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Abstract

Randomized Controlled Trials constitute a powerful tool to learn cause and effect
relationships found throughout a wide range of applied settings. In practice, the
treatment assignment’s compliance is hard to ascertain in many settings since
patients may not feel compelled to take the treatment for various reasons. One
typical quantity investigated in these settings is the local treatment effect (LTE,
for short). The LTE measures the causal effect among compliers, which usually
comes under the assumption of monotonicity (only the ones offered the treatment
are allowed to take it). In this paper, we investigate the challenge of estimating
the LTE density function (instead of its expected value) of a binary treatment
on a continuous outcome given a binary instrumental variable in the presence of
both observed and unobserved confounders. Specifically, we develop two families
of methods for this task, kernel-smoothing and model-based approximations –
the former smoothes the density by convoluting with a smooth kernel function;
the latter projects the density onto a finite-dimensional density class. For both
approaches, we derive double/debiased machine learning (DML) based estimators.
We study the asymptotic convergence rates of the estimators and show that they
are robust to the biases in nuisance function estimation. We illustrate the proposed
methods on synthetic data and a real dataset called 401(k).
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1 Introduction

Controlled experimentation is one powerful tool used throughout the biological, medical, and social
sciences to infer the effect of a certain treatment on a given outcome. The idea is to randomize the
treatment assignment so as to neutralize the effect of the unobserved confounders. In some practical
settings, however, it may be challenging to ascertain that individuals who are selected for treatment
will follow their recommendations. In fact, issues of non-compliance and unmeasured confounders
are quite common and lead to the non-identification of treatment effects in such cases [28, 46, 31, 52].

An approach known as instrumental variables (IVs) has been proposed to try to circumvent this issue
[62]. The idea is to find a variable (or set) that is not the target of the analysis by itself, but that
it will help to control for the unobserved confounding between the treatment and the outcome. In
particular, IVs are special variables that (i) influence the treatment, (ii) do not directly influence the
outcome, and (iii) are not affected by unmeasured confounders. For concreteness, consider a study of
the effect of 401(k) participation (X) on the distribution of net financial assets (Y ) [2]. This setting is
represented in the causal graph in Fig. 1. Note that there exists a dashed-bidirected arrow between X
and Y , which in graphical language represents unobserved confounding affecting both X and Y . The
variable Z in this model represents the eligibility of 401(k). We note that Z qualifies as an instrument
in this case – (i) it does affect the participation of 401(k) (X), (ii) has no direct influence on the net
financial asset (Y ), (iii) is not affected by unmeasured confounders between X and Y . The variable
W represents observed covariates (e.g., income, gender, family size, etc.).
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Figure 2: Densities of outcome Y among compliers under the treatment X = 1. All densities have a
mean 0 and variance 2.

We are interested in the particular setting where only individuals who were offered the treatment may
have access to it [30]. For instance, in the case of 401(k) participation (X = 1), only individuals
who are eligible (Z = 1) would be allowed to join the program. This assumption is known as
monotonicity, which rules out the possibility that any units would respond contrary to the instrument.
Under monotonicity, the causal effect in the subpopulation whose actual treatment X coincides with
the assigned treatment Z (called compliers) is identifiable [30, 2]. The average treatment effect (ATE)
for the compliers is called ‘Local ATE’ (LATE) (or Complier average causal effects, CACE) [30].

The most common quantification of effects in IV settings found in practice is the average (e.g.,
LATE). The average is certainly an informative summary; however, it may fail to capture significant
differences in the causal distributions of the outcome. For instance, consider Fig. 2 that shows the
densities of outcomes Y under treatments X = 1 among compliers (generated from samples drawn
from four synthetic data generating processes represented by the IV graph in Fig. 1, as discussed in
Sec. 5). All of the distributions have the same mean 0 and variances 2. However, the difference in the
distributions are self-evident.
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Y

Figure 1: A causal graph for the IV
setting. Bidirected arrows encode un-
measured confounders.

Most of the prior work on quantifying treatment effects on
outcome distributions focuses on estimating cumulative dis-
tribution functions (CDFs) or quantiles, and little attention
has been given to estimating densities of treatment effects
(refer to Sec. 1.1 for further comparison). As a comple-
ment to CDFs, densities have the benefits of providing more
visually interpretable information of the distribution and en-
abling researchers/practitioners to generate counterfactual
samples. One challenge with estimating densities is that
while CDFs are pathwise-differentiable and enjoy

√
n-rate

estimators (n is the size of data), densities are not (i.e., they
are not regular), and therefore possess no influence functions
nor
√
n-rate estimators without approximations [7, Ch. 3].

In this paper, our goal is to provide methods to estimate densities of local treatment effects in IV
settings under the monotonicity assumption. We develop two families of methods for this task based
on kernel-smoothing and model-based approximations. The former smoothes the density by convolu-
tion with a smooth kernel function; the latter projects the density onto a finite-dimensional density
class based on a distributional distance measure. For both approaches, we construct double/debiased
machine learning (DML) style density estimators [39, 50, 48, 64, 12]. We analyze the asymptotic
convergence properties of the estimators, showing that they can converge fast (i.e.,

√
n-rate) even

when nuisance estimates converge slowly (e.g., n−1/4 rate) (‘debiasedness’1). We illustrate the
proposed methods on synthetic and real data.

1.1 Related work

Our work touches different areas, which we discuss next.

Local average treatment effect. The formal identification results for LATE under the monotonicity
assumption in IV settings were developed by [30, 3]. Building on these results, semiparametric
estimation for LATE has received remarkable attention [2, 55, 22, 57, 44] including robust LATE
estimators that achieve debiasedness [43, 36, 34, 59]. As shown in Fig. 2, however, the average is
sometimes insufficient to capture the treatment effects on distributions.

1Also known as ‘nonparametric doubly robust [33] or ‘rate doubly robust’ [54].
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Local quantile treatment effect. A common approach to quantifying LTEs is to estimate quantiles
or CDFs, which can be studied based on the LATE estimation [1, 2, 14, 23, 15, 29, 41, 17, 63]) using
the fact that the expectation of 1Y≤y(Y ), an indicator that outcome Y exceeds threshold y, reduces
to the quantiles (i.e., replacing Y in LATE with 1Y≤y(Y )).

Non-regular target estimand. Densities are an example of non-regular targets [7, Chap. 3]. One
can approximate a non-regular target with smooth ones such that influence functions and

√
n-rate

estimators can be derived. Two popular used approximation approaches are kernel-smoothing based
(e.g., [48, 6, 38, 18, 32]) and model-based (e.g., [42, 48, 20, 37, 36, 35]).

Causal density estimation. There is no extensive literature on estimating the density of treatment
effects. Most of the results assume that the ignorability/backdoor admissibility holds [51, 45]. [21]
used the kernel-smoothing technique to estimate the density of a treatment effect, and [38] provided a
kernel-smoothing based density estimator that achieves doubly robustness and debiasedness building
on top of the work in [49]. Recently, [35] investigated a model-based approach and developed
estimators that achieve debiasedness properties. Under the IV setting, [10] provides a local polynomial
regression based density estimator for local treatment effects; we are not aware of any work studying
debiased density estimators. As mentioned, this paper investigates both kernel-smoothing and model-
based approaches for estimating local treatment effects under IV settings and develops DML-style
density estimators for both.

2 LTE Estimation – Problem setup

Each variable is represented with a capital letter (X) and its realized value with a small letter (x).
For a discrete (e.g., binary) random variable X , we use 1x(X) to represent the indicator function
such that 1x(X) = 1 if X = x; 1x(X) = 0 otherwise. For a continuous variable X with probability
density p(x) and a function f(x), EP [f(X)] ≡

∫
X f(x)p(x) d[x] where X is the domain for X ,

and ‖f(X)‖ ≡
√

EP [(f(X))2]. f̂ is said to converge to f at rate rn if ‖f̂(x)− f(x)‖ = OP (1/rn).
For a dataset D = {Vi}ni=1, we use ED [f(V )] ≡ (1/n)

∑n
i=1 f(Vi) to denote the empirical mean of

f(V ) with D.

Structural Causal Models (SCMs). We use the language of SCMs as our basic semantic and
inferential framework [46, 4]. An SCMM is a quadrupleM = 〈U, V, P (U), F 〉 where U is a set
of exogenous (latent) variables following a joint distribution P (u) and V is a set of endogenous
(observable) variables whose values are determined by functions F = {fVi

}Vi∈V such that Vi ←
fVi(pai, ui) where PAi ⊆ V and Ui ⊆ U . Each SCMM induces a distribution P (v) and a causal
graph G = G(M) over V in which there exists a directed edge from every variable in PAi to Vi and
dashed-bidirected arrows encode common latent variables (e.g., see Fig. 1). Within the structural
semantics, performing an intervention and setting X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the original equations of X (i.e., fX(pax, ux))
by the constant x and induces a submodelMx and an interventional distribution P (v|do(x)). For
any variable Y ∈ V , the potential response Yx(u) is defined as the solution of Y in the submodel
Mx given U = u, which induces a counterfactual variable Yx.

Local Treatment Effect (LTE) with IV. We consider the IV setting represented by the causal graph
G in Fig. 12, where Z is a binary instrument with domain {0, 1}, X is a binary treatment with domain
{0, 1}, and Y is a (set of) continuous outcomes with bounded domain Y ⊂ Rd, and W is a set of
covariates. G satisfies the IV assumption that Z has no direct influence on outcome Y and is not
affected by unmeasured confounders between X and Y .

The causal density p(y|do(x)) is not identifiable from the observed distribution p(x, y, z, w) due
to unobserved confounders between X and Y . However, the effect may be recovered for certain
subpopulation under additional assumptions. Formally, a unit in the population is an always-taker if
XZ=1 = XZ=0 = 1, a never-taker if XZ=1 = XZ=0 = 0, a complier if XZ=1 = 1, XZ=0 = 0, and
a defier if XZ=1 = 0, XZ=0 = 1 [3, 2]. We will make the following assumptions after the literature.
Assumption 1 (Monotonicity). There are no defiers: XZ=1 ≥ XZ=0.
Assumption 2 (Positivity). P (x|z, w) > 0, P (z|w) > 0 for any x, z, w.

2It is common in the literature to define IV assumptions in terms of conditional independences among
couterfactuals [47, 9, 8, 2, 55, 43, 59], which connection with the causal graph in Fig. 1 is discussed in
Assumption A.1
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Let C denote the event that a unit is a complier. For a given constant a and a variable X , let xa
denote the event X = a. The LTE p(yx|C) is identifiable under monotonicity and is given by [30, 2]:

p(yx|C) =
EP
[
p(y|x, zx,W )P (x|zx,W )− p(y|x, z1−x,W )P (x|z1−x,W )

]
EP [P (x1|z1,W )− P (x1|z0,W )]

, (1)

where the expectation is over W . In this paper, we aim to estimate the LTE density p(yx|C) in Eq. (1).
We will make the following mild assumption on the target, popularly employed in density estimation
(e.g., [40, 24, 26, 56, 25, 38]).
Assumption 3. p(y|w, z, x) and p(yx|C) are bounded and twice differentiable for any x, z, w, y.

The proofs are provided in Appendix B in suppl. material.

3 Kernel-smoothing based approach

In this section, we develop a kernel-smoothing based approach for estimating the LTE density.
The kernel-smoothing technique approximates a non-pathwise-differentiable target estimand with
a differentiable estimand by convoluting the density with a kernel function K(y). Properties of
the kernel function includes symmetry about the origin (i.e.,

∫
Y yK(y) d[y] = 0), non-negativity

(0 < K(y) <∞, ∀y ∈ Y) , and integrates to 1 (i.e.,
∫
Y K(y) d[y] = 1) [60, Chap. 4.2].

We will consider a product kernel Kh,y(y
′) ≡ h−d

∏d
j=1K((yj − y′j)/h) with given bandwidth

h ∈ R and a fixed point y = {yj}dj=1 ∈ Rd. We assume that the kernel of interest has a bounded
second moment and norm: i.e., κ2(K) ≡

∫
Y y

2K(y) d[y] <∞ and ‖K(y)‖ <∞ following [26, 56].
Example of kernels include Gaussian kernel: K(u) = (1/

√
2π) exp

(
−u2/2

)
, Epanechnikov kernel:

K(u) = (3/4)(1 − u2)1|u|≤1(u), Quadratic kernel: K(u) = (15/16)(1 − u2)21|u|≤1(u), Cosine
kernel: k(u) = (π/4) cos (πu/2)1|u|≤1(u), etc.

For convenience, we denote the target estimand by ψ(y) ≡ p(yx|C). We will instead aim to estimate
a kernel-smoothed approximation for ψ(y) defined as follows:

ψh(y) ≡
∫
Y
ψ(y′)Kh,y(y

′) d[y′] = ψ[Kh,y(Y )], (2)

where ψ[f(Y )] for any function f(Y ) is defined as

ψ[f(Y )] ≡
EP
[
EP [f(Y )1x(X)|zx,W ]− EP

[
f(Y )1x(X)|z1−x,W

]]
EP [P (x1|z1,W )− P (x1|z0,W )]

. (3)

The second equality in Eq. (2) is by Eq. (1). For a target estimand ψ[f(Y )], we will denote nuisances
by πz(w) ≡ P (z|w), ξx(z, w) ≡ P (x|z, w), and θ(x, z, w)[f(Y )] ≡ EP [f(Y )1x(X)|x,w], shortly
(π, ξ, θ)).

We aim to construct a DML estimator for the estimand ψh. Toward this goal, we will first derive a
Neyman orthogonal score for ψh. Since a Neyman orthogonal score can be constructed based on
moment score functions (a function of parameters such that its expectation is 0 at the true parameters)
[13, Thm. 1], we start by defining the moment condition. Let

ψX ≡ EP
[
ξx1(z1,W )− ξx1(z0,W )

]
, (4)

VX({π, ξ}) ≡ 1z1(Z)− 1z0(Z)
πZ(W )

{1x1(X)− ξx1(Z,W )}+
{
ξx1(z1,W )− ξx1(z0,W )

}
. (5)

Then, the following is a moment score function for ψh:

m(ψ′;ψh) ≡
1

ψX
(ψh − ψ′)VX , (6)

where ψh is given in Eq. (2) and ψ′ is an estimate of ψh.

Next, we derive an influence function for m(ψ′;ψh). Toward this, we first define the following
function: for any function f(Y ) <∞,

φ(η = {π, ξ, θ}, ψ)[f(Y )] ≡ 1

ψX
(VY X({π, θ})[f(Y )]− ψ[f(Y )]VX({π, ξ})) , (7)
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where VX is defined in Eq. (5), and

VY X({π, θ})[f(Y )] ≡ 1zx(Z)− 1z1−x(Z)

πZ(W )
{f(Y )1x(X)− θ(x, Z,W )[f(Y )]}

+
{
θ(x, zx,W )[f(Y )]− θ(x, z1−x,W )[f(Y )]

}
. (8)

Then, an influence function for the expectation of the moment score function m(ψ′;ψh) in Eq. (6) is
given as follows:
Lemma 1 (Influence function for the score m(ψ′;ψh)). Let m(ψ′;ψh) be the score defined in
Eq. (6). Then, an influence function for EP [m(ψ′;ψh)], denoted φm, is given by

φm(η = {π, ξ, θ}, ψ) ≡ φ(η, ψ)[Kh,y(Y )] (9)
where φ is in Eq. (7).

For any score function (e.g., m in Eq. (6)), its addition to the influence function of the expected score
(e.g., φm) is a Neyman orthogonal score3 ([13, Thm.1], [12, Sec. 2.2.5]). Specifically,
Lemma 2 (Neyman orthogonal score for ψh). Let m(ψ′;ψh) be the score function in Eq. (6), and
φm(η = {π, ξ, θ}, ψh) be the influence function for EP [m(ψ′;ψh)] given in Eq. (9). Then, a Neyman
orthogonal score for ψh is given as ϕ(ψ′; η = {π, ξ, θ}) ≡ m(ψ′;ψh) + φm(η, ψ); Specifically,

ϕ(ψ′; η = {π, ξ, θ}) = 1

ψX
(VY X({π, θ})[Kh,y(Y )]− ψ′VX({π, ξ})) . (10)

Given the Neyman orthogonal score ϕ(ψ′; η), an estimate ψ̂h satisfying
ED
[
ϕ(ψ̂h; η̂ = {π̂, ξ̂, θ̂})

]
= oP (n

−1/2) gives a DML estimator. Specifically, we propose
the following kernel-smoothing based estimator for the LTE density, named ‘KLTE’:
Definition 1 (KLTE estimator for ψh). Let ϕ(ψ′; η = {π, ξ, θ}) be the Neyman orthogonal score
for ψh given in Eq. (10). Let {D,D′} denote the randomly split halves of the samples, where
|D| = |D′| = n. Let η̂ = {π̂, ξ̂, θ̂} denote the estimates for the nuisance η using D′. Then, the KLTE
estimator for ψh(y) for all y ∈ Y , denoted ψ̂h(y), is given by

ψ̂h(y) ≡ ED
[
VY X({π̂, θ̂})[Kh,y(Y )]

]
/ED

[
VX({π̂, ξ̂})

]
, (11)

where VX and VY X are given in Eq. (5,8), respectively.

We will show that KLTE is a DML estimator exhibiting debiasedness property. Detailed asymptotic
properties are discussed next.

3.1 Asymptotic convergence

Now, we study the convergence rate of the estimator ψ̂h(y). For any fixed y ∈ Y , the error
ψ̂h(y) − ψ(y) will be analyzed in two folds: we will first analyze the error between the estimator
in Eq. (11) and the smoothed estimand in Eq. (2) (i.e., ψ̂h(y)− ψh(y)), and then analyze the error
between the smoothed estimand and the true estimand (i.e., ψh(y)− ψ(y)).

The following result gives the error analysis for ψ̂h(y)− ψh(y):
Lemma 3 (Convergence rate of ψ̂h to ψh). For any fixed y ∈ Y , suppose the estimators for
nuisances are consistent; i.e., ‖ν − ν̂‖ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose
h <∞, and nhd →∞ as n→∞. Then,

ψ̂h(y)− ψh(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
,

where

Rk2 ≡
∑
z

‖π̂z − πz‖
{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥} , (12)

where πz ≡ πz(W ), ξz ≡ ξx(z,W ) and θz ≡ θ(x, z,W )[Kh,y(Y )].
3A Neyman orthogonal score is a function φ satisfying EP [φ(ψ, η0)] = 0 and ∂

∂η
EP [φ(V ;ψ, η)]|η=η0 = 0,

where η0 denotes the true nuisance [12, Def.2.2]. In words, a moment condition that is not sensitive to local
errors in nuisance models.
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The error analysis in Lemma. 3 implies the following:
Corollary 1 (Debiasedness property of ψ̂h to ψh). If all nuisances {π̂, ξ̂, θ̂} for any given
(w, z, x, y) converge at rate {nhd}−1/4, then the target estimator ψ̂h(y) achieves

√
nhd-rate conver-

gence to ψh.

We now analyze the gap between the smoothed estimand ψh and the true estimand ψ; i.e., ψh − ψ:
Lemma 4 ([60, Thm. 6.28]). The following holds:

ψh(y)− ψ(y) = By ≡ 0.5h2κ2(K)(∂2/∂2y′)|y′=yψ(y′) +O(h2). (13)

Combining the results of Lemma. (3,4), we have the following result:
Theorem 1 (Convergence rate of ψ̂h to ψ). For any fixed y ∈ Y , suppose the estimators for
nuisances are consistent; i.e., ‖ν − ν̂‖ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose
h <∞, and nhd →∞ as n→∞. Then

ψ̂h(y)− ψ(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
+By, (14)

where By is defined in Eq. (13), and Rk2 is defined in Eq. (12).

Thm. 1 implies that ψ̂h(y) converges fast (see Corol. 1) to ψ(y)+By . A natural question is then how
to choose the bandwidth h that minimizes the gap in Eq. (14). The following provides a guideline in
choosing the bandwidth h:
Lemma 5 (Data-adaptive bandwidth selection). The bandwidth h that minimizes the error in
Eq. (14) is h = O(n−1/(d+4)). This choice of h satisfies the assumption in Lemma. 3 that nhd →∞.

Recall that Corol. 1 states the debiasedness property of ψ̂h to ψh for any bandwidth h satisfying
nhd →∞. With the choice of h as in Lemma 5, ψ̂h converges to ψ with the debiasedness property
preserved.
Corollary 2 (Debiasedness property of ψ̂h to ψ). Let h = O(n−1/(d+4)). If nuisances {π̂, ξ̂, θ̂}
converge at {nhd}−1/4 rate for any (w, z, x, y), then the target estimator ψ̂h(y) achieves

√
nhd-rate

convergence to ψ.

So far, we have analyzed the error ψ̂h(y) − ψ(y) pointwise for the fixed y ∈ Y . To analyze the
‘gap’ between the two densities ψ̂h(y) and ψ(y) for all y ∈ Y , we consider the following divergence
function of two densities:
Definition 2 (f -Divergence Df [19]). Let f denote a convex function with f(1) = 0. Df (p, q) ≡∫
Y f(p(y), q(y))q(y) d[y], is a f -divergence function between two densities p, q.

f -divergence covers many well-known divergences. For example, Df reduces to KL divergence with
f(p, q) = (p/q) log(p/q). We will assume that the function f(p, q) in Df is differentiable w.r.t. p
and q.

We now analyze the distance between ψ̂h and ψ w.r.t. Df . The following result provides an upper
bound for Df .
Lemma 6 (Upper bound of the divergenceDf ). SupposeDf is a f -divergence such that f(p, q) =
0 if p = q. Then,

Df (ψ, ψ̂h) ≤
∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y],

where w(y) ≡ f ′2(ψ(y), ψ̃(y))ψ̂h(y), f ′2(p, q) ≡ (∂/∂q)f(p, q), and ψ̃h(y) ≡ tψ̂h(y)+ (1− t)ψ(y)
for some fixed t ∈ [0, 1].

By invoking Thm. 1, we derive an upper bound for Df (ψ, ψ̂h) as follows:

Theorem 2 (Convergence rate of ψ̂h). Suppose the estimators for nuisances are consistent; i.e.,
‖ν − ν̂‖ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x, y). Suppose Df is a f -divergence such that
f(p, q) = 0 if p = q. Suppose w(y) in Lemma 6 is finite. Then,

Df (ψ, ψ̂h) ≤ OP
(
sup
y∈Y

{
Rk2 +By

}
+ 1/

√
nhd + 1/

√
n

)
, (15)

where Rk2 is defined in Eq. (12) and By is defined in Eq. (13).
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The following result asserts that the debiasedness property is exhibited w.r.t. Df :

Corollary 3 (Debiasedness property of ψ̂h w.r.t. Df ). Let h = O(n−1/(d+4)). Suppose Df

satisfies f(p, q) = 0 if p = q. Suppose w(y) in Lemma 6 is finite. If nuisances {π̂, ξ̂, θ̂} converges at
{nhd}−1/4 rate for any (w, z, x, y), then Df (ψ, ψ̂h) converges to 0 at

√
nhd-rate.

4 Model-based approach

In this section, we develop a model-based approach for estimating the LTE density ψ(y) = p(yx|C).
We will approximate ψ with a class of distributions or a density model G = {g(y;β) : β ∈ Rb}
where g(y;β) ∈ G is differentiable w.r.t. β. Example density models include exponential family (e.g.,
Gaussian distribution), mixture of Gaussians, or more generally, mixture of exponential families. We
adapt the model-based approach developed in [35] for estimating the causal density under the no
unmeasured confounders assumption.

Given a density model G, the best approximation for ψ(y) is defined as g(y;β0) ∈ G that achieves
the minimum f -divergence to ψ:

β0 ≡ arg min
β∈Rb

Df (ψ(y), g(y;β)), (16)

where Df is the f -divergence defined in Def. 2. Our goal is estimating β0.

Consider m(β;ψ) ≡ (∂/∂β)Df (ψ(y), g(y;β)). Definition of β0 given in Eq. (16) implies that
m(β;ψ) = 0 at β = β0. We note that m(β;ψ) serves as a moment score function. The closed-form
expression of the score is given by [35]:

m(β;ψ) ≡
∫
Y
g′(y;β) {f ′2(ψ(y), g(y;β))g(y;β) + f(ψ(y), g(y;β))} d[y], (17)

where g′(y;β) = (∂/∂β)g(y;β) and f ′2(p, q) ≡ (∂/∂q)f(p, q).

To construct a DML estimator based on the score function m(β;ψ), we first derive an influence
function for the score:
Lemma 7 (Influence Function form(β, ψ)). An influence function form(β;ψ) in Eq. (17), denoted
φm, is given by

φm(β; η = {π, ξ, θ}, ψ) ≡ φ(η, ψ)[Rf (Y ;β, ψ)], (18)

where φ(η, ψ)[·] is defined in Eq. (7), and

Rf (Y ;β, ψ) ≡ g′(Y ;β) {f ′′21(ψ(Y ), g(Y ;β))g(Y ;β) + f ′1(ψ(Y ), g(Y ;β))} ,

where g′(y;β) ≡ (∂/∂β)g(y;β), f ′1(p, q) ≡ (∂/∂p)f(p, q) and f ′′21(p, q) ≡ (∂/∂p)f ′2(p, q).

We derive a Neyman orthogonal score based on the moment score m(β, ψ) and its influence function
φm(β, η, ψ):
Lemma 8 (Neyman orthogonal score for β). A Neyman orthogonal score for estimating β, denoted
ϕ(β′; (η = {π, ξ, θ}, ψ)), is given by

ϕ(β′; (η = {π, ξ, θ}, ψ)) ≡ m(β′, ψ) + φm(β, η, ψ), (19)

where φm(β, η, ψ) is defined in Eq. (18).

Given the orthogonal score ϕ(β′; (η, ψ)) in Eq. (19), we propose the following estimator for β,
named ‘MLTE’ (model-based estimator for LTE):
Definition 3 (MLTE estimator for β). Let ϕ(β′; η = {π, ξ, θ}, ψ) be the Neyman orthogonal
score for β given in Eq. (19). Let {D,D′} denote the randomly split halves of the samples, where
|D| = |D′| = n. Let η̂ = {π̂, ξ̂, θ̂} denote the estimators for the nuisance η using D′. Then, the

MLTE estimator for β, denoted β̂, is given as a solution satisfying ED
[
ϕ(β̂; η̂, ψ̂)

]
= oP (n

−1/2).

To illustrate, we exemplify Eq. (17) and Lemma (7, 8) for the case where Df is a KL-divergence
and g(y;β = {µ, σ2}) is a normal distribution. First, m(β;ψ) = {mµ(µ;ψ),mσ(σ

2;ψ, µ)}, where
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mµ(µ;ψ, σ) = (1/σ2) (ψ[Y ]− µ) and mσ(σ
2;ψ, µ) = (0.5/σ4)

(
σ2 − ψ[(Y − µ)2]

)
. We note

that µ̂m ≡ ψ̂[Y ] and σ̂2
m ≡ ψ̂[(Y − µ̂)2] are estimators for β0 = {µ0, σ

2
0} for the score m(β;ψ).

Also, Rf (Y ;β, ψ) ≡ −(∂/∂β) log (g(Y ;β)) = {Rf (Y ;µ, ψ), Rf (Y ;σ2, ψ)}, where
Rf (Y ;µ, ψ) ≡ (µ− Y )/σ2 and Rf (Y ;σ2, ψ) ≡ 0.5{σ2 − (Y − µ)2}/σ4. Then, the Neyman or-
thogonal score is given as ϕ(µ;σ2, η, ψ) = (1/σ2) {µ− ψ[Y ]− φ(η, ψ)[Y ]} and ϕ(σ2;µ, η, ψ) =
(0.5/σ4)

{
σ2 − ψ[(Y − µ)2]− φ(η, ψ)[(Y − µ)2]

}
. Finally, solutions for ϕ(µ;σ2, η, ψ) and

ϕ(σ2, µ; η, ψ) are given by (µ̂, σ̂2), where, for φ[·] in Eq. (7), µ̂ = ψ̂[Y ] + ED
[
φ(η̂, ψ̂)[Y ]

]
and

σ̂2 = ψ[(Y − µ̂)2] + ED
[
φ(η̂, ψ̂)[(Y − µ̂)2]

]
.

The MLTE estimator in Def. 3 is consistent provided that nuisances estimates η̂ are consistent [13,
Thm.4]. Such β̂ is known to achieve debiasedness [12], since β̂ is a DML estimator. Specifically,

Theorem 3 (Convergence rate of β̂). Let ϕ(β′; (η = {π, ξ, θ}, ψ) be given in Eq. (19).
Let φm(β, η, ψ) be given in Eq. (18). Let β0, η0, ψ0 denote the true parameters. Let β̂
be the MLTE estimator for β defined in Def. 3. Suppose (1) Rf (y;β, ψ) is bounded and
R′f (y;β, ψ) ≡ (∂/∂ψ)Rf (y;β, ψ) < ∞; (2) There exists a function H(y) < ∞ s.t.
supβ,ψmax{Rf (y;β, ψ), R′f (y;β, ψ)} = O (H(y)); (3) {ϕ(β; (η, ψ))} is Donsker4 w.r.t. β for
the fixed η; (3) The estimators are consistent: β̂ − β0 = oP (1) and ‖ν − ν̂‖ = oP (1) for
ν ∈ {πz(w), ξx(z, w), θ(x, z, w)[H(Y )]} for all (w, z, x, y); and (4) EP [ϕ(β; (η, ψ))] is differen-
tiable w.r.t. β at β = β0 with non-singular matrix M(β0, (η, ψ)) ≡ (∂/∂β)|β=β0EP [ϕ(β; (η, ψ))]

for all (η, ψ), where M(β0, (η̂, ψ̂))
P→M ≡M(β0, (η0, ψ0)). Then,

β̂ − β0 = −M−1ED [φm(β0; (ψ0, η0))] + oP (n
−1/2) +OP (R

m
2 ),

where

Rm2 =
∑
z

(
‖π̂z − πz‖

{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥}+
∥∥∥ξ̂z − ξz∥∥∥2 + ∥∥∥θz − θ̂z∥∥∥2 + ∥∥∥ξ̂z − ξz∥∥∥∥∥∥θz − θ̂z∥∥∥) ,

where πz ≡ πz(W ), ξz ≡ ξx(z,W ), and θz ≡ θ(x, z,W )[H(Y )].

Corollary 4 (Debiasedness property for β̂). If nuisances {π̂, ξ̂, θ̂} converges at n−1/4 rate, then
the target estimator β̂ converges to β0 at

√
n-rate.

For the above example where Df is the KL divergence and g(y;β) is a normal distribution, H(Y ) =
Y for Rf (y;µ, ψ), and H(Y ) = Y 2 for Rf (y;σ2, ψ).

5 Empirical applications

In this section, we apply the proposed methods to synthetic and real datasets. For the kernel-smoothing
based approach, we compare KLTE with a baseline plug-in estimator (‘kernel-smoothing’), where
estimates of nuisances η̂ = {π̂, ξ̂, θ̂} are plugged in the estimand Eq. (2). We use the Gaussian kernel.
The bandwidth is set to h = 0.5n−1/5. In estimating the density, we choose 200 equi-spaced points
{y(i)}200i=1 in Y and evaluate both estimators at Kh,y(i) for i = 1, · · · , 200. For the model-based
approach, we compare MLTE (e.g., µ̂, σ̂2) with a moment-score-based estimator (called ‘moment’),
defined as β̂m satisfying m(β̂m; ψ̂) = oP (n

−1/2) (e.g., {µ̂m, σ̂2
m}). We use KL divergence for Df

and the normal distribution for g(y;β). For both approaches, nuisances are estimated through a
gradient boosting model XGBoost [11], which is known to be flexible.

5.1 Synthetic datasets

We applied the proposed estimators to estimate the LTE p(yx|C) where the true densities are given as
in the 4th plot in Fig. 2. As shown in the ground-truth in Fig. 3a, true densities p(yx0 |C), p(yx1 |C)
are given as a mixture of four Gaussians. Estimated densities for Moment and MLTE are given in

4A function class where complexities are restricted. Refer [58, Page 269] for the definition. Donsker class
include Sobolev, Bounded monotone, Lipschitz class, etc.
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Fig. (3b, 3c). We note that model-based approaches fail to capture important characteristics (such as
the number of modes) of the true density (‘ground-truth’ in Fig. 3a) because the assumed density
class is misspecified. The ‘kernel-smoothing’ (Fig. 3d) captures only one of the modes having the
highest densities, and this leads to misinterpretation of the true densities. KLTE (Fig. 3e) is able to
capture the number, location, and scales of modes correctly.

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

x0
x1

(a) Ground-truth

0.0

0.1

0.2

0.3

0.4

−2 −1 0 1 2

x0
x1

(b) Moment

0.0

0.1

0.2

0.3

0.4

−2 −1 0 1 2

x0
x1

(c) MLTE

0.000

0.025

0.050

0.075

−2 −1 0 1 2

Y0
Y1

(d) Kernel-smoothing

0.00

0.01

0.02

0.03

−2 −1 0 1 2

Y0
Y1

(e) KLTE

Figure 3: LTE estimation with a synthetic dataset. The ground-truth density is in (a). Red and Green
for x0 and x1, respectively.

5.2 Application to 401(k) data

We applied the proposed estimators (KLTE and MLTE) on 401(k) data, where the data generating
processes corroborate with Fig. 1. Monotonicity assumption holds naturally, since ineligible units
(Z = 0) cannot participate (X = 1) in 401(k). In our analysis, we used the dataset introduced
by [2] containing 9275 individuals, which has been studied in [2, 16, 5, 43, 53, 59], to cite a few.
Model-based approaches (Moment in Fig. 4a and MLTE in Fig. 4b) and kernel-smoothing based
approaches (kernel-smoothing in Fig. 4c and KLTE in Fig. 4d) are implemented to analyze the data.

The model-based (Fig. (4a,4b)) and kernel-smoothing based (Fig. (4c,4d)) estimates both capture
important characteristics of the distribution, such as mode, location, and scale parameters. The results
of proposed estimators (MLTE and KLTE in Fig. (4b,4d)) are consistent with findings from previous
analyses [2, 16, 5, 53]: The effects of the 401(k) participation (i.e., X = 1) on net financial assets
are positive over the whole range of asset distributions. To connect to CDF method, we provide in
Fig. 4e the CDF estimate induced by KLTE density estimation (Fig. 4a). We note that the CDF in
Fig. 4e captures the nonconstant impact trend of the 401(k) participation on the net financial assets,
which has been also described in the previous analyses [2, 16, 5, 53].
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Figure 4: LTE of 401(k) participation (X) on net financial asset (Y ). Red and Green for x0 and x1,
respectively.

6 Conclusion

In this paper, we develop kernel-smoothing-based and model-based approaches for estimating the
LTE density in the presence of instruments. For each approach, we give Neyman orthogonal scores
(Lemma (2,8)) and constructed corresponding DML estimators (KLTE in Def. 1 and MLTE in Def. 3),
that exhibit debiasedness property (Corol. (3, 4)). We demonstrated our work through synthetic and
real datasets. The performance of model-based estimators depends critically on the choice of the
density class. Kernel-based estimators do not have to make assumptions about the true density class
but will suffer from the curse of dimensionality.
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Appendix – Double Machine Learning Density Estimation for
Local Treatment Effects with Instruments

A IV Settings and LTE

In this work, we consider the IV setting represented by the causal graph G in Fig. 1. It is common in
the literature to define IV assumptions in terms of conditional independences among counterfactuals
[2, 55, 43, 59], as given in the following:
Assumption A.1 (IV assumptions).

1. Exclusion restriction: Yx,z = Yx almost surely for all z, x.

2. Independence: Z ⊥⊥ (Yx, Xz)|W for all z, x.

3. Instruments relevance: P (XZ=1 = 1|W ) 6= P (XZ=0 = 1|W ) almost surely.

We show that the causal graph in Fig. 1 captures the set of IV assumptions in Assumption A.1.
Lemma A.1. The causal graph G in Fig. 1 satisfies the set of IV assumptions in Assumption A.1.

Proof. We will show the first item. We have Yx,z = Yx,z,Wx
= Yx,Wx

= Yx, where the first equality
is due to the composition property [46, Property 1 (pp. 229)], the second due to exclusion restrictions
[46, Eq.(7.25)], and the third by composition.

We will show the second. We have (Zw ⊥⊥ {W,Xz,w, Yx,w}) by independence restrictions [46,
Eq.(7.26)]. Then by the weak union graphoid axiom (Refer [46, pp.11]), (Zw ⊥⊥ {Xz,w, Yx,w}|W ),
which leads to (Z ⊥⊥ (Yx, Xz)|W ) by composition.

We will show the third. By (Z ⊥⊥ Xz|W ), P (xz|w) = P (xz|w, z) = P (x|w, z), where the second
equality is by composition. The third assumption is reflected by that X is not independent of Z given
W in G.

Definition A.1 (Local treatment effect (LTE) density). The local treatment effect (LTE) density is
the density of outcome Y under treatment X = x among compliers (i.e., XZ=1 = 1 and XZ=0 = 0)
denoted by p(yx|XZ=1 = 1, XZ=0 = 0). We will use C = (XZ=1 = 1 ∧XZ=0 = 0) to denote the
event that a unit is a complier and write the LTE density as p(yx|C).

The LTE density p(yx|C) is known to be identifiable under monotonicity in the IV settings [30, 2]. In
the notations of this paper, we present the identification results as follows, where for a given constant
a and a variable X , xa denotes the event X = a.
Lemma A.2. In the causal graph G in Fig. 1, p(yx|w,C) is identifiable under monotonicity and is
given by

p(yx|w,C) =
p(y|x, zx, w)P (x|zx, w)− p(y|w, x, z1−x)P (x|z1−x, w)

P (x1|z1, w)− P (x1|z0, w)
.

Theorem A.1. In the causal graph G in Fig. 1, the LTE density p(yx|C) is identifiable under
monotonicity and is given by

p(yx|C) =
∫
W [p(y|x, zx, w)P (x|zx, w)− p(y|w, x, z1−x)P (x|z1−x, w)]P (w) d[w]∫

W [P (x1|z1, w)− P (x1|z0, w)]P (w) d[w]

≡
EP
[
p(y|x, zx,W )P (x|zx,W )− p(y|x, z1−x,W )P (x|z1−x,W )

]
EP [P (x1|z1,W )− P (x1|z0,W )]

.

B Proofs

Notations We will use Pε ≡ P (1 + εg), where g is a mean zero bounded random function, to
denote a parametric submodel for the probability measure P . Also, we note that the causal effect
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ψ[f(Y )] in Eq. (3) can be written as

ψY X [f(Y )] ≡ EP
[
θy(x, z

x,W )[f(Y )]− θy(x, z1−x,W )[f(Y )]
]

(B.1)

ψX ≡ EP
[
ξx1(z1,W )− ξx1(z0,W )

]
, (B.2)

for πz(w) ≡ P (z|w), ξx(z, w) ≡ P (x|z, w) and θy(x, z, w) = EP [f(Y )1x(X)|z, w]
Lemma S.1 ([58, Thm.5.31],[35, Lemma 3]). Let φ(V; θ, η) denote a vector estimating function
for target parameter θ ∈ Rp and nuisance functions η ∈ H for some function space H . Suppose
EP [φ(V; θ0, η0)] = 0 (where θ0, η0 denote true parameters) and define the estimator θ̂ as a solution

to ED
[
φ(V; θ̂, η̂)

]
= oP (n

−1/2), where η is estimated on a separate independent sample. Assume

1. {φ(V; θ, η) : θ ∈ Rp} is Donsker for any fixed η.

2. θ̂ − θ0 = oP (1) and ‖η̂ − η‖2 = oP (1).

3. The map θ 7→ EP [φ(V; θ, η)] is differentiable at θ0 uniformly in η, with non-singular

matrix M(θ0, η) ≡ (∂/∂θ)|θ0EP [φ(V; θ, η)], where M(θ0, η̂)
P→M ≡M(θ0, η0).

Then,

θ̂ − θ0 = −M−1ED [φ(V; θ0, η0)]−M−1EP [φ(V; θ0, η̂)] + oP (n
−1/2).

B.1 Proofs for Sec. 3

Lemma S.2 ([27, Proof of Thm. 1]). For a target estimand γ ≡
EP
[
EP
[
f(Y )|x1,W

]
− EP

[
f(Y )|x0,W

]]
for binary X ∈ {0, 1} and f(·) < ∞, an

influence function φγ is given by

φγ ≡
1x1(X)− 1x0(X)

P (X|W )
(f(Y )− EP [f(Y )|X,W ]) +

(
EP
[
f(Y )|x1,W

]
− EP

[
f(Y )|x0,W

])
− γ.

Lemma S.3. An influence function for ψ[f(Y )] for f(Y ) <∞ is given by the mapping function in
Eq. (7), which is

φ(η = {π, ξ, θ}, ψ)[f(Y )] ≡ 1

ψX
(VY X({π, θ})[f(Y )]− ψ[f(Y )]VX({π, ξ})) .

Proof. We note that the estimand is given as ψ[f(Y )] = ψY X [f(Y )]/ψX , where

ψX = EP
[
ξx1

(z1,W )− ξx1
(z0,W )

]
(B.3)

ψY X [f(Y )] = EP
[
θ(x, zx,W )[f(Y )]− θ(x, z1−x,W )[f(Y )]

]
. (B.4)

By Lemma S.2, influence functions corresponding to ψX and ψY X [f(Y )], denoted φX and
φY X [f(Y )] respectively, are given as

φX ≡
1z1(Z)− 1z0(Z)

πZ(W )
(1x1(X)− ξx1

(Z,W )) +
(
ξx1

(
z1,W

)
− ξx1

(
z0,W

))
− ψX

(B.5)

φY X [f(Y )] ≡ 1zx(Z)− 1z1−x(Z)

πZ(W )
(f(Y )1x(X)− θ(x, Z,W )[f(Y )])

+
(
θ(x, zx,W )[f(Y )]− θ(x, z1−x,W )[f(Y )]

)
− ψY X [f(Y )]. (B.6)

(YJ, from R4) 1. “ influence(A)/B - influence(B)A/B2, just like the quotient rule for differentiation.
Is this obvious?”;
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Then, by chain rule, an influence function for ψ[f(Y )] = ψY X [f(Y )]/ψX is given as
1

ψX
(φY X [f(Y )]− ψ[f(Y )]φX [f(Y )])

=
1

ψX
(
VY X [f(Y )]− ψY X [f(Y )]− ψ[f(Y )]

(
VX [f(Y )]− ψX [f(Y )]

))
=

1

ψX
(VY X [f(Y )]− ψ[f(Y )]VX)− ψ[f(Y )] + ψ[f(Y )]

=
1

ψX
(VY X [f(Y )]− ψ[f(Y )]VX) .

Lemma B.1 (Restated Lemma 1). Let m(ψ′;ψh) be the score defined in Eq. (6). Then, an influence
function for EP [m(ψ′;ψh)], denoted φm, is given by

φm(η = {π, ξ, θ}, ψ) ≡ φ(η, ψ)[Kh,y(Y )] (B.7)

where φ is given as

φ(η = {π, ξ, θ}, ψ)[f(Y )] ≡ 1

ψX
(VY X({π, θ})[f(Y )]− ψ[f(Y )]VX({π, ξ}))

Proof. Let φX denote an influence function corresponding to ψX , given in Eq. (B.5). This implies
that EP [VX ] = ψX . Then,

EP [m(ψ′;ψh)] = EP
[

1

ψX
(ψh − ψ′)VX

]
=

1

ψX
(ψh − ψ′)EP [VX ] = ψh − ψ′.

Then, an influence function for EP [m(ψ′;ψh)] coincides with the influence function for ψh, which
is is given by Eq. (B.7) based on Lemma S.3.

Lemma B.2 (Restated Lemma 2). Let m(ψ′;ψh) be the score function in Eq. (6), and φm(η =
{π, ξ, θ}, ψh) be the influence function for EP [m(ψ′;ψh)] given in Eq. (9). Then, a Neyman
orthogonal score for ψh is given as ϕ(ψ′; η = {π, ξ, θ}) ≡ m(ψ′;ψh) + φm(η, ψ); Specifically,

ϕ(ψ′; η = {π, ξ, θ}) = 1

ψX
(VY X({π, θ})[Kh,y(Y )]− ψ′VX({π, ξ})) . (B.8)

Proof. For a score function for ψ, denoted m(·), and an influence function for EP [m(·)], denoted
φm(·), a Neyman orthogonal score for ψ is given asm+φm [13, Thm. 1]. Applying this,m(ψ′;ψh)+
φm(η, ψh) is a Neyman orthogonal score. Specifically,

ϕ(ψ′; η = {π, ξ, θ})
= m(ψ′;ψh) + φm(η, ψh)

=
1

ψX
(ψ[Kh,y(Y )]− ψ′)VX +

1

ψX
(VY X({π, θ})[Kh,y(Y )]− ψ[Kh,y(Y )]VX({π, ξ}))

=
1

ψX
(VY X(η = {π, ξ, θ})[Kh,y(Y )]− ψ′VX({π, ξ})) .

Lemma B.3 (Restated Lemma 3). For any fixed y ∈ Y , suppose the estimators for nuisances are
consistent; i.e., ‖ν − ν̂‖ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose h < ∞, and
nhd →∞ as n→∞. Then,

ψ̂h(y)− ψh(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
,

where

Rk2 ≡
∑
z

‖π̂z − πz‖
{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥} , (B.9)

where πz ≡ πz(W ), ξz ≡ ξx(z,W ) and θz ≡ θ(x, z,W )[Kh,y(Y )].

15



Proof. We note that the condition nhd → ∞ means that h = O(n−α) for some α < 1/d. h < ∞
implies that such h is either constant or decreasing function over n. Combining, the condition implies
h = O(n−α) for α ∈ [0, 1/d).

We recall that ψX , ψY X are defined in Eq. (B.2.B.1) and VX ,VY X are defined in Eq. (5,8).

Now, we will prove this Lemma through the master result in Lemma S.1. The KLTE estimator ψ̂h in
Eq. (11) satisfies ED

[
ϕ(ψ̂h, η)

]
= oP (n

−1/2), because

ED
[
ϕ(ψ̂h, η)

]
=

1

ψX

(
ED [VY X [Kh,y(Y )]]− ψ̂hED [VX ]

)
=

1

ψX

(
ED [VY X [Kh,y(Y )]]− ED [VY X [Kh,y(Y )]]

ED [VX ]
ED [VX ]

)
= 0.

We have that the score function ϕ in Lemma 2 satisfies the assumptions in Lemma S.1, since ϕ is a
linear function of ψ when nuisances are fixed. Also, M in Lemma S.1 is given as −1. (YJ, from R4)
why is M = −1 obvious?

Then, by the result of Lemma S.1,

ψ̂h − ψh = ED [φm(ψh, η)] + EP [φm(ψh, η̂)] + oP (n
−1/2).

We will first study the convergence behavior of ED [φm(ψh, η)]. We will show that
EP [ED [φm(ψh, η)]] = O

(
1/
√
nhd

)
. Then, ED [φm(ψh, η)] being

√
nhd-consistency (i.e.,

ED [φm(ψh, η)] = OP (1/
√
nhd)) can be shown immediately by Markov inequality. This im-

plies that ED [φm(ψh, η)] is consistent if nhd →∞. Let φm(Vi, ψ, η) denote the influence function
evaluated at Vi ∈ D. Consider the following:

EP [|ED [φm(ψh, η)]|] ≤
√

EP
[
(ED [φm(ψh, η)])

2
]

=
√

varP (ED [φm(ψh, η)])

=
√
(1/n)EP [φ2m(ψh, η)],

where the first inequality is by Cauchy-Schwarz inequality, the second and third equality are from the
iid assumption and EP [φm] = 0.

We note that

φm =
1

ψX
(VY X [Kh,y(Y )]− ψhVX)

=
1

ψX
(VY X [Kh,y(Y )]− ψhVX) +

ψY X [Kh,y(Y )]

ψX
− ψX

ψX
ψh︸ ︷︷ ︸

=0

=
1

ψX
({
VY X [Kh,y(Y )]− ψY X [Kh,y(Y )]

}
− ψh

{
VX − ψX

})
=

1

ψX
(φY X [Kh,y(Y )]− ψhφX) .

Next,

EP
[
φ2m(ψh, η)

]
= EP

[
1

ψ2
X

{φXY [Kh,y(Y )]− ψhφX}2
]

=
1

ψ2
X

EP
[
{φXY [Kh,y(Y )]− ψhφX}2

]
=

1

ψ2
X

EP
[
φ2XY [Kh,y(Y )] + ψ2

hφ
2
X − 2φXY [Kh,y(Y )]φXψh

]
.
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We first analyze EP
[
φ2XY [Kh,y(Y )]

]
= varP [φXY [Kh,y(Y )]]. By [27, Thm. 1],

varP [φXY [Kh,y(Y )]] = EP

[
VarP (Kh,y(Y )1x(X)|zx,W )

πzx(W )
+

VarP
(
Kh,y(Y )1x(X)|z1−x,W

)
πz1−x(W )

]
+ EP

[{
EP [Kh,y(Y )1x(X)|zx,W ]− EP

[
Kh,y(Y )1x(X)|z1−x,W

]
− ψY X [Kh,y]

}2]
.

First,
EP [VarP (Kh,y(Y )1x(X)|zx,W )] = O (varP (Kh,y(Y ))) (B.10)

= O

(∫
Y
K2
h,y(Y ) d[y]

)
= O

(
(1/h2d)

∫
Y
K2((Y − y)/h) d[y]

)
= O

(
(1/hd)

∫
U
K2(u) d[u]

)
= O(1/hd). (B.11)

The first equality holds by Law of total variance, the second by

Also,

EP
[{

EP [Kh,y(Y )1x(X)|zx,W ]− EP
[
Kh,y(Y )1x(X)|z1−x,W

]
− ψY X [Kh,y]

}2]
= varP

({
EP [Kh,y(Y )1x(X)|zx,W ]− EP

[
Kh,y(Y )1x(X)|z1−x,W

]})
≤ 2 sup

z∈{0,1}
varP (EP [Kh,y(Y )1x(X)|zx,W ])

≤ 2 sup
z∈{0,1}

varP (Kh,y(Y )1x(X)|zx,W )

= O(1/hd),

where the first (in)equality is by the definition of the variance, the second by the linear combina-
tion of the variance, the third by the law of total variance, the fourth by Eq. (B.11). Therefore,
varP [φXY [Kh,y(Y )]] = O(1/hd).

Next, we will study EP
[
ψ2
hφ

2
X

]
. We first note that EP

[
ψ2
hφ

2
X

]
= ψ2

hEP
[
φ2X
]
= O(ψ2

h). Therefore,
it suffices to show ψ2

h.

ψ2
h =

(∫
Y
Kh,y(y

′)ψ(y′) d[y′]

)2

≤
∫
Y
K2
h,y(y

′)ψ2(y′) d[y′]

≤
∫
Y
K2
h,y(y

′)ψ(y′) d[y′]

=

∫
Y

1

h2d
K2

(
y′ − y
h

)
ψ(y′) d[y′]

=

∫
U

1

hd
K2 (u)ψ(y + uh) d[u]

= O(1/hd).

Finally, consider the term−2EP [φY X [Kh,y(Y )] · φX · ψh]. Note, EP [φY X [Kh,y(Y )] · φX · ψh] =
ψh · EP [φY X [Kh,y(Y )] · φX ]. We first consider EP [φY X [Kh,y(Y )] · φX ]:

EP [φY X [Kh,y(Y )] · φX ] = EP [φY X [Kh,y(Y )] · φX ]

≤
√
EP [φ2Y X [Kh,y(Y )]] · EP [φ2X ]

= O

(√
EP [φ2Y X [Kh,y(Y )]]

)
= O

(
h−d/2

)
.
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Now, consider ψh:

ψh ≡
∫
Y
Kh,y(y

′)ψ(y′) d[y′]

=

∫
Y

1

h
K

(
(y′ − y)

h

)
ψ(y′) d[y′]

=

∫
U
K(u)ψ(hu+ y) d[u]

=

∫
U
K(u)

(
ψ(y) + huψ(1)(y) + h2u2ψ(2)(y) +O(h2u2)

)
d[u]

= O(h2).

With h = O(n−α), we note O(h−d/2) = O(nαd/2). Therefore, EP
[
φ2m(ψp,h, η)

]
= O(h−d +

h−d/2 + h2) = O(nαd) = O(h−d) since h = O(n−α) for some α ∈ [0, 1). This shows that
EP [ED [φm(ψh, η)]] = O(1/

√
nhd).

We now consider EP [φm(ψh, η̂)].

EP [φ(ψh, η̂)]

= EP
[

1

ψ̂X

(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)]
= EP

[
1

ψX

(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)
+

(
1

ψ̂X
− 1

ψX

)(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)]
.

(B.12)

For further analysis, we consider EP
[
V̂Y X [Kh,y(Y )]− VY X [Kh,y(Y )]

]
. First, define

VY X,(x,z)(π, θ)[f(Y )] ≡ 1z(Z)

πZ(W )
(f(Y )1x(X)− θ(x, Z,W )[f(Y )]) + θ(x, z,W )[f(Y )].

Then, VY X [f(Y )] = VY X,(x,zx)[f(Y )] − VY X,(x,z1−x)[f(Y )]. Now, consider

EP
[
V̂Y X,(x,z)[Kh,y(Y )]− VY X,(x,z)[Kh,y(Y )]

]
. We have

EP
[
VY X,(x,z)(π̂, θ̂)[f(Y )]− VY X,(x,z)(π, θ)[f(Y )]

]
= EP

[
1z(Z)

π̂Z(W )

(
f(Y )1x(X)− θ̂(x, Z,W )[f(Y )]

)
+ θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

]
= EP

[
1z(Z)

π̂Z(W )

(
θ(x, Z,W )[f(Y )]− θ̂(x, Z,W )[f(Y )]

)
+
{
θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

}]
= EP

[
πz(W )

π̂z(W )

(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)
+
{
θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

}]
= EP

[(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)(
1− πz(W )

π̂z(W )

)]
= EP

[(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)( π̂z(W )− πz(W )

π̂z(W )

)]
= OP

(∥∥∥θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]
∥∥∥ ‖π̂z(W )− πz(W )‖

)
,

where the first and the second are by the fact that EP [f(Y )1x(X)|W,Z,X] = θ(x, Z,W )[f(Y )],
the third is by taking an expectation over Z conditioned on W , the fourth and the fifth by rearrange-
ment, and the sixth by Cauchy-Schwarz inequality and Positivity. Then,

RY X ≡ EP
[
VY X(π̂, θ̂)[f(Y )]− VY X(π, θ)[f(Y )]

]
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]
∥∥∥ ‖π̂z(W )− πz(W )‖

)
.

18



Also, let

VX,x(π, ξ) ≡
1z(Z)

πZ(W )
(1x(X)− ξx(Z,W )) + ξx(z,W ).

Then, with the similar proof as above, we have

EP
[
VX,x(π̂, ξ̂)− VX,x(π, ξ)

]
= OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ‖π̂z(W )− πz(W )‖

)
,

and

EP
[
VX(π̂, ξ̂)− VX(π, ξ)

]
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ‖π̂z(W )− πz(W )‖

)
.

Let RY X ≡ EP
[
V̂Y X − VY X

]
and RX ≡ EP

[
V̂X − VX

]
. Then, continuing from Eq. (B.12),

Eq. (B.12) = EP
[

1

ψX

(
ψY X +RY X −

ψY X
ψX

(ψX +RX)

)
+

(
1

ψ̂X
− 1

ψX

)(
ψY X +RY X −

ψY X
ψX

(ψX +RX)

)]
= EP

[
1

ψX
(RY X − ψRX) +

(
1

ψ̂X
− 1

ψX

)
(RY X − ψRX)

]
= OP (RY X +RX)

= OP (R
k
2),

where

Rk2 =
∑

z∈{0,1}

OP

(
‖π̂z − πz‖

{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥}) .
Note the first equality is by V̂Y X = RY X +VY X and V̂X = RX +VX , the second by rearrangement,
the third by Positivity, the fourth by the definition of RY X and RX .

Summing up, we have shown that EP [φm(ψh, η)] = O(1/
√
nhd) and EP [φm(ψh, η̂)] = OP

(
Rk2
)
.

Corollary 1 ((Restated Corol. 1)). If all nuisances {π̂, ξ̂, θ̂} for any given (w, z, x, y) converge at
rate {nhd}−1/4, then the target estimator ψ̂h(y) achieves

√
nhd-rate convergence to ψh.

Proof. This result follows immediately from Lemma 3.

Theorem B.1 (Restated Thm. 1). For any fixed y ∈ Y , suppose the estimators for nuisances are
consistent; i.e., ‖ν − ν̂‖ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose h < ∞, and
nhd →∞ as n→∞. Then

ψ̂h(y)− ψ(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
+By, (B.13)

where By is defined in Eq. (13), and Rk2 is defined in Eq. (12).

Proof. This result follows immediately from Lemmas 3 and 4.

Lemma B.5 (Restated Lemma 5). The bandwidth h that minimizes the error in Eq. (14) is h =
O(n−1/(d+4)). This choice of h satisfies the assumption in Lemma. 3 that nhd →∞.

Proof. We note that the error in Eq. (14) w.r.t. h is OP (1/
√
nhd+h2). Since the function 1/

√
nhd+

h2 is convex w.r.t. h and the global minimum is at h = n−1/(d+4), the optimal h minimizing the
error is h = O(n−1/(d+4)). Then, O(nhd) = O(n4/(d+4)), implying that nhd →∞.

Corollary 2 (Restated Corol. 2). Let h = O(n−1/(d+4)). If nuisances {π̂, ξ̂, θ̂} converge at
{nhd}−1/4 rate for any (w, z, x, y), then the target estimator ψ̂h(y) achieves

√
nhd-rate convergence

to ψ.

19



Proof. It suffices to show that By converges at
√
nhd-rate with the choice of h as in Lemma 5, since

the rest is guaranteed by Corol. 1. We first note that By = O(h2). Since O(nhd) = O(n4/(d+4)),
we have O(1/

√
nhd) = O(n−2/(d+4)) = O(h2).

Lemma B.6 (Restated Lemma 6). Suppose Df is a f -divergence such that f(p, q) = 0 if p = q.
Then,

Df (ψ, ψ̂h) ≤
∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y],

where w(y) ≡ f ′2(ψ(y), ψ̃(y))ψ̂h(y), f ′2(p, q) ≡ (∂/∂q)f(p, q), and ψ̃h(y) ≡ tψ̂h(y)+ (1− t)ψ(y)
for some fixed t ∈ [0, 1].

Proof. For f(p, q), by applying Taylor’s expansion, we have

f(p, q) = f(p, p) + f ′2(p, p̃)(q − p),

for some fixed p̃ ∈ [p, q]. Applying this idea,

Df (ψ, ψ̂h) =

∫
Y
f(ψ(y), ψ̂h(y))ψ̂h(y) d[y]

=

∫
Y

f(ψ(y), ψ(y))︸ ︷︷ ︸
=0

+f ′2(ψ(y), ψ̃(y))
(
ψ̂h(y)− ψ(y)

) ψ̂h(y) d[y],

=

∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y],

were the second equality holds by Taylor’s expansion on f , and the third equality by the given
assumption that f(p, q) = 0 whenever p = q.

Theorem B.2 (Restated Thm. 2). Suppose the estimators for nuisances are consistent; i.e., ‖ν − ν̂‖ =
oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x, y). Suppose Df is a f -divergence such that f(p, q) = 0
if p = q. Suppose w(y) in Lemma 6 is finite. Then,

Df (ψ, ψ̂h) ≤ OP
(
sup
y∈Y

{
Rk2 +By

}
+ 1/

√
nhd + 1/

√
n

)
, (B.14)

where Rk2 is defined in Eq. (12) and By is defined in Eq. (13).

Proof. Under the given conditions, with Thm. 1,

Df (ψ, ψ̂h) ≤
∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y]

=

∫
Y
w(y)

(
OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
+By

)
d[y]

= OP (1/
√
nhd + 1/

√
n) +

∫
Y
(w(y)OP (R

k
2) +By) d[y]

= OP (1/
√
nhd + 1/

√
n) +OP

(
sup
y∈Y

{
Rk2 +By

})
.

Corollary 3 (Restated Corol. 3). Let h = O(n−1/(d+4)). Suppose Df satisfies f(p, q) = 0 if p = q.
Suppose w(y) in Lemma 6 is finite. If nuisances {π̂, ξ̂, θ̂} converges at {nhd}−1/4 rate for any
(w, z, x, y), then Df (ψ, ψ̂h) converges to 0 at

√
nhd-rate.

Proof. This result follows immediately from Thm. 2.
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B.2 Proofs for Sec. 4

We will use ψp to denote ψ as a functional for p. Let pε denote a parametric submodel. We will use
Sε to denote a score function for pε.
Lemma B.7 (Restated Lemma 7). An influence function for m(β;ψ) in Eq. (17), denoted φm, is
given by

φm(β; η = {π, ξ, θ}, ψ) ≡ φ(η, ψ)[Rf (Y ;β, ψ)], (B.15)

where φ(η, ψ)[·] is defined in Eq. (7), and

Rf (Y ;β, ψ) ≡ g′(Y ;β) {f ′′21(ψ(Y ), g(Y ;β))g(Y ;β) + f ′1(ψ(Y ), g(Y ;β))} ,

where g′(y;β) ≡ (∂/∂β)g(y;β), f ′1(p, q) ≡ (∂/∂p)f(p, q) and f ′′21(p, q) ≡ (∂/∂p)f ′2(p, q).

Proof. Let ψε denote the estimand ψ written w.r.t. the parametric submodel pε = p(1 + εg) where g
is a bounded mean-zero random function. Let Sε ≡ ((∂/∂ε)|ε=0 log pε.

Let

m(y;β, ψ) ≡ g′(y;β) {f ′2(ψ(y), g(y;β))g(y;β) + f(ψ(y), g(y;β))} . (B.16)

Note m(β, ψ) =
∫
Y m(y;β, ψ) d[y]. Also, we note that (∂/∂ψ)m(y;β, ψ) = Rf (y;β, ψ).

Also, recall that an influence function for ψ[f(Y )] (for f(Y ) < ∞) is given as φ(η, ψ)[f(Y )] in
Lemma S.3. Then, by the definition of the influence function, ψ[f(Y )] satisfies the following,

(∂/∂ε)|ε=0ψε[f(Y )] = EP [φ(ψ, η)[f(Y )] · Sε] .

Now, we will prove that φm(β; η = {π, ξ, θ}, ψ) ≡ φ(η, ψ)[Rf (Y ;β, ψ)] is a functional satisfying

(∂/∂ε)|ε=0m(β, ψ) = EP [φ(ψ, η)[Rf (Y ;β, ψ)] · Sε] ,

then this equation implies that φ(η, ψ)[Rf (Y ;β, ψ)] is an influence function for the score m(β, ψ).

This can be shown as follows:

(∂/∂ε)|ε=0m(β, ψ)

= (∂/∂ε)|ε=0

∫
Y
m(y;β, ψ) d[y]

=

∫
Y
(∂/∂ε)|ε=0m(y;β, ψ) d[y]

=

∫
Y
(∂/∂ε)|ε=0ψε(y)(∂/∂ψ

′(y))|ψ′=ψm(y;β, ψε) d[y]

= (∂/∂ε)|ε=0

∫
Y
ψε(y)Rf (y;β, ψ) d[y]

= (∂/∂ε)|ε=0ψε[Rf (Y ;β, ψ)]

= EP [φ(ψ, η)[Rf (Y ;β, ψ)] · Sε] ,

where the first equality is by the definition of m, the second by the exchange of derivation/integration,
the third by the chain rule, the fourth by the fact that (∂/∂ψ)m(y;β, ψ) = Rf (y;β, ψ) and the
exchange of derivation/integration, the fifth by the definition of ψ[f(Y )] in Eq. (7), the sixth by the
definition of the influence function (i.e., the influence function for ψ[f(Y )] is a function φ[f(Y )]
satisfying (∂/∂ε)|ε=0ψε[f(Y )] = EP [φ[f(Y )] · Sε].

Lemma B.8 ((Restated Lemma 8)). A Neyman orthogonal score for estimating β, denoted ϕ(β′; (η =
{π, ξ, θ}, ψ)), is given by

ϕ(β′; (η = {π, ξ, θ}, ψ)) ≡ m(β′, ψ) + φm(β, η, ψ), (B.17)

where φm(β, η, ψ) is defined in Eq. (18).
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Proof. We first note that EP [m(β′, ψ)] = m(β′, ψ), because this is not a random function. Then, the
influence function for EP [m(β′, ψ)] is given by Lemma 7. For any score function which expectation
is zero at the true parameter, its addition with the influence function is a Neyman orthogonal score
[13, Thm.1]. That is, m(β′, ψ) + φm(β, η, ψ) is a Neyman orthogonal score.

Theorem B.3 ((Restated Thm. 3)). Let ϕ(β′; (η = {π, ξ, θ}, ψ) be given in Eq. (19). Let φm(β, η, ψ)

be given in Eq. (18). Let β0, η0, ψ0 denote the true parameters. Let β̂ be the MLTE estimator for β
defined in Def. 3. Suppose (1) Rf (y;β, ψ) is bounded and R′f (y;β, ψ) ≡ (∂/∂ψ)Rf (y;β, ψ) <∞;
(2) There exists a function H(y) <∞ s.t. supβ,ψmax{Rf (y;β, ψ), R′f (y;β, ψ)} = O (H(y)); (3)
{ϕ(β; (η, ψ))} is Donsker5 w.r.t. β for the fixed η; (3) The estimators are consistent: β̂−β0 = oP (1)
and ‖ν − ν̂‖ = oP (1) for ν ∈ {πz(w), ξx(z, w), θ(x, z, w)[H(Y )]} for all (w, z, x, y); and (4)
EP [ϕ(β; (η, ψ))] is differentiable w.r.t. β at β = β0 with non-singular matrix M(β0, (η, ψ)) ≡
(∂/∂β)|β=β0

EP [ϕ(β; (η, ψ))] for all (η, ψ), where M(β0, (η̂, ψ̂))
P→M ≡M(β0, (η0, ψ0)). Then,

β̂ − β0 = −M−1ED [φm(β0; (ψ0, η0))] + oP (n
−1/2) +OP (R

m
2 ),

where

Rm2 =
∑
z

(
‖π̂z − πz‖

{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥}+
∥∥∥ξ̂z − ξz∥∥∥2 + ∥∥∥θz − θ̂z∥∥∥2 + ∥∥∥ξ̂z − ξz∥∥∥∥∥∥θz − θ̂z∥∥∥) ,

where πz ≡ πz(W ), ξz ≡ ξx(z,W ), and θz ≡ θ(x, z,W )[H(Y )].

Proof. We follow the proof strategy used in [35, Lemma 1, Thm.3]. First,

β̂ − β0 = −M−1ED [ϕ(β0, (ψ0, η0))]−M−1EP
[
ϕ(β0, (ψ̂, η̂))

]
+ oP (n

−1/2)

= −M−1ED [φm(β0, {ψ0, η0})]−M−1EP
[
ϕ(β0, (ψ̂, η̂))

]
+ oP (n

−1/2), (B.18)

where the first equality holds by Lemma S.1, and the second holds since m(β0, ψ0) = 0 by the
moment condition in Eq. (17). Since ED [φm(β0, η0, ψ0)] converges to N(0, var(φ2m)) in distribution
at
√
n-rate, the only remaining term to analyze is

EP
[
ϕ(β0, (ψ̂, η̂)

]
= m(β0, ψ̂) + EP

[
φ(β0, (ψ̂, η̂))[Rf (Y ;β0, ψ̂)]

]
, (B.19)

which can be analyzed as

EP
[
φ(β0, (ψ̂, η̂))[Rf (Y ;β0)]

]
= EP

[
1

ψ̂X

{
V̂YX [Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]V̂X

}]
= EP

[
1

ψ̂X
V̂YX [Rf (Y ;β0, ψ̂)]

]
− EP

[
1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]V̂X

]
= EP

[
1

ψ̂X

{
π̂zx(W )

πzx(W )

{
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, zx,W )[Rf (Y ;β0, ψ̂)]

}
+ θ̂(x, zx,W )Rf (Y ;β0, ψ̂)

}]
(B.20)

− EP
[

1

ψ̂X

{
π̂z1−x(W )

πz1−x(W )

{
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}
+ θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}]
(B.21)

− EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{
πzx(W )

π̂zx(W )

{
ξx(z

x,W )− ξ̂x(zx,W )
}
+ ξ̂x(z

x,W )

}]
(B.22)

+ EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{
πz1−x(W )

π̂z1−x(W )

{
ξx(z

1−x,W )− ξ̂x(z1−x,W )
}
+ ξ̂x(z

1−x,W )

}]
, (B.23)

5A function class where complexities are restricted. Refer [58, Page 269] for the definition. Donsker class
include Sobolev, Bounded monotone, Lipschitz class, etc.
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where

(B.20) = EP
[

1

ψ̂X
·
{(

π̂zx(W )

πzx(W )
− 1

){
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, zx,W )[Rf (Y ;β0, ψ̂)]

}}]
(B.24)

+ EP
[

1

ψ̂X
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]

]
(B.25)

(B.21) = −EP
[

1

ψ̂X

{(
π̂z1−x(W )

πz1−x(W )
− 1

){
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}}]
(B.26)

− EP
[

1

ψ̂X
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

]
(B.27)

(B.22) = −EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{(
πzx(W )

π̂zx(W )
− 1

){
ξx(z

x,W )− ξ̂x(zx,W )
}}]

(B.28)

− EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]ξx(z

x,W )

]
(B.29)

(B.23) = EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{(
πz1−x(W )

π̂z1−x(W )
− 1

){
ξx(z

1−x,W )− ξ̂x(z1−x,W )
}}]

(B.30)

+ EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]ξx(z

1−x,W )

]
(B.31)

First, consider the summation of (B.25,B.27,B.29,B.31):
Eq. (B.25) + Eq. (B.27) + Eq. (B.29) + Eq. (B.31)

= EP
[

1

ψ̂X

{
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}]
− EP

[
1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{
ξx(z

x,W )− ξx(z1−x,W )
}]

= EP
[

1

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)] · ψX

)]
= EP

[
1

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]−

ψ̂Y X [[Rf (Y ;β0, ψ̂)]]

ψ̂X
· ψX

)]

= EP

[
ψX

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂Y X [Rf (Y ;β0, ψ̂)]

ψ̂X

)]

= EP
[
ψX

ψ̂X

(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
.

= EP
[{

ψX

ψ̂X
− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
+ EP

[(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
.

(B.32)
Then,

Eq. (B.19) = m(β0, ψ̂) + Sum of (B.25, B.27, B.29, B.31) + Sum of (B.24, B.26, B.28, B.30)

= m(β0, ψ̂) + EP
[(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
(B.33)

+ EP
[{

ψX

ψ̂X
− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
+ Sum of (B.24,B.26,B.28,B.30).

(B.34)
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To analyze (B.33), we recall that (∂/∂ψ)m(β0, ψ) =
∫
Y Rf (y;β0, ψ) d[y] and m(β0, ψ) = 0. Also,

by Taylor’s expansion to m(y;β, ψ) defined in Eq. (B.16),

m(y;β0, ψ) = m(y;β0, ψ̂) +Rf (y;β, ψ̂)(ψ(y)− ψ̂(y)) +R
(1)
f (y;β, ψ̃)(ψ(y)− ψ̂(y))2,

where R(1)
f is a first derivative of Rf w.r.t. ψ. This implies that

0 = m(β0, ψ) = m(β0, ψ̂) +

∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y] +

∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y],

where ψ̃ is some unknown estimand within the interval [ψ, ψ̂]. We obtain

−
∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y] = m(β0, ψ̂) +

∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y].

By taking expectations for both sides,

−EP
[∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y]

]
= m(β0, ψ̂) + EP

[∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y]

]
.

(B.35)

We have

−
∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y] = O

(∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∫
Y
H(y)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∫
Y
H2(y)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∥∥∥ψ[H(Y )]− ψ̂[H(Y )]
∥∥∥2) ,

where the second equality is by the definition of H(y), the third by H(y) <∞, and the fourth by the
definition of L2 norm.

This implies that

(B.33) = −EP
[∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ − ψ̂

)2
d[y]

]
= O

(∥∥∥ψ[H(Y )]− ψ̂[H(Y )]
∥∥∥2) ,

where the first equality is by Eq. (B.35) and the second equality is by the above.

Also, Sum of (B.24,B.26,B.28,B.30) in (B.34) can be written as follows:

Sum of (B.24,B.26,B.28,B.30)

=
∑

z∈{0,1}

OP
(
‖π̂z(W )− πz(W )‖

{∥∥∥θ̂(x, z,W )[Rf (Y ;β0, ψ̂)]− θ(x, z,W )[Rf (Y ;β0, ψ̂)]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥})
=

∑
z∈{0,1}

OP
(
‖π̂z(W )− πz(W )‖

{∥∥∥θ̂(x, z,W )[H(Y )]− θ(x, z,W )[H(Y )]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥}) .
For simplicity, we assume, for any x, z,

OP

({
ξx(z,W )− ξ̂x(z,W )

}
·
{
ξx(1− z,W )− ξ̂x(1− z,W )

})
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥2) , and

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ∥∥∥θ(x, 1− z,W )[H(Y )]− θ̂(x, 1− z,W )[H(Y )]

∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]

∥∥∥) .
24



The other part of Eq. (B.34) is given as

EP
[{

ψX

ψ̂X
− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
= OP

(∥∥∥ψX − ψ̂X∥∥∥∥∥∥ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]
∥∥∥)

= OP

(∥∥∥ψX − ψ̂X∥∥∥∥∥∥∥∥ψYX [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂YX [Rf (Y ;β0, ψ̂)]

ψX
+
ψ̂YX [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂YX [Rf (Y ;β0, ψ̂)]

ψ̂X

∥∥∥∥∥
)

= OP

(∥∥∥ψX − ψ̂X∥∥∥(∥∥∥ψYX [Rf (Y ;β0, ψ̂)]− ψ̂YX [Rf (Y ;β0, ψ̂)]
∥∥∥+ ∥∥∥∥ 1

ψX
− 1

ψ̂X

∥∥∥∥))
= OP

(∥∥∥ψX − ψ̂X∥∥∥(∥∥∥ψYX [Rf (Y ;β0, ψ̂)]− ψ̂YX [Rf (Y ;β0, ψ̂)]
∥∥∥+ ∥∥∥ψX − ψ̂X∥∥∥))

= OP

(∥∥∥ψX − ψ̂X∥∥∥2)+OP
(∥∥∥ψX − ψ̂X∥∥∥∥∥∥ψYX [Rf (Y ;β0, ψ̂)]− ψ̂YX [Rf (Y ;β0, ψ̂)]

∥∥∥)
= OP

(∥∥∥ψX − ψ̂X∥∥∥2)+OP
(∥∥∥ψX − ψ̂X∥∥∥ ∥∥∥ψYX [H(Y )]− ψ̂YX [H(Y )]

∥∥∥)
=
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥2 + ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥) ,

where the equalities can be shown using the standard computation and the positivity assumption.

Similarly we assume, for any x, z,

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥∥∥∥θ(x, 1− z,W )[H(Y )]− θ̂(x, 1− z,W )[H(Y )]

∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥2) .

We have

OP

(∥∥∥ψ̂[H(Y )]− ψ[H(Y )]
∥∥∥2)

= OP

(∥∥∥ ˆψYX [H(Y )]− ψYX [H(Y )] + ψ̂X − ψX
∥∥∥2)

= OP

(∥∥∥ ˆψYX [H(Y )]− ψYX [H(Y )]
∥∥∥2 + ∥∥∥ψ̂X − ψX∥∥∥2 + ∥∥∥ ˆψYX [H(Y )]− ψYX [H(Y )]

∥∥∥ ∥∥∥ψ̂X − ψX∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥2)+

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥2)

+
∑

z∈{0,1}

OP
(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]

∥∥∥∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥) .

Finally

Eq. (B.19) =
∑
z

OP

(
‖π̂z(W )− πz(W )‖

{∥∥∥θ̂(x, z,W )[H(Y )]− θ(x, z,W )[H(Y )]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥})
+
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥2 + ∥∥∥θ(x, z,W )− θ̂(x, z,W )

∥∥∥2)
+
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥∥∥∥θ(x, z,W )− θ̂(x, z,W )

∥∥∥) . (B.36)

Therefore, with Eq. (B.18), the following holds

β̂ − β0 = −M−1ED [φm(V;β0, ψ0, η0)] + Eq. (B.36) + oP (n
−1/2),

where Eq. (B.36) = Rm2 .

Corollary 4 (Restated Corol. 4). If nuisances {π̂, ξ̂, θ̂} converges at n−1/4 rate, then the target
estimator β̂ converges to β0 at

√
n-rate.
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Proof. If all nuisances converge at n−1/4 rate, then the Rm2 term in Thm. 3 converges at n−1/2 rate.
Also, ED [φm(β0; (ψ0, η0))] converges in distribution toN(0, var(φm(β0, (ψ0, η0)))) at

√
n-rate. So

β̂ converges to β0 at
√
n-rate by Thm. 3.

C Details of empirical applications

C.1 Data generating processes for synthetic datasets

The following structural equations are used for all four data generating processes in Fig. 2:

U ∼ N(0, 1)

fW (U) = 2U − 1 + εW , where εW ∼ N(0, 1)

fZ(W ) = 1 (0.25W + εZ > 0) , where εZ ∼ N(0, 1)

fX(W,Z,U) = 1 (Z + 0.25 ∗W + 0.25 ∗ U + εX > 0.5) · (1− Z) + Z, where εX ∼ N(0, 1).

With such data generating process, XZ=1 ≥ XZ=0 is satisfied. We will denote four figures in Fig. 2
as Fig. 2(a,b,c,d). For Fig. 2a,

fY (W,X,U) = 0.6501(W · (2X − 1) + 2U + 0.374).

For Fig. 2b,

fY (W,X,U) = 0.9515(2X − 1 +W ) + 0.8(−2X + 1 + U) +WU + 0.082.

For Fig. 2c,

fY (W,X,U) = 1.08541 (W < 0) (2X − 1 + 0.1U) + 1 (0 ≤W < 1) (−2X + 1 + 0.1U)

+ 1.0854 · 0.9163 (1 (W ≥ 1) (−3(2X − 1) + 0.2U + 0.3)− 0.122)

For Fig. 2d,

fY (W,X,U) = 0.7865 · 1.0628 · 1 (W < −1) (−0.8(2X − 1) + 0.1U) + 1 (−1 ≤W < 0) (−2(2X − 1) + 0.1U)

+ 0.7865 · 1.0628 · (1 (0 ≤W < 1) (2(2X − 1) + 0.2U) + 1 (W > 1) (0.5(2X − 1) + 0.2U) + 0.0525)

+ 1.0628 · 0.104

C.2 Application to 401(k) data

We use the 401(k) dataset that is initially introduced by [2]. Specifically, we used the version of the
data named ‘The Woodridge Data Set [61]’ originally entitled ‘401ksu.dta’ in STATA format (available
in https://www.stata.com/texts/eacsap/). In the dataset, we used nettfa (net financial asset
in $1000) as Y , p401k (participation in 401(k), participation = 1) as X , e401k (eligibility for 401(k),
eligible = 1) as Z, andW = {W1,W2,W3,W4,W5} = {agesq, fsize, male, marr, incsq},
where agesq means the square of the age, fsize the family size, male the gender (male = 1), marr
the marital status (married = 1) and incsq the square of the income.

26

https://www.stata.com/texts/eacsap/

	Introduction
	Related work

	LTE Estimation – Problem setup
	Kernel-smoothing based approach
	Asymptotic convergence

	Model-based approach
	Empirical applications
	Synthetic datasets
	Application to 401(k) data

	Conclusion
	 IV Settings and LTE
	Proofs
	Proofs for Sec. 3
	Proofs for Sec. 4

	Details of empirical applications
	Data generating processes for synthetic datasets 
	Application to 401(k) data


