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Abstract

This paper investigates the problem of learn-
ing non-identifiable causal effects (Pearl, 2000,
Def. 3.2.4) from a combination of observational
data and qualitative assumptions about the under-
lying data-generating model, represented in the
form of a directed acyclic causal diagram. Some
prominent work exists on bounding causal effects
for specific causal diagrams, such as the instru-
mental variable (IV) setting (Balke & Pearl, 1994).
Still, there is no systematic way for bounding ef-
fects for almost any other non-identifiable settings,
beyond IV models. This paper fills the gap in this
area. Specifically, we introduce a novel family of
canonical causal models accompanied by a sys-
tematic procedure that allows for the replacement
of unspecified domains (possibly continuous) of
any unobserved variable with discrete variables
taking on a countable set of values. This con-
struction’s importance stems from the fact that
the resulting model is equivalent in all observa-
tional and interventional distributions over finite
observed variables, i.e., it is complete. Building
on this new characterization, we develop an effi-
cient algorithm for bounding causal effects from
observational data in arbitrary causal diagrams.

1. Introduction

This paper studies the problem of inferring causal effects
of interventions from a combination of non-experimental
data (e.g., observational studies) and qualitative assumptions
about the data-generating process. This problem arises in di-
verse fields such as artificial intelligence, statistics, cognitive
science, economics, and the health and social sciences. For
example, investigators in health sciences are interested in
the effects of treatments on diseases; policymakers in health-
care want to evaluate the effectiveness of policy decisions
during a pandemic; developers of an online advertisement
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engine are concerned with the effects of ad-placements in
order to increase the click-through rate; and so on.

We consider the settings where the underlying causal mech-
anisms are represented in the form of a causal diagram

(Pearl, 2000), which is a directed acyclic graph where ar-
rows indicate the potential existence of functional relation-
ships among corresponding variables and some variables
are not observed. The problem of deciding the feasibility
of uniquely discerning values of a causal query from the
non-experimental data provided with the causal diagram,
called the identification of causal effects, has been studied
in the causal inference literature. Several criteria and algo-
rithms have been developed to solve this problem (Pearl,
2000; Spirtes et al., 2000; Tian & Pearl, 2002; Shpitser &
Pearl, 2006; Huang & Valtorta, 2006; Bareinboim & Pearl,
2016), which means that the conditions under which the
target causal effect could be point-identified from the obser-
vational data are, at least theoretically, well-understood.

The combination of quantitative knowledge and observa-
tional data, however, does not always permit one to uniquely
determine the target causal effect. Such settings, called
non-identifiable, indicate that there exist more than one
parametrization of the target effect that are compatible with
the same observational data and causal diagram (Pearl, 2000,
Def. 3.2.4). The problem of partial identification, which
concerns learning causal effects in non-identifiable settings,
has been a subject of growing interest in the domains of
causal inference (Robins, 1989; Manski, 1990; Balke &
Pearl, 1995; Chickering & Pearl, 1996; Balke & Pearl, 1997;
Evans, 2012; Richardson et al., 2014; Cinelli et al., 2019),
and more recently, in machine learning (Zhang & Barein-
boim, 2017; Kallus & Zhou, 2018; 2020; Kilbertus et al.,
2020; Zhang & Bareinboim, 2021). Among these works,
two approaches are often employed: (1) bounds are derived
for the target causal effect under a minimal set of assump-
tions; or (2) additional assumptions are invoked under which
the causal effect could be identified, and then the sensitivity
analysis is performed to assess how the target effect varies
as these additional assumptions are changed.

This paper focuses on the bounding approach. (Robins,
1989; Manski, 1990) derived the first informative bounds
over the causal effects from studies with imperfect com-
pliance, under a set of non-parametric assumptions called
instrumental variables (IV), graphically described in Fig. 1a.
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(Zhang & Bareinboim, 2019; 2020) extended this bounding
strategy to estimate system dynamics in sequential decision-
making settings. Another line of research, taken by (Balke &
Pearl, 1994; 1997), proposed a family of canonical models1

with finite unobserved states, which sufficiently represent all
observations and consequences of interventions in IV mod-
els (Fig. 1a) with binary X,Y, Z. Based on this canonical
characterization, (Balke & Pearl, 1994) reduced the bound-
ing problem to a series of equivalent linear programs; the
resulting bounds improved over previous results (Robins,
1989; Manski, 1990). (Chickering & Pearl, 1997) further
used Bayesian techniques to investigate the sharpness of
these bounds with regard to the observational sample size.

Despite all these advances, there still exist outstanding chal-
lenges for bounding causal effects from observational data
when an arbitrary causal diagram is provided. Almost all
strategies described so far are applicable only for a limited
collection of causal diagrams (Robins, 1989; Manski, 1990;
Balke & Pearl, 1994; Zhang & Bareinboim, 2019). While
simple generalizations to an arbitrary causal diagram might
be feasible (Balke & Pearl, 1994), these strategies often fail
to account for all constraints imposed by the diagram (to
be shown later on), resulting in loose bounds. A systematic
approach for bounding in general settings is still missing.

Our goal in this paper is to overcome these challenges. We
study the partial identification of causal effects from obser-
vational data, provided with an arbitrary causal diagram.
We focus on structural causal models (Pearl, 2000, Ch. 7.1)
where observed variables are categorical; we make no para-

metric assumption about the underlying causal mechanisms,
neither the structural functions nor the domains of unob-
served variables. More specifically, our contributions are
as follows. (1) We propose a new family of canonical mod-
els for arbitrary causal diagrams. (2) We show that for
any structural causal model, there exists a canonical model
such that it is equivalent in all observational and interven-
tional distributions over endogenous (observed) variables.
(3) Based on this complete characterization, we develop a
systematic algorithm to bound interventional distributions
from finite observational data provided with an arbitrary
causal diagram. Simulation results confirm that our algo-
rithm consistently improves over existing methods. Due to
space constraints, the proofs are provided in Appendix B.

1.1. Preliminaries

We introduce in this section some basic notations and defi-
nitions used throughout the paper. We use capital letters to
denote variables (X), small letters for their values (x) and
⌦X for their domains. For an arbitrary set X , let |X| be
its cardinality. We will consistently use P (x) to represent

1A family of causal models is said to be canonical if any other
structural causal model could be reduced to it.
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Figure 1: (a) the causal diagram G containing a treatment X ,
an outcome Y and an instrument Z; (b) the simple canonical
diagram H where exogenous variables R1, R2 are shown.

probabilities P (X = x). Finally, 1{Z = z} is an indicator
function that returns 1 if Z = z holds true; otherwise 0.

The basic semantical framework of our analysis rests on
structural causal models (SCMs) (Pearl, 2000, Ch. 7). An
SCM M is a tuple hV ,U ,F , P i where V is a set of en-
dogenous variables and U is a set of exogenous variables.
F is a set of functions where each fV 2 F decides val-
ues of an endogenous variable V 2 V taking as argument
a combination of other variables in the system. That is,
v  fV (paV , uV ),PaV ✓ V , UV ✓ U . Exogenous vari-
ables in U are mutually independent; P is an exogenous
distribution deciding values of U . Naturally, each SCM M
induces an joint distribution P (v) over endogenous vari-
ables V , called the endogenous distribution. An interven-
tion on an arbitrary subset X ✓ V , denoted by do(x),
is an operation where values of X are set to constants x,
regardless of how they are ordinarily determined. For an
SCM M , let Mx denote a submodel of M induced by inter-
vention do(x). The interventional distribution P (v|do(x))
induced by do(x) is defined as the distribution over V in
Mx, namely, PM (v|do(x)) , PMx(v). For a detailed sur-
vey on SCMs, we refer readers to (Pearl, 2000, Ch. 7).

Each SCM is associated with a causal diagram G (e.g.,
Fig. 1a), which is a directed acyclic graph (DAG) where
nodes represent endogenous variables V and arrows repre-
sent the arguments PaV of each function fV . By convention,
exogenous variables U are often not explicitly shown. In-
stead, a bi-directed arrow between nodes Vi and Vj indicates
the presence of unobserved confounders (UCs) affecting
both Vi and Vj , i.e., UVi \ UVj 6= ;. We will use standard
graph-theoretic family abbreviations for graphical relation-
ships such as parents and children. For example, the set of
parents of X in G is denoted by pa(X)G = [X2Xpa(X)G ;
ch are similarly defined. We write Pa,Ch if arguments are
included as well, e.g. Pa(X)G = pa(X)G [X . A path
consisting of only bi-directed arrows is called a bi-directed
path. A pair of nodes Vi, Vj 2 V belong to the same c-

component in a causal diagram G (Tian & Pearl, 2002) if
they are connected by a bi-directed path in G (e.g., X $ Y
in Fig. 1a). A c-component C in G is maximal if there exists
no other c-component that contains C. We denote by C(G)
the collection of all maximal c-components in G which, in
turn, forms a partition over endogenous variables V .
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2. Characterizing Interventional

Distributions of Causal Diagrams

We are interested in computing an interventional distribu-
tion P (y|do(x)) of an unknown SCM M⇤. We only have
access to the causal diagram G and the observational distri-
bution P (v) associated with M⇤; endogenous variables V
are assumed to be categorical. Let M = {8M : GM = G},
i.e., the set of all the SCMs of G and let Mo = {8M 2

M : PM (v) = P (v)} be all the SCMs in M consistent
with observations P (v). For any X ✓ V , we denote
by PMo(y|do(x)) the set of all interventional distributions
P (y|do(x)) induced by candidate SCMs in family Mo, i.e.,

PMo(y|do(x)) = {PM (y|do(x)) : 8M 2Mo} . (1)

We will refer to PMo(v|do(x)) as the parameter space of
P (y|do(x)) with regard to G and P (v). Our goal in this
paper is to learn such parameter space. Since we do not
have parametric knowledge about exogenous variables U
and functions F , it is infeasible to directly infer candidate
models in Mo. We will circumvent this issue by studying an
alternative, parametrized set of SCMs No, which generates
the same parameter space of interventional distributions.
Definition 1 (do-Equivalence). Let M ,N be sets of SCMs
with endogenous variables V . M and N are do-equivalent

if for any M 2M (or N 2 N ), there exists N 2 N (M 2
M ) such that 8X ⇢ V , PM (v|do(x)) = PN (v|do(x)).

As a special case, for any do-equivalent pair M and N ,
they coincide in parameters of the observational distribution,
i.e., PM (v) = PN (v). A parametrized set of SCMs N is
said to completely characterize interventional distributions
of a causal diagram G if N is do-equivalent to the set of all
the SCMs M associated with G. The following corollary
could be derived based on the definition of do-equivalence.
Corollary 1. For an observational distribution P (v), let

M ,N be two sets of SCMs with endogenous variables V .

Let subsets Mo = {8M 2 M : PM (v) = P (v)} and

No = {8N 2 N : PN (v) = P (v)}. If M and N are

do-equivalent, then Mo and No are do-equivalent.

Corol. 1 suggests a systematic approach for learning the pa-
rameter space of P (y|do(x)) from the combination of the
causal diagram G and the observational distribution P (v).
One could (1) derive a complete characterization N of G;
(2) find No ✓ N consistent with P (v); and (3) compute in-
terventional distribution P (y|do(x)) of candidate models in
No. The induced parameter space PNo(y|do(x)) is ensured
to coincide with actual parameters in PMo(y|do(x)).

2.1. A Simple Canonical Model

To realize this goal, we introduce a family of canonical
causal models that could represent interventional distri-
butions in a causal diagram. For each endogenous node

u
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y  x
U

(3)
Y

y  ¬x
U

(4)
Y

y  1
U

(1)
Y

y  0
U

(1)
Y
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Figure 2: A graphical representation of partitions U (i)
Y .

V 2 V , we denote by HV = {hV : ⌦PaV 7! ⌦V } a
hypothesis class of functions mapping from domains of ob-
served parents PaV to domains of V . Let HV be ordered by
h(1)
V , . . . , h(mV )

V , where mV = |HV |. For each configura-
tion UV = uV , the induced function fV (·, uV ) must corre-
spond to a unique element in HV . We could thus divide the
exogenous domains ⌦UV into partitions U

(1)
V , . . . ,U (mV )

V

so that for any uV 2 U
(rV )
V , function fV (·, uV ) = h(rV )

V .

As an example, consider an SCM M associated with the
causal diagram of Fig. 1a where the endogenous variables
X,Y, Z 2 {0, 1}; exogenous variable U is drawn from a
normal distribution N (0, 1); values of Y are given by

y  fY (x, u) = 1{u 2 [x, 2 + x]}. (2)

Let functions in HY be ordered by h(1)
Y (x) = 0, h(2)

Y (x) =

x, h(3)
Y (x) = ¬x and h(4)

Y (x) = 1. These functions
correspond to population partitions as follows (Balke &
Pearl, 1994; Heckerman & Shachter, 1995; Imbens & Ru-
bin, 1997): “never-recover” U

(1)
Y = (�1, 0) [ (3,+1),

“helped” U
(2)
Y = (2, 3], “hurt” U

(3)
Y = [0, 1), and “always-

recover” U
(4)
Y = [1, 2] 2. We show in Fig. 2 the graphical

representation of partitions U
(i)
Y . As UY varies along its

domain, regardless of how complex the variation is, its only
effect is to switch the functional relationship between Y and
X among elements in the class HY . Formally,
Lemma 1. For an SCM hV ,U ,F , P i, for each V 2 V ,

function fV 2 F could be written as follows:

fV (paV , uV ) =
mVX

rV =1

h(rV )
V (paV )1

n
uV 2 U

(rV )
V

o
. (3)

Consider again the SCM M of Fig. 1a. The decomposition
in Lem. 1 implies that function fY of Eq. (2) could be
decomposed over population partitions U (i)

Y as follows:

fY (x, u) = 1{u 2 (2, 3]}x

+ 1{u 2 [0, 1)}¬x+ 1{u 2 [1, 2]}.
(4)

Note that when consider intervention do(X = 0) in M , the
outcome Y = 1 if and only if U 2 [0, 1] or U 2 [1, 2], i.e.,

P (Y = 1|do(X = 0)) = P (U 2 [0, 1)) + P (U 2 [1, 2]).

2For instance, y  1 for all x = 0, 1 (i.e., h(4)
Y ) if and only if

0  u  2 and 1  u  3; their intersection U (4)
Y = [1, 2].
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Importantly, despite the continuous nature of U , for SCMs
described in Fig. 1a with finite X,Y, Z, one could always
discretize domains of U into finite partitions while preserv-
ing all interventional distributions. We next describe a sim-
ple procedure that formalizes such discretization step.
Definition 2. For a causal diagram G, the simple canonical
diagram H is given by INVERSEPROJECT(G, C(G)).

The procedure INVERSEPROJECT is described in Alg. 1. In
words, a simple canonical diagram H is obtained from a
causal diagram G by (1) removing bi-directed arrows; (2) for
each c-component Ci 2 C(G), adding an exogenous node
Ri; and (3) adding an arrow Ri ! V for each V 2 Ci.
For example, the causal diagram G in Fig. 1a consists of
two c-compoments C1 = {Z} and C2 = {X,Y }; Fig. 1b
shows the corresponding simple canonical diagram H.
Definition 3. Given a simple canonical diagram H, a simple

canonical causal model (for short, s-CCM) M associated
with H is an SCM hV ,R,F , P i where:

1. Each Ri 2 R is a set {RV : 8V 2 ch(Ri)H}.
2. For each V 2 V , RV is an index in {1, . . . ,mV }.
3. Values of each V 2 V are given by a function v  

fV (paV , rV ) = h(rV )
V (paV ).

In a simple canonical model, each exogenous variable RV

is an index for the hypothesis class HV . Once RV = rV is
fixed, the functional relationship between V and PaV are
determined. Consider now an s-CCM N associated with
H of Fig. 1b, where X,Y, Z 2 {0, 1} and R1 = {RZ},
R2 = {RX , RY }. Def. 3 implies that in such model N ,

P (Y = 1|do(X = 0)) = P (RY = 3) + P (RY = 4).

Now let P (RY = 3) = P (U 2 [0, 1)) and P (RY = 4) =
P (U 2 [1, 2]). It follows immediately from above equations
that M and N induce the same P (Y = 1|do(X = 0)).
Lemma 2. Given a causal diagram G, let H be the simple

canonical diagram of G. For any SCM M associated with

G, there exists an s-CCM N associated with H such that for

any X ⇢ V , PM (v|do(x)) = PN (v|do(x)).

Lem. 2 implies that any SCM M could be reduced to a s-
CCM N with finite latent states that is equivalent with regard
to all interventional distributions. Thm. 1 summarizes the
characterization of simple canonical causal models while
simplifying some of its detailed, explicit parametric forms.
Theorem 1. For a causal diagram G and its simple canoni-

cal diagram H, consider the following conditions:

1. M is the set of all SCMs associated with G.

2. N is the set of all SCMs associated with H where for

each Ri 2 R, |⌦Ri | =
Q

V 2ch(Ri)
|HV |.

3. Vi $ Vj 2 G whenever a path Vi  Rk ! Vj 2 H.

Then M and N are do-equivalent.

Z X Y

R1

(a)

Z X Y

R1 R2

(b)

Z X Y

R1

(c)

Z X Y

R1

(d)

Figure 3: (a, c) causal diagrams G; (b, d) canonical diagrams
H where exogenous variables R are explicitly shown.

Algorithm 1 INVERSEPROJECT

1: Input: G and {C1, . . . ,CK} where Ck ✓ V .
2: Output: A canonical diagram H where all exogenous

variables R are shown explicitly.
3: For each node V 2 G, add a node V in H.
4: For each arrow Vi ! Vj 2 G, add Vi ! Vj in H.
5: For each Ck, add an empty node Ri in H.
6: For each V 2 Ck, add an arrow Ri ! V .

Consider again the causal diagram G and the simple canoni-
cal diagram H described in Fig. 1. Since X $ Y 2 G and
X  R2 ! Y 2 H, it follows from Thm. 1 that the set of
SCMs N with finite exogenous states completely character-
izes interventional distributions of Fig. 1a, which confirms
the canonical partitioning approah in (Balke & Pearl, 1994).

3. Refined Canonical Characterization

Despite its power, the representation of simple canonical
diagrams does not always capture all constraints on inter-
ventional distributions imposed by a causal diagram, espe-
cially when Condition 3 in Thm. 1 is violated. For con-
creteness, consider the causal diagram G of Fig. 3a. For any
SCM M associated with G, its interventional distribution
P (y, z|do(x)) satisfies the following relationship:

P (z, y|do(x)) =
X

u1

P (z|u1)P (u1)
X

u2

P (y|x, u2)P (u2)

= P (z|do(x))P (y|do(x))

That is, variables Z and Y are independent under the inter-
vention do(x). We show in Fig. 3d the simple canonical
diagram H obtained from G. Nodes Z and Y are now con-
nected by a backdoor path Z  R1 ! Y . This suggests
that there exists an SCM such that Z and Y no longer inde-
pendent due to the presence of confounder R1. For instance,
consider an SCM N where R1 is a binary variable uni-
formly drawn from {0, 1}; values of X,Y, Z are decided
by z  r1, x z ^ r1 and y  x ^ r1 respectively. It is
verifiable that P (Z = Y |do(X = 1)) = 1 in N , i.e., Z and
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Y are perfectly correlated under do(X = 1). This means
that the characterization of simple canonical diagram H in
Fig. 3d is not complete for the causal diagram G in Fig. 3a.

To address this issue, we will introduce a refined canonical
diagram that preserves all do-implications in a causal dia-
gram. We build on the notation of c-components and define
a novel type of clustering called the confounded clique.
Definition 4 (c-clique). For a causal diagram G, a subset
C ✓ V is a c-clique if any pair Vi, Vj 2 C is connected by
a bi-directed arrow in G.

A c-clique C in G is maximal if there exists no other c-
clique that contains C. We denote by c(G) the set of all
maximal c-cliques in a causal diagram G. For instance,
the causal diagram G of Fig. 3a has a single c-component
C = {X,Y, Z}; however, there exist in G two c-cliques
C1 = {Z,X} and C2 = {X,Y }. On the other hand,
if we connect nodes Z, Y with a bi-directed arrow (e.g.,
see Fig. 3c), c-components C(G) and c-cliques c(G) now
coincide, equating to a single clustering C = {X,Y, Z}.
Definition 5. For a causal diagram G, the canonical diagram
H is given by INVERSEPROJECT(G, c(G)) (Alg. 1).

As an example, Fig. 3b shows the canonical diagram cor-
responding to Fig. 3a where new exogenous nodes R1, R2

correspond to c-cliques C1 = {Z,X} and C2 = {X,Y }

respectively. When nodes are fully connected by bi-directed
arrows (see Fig. 3c), the canonical diagram coincides with
the simple canonical diagram, which is shown in Fig. 3d.
Lemma 3. For a causal diagram G and its canonical dia-

gram H, consider the following conditions:

1. M is the set of all SCMs associated with G.

2. N is the set of all SCMs associated with H.

Then M and N are do-equivalent.

Lem. 3 says that to estimate interventional distributions in
a causal diagram G, it is sufficient to consider only SCMs
associated with the corresponding canonical diagram H.
However, the domains of exogenous variables R and the
forms of structural functions F in H are still unspecified.
The remainder of this section grounds this specification.

3.1. Canonical Causal Models

We first consider SCMs where each exogenous variable
U 2 U is a real in R. Let exogenous variables U be
ordered by U1, . . . , Un, where n = |U |. Each canonical
type U

(j)
V , j = 1, . . . ,mV , could be decomposed into a

countable set of (almost) disjoint rectangles R(1)
V ,R(2)

V , . . . ,
i.e, U (j)

V = [i2NR
(i)
V . Each rectangle R

(i)
V is of the form

R
(i)
V = ⇥Uk2UV R

(i)
V,k, where R

(i)
V,k = [ak, bk] ⇢ R. (5)

u1

u2

R
(1)
X

x z

R
(2)
X

x ¬z

R
(3)
X

x 1

R
(4)
X

x ¬z

R
(5)
X

x 0

r(1)X,1 r(2)X,1

r(3)X,1 r(4)X,1

r
(
1
)

X
,2

r
(
2
)

X
,2

r
(
3
)

X
,2

r
(
4
)

X
,2

Figure 4: A graphical representation of rectangles R(i)
X .

For |UV | = 1, R(i)
V are bounded intervals in R; for |UV | =

2, they are the usual four-sided rectangles in R2, and so on.
Each function fV in Eq. (3) could be further written as:

fV (paV , uV ) =
X

i2N
h

⇣
j(i)V

⌘

V (paV )1
n
uV 2 R

(i)
V

o
. (6)

Among quantities in the above equation, j(i)V is an index
in {1, . . . ,mV } for any i 2 N. 1

n
uV 2 R

(i)
V

o
could be

written as a product of indicator variables as follows,

1
n
uV 2 R

(i)
V

o
=

Y

Uk2UV

1
n
uk 2 R

(i)
V,k

o
(7)

The decomposition of Eqs. (6) and (7) permits us to dis-
cretize the domains of exogenous variables U while pre-
serving independence relationships among them.

To illustrate, consider an SCM M inducing the causal di-
agram G of Fig. 3a. Exogenous variables U = {U1, U2}

where U1, U2 are i.i.d. draws from the normal distribu-
tion N (0, 1). Endogenous X,Y, Z are binary variables in
{0, 1}. Let functions in HX be ordered by h(1)

X (z) = 0,
h(2)
X (z) = z, h(3)

X (z) = ¬z and h(4)
X (z) = 1, which cor-

responds to the population of “never-taker”, “complier”,
“defier” and “always-taker”. Function fX is defined as:

x fX(z, u1, u2)

= 1 {u1, u2 2 [�2,�1]} z + 1 {u1, u2 2 [�1, 0]}¬z

+ 1 {u1, u2 2 [0, 1]}+ 1 {u1, u2 2 [1, 2]}¬z.

We show in Fig. 4 a graphical representation of the above
decomposition. Similar to previous discussion around Fig. 2,
P (X = 1|do(Z = 0)) is decomposable as follows:

P (X = 1|do(Z = 0))

=
4X

i=2

P (U1 2 [i� 3, i� 2])P (U2 2 [i� 3, i� 2]).



Non-Parametric Methods for Partial Identification of Causal Effects

In the above equation, the domains of U1, U2 are discretized
into a set of intervals in R respectively. We next generalize
this observation and define a family of canonical causal
models taking on a countable set of exogenous states.
Definition 6. Given a canonical diagram H, a canonical

causal model (for short, CCM) M associated with H is an
SCM hV ,R,F , P i where:

1. Each Rk 2 R is a set {RV,k : 8V 2 de(Rk)H}.
2. Values of each RV,k is binary sequence

⇣
r(i)V,k

⌘

i2N
2

{0, 1}N drawn from a countable set ⌦RV,k .
3. For each V 2 V , RV = pa(V )H \R.
4. Values of each V 2 V are given by a function

fV (paV , rV ) 2 F defined as, for j(i)V 2 {1, . . . ,mV },

fV (paV , rV ) =
X

i2N
h

⇣
j(i)V

⌘

V (paV )
Y

Rk2RV

r(i)V,k, (8)

where
P

i

Q
Rk

r(i)V,k  1, 8rV,k 2 ⌦RV,k , 8Rk 2 RV .

Consider an CCM N associated with Fig. 3b. Fix a sequence
jX = {2, 3, 4, 3}. Function fX of N is defined as:

fX(z, rX,1, rX,2) = r(1)X,1r
(1)
X,2z + r(2)X,1r

(2)
X,2¬z

+ r(3)X,1r
(3)
X,2 + r(4)X,1r

(4)
X,2¬z,

where RX,k, k = 1, 2, is a binary sequence
�
r(i)

�4
i=1

andP
i r

(i)
 1. The construction of Def. 6 implies that in N ,

P (X = 1|do(Z = 0)) =
4X

i=2

P (R(i)
1 = 1)P (R(i)

2 = 1).

Now let P (R(i)
X,k = 1) = P (Uk 2 [i�3, i�2]), k = 1, 2. It

immediately follows that M and N induce the same P (X =
1|do(Z = 0)). Our next result shows that the expressive
power of CCMs in representing interventional distributions
is indeed universal, not limited to SCMs satisfying Eq. (6).
Lemma 4. Given a causal diagram G, let H be the canon-

ical diagram of G. For any SCM M associated with G,

there exists a CCM N associated with H such that for any

X ⇢ V , PM (v|do(x)) = PN (v|do(x)).

A mental image for understanding Lem. 4 is that any open
set in Rn could be decomposed into a countable set of
(almost) disjoint rectangles. Any distribution P (u) could
be projected into probabilities over a real line R. We can
now state one of the main results of this paper:
Theorem 2. For a causal diagram G and its canonical

diagram H, consider the following conditions:

1. M is the set of all SCMs associated with G.

2. N is the set of all SCMs associated with H where

each Ri 2 R is a discrete variable drawn from N.

Zn Xn Yn

R1n R2n

✓r1 ✓r2

✓z
r1

✓x
z,r1,r2

✓y
x,r2

N

Figure 5: The data-generating process for observational data
{Zn, Xn, Yn}

N
n=1 in SCMs associated with Fig. 3b.

Then M and N are do-equivalent.

Thm. 2 says that for any SCM, we could always replace its
exogenous domains with a finite set of discrete variables
R taking on values in countable set. The resulting model
preserves all causal relationships and is equivalent in all
observational and interventional distributions over V .

4. Bounding Interventional Distributions

We now apply the canonical characterization introduced
so far and develop an efficient algorithm for the partial
identification of interventional distributions. Given a causal
diagram G and finite observations {Vi = vi}

N
i=1 drawn from

P (v), our goal is to obtain causal bounds [l, h] containing
the actual interventional distribution P (y|do(x)).

Let H be the canonical diagram obtained from G and let
variables Z = V \(Y [X). The interventional distribution
P (y|do(x)) of any SCM associated with H is given by:

P (y|do(x)) =
X

r,z

Y

V 2V \X

P (v|paV , rV )
Y

R2R

P (r) (9)

For instance, in the canonical diagram of Fig. 3b, it follows
from Eq. (9) that P (y|do(x)) =

P
r2
P (y|x, r2)P (r2).

The characterization of Thm. 2 permits us to consider only
discrete distributions P (r) and P (v|paV , rV ). For every
R 2 R, let ✓r be parameters of P (r), i.e., ✓r = P (r). We
assume ✓r are drawn from a Dirichlet process (Ferguson,
1973). We follow the stick-breaking construction (Sethu-
raman, 1994) which successively breaks pieces off a unit-
length stick; ✓r are proportions of each of the infinite pieces
relative to its original size. Formally, for r = 1, 2, . . . ,

✓r = �r

r�1Y

i=1

(1� �i), �r ⇠ Beta(1,↵R), (10)

where ↵R is a hyperparameter. For every endogenous V 2
V , let parameters ✓vpaV ,rV = P (v|paV , rV ). We assume
that ✓vpaV ,rV are drawn from a Dirichlet prior given by

✓vpaV ,rV ⇠ Dir(�V ), 8paV , rV , (11)
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where �V is a hyperparameter. We will use Rn = {Rn :
8R 2 R} to represent exogenous variables generating the
n-th observation Vn. For example, Fig. 5 shows the graphi-
cal representation of the data-generating process associated
with Fig. 3b, spanning over observations {Vn = vn}

N
n=1.

Let � = {�V : 8V 2 V } and ↵ = {↵R : 8R 2 R}.
We denote by parameters ✓ydo(x) = P (y|do(x)). The prob-
lem of bounding P (y|do(x)) is reducible to the estimation
of the posterior distribution P

⇣
✓ydo(x) | v̄;↵,�

⌘
given ob-

servational data v̄ = {Vi = vi}
N
i=1 (Chickering & Pearl,

1996). The remainder of this section describes a sampling
procedure to approximate this posterior distribution.

Posterior Sampling Since each R 2 R could take on
infinitely many values, it is difficult to directly compute pa-
rameters ✓ydo(x) from ✓r, ✓vpaV ,uV

. We will introduce an effi-
cient estimator to address this issue. For each R 2 R, let a
sequence R̄ = {R1, . . . , RN} and let ⌦⇤R = {r1, . . . , rK}

denote unique values which R̄ take on. We approximate
✓ydo(x) by summing over finite subdomains ⌦⇤ = ⇥R⌦⇤R,

✓ydo(x),N =
X

r2⌦⇤

X

z

Y

V 2V \X

✓vpaV ,rV

Y

R2R

✓r. (12)

As the number of observational samples N ! 1, each
subdomain ⌦⇤ converges to the complete ⌦R. It follows
from Eqs. (9) and (12) that ✓ydo(x),N converges to parameters
✓ydo(x) in probability, i.e., ✓ydo(x),N is a consistent estimator.

Lemma 5. Given observations {Vi = vi}
N
i=1, for 8✏ > 0,

lim
N!1

P

✓
sup
x,y

���✓y
do(x),N � ✓y

do(x)

��� > ✏ | v̄;↵,�

◆
= 0.

Lem. 5 implies that it is sufficient to sample estima-
tors ✓ydo(x),N given observational data v̄. We first de-
scribe a collapsed Gibbs sampler to draw exogenous vari-
ables r̄ = {r1, . . . , rN} from the posterior distribution
P (r̄ | v̄;↵,�). In particular, the algorithm iteratively sam-
ples each Rn 2 Rn from the complete conditional:

P (rn|v̄, r̄ \ {rn};↵,�) / P (vn|v̄�n, r̄;�)

P (rn|r̄�n;↵R),
(13)

where v̄�n = v̄ \{vn} and r̄�n = r̄ \{rn}. Among quanti-
ties in the above equation, the first term P (vn|v̄�n, r̄;�) is
a product of Dirichlet-multinomial distributions, marginal-
izing over parameters ✓vpaV ,uV

. With a slight abuse of nota-
tion, we write {r1, . . . , rK} as K unique values which r̄�n
take on. The second term P (rn|r̄�n;↵R) is given by:

P (rn = rk|r̄�n;↵R) =

P
i 6=n 1{ri = rk}

N � 1 + ↵R
,

P (rn 62 r̄�n|r̄�n;↵R) =
↵R

N � 1 + ↵R
,

(14)

Algorithm 2 BOUNDCAUSALEFFECT

1: Input: Observations {Vn = vn}
N
n=1, a canonical dia-

gram H, outcomes y, treatments x.
2: Output: A causal bound [l, h] over P (y|do(x)).
3: Initialization: set l = 1, h = 0.
4: while [l, h] has not converged do

5: Sample r̄ | v̄ through Gibbs sampling (Eq. (13)).
6: For every R 2 R, sample ✓r | v̄, r̄ (Eq. (15)).
7: For every V 2 V , sample ✓vpaV ,rV | v̄, r̄ (Eq. (16)).
8: Compute a bound [lN , hN ] over parameters ✓ydo(x)

from ✓r and ✓vpaV ,rV (Eq. (17)).
9: Let l = min {l, lN}, h = max {h, hN}.

10: end while

We next describe methods to sample parameters ✓r, ✓vpaV ,uV

given observations v̄ and exogenous states r̄. For each
R 2 R, the posterior P

�
✓rk , for all rk 2 ⌦⇤R | v̄, r̄;↵,�

�

is a Dirichlet distribution given by (Sethuraman, 1994):
�
✓r1 , . . . , ✓rK , ✓r 62⌦⇤

R

�
| v̄, r̄ ⇠ Dir(nR), where (15)

n(k)
R =

NX

n=1

1{rn = rk} (8k  K), and n(K+1)
R = ↵R.

For every endogenous V 2 V , the posterior distribution
P
⇣
✓vpaV ,rV | v̄, r̄;↵,�

⌘
for any paV , rV is given by:

✓vpaV ,rV | v̄, r̄ ⇠ Dir(�V + npaV ,rV ), where (16)

n(k)
paV ,rV =

NX

n=1

1{vn = vk, paVn
= paV , rVn = rV }.

We could then compute the estimator ✓ydo(x),N from sampled
parameters ✓r, ✓vpaV ,uV

following Eq. (12).

We are now ready to introduce an algorithm that bounds an
interventional distribution P (y|do(x)) from observational
data {Vn = vn}

N
n=1. Details of our algorithm are summa-

rized in Alg. 2. It repeatedly samples form the posterior dis-
tribution P

⇣
✓ydo(x) | v̄;↵,�

⌘
and update the current bound

estimates (Step 9). More specifically, it first draws exoge-
nous states r̄ from P (r̄|v̄;↵,�) using the collapsed Gibbs
sampler (Step 5). At Steps 6-7, it then samples parameters
✓r and ✓vpaV ,rV from the posterior distribution given v̄, r̄,
only for exogenous states visited by previously drawn r̄.
To address the deviation due to finite observational sam-
ples, Step 8 computes from parameters ✓r, ✓vpaV ,rV a bound

[lN , hN ] over ✓ydo(x) ⇠ P
⇣
✓ydo(x) | v̄;↵,�

⌘
given by:

lN = ✓ydo(x),N , hN = l + 1�
Y

R2R

X

r2⌦⇤
R

✓r, (17)

where ✓ydo(x),N is defined in Eq. (12). The validity of the
above bound follows from the decomposition of Eq. (9).
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(a) X = 0, Y = 0 (b) X = 0, Y = 1 (c) X = 1, Y = 0 (d) X = 1, Y = 1

Figure 6: Causal bounds over the effect P (y|do(x)) of aspirin X on the death Y in the International Stroke Trial (IST). The
x-axle represents the number of observational samples. cm are new bounds derived by Alg. 2 (blue); bp are derived using
simple canonical partitions (red); nb are the natural bounds (yellow). The actual effect P (y|do(x)) is labeled as p* (green).

P (y|do(x)) lcm hcm lbp hbp lnb hnb

X = 0, Y = 0 0.8934 0.8157 0.9070 0.5495 0.9206 0.6984 0.9478
X = 0, Y = 1 0.1066 0.0930 0.1843 0.0794 0.4505 0.0522 0.3016
X = 1, Y = 0 0.8964 0.7391 0.9185 0.2944 0.9591 0.4416 0.9970
X = 1, Y = 1 0.1036 0.0815 0.2609 0.0409 0.7056 0.0030 0.5584

Table 1: Causal bounds [l, h] over the interventional distribution P (y|do(x)). The optimal bounds are marked in bold.

5. Experiments

We demonstrate our algorithms on the patient data collected
from the International Stroke Trial (IST) (Carolei et al.,
1997). In all experiments, we test Alg. 2 (cm) with the
characterization of canonical causal models (Thm. 2) and a
sampling procedure (Chickering & Pearl, 1996) using the
canonical partitioning introduced in (Balke & Pearl, 1994)
(bp), which is equivalent to the characterization of simple
canonical models (Thm. 1). As a baseline, we also include
the natural bounds (Robins, 1989; Manski, 1990) estimated
at the 95% confidence level (nb) and the actual interven-
tional distribution P (y|do(x)) (p*). We refer readers to
Appendix A for details on experiment setups.

IST was a large, randomized, open trial of up to 14 days
of antithrombotic therapy after stroke onset (Carolei et al.,
1997). We are interested in evaluating the effect of aspirin
X (0 for no aspirin allocation, 1 otherwise) on the death of
the patient by the end of treatment Y (1 for dead, 0 other-
wise). To emulate the unobserved confounding described in
Fig. 3a, we introduce an instrumental variable Z 2 {0, 1},
filter data following a selection rule taking Z,X as input,
and hide all columns except for X,Y, Z. Details on the data
selection procedure are described in Appendix A. We show
in Table 1 the causal bounds [l, h] estimated from 1⇥103 ob-
servational samples. The actual interventional distribution
P (y|do(x)) are estimated from the randomized trial data.
We also plot causal bounds computed from first 500 obser-
vational samples in Fig. 6; x-axle represents the number of
observational data. Our analysis reveals that cm, bp and nb

all obtain valid causal bounds containing the target interven-

tional distribution P (y|do(x)). Our new bounding strategy
(cm) consistently dominate state-of-art natural bounds (nb,
bp). The characterization of simple canonical partitions (bp)
performs the worst among all algorithms. This is probably
due to the fact that it does not capture the independence
relationship between Z and Y under intervention do(x).

Overall, we found that our algorithm utilizing canonical
causal models could obtain efficient bounds over interven-
tional distributions; the derived bounds consistently domi-
nate state-of-art methods. Simulation results corroborate the
completeness of the canonical characterization. It captures
all constraints on interventional distributions associated with
a causal diagram, thus leading to tight causal bounds.

6. Conclusion

We introduced a canonical characterization of interventional
implications imposed by qualitative assumptions of the data-
generating process, represented in the form of a directed
acyclic causal diagram. Such characterization permits the
replacement of unspecified domains (possibly continuous)
of unobserved variables, in any structural causal model,
with discrete variables taking on a countable set of values.
This is important since all non-identifiable results are due
to the presence of unobserved confounders. We showed
that the resulting model is equivalent in all observational
and interventional distributions over categorical observed
variables. Using this novel representation, we developed an
efficient algorithm to derive bounds over causal effects from
finite observational data in an arbitrary causal diagram.
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