.

Proof. We prove the following, which would imply the above theorem.
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Proposition S.1 (Generalized Tian’s Adjustment – Complete identification criteria for P (V|do(X))). P (V|do(X)) is
identifiable if ∀Xa ∈ X and Ch(Xa) is not connected by bidirected paths. If identifiable, it’s given as

P (V|do(X)) =
P (V)

Q [C(X)]

c∏
k=1

∑
xk

Q [C(Xk)] , (D.2)

where {Xk}ck=1 is a C-partition of X in G, and Q [C(X)] :=
∏

Vi∈C(X) P (Vi|pre(Vi)) is a C-factor of a C-component of
X (C(X)), and Q [C(Xk)] :=

∏
Vi∈C(Xk)

P (Vi|pre(Vi)) is a C-factor of a C-component of Xk (C(Xk)).

Proof. In the proof, for a vector W, we will use De(W) to denote a set of descendants of Wi ∈W in G.

Suppose ∀Xa ∈ X is not connected with Ch(Xa) by bidirected paths. We first show that P (V|do(X1)) (for any X1 ∈ X a
C-component in G(X)) is identifiable and given as

P (V|do(X1)) =
P (V)

Q [C(X1)]

∑
x1

Q [C(X1)] . (D.3)

By the result of (Jaber et al., 2018, Lemma 1), it suffices to show that X1 = De(X1)G(C(X1)). We show this by contradiction.
Suppose Va ∈ De(X1)G(C(X1)) such that Va ̸∈ X1. Since Va ∈ G(C(X1)), Va is connected with X1 by bidirected paths.
Since Va is a descendent of some Xa ∈ X1 in G(C(X1)), this means that Vb ∈ Ch(X1) is also in the G(C(X1)). This
means that Vb and Xa is connected by a bidirected path, which is a contradiction of the given condition. Therefore,
X1 = De(X1)G(C(X1)), and Eq. (D.3) holds.

Now, consider a following inductive hypothesis for i = 1, 2, · · · , c:

Q
[
V\X(i)

]
=

Q
[
V\X(i−1)

]
Q [C(Xi)]

∑
xi

Q [C(Xi)] . (D.4)

As shown in the above, it holds for i = 1. Suppose it holds for some i − 1 ≥ 1 for i ≥ 2. Then, we first
note that Xi = De(Xi)G(C(Xi))G(V\X(i−1))

. To witness, consider the contradiction – for some Xa ∈ Xi there ex-
ists Va ∈ De(Xi)G(C(Xi))G(V\X(i−1))

s.t. Va ̸∈ Xi. First, Va is connected with Xa by bidirected paths since
Va ∈ G(C(Xi))G(V\X(i−1)). Also, Va is a descendent of Xa, this means that a child of Xa is also in G(C(Xi)),
connected by bidirected paths. This is a contradiction. Therefore, Xi = De(Xi)G(C(Xi))G(V\X(i−1))

.

Now, we show that C(Xi)G(V\X(i−1)) = C(Xi)G. We start from an obvious observation – C(Xi)G(V\X(i−1)) ⊂ C(Xi)G.
We now prove C(Xi)G ⊂ C(Xi)G(V\X(i−1)). For some Va ∈ C(Xi)G, suppose Va ̸∈ C(Xi)G(V\X(i−1)). This means
that bidirected paths connecting Va to some nodes in X1 ∈ Xi must be via other nodes in X2 ∈ X(i−1). This means that
Va, X2, X1 are connected by bidirected paths. However, given that X2 ∈ X(i−1) and X1 ∈ Xi, this is a contradiction,
because they are in distinct C-partitions. Therefore, C(Xi)G(V\X(i−1)) = C(Xi)G.

Then, Eq. (D.4) holds. By unfolding it,

Q
[
V\X(i)

]
=

P (V)∏i
k=1 Q [C(Xi)]

c∏
k=1

∑
xi

Q [C(Xi)] .

We note Q
[
C(X(i))

]
=

∏i
k=1 Q [C(Xi)], since

Q
[
C(X(i))

]
=

∏
Vi∈C(X(i))

P (vi|pre(vi)) =
c∏

k=1

∏
Vi∈C(Xk)

P (vi|pre(vi)) =
c∏

k=1

Q [C(Xk)] .

This completes the proof.

Now back to witness Thm. D.2. Under the given condition that Y is not connected via bidirected paths to any nodes, the
following holds: for any S ⊆ [n],

(Y ⊥⊥ VS |VS)GVS

.
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Therefore,

P (Y,V|do(VS)) = P (Y |do(VS),VS)Q [VS ] = P (Y |V)Q [VS ] ,

which implies that

E[Y |do(VS)] =
∑
vS

E [Y |V]
Q [V]

Q [C(VS)]

c∏
k=1

∑
xk

Q [C(Xk)] .

This completes the proof.

Corollary D.2 (Restated Corollary 1). In the Markovian case, E[Y |do(vS)] is given as

E[Y |do(vS)]=
∑
vS

E [Y |vS ,vS ]
∏
i̸∈S

P (vi|pre(vi)).

Proof. In the Markovian case, C(W) = W for all W ⊆ V. Then,

P (Y,VS |do(VS)) =
P (V, Y )

Q [C(VS)]

c∏
k=1

∑
xk

Q [C(Xk)] =
P (V, Y )

Q [VS ]
= P (Y |V)

∏
Vi∈VS

P (Vi|pre(Vi)).

This completes the proof.

Corollary D.2 (Restated Corollary 2). In the Direct-cause case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]P (vS).

Proof. In the Direct-cause case, Q [W] = P (W) for all W ⊆ V since there are no causal paths between a pair of variables
in V. Therefore, Q [V\VS] = P (V\VS) = P (VS), which completes the proof.

D.3. Proofs from Section 5

Lemma D.1 (Restated Lemma 1). Let S = {m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let

ωS
k :=

k∏
r=1

1vmr
(Vmr

)/hS
r , for k = s, · · · , 1;

ωS := 1vS
(VS)/h

S ,

where hS
r := P (Vmr |pre(Vmr )) and hS := P (VS |VS). Then, E[Y |do(vS)] = E [Y ω] where ω = ωS

k for the Markovian
case, and ω = ωS for the Direct-cause case.

Proof. For the Markovian case,

E[Y |do(vS)] =
∑
vS

P (v)∏s
r=1 P (vmr

|pre(vmr
)
) = E

[
1vmr

(Vmr
)

hS
r

]
.

For the Direct-cause case,

E[Y |do(vS)] =
∑
vS

P (v)

P (vS |vS)
= E

[
1vS

(VS)

P (VS |VS)

]
.
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Lemma D.2 (Restated Lemma 2). Let S := {m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let θSs,1 := Y . For
k = s, s− 1, · · · , 1,

θSk,2 := E
[
θSk,1|Vmk

, pre(Vmk
)
]

θSk−1,1 := E
[
θSk,1|vmk

, pre(Vmk
)
]
,

θSa := E [Y |vS ,VS ] ,

θSb := E [Y |VS ,VS ] .

Then, E[Y |do(vS)] = E [θ] where θ = θS0,1 for the Markovian case, and θ = θSa for the Direct-cause case.

Proof. For the Markovian case, we will prove the following, which implies the result.

Lemma S.3. Suppose V′ = {Y } ∪V where V′ is an ordered set. Assume that Y is the last variable in the given order.
Let VS := {Vm1

, · · · , Vms
} ⊆ V (where {m1, · · · ,ms} ⊆ [n]) denote a set of discrete variables. Let VS := V\VS .

For each k = 2, · · · , s, let Vℓk := {Vj ∈ VS : Vmk−1
≺ Vj ≺ Vmk

}. Let Vℓ1 := {Vj ∈ VS : Vj ≺ Vmk
} and

Vℓs+1
:= {Vj ∈ VS : Vms ≺ Vj}.

Let gS(P ) denote a following functional (a.k.a. g-formula (Robins, 1986)).

gS(P ) :=

∫
VS

E [Y |v]
∏
i̸∈S

P (vi|pre(vi)) d[vS ].

Let θs,1 := Y . For k = s, · · · , 1, and

θk,2 := E [θk,1|Vmk
, pre(Vmk

)]

θk−1,1 := E [θk,1|vmk
, pre(Vmk

)] .

Then, the following holds:

gS(P ) = E [θ0,1] .

Proof. Let

Ak := {pre(Vmk
)}

Bk := {Vℓk+1
,Vℓk+2

, · · · ,Vℓs+1
}

Ck := {Vmk+1
, Vmk+2

, · · · , Vms
}.

For W ⊆ V,

q(W) :=

{∏
Vi∈W P (vi|pre(vi)) If W ̸= ∅;

1 If W = ∅.

Then, it suffices to show that

θk,2 =

∫
Bk,Ck

E [Y |Vmk
,Ak,bk, ck] q(bk)1ck

(Ck) d[bk, ck]

θk−1,1 =

∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1],

because witnessing E [θ0,1] = gS(P ) becomes trivial. Let θs,1 := Y . Then, it’s easy to check that the above holds for θs,2
and θs−1,1.

Suppose the above equation holds for k, k + 1, · · · , s. Then, consider k − 1. By the given definition,

θk−1,2 := E
[
θk−1,1|Vmk−1

, pre(Vmk−1
)
]

θk−2,1 := E
[
θk−1,1|vmk−1

, pre(Vmk−1
)
]
.
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Then,

θk−1,2 = E

[∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1]

∣∣∣∣Vmk−1
,Ak−1

]

=

∫
Bk−1,Ck−1

E
[
Y |Vmk−1

,Ak−1,bk−1, ck−1

]
q(bk−1)1ck−1

(Ck−1) d[bk−1, ck−1],

and

θk−2,1 = E

[∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1]

∣∣∣∣vmk−1
,Ak−1

]

=

∫
Bk−1,Ck−2

E [Y |Ak−1,bk−1, ck−2] q(bk−1)1ck−2
(Ck−2) d[bk−1, ck−2].

Therefore,

θ0,1 =

∫
B1,C0

E [Y |A1,b1, c0] q(b1)1c0
(C0) d[b1, c0],

which gives the equality E [θ0,1] = gS(P ).

For the Direct-cause case,

E
[
θSa

]
=

∑
vS

E [Y |v]P (vS) = E[Y |do(vS)],

which completes the proof.

Lemma D.3 (Restated Lemma 3). Let

ηS :=

{
{θS0,1} ∪ {θSk,1, θSk,2}sk=1 ∪ {hS

r }sr=1 (Markovian)
{θSa , θSb , hS} (Direct-cause),

defined in Defs. (4, 5) above, and

VS(V′; ηS) :=

θS0,1 +
s∑

k=1

ωS
k (θ

S
k,1 − θSk,2) (Markovian)

θSa + ωS
(
Y − θSb

)
(Direct-cause),

where ωS
k :=

∏k
r=1 1vmr

(Vmr )/h
S
r and ωS := 1vS

(VS)/h
S . Then, E[Y |do(vS)] = E

[
VS(V′; ηS)

]
.

Proof. For the Markovian case, it suffices to show that E
[
θSk,1 − θSk,2

]
for any k = 1, 2, · · · , s. This holds since

E
[
θSk,1 − θSk,2

]
= E

[
E
[
θSk,1 − θSk,2|Vmk

, pre(Vmk
)
]]

= E
[
θSk,2 − θSk,2

]
= 0.

Therefore, E
[
V(V′; ηS)

]
= E

[
θS0,1

]
= E[Y |do(vS)], where the 2nd equality holds by Lemma 2.

For the Direct-cause case, E
[
Y − θS2

]
= 0 by the definition of θS2 . Therefore, E

[
V(V′; ηS)

]
= E

[
θS1

]
= E[Y |do(vS)].

Theorem D.3 (Restated Theorem 3). Let {πj}Mj=1 denote M randomly generated permutations of [n]. For the fixed index
i, let Sj,0 := preπj

(i) and Sj,1 := {i} ∪ Sj,a. Let {η̂Sj,0 , η̂Sj,1}Mj=1 denote L2-consistent estimates for all nuisances
{ηSj,0 , ηSj,1}Mj=1 defined in Def. 6. Let RM,N := OP (M

−1/2 + N−1/2). Let e(ĝ) := ∥ĝ − g∥ denote an error for a
nuisance estimates for any ĝ ∈ η̂ and g ∈ η. For the do-Shapley estimators defined in Def. 7, suppose the estimators T est(S)
are bounded. Let ϵestvi

:= ϕest
vi − ϕvi (where est ∈ {ipw, reg,dml}).
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Under the Markovian case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p
sj )},

ϵregvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

0,1 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

sj∑
k=1

e(ĥ
Sj,p

k )e(θ̂
Sj,p

k,2 )}.

Under the Direct-cause case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p)},

ϵregvi
= RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

2 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(ĥSj,p)e(θ̂
Sj,p

b )}.

Proof. In the proof, we will use a notation ED−P [f(V)] for f(V) := ED [f(V)]− E [f(V)]. We use N := |D|. Also, for
any quantity A,B, A ≲ B if there is a constant c s.t. A ≤ cB. We first introduce a useful tool for analyzing errors of the
proposed estimator.

Lemma S.4. Let η0 denote some nuisance and η̂ denote its L2 consistent estimate. Let f(V; η) denote an arbitrary function
having a bounded second moment for any fixed η. Suppose samples used for constructing η̂ and for evaluating f(V; η̂) are
independent.

ED [f(V; η̂)]− E [f(V; η0)] = OP (N
−1/2) + E [f(V; η̂)− f(V; η0)] .

Proof. We first note that

ED [f(V; η̂)]− E [f(V; η0)] = ED−P [f(V; η0)]− ED−P [f(V; η̂)− f(V; η0)] + E [f(V; η̂)− f(V; η0)] .

First, ED−P [f(V; η0)] = OP (N
−1/2) by the classical central limit theorem. Second, ED−P [f(V; η̂)− f(V; η0)] =

OP (N
−1/2) under given conditions by (Kennedy et al., 2020, Lemma 2).

Now, we introduce an equivalent representation of the do-Shapley:

Proposition S.2 ((Štrumbelj & Kononenko, 2014, Eq. (10))). An equivalent representation of the do-Shapley in Eq. (2) is
given as

ϕ̃vi :=
1

n!

∑
π∈Π([n])

{
E[Y |do(vpreπ(i),i)]−E[Y |do(vpreπ(i))]

}
,

where Π([n]) is a set of all possible permutations of [n], π is an individual permutation in Π([n]), preπ(i) := {k ∈
[n] such that k < i in π([n])}.

This representation motivates a following Monte-Carlo-based approximation:

ϕ̃vi :=
1

M

M∑
j=1

{
E[Y |do(vpreπj

(i),i)]−E[Y |do(vpreπj
(i))]

}
, (D.5)

where M is the number of randomly generated permutation of [n] and πj denotes kth permutation. Convergence of ϕ̃vi is
guaranteed by the following result:
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Lemma S.5.

ϕ̃vi − ϕvi = OP (M
−1/2). (D.6)

Proof. Let Z(σ) := E[Y |do(vi,preσ(k)(i)
)]− E[Y |do(vpreσ(k)(i)

)] denote a random variable where the randomness is over
the permutation σ, where P (σ) = 1

n! . Then, EP [Z(σ)] = ϕvi . By the given assumption, Z(σ) and

ϕ̃vi :=
1

M

M∑
k=1

Z(σ(k))

are bounded random variables. Let B denote such bound. Then, by (Lattimore & Szepesvári, 2020, Corollary 5.5),

ϕ̃vi > ϕvi −
√

2B2 log(1/δ)

M
and ϕ̃vi < ϕvi +

√
2B2 log(1/δ)

M

in probability (1− δ), which implies that ϕ̃vi converges in
√
M rate. This completes the proof.

Let Sj,a := preπj
(i) and Sj,b := {i} ∪ preπj

(i). By Def. 7, Eqs. (D.5,D.6),

ϕest
vi − ϕvi

= ϕest
vi + ϕ̃vi − ϕ̃vi

+ ϕvi (D.7)

=
1

M

j∑
i=1

({
T est(Sj,b)− E[Y |do(vSj,b

)]
}
+

{
T est(Sj,a)− E[Y |do(vSj,a

)]
})

+OP (M
−1/2). (D.8)

Now, we analyze each of IPW, REG, DML estimators in Defs. (4,5,6).

Lemma S.6 (Error analysis for IPW). For any nonempty S ⊆ [n],

T ipw(S)− E[Y |do(vS)] =

{
OP (N

−1/2) +OP

(∥∥ω̂S
s − ωS

s

∥∥) (Markovian)
OP (N

−1/2) +OP

(∥∥ω̂S − ωS
∥∥) (Direct-cause),

(D.9)

Proof. We will prove only for the Markovian case, since the exactly same proof is applied for the Direct-cause case. First,
E[Y |do(vS)] = E

[
Y ωS

s

]
.

From Lemma S.4, it suffices to show that E
[
Y ω̂S

s − Y ωS
s

]
= OP

(∥∥ω̂S
s − ωS

s

∥∥). It can be shown by

E
[
Y ω̂S

s − Y ωS
s

]
≤ ∥Y ∥

∥∥ω̂S
s − ωS

s

∥∥ ≲
∥∥ω̂S

s − ωS
s

∥∥ ,
where the first inequality by Cauchy-Schwarz inequality and the second by the boundness of Y .

Lemma S.7 (Error analysis for REG). For any nonempty S ⊆ [n],

T reg(S)− E[Y |do(vS)] =

OP (N
−1/2) +OP

(∥∥∥θ̂S0,1 − θS0,1

∥∥∥) (Markovian)

OP (N
−1/2) +OP

(∥∥∥θ̂Sa − θS
∥∥∥) (Direct-cause) .

Proof. We will prove only for the Markovian case, since the exactly same proof is applied for the Direct-cause case. We
note that E

[
θS0,1

]
= E[Y |do(vS)] by Lemma 2. From Lemma S.4, it suffices to show that E

[
θ̂S0,1 − θS0,1

]
= OP (

∥∥∥θ̂ − θ
∥∥∥).

It holds by Cauchy-Schwarz inequality.

Lemma S.8 (Error analysis for DML). For any nonempty S ⊆ [n],

T dml(S)− E[Y |do(vS)] =

OP (N
−1/2) +

∑s
j=1 OP

(∥∥∥θ̂Sj,2 − θSj,2

∥∥∥∥∥∥ĥS
j − hS

j

∥∥∥) (Markovian)

OP (N
−1/2) +OP

(∥∥∥θ̂Sa − θSa

∥∥∥∥∥∥ĥS − hS

∥∥∥) (Direct-cause).
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Proof. We note that E
[
V(V′, ηS)

]
= E[Y |do(vS)] by Lemma 3. From Lemma S.4, it suffices to show that

E
[
V(V′, η̂S)− V(V′, ηS)

]
=


∑s

j=1 OP

(∥∥∥θ̂Sj,2 − θSj,2

∥∥∥∥∥∥ĥS
j − hS

j

∥∥∥) (Markovian)

OP

(∥∥∥θ̂Sa − θSa

∥∥∥∥∥∥ĥS − hS

∥∥∥) (Direct-cause).

First, consider the Markovian case. We omit the superscript S. Consider a following quantity: For j = 1, 2, · · · , s

Qj := θj−1,1 +

s∑
k=j

ωj:k(θk,1 − θk,2),

where ωj:k :=
∏k

r=j

1vmr
(Vmr )

hS
r

. Let Qs+1 := Y and ωj+1:· = 0. We note that Q1 = V(V′; ηS), and E [Q1] =

E[Y |do(vS)]. Also, the following holds, by the definition of θk−1,1, θk,2:

E [θk−1,1] = E
[
1vmk

(Vmk
)θk,2

]
,

E
[
θ̂k−1,1

]
= E

[
1vmk

(Vmk
)θ̂k,2

]
.

First, we note that Qj can be written in a recursion as follow: For j = 1, 2, · · · , s

Qj = θj−1,1 + ωj:j (Qj+1 − θj,2) .

To witness, consider the followings:

Qj = θj−1,1 + ωj:j(θj,1 − θj,2) + ωj:j+1(θj+1,1 − θj+1,2) + ωj:j+2(θj+2,1 − θj+2,2) + · · ·
Qj+1 = θj,1 + ωj+1:j+1(θj+1,1 − θj+1,2) + ωj+1:j+2(θj+2,1 − θj+2,2) + · · ·

ωj:jQj+1 = ωj:jθj,1 + ωj:j+1(θj+1,1 − θj+1,2) + ωj:j+2(θj+2,1 − θj+2,2) + · · · .

Then,

Qj = ωj:jQj+1 − ωj:jθj,1 + θj−1,1 + ωj:j(θj,1 − θj,2)

= θj−1,1 + ωj:j (Qj+1 − θj,2) .

Finally, we will witness the following holds:

E
[
Q̂j −Qj

]
= E

[
Q̂j − θj−1,1

]
=

s∑
k=j

OP

(∥∥∥θk,2 − θ̂k,2

∥∥∥ ∥∥∥ĥk − hk

∥∥∥) .

We will prove this by using an inductive hypothesis. First, at j = s,

E
[
Q̂s −Qs

]
= E

[
Q̂s − θs−1,1

]
= E

[
θ̂s−1,1 + ω̂s:s(Y − θ̂s,2)− θs−1,1

]
= E

[
θ̂s−1,1 +

1vms
(Vms)

π̂s
(Y − θ̂s,2)− θs−1,1

]
= E

[
1vms

(Vms
)(θ̂s,2 − θs,2) +

1vms
(Vms)

π̂s
(θs,2 − θ̂s,2)

]
= OP

(∥∥∥θs,2 − θ̂s,2

∥∥∥ ∥π̂s − πs∥
)
.
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For any j = s− 1, · · · , 1,

E
[
Q̂j −Qj

]
= E

[
Q̂j − θj−1,1

]
= E

[
θ̂j−1,1 − θj−1,1 + ω̂j:j

(
Q̂j+1 − θ̂j,2

)]
= E

[
θ̂j−1,1 − θj−1,1 + ω̂j:j

(
Q̂j+1 − θj,1

)
+ ω̂j:j

(
θj,1 − θ̂j,2

)]
= E

[
ω̂j:j

(
Q̂j+1 − θj,1

)]
+ E

[
1vmj

(Vmj
)
(
θ̂j,2 − θj,2

)
+ ω̂j:j

(
θj,1 − θ̂j,2

)]
= E

[
ω̂j:j

(
Q̂j+1 − θj,1

)]
+ E

[
1

P̂ (Vmj |Wmj )

{
θj,2 − θ̂j,2

}{
ĥj − hj

}]
≲ E

[(
Q̂j+1 − θj,1

)]
+ E

[{
θj,2 − θ̂j,2

}{
ĥj − hj

}]
≤ E

[(
Q̂j+1 − θj,1

)]
+
∥∥∥θj,2 − θ̂j,2

∥∥∥∥∥∥ĥj − hj

∥∥∥ .
If we assume E

[
Q̂r − θr−1,1

]
=

∑s
k=r OP

(∥∥∥θk,2 − θ̂k,2

∥∥∥∥∥∥ĥk − hk

∥∥∥) for r = j + 1, · · · , s, then it’s easy to witness
that it holds for r = j, too. Therefore, by an induction, the equality holds for all r = 1, 2, · · · , 1. This completes the proof
for Markovian case.

For Direct-cause case,

E
[
V(V′; ηS)− V(V; η̂S)

]
= E

[
1vS

(VS)

ĥS
(Y − θ̂a) + θ̂b − θb

]
= E

[
1vS

(VS)

ĥS
(θa − θ̂a) + θ̂b − θb

]
= E

[
hS

ĥS
(θb − θ̂b) + θ̂b − θb

]
= E

[
1

ĥS
(θb − θ̂b)(h

S − ĥS)

]
≲ E

[
1

ĥS
(θb − θ̂b)(h

S − ĥS)

]
≤

∥∥∥θb − θ̂b

∥∥∥∥∥∥hS − ĥS
∥∥∥ .

By combining Lemmas (S.4,S.5,S.6,S.7,S.8), we complete the proof of Theorem D.3.

E. Additional Experimental Details From Section 6
E.1. Data Generating Processes

Here, we present the structural causal model for the data generating processes used for the data generating process used in
Section 6.

We first note that U ∼ Bernoulli(0.4), UV1
∼ Bernoulli(0.8), UV3

∼ Bernoulli(0.4), UV2
∼ Bernoulli(0.3), and UY ∼

Normal(0, 1). The SCM that induced the graph in Fig. 2a is

V1 = UV1
⊕ U

V3 = UV3
∨ U

V2 = (V1 ∧ V3) ∨ UV2

Y = 3V1 + 0.4V2 + V3 + UY .
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Figure F.4: (a) Causal graph for Example 1, taken from Lundberg (2021) (b) Variables {S, P,M,L} are hidden. These
graphs are used for Appendix F.

The SCM that induced the graph in Fig. 2b is

V1 = UV1

V3 = UV3

V2 = (V1 ∧ V3) ∨ UV2

Y = 3V1 + 0.4V2 + V3 + UY .

The SCM that induced the graph in Fig. 2c is

V1 = UV1
⊕ U

V3 = UV3
∨ U

V2 = UV2

Y = 3V1 + 0.4V2 + V3 + UY .

F. Additional Experiments
In this section, we consider a different data generation process based on Example 1.

Experimental Setup. We use synthetic datasets based on: (a) Example 1 for which the corresponding causal graph Fig. F.4a
is Markovian, and (b) the graph in Fig. F.4b which matches with Direct-cause case. These two graphs share the same
data generating process since the graph in Fig. F.4b is generated from the graph in Fig. F.4a by omitting a set of variables.
Details of the data generating process are provided in Appendix E. Throughout the simulation, we denote {ϕvi}ni=1 as the
ground-truth do-Shapley values.

Comparison Between Estimators. We compare the three estimators (IPW, REG, DML), denoted by {ϕipw
vi , ϕreg

vi , ϕdml
vi }

respectively, for scenarios depicted in graphs in Figs. (F.4a,F.4b). For all estimators, nuisances are estimated using gradient
boosting model called XGBoost (Chen & Guestrin, 2016).

Let ϕest
vi,k
∈ {ϕdml

vi,k
, ϕipw

vi,k
, ϕreg

vi,k
} denote an estimated importance of the ith feature of jth samples (i.e., Vi,k ∈ V(k) ∈ D).

As in Section 6, we assess the quality of the estimator by computing the L1 error as

L1(est, k) := (1/n)

n∑
i=1

∣∣ϕest
vi,k − ϕvi,k

∣∣ ,
(where n is the number of features). We ran the simulation for 100 randomly samples; i.e., k ∈ {1, 2, · · · , 100}, and with
sample size N := |D| ∈ {100, 1000, 5000, 10000} to observe convergence behaviors of estimators. We fix M = 100.

Data Generating Processes. Here, we present the structural causal model for the data generating processes used for
the data generating process, where the qualitative graphical description is provided as causal graphs in Fig. F.4a. We
will denote V0 : sales calls , V1 : interaction , V2 : economic factors , V3 : last upgrade , V4 : product needs , V5 :
discounts provided , V6 : monthly usage , V7 : Ad spend , V8 : bugs reported , Y : customer retention (target variable).
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(a) Markovian, Non-noisy (b) Markovian, Noisy (c) Direct-cause, Non-noisy (d) Direct-cause, Noisy

Figure F.5: The L1-error plots for the scenario in Section F.

V0 ∼ P (UV0), V2 ∼ P (UV2
) V3 ∼ P (UV3

) where P (UV0
) is a Uniform distribution ranging over 0 to 4; P (UV2

) is
a Uniform distribution ranging over 0 to 1; and P (UV3

) is a Uniform distribution ranging over 0 to 20. For the rest of
variables,

V1 = V0 + UV1

V4 = 0.1 · V0 + UV4

V5 = 0.5(1− logit(V4)) + 0.5 · UV5

V6 = logit (0.3 · V4 + UV6)

V7 = V6 · UV6 + 1V3<1(V3) + 1V3<2(V3)

V8 = UV8(V6),

where UV1 is a Poisson random variable with the parameter 0.2, U4 ∼ Normal(0, 1), UV5 is a Uniform variable ranging
(0, 1), UV6

∼ normal(0, 1), UV6
is an Uniform variable ranging (0.9, 0.99), and UV8

(V6) is a Poisson random variable such
that its parameter follows 2V6, and 1Va<c(Va) is an indicator function for the variable Va for the event Va < c for some
constant c. Finally,

Y ′ = 0.9V ′
4 + 0.8V ′

6 − 0.2V ′
2 + 0.05V ′

5 − 0.015(1− V ′
8) + 0.2V ′

0 + 0.3V1 + 0.5(V3 + 0.25) + 0.6V7 − UY − 0.45,

where {V ′
4 , V

′
6 , V

′
2 , V

′
5 , V

′
8 , V

′
0} are random variables from the normal distribution where the variance is 1 and their means

are {V4, V6, V2, V5, V8, V0}. Finally, Y = logit(7Y ).

For the Case 2, we drop the variable V0, V4, V6, and we used

Y ′ = −0.2V ′
2 + 0.05V ′

5 − 0.015(1− V ′
8) + 0.3V1 + 0.5/(V3/4 + 0.25) + 0.6V7 − UY − 0.45.

We also recommend checking the code data_generator_1.py, data_generator_2.py for the detailed configu-
rations of the data generating processes.

Experimental Results. For the non-noisy setting, the L1-error plots for {Markovian, Direct-cause} cases are presented
in Figs. (F.5a, F.5c) respectively. The DML-based estimator {ϕdml

vi }
n
i=1 outperforms ({ϕipw

vi , ϕreg
vi }

n
i=1) for all N ∈

{100, 1000, 5000, 10000}, and it achieves the smallest variance compared to other estimators. This result corroborates
with the robustness property of the DML-based estimator (see Remark 4). The L1-error plots for the noisy setting for
{Markovian, Direct-cause} cases are presented in Figs. (F.5b, F.5d) respectively. In this case, the DML-based estimator
{ϕdml

vi }
n
i=1 exhibits the debiasedness property against the converging noise, while other estimators converge much slower.

Contrasting with the ICC Approach (Janzing et al., 2020a). We contrast the do-Shapley with the ICC approach (Janzing
et al., 2020a). The do-Shapley measures the feature importance based on the total effect of variables, while the ICC measures
based on their intrinsic effects. It is not possible to quantitatively compare these two contrasting definitions.

We compute the feature importance as proposed in (Molnar, 2020, Chap. 9.6.5), where the importance of the jth feature is
defined as:

Ij :=
1

|D′|
∑

V(j)∈D′

∣∣ϕi(V(j))
∣∣ ,
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(a) do-DML-Shapley (b) ICC

Figure F.6: Feature importance plots for the do-DML-Shapley and the ICC approaches.

S P I M D L E A B
do-DML 0.07 0.12 0.05 0.05 0.03 0.06 0.03 0.12 0.13

ICC 0.12 0.13 0.12 0.13 0.13 0.12 0.12 0.12 0.12

Table 3: Average of feature importances produced by the do-DML-Shapley and ICC approaches.

where ϕi is the Shapley value, and D′ ⊆ D is a subset of samples.

In our experiments, we randomly selected 100 samples and compare the feature importance using the do-DML-Shapley
(ϕdml

vi ) and the ICC approach, denoted ϕicc
vi . The average of the estimated importance of each features described in Example 1

is presented in Table 3. In Fig. F.6, we present the bar-plot for both the do-DML-Shapley and the ICC approaches using the
observations {

∣∣ϕdml
i (V(j))

∣∣}V(j)∈D′ and {
∣∣ϕicc

i (V(j))
∣∣}V(j)∈D′ .

In our experiments, the do-Shapley approach gives that the production needs (P ) has the largest total effect where P is in
fact the variable with largest coefficient (0.9). in our data generating process, whereas ICC approach gives that all variables
have similar intrinsic effects.


