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Abstract

One pervasive task in the empirical sciences is to determine the effect of interven-
tions from observational data. It is well-known that assumptions are necessary
to perform causal inferences, which are commonly articulated through causal di-
agrams [13]. Despite the power of this approach, there are settings where the
knowledge necessary to specify a causal diagram over all observed variables may
not be available, particularly in complex, high-dimensional domains. In this pa-
per, we introduce a new graphical modeling tool called cluster DAGs (for short,
C-DAGs) that allows for the partial specification of relationships among variables
based on limited prior knowledge, alleviating the stringent requirement of spec-
ifying a full causal diagram. A C-DAG specifies relationships between clusters
of variables, while the relationships between the variables within a cluster are left
unspecified, and can be seen as a graphical representation of an equivalence class
of causal diagrams that share the relationships among the clusters. We develop the
foundations and machinery for valid causal inferences over C-DAGs. In particular,
we first prove the soundness and completeness of the d-separation rules extended
to C-DAGs. Secondly, we prove the validity of Pearl’s do-calculus inference rules
over C-DAGs. Lastly, we show that a standard identification algorithm is sound
and complete to systematically compute causal effects from observational data
given a C-DAG.

1 Introduction

One of the central tasks found in data-driven disciplines is to infer the effect of a treatment X on
an outcome Y , which is formally written as the interventional distribution P (Y |do(X = x)), from
observational (non-experimental) data collected from the phenomenon under investigation. These
relations are considered essential in the construction of explanations and for making decisions about
interventions that have never been implemented before [13, 19, 2, 15, 14].

Standard tools necessary for identifying the aforementioned do-distribution, such as d-separation,
do-calculus [12], and the ID-algorithm [21, 18, 7, 10] take as input a combination of an observational
distribution and a qualitative descripion of the underlying causal system, often articulated in the form
of a causal diagram [13]. However, specifying a causal diagram requires knowledge about the causal
relationships among all pairs of observed variables, which is not always available in many real world
applications. This is especially true and acute in complex, high-dimensional settings, which curtails
the applicability of causal inference theory and tools.

In the context of medicine, for example, electronic health records include data on lab tests, drugs,
demographic information, and other clinical attributes, but medical knowledge is not yet advanced
enough to lead to the construction of causal diagrams over all of these variables, limiting use of
the graphical approach to inferring causality [8]. In many cases, however, contextual or temporal
information about variables is available, which may partially inform how these variables are situated
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in a causal diagram relative to other key variables. For instance, data scientist may know that
covariates occur temporally before a drug is prescribed or an outcome occurs. They may even
suspect that some pre-treatment variables are causes of the treatment and the outcome variables.
However, they may be uncertain about the relationships among each pair of covariates, or it may be
burdensome to explicitly define them. Given that a misspecified causal diagram may lead to wrong
causal conclusions, this issue raises the question of whether a coarser representation of the causal
diagram, where no commitment is made to the relationship between certain variables, would still be
sufficient to determine the causal effect of interest.

In this paper, our goal is to develop a framework for identification of causal effects in partially
understood domains such as the medical domain discussed above. We will focus on formalizing the
problem of causal effect identification considering that the data scientist does not have prior knowledge
to specify the full causal diagram or causal relationships over all variables. First, we formally define
and characterize a novel class of graphs called cluster DAGs (or C-DAG, for short), which will allow
for encoding of partially understood causal relationships between variables in different abstracted
clusters, representing a group of variables among which causal relationships are not understood
or specified. Then, we develop the foundations and machinery for valid causal inference, akin to
Pearl’s d-separation and do-calculus for when such a coarser graphical representation of the system is
provided based on the limited prior knowledge available. These are fundamental first steps in terms
of causal semantics and graphical conditions to perform causal inferences over clusters of variables.

Specifically, we outline our technical contributions below.

1. We introduce a new graphical modelling tool called cluster DAGs (or C-DAGs) over a set of
clusters of variables where the relationships amongst the variables inside the clusters are left
unspecified (Definition 1). Semantically, a C-DAG represents an equivalence class of all
compatible causal diagrams that share the relationships among the clusters.

2. We prove the soundness and completeness of Pearl’s d-separation and do-calculus rules
extended to the coarse graphical representation of C-DAGs (Theorems 1, 2 and 3), despite
C-DAGs’ abstracted representation of possibly numerous underlying causal diagrams.

3. We prove that interventional distributions admit a convenient factorization following the C-
DAG’s structure (Theorem 4). This factorization can be used to show that the ID-algorithm is
sound and complete to systematically infer causal effects from the observational distribution
and partial domain knowledge encoded as a C-DAG (Theorem 5).

1.1 Related work

Since a group of variables may constitute a semantically meaningful entity, causal models over
abstracted clusters of variables have attracted increasing attention for the development of more
interpretable tools [17]. Recent developments on causal abstraction have focused on the distinct
problem of investigating mappings of a cluster of (micro-)variables to a single (macro-)variable, while
preserving some causal properties [5, 4, 16, 3]. The result is a new structural causal model defined
on a higher level of abstraction, but with causal properties similar to those in the low-level model.
Other related works include chain graphs [9] and ancestral causal graphs [22] developed to represent
collections of causal diagrams equivalent under certain properties. By contrast, our work proposes a
new graphical representation of a class of compatible causal diagrams, representing limited causal
knowledge when the full structural causal model is unknown.

Causal discovery algorithms can be an alternative for when background knowledge is not sufficient to
fully delineate a causal diagram [13, 19, 15]. However, in general, it is not possible to fully recover
the causal diagram based solely on observational data, without making strong assumptions about the
underlying causal model, including causal sufficiency (all relevant variables have been measured),
the form of the functions (e.g., linearity, additive noise), and the distributions of the error terms
(e.g. Gaussian, non-Gaussian, etc) [6]. Then, there are cases where a meaningful causal diagram
cannot be learned and background knowledge is necessary for its construction. Our work focuses on
establishing a language and corresponding machinery to encode partial knowledge and infer causal
effects over clusters, alleviating some challenges in causal modeling in high-dimensional settings.
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2 Preliminaries

Notation. A single variable is denoted by a (non-boldface) uppercase letter X and its realized value
by a small letter x. A boldfaced uppercase letter X denotes a set (or a cluster) of variables. We use
kinship relations, defined along the full edges in the graph, ignoring bidirected edges. We denote by
Pa(X)G, An(X)G, and De(X)G, the sets of parents, ancestors, and descendants in G, respectively.
A vertex V is said to be active on a path relative to a set Z if 1) V is a collider and V or any of its
descendants are in Z or 2) V is a non-collider and is not in Z. A path p is said to be active given
(or conditioned on) Z if every vertex on p is active relative to Z. Otherwise, p is said to be inactive.
Given a graph G, X and Y are d-separated by Z if every path between X and Y is inactive given Z.
We denote this d-separation by (X⊥⊥Y | Z)G. The mutilated graph GXZ is the result of removing
from G edges coming into variables in X and going out of variables in Z.

Structural Causal Models (SCMs) Formally, an SCMM is a 4-tuple ⟨U,V,F , P (U)⟩, where U
is a set of exogenous (latent) variables and V is a set of endogenous (measured) variables. F is a
collection of functions {fi}|V|

i=1 such that each endogenous variable Vi ∈ V is a function fi ∈ F
of Ui ∪ Pa(Vi), where Ui ⊆ U and Pa(Vi) ⊆ V \ Vi. The uncertainty is encoded through a
probability distribution over the exogenous variables, P (U). Each SCM M induces a directed
acyclic graph (DAG) G(V,E) with bidirected edges, known as a causal diagram, that encodes the
structural relations among V∪U, where every Vi ∈ V is a vertex, there is a directed edge (Vj → Vi)
for every Vi ∈ V and Vj ∈ Pa(Vi), and there is a dashed bidirected edge (Vj L9999K Vi) for every pair
Vi, Vj ∈ V such that Ui ∩Uj ̸= ∅ (Vi and Vj have a common exogenous parent). Performing an
intervention X=x is represented through the do-operator, do(X=x), which represents the operation
of fixing a set X to a constant x, and induces a submodelMx, which isM with fX replaced to x for
every X ∈ X. The post-interventional distribution induced byMx is denoted by P (v \ x|do(x)).

3 C-DAGs: Definition and Properties

Standard causal inference tools typically require causal assumptions articulated through causal
diagrams. We investigate the situations where the knowledge necessary to specify a causal diagram
G(V,E) over the individual variables in V may not be available. In particular, we assume that
variables are grouped into a set of clusters of variables C1, . . . ,Ck that form a partition of V (note
that a variable may be grouped in a cluster by itself) such that we do not have knowledge about the
relationships amongst the variables inside the clusters Ci but we have some knowledge about the
relationships between variables in different groups. We are interested in performing probabilistic
and causal inferences about these clusters of variables; one may consider each cluster as defining a
macro-variable and our aim is to reason about these macro-variables.

To this end, we formally introduce a graphical object called cluster DAGs (or C-DAGs) to capture our
partial knowledge, which is a coarser representation of a causal diagram:
Definition 1 (Cluster DAG or C-DAG). Given a causal diagram G(V,E) and a partition C =
{C1, . . . ,Ck} of V, construct a graph GC(C,EC) over C with a set of edges EC defined as follows:

1. An edge Ci → Cj is in EC if exists some Vi ∈ Ci and Vj ∈ Cj such that Vi ∈ Pa(Vj);

2. A dashed bidirected edge Ci L9999K Cj is in EC if exists some Vi ∈ Ci and Vj ∈ Cj such
that there is a bidirected edge Vi L9999K Vj .

If GC(C,EC) contains no cycles, then we say that C is an admissible partition of V. We then call
GC a cluster DAG, or C-DAG, compatible with G.

Throughout the paper, we will use the same symbols (e.g. Ci) to represent both a cluster node in a
C-DAG GC and the set of variables contained in the cluster in a compatible causal diagram G.

Remark 1. The definition of C-DAGs does not allow for cycles in order to utilize standard graphical
modeling tools that work only in DAGs. An inadmissible partition of V means that the partial
knowledge available for constructing GC is not enough for drawing conclusions using the tools
developed in this paper.

Interestingly, a causal diagram is a C-DAG where each variable forms its own cluster, which means
that all clusters are of size one. In practice, however, the relationships among every pair of variables
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Figure 1: (a): a possible causal diagram over lisinopril (X), stroke (Y ), age (A), blood pressure
(B), comorbidities (C), medication history (D), and sleep quality (S). (b): a C-DAG of (a) with
Z = {A,B,C,D}. (c): a C-DAG of (a) with W = {S,B}, Z = {A,C}. (d): an invalid C-DAG
of (a) with W = {S,B},Z = {A,C,D}; note a cycle is created among (X,W,Z).
may not be known or it may be burdensome to explicitly define them, as is common in fields like
medicine and the social sciences. However, contextual or temporal knowledge may partially inform
how variables are related, such that a C-DAG can be constructed.
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Figure 2: GC1 is the C-DAG for
diagrams (a) and (b) and GC2

is
the C-DAG for diagrams (c) and
(d), where Z = {Z1, Z2, Z3}.
P (y|do(x)) is identifiable in GC1

by backdoor adjustment over Z and
is not identifiable in GC2

.

Remark 2. Although a C-DAG is defined in terms of an un-
derlying causal diagram G, in practice, one will construct a
C-DAG when complete knowledge of the diagram G is unavail-
able. As an example of this construction, consider the diagram
in Fig. 1(a) that illustrates a model of the effect of lisinopril (X)
on the outcome of having a stroke (Y ). If not all the relation-
ships specified in Fig. 1(a) are known, a data scientist cannot
construct a full causal diagram, but may still have enough
knowledge to create a C-DAG. For instance, they may have
partial knowledge that the covariates occur temporally before
lisinopril is prescribed, or that a stroke occurs and the suspicion
that some of the pre-treatment variables are causes of X and
Y . Specifically, they can create the cluster Z = {A,B,C,D}
with all the covariates, and then construct a C-DAG with edges
Z → X and Z → Y . Further, the data scientist may also
suspect that some of the variables in Z are confounded with
X and others with Y , an uncertainty that is encoded in the
C-DAG through the bidirected edges Z L9999K X and Z L9999K Y .
With the additional knowledge that sleep quality (S) acts as a
mediator between the treatment and outcome, the C-DAG in
Fig. 1(b) can be constructed. Note that this C-DAG is consistent
with the true underlying causal diagram in Fig. 1(a), but was
constructed without knowing this diagram and using much less
knowledge than what is encoded in it. Partial knowledge of this
sort couldn’t be formally articulated and used up to this point.
Alternatively, if clusters W = {S,B} and Z = {A,C} are cre-
ated, then the C-DAG shown in Fig. 1(c) would be constructed.
Note that both (a) and (b) are considered valid C-DAGs because
no cycles are created. Finally, if a clustering with W = {S,B} and Z = {A,C,D} is created,
this would lead to the C-DAG shown in Fig. 1(d), which is invalid. The reason is that a cycle
X →W→ Z→ X is created due to the connections X → S, B → C, and D → X in the diagram
(a).

Remark 3. It is important to clarify that a C-DAG GC as defined in Def. 1 is merely a graph over
clusters of nodes C1, ...,Ck, and does not have a priori the semantics and properties of a causal
diagram over macro-variables Ci. It’s not clear, for example, whether the cluster nodes Ci satisfy
the Markov properties with respect to the graph GC. Rather, a C-DAG can be seen as a graphical
representation of an equivalence class of compatible causal diagrams, and represents a collection
of causal diagrams that share the relationships among the clusters while allowing for any possible
relationships among the variables within each cluster. For instance, in Fig. 2, the causal diagrams (a)
and (b) can be represented by C-DAG GC1

(top) and can therefore be thought of as being members of
an equivalence class (EC, for short) represented by GC1

. The same can be concluded for the causal
diagrams (c) and (d), both represented by C-DAG GC2

. The graphical representation of this ECs are
shown in Fig. 3, where on the left we have the space of all possible DAGs, and on the right we have
the space of C-DAGs.

4



Figure 3: Identifying P (y|do(x)) in a C-DAG
means identifying such an effect for the entire class
of causal diagrams represented. In GC1

, the effect
is identifiable (green) because it is identifiable in
G(a), G(b), and all the other causal diagrams repre-
sented. In GC2 , the same effect is non-identifiable
(red), as the encoded partial knowledge is compati-
ble with some causal diagrams in which the effect
is not identifiable (e.g., G(d)).

Given the semantics of a C-DAG as representing
an equivalence class of causal diagrams, what
valid inference can one perform about the cluster
variables given a C-DAG GC? In principle, we
can only draw definite conclusions about prop-
erties shared by all members of the equivalence
class. Going back to Fig. 3, we identify an ef-
fect in a C-DAG (e.g., the C-DAG GC1

in Fig. 2)
whenever this effect is identifiable in all mem-
bers of the EC; e.g., diagrams (a), (b), and all
other diagrams compatible with GC1 . Note that
in this particular EC, all dots are marked with
green, which means that the effect is identifiable
in each of them. On the other hand, if there
exists one causal diagram in the EC where the
effect is not identifiable, this effect will not be
identifiable in the corresponding C-DAG, e.g.,
due to diagram (d) in the figure, the effect is not
identifiable in the C-DAG GC2

.

Interestingly enough, it’s certainly possible that
the effect is identifiable in the true, underlying
causal diagram, but identifiability will not be
warranted if there exists another member of the
EC such that this effect is not identifiable. In fact, this suggests a tradeoff of expressivity versus
identifiability power. On the one hand, C-DAGs are more expressive than DAGs allowing just partial
specification of knowledge to be articulated, while DAGs are more brittle, requiring full knowledge
among all pairs of variables. On the other hand, the identification status of any query will be more
likely to be positive in the case of DAGs than in C-DAGs, since they are much stricter. The modeling
task requires one to find a balance between the amount of knowledge put in the model (C-DAGs) in a
way such that identification may be achieved.

Once the semantics of C-DAGs is well-understood, now we turn our attention to computational issues.
One naive approach to causal inference with cluster variables, e.g. identifying Q = P (Ci|do(Ck)),
goes as follows – first enumerate all causal diagrams compatible with GC; then, evaluate the
identifiability of Q in each causal diagram; finally, output P (Ci|do(Ck)) if all the causal diagrams
give the same answer, otherwise output “non-identifiable”. However, this naive approach will be
time-consuming and impractical in high-dimensional settings - given a cluster Ci of size m, the
number of possible DAG structures over the variables in Ci is super-exponential in m. Can we
perform valid inferences about cluster variables using C-DAGs directly, without enumerating all the
possible underlying causal diagrams? What properties of C-DAGs are shared by all the compatible
causal diagrams? The next two sections present theoretical results to address these questions.

Finally, we note that not all properties of C-DAGs are shared across all the compatible causal diagrams.
To illustrate, consider the case of backdoor paths, i.e., paths between X and Y with an arrowhead
into X , in Fig. 2. The path X L9999K Z→ Y in GC2 is active when not conditioning on Z. However,
the corresponding backdoor paths in diagram (c) are all inactive. Therefore, a d-connection in a
C-DAG does not necessarily correspond to a d-connection in all compatible causal diagrams in the
equivalence class. On the other hand, we show in the next section a pleasant and surprising result
(Theorem 1) that d-separations in a C-DAG do hold in all compatible causal diagrams. This powerful
result is indeed critical to deriving causal inference rules and algorithms that are applicable to all
the causal diagrams compatible with a given C-DAG (Theorems 2-5) regardless of the unknown
relationships within each cluster.

4 D-Separation and do-Calculus in C-DAGs

D-separation [11] and the Pearl’s celebrated do-calculus [12] are fundamental tools in causal inference
from causal diagrams, which have been used extensively in the context of probabilistic and causal
reasoning. In this section, we investigate extending these tools to the coarser representation of a
C-DAG, when the underlying causal diagram is unknown.
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As highlighted previously, a d-connecting path in a C-DAG not necessarily implies that the cor-
responding paths in a compatible causal diagram are connecting. Such paths can be either active
or inactive. However, d-separated paths in a C-DAG correspond to only d-separated paths in all
compatible causal diagrams.2 These observations together, lead to the following definition where the
symbol ∗ represents either an arrow head or tail:
Definition 2 (d-Separation in C-DAGs). A path p in a C-DAG GC is said to be d-separated (or
blocked) by a set of clusters Z ⊂ C if and only if p contains a triplet

1. Ci ∗−∗Cm → Cj such that the non-collider cluster Cm is in Z, or

2. Ci∗→ Cm ←∗Cj such that the collider cluster Cm and its descendants are not in Z.

A set of clusters Z is said to d-separate two sets of clusters X,Y ⊂ C, denoted by (X⊥⊥Y | Z)GC
,

if and only if Z blocks every path from a cluster in X to a cluster in Y.

Specifically, we show in Theorem 1 that the d-separation rules in C-DAGs are sound and complete
in the following sense: whenever a d-separation holds in a C-DAG, it holds for all causal diagrams
compatible with it; on the other hand, if a d-separation does not hold in a C-DAG, then there exists at
least one causal diagram compatible with it for which the same d-separation statement does not hold.
Theorem 1. (Soundness and completeness of d-separation). Consider a C-DAG GC, and let
X,Z,Y ⊂ C. If X and Y are d-separated by Z in GC, then, in any causal diagram G compatible
with GC, X and Y are d-separated by Z in G, that is,

(X⊥⊥Y | Z)GC
=⇒ (X⊥⊥Y | Z)G. (1)

If X and Y are not d-separated by Z in GC, then, there exists a causal diagram G compatible with
GC where X and Y are not d-separated by Z in G.

Armed with the understanding coming from the d-separation rules in C-DAGs, next we extend the
do-calculus rules to causal C-DAGs. An important lemma necessary to prove the soundness of
do-calculus in C-DAGs is whether the mutilation operations in a C-DAG to create GCX

and GCX

carry over to all compatible causal diagrams. This result is shown in the next lemma:
Lemma 1. If a C-DAG GC is compatible with a causal diagram G, then, for X,Z ⊂ C, the mutilated
C-DAG GCXZ

is compatible with the mutilated causal diagram GXZ.

The soundness of do-calculus in C-DAGs as stated in Theorem 2 follows from Theorem 1, and
Lemma 1.
Theorem 2. (Do-calculus in causal C-DAGs). Let GC be a C-DAG compatible with a causal
diagram G associated with an SCMM. For any disjoint subsets of clusters X,Y,Z,W ⊆ C, the
following three rules hold:

Rule 1: P (y|do(x), z,w) = P (y|do(x),w) if (Y ⊥⊥ Z|X,W)GC
X

Rule 2: P (y|do(x), do(z),w) = P (y|do(x), z,w) if (Y ⊥⊥ Z|X,W)GC
XZ

Rule 3: P (y|do(x), do(z),w) = P (y|do(x),w) if (Y ⊥⊥ Z|X,W)GC
XZ(W)

where GCXZ
is obtained from GC by removing the edges into X and out of Z, and Z(W) is the set

of Z-clusters that are non-ancestors of any W-cluster in GCX
.

In Theorem 2, X,Y,Z,W represent both the sets of clusters in GC and the sets of variables
contained in the corresponding sets of clusters.

We show next that the do-calculus rules in C-DAGs are also complete as follows:
Theorem 3. (Completeness of do-calculus). If a do-calculus rule does not apply in a C-DAG GC,
then there exists a causal diagram G compatible with GC for which it also does not apply.

5 Causal Identification in Causal C-DAGs

Equipped with d-separation and do-calculus in C-DAGs, causal inference algorithms developed for a
variety of tasks that rely on a known causal diagram can potentially be extended to C-DAGs [2]. In
this paper, we study the problem of identifying causal effects from observational data in C-DAGs.

2In Appendix ??, we investigate in detail how path analysis is extended to C-DAGs.
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ID-Algorithm

There exists a complete algorithm to determine whether P (y|do(x)) is identifiable from the combina-
tion of the causal diagram G and the observational distribution P (V) [20, 18, 7]. This identification
algorithm, or ID-algorithm for short, is based on the factorization of the interventional distributions
according to the graphical structure, known as the truncated factorization product, i.e.:

P (v \ x|do(x)) =
∑
u

P (u)
∏

k:Vk∈V\X

P (vk|pavk ,uk), (2)

where PaVk
are the endogenous parents of Vk in G and Uk ⊆ U are the exogenous parents of Vk.

We show that the truncated factorization holds in C-DAGs as well, in the following sense.

Theorem 4. (Truncated factorization in C-DAGs.) Let GC be a C-DAG compatible with a causal
diagram G associated with an SCMM = ⟨U,V,F , P (U)⟩. For any X ⊆ C, the following holds

P (c \ x|do(x)) =
∑
u

P (u)
∏

k:Ck∈C\X

P (ck|paCk
,u′

k), (3)

where PaCk
are the parents of the cluster Ck in GC and U′

k ⊆ U such that, for any i, j, U′
i∩U′

j ̸= ∅
if and only if there is a bidirected edge (Ci L9999K Cj) between Ci and Cj in GC.

In Eq. (3), X,C,Ck, PaCk
are the sets of variables contained in the corresponding sets of clusters.

Theorem 4 essentially shows that C-DAGs can be treated as Causal Bayesian Networks (CBNs) [1,
Def. 16] over macro-variables C.

Since the ID-algorithm relies on the truncated factorization, Theorem 4 allows us to prove that the
ID-algorithm is sound and complete to systematically infer causal effects from the observational
distribution P (V) and partial domain knowledge encoded as a C-DAG GC.

Theorem 5. (Soundness and Completeness of ID-algorithm). The ID-algorithm is sound and
complete when applied to a C-DAG GC for identifying causal effects of the form P (y|do(x)) from
the observational distribution P (V), where X and Y are sets of clusters in GC .

The ID algorithm returns a formula for identifiable P (y|do(x)) that is valid in all causal diagrams
compatible with the C-DAG GC. The completeness result ensures that if the ID-algorithm fails to
identify P (y|do(x)) from GC, then there exists a causal diagram G compatible with GC where the
effect P (y|do(x)) is not identifiable.

Appendix ?? contains an experimental study evaluating the ability of C-DAGs to accurately assess
the identifiability of a causal effect while requiring less domain knowledge for their construction.

Examples of Causal Identifiability in C-DAGs

We show examples of identification in C-DAGs in practice. Besides illustrating identification of
causal effects in the coarser graphical representation of a C-DAG, these examples demonstrate that
clustering variables may lead to diagrams where effects are not identifiable. Therefore, care should
be taken when clustering variables, to ensure not so much information is lost in a resulting C-DAG,
such that identifiability is maintained when possible.

Identification in Fig. 1. In diagram (a) the effect of X on Y is identifiable through backdoor
adjustment [13, pp. 79-80] over the set of variables {B,D} In the C-DAG in Fig. 1(b), with cluster
Z = {A,B,C,D}, the effect of X on Y is identifiable through front-door adjustment [13, p. 83] over
S, given by P (y|do(x)) =

∑
s P (s|x)

∑
x′ P (y|x′, s)P (x′). Because this front-door adjustment

holds for the C-DAG in Fig. 1(b) with which diagram (a) is compatible, this front-door adjustment
identification formula is equivalent to the adjustment in the case of diagram (a) and gives the correct
causal effect in any other compatible causal diagram. In the C-DAG in (c), the loss of separations from
the creation of clusters Z = {A,B,C,D} and W = {B,S} render the effect no longer identifiable,
indicating that there exists another graph compatible with (c) for which the effect cannot be identified.

Identification in Fig. 4. In causal diagram (a), the effect of {X1, X2} on {Y1, Y2}
is identifiable by backdoor adjustment over {Z1, Z2} as follows: P (y1, y2|do(x1, x2)) =∑

z1,z2
P (y1, y2|x1, x2, z1, z2)P (z1, z2). Note, however, that the backdoor path cannot be blocked
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(b) GC1

X Y

Z1 Z2

(c) GC2
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Figure 4: (a) : causal diagram G where the effect P (y1, y2|do(x1, x2)) is identifiable. (b) : C-DAG
GC1

with clustering X = {X1, X2}, Y = {Y1, Y2}, and Z = {Z1, Z2}. (c) : C-DAG GC2
with

clustering X = {X1, X2} and Y = {Y1, Y2}. (d) : C-DAG GC3
with clustering Y = {Y1, Y2}

and Z = {Z1, Z2}. The effect P (y|do(x)) is not identifiable in GC1
, but is identifiable in GC2

and
P (y|do(x1, x2)) is identifiable in GC3

.

in the C-DAG G1 (b) with clusters X = {X1, X2}, Y = {Y1, Y2}, and Z = {Z1, Z2}. In
this case, the effect P (y|do(x)) is not identifiable. If the covariates Z1 and Z2 are not clus-
tered together as shown in the C-DAG GC2

(c), the backdoor paths relative to X and Y can
still be blocked despite the unobserved confounders between Z1 and X and between Z2 and
Y. So the effect P (y|do(x)) is identifiable by backdoor adjustment over {Z1, Z2} as follows:
P (y|do(x)) =

∑
z1,z2

P (y|x, z1, z2)P (z1, z2). If the treatments X1 and X2 are not clustered
together as shown in the C-DAG GC3

(d), then the joint effect of X1 and X2 on the cluster Y is iden-
tifiable and given by the following expression: P (y|do(x1, x2)) =

∑
z,x′

1
P (y|x′

1, x2, z)P (x′
1, z).

X1

X2

Y2

Y1

(a) G1

X1

X2

Y2

Y1

(b) G2

X1

X2

Y2

Y1

(c) G3

X Y

(d) GC

Figure 5: (a), (b), and (c) are causal diagrams compatible with the C-DAG GC in (d) where
X = {X1, X2} and Y = {Y1, Y2}. The causal effect P (y1, y2|do(x1, x2)) is identifiable in (a) but
not in (b) or (c). Consequently, the effect P (y|do(x)) is not identifiable from the C-DAG GC.

Identification in Fig. 5. In the causal diagram (a), the effect of the joint intervention
to {X1, X2} on both outcomes {Y1, Y2} is identifiable as follows: P (y1, y2|do(x1, x2)) =
P (y1|x1, x2)

∑
x′
1
P (y2|x′

1, x2, y1)P (x′
1). By clustering the two treatments as X and the two out-

comes as Y, we lose the information that X2 is not a confounded effect of X1 and that Y1 and Y2

are not confounded. If this is the case, as in causal diagrams G2 (b) and G3 (c), the effect would not
be identifiable. Note that the C-DAG (d), representing causal diagrams (a), (b), and (c), is the bow
graph, where the effect P (y|do(x)) is also not identifiable.

6 Conclusions

Causal diagrams are a popular language for specifying the necessary assumptions for causal inference.
Yet, despite their power, the substantive knowledge required to construct a causal diagram – i.e., the
causal and confounded relationships among all pairs of variables – is unattainable in some critical
settings, including in the health and social sciences. This paper introduces a new class of graphical
models which allow for a more relaxed encoding of knowledge. In practice, when a researcher does
not fully know the relationships among certain variables, under some mild assumptions as delineated
by Def. 1, these variables can be clustered together. A causal diagram itself is an extreme case
of a C-DAG where each cluster contains exactly one variable. We prove fundamental results to
allow causal inferences within this equivalence class, which translate to statements about the set of
causal diagrams compatible with the encoded constraints. Specifically, we show that d-separation is
sound and complete even when clusters are considered (Theorem 1) and that Pearl’s do-calculus is
both sufficient and necessary for derivations in C-DAGs (Theorems 2 and 3). We then generalize
the truncated factorization product to when knowledge is available only in C-DAG-form (Theorem
5). Building on these results, we prove that causal identification algorithms can take C-DAGs as
input and are both sound and complete. These results are critical in establishing the foundations for
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C-DAGs and enabling their use in ways comparable to causal diagrams. We hope the new machinery
for C-DAGs will allow researchers to represent complex systems in a simplified way, allowing for
more relaxed causal inferences when substantive knowledge is largely unavailable and coarse.

Broader Societal Impact and Limitations

C-DAGs will have a positive societal impact by enabling researchers to perform causal inferences
in practice, and to do so accurately through using graphs as representations of knowledge and
assumptions, with observational data and the do-calculus. This has the potential to enable causal
inference and discovery in fields where using the more restrictive DAGs is too challenging, leading to
advancements in causal knowledge and understanding. No negative societal impacts of this work are
foreseen since it is a refinement and generalization of known theory.

Challenges or limitations of applying the machinery of C-DAGs include that not all admissible
clusterings are guaranteed to yield an identifiable effect for a corresponding causal diagram where
the effect is identifiable. Obviously, if knowledge of the granularity of the causal diagram is available
(which is a C-DAG where all clusters have size one), this would lead to the purported identification
result. In addition, C-DAGs are assumed to be constructed in this work based on knowledge, albeit
requiring less knowledge than DAGs. The development of tools to assist the construction of a C-DAG
from observational data constitute a very promising research direction. An approach that extends
current structure learning algorithms such as the FCI [23] to learn C-DAGs can be less prone to errors,
computationally less expensive, and statistically more robust since fewer conditional independence
tests will be required. However, because conditional independencies over clusters of variables do not
necessarily correspond to d-separations in C-DAGs, this is a challenging open research problem.
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