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Artificial intelligence (AI) often connotes futuristic speculations about how smart machines could
become and whether they would eventually take over the planet. But far from the limelight of such
extrapolations, a quiet AI revolution has already taken place, one that has profoundly transformed the way
scientists look at the world, the language they use to interpret data, and the methods they use to assess
cause and effect relationships in many social, environmental, and medical domains.

With the unprecedented accumulation of data and several breakthroughs in machine learning and deep
neural networks over the past two decades, AI has proven capable of mastering and even outperforming
humans at a variety of predictive tasks, including medical imaging diagnosis, strategy games (e.g. chess
and Go), speech recognition, and driving cars. Despite numerous remarkable successes, most of these
methods are still unable to provide causal explanations for their own decisions and behaviors [31, 32].
This contrast can be easily understood using the logic imposed by Pearl’s Causal Hierarchy (PCH, for
short) [34]. Prediction is a capability placed on the first layer of the PCH (known as associational), as
predictive models can be learned from solely observational data. However, in general, there exist multiple
models that induce the same observational distribution (and, therefore, have the same predictive power),
but have different behaviors in terms of their causal and counterfactual explanations (capabilities placed
on the second and third layers of the PCH, respectively). Therefore, there is no guarantee that a model
with a high-predictive power is the true underlying causal model, also known as structural causal model
(SCM, for short). In fact, one can prove that for almost any SCM, it is impossible to draw higher-layer
inferences using only lower-layer information. This result has been formalized under the rubric of the
Causal Hierarchy Theorem (CHT) [2, Thm. 1].

The CHT brings about an unfortunate yet enlightening lesson: the mere accumulation of data does not
immediately translate into new insights about the underlying data-generating mechanisms, better predic-
tions about the effects of new interventions, or estimates of retrospective counterfactuals. In fact, most
observational datasets are collected under heterogeneous conditions - i.e., different populations, regimes,
and sampling methods - which means they are plagued with various types of biases, including confound-
ing, sampling selection, and cross-population (transportability) biases. Thus, all that can be claimed from
these “messy” data collections are mostly statistical associations, not causation [6].

Researchers in the empirical fields are becoming increasingly aware that to take full advantage of this
explosion of data and overcome some of the most pressing challenges in AI, such as explainability, gen-
eralizability, and fairness, current techniques must be enriched with two additional ingredients: the ability
to distinguish causal relations from mere statistical correlations, and the ability to integrate knowledge
and data from multiple, heterogeneous sources. Remarkably, the advent of graphical methods of causal
and counterfactual inference [31, 6], and their recent connection with neural networks [36], have made
it possible to tackle many of these challenging problems and have reignited hopes of constructing sys-
tems (software, machines, robots) capable of acting like human scientists and ultimately accelerating the
process of scientific discovery.
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It is well-understood in the literature that causal knowledge about the underlying system is necessary to
perform causal inferences accurately, an idea popularized through Cartwright’s motto [7]: “no causes-in,
no causes-out.” One major advantage of the modern theory of causation is its ability to infer causal effects
in a non-parametric way, i.e., without requiring any knowledge about the functional form of the causal
relationships or the distribution of the variables. It only requires knowledge about the underlying causal
structure, which is transparently encoded in the form of a causal diagram. Notably, the recent introduc-
tion of cluster causal diagrams (or C-DAGs, for short) has allowed the partial specification of structural
constraints, facilitating causal inferences in partially understood domains. Specifically, the language of C-
DAGs provides a simple yet effective way to partially abstract a grouping of variables among which causal
relationships are not fully understood while preserving consistency with the underlying causal system and
the validity of identification of causal effects [1]. When knowledge is scarce, causal discovery algorithms
can learn the equivalence class of the underlying causal diagram from data [35, 37, 16], which represents
multiple models that explain equally well the evidence, and are therefore statistically indistinguishable.

Recent efforts based on the modern language of causation have culminated in a general framework
for performing causal inference and data fusion [6], which brings substantial contributions to all steps of
the process of scientific discovery. Based on the model assumptions encoded in the causal diagram (or
its equivalence class) and an arbitrary collection of observational and experimental data, this framework
establishes the conceptual basis for assessing identifiability and generalizability of specific causal queries
about the reality being modeled. For instance, one can evaluate effects of previously unseen interventions
[31, 3, 17, 18, 19, 29], reason about the effects of stochastic (and possibly imperfect) policies [8, 9],
generalize causal knowledge to a target population [5, 33, 30, 10], recover from sample selection bias
[4, 12, 13, 14], and derive new counterfactual explanations [11, 42]. Whenever an informative answer for
the research question is computable, the corresponding effects can be estimated under various assumptions
and with nice computational and statistical properties (e.g., double robustness, debiasedness) [20, 21, 23,
22]. On the other hand, if an answer cannot be achieve based on the available data and knowledge, one can
yet efficiently design new strategies (e.g. measuring or experimenting over certain variables) to help get
a positive answer in a next iteration of the process [25, 15, 24]. Taking these developments to the context
of decision-making, one can now design more precise and surgical interventions [26, 27, 28], and further
leverage observational data to accelerate the convergence of the exploratory process whenever decisions
are not point identifiable [38, 39, 40, 41]. The tools that emerge from this framework have solved several
long-standing challenges, including external validity, selection bias, meta-analysis, and transportability of
experimental findings, which are pervasive in essentially every nontrivial instance of data analysis.

This mathematical framework, in practice, allows scientists to solve various challenges from first prin-
ciples, which include reducing the cost of data collection and optimizing the design of experiments, pre-
dicting in domains with limited data and knowledge, and understanding the mechanisms underlying the
phenomena under investigation. These issues are common challenges in a wide array of fields, including
AI, machine learning, statistics, and the health and social sciences. In the area of robotics, for example, the
results of this work can be used to endow intelligent systems with causal-generalization capabilities akin
to the work that a human scientist conducts in a laboratory or field study. This means that a robot would
be able to probe an environment more effectively, and then utilize the knowledge acquired to generalize
to a new unexplored setting. Given the ubiquity of the data fusion problem across empirical disciplines,
along with the generality and completeness of the current results, we believe that this new framework will
be an essential tool for tackling the challenges presented to the next generation of data science research.
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