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Abstract

Causal effect identification is concerned with determining whether a causal effect
is computable from a combination of qualitative assumptions about the underlying
system (e.g., a causal graph) and distributions collected from this system. Many
identification algorithms exclusively rely on graphical criteria made of a non-trivial
combination of probability axioms, do-calculus, and refined c-factorization (e.g.,
Lee & Bareinboim, 2020). In a sequence of increasingly sophisticated results, it
has been shown how proxy variables can be used to identify certain effects that
would not be otherwise recoverable in challenging scenarios through solving matrix
equations (e.g., Kuroki & Pearl, 2014; Miao et al., 2018). In this paper, we develop
a new causal identification algorithm which utilizes both graphical criteria and ma-
trix equations. Specifically, we first characterize the relationships between certain
graphically-driven formulae and matrix multiplications. With such characteriza-
tions, we broaden the spectrum of proxy variable based identification conditions
and further propose novel intermediary criteria based on the pseudoinverse of a
matrix. Finally, we devise a causal effect identification algorithm, which accepts
as input a collection of marginal, conditional, and interventional distributions,
integrating enriched matrix-based criteria into a graphical identification approach.

1 Introduction

Cause and effect relations are one of the most common types of knowledge sought after throughout
the empirical sciences. These relations are one of the main ingredients in the construction of stable
explanations, and usually underpin robust and generalizable decision-making strategies [19, 26].
There is a growing literature that aims to systematically find causal relations by fusing observations,
experiments, and substantive knowledge about the phenomenon under investigation [19, 3, 20].
Formally, the inferential target usually appears as the effect of a set of variables do(X = x) on another
set of variables Y, which is written as P (y|do(x)) or Px(y). Assumptions about the underlying
data-generating processes are commonly expressed as a causal graph G over endogenous variables V.
There are different lines of investigation that aims to establish the quantity Px(y).

First, one line of investigation attempts to exploit the non-parametric constraints encoded in G to
determine whether the quantity Px(y) (i.e., query) is uniquely computable from the different available
distributions. For instance, Pearl’s celebrated method known as do-calculus provides a symbolic
way of determining whether a query can be identified from G and observational data P (V) [18]. A
number of necessary and sufficient conditions were developed for systematically determining the
identifiability status of the query from observational data [18, 29, 23, 9]. For example, the causal
effect Px(y) in Fig. 1a is identified by a back-door criterion as Px(y) =

∑
u P (y|x,u)P (u). Further

methods were developed to identify the query from a combination of observational and experimental
distributions [2, 14, 12, 11]. The key ideas behind these methods are (i) to decompose the given
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Figure 1: Causal graphs: (a) with a back-door condition; (b) with W as a proxy for U ; (c) with proxies
W and Z for U . (d) A causal graph G where a causal effect Px(y) can be computed by estimating
each of Px2

(t) (light blue, left) and Pt,x1
(y) (light red, right) using MGT criterion.

causal query into standard factors (following Tian’s c-factorization, [29]), leveraging the graphical
constraints, and (ii) to identify these factors individually, matching one of the available distributions.
We call this the factorization-based approach.

Another line of investigation attempts to exploit assumptions about the relationship between unob-
served confounders and the observable variables through the idea of proxy variables [5, 8, 10, 15, 32].
These methods rely on the cardinality and complexity of these relationships, which will possibly
lead to the invertibility of certain matrices. The focus is usually on local conditions involving the
treatment X , the outcome Y , and the proxies W ,Z for the set of unobserved confounders U ; for
example, see Fig. 1b. Note that since U is unobserved, the effect of X on Y , i.e., Px(y), is provably
not identifiable by standard graphical methods discussed earlier. Still, if the distribution of the proxy
given the unobserved confounder is available P (W |U), in addition to P (X,Y ,W ), the quantity
Px(y) can be computed under the invertibility of P(W |U), a matrix representation of P (W |U)
where P(W |U)i,j = P (wi|uj) (see Eq. (3) for detail). In case of Fig. 1c, the causal effect Px(y) is
identified from P (X,Y ,W ,Z) through the following,1

Px(y) = P(y|Z,x)P(W |Z,x)−1P(W ), (1)

where P(W |Z,x) has rank matching the size of domain of the unmeasured confounder U . Al-
though typically not framed in terms of identification with multiple datasets, this setting corresponds
to identifying Px(y) with, e.g., marginal distributions {P (X,Y ,Z),P (W ,X,Z)} or conditional
distributions {P (Y |Z,x),P (W |Z,x),P (W )}. We call this the proxy approach.2

Despite all the power and successes achieved by the factorization and proxy approaches, there exist
still interesting cases not covered by any of them individually. To witness, consider the causal graph
in Fig. 1d and first notice that the effect is not identified from each approach. On the other hand, if
we combine both approaches, we are able to obtain the causal effect is identifiable and given by,

Px(y) =
∑

t Px(t, y) =
∑

t Pt,x1
(y)Px2

(t)

=
∑

t

[
P(y|Z1,x1, t)P(W1|Z1,x1, t)

−1P(W1)
][
P(t|Z2,x2)P(W2|Z2,x2)

−1P(W2)
]
,

where Pt,x1
(y) and Px2

(t), the two factors of the query, are individually identified with the help of
the proxy approach, i.e., Eq. (1).

Our goal in this paper is to explicate how this can be accomplished from first principles. More broadly,
we will develop a flexible and general graphical identification approach that combines both the
factorization and matrix equations (the underpinning idea of proxy-based methods). More specifically,
our contributions are as follows:

1. We connect the graphical and matrical approaches by characterizing matrix equations of
probability distributions driven by graphical constraints in a causal graph. This leads to a
better understanding of the identification through solving systems of equations.

2. Building on this new characterization, we generalize proxy-based criteria and devise novel
intermediary pseudoinverse criteria so as to identify a causal effect by utilizing the general
inverse of a matrix and diverse collection of distributions.

1We focus on discrete variables. Detailed discussion on a continuous case can be found in [15]. We refer this
identification condition MGT criterion where the acronym MGT comes from the surnames of the authors in [15].

2Recent work in this line of research use the term proximal causal inference (PCI) [25, 27, 33, 6]. [27]
generalizes the results in [15] to allow observed confounders as well. [25] considered combining graphical and
proximal approaches, similar to the motivational example.
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3. We develop a general identification algorithm that amalgamates graphical and matrical
approaches, returning an identification formula for a causal query given a causal diagram
and a set of marginal, experimental, and conditional distributions. We show that this method
subsumes current state of the art in the literature.

2 Preliminaries

We follow notational conventions from literature on causal inference. We denote a variable by an
upper case letter Y , and its value is denoted by its corresponding lower case letter y in the domain
XY . A set of variables will be denoted by a bold capital letter Y with its value y. We may use ∪̇,
instead of ∪, to emphasize the union of two disjoint sets. Given Z ⊆W, w\Z denotes the value of
W\Z consistent with w. Let a/B = (A ∩B,a\B) which retains B as a set of variables and values
of a excluding B. Without loss of generality, we refer PZ(V

′|W) a distribution. We may employ
conditional to emphasize W ⊇ ∅, experimental or interventional Z ⊇ ∅ compared to observational
Z = ∅, and marginal if Z ∪W ∪V′ ( V.

We employ structural causal models (SCMs) [19, Ch. 7] as the semantical framework to represent
a domain of interest. An SCMM is a quadruple 〈U,V,P (U),F〉. A set of exogenous variables
U, which follows P (U), is determined by factors outside the model. V is a set of endogenous
variables whose values are determined by functions F = {fi}Vi∈V such that Vi ← fi(pai,ui)
where PAi ⊆ V\{Vi} and Ui ⊆ U. Further, do(x) represents the operation of holding a set X to
a constant x regardless of their original mechanisms. Such intervention induces a submodelMx,
which isM with fX replaced to x for X ∈ X. The distribution over V induced by the submodel is
denoted by Px(V). We may employ letter Q to denote an interventional distribution, e.g., Q = Pr.

Each SCM (model, for short) induces a causal diagram (or causal graph) G = 〈V,E〉, where each
type of edge represents a different causal relationship among the variables: (i) X→Y if X is used as
an argument of fY ; and (ii) X↔Y if UX and UY are correlated. Given a causal diagram G, familial
relationships among its vertices are denoted by pa and an for parents and ancestors, respectively.
Further, An is a set of ancestors including its argument as well. We denote by GXZ an edge subgraph
of G which removes edges incoming to X and outgoing from Z. Causal relationships among other
variables are captured in G\X, which is the subgraph of G over V\X. A vertex induced subgraph is
denoted by G[V′] where V′ ⊆ V. Causal effect identification relies heavily on standard graphical
constraints imposed by a causal diagram such as d-separation (reading off conditional independence
from the graph, [30, 7]) and do-calculus (equivalence among interventional probabilities) [18], which
we present in the Appendix for completeness.

The latent projection (or projection, for short) of a causal diagram is a causal diagram retaining
the causal relationships among a subset of variables. We denote by G〈V′〉 the latent projection of
G onto V′ ⊆ V, the causal graph over V′ [31]. Conditional independence (CI) statements and
do-calculus [18] on a projection are valid in G, vice versa. We formally define a latent projection in
the supplementary material. The omitted proofs and derivations are also provided in [13].

3 Characterization of Matrix Equations of Graphical Constraints

In this section, we present characterizations of graphical constraints in a given causal diagram
G, leading to equations expressed as the multiplication of matrices. The characterizations will
further advance our understanding on the constraints imposed over the distributions generated by the
underlying system compared to simple equivalence relationships such as conditional independence
and do-calculus. To begin with, we denote by P the matrix representation of a distribution P where
free outcome variables are rows and free condition or intervention variables correspond to columns.
For instance, Pa,B(C, d) is a |XC |× |XB |matrix and Pr(A, b|C, d) is a |XA|× |XC |matrix. Further,
we may use ′ and ′′ to represent two disjoint subsets such that B = B′ ∪̇ B′′.

Chain Rule with Conditional Independence The definitions of conditional and marginal distribu-
tions naturally lead to a sum of a product of probabilities. Let Q = Pr be an arbitrary interventional
distribution. Let A, B, C, and R be disjoint. A marginal probability over chain-rule-induced multi-
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plication is expressed as

Q(a,b′|c) =
∑
b′′

Q(a|b, c)Q(b|c) = Q(a|b′,B′′, c)Q(B′′,b′|c).

Considering conditional independence, we can further enrich such a characterization.
Lemma 1. Given a causal diagram G, let Q = Pr for some r ∈ XR where R ( V. Let
A,B,C,D,E be disjoint subsets of V\R. If (D ⊥⊥ A | B,C,E) and (E ⊥⊥ B | C,D) in
G\R, then, Q(A,b′|c,D, e) = Q(A|b′,B′′, c, e)Q(B′′,b′|c,D).

The lemma emphasizes the condition under which the result of multiplication is a matrix not just a
row or column. A special case of the lemma is appeared in MGT criterion where the inverse of a
matrix multiplication P(W |Z,x) = P(W |U ,x)P(U |Z,x) is utilized so as to cancel out an unknown
distribution P(W |U) = P(W |U ,x).

Adjustment Criterion Given a graph G and a causal effect of interest Px(y), the adjustment
criterion [24] seeks a set of covariates Z ⊆ V\X\Y, called an adjustment set for a causal effect
Px(y), which grants the following expression, Px(y) =

∑
z P (y|x, z)P (z). Adjustment criterion

generalizes back-door criterion [19]. Its matricized expression with employing Q = Pr is

Qx(y) =
∑
z

Q(y|x, z)Q(z) = Q(y|x,Z)Q(Z).

This simple expression plays a central role in the identification with proxy variables.

In many settings, the left hand side (LHS) is the query of interest and two terms in the RHS are
usually available or to be inferred using other available quantities. However, substituting value y
with Y, we can further yield (under invertibility assumption) Q(Z) = Q(Y|x,Z)−1Qx(Y), which
restores the covariate distribution of interest given a causal effect and conditional distribution.

C-Factorization C-factorization [28] decomposes a causal effect Px(y) into the sum-product of
c-factors (simply, factors) with respect to the given causal diagram G. Without loss of generality, let
X be minimal such that no X′ ( X satisfies Px′(y) 6= Px(y) (i.e., overriding X by anGX(Y) ∩X).
For any projectionH of G that preserves X ∪Y, the following holds:

Px(y) =
∑
y+\y

Px(y
+) =

∑
y+\y

∏
Yi∈C(H[Y+])

PpaH(yi)\yi
(yi), (2)

where Y+ = AnHX(Y) and C(·) is the c-component decomposition (partitioning the variables
in the graph based on their connectivity through bidirected edges). Given a query Px(y), we let
c-factors FH = {〈Xi,Yi〉}i where {Yi}i form the c-component decomposition ofH[Y+] and Xi =
paH(Yi)\Yi. The general identification method under partial-observability [12] can be summarily
described as findingH such that each factor is identified by one of the available distributions.

.

ZYi Xj Xi Yj

(a) Euler diagram

7
2

61

345

(b)

Figure 2: (a) set relationships, (b) a causal
graph where the numbers correspond to the
regions of (a) from the left to right.

Let us denote Xij = Xi ∪ Xj . We focus here
on the sum-product of a pair of factors at some la-
tent projection H, which satisfies Pxi

(yi)Pxj
(yj) =

Pxij\yij
(yij) where the values are consistent [12].

Now consider the summation over Z ⊆ Xi∩Yj . Then,∑
z

Pxi\z,z(yi)Pxj
(yj\z, z) = Pxij\yij

(yij\Z).

To properly represent this as a matrix multiplication, we
should decide which variables will become rows and
columns. Two matrices to be multiplied should share
only Z, and other common variables, appearing in the
two terms, or non-matching variables, appearing as intervention in left term and outcome in right
term, need to be set to constants. To help understand, we illustrate in Fig. 2a the set relationships
among Xi, Yi, Xj , and Yj in the case of Z = Xi ∩Yj .

Therefore, Yi∩Xj (the shared variables other than Z) and (Xi∪Yj)\Z (the non-matching variables)
are fixed. These fixed variables are not colored in Fig. 2a. As a result, we can obtain a submatrix of
PXij\Yij

(Yij\Z) as the multiplication of the submatrices of PXi
(Yi) and PXj

(Yj) obtained via
fixing variables.
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Figure 3: Causal diagrams admitting single- and double-proxy settings with surrogate experiments.

Lemma 2 (Matrix Equation of C-Factorization with Two Factors). Given a causal diagram G
and an experimental distribution Q = Pr where a causal effect is c-factorized as Qx(y) =∑

z Qxi(yi)Qxj (yj) in a projection H of G\R, the effect can be represented as a matrix multi-
plication, if Z ⊆ Xi ∩Yj . Further, the corresponding matrix equation is

Q(xij\yij)/(Xj\Xi\Yi)((yij\Z)/(Yi\Xj)) = Qxi/Z(yi/(Yi\Xj))Qxj/(Xj\Xi\Yi)(yj/Z).

We illustrate a causal graph in Fig. 2b where each variable matches to each region in the Euler
diagram (Fig. 2a). With Z = {6} and for an arbitrary instantiation of variables V2, V4, V5, and V7,
PV3,v4,v5(V1, v2, v7) = Pv4,v5,V6(V1, v2)Pv2,V3,v4(V6, v7).

In this section, we connected different graphical constraints—from chain-rule with conditional inde-
pendence to c-factorization—induced identification formulae to matrix equations. Results presented
in this section are by no means complete yet cover, to the best of our knowledge, every sum-product
expression appeared in both graphical and matrical identification approaches. Nevertheless, this suite
of characterizations will provide a fundamental understanding of the mathematical structures involved
in the identification methods with matrical expressions.

4 Generalized Proxy-based Criteria

P(W |U)

P(W |x)P(y ,W |x) P(W )

P(y ,U|x)

P(y|U, x)

P(U)P(U|x)

Px (y )

external
study

available

unobserved

query

L L

R R

L

L
R

R

Figure 4: Schematic for a single proxy
setting. Gray and red lines are for ele-
mentwise matrix multiplication and ad-
justment criterion, respectively.

Equipped with the characterization from the previous
section, we revisit single- and double-proxy settings
[5, 8, 10, 15] more formally, which identify a causal effect
through the combination of chain rule, adjustment crite-
rion (c-factorization), and inverses of matrices given an
observational distribution and additional external study
involving an unobserved confounder. We investigate its
extension capable of utilizing other types of available dis-
tributions. Results presented in this section is crucial in
adopting matrical approaches into a factorization-based
identification algorithm.

Single-Proxy Setting We illustrate in Fig. 4 the avail-
able distributions and unknown distributions, considered
in Fig. 1b, that can lead to Px(y). In the figure, a matrix
multiplication A = B · C is represented as B L→A

R←C
with positions annotated. First, note that (X,Y ⊥⊥ W | U) in a causal graph G is central, which
grants P (W |U ,x, y) = P (W |U ,x) = P (W |U). If P(W |U) is invertible,3 the three distributions
P(y,U |x), P(U |x), and P(U) are obtained where P(y|U ,x) is computed by chain rule (Lemma 1).
Then, Px(y) is, with � denoting elementwise division,

P(y|U ,x)︷ ︸︸ ︷(
(P(W |U)−1P(y,W |x))︸ ︷︷ ︸

P(y,U |x)

� (P(W |U)−1P(W |x))︸ ︷︷ ︸
P(U |x)

)>
P(W |U)−1P(W )︸ ︷︷ ︸

P(U)

. (3)

However, this scheme would not work in more restrictive conditions such as Fig. 3a or 3b. This
challenging scenario can be handled if a different external study is available altogether with a surrogate

3In case of W has more categorical values than U , one can coarsen W to W ′ ensuring that P(W ′|U) is full
rank. In other words, P(W |U) has full column rank.
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experiment. For example, when only Y is independent to W given U and X , the availability of
an external study P (W |U ,x), instead of P (W |U), and a surrogate experiment Px(W ), in addition
to the observational distribution P (Y ,W ,X), suffices to identify the causal effect (see [13]for the
derivations for Fig. 3a, 3b). These examples suggest that we can generalize the single proxy-based
criterion to take advantage of a diverse collection of external studies and surrogate experiments.

Theorem 1. Given G, let X, Y, W, U, and R be disjoint subsets of V, Q = Pr for some r ∈ XR,
andH = G\R. A causal effect Pr,x(y) = Qx(y) is identifiable if (1) U is an adjustment admissible
set for Qx(y) in H; (2a) (Y ⊥⊥ W | U,X)H and Q(W|U,x), Q(y,W|x) and Q(W|x) are
available where Q(W|U,x) has full column rank; or (2b) (Y 6⊥⊥W | U,X)H and Q(W|U,x,Y)
and Q(Y,W|x) are available where every Q(W|U,x,y′) has full column rank for y′ ∈ XY; (3)
Qz′(W) is available for Z ⊆ X ∪Y and Z′ = (X ∪Y)\Z with z′ consistent with x ∪ y such that
(Z ⊥⊥W | U,Z′) inH; and U is an adjustment admissible set for Qz′(W) inH.

The theorem presents a sound condition to elicit the causal effect through combining various distribu-
tions especially when the given situation is more restrictive.

P(W )

P(W |U) P(U|Z , x)

P(W |Z , x)

P(y|U, x)

P(y|Z , x)

P(U)

Px (y )
L R R L L R

RL

(a)
Qs′ (W)

Q(W|U, s′) Q(U|z/S, x)

Q(W|z/S, x)

Q(y|U, x)

Q(y|z/S, x)

Q(U)

Qx(y)
L R R L L R

RL

(b)

Figure 5: Schematics of (a) MGT criterion
and (b) its generalization (simplified)

Double-Proxy Setting We now generalize MGT
criterion to utilize distributions other than the origi-
nally considered observational study. MGT criterion
for a double-proxy setting relies on the following
conditions to identify Px(y) with P (X,Y ,Z,W ):

(C1) U is an adjustment set for Px(y) in G;

(C2) Y ⊥⊥ Z | U ,X in G;

(C3) Z,X ⊥⊥W | U in G; and

(C4) P(W |Z,x) has rank |XU |.

Under these conditions, algebraic relationships be-
tween a causal effect Px(y) and other distributions
can be illustrated as in Fig. 5a where the distributions
form a closed loop alternating between (i) distribu-
tions with an unmeasured confounder and (ii) given
distributions and a query. Among the four multipli-
cations, Px(y) corresponds to an adjustment criterion (C1) so as to Px(y) = P(y|U ,x)P(U).
Others are due to the chain-rule combined with CI, e.g., (C2) P(y|U ,x) = P(y|U ,x, z) and (C3)
P(W |U) = P(W |U ,x, z). With (C4), which implies that both P(W |U) and P(U |Z,x) are invertible
under coarsening of W and Z if necessary [15, 1], the causal effect Px(y) can be expressed as Eq. (1)
by subsequently rewriting P(U |Z,x) and P(y|U ,x), and contracting P(W ) = P(W |U)P(U) (see
[13] Appendix C for an illustration).

To examine the possible extension of the setting, we relax (C3), where the CI grants the use
of matrix multiplication leading to a chain-rule P(W ) = P(W |U)P(U) and P(W |Z,x) =
P(W |U)P(U |Z,x). One can consider three relaxed versions of (C3), namely, (Z ⊥⊥ W | U ,X),
(X ⊥⊥ W | U ,Z), and, ultimately, dropping (C3) illustrated respectively in Fig. 3c, 3d and
3e. For concreteness, consider the first relaxation (Z ⊥⊥ W | U ,X). The assumption grants
P(W |U ,Z,x)=P(W |U ,x). Given that a surrogate experiment Px(W ) is accessible, and it can
be decomposed as Px(W ) = P(W |U ,x)P(U) where U is also an adjustment admissible set for
Px(w), then, Px(y) is identified. Other two relaxations turned out to be much more challenging, yet
the causal effect can be identified by exploiting different surrogate experiments or additional external
study (see [13] Appendix C for detail). Motivated by these examples, we present a theorem that
extends MGT criterion with varying degrees of the assumption and data collection.

Theorem 2 (Generalized MGT Criterion). Given a causal graph G, let X,Y,Z,W,U,R ⊂ V be
disjoint sets of variables where R can be empty. Let Q = Pr for some r ∈ XR andH = G\R. Let
S ⊆ X∪Z. A causal effect Qx(y) = Px,r(y) is identifiable in G if, for some z, (1) U is an adjustment
set for Qx(y) in H; (2) (Y ⊥⊥ Z | U,X)H; (3) (W ⊥⊥ S′ | U,S)H where S′ = (X ∪ Z)\S; (4)
U is an adjustment set for Qs′(W) in H; (5) Q(W|U, s′) is invertible; (6) Q(U|z/(S ∪ Z′),x)
is invertible for some Z′ ⊆ Z\S and Q(y|z/(S ∪ Z′),x), Q(W|z/(S ∪ Z′),x), and Qs′(W) are
available. Additionally, Q(W|U, s′/Z′) is available if Z′ 6= ∅.
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The theorem broadens the applicability of the MGT criterion as an identification template to a
range of collection of distributions. Although the conditions involved in generalizing MGT criterion
non-trivial, we can similarly draw a (simplified) big picture of the generalized criterion as in Fig. 5b.
The key idea is relaxing the C3 condition for a set of variables while considering sets of variables
(explicitly) and interventional distributions.

We have established generalized identification criteria exploiting proxy variables.4 The purpose of
both criteria aligns well with the philosophy of general identification [14, 12] so that they can be
smoothly integrated into graphical approaches.

5 Pseudoinverse and Intermediary Criteria

Now, we present a novel identification condition for a challenging setting that neither previous
matrical nor graphical approaches could handle. In the setting, the probability of interest is expressed
as the multiplication of three matrices and is identifiable through employing the pseudoinverse of a
matrix, without an invertibility assumption. Let P(·)† denote the pseudoinverse of P(·).5

Lemma 3 (Base Intermediary Criterion). Let {P1,P2,P3,P4} be distributions. Let {Pi}4i=1 be their
matrix representations. If submatrices {P′i}4i=1 of {Pi}4i=1 satisfy P′1 = P′2P

′
3P
′
4 and P′2P

′
3, P′3P

′
4,

and P′3 are given, then, P′1 = (P′2P
′
3)P
′
3
†(P′3P

′
4).

Proof. By the given condition, the associativity of matrix multiplications, and the property of
pseudoinverse PP†P = P, P′1 = P′2P

′
3P
′
4 = P′2(P

′
3P
′
3
†P′3)P

′
4 = (P′2P

′
3)P
′
3
†(P′3P

′
4).

Although the lemma itself is rather general, we concretely characterize distributions satisfying
Lemma 3 with respect to chain-rule (Sec. 5.1) and c-factorization (Sec. 5.2).

5.1 Chain-Rule-based Intermediary Criterion

A

B
C

D
A

B
C

D

Figure 6: Causal diagrams where chain-
rule intermediary criterion is applica-
ble to identify P (a|d) given P(a|C, d),
P(B|C, d), and P(B|d).

We start by characterizing an intermediary criterion
with a chain-rule using a simple illustrative example.
Let Q be an arbitrary interventional distribution. One
way to decompose Q(a, b, c|d) into three probabilities is
Q(a|b, c, d)Q(b|c, d)Q(c|d). Let a probability of inter-
est be its marginal Q(a|d) =

∑
b,c Q(a, b, c|d) where

the following distributions are available: Q(B|C, d),
Q(A|C, d), and Q(B|d). If the first term Q(a|b, c, d)
is equal to Q(a|b, d), the term can be multiplied by
Q(b|d) =

∑
c Q(b|c, d)Q(c|d). Hence, the matricized

expression becomes,

Q(A|d) =
Q(A|C,d)︷ ︸︸ ︷

Q(A|B, d)Q(B|C, d)Q(C|d)︸ ︷︷ ︸
Q(B|d)

= Q(A|C, d)Q(B|C, d)†Q(B|d).

for any d ∈ XD. Two illustrative examples where this expression is applicable (i.e., (C ⊥⊥ A | B,D)
in G) are shown in Fig. 6. Now, we propose a chain-rule intermediary criterion.

Lemma 4 (Chain-Rule Intermediary Criterion). Given a causal diagram G, let A, B, C, D, and R
be disjoint subsets of V with D and R can be empty. Let B = B′ ∪̇ B′′ and C = C′ ∪̇ C′′ where
B′ and C′ are not empty. Given an interventional distribution Q = Pr, if (C′ ⊥⊥ A | B,C′′D) in
G\R and Q(a,b′′, c′′|d) =

∑
b′,c′ Q(a|b, c,d)Q(b|c,d)Q(c|d), then,

Q(A,b′′, c′′|d) = Q(A,b′′|C′, c′′,d) ·Q(B′,b′′|C′, c′′,d)† ·Q(B′,b′′, c′′|d).
4As mentioned earlier, [27] extends the MGT criterion by allowing observed confounders C. Roughly, this

can be understood as replacing U in Fig. 5a with U and C where C is not necessarily marginalized out so that
the resulting distribution may contain C.

5In case of continuous variables, P(B|A) can be understood as a linear operator on Hilbert spaces. See [16]
for more detailed discussion on the existence and uniqueness of pseudoinverse for a bounded linear operator.
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Additional CI allows the criterion to return a matrix, which can then be nested into other equation.
Corollary 1. Given Lemma 4, if (D ⊥⊥ A,B′′ | C) and (D ⊥⊥ B | C) in G\R, then

Q(A,b′′, c′′|D) = Q(A,b′′|C′, c′′) ·Q(B′,b′′|C′, c′′)† ·Q(B′,b′′, c′′|D).

These results advance current knowledge of the causal or non-causal identification with fragments of
information presented as conditional distributions, which is often under-studied.

5.2 C-Factorization-based Intermediary Criterion

We proceed to characterize an intermediary criterion where a matrix equation corresponds to a
c-factorization resulting in three factors, extending the case of a pair of factors (Lemma 2). Concretely
speaking, we are interested in the matrix form of

Px`
(y`) =

∑
z,w

Pxi
(yi)Pxj

(yj)Pxk
(yk) =

∑
z

Pxi
(yi)

∑
w

Pxj
(yj)Pxk

(yk), (4)

where Z ⊆ Xi ∩Yj and W ⊆ Xj ∩Yk are disjoint sets of variables to be marginalized (the order
among the three factors is irrelevant since they are invariant up to renaming.) In addition, available
distributions are of the form PXj (Yj), PXij\Yij

(Yij\Z), and PXjk\Yjk
(Yjk\W).

Theorem 3 (C-Factorization Intermediary Criterion). Let G be a causal diagram and Q = Pr.
Let Qx`

(y`) be c-factorized as Eq. (4). Let X+
k be a subset of Xk excluding the rest five sets,

{Yi,Yj ,Yk,Xi,Xj}. Y+
i is similarly defined. If Z ⊆ (Xi ∩Yj)\Xk and W ⊆ Xj ∩Yk, then

Qx`/X
+
k
(y`/Y

+
i ), a submatrix of QX`

(Y`), becomes

Qx`/X
+
k
(y`/Y

+
i ) = Q(xij\yij)/W((yij\Z)/Y+

i ) ·Qxj/W(yj/Z)
† ·Q(xjk\yjk)/X

+
k
((yjk\W)/Z).

The theorem imposes an additional constraint that Z should be disjoint to Xk compared to naively
interpreting the three-matrix multiplication as two individual matrix multiplications as seen in
Lemma 2 (we depict the sophisticated set relationships among W, Xs, Ys, and Z in Appendix D
[13].) Briefly speaking, given that the summation over W is nested (Eq. (4)), (Xj ∪Yj)\W is fixed
along with Yj ∩Xk. Thus, Xi ∩Yj ∩Xk can’t be part of Z. In other words, the constraints imposed
in the original expression asymmetrically affect what Z can be but not what W can be.

The implication of this result is immediate. It was previously unknown whether the identification
procedures by Lee and Bareinboim [12] (GID-PO) and Lee and Shpitser [11] (Lemma 3 and 6)
taking marginal and interventional are complete. Now, we show a negative result.
Proposition 1. GID-PO [12] and Lemma 3 and 6 [11] are not complete.

Proof. Consider a causal graph X → A → B → Y and distributions P (X,B), P (A,B), and
P (A,Y ). Px(y) is identified as P(y|A)P(B|A)†P(B|x), which is not solvable by [12, 11].

In this section, we developed novel intermediary criteria by characterizing both chain-rule and c-
factorization with respect to matrix multiplications of three matrices exploiting the pseudoinverse,
which has never been employed in the context of causal identification to the best of our knowledge.

6 A Unifying Causal Identification Algorithm

We present a causal identification algorithm ID-ME (Alg. 1) taking a collection of marginal, con-
ditional, and interventional distributions D and causal graph G.6 The algorithm integrates different
approaches such as generalized proxy-variable based criteria (Sec. 4 and [8, 10, 15]), intermediary
criteria (Sec. 5), and factorization approaches [23, 14, 12, 11].

Taking a causal query Px(y), causal graph G, and distributions D, it refines the given query by
removing redundant interventions based on Rule 3 of do-calculus, i.e., Px(y) = Px′(y) for a

6We omit some details on whether some variables are fixed (e.g., Pa(B) versus PA(B)). Without loss of
generality, every distribution contains no redundant conditions and interventions, which can be obtained through
repeatedly applying rules of do-calculus.
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Algorithm 1 ID-ME
1: function ID-ME(x, y, G, D)

Input: x, y value assignments for a query Px(y); G a causal diagram; D a collection of distributions
Output: a formula for Px(y) made with D or FAIL.

2: X,G′ ← anG
X(Y) ∩X,G[AnG(Y)]

3: D←expand(G,D) unless D is unconditional
4: F+ ← FG′ if D is unconditional and nonmarginal else

⋃
{FG′〈V′〉 | X ∪Y ⊆ V′ ⊆ V}

5: F′,F′′ ← empty dictionary,F+

6: for all PXi(Yi) ∈ F′′ and {PZ(V
′|T) ∈ D | Yi ⊆ V′,Xi ⊆ Z ∪V′ ∪T} do

7: update F′,F′′ with ID-RC(PXi(Yi), G, PZ(V
′|T))

8: for all PXi(Yi) ∈ F′′ do update F′,F′′ with PROXY(PXi(Yi), G, D ∪ F′)
9: repeat update F′,F′′ with CF-INT(G′,F′,F′′) and CF-INV(G′,F′,F′′) until F′ not changed

10: return exact-cover(G′,Px(y),F′)

minimal subset X′ ⊆ X. Further, G′ a copy of causal graph is obtained through pruning G only to the
ancestors of Y. However, note that the original G is kept intact to be used in the proxy criteria later
where proxies can be non-ancestors of Y, e.g., Fig. 1b. Then, the algorithm proceeds the following
three parts: 1) expanding the given distributions D; 2) c-factorizing the query Px(y) and identifying
each factor; and 3) combining identified c-factors F′ to elicit the causal query.

First, the algorithm expands the given distributions (expand in Line 3). A given conditional distri-
bution PZ(V

′|T) can be understood as a distribution PZ(V
′) under a selection bias, which might

hinder identification of a c-factor. By multiplying another distribution equal to, e.g., PZ(T
′′|T′), we

can obtain a distribution with more outcome and less bias, PZ(V
′,T′′|T′). Chain rule closure [11]

describes a state of a set of distributions where no new distribution with a smaller condition can be
added to the collection. Function expand contains a procedure for chain rule closure along with
chain-rule matrix inversion (Lemma 1) and chain-rule intermediary criterion (Lemma 4), enjoying
the matrical approach especially relevant to conditional distributions.

The next part enumerates c-factors (Line 4) and attempts to identify every c-factor based on available
distributions (Lines 5–8). An algorithm for identifying a c-factor given a single unconditional and
non-marginal distribution has been thoroughly studied (e.g., Identify [29] and ID [23]), and is a
building block for general identification [2, 14]. Dealing with a marginal or conditional distribution,
one should consider (i) whether the condition in the conditional distribution in D can be negligible
with respect to identifying the c-factor or (ii) whether matrix equations can be utilized (e.g., simple
inverse or generalized proxy criteria). ID-RC (Line 7) is an identification module modified to handle
a conditional distribution [4, 11], and PROXY (Line 8) refers to generalized proxy criteria.

The last part (Lines 9–10) attempts to map the identified c-factors to the causal effect Px(y). Once a
subset of c-factors are identified from the previous step, the algorithm proceeds to examine whether
some of the unidentified factors in F′′ can be further inferred from the individually identified factors
F′, i.e., whether a simple inverse (CF-INV implementing Lemma 2) or the intermediary criterion over
c-factors (CF-INT implementing Thm. 3) can be invoked (Line 9). Then, we finally elicit a causal
effect if a valid combination of identified c-factors exists (exact-cover in Line 10 checking Eq. (2)).

The algorithm coherently integrates existing methods and the newly developed machinery in the
previous sections. Whenever ID-ME returns a formula, evaluation of the formula leads to the quantity
Px(y). Further, ID-ME strictly subsumes the union of aforementioned methods in a way that not
only returns it a formula whenever some of the methods returns one given the same problem instance
but also it can output novel formulae for the problems that cannot be answered by any of them as
demonstrated through examples and by Prop. 1.

Theorem 4. ID-ME is sound.

Theorem 5. ID-ME strictly subsumes proxy criteria [8, 15], GID(-PO) [14, 12], mID, or eID [11].

Finally, we discuss the time complexity of ID-ME through examining the complexity of algorithms
concerning a subset of problem instances ID-ME can handle. First, the state of the art identification
conditions with distributions marginal, experimental, but unconditional [12, 11] involve finding a
latent projection where the corresponding set of c-factors are all identified. It is conjectured that it
requires time exponential in |V| [12]. Next, dealing with conditional distributions through expanding
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them takes time exponential in |V| (e.g., chain rule closure [11]). As a result the algorithm generally
runs in time exponential in |V|, which we speculate that this complexity reflects a fundamental
trade off between expressive power and tractability within causal inference, as already observed in
[12, 11].

7 Conclusion

In this paper, we studied the use of matrix equations in causal identification given general distributions.
In particular, we characterized matrix equations made of distributions driven by graphical constraints,
deepening our understanding on algebraic constraints imposed by the graph (Lemmas 1 and 2 in
Sec. 3). We generalized proxy-based identification methods to cover a broad spectrum of problem
instances beyond the identification problems with an observation study and optional external study
(Thms 1 and 2 in Sec. 4). We developed novel intermediary criteria that identify a query by utilizing
the pseudoinverse of the center matrix within the multiplication of three matrices (Lemma 4 and
Thm. 3 in Sec. 5). Finally, we provide a causal identification algorithm (Alg. 1 in Sec. 6) integrating
several existing identification results to produce an identification formula for a causal query given
a causal graph and distributions that can be marginal, experimental, and conditional harnessing the
power of matrix equations and (pseudo)inverses. As a future research direction, it will be crucial to
devise a statistically efficient estimator for identification formulae involving matrix inversion.
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Appendix for “Causal Identification with Matrix Equations”

A Preliminaries

We formally introduce essential definitions like d-separation, do-calculus, latent projection, and
adjustment criterion.

d-Separation We begin with the definition of d-separation [17].
Definition 1 (d-separation). Two sets of vertices X,Y are said to be d-separated by another set Z in
a directed acyclic graph G, denoted by (X ⊥⊥ Y | Z)G , if every path P from vertices in X to vertices
in Y are blocked where blockage occurs when one of the following holds:

1. P contains at least one arrow-emitting node that is in Z, or

2. P contains at least one collider that is outside Z and has no descendant in Z.

Do-calculus Do-calculus [18] is an essential machinery to reason about the equivalence of con-
ditional interventional probabilities induced by any model conforming to a given causal diagram.
Do-calculus consists of three rules where each rule dictates an equality between two probability
distributions under a certain graphical test. These rules are

R1 (Insertion/deletion of observations):
Px(y|z,w) = Px(y|w) if Z ⊥⊥ Y | X,W in GX

R2 (Action/observation exchange):
Px(y|z,w) = Px,z(y|w) if Z ⊥⊥ Y | X,W in GXZ

R3 (Insertion/deletion of actions):
Px(y|w) = Px,z(y|w) if Z ⊥⊥ Y | X,W in G

XZ(W)

where Z(W) is a subset of Z that is not ancestor of W in GX.

Latent Projection We formally define latent projection as below.
Definition 2 (Latent Projection (adopted from 31)). The projection of a causal graph G over V on
V′ ⊆ V, denoted by G〈V′〉, is a causal diagram over V′ such that for every pair X,Y ∈ V′:

1. There exists a directed edge X → Y in G〈V′〉 if there exists a directed path from X to Y in
G such that every vertex other than X and Y on the path is not in V′.

2. There exists a bidirected edge X ↔ Y to G〈V′〉 if there exists a divergent path7 between X
and Y in G such that every vertex other than X and Y on the path is not in V′.

Back-door and Adjustment Criterion We reproduce the back-door criterion.
Definition 3 (Back-door Criterion). Let X and Y be disjoint sets of vertices in a graph G. Then a set
Z satisfies the back-door criterion relative to (X,Y) in G if

1. No element in Z is a descendant of X.

2. Z d-separates all back-door paths from X to Y.

The definition of adjustment criterion is from [24, 21].
Definition 4 (Proper Causal Path). Let X, Y be sets of vertices. A causal path from a vertex in X to
a vertex in Y is called proper if it does not intersect X except at the end point.
Definition 5 (Adjustment Criterion). Z satisfies the adjustment criterion relative to (X,Y) in G if

1. No element in Z is a descendant in GX of any W ∈ X which lies on a proper causal path
from X to Y.

2. All proper non-causal paths in G from X to Y are blocked by Z.
7A path between X and Y is said to be divergent if it is made of two directed paths (W1, . . . ,X) and

(W2, . . . ,Y ) in G such that W1 = W2 or W1 ↔W2.
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Figure 7: A schematic for identifiability with P (W |U)−1, an external study P (W |U) inverted.
P(y|U ,x) is based on the transpose of the Hadamard product of P(y,U |x) and P(U |x).

B Characterization of Matrix Equations of Graphical Constraints

Lemma 1. Given a causal diagram G, let Q = Pr for some r ∈ XR where R ( V. Let
A,B,C,D,E be disjoint subsets of V\R. If (D ⊥⊥ A | B,C,E) and (E ⊥⊥ B | C,D) in
G\R, then, Q(A,b′|c,D, e) = Q(A|b′,B′′, c, e)Q(B′′,b′|c,D).

Proof.

Q(a,b|c,d, e) = Q(a|b, c,d, e)Q(b|c,d, e) Chain Rule

Q(a,b′|c,d, e) =
∑
b′′

Q(a|b′,b′′, c,d, e)Q(b′,b′′|c,d, e) Marginalization

=
∑
b′′

Q(a|b′,b′′, c, e)Q(b′,b′′|c,d) Conditional Independence

= Q(a|b′,B′′, c, e)Q(b′,B′′|c,d) Matrix Representation

Q(A,b′|c,D, e) = Q(A|b′,B′′, c, e)Q(b′,B′′|c,D). Matricization

Lemma 2 (Matrix Equation of C-Factorization with Two Factors). Given a causal diagram G
and an experimental distribution Q = Pr where a causal effect is c-factorized as Qx(y) =∑

z Qxi(yi)Qxj (yj) in a projection H of G\R, the effect can be represented as a matrix multi-
plication, if Z ⊆ Xi ∩Yj . Further, the corresponding matrix equation is

Q(xij\yij)/(Xj\Xi\Yi)((yij\Z)/(Yi\Xj)) = Qxi/Z(yi/(Yi\Xj))Qxj/(Xj\Xi\Yi)(yj/Z).

Proof. Since the columns of the left matrix and the rows of the right matrix must be matched to Z,
the rest of sets Xi\Z and Yj\Z are fixed. Further, to avoid the resulting matrix sharing the same
variables, Yi ∩Xj is fixed. Then, using the colors as illustrated in Fig. 2a,

Q(xij\yij)/(Xj\Xi\Yi)((yij\Z)/(Yi\Xj))

= Qxi\Z,Z(Yi\Xj ,yi ∩ xj)QXj\Xi\Yi,yi∩xj
(yj\Z,Z)

= Qxi/Z(yi/(Yi\Xj))Qxj/(Xj\Xi\Yi)(yj/Z).

C Generalized Proxy-based Criteria

We explain the modified schematic of the single-proxy setting in Fig. 7. We reproduce Fig. 4 with
a twist by replacing P(W |U) to P(W |U)−1 so as to easily observe how the first three unobserved
distributions with U in their measurements are obtained. Then, P(y|U ,x) is computed. Finally, Px(y)
is identified.

C.1 Single-Proxy Setting

We derive two identification formulae when the assumption is relaxed in two different ways.
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P(W |U, x)

P(W |x)P(y , W |x) Px (W )
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P(y|U, x)
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(a) (Y ⊥⊥W | U ,X)

P(W |U, x , y )

P(y , W |x) Px ,y (W )

P(y , U|x)

P(y|U, x)

P(U)

Px (y )

y

L L

R

L
R
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(b) without (X,Y ⊥⊥W | U)

Figure 8: Schematics for the single-proxy setting with different CI statements, (a) for Fig. 3a
and (b) for Fig. 3a). P(W |x) is obtained through enumerating P(Y ,W |x) = [P(y′,W |x)]y′ and
marginalizing it over Y (emphasized with a gray rectangle).

Case (Y ⊥⊥ W | U ,X): Consider a case (Y ⊥⊥ W | U ,X) as illustrated in Fig. 3a. Further,
unlike the original setting, suppose an invertible matrix P(W |U ,x) is available instead of P(W |U).
Then, the identification cannot be completed since P(W ) = P(W |U)P(U) becomes infeasible.
Nevertheless, if U is an admissible set for a surrogate experiment Px(w) and an experimental
distribution Px(W ) is available, then Px(y) is identified as (fraction corresponds to elementwise
division, �) (P(W |U ,x)−1P(y,W |x)

P(W |U ,x)−1P(W |x)

)>
P(W |U ,x)−1Px(W ).

Case without (X,Y ⊥⊥ W | U ): Now, suppose that neither X nor Y is conditionally inde-
pendent to W given U . P(W |U ,x, y) is required for obtaining P(y,U |x) through P(y,W |x) =
P(W |U ,x, y)P(y,U |x). Since P (W |U ,x, y) is no longer equal to P (W |U ,x), one may addition-
ally require P(W |U ,x) to identify P(U |x). By the way, having P (W |U ,x,Y ) is sufficient to obtain
P(U |x) through marginalizing out Y from P (Y ,U |x) = [P (y′,U |x)]y′ so as to compute P (y|U ,x).
Similar to the previous setting, the existence of a surrogate experiment Px,y(W ) where U is an
admissible set for Px,y(W ) in G allows the identification of P(U), thus eliciting Px(y),( P(W |U ,x, y)−1P(y,W |x)∑

y′ P(W |U ,x, y′)−1P(y′,W |x)

)>
P(W |U ,x,y)−1Px,y(W ).

We depict two relaxations of a single-proxy setting in Fig. 8. Fig. 8a replaces P(W ) with Px(W )
based on the adjustment criterion. With fixed x, the relaxed condition does not affect how P(y,W |x)
is computed. In Fig. 8a, non-redundant y in P(W |U ,x, y) prohibits computing P(W |x). Even though
we obtain P(W |x) from P(Y ,W |x), the expression P(W |x) = P(W |U ,x, y)P(U |x) is invalid.
Once we can enumerate P(Y ,U |x), we can recover P(y|U ,x) so as to compute Px(y). Hence,
P(W |U ,x,Y ) and P(Y ,W |x) are sufficient.
Theorem 1. Given G, let X, Y, W, U, and R be disjoint subsets of V, Q = Pr for some r ∈ XR,
andH = G\R. A causal effect Pr,x(y) = Qx(y) is identifiable if (1) U is an adjustment admissible
set for Qx(y) in H; (2a) (Y ⊥⊥ W | U,X)H and Q(W|U,x), Q(y,W|x) and Q(W|x) are
available where Q(W|U,x) has full column rank; or (2b) (Y 6⊥⊥W | U,X)H and Q(W|U,x,Y)
and Q(Y,W|x) are available where every Q(W|U,x,y′) has full column rank for y′ ∈ XY; (3)
Qz′(W) is available for Z ⊆ X ∪Y and Z′ = (X ∪Y)\Z with z′ consistent with x ∪ y such that
(Z ⊥⊥W | U,Z′) inH; and U is an adjustment admissible set for Qz′(W) inH.

Proof. Operator � is a elementwise division. We begin with identifying Q(y|U,x) using (2a) and
(2b), separately. Case (2a): Given (2a), Q(y|U,x) is obtainable. First, we can compute Q(y,U|x)
as

Q(W|U,x,y) = Q(W|U,x), (2a) (Y ⊥⊥W | U,X)H
Q(y,W|x) = Q(W|U,x,y)Q(y,U|x), Chain Rule

Q(y,U|x) = Q(W|U,x,y)−1Q(y,W|x). (2a) Inversion (5)
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Px (y )
=
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Figure 9: Schematics of the double-proxy setting (i.e., MGT criterion). Given the basic setting
(a), substituting (b) P(U |Z,x) and (c) P(y|U ,x), and (d) contracting P(W |U)P(U) lead to the
identification of Px(y).

Next, Q(U|x),

Q(W|x) = Q(W|U,x)Q(U|x), Chain Rule

Q(U|x) = Q(W|U,x)−1Q(W|x). (2a) Inversion (6)

Combining Eq. (5) and Eq. (6), we can get Q(y|U,x),

Q(y|U,x) = (Q(y,U|x)�Q(U|x))>. (7)

Case (2b): Similarly, given (2b),

Q(y′,W|x) = Q(W|U,x,y′)Q(y′,U|x), Chain Rule

Q(Y,U|x) = [Q(W|U,x,y′)−1Q(y′,W|x)]y′ , (2b) Inversion (8)
Q(U|x)← Q(Y,U|x). Marginalization (9)

Combining Eq. (8) instantiated at y and Eq. (9),

Q(y|U,x) = (Q(y,U|x)�Q(U|x))>. (10)

Now, we compute Q(U). Let Z′ = (X∪Y)\Z and z′ be consistent with x and y. Based on Condition
(3),

Qz′(W) = Q(W|U, z′)Q(U) (3) Adjustment

= Q(W|U,x,y)Q(U) (3) (Z ⊥⊥W | U,Z′)H

Q(U) = Q(W|U,x,y)−1Qz′(W). (2a or b) Inversion (11)

Finally, we obtain the causal query based on Condition (1) by plugging in Q(y|U,x) from Condition
(2) (either Eq. (7) or Eq. (10)) and Q(U) (Eq. (11)) from Condition (3),

Qx(y) = Q(y|U,x)Q(U). (1) Adjustment (12)

C.2 Double-Proxy Setting

We provide how MGT criterion’s derivation works as an illustration in Fig. 9. It is noteworthy to
observe that the three distributions on the left side P(W |U), P(W |Z,x), and P(U |Z,x) are square
matrices so that the double-inversion of P(W |U) becomes possible.

Motivating Examples We provide two of the three variants of MGT criterion with respect to the
variations of assumption (C3).
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Case (Z ⊥⊥W | U ,X) The assumption grants P(W |U ,Z,x)=P(W |U ,x). Given that a surrogate
experiment Px(W ) is accessible and it can be decomposed as Px(W ) = P(W |U ,x)P(U) where U
is also an admissible set for Px(w), then, Px(y) is identified. An example is illustrated in Fig. 3c
where an additional directed edge from X to W is allowed.

Case (X ⊥⊥ W | U ,Z) One might surmise that we can similarly assume the existence of a
surrogate experiment and its factorization based on an adjustment criterion,

Pz(W ) = P(W |U , z)P(U)

However, this dependence (Z 6⊥⊥ W | U) prohibits a matrix multiplication involving
P(W |Z,x), i.e., Z needs to be instantiated as P(U |Z,x) = [P(U |z′,x)]z′ where P(U |z,x) =
P(W |U , z)−1P(W |z,x). Ultimately, we are unable to invoke the double-inversion trick as depicted
in Fig. 9 to contract P(W |U , z) and P(U) into a U -free term.

This challenging situation can be addressed by assuming the existence of an external study
P (W |U ,Z). Then,

Px(y) = P(y|Z,x)P(U |Z,x)−1P(U) (13)

where P(U |Z,x) is plugged-in and P(U) = P(W |U , z′)−1Pz′(W ) for some z′ ∈ XZ . An example
is shown in Fig. 3d. Note the absence of a directed edge from W to Y to preserve (C2).

Further dropping the condition (X ⊥⊥ W | U ,Z) yields a similar result where P(W |U , z,x) and
Px,z(W ) replace P(W |U , z) and Pz(W ), respectively, since x, unlike z, is fixed throughout the
derivation (see Fig. 3e for an instance).
Theorem 2 (Generalized MGT Criterion). Given a causal graph G, let X,Y,Z,W,U,R ⊂ V be
disjoint sets of variables where R can be empty. Let Q = Pr for some r ∈ XR andH = G\R. Let
S ⊆ X∪Z. A causal effect Qx(y) = Px,r(y) is identifiable in G if, for some z, (1) U is an adjustment
set for Qx(y) in H; (2) (Y ⊥⊥ Z | U,X)H; (3) (W ⊥⊥ S′ | U,S)H where S′ = (X ∪ Z)\S; (4)
U is an adjustment set for Qs′(W) in H; (5) Q(W|U, s′) is invertible; (6) Q(U|z/(S ∪ Z′),x)
is invertible for some Z′ ⊆ Z\S and Q(y|z/(S ∪ Z′),x), Q(W|z/(S ∪ Z′),x), and Qs′(W) are
available. Additionally, Q(W|U, s′/Z′) is available if Z′ 6= ∅.

Proof. The first four conditions correspond to matrix multiplications in Fig. 5b. With Condition (1):
Qx(y) = Q(y|U,x)Q(U). (14)

Given Condition (2), Q(y|U,x) = Q(y|U,x, z) and, thus,
Q(y|z/S,x) = Q(y|U,x)Q(U|z/S,x). (15)

With s′ consistent with x and z, Condition (3) yields Q(W|U, s′) = Q(W|U,x, z) and
Q(W|z/S,x) = Q(W|U, s′)Q(U|z/S,x). (16)

Condition (4) leads to
Qs′(W) = Q(W|U, s′)Q(U). (17)

Condition (5) recovers two distributions using Eq. (16) and Eq. (17):
Q(U|z/S,x) = Q(W|U, s′)−1Q(W|z/S,x), (18)

Q(U) = Q(W|U, s′)−1Qs′(W). (19)
From Eq. (18), enumerating Z′ leads to
Q(U|z/(S ∪ Z′),x) = [Q(W|U, s′)−1Q(W|z/S,x)]z′ . (20)
Then, by Condition (6) on top of Eqs. (15) and (20),

Q(y|U,x) = Q(y|z/(S ∪ Z′),x)Q(U|z/(S ∪ Z′),x)−1. (21)
Finally, putting things together with Eqs. (14), (19) and (21), we can identify

Qx(y) = Q(y|z/(S ∪ Z′),x)[Q(W|U, s′)−1Q(W|z/S,x)]−1z′ Q(W|U, s′)−1Qs′(W).

Further, in case of Z′ = ∅, the formula can be simplified:
Qx(y) = Q(y|z/S,x)Q(W|z/S,x)−1Qs′(W)

with
Q(y|U,x) = Q(y|z/S,x)Q(W|z/S,x)−1Q(W|U, s′).
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Figure 10: Illustration of the derivation of the factorization-based intermediary criterion.

D Pseudoinverse and Intermediary Criteria

Lemma 4 (Chain-Rule Intermediary Criterion). Given a causal diagram G, let A, B, C, D, and R
be disjoint subsets of V with D and R can be empty. Let B = B′ ∪̇ B′′ and C = C′ ∪̇ C′′ where
B′ and C′ are not empty. Given an interventional distribution Q = Pr, if (C′ ⊥⊥ A | B,C′′D) in
G\R and Q(a,b′′, c′′|d) =

∑
b′,c′ Q(a|b, c,d)Q(b|c,d)Q(c|d), then,

Q(A,b′′, c′′|d) = Q(A,b′′|C′, c′′,d) ·Q(B′,b′′|C′, c′′,d)† ·Q(B′,b′′, c′′|d).

Proof. For any fixed values b′′, c′′, and d,

Q(a,b′′, c′′|d)
= Q(a|B′,b′′, c′′,d)Q(B′,b′′|C′, c′′,d)Q(C′, c′′|d)
= Q(a,b′′|C′, c′′,d)Q(B′,b′′|C′, c′′,d)†Q(B′,b′′, c′′|d).

We provide a visualization of the c-factorization intermediary criterion in Fig. 10. Given an unknown
PX`

(Y`) (top left) and known distributions (the three distributions at the bottom with Pxj
(yj) also

shown at the top), we can focus on where a few variables are fixed to form a proper three-matrix
multiplication. By replacing the submatrix of intermediary distribution based on the property of
pseudoinverse, we can substitute the first two and the last two terms with submatrices that can be
computed based on two non-intermediary distributions (the first and third distributions at the bottom.)
Theorem 3 (C-Factorization Intermediary Criterion). Let G be a causal diagram and Q = Pr.
Let Qx`

(y`) be c-factorized as Eq. (4). Let X+
k be a subset of Xk excluding the rest five sets,
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{Yi,Yj ,Yk,Xi,Xj}. Y+
i is similarly defined. If Z ⊆ (Xi ∩Yj)\Xk and W ⊆ Xj ∩Yk, then

Qx`/X
+
k
(y`/Y

+
i ), a submatrix of QX`

(Y`), becomes

Qx`/X
+
k
(y`/Y

+
i ) = Q(xij\yij)/W((yij\Z)/Y+

i ) ·Qxj/W(yj/Z)
† ·Q(xjk\yjk)/X

+
k
((yjk\W)/Z).

Proof. Given the c-factorization of the query,

Qx`
(y`) =

∑
z

Qxi
(yi)

∑
w

Qxj
(yj)Qxk

(yk)

=
∑
z

Qxi
(yi)

∑
w

Qxj
(yj)Qxk

(yk)

The summation over w can be represented using matrix multiplication,

=
∑
z

Qxi
(yi)Qxj/W(yj)Qxk

(yk/W).

If we consider only multiplying the first term, Z is allowed to be the subset of Yj ∩Xi. However, we
want to restrict Z does not affect the last matrix so as for us to

=
(∑

z

Qxi
(yi)Qxj/W(yj)

)
Qxk

(yk/W).

This is possible when we exclude only Xk from Yj ∩ Xi as Yk is already disjoint to Yj ∩ Xi.
Hence, with Z ⊆ Yj ∩Xi ∩Xk, the above expression is valid. Then, we proceed to rewrite it as,

=
(
Qxi/Z(yi)Qxj/W(yj/Z)

)
Qxk

(yk/W)

= Qxi/Z(yi)Qxj/W(yj/Z)Qxk
(yk/W).

This results in a scalar Qx`
(y`). Here, we can make Y+

i and X+
k These variables in Yi and Xk that

didn’t appear in any other sets including the intersection between them.

Qx`/X
+
k
(y`/Y

+
i ) = Qxi/Z(yi/Y

+
i )Qxj/W(yj/Z)Qxk/X

+
k
(yk/W).

Now, we apply matrix multiplication of c-factors (Lemma 2) to examine the matrix multiplication of
the first two terms and the last two terms.

Qxi/Z(yi/Y
+
i )Qxj/W(yj/Z) = Q(xij\yij)/W((yij\Z)/Y+

i )

Qxj/W(yj/Z)Qxk/X
+
k
(yk/W) = Q(xjk\yjk)/X

+
k
((yjk\W)/Z).

Plugging the last two expressions into the base intermediary criterion (Lemma 3), we finally yield

Q(xij\yij)/W((yij\Z)/Y+
i ) ·Qxj/W(yj/Z)

† ·Q(xjk\yjk)/X
+
k
((yjk\W)/Z).

We present a matrix equation for Fig. 11b in Fig. 12 where Z = {6} and W = {11, 12} are
marginalized out and the resulting matrix is based on a pair of variables 1 and 15. Note that the
variables represented as numbers can also be ‘sets of variables’. An applied example is shown in
Fig. 12.

We provide a schematic of simple intermediary criterion example Fig. 13a in Fig. 13b where P(Y |X)
is the result of three-matrix multiplications. This example corresponds to the counterexample used in
Prop. 1.

E A Unifying Causal Identification Algorithm

Theorem 4. ID-ME is sound.
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Figure 11: (a) an Euler diagram depicting set relationships. (b) a causal graph where each number in
(a) corresponds to a variable excluding 16, 18, and 19 for simplicity.

P13,14,15,17(1-12) = P6,8,10,12,13,17(1-4)P2,4,11,12,14(5-8)P3,4,7,8,15,17(9-12)

P13,14,15,17(1, 2, 3, 4, 5, 7, 8, 9, 10) =
∑
6

P6,8,10,12,13,17(1, 2, 3, 4)
∑
11,12

P2,4,11,12,14(5, 6, 7, 8)P3,4,7,8,15,17(9, 10, 11, 12)

=
∑
6

P6,8,10,12,13,17(1, 2, 3, 4)P2,4,14,V11,V12(5, 6, 7, 8)P3,4,7,8,15,17(9, 10,V11,V12)

=
∑
6

P6,8,10,12,13,17(1, 2, 3, 4)P2,4,14,V11,V12
(5, 6, 7, 8)P3,4,7,8,15,17(9, 10,V11,V12)

= PV6,8,10,12,13,17(1, 2, 3, 4)P2,4,14,V11,V12(5,V6, 7, 8)P3,4,7,8,15,17(9, 10,V11,V12).

By enumerating 1 and 15,

P13,14,V15,17(V1, 2, 3, 4, 5, 7, 8, 9, 10) = PV6,8,10,12,13,17(V1, 2, 3, 4)P2,4,14,V11,V12(5,V6, 7, 8)P3,4,7,8,V15,17(9, 10,V11,V12).

Figure 12: Matrix equations for Fig. 11b. Variables (i.e., rows and columns) are annotated with V
prefix and we omit v prefix for the values.

Proof. Soundness of the algorithm is established from (Line 2) Rule 3 of do-calculus that the modified
query and the original query share the same quantity; (Line 3) the soundness of do-calculus together
with the definition of marginal and conditional distributions; (Lines 6–8) the soundness of identifying
each c-factor with ID-RC [4, 11] and that of PROXY is based on Thms 1 and 2; (Line 9) the
soundness of c-factor intermediary criterion (Thm. 3) and inverse (Lemma 2). Finally, the soundness
of the decomposition of the query (Line 4, 5) and the combination of identified c-factors back to the
query (exact-cover, Line 10) is established in [29, 22, 12].

Theorem 5. ID-ME strictly subsumes proxy criteria [8, 15], GID(-PO) [14, 12], mID, or eID [11].

Proof. Since eID covers both GID and GID-PO, we show that ID-ME returns a formula whenever
eID returns one. Algorithm eID expands the given distribution using chain-rule-closure, and finds
a factorization that leads to the identification of every factor, where each factor is expressed using
a (conditional) distribution based on ID-RC. ID-ME covers eID because: (i) expand subsumes
chain-rule-closure, and its output always larger than or equal to the output of chain-rule-closure;
and (ii) ID-ME enumerates c-factors over every possible c-factorization and combines identified

X A B Y

(a)

P(B|x)P(Y |A)

P(A|X )P(B|A)P(Y |B)

P(Y |X ) R
C

L
R

L
R

L

(b)

Figure 13: (a) A causal diagram demonstrating the identification of Px(y) = P (y|x) given P (B|x),
P (B|A), and P (y|A). (b) A schematic diagram for the example (Fig. 13a) where the pseudoinverse
of P(B|A) is a key to identifying P (y|x) = Px(y). This involves the multiplication of three matrices
with the order annotated with L, C, and R.
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factors based on an exact-cover—this corresponds to finding a specific factorization based on a
latent projection [12].

Now, we show that ID-ME covers [8, 15]. Given that the causal query itself is also included in the
c-factors F+ enumerated by ID-ME [12], the call for a generalized proxy module (PROXY, Thms 1
and 2, which further extends both single and double proxy criteria) for unidentified factors is sufficient
to demonstrate that ID-ME covers [8, 15].

Finally, multiple examples shown to relax assumptions for PROXY and newly introduced intermediary
criteria are sufficient to claim the strict subsumption of ID-ME over the mentioned algorithms.

21


	Introduction
	Preliminaries
	Characterization of Matrix Equations of Graphical Constraints
	Generalized Proxy-based Criteria
	Pseudoinverse and Intermediary Criteria
	Chain-Rule-based Intermediary Criterion
	C-Factorization-based Intermediary Criterion

	A Unifying Causal Identification Algorithm
	Conclusion
	Preliminaries
	Characterization of Matrix Equations of Graphical Constraints
	Generalized Proxy-based Criteria
	Single-Proxy Setting
	Double-Proxy Setting

	Pseudoinverse and Intermediary Criteria
	A Unifying Causal Identification Algorithm

