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Abstract

Identifying causal effects from observational data is a perva-
sive challenge found throughout the empirical sciences. Very
general methods have been developed to decide the identifi-
ability of a causal quantity from a combination of observa-
tional data and causal knowledge about the underlying sys-
tem. In practice, however, there are still challenges to estimat-
ing identifiable causal functionals from finite samples. Re-
cently, a method known as double/debiased machine learn-
ing (DML) (Chernozhukov et al. 2018) has been proposed to
learn parameters leveraging modern machine learning tech-
niques, which is both robust to model misspecification and
bias-reducing. Still, DML has only been used for causal esti-
mation in settings when the back-door condition (also known
as conditional ignorability) holds. In this paper, we develop a
new, general class of estimators for any identifiable causal
functionals that exhibit DML properties, which we name
DML-ID. In particular, we introduce a complete identifica-
tion algorithm that returns an influence function (IF) for any
identifiable causal functional. We then construct the DML es-
timator based on the derived IF. We show that DML-ID es-
timators hold the key properties of debiasedness and doubly
robustness. Simulation results corroborate with the theory.
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1 Introduction
Inferring causal effects from observational data is a funda-
mental task throughout the data-intensive sciences. There
exists a growing literature trying to understand the condi-
tions under which causal conclusions can be drawn from
non-experimental data, which comes under the rubric of
causal inference (Pearl 2000; Pearl and Mackenzie 2018). In
particular, the literature of causal effect identification (Pearl
2000, Def. 3.2.4) investigates the conditions under which an
interventional distribution P (Y = y|do(X = x)) (for short,
Px (y)), representing the causal effect of the treatment X on
the outcome Y , could be inferred from the observational dis-
tribution P (V ) and the causal graph G. Causal effect identi-
fication under various settings has been extensively studied,
and algorithms and graphical conditions have been devel-
oped (Pearl 1995; Tian and Pearl 2003; Huang and Valtorta
2006; Shpitser and Pearl 2006; Bareinboim and Pearl 2012,
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2016; Jaber, Zhang, and Bareinboim 2018; Lee, Correa, and
Bareinboim 2019, 2020; Lee and Bareinboim 2020).

As a specific example, the celebrated back-door (BD)
condition (Pearl 2000, Sec. 3.3.1) (known as ignorability in
statistics (Rubin 1978)) states that Px (y) could be identi-
fied by adjustment – i.e., Px (y) =

∑
z P (y|x, z)P (z) –

whenever there exists a set of covariates Z that blocks all
the backdoor paths between X and Y in the causal graph G.
Identification algorithms express a target effect in terms of
the observational distribution, then one needs to go further,
and estimate the resulting expression from finite samples. In
practice, whenever the number of samples are finite and the
set of covariates (e.g., Z) is high dimensional – i.e., almost
always – estimating causal expressions is quite challenging.

Effective estimators have been developed for specific set-
tings. For instance, a plethora of estimators have been devel-
oped for the family of BD settings, including point and time-
series forms (Sequential BD, or SBD) (Pearl and Robins
1995); also called the g-formula (Robins 1986). These esti-
mators include regression-based methods (e.g., (Hill 2011;
Shalit, Johansson, and Sontag 2017)) or weighting-based
methods (Horvitz and Thompson 1952; Robins, Hernan, and
Brumback 2000; Johansson et al. 2018), to name a few.
More recently, estimators have been developed for identi-
fiable causal functionals under settings beyond the typical
BD/SBD (Jung, Tian, and Bareinboim 2020a,b).

Further, doubly robust estimators have been developed
for the BD/SBD setting to address model misspecification
(Robins, Rotnitzky, and Zhao 1994; Bang and Robins 2005;
Van Der Laan and Rubin 2006; Dı́az and van der Laan
2013; Benkeser et al. 2017; Kennedy et al. 2017; Rotnitzky
and Smucler 2020; Smucler, Sapienza, and Rotnitzky 2022;
Colangelo and Lee 2020), and more recently, for some spe-
cific settings (Toth and van der Laan 2016; Rudolph and
van der Laan 2017; Fulcher et al. 2019; Kennedy 2020a;
Bhattacharya, Nabi, and Shpitser 2020).

One noticeable feature shared across the aforementioned
estimators is the need of estimating conditional probabilities
(e.g., P (y|x, z), P (z)), called nuisance functions, or nui-
sance in short. Typically nuisance functions are estimated
by fitting a parametric model such as logistic regression.
In recent years, there is an explosion in the use of modern



machine learning (ML) methods to account for very com-
plex and high-dimensional nuisance functions, which in-
clude random forests, boosted regression trees, deep neural
networks, to cite some prominent examples. However, these
methods inherently use regularization to control overfitting,
which often translates into acute bias in estimators of the
causal estimands. In practice, this means that these estima-
tors will not be able to achieve

√
N -consistency, where N is

the sample size, which is usually desirable.
Recently, a powerful method called double/debiased ma-

chine learning (DML) (Chernozhukov et al. 2018) has been
proposed to provide ‘debiased’ estimators, which achieve√
N -consistency with respect to the target estimand, while

admitting the use of a broad array of modern ML methods
for estimating the nuisances (including random forests, neu-
ral nets, etc). DML estimators have been developed and ap-
plied in the context of causal functional estimation in various
settings (Toth and van der Laan 2016; Rudolph and van der
Laan 2017; Zadik, Mackey, and Syrgkanis 2018; Kennedy
2020a; Kennedy, Lorch, and Small 2019; Syrgkanis et al.
2019; Foster and Syrgkanis 2019; Chernozhukov et al. 2019;
Kallus and Uehara 2020; Farbmacher et al. 2020; Colangelo
and Lee 2020).

Even though there exists a complete framework for esti-
mating arbitrary identifiable causal functionals based on ML
(Jung, Tian, and Bareinboim 2020b), the corresponding pro-
cedures do not exhibit DML properties. On the other hand,
there are effective and robust estimators for the BD case,
which is only a fraction of all the identifiable causal func-
tionals. In this paper, we aim to bridge this gap by devel-
oping DML estimators for any identifiable causal estimand,
moving beyond the BD/ignorability family. For concrete-
ness, consider the following two examples1.
Example 1. A data scientist aims to establish how cardiac
output (X) affects the blood pressure (Y ) from observational
data. In the causal model shown in Fig. 1a, the heart rate
(R) directly causes X , while being influenced by the level
of catecholamine (W ), a hormone released in response to
stress. The level of total peripheral resistance (U1) affects
W and X , and the level of the analgesia (U2) influences W
and Y . Both U1 and U2 are unobserved confounders due
to complications in measurement (left implict as a dashed-
bidirected arrow). A standard identification algorithm de-
rives the causal effect Px(y) as:

Px (y) = (
∑
w

P (y, x|r, w)P (w))/(
∑
w

P (x|r, w)P (w)). (1)

Example 2. Suppose the data scientist needs to establish the
effect of a new treatment based on the cardiovascular shunt
(X1) and the lung ventilation (X2) on catecholamine (Y ). In
the causal model in Fig. 1b, X1 directly affects the ventila-
tion tube (Z), the level of arterial oxygen saturation (R), and
X2. Further, Z influences X2. X2 and R have direct impact
on Y . There are also unmeasured confounders affecting this
process: pulmonary embolism (U1) affects X1 and Z, the
level of total peripheral resistance (U2) affects X1 and Y ,

1The causal graphs are constructed from the classic ‘Alarm’ net-
work (Beinlich et al. 1989), originally collected from a system
used to monitor patients’ conditions.
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Figure 1: Causal graphs corresponding to Examples (1,2).
Nodes representing the treatment and outcome are marked
in blue and red respectively.

and the level of the anesthesia (U3) affects Z and Y . De-
spite of these unobserved confounders, the effect of interest
Px1,x2

(y) can be identified as

Px1,x2 (y) =
∑
r

P (r|x1)
∑
x′1,z

P (y|r, x′1, x2, z)P (z, x′1). (2)

A few observations follow from these two examples. First,
note that the estimands of Eqs. (1) or (2) are not in the form
of the backdoor adjustment, which means that previous work
is not applicable, and no debiased or doubly robust estima-
tors are readily available for such cases. Second, in fact, the
only viable method currently available for estimating arbi-
trary identified causal estimands, beyond a few special set-
tings, is the “plug-in” estimators (Casella and Berger 2002),
which estimate nuisance functions and plug them into the
equation. However, the plug-in estimators are exposed to the
risk of model misspecification since all nuisance functions
need to be correctly specified for the estimator to be con-
sistent. Also, they often suffer from the bias caused by the
use of flexible ML models in high-dimensional cases under
finite samples.

In this paper, we develop DML estimators for any causal
effects that is identifiable given a causal graph. More specif-
ically, our contributions are as follows:

1. We develop a systematic procedure for deriving influ-
ence functions (IFs) for estimands of any identifiable causal
effects.

2. We develop DML estimators for any identifiable
causal effect, which enjoy debiasedness and doubly robust-
ness against model misspecification and bias. Experimental
studies corroborate our results.
The proofs are provided in Appendix A in suppl. material.

2 Preliminaries
Notations. Each variable is represented with a capital let-
ter (X) and its realized value with the small letter (x). We
use bold letters (X) to denote sets of variables. Given an or-
dered set X = (X1, · · · , Xn) such that Xi ≺ Xj for i < j,
we denote X(i) = {X1, · · · , Xi}, X≥i = {Xi, · · · , Xn},
and set X(i) = ∅ for i < 1. We use Iv′(V) to represent
the indicator function such that Iv′(V) = 1 if and only if
V = v′; Iv′(V) = 0 otherwise. We denote D = {V(i)}Ni=1



as samples drawn from P (V), and P̂ the estimated distribu-
tion; EP [f(V)] denotes the expectation of f(V) over P (v).

We use the typical graph terminology
Pa(C)G, Ch(C)G, De(C)G, An(C)G to represent the
union of C with its parents, children, descendants, ancestors
in the graph G. We use ND(C) to denote the nondescen-
dants of any variables in C (i.e., ND(C) ≡ V\De(C)).
For a given topological order in G, we use Pre(C) to
denote the union of the predecessors of Ci ∈ C in G. G(C)
denotes the subgraph of G over C. The latent projection of
a graph G over V on C ⊆ V, denoted G[C], is a graph over
C such that, in addition to edges in G(C), for every pair
of vertices (Vi, Vj) ∈ C, (1) add a directed edge Vi → Vj
in G[C] if there exists a directed path from Vi to Vj in G
such that every vertex on the path is not in C; (2) add a
bidirected edge Vi ↔ Vj in G[C] if there exists a divergent
path between Vi and Vj in G such that every vertex on the
path is not in C (Tian and Pearl 2003). We use GC1C2

to
denote the graph resulting from deleting all incoming edges
to C1 and outgoing edges from C2 in G.
Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl 2000). Each SCM M over a set of endogenous
variables V induces a distribution P (v) and a causal graph
G, where solid-directed arrows encode functional relation-
ships between observed variables, and dashed-bidirected ar-
rows encode unobserved latent causes (e.g., see Fig. 1a)2.
Within the structural semantics, performing an intervention
and setting X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the
original equations of X by the constant x and induces a sub-
model Mx and an interventional distribution P (v|do(x)) ≡
Px(v). We refer readers to (Pearl 2000; Bareinboim et al.
2020) for a more detailed discussion of SCMs.
Causal Effect Identification. Given a graph G over V, an
effect Px(y) is identifiable in G if Px(y) is uniquely com-
putable from the observed distribution P (v) in any SCM
that induces G (Pearl 2000, p. 77). Complete identification
algorithms have been developed based on a decomposition
strategy using so-called confounded components.

Definition 1 (C-component (Tian and Pearl 2002)). In a
causal graph, two variables are said to be in the same con-
founded component (for short, C-component) if and only if
they are connected by a bi-directed path, i.e., a path com-
posed solely of bi-directed edges Vi ↔ Vj .

For any C ⊆ V, the quantity Q [C] ≡ Pv\c (c),
called a C-factor, is defined as the post-intervention dis-
tribution of C under an intervention on V\C. (Tian and
Pearl 2003) showed that the causal effect Px (y) can be rep-
resented as a marginalization over a product of C-factors:

2The class of SCMs inducing a directed acyclic graph (DAG) with
bidirected arrows is usually called semi-Markovian (Pearl 2000, p.
30). In general, a DAG with arbitrary latent variables can be con-
verted into a DAG with bidirected arrows, i.e. a semi-Markovian
model, by computing its latent projection on the set of observed
variables. One can show that the projection operation preserves
causal identification (Tian and Pearl 2003, Section 6).

Px (y) =
∑

d\yQ [D] =
∑

d\y
∏kd
i=1Q [Di], where D ≡

An(Y)G(V\X) and Di are C-components in G(D).
Semiparametric Theory. Our goal is to estimate an iden-
tifiable causal effect Px (y) from finite samples D =
{V(i)}Ni=1 drawn from P (V). Assume one aims to estimate
a target estimand ψ ≡ Ψ(P ) that is a functional of P . For
example, Ψ (P ) =

∑
z P (y|x, z)P (z). We will leverage the

semiparametric theory 3. Let Pt ≡ P (v)(1 + tg(v)) for
t < 1/c and ‖g‖∞ < c for some constant c and bounded
mean-zero random functions g(·) over random variables V,
called a parametric submodel. If a functional Ψ(Pt) is path-
wise (formally, Gâteaux) differentiable at t = 0, then there
exists a function φ(V;ψ, η(P )) (shortly φ), called the influ-
ence function (IF) for the target functional ψ, where η(P )
stands for the set of nuisance functions comprising φ, sat-
isfying EP [φ] = 0, EP

[
φ2
]
< ∞, and ∂

∂tΨ(Pt)|t=0 =
EP [φ(V;ψ, η(P ))St(V; t = 0)] where St(v; t = 0) ≡
∂
∂t logPt(v)|t=0 is the score function (Van der Vaart 2000,
Chap. 25). An IF φ characterizes an estimator TN satisfy-
ing TN − ψ = 1

N

∑N
i=1 φ(V(i);ψ, η(P )) + oP (N−1/2)

where oP (N−1/2) is a term that converges in probabil-
ity with a rate of at least N−1/2. Such TN is a Regu-
lar and Asymptotic Linear (RAL) estimator of ψ (Van der
Vaart 2000, Lemma 25.23). When the IF can be decom-
posed as φ(V;ψ, η(P )) = V(V; η(P ))− ψ for some func-
tion V(V; η(P )), called the uncentered influence function
(UIF), the corresponding RAL estimator is given by TN =
1
N

∑N
i=1 V(V(i), η(P̂ )) (Kennedy 2020a).

The treatment provided next assumes that the endoge-
nous variables are discrete, which ascertains that the esti-
mands will be pathwise differentiable. The results can be ex-
tended to continuous cases with additional conditions such
that the corresponding influence functions are well-defined
(Robins 2000; Neugebauer and van der Laan 2007; Dı́az
and van der Laan 2013; Kennedy et al. 2017; Chernozhukov
et al. 2019).
We assume the positivity of conditional probabilities as fol-
low: P (a|b) > pmin > 0 for some constant pmin ∈ (0, 1)
and for all a,b in the support of variables A,B ⊆ V. 4

Double/Debiased Machine Learning (DML). DML meth-
ods (Chernozhukov et al. 2018) are based on two ideas: (1)
Use a Neyman orthogonal score5 to estimate the target ψ,
and (2) Use cross-fitting to construct the estimator. Mak-

3The aforementioned causal effect identification theory has been
developed under a non-parametric setting, i.e., without any para-
metric assumptions on the form of the SCM. To estimate an iden-
tified estimand Px (y) = Ψ(P ), imposing strong parametric as-
sumptions over the estimator would go against the non-parametric
nature of the identification step. Semiparametric models capture
the structural constraints (e.g., conditional independences) im-
posed by the causal graph while allowing nonparametric models
for estimating nuisance functionals (e.g., highly flexible machine
learning models such as multi-layered neural networks).

4The text marked in red are updates from the AAAI version.
5A Neyman orthogonal score is a score function φ satisfying
EP [φ(V;ψ, η(P ))] = 0 and ∂

∂η(Pt)
EP [φ(V;ψ, η(Pt))]|t=0 =

0 (Chernozhukov et al. 2022, 2018).



ing use of Neyman-orthogonal scores reduces sensitivity
with respect to nuisance parameters. Cross-fitting reduces
bias induced by overfitting. DML estimators provide

√
N -

consistent estimates of the target ψ even when possibly com-
plex or high-dimensional nuisance functions are estimated at
slower N−1/4 rates (‘debiasedness’) (Chernozhukov et al.
2018). Neyman-orthogonal scores may be constructed using
IFs, and under some settings, may coincide with IFs (Cher-
nozhukov et al. 2022).

3 Expressing Causal Effects through a
Combination of mSBDs

Our goal is to develop DML estimators for any identifiable
causal effects ψ = Px (y). Towards this goal, we present in
this section a sound and complete algorithm that expresses
any identifiable causal effects as a combination of marginal-
ization/multiplication/divisions (which will be called ‘arith-
metic combination’) of so-called mSBD estimands. Based
on this result, in the subsequent section, we derive an IF
for ψ (that turns out to be a Neyman orthogonal score) by
first deriving an IF for mSBD estimands and using them as
buildig blocks.

We first define the mSBD criterion:
Definition 2 (mSBD criterion (Jung, Tian, and Barein-
boim 2020a)). Given the pair of sets (X,Y), let X =
{X1, X2, · · · , Xn} be topologically ordered as X1 ≺
X2 ≺ · · · ≺ Xn. Let Y0 = Y \ De (X) and
Yi = Y ∩

(
De (Xi) \De

(
X≥i+1

))
for i = 1, · · · , n.

A sequence Z = (Z1, · · · ,Zn) is mSBD admissible
relative to (X,Y) if it holds that Zi ⊆ ND

(
X≥i

)
,

and
(
Y≥i ⊥⊥ Xi|Y(i−1),Z(i),X(i−1))

G
XiX

≥i+1

for i =

1, · · · , n.
We will use the mSBD criterion as a foundation to con-

struct general causal estimands. To this end, we formally de-
fine the notion of a mSBD-operator:
Definition 3 (mSBD operator M). Let (X,Y,Z) =
((Xi)

n
i=1, (Yi)

n
i=0, (Zi)

n
i=1) be disjoint sets of ordered vari-

ables. The mSBD operatorM [y | x; z] is defined by

M [y | x; z] ≡
∑
z

n∏
k=0

P
(
yk|x(k), z(k),y(k−1)

)
×

n∏
j=1

P
(
zj |x(j−1), z(j−1),y(j−1)

)
. (3)

If Z satisfies the mSBD criterion relative to (X,Y),
then the causal effect Px (y) is identifiable by Px (y) =
M [y | x; z] (Jung, Tian, and Bareinboim 2020a).

We will develop a systematic procedure that can express
causal effects into the arithmetic combinations of mSBD op-
erators. Our algorithm will leverage the existing complete
identification procedure in (Tian and Pearl 2003). To estab-
lish the connection, we show next how specific C-factors
can be identified in terms of mSBD operators:
Lemma 1 (Representation of C-factors using mSBD op-
erator). Let S denote a C-component in G. Let W ⊆ S
denote a set of nodes such that W = An(W)G(S).

Let R ≡ Pa(S)\S, and Z ≡ (S\W) ∩ Pre(W). Then,

1. Q [W] = Pr (w);
2. Z satisfies the mSBD criterion relative to (R,W); and

therefore Pr (w) =M [w | r; z].

A special case of Lemma 1 is when W = Si
for Si being a C-component in G, we have Q [Si] =
M [si | Pa(si) ∩ (v\si); ∅]. We then propose an identifica-
tion algorithm that expresses any causal effect as an arith-
metic combination of mSBD operators, as shown in Algo. 1.
We call the new algorithm DML-ID since it will allow us to
realize estimators that exhibit DML properties.

DML-ID involves the marginalization of mSBD opera-
tors, which can be simplified using the following lemma:

Lemma 2 (Marginalization of mSBD opera-
tors). Let M [y | x; z] be an mSBD operator.
For W = De(W)G[Y],

∑
wM [y | x; z] =

M [y\w | x ∩ Pre(y\w); z ∩ Pre(y\w)]; For
A = An(A)G[Y],

∑
aM [y | x; z] =M [y\a | x; z ∪ a].

The sub-procedure MCOMPILE in Algo. 1 derives the
expression of the C-factor Q [Dj ] for each Dj defined
in line 5 as an arithmetic combination (marginaliza-
tion/multiplication/division) of a set of mSBD operators
{Mj

`}
mj
`=1. We will write Q [Dj ] = Aj({Mj

`}
mj
`=1), where

Aj() denote an arithmetic combination operator.
We show that DML-ID and the original complete algo-

rithm are equivalent in terms of the identification power:

Theorem 1 (Soundness and Completeness of DML-ID).
A causal effect Px (y) is identifiable if and only if DML-
ID(x,y, G, P ) (Algo. 1) returns Px (y) as an arithmetic
combination of mSBD operators, in the form given by

Px (y) =
∑
d\y

kd∏
j=1

Aj({Mj
`}
mj
`=1). (4)

We note that Algo. 1 runs inO
(
|V|3

)
time, where |V| de-

notes the number of variables. A detailed complexity com-
plexity analysis is given in Lemma A.1 in Appendix A.

For concreteness, we demonstrate the application of
DML-ID using the models in Fig. (1a,1b), where the effects
Px(y), Px1,x2

(y) are identifiable by the original identifica-
tion algorithm as given by Eq. (1) and Eq. (2), respectively.

Demonstration 1 (Algo. 1 for Px (y) in Example 1
(Fig. 1a)). We start with S1 = {W,X, Y } and S2 = {R}
(Line 2). By Lemma 1, Q [S1] = M [w, x, y | r; ∅] and
Q [S2] = M [r | w; ∅] (Line 3). Let D = {Y } (Line 4,5).
Run MCOMPILE(Y,S1, Q [S1]) to obtain Q [Y ] (Line 6).
In Procedure MCOMPILE(), let A1 = An(Y )G(W,X,Y ) =
{X,Y } (Line a.1), and Q [A1] =

∑
wM [w, x, y | r; ∅] =

M [x, y | r;w] ≡ M1 by applying the marginaliza-
tion in Lemma 2 (Line a.2). Let SY = {Y } (Line
a.6). Then, Q [Y ] = Q[A1]∑

y Q[A1]
, where

∑
y Q [A1] =

M [x | r;w] ≡ M2 by Lemma 2 (Line a.7). Finally,
MCOMPILE(Y, Y,Q [Y ]) returns Q [Y ] (Line a.8), and we
obtain Px (y) = Q [Y ] = M1

M2
≡ A(M1,M2) (Line 7).



Demonstration 2 (Algo. 1 for Px1,x2(y) in Exam-
ple 2 (Fig. 1b)). We start with S1 = {X1, Z, Y },
S2 = {R}, and S3 = {X2} (Line 2). By Lemma 1,
Q [S1] = M [x1, z, y | (x2, r); ∅], Q [S2] = M [r | x1; ∅]
and Q [S3] =M [x2 | (x1, z); ∅] (Line 3). Let D = {R, Y }
(Line 4). Let D1 = {Y } ⊆ S1 and D2 = {R} =
S2 (Line 5). Run MCOMPILE(Y, {S1} , Q [S1]) to obtain
Q [Y ] (Line 6). Let A1 = An(Y )G(X1,Z,Y ) = {Y }
(line a.1) and Q [A1] =

∑
x1,z
M [x1, z, y | (x2, r); ∅] =

M [y | (x2, r);x1, z] by Lemma 2 (Line a.2). We obtain
Q [Y ] = Q [A1] = M [y | (x2, r);x1, z] ≡ M1 ≡
A1(M1) (Line a.3). We obtain Q [R] = Q [S2] =
M [r | x1; ∅] ≡ M2 ≡ A2(M2) (Line 6). Finally, we ob-
tain Px1,x2

(y) =
∑
rA1(M1)A2(M2) (Line 7).

The importance of Thm. 1 lies in that it facilitates deriving
an IF for any identified Px (y) estimands by using the IFs of
mSBD operators as a building block.

4 Influence Functions for Causal Estimands
Algo. 1 derives any identifiable causal effects Px (y) as an
arithmetic combinations of mSBDs. In this section, we de-
rive an IF for the identified estimand by first deriving an IF
for the mSBD operator. The IF will be used for constructing
a DML estimator in the next section.

Lemma 3 (Influence Function for mSBD operator). Let
the target functional be ψ ≡M [y | x; z]. Then:

1. VM ≡ VM({X,Z,Y}; {πk0 , µk0}mk=1) below is an
UIF for ψ:

VM = µ1
0 +

m∑
k=1

π
(k)
0 Ix(k)(X(k))

{
µk+1
0 − µk0

}
, (5)

where, µm+1
0 ≡ Iy(Y), and for k = m, · · · , 1,

µk0(X(k),A(k−1)) ≡ E
[
µk+1
0

∣∣∣∣X(k),A(k−1)
]
,

µk0(xk,X
(k−1),A(k−1)) ≡ E

[
µk+1
0

∣∣∣∣xk,X(k−1),A(k−1)
]
.

Also, for k = 1, · · · ,m,

πk0 (A(k−1),X(k)) ≡ 1

P (Xk|X(k−1),A(k−1))
,

π
(k)
0 (A(k−1),X(k)) ≡

k∏
r=1

πr0(A(r−1),X(r)).

2. Let µM ≡ EP [VM]. Then µM =M [y | x; z].
3. φM ≡ φM({X,Z,Y};ψ, η(P )) = VM − µM is an

IF for ψ.

To derive and represent the IF for the Px (y) estimand
identified by Algo. 1 as given by Eq. (4), we present a cou-
ple of useful lemmas next. The first says among the mSBD
operators comprising Aj({Mj

`}
mj
`=1), there exists a special

one, named the ‘primary mSBD operator of Aj’, as defined
in the following:

Algorithm 1: DML-ID (x,y, G, P )

Input: x,y, G(V), P (v).
Output: Expression of Px(y) as arithmetic

combination of mSBD operators; Or FAIL.
1 Let V← An(Y); P (v)← P (An(Y)); and

G← G(An(Y)).
2 Find the C-components of G: S1, · · · ,Sks .
3 Set Q [Si] =M [si | Pa(si) ∩ (v\si); ∅]. //

Lemma 1.
4 Let D ≡ An(Y)G(V\X).
5 Find the C-component of G(D): D1, · · ·Dkd .
6 For each Dj ⊆ Si for some i, set

Q [Dj ] = MCOMPILE(Dj ,Si, Q [Si]).
7 return Px(y) =

∑
d\y

∏kd
j=1Q [Dj ].

Procedure MCOMPILE(C,T, Q [T])
a.1 Let A ≡ An(C)G(T) = {A1, A2, · · · , Ana}

such that A1 ≺ A2 ≺ · · · ≺ Ana in G(T).
a.2 Let Q [A] =

∑
T\AQ [T]. // Apply

Lemma 2 if viable
a.3 If A = C, then return Q [A].
a.4 If A = T, then return FAIL.
a.5 else
a.6 Let S be the C-component in G(A) such that

C ⊆ S.
a.7 Let Q [S] ≡

∏
{i:Ai∈S}

∑
A≥i+1 Q[A]∑
A≥i Q[A] . //

Apply Lemma 2 if viable
a.8 return MCOMPILE (C,S, Q [S])

end

Lemma 4 (Existence of primary mSBD operator). Let
D = An(Y)G(V\X). Let C-components of G be Si
for i = 1, 2, · · · , ks. Let C-components of G(D) be
Dj for j = 1, 2, · · · , kd. For each Dj ⊆ Si, let
Q [Dj ] = MCOMPILE(Dj ,Si, Q [Si]) = Aj({Mj

`}
mj
`=1).

Then, there exists a primary mSBD operator, indexed
as Mj

1 without loss of generality, such that Mj
1 =

M [aj | Pa(si)\si; si\aj ], where Aj ≡ An(Dj)G(Si).

The following lemma provides an IF of the operator Aj :
Lemma 5 (Influence Function for Q [Dj ]). Let the target
functional be ψ = Q [Dj ] = Aj({Mj

`}
mj
`=1). Then, an IF of

ψ is given by φQ[Dj ] =
∑mj
r=1 hAj ,Mj

r
, where hAj ,Mj

r
=

COMPONENTUIF(Aj ,Mj
r) in Algo. 2.

We note that Algo. 2 runs in O
(
m2
j

)
time, where mj is

the number of mSBD operators composing Aj . A detailed
analysis is given in Lemma A.2 in Appendix A. The follow-
ing result gives a special case of Algo. 2.
Corollary 1. If there are no marginalization op-
erators

∑
in Aj(·), then hAj ,Mj

`
= (VMj

`
−

µMj
`
)(∂Aj({µMj

`
}mj`=1)/∂µMj

`
).

We demonstrate Algo. 2 with an example. Assume
A(M1,M2) =M1/M2, and we derive hA,M2

by calling
COMPONENTUIF(A,M2). First FINDH(A,M2) is called



(line 1). Since A = C/M2 for C = M1, hA,M2 =
C · FINDH(1/M2,M2) (line a.4). Then, hA,M2 =
−M1/(M2)2 · FINDH(M2,M2) (line a.6), and hA,M2

=
−M1/(M2)2 · φM2

, where φM2
is IF of M2 (line a.3).

Finally, we obtain hA,M2
= −(µM1

/µ2
M2

)(VM2
− µM2

)
(line 2), which is consistent with Coro. 1.

Equipped with Lemmas 4 and 5, an IF for any identifiable
causal effects Px (y) is given as follows:
Theorem 2 (Influence functions for identifiable causal ef-
fects). Let the target functional ψ ≡ Px (y) be given by
Eq. (4). Then, an IF of ψ is given by φPx(y) = −ψ+VPx(y),
where VPx(y) ≡ VPx(y)(V; η(P )) is an UIF given by

VPx(y) =
∑
d\y

A1(VM1
1
, {µM1

l
}m1
`=2)

kd∏
p=2

Ap({µMp
`
}mp`=1)

+
∑
d\y

m1∑
`=2

hA1,M1
`

kd∏
p=2

Ap({µMp
`
}mp`=1)

+
∑
d\y

kd∑
j=2

(mj∑
`=1

hAj ,Mj
`

)
kd∏
p=1
p6=j

Ap({µMp
`
}mp`=1), (6)

where Ap({µMp
`
}mp`=1) stands for Ap({Mp

`}
mp
`=1) withMp

`

substituted by µMp
`
, A1(VM1

1
, {µM1

l
}m1

`=2) replaces µM1
1

with VM1
1
, and hAj ,Mj

`
= COMPONENTUIF(Aj ,Mj

`).

We note that Eq. (6) could be derived in O(|V|3) time.
A detailed complexity analysis is given in Lemma A.3 in
Appendix A.

Note in Thm. 2, allMj
` are replaced with the correspond-

ing µMj
`
, which is a condition necessary for double robust-

ness. For concreteness, consider the following examples.
Demonstration 3 (Thm. 2 for Example 1). By Demo. 1,
Px (y) = Q [Y ] = A(M1,M2) = M1

M2
, where M1 =

M [x, y | r;w] and M2 = M [x | r;w]. Since A1 =
An(Y )G(S1) = {X,Y }, M1 is the primary mSBD oper-
ator of A by Lemma 4. We have VPx(y) = A(VM1

, µM2
) +

hA,M2
by Eq. (6), where A(VM1

, µM2
) =

VM1

µM2
, and

hA,M2 = −(µM1/µ
2
M2

)(VM2 − µM2) by Coro. 1. , or
by calling COMPONENTUIF(A,M2). Finally, φPx(y) =
−ψ + VPx(y), where
VPx(y) = (1/µM2) (VM1 − (µM1/µM2)(VM2 − µM2)) (7)

Demonstration 4 (Thm. 2 for Example 2). By Demo. 2,
Px1,x2

(y) =
∑
rA1(M1)A2(M2) where A1(M1) =

M1 = M [y | (x2, r); (x1, z)], and A2(M2) = M2 =
M [r | x1; ∅]. M1 is the primary mSBD operator of A1

by Lemma 4 (note D1 = {Y } and A1 = An(Y )S1 =
D1). We have VPx1,x2 (y) =

∑
rA1(VM1)A2(µM2) +∑

r hA2,M2
A1(µM1

) by Eq. (6), where A1(VM1
) =

VM1
, A2(µM2

) = µM2
, A1(µM1

) = µM1
, and

hA2,M2
= VM2

− µM2
by Coro. 1, or by calling

COMPONENTUIF(A2,M2). Finally, φPx1,x2 (y) = −ψ +
VPx1,x2 (y), where

VPx1,x2 (y) =
∑
r

(VM1µM2 + (VM2 − µM2)µM1). (8)

Algorithm 2: COMPONENTUIF(Aj ,Mj
r)

Input: Aj({Mj
`}
mj
`=1});Mj

r for r ∈ {1, · · · ,mj}.
Output: hAj ,Mj

r

1 Run hAj ,Mj
r
({Mj

`}
mj
`=1, φMj

r
)← FINDH(Aj ,Mj

r).
2 hAj ,Mj

r
← hAj ,Mj

r
({µMj

`
}mj`=1,VMj

r
− µMj

r
) by

Mj
` ← µMj

`
and φMj

r
← (VMj

r
− µMj

`
).

3 return hAj ,Mj
r

Procedure FINDH(A({M`}),Mr)
a.1 Let A′({M`}), A′′({M`}) denote arithmetic

combination operators; let C denote a quantity
not involvingMr.

a.2 if A = C then return 0.
a.3 if A =Mr then return φMr .
a.4 if A = CA′ then return C ∗ FINDH(A′,Mr).
a.5 if A = A′A′′ then return

FINDH(A′,Mr) ∗A′′+A′ ∗ FINDH(A′′,Mr).
a.6 if A = 1/A′ then return

−1/(A′)2 ∗ FINDH(A′,Mr)
a.7 if A =

∑
A′ then return

∑
FINDH(A′,Mr).

5 Double Machine Learning Estimators
In this section, we construct DML estimators for any iden-
tifiable causal effects Px (y) from finite samples D =
{V(i)}Ni=1, based on the IF discussed above. The resulting
DML estimators have robustness properties, which will be
exhibited later.

Building on (Chernozhukov et al. 2022, Thm. 1), we show
that the IF φPx(y) in Thm. 2 is a Neyman orthogonal score:

Proposition 1. Let the target functional ψ ≡ Px (y) be
given in Eq. (4). The IF φPx(y) for ψ given in Thm. 2 is a
Neyman orthogonal score for ψ.

A DML estimator for Px (y), named DML-ID (DML es-
timator for any identifiable causal effects), is constructed
based on Theorem 2 as follows:

Definition 4 (DML-ID Estimator). Let D = {V(i)}Ni=1

denote samples drawn from P (v). Let {D0,D1} denote
randomly split two halves of D. Then, the DML-ID (Dou-
ble Machine Learning estimator for any IDentifiable effect)
TN for ψ = Px(y) is constructed as follows:

1. For all j = 1, 2, · · · , kd, ` = 1, 2, · · · ,mj , es-
timate {µj,`,a0 , πj,`,a0 }rj,`a=1 as {µ̂j,`,a, π̂j,`,a}rj,`a=1 from
D1 where {µj,`,a0 , πj,`,a0 }rj,`a=1 are nuisances of the
UIF of mSBD operator Mj

` . Evaluate µ̂Mj
`
≡

ED0

[
VMj

`
(V; {µ̂j,`,a, π̂j,`,a}rj,`a=1)

]
using D0.

2. Let TN (D0;D1) ≡
∑

d\y
∏kd
j=1Aj({µ̂Mj

`
}mj`=1).

3. Repeat steps (1-2) after switching D0,D1, and derive
TN (D1;D0). Then,

TN =
TN (D0;D1) + TN (D1;D0)

2
.
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0.0

0.1

0.2

0.3

DB DR−1 DR−2
Scenario

W
AA

E

A
B
Plug-In

DML-ID

(h) Example 2, Error bar

Figure 2: Plots for (Top) Example 1, and (Bottom) Example 2. (a,b,c),(e,f,g) WAAE plots for scenarios ‘Debiasedness’ (‘DB’),
‘Doubly Robustness’ (‘DR-1’ and ‘DR-2’). (d,h) Error bar charts comparing WAAE at N = 10, 000 for Example (1,2). Shades
are representing standard deviation. Plots are best viewed in color.

We show that DML-ID estimators attain the two aforemen-
tioned properties, the main result of this section:

Theorem 3 (Properties of DML-ID). Let
Px (y) be any identifiable causal effects. Let
{Mj

`}j∈{1,2,··· ,kd},`∈{1,2,··· ,mj} denote the mSBD ad-
justments that compose the expression Eq. (4). Let
{µj,`,a0 , πj,`,a0 }rj,`a=1 denote the set of nuisances con-
stituting the UIF of Mj

` given in Lemma 3, and let
{µ̂j,`,a, π̂j,`,a}rj,`a=1 denote their estimates. Assume that
µ̂j,`,a is bounded and π̂j,`,a is strictly positive and bounded
for all j, `, a. Let TN be the DML-ID estimator of Px(y)
defined in Def. 4. Then,

1. Debiasedness:Suppose
∥∥∥µ̂j,`,a − µj,`,a0

∥∥∥ = oP (1)

and
∥∥∥π̂j,`,a − πj,`,a0

∥∥∥ = oP (1) for all j, `, a. Then,

TN − Px(y)

= R+OP

(
kd∑
j=1

mj∑
`=1

rj,`∑
a=1

∥∥∥µ̂j,`,a − µj,`,a0

∥∥∥∥∥∥π̂j,`,a − πj,`,a0

∥∥∥) ,
(9)

where R is a variable that converges to a zero-mean nor-
mal distribution NORMAL(0, φ2Px(y)

) at
√
N rate, where

φPx(y) = φPx(y)(V; η) is the IF of Px(y) equipped with
a true nuisance η given in Thm. 2.

2. Doubly Robustness: If, ∀j, `, a, either µ̂j,`,a or π̂j,`,a
is correctly specified (i.e., µ̂j,`,a is a consistent estimator
for µj,`,a0 or π̂j,`,a is a consistent estimator for πj,`,a0 ), then
TN is a consistent estimator for Px(y).

By virtue of these properties, DML-ID estimators attain
root-N consistency even when nuisances converge much
slower (say, fourth-root-N ) or some nuisances are misspec-
ified, without restricting the complexity of estimation mod-
els for nuisances (e.g., Donsker condition) (Klaassen 1987;

Robins and Ritov 1997; Robins et al. 2008; Zheng and
van der Laan 2011; Chernozhukov et al. 2018). As a result,
one can employ flexible ML models (e.g., neural nets) for
estimating nuisances in estimating the causal functional.

Demonstration 5 (Thm. 3 to Example 1). The DML-ID
estimator TN for ψ = Px(y) in Example 1 is constructed
using Def. 4. In particular, Px(y) = M1

M2
, where M1 =

M [x, y | r;w] and M2 = M [x | r;w]. VM1
composes

of nuisances {µ1
0, π0} and VM2

composes of {µ2
0, π0}

where µ1
0 ≡ E [Ix,y(X,Y )|R,W ] = P (x, y|R,W ), µ2

0 ≡
E [Ix(X)|R,W ] = P (x|R,W ), and π0 ≡ 1/P (R|W ).
Thm. 3 states that TN converge at

√
N -rate provided that

µ̂1, µ̂2, π̂ converge at least at rate oP (N−1/4) to µ1
0, µ

2
0, π0.

Also, TN is consistent provided that nuisance estimates
µ̂1 or π̂; and µ̂2 or π̂ are consistent. To compare, we
note that a plug-in estimator for Eq. (1) is consistent if
{P̂ (x, y|r, w), P̂ (w)} are correctly specified.

Demonstration 6 (Thm. 3 to Example. 2). The DML-ID
estimator TN for ψ = Px1,x2

(y) in Example. 2 is con-
structed using Def. 4 with Px1,x2

(y) =
∑
rM1M2, where

M1 = M [y | (x2, r); (x1, z)], M2 = M [r | x1; ∅].
VM1 composes of nuisances {µ1,1

0 , π1,1
0 } and VM2 com-

poses of {µ1,2
0 , π1,2

0 } where µ1,1
0 (R,X2, Z,X1) ≡

E [Iy(Y )|R,X2, Z,X1] = P (y|R,X2, Z,X1),
π1,1
0 (R,X2, Z,X1) = 1/P (R,X2|Z,X1), µ1,2

0 (X1) =

E [Ir(R)|X1] = P (r|X1), and π1,2
0 (X1) ≡ 1/P (X1).

Thm. 3 states that TN converge at
√
N rate provided that

µ̂1,1, µ̂1,2, π̂1,1, π̂1,2 converge at least at rate oP (N−1/4)

to µ1,1
0 , µ1,2

0 , π1,1
0 , π1,2

0 . Also, TN is consistent provided
that nuisance estimates µ̂1,1 or π̂1,1; and µ̂1,2 or π̂1,2

are consistent. To compare, we note that a plug-in es-
timator for Eq. (2) is consistent if {P̂ (y|r, x1, x2, z),
P̂ (z, x1), P̂ (r|x1)} are correctly specified.



6 Experimental Studies
6.1 Experiments Setup
We evaluate the proposed estimators on the models in Exam-
ples 1 and 2. Details of the models and the data-generating
process are described in Appendix B. Throughout the exper-
iments, the target causal effect is µ(x) ≡ Px (Y = 1), with
ground-truth pre-computed.

We compare DML-ID with Plug-In Estimator (PI), the
only viable estimator working for any identifiable causal
functional. Nuisance functions are estimated using gradient
boosting models called XGBoost (Chen and Guestrin 2016),
which is known to be flexible.
Accuracy Measure Given D with N samples, let µ̂DML(x)
and µ̂PI(x) be the estimated Px (Y = 1) using DML-ID
and PI estimators. For each µ̂ ∈ {µ̂DML(x), µ̂PI(x)},
we assess the quality of the estimator by computing the
weighted average absolute error (WAAE), averaged over
the density of the intervention X = x: WAAE(µ̂) ≡∑

x |µ̂(x)−µ(x)|PN (x), where PN (x) ≡ Nx/N forNx ≡
1
N

∑N
i=1 Ix(X(i)), following a common practice in statistics

in assessing the error of estimates for non-binary treatment
(Kennedy et al. 2017; Lee, Kennedy, and Mitra 2021). We
run 100 simulations for each N = {500, 1000, · · · , 10000}
and take the average of those 100 results. We call plot of the
average WAAE vs. the sample size N the WAAE plot.
Simulation Strategy To show debiasedness (‘DB’) prop-
erty, we add a ‘converging noise’ ε, decaying at a N−α

rate (i.e., ε ∼ Normal(N−α, N−2α)) for α = 1/4, to the
estimated nuisance values to control the convergence rate
of the estimator for nuisances, following the technique in
(Kennedy 2020b). We simulate a misspecified model for nui-
sance functions of the form P (vi|·) by replacing samples for
Vi with randomly generated samples V ′i , training the model
P̂ (v′i|·), and using this misspecified nuisance in computing
the target functional, following (Kang, Schafer et al. 2007).

6.2 Experimental Results
Debiasedness (DB) The WAAE plots for the debiasedness
experiments are shown in Fig. 2 (a) and (e) for Examples 1
and 2, respectively. The DML-ID estimator shows the debi-
asedness property against the converging noise decaying at
N−1/4 rates, while the PI estimator converges much slower,
for both Examples 1 and 2.
Doubly robustness (DR) The WAAE plots for the doubly
robustness experiments are shown in Fig. 2 (b, c) for Ex-
ample 1 and (f, g) for Examples 2. Two misspecification
scenarios are simulated for each example. For Example 1,
nuisance {P (x, y|r, w), P (w)} are misspecified in ‘DR-1’,
and {P (r|w)} is misspecified in ‘DR-2’. We note that PI
estimator under DR-2 scenario does not have model mis-
specification since P (r|w) is not a nuisance of PI estimator.
For Example 2, nuisance {P (y|x1, x2, r, z), P (x1, z)} are
misspecified in ‘DR-1’, and {P (r, x2|x1, z)} is misspeci-
fied in ‘DR-2’. The results support the doubly robustness
of DML-ID, whereas PI may fail to converge, more promi-
nently, when misspecification is present (i.e., DR-1).

Finally, to further assess the performance of DML-ID
when compared against PI, we present the error bar chart

of averages and ±1 standard deviations of WAAEs with the
fixed N = 10, 000 for each of the three scenarios (DB, DR-
1, DR-2) in Fig. 2 (d) for Example 1 and in Fig. 2 (h) for
Example 2.

We emphasize that the main reason for choosing the plug-
in estimator as the baseline for comparison is because it is
the only counterpart to DML-ID as an estimator of arbitrary
identifiable causal effects. The estimator (’CWO’) in (Jung,
Tian, and Bareinboim 2020a) covers some special settings
and is applicable to Example 1, but not to Example 2. A
comparison with CWO on Example 1 is provided in Ap-
pendix B.3, showing CWO does not enjoy debiasedness or
doubly robustness. Finally, we note that if covariate adjust-
ment is the only way of identifying the causal effect, then
DML-ID will reduce to the existing DML estimator. If there
are other possible expressions for the causal effect in addi-
tion to the covariate adjustment (e.g., front-door), Algo. 1
may output an estimand that is not in the form of covariate
adjustment, leading to a different estimator. It’s an interest-
ing question to investigate the performances of estimators
based on different expressions for the same causal effect.

7 Conclusion
We derived influence functions (Thm. 2) and developed a
class of DML estimators, named DML-ID (Def. 4), for any
causal effects identifiable given a causal graph. These esti-
mators are guaranteed to have the property of debiasedness
and doubly robustness (Thm. 3). Our experimental results
demonstrate that DML-ID estimators are significantly more
robust against model misspecification and slow convergence
rate in learning nuisances compared to the only viable esti-
mator working for any identifiable causal estimand (plug-in
estimators). We hope the new machinery developed here will
allow empirical scientists to derive more reliable and robust
causal effect estimates by integrating modern ML methods
that are capable of handling complex, high-dimensional data
with causal identification theory.
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Appendix – Estimating Identifiable Causal Effects through Double Machine Learning

This is a new appendix that includes revised proofs and some new results. Results that only appear in the Appendix will be
labeled with ‘A’ (e.g., Lemma A.1). Otherwise, results will be labeled the same as in the main document.

A Proofs
Proof for Time Complexity of Algorithms
Lemma A.1 (Time complexity of Algo. 1). Algo. 1 runs in O

(
|V|3

)
, where |V| denote the number of variables.

Proof. In the proof, let n ≡ |V|. Finding An(Y) in line 1 or finding C-components in line (2,5) take at most O(n2), since time
complexities for these tasks are bounded by the time for traversing the graph G.

Now, we analyze the time complexity of the sub-procedure MCOMPILE for identifying an individual C-factor Q [Dj ] from
Q [Si]. Let ri ≡ |Si|. Then, the number of recursion of MCOMPILE is bounded by ri. For each recursion, the time complexity
is O(n2), for finding C-component and ancestral sets. Then, it takes O(ri · n2) for identifying an individual Q [Dj ].

Let kd be the number of C-components, and let r1, r2, · · · , rkd be sizes of each C-components. Then, the time complexity
for identifying all Q [D1] , Q [D2] , · · · , Q [Dkd ] is given by

O(r1 · n2) +O(r2 · n2) + · · ·+O(rkd · n2) = O
(
n2 · (r1 + r2 + · · ·+ rkd)

)
= O(n3),

where the last equality holds since r1+r2+· · ·+rkd = n. Therefore, we can conclude that Algo. 1 runs inO(n3), a polynomial
time to the size of the graph.

Lemma A.2 (Time complexity of Algo. 2). Algo. 2 runs in O
(
m2
j

)
.

Proof. Let mj denote the number of mSBD operators in Aj . Note line 2 of Algo. 2 takes O(mj). Let the time complexity
of the sub-procedure FINDH be T (mj). Then, the complexity for tasks in line (a.4 - a.7) is given by T (mj − 1) + amj for
some constant a, since those tasks could be done by traversing mSBD operators composingMj , and invoking the recursion of
FINDH whose input size is bounded by mj − 1. Then,

T (mj) = T (mj − 1) + amj = T (mj − 2) + a(mj − 1) + amj = · · · = T (0) + a (1 + 2 + · · ·mj − 1 +mj) ,

where T (0) = 0. Since 1 + 2 + · · ·+mj =
mj(mj+1)

2 , T (mj) = O(m2
j ). Therefore, Algo. 2 runs O

(
m2
j

)
.

Lemma A.3 (Time complexity for deriving Eq. (6)). A closed form of Eq. (6) could be derived in time O(|V|3).

Proof. Let n ≡ |V| in the proof. Running Algo. 1 and obtain Eq. (4) takes O(n3), as shown in Lemma A.1. By Lemma A.2, it
takes O(m2

j ) times to derive hAj ,mj` for ` ∈ {1, 2, · · · ,mj}. This implies that it takes O(m3
j ) time to derive hAj ,mj` for all ` =

1, 2, · · · ,mj . Since the number of Aj is kd as in Eq. (4), it takes O
(∑kd

j=1m
3
j

)
for deriving all {hAj ,Mj

`
}j=1,··· ,kd,`=1,··· ,mj .

We now relate mj with n. We note that mj is bounded by rj ≡ |Sj |, since line a.7 of Algo. 1 yields at most |S| number of
distinct mSBD operators. Then,

O

 kd∑
j=1

m3
j

 = O

 kd∑
j=1

r3j

 = O


 kd∑
j=1

rj

3
 = O(n3).

Therefore, a time complexity for deriving Eq.(6) is given as O
(
n3
)
.

Proof for mSBD Adjustments
Definition 2 (mSBD criterion (Jung, Tian, and Bareinboim 2020a)). Given the pair of sets (X,Y), let X =
{X1, X2, · · · , Xn} be topologically ordered as X1 ≺ X2 ≺ · · · ≺ Xn. Let Y0 = Y \ De (X) and Yi = Y ∩(
De (Xi) \De

(
X≥i+1

))
for i = 1, · · · , n. A sequence Z = (Z1, · · · ,Zn) is mSBD admissible relative to (X,Y) if it

holds that Zi ⊆ ND
(
X≥i

)
, and

(
Y≥i ⊥⊥ Xi|Y(i−1),Z(i),X(i−1))

G
XiX

≥i+1

for i = 1, · · · , n.

Proposition A.1 (mSBD adjustment (Jung, Tian, and Bareinboim 2020a)). If a set of variables Z = (Z1, · · · ,Zm) satisfies
the mSBD criterion w.r.t. (X,Y), then the causal effect Px(y) is given as

Px(y) =
∑
z

m∏
i=0

P (yi|z(i),x(i),y(i−1))

m∏
j=1

P (zj |z(j−1),x(j−1),y(j−1)). (A.10)



Proposition A.2 (Canonical Expression – Simplified estimand of the mSBD adjustment). For the functional in Eq. (A.10),
let Ai ≡ {Yi,Zi+1} for i = 0, · · · ,m, where Yj = ∅ if j < 0 and Zr ≡ ∅ if r ≤ 0, and Zm+1 ≡ ∅. Let A = {Ai}mi=0. Then,
Eq. (A.10) can be represented as

Px(y) =
∑
a′

m∏
i=0

P (a′i|a′
(i−1)

,x(i))Iy(y′), (A.11)

where a′i ≡ {y′i, z′i+1} and Iy(y′) is an indicator function, i.e., Iy(y′) = 1 if y′ = y and 0 otherwise.

Proof. ∑
a′

m∏
i=0

P (a′i|a′
(i−1)

,x(i))Iy(y′)

=
∑
y′,z

P (y′0, z1)P (y′1, z2|y′0, z1,x1) · · ·P (y′m|y′
(m−1)

, z(m),x(m))Iy(y′)

=
∑
z

P (y0, z1)P (y1, z2|y0, z1,x1) · · ·P (ym|y(m−1), z(m),x(m))

=
∑
z

P (y0)P (z1|y0)P (y1|y0, z1,x1)P (z2|y(1), z1,x1) · · ·P (ym|y(m−1), z(m),x(m))

=
∑
z

P (y0)P (y1|y0, z1,x1) · · ·P (ym|y(m−1), z(m),x(m))× P (z1|y0) · · ·P (zm|y(m−1), z(m−1),x(m−1))

=
∑
z

m∏
i=0

P (yi|y(i−1), z(i),x(i))×
m∏
j=1

P (zj |z(j−1),x(j−1),y(j−1))

= P (y|do(x)).

Proof for Lemma 1
Lemma 1 (Representation of C-factors using mSBD operator). Let S denote a C-component in G. Let W ⊆ S denote a
set of nodes such that W = An(W)G(S). Let R ≡ Pa(S)\S, and Z ≡ (S\W) ∩ Pre(W). Then,

1. Q [W] = Pr(w);
2. Z satisfies the mSBD criterion relative to (R,W); and therefore Pr(w) =M [w | r; z].

Proof. First statement: Pv\w (w) = Pr (w).
We first witness Q [W] = Pv\s (w). To witness, let W′ ≡ S\W. Then

Q [W] = Pv\w (w) = Pv\s,w′ (w) (A.12)

= Pv\s (w) . (A.13)

Eq. (A.13) follows by applying Rule 3 of do-calculus using the independence (W ⊥⊥W′|V\S)G
V\S,W′

. We can show that the

independence condition holds using contradiction: Assume there exists a path in G
V\S,W′ between Vi ∈ W and Vj ∈ W′.

Such path must have arrows going out of Vj , the following node in the path must be in W for the edge in the path to be in
G

V\S,W′ . But if this is the case, Vj is a parent of some Vk ∈W; then W is not an ancestral set in GS, a contradiction.

Let Pa(S) = Pa(S)\S, which coincides with R. We will use Pa(S) and R interchangeably. We will show Pv\s (w) =

P
Pa(s)

(w). To show Pv\s (w) = P
Pa(s)

(w), we will apply the do-calculus Rule 3;
(
W ⊥⊥ V\Pa(S)|Pa(S)

)
G

V\S

. For

any Wi ∈ W and Vj ∈ V\Pa(S), suppose there is a path between Wi and Vj . Since there are no incoming path into Vj in
G

V\S, the path should have the directed edge from Vj to any node Sk ∈ S. However, this implies that Vj ∈ Pa(S), which is

a contradiction. Notice the path must not be a collider since Pa(S) ⊆ V\S. Therefore, by Rule 3, Pv\s (w) = P
Pa(s)

(w) =

Px (w).
Second statement: Z satisfies the mSBD criterion relative (R,W).
Let R = {R1, R2, · · · , Rn} where R1 ≺ R2 ≺ · · · ≺ Rn. Let W0 ≡W\De(R), and Wi ≡W ∩ (De(Ri)\De(R≥i+1))

for i = 1, 2, · · · , n. Finally, let Zi ≡ {Vk ∈ S\W s.t. Wi−1 ≺ Vk ≺ Ri} for i = 1, 2, · · · , n. We note that Z doesn’t contain



a variable that is a successor of Wn since Z is a subset of predecessors of W. Therefore, {Z1, · · · ,Zn} is a partition of Z; i.e.,
Z = {Z1, · · · ,Zn}.

By such partition, the condition Zi ⊆ ND(R≥i) is automatically satisfied. Thus, we focus on showing(
W≥i ⊥⊥ Ri|W(i−1),Z(i),R(i−1)

)
G
RiR

≥i+1

. (A.14)

Let Gi ≡ GRiR≥i+1 . We will show that a path connecting Wk ∈W≥i and Ri in Gi must be blocked by W(i−1),Z(i),R(i−1).
To show this, consider a contradictory hypothesis that there is a such path. We note that the path cannot be directed in Gi. The
path must be either divergent (a path is said to be divergent if it’s in a form of Ri ← · · · ← A ↔ B → · · · → Wk, where
possibly A = B), or colliding where the collider is an ancestor of W(i−1),Z(i),R(i−1).

Suppose the path is divergent. The path must include a variable in Ra ∈ R which has a directed path to a variable in S.
Suppose Ra ∈ R≥i+1. This means that Ra has a directed path to Ri in Gi, which contradicts with the topological order on R.
Suppose Ra ∈ R(i). Then, if the path is divergent, then the path is blocked by conditioning on W(i−1),Z(i),R(i−1).

Suppose the path contains a colliding node A which is an ancestor of W(i−1),Z(i),R(i−1). That is, the path contains the
subpath s.t.→ A ← · · · ◦−◦Wk and A → · · · → Va where Va ∈ {W(i−1),Z(i),R(i−1)}. Suppose the subpath connecting A
andWk is directed; i.e.,A← · · · ←Wk. Then,Wk becomes an ancestor of Va, which contradicts with the assumed topological
order. Therefore, such subpath doesn’t exist. Suppose the subpath connecting A and Wk is divergent; i.e., A← · · ·B ↔ C →
· · · → Wk where B and C are possibly the same node. Such subpath must include a variable Ra ∈ R. Suppose Ra ∈ R≥i+1.
This means that Ra has a directed path to Va in Gi, which contradicts with the topological order. Suppose Ra ∈ R(i). Then, if
the path is divergent, then the path is blocked by conditioning on W(i−1),Z(i),R(i−1). Therefore, the subpath is blocked. In
conclusion, the path connecting Ri and Wk must be blocked by W(i−1),Z(i),R(i−1) in Gi. Therefore, Eq. (A.14) holds.

Main Claim: If two statements hold, then Q [W] =M [w | r; z] by the definition of the mSBD adjustment.

Proof for Lemma 2
Lemma 2 (Marginalization of mSBD operators)). Let M [y | x; z] be an mSBD operator. For W = De(W)G[Y],∑

wM [y | x; z] = M [y\w | x ∩ Pre(y\w); z ∩ Pre(y\w)]; For A = An(A)G[Y],
∑

aM [y | x; z] =
M [y\a | x; z ∪ a].

Proof. Let X = {X1, X2, · · · , Xn} and Y = {Yk}nk=1. Let Yk = {Yk,1, · · · , Yk,nyk} where Yk,1 ≺ · · · ≺ Yk,nyk ; i.e, Yk,a ≺
Yk,b if a < b for all k = 1, 2, · · · , n. Then, we represent Y = {Yk}nk=1 = {{Yk,`k}

nyk
`k=1}nk=1 such that Yk1,`k1 ≺ Yk2,`k2

whenever k1 < k2 for any `k1 , `k2 . Then, we can re-index it as Y = {Yr}n
y

r=1, where Ya ≺ Yb whenever a < b, by setting
r = (k − 1)nyk + `k for each `k = 1, 2, · · · , nyk for all k = 1, 2, · · · , n.

Let Z = {Zp}np=1. Let Zp = {Zp,1, · · · , Zp,nzp} where Zp,1 ≺ · · · ≺ Zp,nzp ; i.e, Zp,a ≺ Zp,b if a < b for all p = 1, 2, · · · , n.

Then, Z = {Zp}np=1 = {{Zp,jp}
nzp
jp=1}np=1. Note Zp1,jp1 ≺ Zp2,jp2 whenever p1 < p2 for any jp1 , jp2 . Then, we can re-index

it as Z = {Zq}n
z

q=1, where Za ≺ Zb whenever a < b, by setting q = (p − 1)nzp + jp for each jp = 1, 2, · · · , nzp for all
p = 1, 2, · · · , n.

We assume that a topological order for G (denoted ≺) is given. For the union (X ∪ Y ∪ Z) (= (X,Y,Z) since they are
disjoint, by definition), we consider the G[X,Y,Z]. Note the topological order in G[X,Y,Z] could be naturally induced by ≺
for G.

Let Y≤`−1 denote the set of variables in (X,Y,Z) that are predecessors of Y`. X≤`−1 and Z≤`−1 are similarly defined for
X` and Z`. Also, let Y≥` denote the set of variables in {X,Y,Z} that are successors of Y`−1.

For the notational convenience, letHYk
≡ {X(k),Y(k−1),Z(k−1)} andHZk ≡ {X(k−1),Y(k−1),Z(k−1)}.

Note

M [y | x; z] =
∑
z

∏
yk∈Y

P (yk|Hyk)
∏
zj∈Z

P (zj |Hzj )

=
∑
z

n∏
k=0

nyk∏
`k=1

P (yk,`k |y≤(k−1)n
y
k+`k−1)

n∏
p=1

nzp∏
jp=1

P (zp,jp |z≤(p−1)n
z
p+jp−1)

=
∑
z

ny∏
r=1

P (yr|y≤r−1)

nz∏
q=1

P (zq|z≤q−1).

First statement: For W = De(W)G[Y],
∑

wM [y | x; z] =M [y\w | x ∩An(w); z ∩An(w)].



Consider W = De(W)G[Y]. Since Y = {Yr}n
y

r=1 is topologically ordered, we can rewrite it as W = Y≥kw for some
kw ≤ ny . Let a be an index Za ∈ Z such that Za ≺ Ykw−1 and Ykw−1 ≺ Za+1; i.e., Za is the last predecessor of Ykw in Z.
Then, ∑

w

M [y | x; z] =
∑
w

∑
z

ny∏
r=1

P (yr|y≤r−1)

nz∏
q=1

P (zq|z≤q−1).

=
∑
z≤a

∑
y≥kw

∑
z≥a+1

ny∏
r=1

P (yr|y≤r−1)

nz∏
q=1

P (zq|z≤q−1)


=
∑
z≤a

kw−1∏
r=1

P (yr|y≤r−1)

a∏
q=1

P (zq|z≤q−1). (A.15)

Notice Eq. (A.15) holds, since (Y≥kw ,Z≥a+1) are marginalized out in turn.
Note Y≤kw−1 = Y\Y≥kw = Y\W. Then, Z≤a are the set of predecessors of Y\W; otherwise, if there exists Zq for

q ≤ a such that Zq is a successor of Y\W, then such Zq will be marginalized out. Since Eq. (A.15) only contains conditional
probabilities of (Y\W) and Pre(Y\W) in Z, none of conditional probabilities in Eq. (A.15) are conditioned on variables in
X\Pre(Y\W). Therefore,

Eq. (A.15) =M [y\w | x ∩ Pre(y\w); z ∩ Pre(y\w)] .

Second statement: A = An(A)G[Y],
∑

aM [y | x; z] =M [y\a | x; z ∪ a].
Consider A = An(A)G[Y]. Since Y = {Yr}n

y

r=1 is topologically ordered, we can rewrite it as A = Y≤ka for some ka ≤ ny .
Let b be the index of Zb ∈ Z and Yka ≺ Zb+1 and Zb ≺ Yka . Then,∑

a

M [y | x; z] =
∑
a

∑
z

ny∏
r=1

P (yr|y≤r−1)

nz∏
q=1

P (zq|z≤q−1)

=
∑

z≥b+1

∑
z≤b

∑
y≤ka

ny∏
r=1

P (yr|y≤r−1)

nz∏
q=1

P (zq|z≤q−1).

We note
∑

z≤b
∑

y≤ka does not marginalize out Z≤b and Y≤Ka , since those are predecessors that conditional probabilities
P (yr|y≤r−1) or P (zq|z≤q−1) are dependent on, for some Yr and Zq . Then,

∑
a

M [y | x; z] =
∑

z,y≤ka

(
ka∏
r=1

nz∏
q=1

P (yr|y≤r−1)P (zq|z≤q−1)

)(
ny∏

s=ka+1

P (ys|y≤s−1)

)
(A.16)

Note Y≤ka = A; (Z,Y≤ka) = ({Zq}nzq=1, {Yr}
k1
r=1) = Z ∪A; and{Ys}n

y

s=ka+1 = Y\A. Therefore,∑
a

M [y | x; z] =M [y\a | x; z ∪ a] .

Proof for Theorem 1
Theorem 1 (Soundness and Completeness of DML-ID). A causal effect Px (y) is identifiable if and only if DML-
ID(x,y, G, P ) (Algo. 1) returns Px (y) as an arithmetic combination of mSBD operators, in the form given by

Px (y) =
∑
d\y

kd∏
j=1

Aj({Mj
`}
mj
`=1). (A.17)

Proof. DML-ID follows precisely the original identification algorithm (Alg. 2 in (Tian and Pearl 2003)) except that in Line 3
Q [Si] is expressed in terms of an mSBD operator, which follows from Lemma 1. The soundness and completeness of DML-ID
then follows from the soundness and completeness of the original identification algorithm (Huang and Valtorta 2008).

That Dj is an arithmetic combination (marginalization/multiplication/division) of a set of mSBD operatorsAj({Mj
`}
mj
`=1) is

because the only computations invoked by the procedure MCOMPILE() are in Line a.2 (marginalization) and Line a.7 (marginal-
ization, multiplication, and division).



Proof of Lemma 3 (IF & UIF of the mSBD).
In this paragraph, we provide a proof for deriving an IF & UIF of the mSBD adjustment. The proof of Lemma 3 needs
Lemmas (A.4, A.5, A.6, A.7) and Def. A.1.

A parametric submodel is a set of parametric distribuitons Pγ s.t. the true distribution belongs to the submodel; i.e., P = Pγ0
for some γ = γ0 (Stein et al. 1956). A popular choice of the parametric submodel for the distribution P is

Pγ(v) ≡ P (v){1 + γg(v)},
where g(v) is a function satisfying ‖g(V)‖∞ ≤ c for some constant c so that Pγ(v) ≥ 0 (Kennedy 2022) and E [g(V)] = 0.

Let∇g denote the directional derivative along the direction γ:

∇gf(v) ≡ ∂

∂γ
f(v){1 + γg(v))

∣∣∣∣
γ=0

.

We first derive the Gateaux derivative of conditional distributions.
Lemma A.4 (Gateaux derivative of conditional distributions). Let V be a set of ordered variables (with an order ≺), and
T ⊆ V. For Vi ⊆ T (i.e., Vi can be a set), the following holds:

∇gPγ(Vi|Pre (T)Vi) =
{
EP (T) [S(T)|Vi,Pre (T)Vi]− EP (T) [S(T)|Pre (T)Vi]

}
P (Vi|Pre (T)Vi),

where S(T) ≡ ∇g logPγ(T).

Proof. Let S(Vi|preT(Vi)) ≡ ∇g logPγ(Vi|preT(Vi)). Then,

S(Vi|preT(Vi)) ≡ ∇g logPγ(Vi|preT(Vi))

= ∇gPγ(Vi|preT(Vi))
∂

∂P (Vi|preT(Vi))
logP (Vi|preT(Vi))︸ ︷︷ ︸

=1/P (Vi|preT(Vi))

= ∇gPγ(Vi|preT(Vi))
1

P (Vi|preT(Vi))
,

which implies

∇gPγ(Vi|preT(Vi)) = S(Vi|preT(Vi))P (Vi|preT(Vi)).

Therefore, it suffices to show

S(Vi|preT(Vi)) =
{
EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

}
.

We first note that the mean of the score function is zero, because

EP (Vi|preT(Vi)) [S(Vi|preT(Vi))] =
∑
vi

P (vi|preT(vi))S(vi|preT(Vi))

=
∑
vi

((((
(((P (vi|preT(Vi))

1

((((
(((P (vi|preT(Vi))

∂Pγ(vi|preT(Vi))

∂γ
|γ=0︸ ︷︷ ︸

=∇gP (vi|preT(Vi))

=
∂

∂γ

∑
vi

Pγ(vi|preT(Vi))

∣∣∣∣
γ=0

= 0.

Also, from the fact that Pγ(T) =
∏
Vi∈T Pγ(Vi|preT(Vi)) (this equality holds since Pγ(T) is a valid distribution), we note

S(T) =
∑
Vi∈T S(Vi|preT(Vi)). Then, we will study EP (T) [S(T)|Vi, preT(Vi)] which is decomposed as

EP (T) [S(T)|Vi, preT(Vi)] =
∑
Vr∈T

E [S(Vr|preT(Vr))|Vi, preT(Vi)]

=
∑
Vr∈T
Vr�Vi

E [S(Vr|preT(Vr))|Vi, preT(Vi)]

+
∑
Vr∈T
Vr≺Vi

E [S(Vr|preT(Vr))|Vi, preT(Vi)]

+ E [S(Vi|preT(Vi))|Vi, preT(Vi)] .



For any Vr � Vi,

EP (T)[S(Vr|preT(Vr))|Vi, preT(Vi)] = EP (T)[EP (T) [S(Vr|preT(Vr))|preT(Vr)] |Vi, preT(Vi)]

= EP (T)[EP (Vr|preT(Vr)) [S(Vr|preT(Vr))]︸ ︷︷ ︸
=0

|Vi, preT(Vi)]

= 0.

Also,

EP (T)[S(Vr|preT(Vr))|preT(Vi)] = EP (T)[EP (T) [S(Vr|preT(Vr))|preT(Vr)] |preT(Vi)]

= EP (T)[EP (Vr|preT(Vr)) [S(Vr|preT(Vr))]︸ ︷︷ ︸
=0

|preT(Vi)]

= 0.

For any Vr ≺ Vi,

EP (T)[S(Vr|preT(Vr))|Vi, preT(Vi)] = S(Vr|preT(Vr)), and

EP (T)[S(Vr|preT(Vr))|preT(Vi)] = S(Vr|preT(Vr)),

since {Vr, preT(Vr)} ⊆ preT(Vi). This implies, if Vr ≺ Vi,

EP (T)[S(Vr|preT(Vr))|Vi, preT(Vi)] = EP (T)[S(Vr|preT(Vr))|preT(Vi)].

Therefore,

EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)]

=
∑
Vr∈T

{E [S(Vr|preT(Vr))|Vi, preT(Vi)]− E [S(Vr|preT(Vr))|preT(Vi)]}

=
∑
Vr∈T
Vr�Vi

{E [S(Vr|preT(Vr))|Vi, preT(Vi)]− E [S(Vr|preT(Vr))|preT(Vi)]}

+
∑
Vr∈T
Vr≺Vi

{E [S(Vr|preT(Vr))|Vi, preT(Vi)]− E [S(Vr|preT(Vr))|preT(Vi)]}

+ {E [S(Vi|preT(Vi))|Vi, preT(Vi)]− E [S(Vi|preT(Vi))|preT(Vi)]}
= E [S(Vi|preT(Vi))|Vi, preT(Vi)]− E [S(Vi|preT(Vi))|preT(Vi)]︸ ︷︷ ︸

=0

= S(Vi|preT(Vi)).

Therefore,

S(Vi|preT(Vi)) = EP (T) [S(T)|Vi, preT(Vi)]− EP (T) [S(T)|preT(Vi)] ,

and this concludes the proof.

Using the result, we can derive the influence function of the product of conditional distributions:
Lemma A.5. Let V be a set of ordered variables (with an order ≺), and T ⊆ V. Suppose T is decomposed into T = A ·∪X.
Let Pπ(T) denote the distribution

Pπ(T) ≡
∏
Vi∈A

P (Vi|preT(Vi))Ix(X).

Then, an influence function of the functional

Ψ(P ) ≡
∑
a

∏
Vi∈A

P (Vi|preT(Vi))f(a) (A.18)

is

φ =
∑
Vj∈A

Pπ(preT(Vj))

P(preT(Vj))
{EPπ [f(A)|Vj , preT(Vj)]− EPπ [f(A)|preT(Vj)]} .



Proof. We will compute

∇gΨ(Pγ)

= ∇g
∑
a

∏
Vi∈A

P (vi|preT(vi))f(a)

=
∑
Vj∈A

∑
a

{∇gPγ(vj |preT(vj))}
∏

Vi∈A\Vj

P (vi|preT(vi))f(a)

=
∑
Vj∈A

∑
a

{
EP (T) [S(T)|vj , preT(vj)]− EP (T) [S(T)|preT(vj)]

}
P (vj |preT(vj))

∏
Vi∈A\Vj

P (vi|preT(vi))f(a)

=
∑
Vj∈A

∑
a

{
EP (T) [S(T)|vj , preT(vj)]− EP (T) [S(T)|preT(vj)]

} ∏
Vi∈A

P (vi|preT(vi))f(a)

=
∑
Vj∈A

∑
a,x′

{
EP (T) [S(T)|vj , preT(vj)]− EP (T) [S(T)|preT(vj)]

} ∏
Vi∈A

P (vi|preT(vi))Ix(x′)f(a)

=
∑
Vj∈A

EPπ
[{
EP (T) [S(T)|Vj , preT(Vj)]− EP (T) [S(T)|preT(Vj)]

}
f(A)

]
.

Let Wj ∈ {{Vj , preT(Vj)}, {preT(Vj)}} and h(t′) ≡ f(a′)Ix(x′). Then,

EPπ
[
EP (T) [S(T)|Wj ] f(A)

]
=
∑
t′

EP (T)

[
S(T)|w′j

]
f(a′)Pπ(t′)Ix(x′)

=
∑
t′\w′j

∑
w′j

EP (T)

[
S(T)|w′j

]
h(t′)Pπ(t′)

=
∑
t′\w′j

∑
w′j

∑
t\wj

S(t\wj ,w
′
j)P (t\wj |w′j)h(t′)Pπ(t′)

=
∑
t′\w′j

∑
w′j

∑
t\wj

S(t\wj ,w
′
j)P (t\wj |w′j)h(t′\w′j ,w′j)Pπ(t′\w′j |w′j)Pπ(w′j)

=
∑
w′j

∑
t\wj

∑
t′\w′j

h(t′\w′j ,w′j)Pπ(t′\w′j |w′j)

Pπ(w′j)P (t\wj |w′j)S(t\wj ,w
′
j)

=
∑
w′j

∑
t\wj

EPπ
[
h(T)|w′j

]
Pπ(w′j)P (t\wj |w′j)S(t\wj ,w

′
j)

=
∑
w′j

∑
t\wj

EPπ
[
h(T)|w′j

]
Pπ(w′j)

P (t\wj ,w
′
j)

P (w′j)
S(t\wj ,w

′
j)

=
∑
wj

∑
t\wj

EPπ [h(T)|wj ]Pπ(wj)
P (t\wj ,wj)

P (wj)
S(t\wj ,wj)

=
∑
t

EPπ [h(T)|wj ]
Pπ(wj)

P (wj)
S(t)P (t)

= E
[
Pπ(Wj)

P (Wj)
EPπ [h(T)|Wj ]S(T)

]
= E

[
Pπ(Wj)

P (Wj)
EPπ [f(A)|Wj ]S(T)

]
,



where the last equality holds since EPπ [h(T)|Wj ] = EPπ [f(A)|Wj ]. Therefore,

∇gΨ(Pγ) =
∑
Vj∈A

E
[{

Pπ(Vj , preT(Vj))

P(Vj , preT(Vj))
EPπ [f(A)|Vj , preT(Vj)]−

Pπ(preT(Vj))

P(preT(Vj))
EPπ [f(A)|preT(Vj)]

}
S(T)

]
∗
=
∑
Vj∈A

E
[
Pπ(preT(Vj))

P(preT(Vj))
{EPπ [f(A)|Vj , preT(Vj)]− EPπ [f(A)|preT(Vj)]}S(T)

]
.

To witness ∗=, we will prove the following equality:

Pπ(Vj |preT(Vj)) = P (Vj |preT(Vj)) for Vj ∈ A. (A.19)

To witness Eq. (A.19),

Pπ(vj , preT(vj)) =
∑

vk:Vk�Vj

Pπ(t)

=
∑

vk:Vk�Vj

∏
Vr∈A

P (vr|preT(vr))Ix(X)

=
∏

Vr∈A∩{Va:Va�Vj}

P (vr|preT(vr))
∏

Xr∈X∩{Va:Va�Vj}

Ixr (Xr)

= P (vj |preT(vj))
∏

Vr∈A∩{Va:Va≺Vj}

P (vr|preT(vr))
∏

Xr∈X∩{Va:Va≺Vj}

Ixr (Xr).

Also,

Pπ(preT(vj)) =
∑

vk:Vk�Vj

Pπ(t)

=
∑

vk:Vk�Vj

∏
Vr∈A

P (vr|preT(vr))Ix(X)

=
∏

Vr∈A∩{Va:Va≺Vj}

P (vr|preT(vr))
∏

Xr∈X∩{Va:Va≺Vj}

Ixr (Xr)

Therefore,

Pπ(vj |preT(vj)) =
Pπ(vj , preT(vj))

Pπ(preT(vj))
= P (vj |preT(vj)).

Then,

Pπ(Vj , preT(Vj))

P(Vj , preT(Vj))
=
Pπ(Vj |preT(Vj))

P(Vj |preT(Vj))

Pπ(preT(Vj))

P(preT(Vj))
=
Pπ(preT(Vj))

P(preT(Vj))
.

This concludes the proof that the following is an influence function of Ψ(P ):

φ =
∑
Vj∈A

Pπ(preT(Vj))

P(preT(Vj))
{EPπ [f(A)|Vj , preT(Vj)]− EPπ [f(A)|preT(Vj)]} .

Before deriving IF & UIF of the mSBD adjustment, we first define nuisances.

Definition A.1 (Nuisances for mSBD adjustments). Let µm+1
0 ≡ Iy(Y), and for k = m, · · · , 0, we first recursively define

nuisances µk0 , µ
k
0 as follow:

µk0(X(k),A(k−1)) ≡ E
[
µk+1
0

∣∣∣∣X(k),A(k−1)
]
,

µk0(xk,X
(k−1),A(k−1)) ≡ E

[
µk+1
0

∣∣∣∣xk,X(k−1),A(k−1)
]
.



Also, for k = 1, · · · ,m, we define

πk0 (A(k−1),X(k)) ≡ 1

P (Xk|X(k−1),A(k−1))
,

π
(k)
0 (A(k−1),X(k)) ≡

k∏
r=1

πr0(A(r−1),X(r)).

The mSBD adjustment can be represented using a defined nuisance:
Lemma A.6. Let µk0 be the nuisance defined in Def. A.1.

µ0
0 =

∑
a′

m∏
i=0

P (a′i|a′
(i−1)

,x(i))Iy(y′).

Proof. We will first prove by induction that the following holds for k = m,m− 1, · · · , 1,

µk0(xk,X
(k−1),A(k−1)) =

∑
a′k,a

′
k+1,··· ,a′m

Iy(y′
(k:m)

,Y(k−1))

m∏
r=k

P (a′r|X(k−1),A(k−1),x(k:r),a′
(k:r−1)

), (A.20)

where a′
(k:r−1)

= ∅ if k > r − 1. We first check that Eq. (A.20) holds for the base case k = m.

µm0 (xm,X
(m−1),A(m−1)) = E

[
Iy(Y)

∣∣∣∣xm,X(m−1),A(m−1)
]

=
∑
a′m

Iy(y′m,Y
(m−1))P (a′m|xm,X(m−1),A(m−1)).

Assume Eq. (A.20) holds for k for the induction step. Then

µk−10 (xk−1,X
(k−2),A(k−2))

≡ E
[
µk0(xk,X

(k−1),A(k−1))|xk−1,X(k−2),A(k−2)
]

= E
[
µk0(xk,xk−1,X

(k−2),A(k−1))|xk−1,X(k−2),A(k−2)
]

=
∑
a′k−1

µk0(xk,xk−1,X
(k−2),a′k−1,A

(k−2))P (a′k−1|xk−1,X(k−2),A(k−2))

=
∑
a′k−1

 ∑
a′k,··· ,a′m

Iy(y′
(k−1:m)

,Y(k−2))

m∏
r=k

P (a′r|X(k−2),A(k−2),x(k−1:r),a′
(k−1:r−1)

)


× P (a′k−1|xk−1,X(k−2),A(k−2))

=
∑

a′k−1,··· ,a′m

Iy(y′
(k−1:m)

,Y(k−2))

m∏
r=k−1

P (a′r|x(k−1:r),X(k−2),a′
(k−1:r−1)

,A(k−2)),

which certifies that Eq. (A.20) holds for every k. Choosing k = 1 in Eq. (A.20), we have

µ1
0(x1,A0) =

∑
a′1,··· ,a′m

Iy(y′
(1:m)

,Y0)

m∏
r=1

P (a′r|x(1:r),a′
(1:r−1)

,A0).

By taking an expectation on both sides, we have

µ0
0 ≡ E

[
µ1
0(x1,A0)

]
=
∑
a′

Iy(y′)

m∏
r=0

P (a′r|x(r),a′
(r−1)

)

Lemma A.7 (Equivalence between two target quantities). The quantity Ψ(P ) in Eq. (A.18) in Lemma A.5 can be reduced to
Eq. (A.11) by setting A = {Ai}mi=0 with Ai ≡ {Yi,Zi+1} and f(a′) = Iy(y′), and ordering the variables in T = A ·∪X as
A0 ≺ X1 ≺ A1 ≺ X2 ≺ · · · ≺ Xm ≺ Am. In particular, under such a setting, preT(Ai) = {A(i−1),X(i)}, and

Ψ(P ) ≡
∑
a

∏
i:Vi∈A

P (vi|preT(vi))f(a) =
∑
a′

m∏
i=0

P (a′i|a′
(i−1)

,x(i))Iy(y′) =: Eq. (A.11).



Proof. It is clear that, under the order A0 ≺ X1 ≺ A1 ≺ X2 ≺ · · · ≺ Xm ≺ Am, We have preT(Ai) = {A(i−1),X(i)}.
Then, Ψ(P ) becomes

Ψ(P ) ≡
∑
a′

∏
Ai∈A

P (a′i|preT(a′i))Iy(y′)

=
∑
a′

∏
Ai∈A

P (a′i|x(i),a′
(i−1)

)Iy(y′)

= Eq. (A.11).

Lemma 3 (Influence Function for mSBD operator). Let the target functional be ψ ≡M [y | x; z]. Then:
1. VM ≡ VM({X,Z,Y}; {πk0 , µk0}mk=1) below is an UIF for ψ:

VM = µ1
0 +

m∑
k=1

π
(k)
0 Ix(k)(X(k))

{
µk+1
0 − µk0

}
, (A.21)

where, µm+1
0 ≡ Iy(Y), and for k = m, · · · , 1,

µk0(X(k),A(k−1)) ≡ E
[
µk+1
0

∣∣∣∣X(k),A(k−1)
]
,

µk0(xk,X
(k−1),A(k−1)) ≡ E

[
µk+1
0

∣∣∣∣xk,X(k−1),A(k−1)
]
.

Also, for k = 1, · · · ,m,

πk0 (A(k−1),X(k)) ≡ 1

P (Xk|X(k−1),A(k−1))
,

π
(k)
0 (A(k−1),X(k)) ≡

k∏
r=1

πr0(A(r−1),X(r)).

2. Let µM ≡ EP [VM]. Then µM =M [y | x; z].
3. φM ≡ φM({X,Z,Y};ψ, η(P )) = VM − µM is an IF for ψ.

Proof. We will prove the first and the third statements simultaneously. By applying Lemma A.5 and A.7, an IF for the mSBD
adjustment in Eq. (A.11) is given by

φ =

m∑
j=0

Pπ(preT(Aj))

P(preT(Aj))
{EPπ [Iy(Y)|Aj , preT(Aj)]− EPπ [Iy(Y)|preT(Aj)]}

where

Pπ(preT(Aj))

P(preT(Aj))
=
Pπ(A(j−1),X(j))

P(A(j−1),X(j))

∗
=

j∏
k=1

πk0 (X(k),A(k−1))Ixk(Xk) = π
(j)
0 (X(j),A(j−1))Ix(j)(X(j)), (A.22)

where the equation ∗= holds since

Pπ(A(j−1),X(j))

P(A(j−1),X(j))
=

∑
a≥j ,x≥j+1 Pπ(A,X)∑
a≥j ,x≥j+1 P (A,X)

=

∑
a≥j ,x≥j+1

∏m
r=0 P (Ar|A(r−1),X(r))

∏m
q=1 Ixq (Xq)∑

a≥j ,x≥j+1

∏m
r=0 P (Ar|A(r−1),X(r))

∏m
q=1 P (Xq|X(q−1),A(q−1))

=

∏j−1
r=0 P (Ar|A(r−1),X(r))

∏j
q=1 Ixq (Xq)∏j−1

r=0 P (Ar|A(r−1),X(r))
∏j
q=1 P (Xq|X(q−1),A(q−1))

=

j∏
q=1

Ixq (Xq)

P (Xq|X(q−1),A(q−1)

=

j∏
q=1

πq0(X(q),A(q−1))Ixq (Xq).



Therefore,

φ =

m∑
j=0

Pπ(preT(Aj))

P(preT(Aj))
{EPπ [Iy(Y)|Aj , preT(Aj)]− EPπ [Iy(Y)|preT(Aj)]}

=

m∑
j=0

π
(j)
0 (X(j),A(j−1))Ix(j)(X(j)) {EPπ [Iy(Y)|Aj , preT(Aj)]− EPπ [Iy(Y)|preT(Aj)]}

=

m∑
k=0

π
(k)
0 Ix(k)(X(k))

{
EPπ

[
Iy(Y)|A(k),X(k)

]
− EPπ

[
Iy(Y)|A(k−1),X(k)

]}
.

To witness the Eq. (A.21), we have to show that the following equations hold for k = m, . . . , 0:

µk+1
0 = EPπ

[
Iy(Y)|A(k),X(k)

]
(A.23)

µk0 = EPπ
[
Iy(Y)|A(k−1),X(k)

]
. (A.24)

We will prove this by induction. To witness the base case k = m:

EPπ
[
Iy(Y)|A(m),X(m)

]
= EPπ [Iy(Y)|T] = Iy(Y) = µm+1

0

since A ⊆ T by its definition. Also,

EPπ
[
Iy(Y)|A(m−1),X(m)

]
= E

[
Iy(Y)|A(m−1),X(m)

]
= µm0 ,

where the first equality holds by Eq. (A.19).
For the induction step, assume that Eqs. (A.23, A.24) hold for k. Then

EPπ
[
Iy(Y)|Ak−1,A

(k−2),X(k−1)
]

= EPπ
[
EIy(Y)|A(k−1),X(k) [Pπ] |Ak−1,A

(k−2),X(k−1)
]

= EPπ
[
µk0(A(k−1),X(k))|Ak−1,A

(k−2),X(k−1)
]

= µk0(xk,A
(k−1),X(k−1))

= µk0(xk,A
(k−1),X(k−1)), (A.25)

where the second equality holds by the induction hypothesis, the third equality comes from the expectation over
Pπ(xk|X(k−1),A(k−1)) = Ixk(Xk), and the last equality holds since µk0 can be derived by fixing Xk as xk from µk0 .

Also,

EPπ
[
Iy(Y)|A(k−2),X(k−1)

]
= EPπ

[
EPπ

[
Iy(Y)|A(k−1),X(k−1)

]
|A(k−2),X(k−1)

]
= EPπ

[
µk0(xk,A

(k−1),X(k−1))|A(k−2),X(k−1)
]

= EP
[
µk0(xk,A

(k−1),X(k−1))|A(k−2),X(k−1)
]

= µk−10 ,

where the second equality holds by Eq. (A.25), the third equality holds by Eq. (A.19), and the last equality by the Def. of µk−10 .
We conclude that Eqs. (A.23, A.24) hold for k = m, . . . , 0.

Therefore, we can rewrite the influence function as the following:

φ =

m∑
k=0

π
(k)
0 Ix(k)(X(k))

{
µk+1
0 − µk0

}
.

Now, we will derive the UIF. Note that

φ = µ1
0 − µ0

0 +

m∑
k=1

π
(k)
0 Ix(k)(X(k))

{
µk+1
0 − µk0

}
.

Then by Lemma A.6, µ0
0 = ψ, which implies that the UIF is given by

V = µ1
0 +

m∑
k=1

π
(k)
0 Ix(k)(X(k))

{
µk+1
0 − µk0

}
.

Using the fact that the IF φ has a mean-zero property and µ0
0 = ψ, we can witness the second statement. This completes the

proof.



Proof for Lemma 4
Lemma 4 (Existence of primary mSBD operator). Let D = An(Y)G(V\X). Let C-components of G be Si for
i = 1, 2, · · · , ks. Let C-components of G(D) be Dj for j = 1, 2, · · · , kd. For each Dj ⊆ Si, let Q [Dj ] =

MCOMPILE(Dj ,Si, Q [Si]) = Aj({Mj
`}
mj
`=1). Then, there exists a primary mSBD operator, indexed as Mj

1 without loss
of generality, such thatMj

1 =M [aj | Pa(si)\si; si\aj ], where Aj ≡ An(Dj)G(Si).

Proof. The proof for Lemma 4 follows from Lemma A.8.

We first establish notations. For the notational convenience, we will denote S for any Si, a C-component on G, and D
for Dj ⊆ Si, a C-component on G(An(V\X)). We will define the round index r of MCOMPILE algorithm as the number
of recursion in running MCOMPILE. We use Sr for the C-component of G(Ar−1) containing D (where A−1 = V), and
Ar ≡ An(D)G(Sr). Note S0 is a C-component on G containing D. Let Ar = {Ar,1, Ar,2 · · · , Ar,mr} where Ar,1 ≺ Ar,2 ≺
· · · ≺ Ar,mr for all r = 0, 1, 2, · · · . At rth round, let Q [Ar] = Ar({Mr,`r}

nr
`r=1), where Ar denotes an arithmetic operator;

Mr,`r are mSBD operators such thatMr,`r =M [yr,`r | xr,`r ; zr,`r ].
We first prove a background result:

Lemma A.7. Let Ar = {Ar,1, Ar,2, · · · , Ar,mr} where Ar,1 ≺ · · · ≺ Ar,mr for any r. Then, (1) Ar
≥|Sr+1|+1 = ∅ for any

r = 0, 1, · · · ; (2) Ar,mr = Ar,|Sr+1| ∈ D; and (3) Ar,mr = A0,m0 .

Proof. Note, for any r = 0, 1, 2, · · · ,; Ar = An(D)G(Sr), and D ⊆ Sr+1 by its definition (Sr is a C-component on G(Ar)

containing D). Note Ar
≥|Sr+1|+1 = ∅; Otherwise, it means there exists a variable Ar,|Sr+1|+1 ∈ Ar. Notice Ar,|Sr+1|+1 6∈ D

since Sr+1 is a set containing D. Since Ar is an ancestral set of D, this implies that Ar,|S|r+1+1 is also in the ancestral
set of D. However, for any Ar,j ∈ Sr+1 (containing D), Ar,j ≺ Ar,|Sr+1|+1. This is a contradiction to the setting where
Ar = An(D)G(Sr). Therefore, Ar

≥|S|r+1+1 = ∅.
Now, consider Ar,|Sr+1| ∈ Sr+1. Suppose Ar,|Sr+1| 6∈ D. Then, there exists Ar,j for j < |Sr+1| that Ar,j ∈ D and

Ar,j ≺ Ar,|Sr+1|. This contradicts with the setting that Ar = An(D)G(Sr). Therefore, Ar,|Sr+1| ∈ D. That is, for any r
and Ar = {Ar,1, Ar,2, · · · , Ar,mr}, Ar,mr = Ar,|Sr+1| ∈ D. In other words, for any r, Ar

≥|Sr|+1 = ∅ and Ar
≥j 6= ∅ for

j ≤ |Sr|.
We now see Ar,mr = A0,m0 for any r. Notice A0,m0 is a descendent node containing D in A0. That is, A0,m0 ∈ D.

This implies A0,m0 ∈ Ar, since Ar contains D. Note A0,m0 ∈ Sr+1 since Sr+1 contains D. If Ar,mr 6= A0,m0 , then
A0,m0 ≺ Ar,mr by the definition of Ar,mr . This contradicts that A0,m0 is a descendent node in the superset A0. Therefore,
Ar,mr = A0,m0 .

Lemma A.8 (Primary mSBD operator). Aj({Mj
`}
mj
`=1) =

∑
·M

j
1Bj({M

j
`}
mj
`=2), whereMj

1 is a primary mSBD operator
Mj

1 = M [aj | Pa(si)\si; si\aj ];Mj
` = M [yj,` | xj,`; zj,`] for ` ≥ 2 are mSBD operators such that Am0

6∈ Yj,`;Mj
` for

` ≥ 2 is obtained by marginalization ofMj
1 by Lemma 2; and B an arithmetic combination operator that does not containMj

1
as its argument.

Proof. We first make an inductive hypothesis at rth round: At rth round, suppose Q [Ar] = Ar({Mr,`r}
nr
`r=1) =∑

·M1Br({Mr,`r}
nr
`r=2), where M1 = Mr,1; Mr,`r for `r ≥ 2 are mSBD operators such that A0,m0 6∈ Yr,`r ; Mr,`r

for `r ≥ 2 is obtained by marginalization ofMj
1 by Lemma 2; and Br an arithmetic operator, which does not containM1 as

its argument.
Then, at r + 1’th round,

Q [Ar+1] (A.26)

=
∑

Sr+1\Ar+1

∏
Ar,j∈Sr+1

∑
Ar
≥j+1 Q [Ar]∑

Ar
≥j Q [Ar]

, by MCOMPILE algorithm

=
∑

Sr+1\Ar+1

Q [Ar]
1∑

Ar,|Sr+1|
Q [Ar]

∏
Ar,j∈Sr+1\{Ar,|Sr+1|}

∑
Ar
≥j+1 Q [Ar]∑

Ar
≥j Q [Ar]

(A.27)

=
∑

Sr+1\Ar+1

∑
·

M1Br({Mr,`r}
nr
`r=2)

1∑
Ar,|Sr+1|

∑
·M1Br({Mr,`r}

nr
`r=2)

∏
Ar,j∈Sr+1\{Ar,|Sr+1|}

∑
Ar
≥j+1

∑
·M1Br({Mr,`r}

nr
`r=2)∑

Ar
≥j
∑
·M1Br({Mr,`r}

nr
`r=2)

,

(A.28)



where Eq. (A.27) holds since Ar,|Sr+1|+1 = ∅, by Lemma A.7; Eq. (A.28) is by the inductive hypothesis at r’th round. For any
j = 1, 2, · · · , |Sr+1|,∑

Ar
≥j

∑
·
M1Br({Mr,`r}

nr
`r=2)

=
∑
·

∑
Ar
≥j

M1Br({Mr,`r}
nr
`r=2),

=
∑
·

∑
Ar
≥j\{Ar,mr}

∑
Ar,mr

M1Br({Mr,`r}
nr
`r=2)

=
∑
·

∑
Ar
≥j\{Ar,mr}

∑
A0,m0

M1Br({Mr,`r}
nr
`r=2), by Lemma A.7

=
∑
·

 ∑
A0,m0

M1

 ∑
Ar
≥j\{A0,m0

}

Br({Mr,`r}
nr
`r=2), by the inductive hypothesis at rth round

=
∑
·
Mr,0

∑
Ar
≥j\{A0,m0

}

Br({Mr,`r}
nr
`r=2), forMr,0 a mSBD operator such that A0,m0

6∈ Yr,0

≡ Cj(−M1), where C·(·) a mSBD operator that does not haveM1 as its arguments.

Then,

Q [Ar+1] =
∑

Sr+1\Ar+1

∑
·
M1Br({Mr,`r}

nr
`r=2)

1

C|Sr+1|(−M1)

∏
Ar,j∈Sr+1\{Ar,|Sr+1|}

Cj+1(−M1)

Cj(−M1)
(A.29)

≡ Ar+1({Mr+1,`r+1
}nr+1

`r+1=1),

for some mSBD operators Mr+1,`r+1 composing Eq. (A.29), and Ar+1(·) an arithmetic combination operator mapping
{Mr+1,`r+1}

nr+1

`r+1=1 to Eq. (A.29). Without loss of generality, we can setMr+1,1 =M1, since Eq. (A.29) containsM1.
Let

Br+1({Mr+1,`r+1
}nr+1

`r+1=2) ≡ Br({Mr,`r}
nr
`r=2)

1

C|Sr+1|(−M1)

∏
Ar,j∈Sr+1\{Ar,|Sr+1|}

Cj+1(−M1)

Cj(−M1)
,

where Mr+1,`r+1
are mSBD operators composing Br+1. Note Mr+1,`r+1

for `r+1 ≥ 2 are mSBD operators such
that A0,m0

6∈ Yr+1,`r+1
by the inductive hypothesis made for Q [Ar]. Then, we can witness that that Q [Ar+1] =

Ar+1({Mr+1,`r}
nr+1

`r+1=1) =
∑
·M1Br+1({Mr+1,`r+1

}nr+1

`r+1=2), whereM1 = Mr+1,1;Mr+1,`r+1
for `r+1 ≥ 2 are mSBD

operators such that A0,m0 6∈ Yr+1,`r+1 . Specifically,Mr+1,`r+1 for `r+1 ≥ 2 is either the same asMr,`r for some `r, or given
byMr+1,`r+1 =

∑
Ar
≥jMr,`r for some `r and j, if Ar

≥j = De(Ar
≥j)G[Yr,`r ]

or Ar
≥j = An(Ar

≥j)G[Yr,`r ]
(Lemma 2).

In either cases,Mr+1,`r+1
for `r+1 is obtained by marginalization ofMj

1 by Lemma 2, by the inductive hypothesis. We note
Mr+1,`r+1

is a mSBD operator distinct toM1, since the marginalization Ar
≥j includes A0,m0

, by Lemma A.7. Finally, Br+1

an arithmetic operator, which does not containM1 as its argument. Therefore, the inductive hypothesis at r+1’th round is also
satisfied.

We now check the initial condition at r = 0 and r = 1. For r = 0, Q [Ar] = Q [A0] =M1 =M [a0 | Pa(s0)\s0; s0\a0]
by Lemma 1. For r = 1,

Q [A1] =
∑

S1\A1

Q [A0]
1∑

A0,|S0|
Q [A0]

|S0|−1∏
j=1

∑
A0
≥j+1 Q [A0]∑

A0
≥j Q [A0]

=
∑

S1\A1

M1
1∑

A0,|S0|
Q [A0]

|S0|−1∏
j=1

∑
A0
≥j+1 Q [A0]∑

A0
≥j Q [A0]

.

We note
∑

A0
≥j Q [A0] =

∑
A0
≥jM1 for j = 1, 2, · · · , |S0| not only marginalizes outA0,m0

= A0,|S0| (by Lemma A.7), but
also renders a mSBD operators distinct toM1, by Lemma 2, since A0

≥j = De(A0
≥j)G[A0]. Therefore,

∑
A0
≥jM1 yields



mSBD operatorsM` (for ` ≥ 2) such that A0,m0 6∈ Y`. This implies that, for

B1({M`1}) ≡
1∑

A0,|S0|
Q [A0]

|S0|−1∏
j=1

∑
A0
≥j+1 Q [A0]∑

A0
≥j Q [A0]

,

B1 does not have mSBD operators M` such that A0,m0 ∈ Y` (because it is marginalized out). Therefore, the inductive
hypothesis is true for r = 0, r = 1. Combining for the general r’th round, we conclude that the inductive hypothesis is true.

Therefore, for any r, Q [Ar] = Ar({Mr,`r}
nr
`r=1) =

∑
·M1Br({Mr,`r}

nr
`r=2), whereM1 =Mr,1;Mr,`r for `r ≥ 2 are

obtained by marginalization ofM1 such that A0,m0 6∈ Yr,`r ; and Br an arithmetic operator, which does not containM1 as its
argument. This completes the proof, since Q [D] = Q [Ar′ ] for some r′ (by the return condition of MCOMPILE).

Proof for Lemma 5
Lemma 5 (Influence Function for Q [Dj ]). Let the target functional be ψ = Q [Dj ] = Aj({Mj

`}
mj
`=1). Then, an IF of ψ is

given by φQ[Dj ] =
∑mj
r=1 hAj ,Mj

r
, where hAj ,Mj

r
= COMPONENTUIF(Aj ,Mj

r) in Algo. 2.

Proof. Consider Q [Dj ] = Aj({Mj
`}). In this proof, we denoteM(Pt) for representing a mSBD operator defined on Pt ≡

P (1+tg), a parametric submodel where t ∈ R and g a mean-zero bounded random function. Then, the target functional defined
on the submodel is given by Ψ(Pt) = Aj({Mj

`(Pt)}) = (Aj ◦ {Mj
`})(Pt) (◦ is a general composition operator between two

functional), where ψ = Ψ(P0). For any functional f(P ), let ∇gf ≡ limt→0
f(P+tPg)−f(P )

t |t=0 = ∂
∂tf(P + tPg)|t=0. Then,

by definition, an IF of Q [Dj ] is given by a function φQ[Dj ] satisfying ∇gΨ = EP [φQ[Dj ] · St(V; t = 0)], where φ has
mean-zero and finite variance. We have,

∇gΨ = ∇g(Aj ◦ {Mj
`})

=

mj∑
`=1

∇∇gMj
`
Aj by multivariate chain rule of Gateaux derivative,

where

γ` ≡ ∇gMj
` = EP

[
φMj

`
· St(V; t = 0)

]
,

where φMj
`

is an IF of a mSBD operatorMj
` , by definition of an IF of mSBD operator.

Then, we can rewrite as ∇gΨ =
∑mj
`=1∇γ`Aj . We note ∇r`Aj ≡ limt→0

Aj(Mj
`+tγ`)−A

j(Mj
`)

t = ∂
∂tA

j(Mj
` + tγ`)|t=0,

which could be found by conducting a directional derivative.
If Aj is not a function ofMj

` (line a.2 of Algo. 2), then∇γ`Aj = 0, since Aj(Mj
` + tγ`) = Aj(Mj

`).
If Aj =Mj

` (line a.3 of Algo. 2), then∇γ`Aj = γ`, since Aj(Mj
` + tγ`)−Aj(Mj

`) = tγ`.
If Aj = CA′j (line a.4 of Algo. 2), then ∇γ`Aj = C∇γ`A′j , since Aj(Mj

` + tγ`) − Aj(Mj
`) =

C
(
A′j(Mj

` + tγ`)−A′j(Mj
`)
)

.

If Aj = A′jA′′j (line a.5 of Algo. 2), then ∇γ`Aj = ∇γ`
(
A′jA′′j

)
= A′′j∇γ`A′j +A′j∇γ`A′′j . This rule subsumes line

a.6 of Algo. 2, when A′ ← 1 and A′′ ← 1/A′.
If Aj has a form Aj =

∑
A′j (line a.7 of Algo. 2),

∇r`Aj ≡ lim
t→0

Aj(Mj
` + tγ`)−Aj(Mj

`)

t

= lim
t→0

∑ A′j(Mj
` + tγ`)−A′j(Mj

`)

t

=
∑

lim
t→0

A′j(Mj
` + tγ`)−A′j(Mj

`)

t
by Dominated Convergence Theorem. (A.30)

=
∑
∇γ`A′j . (A.31)

Since an arithmetic combination operator A composes of multiplication/marginalization/division of M, applying prod-
uct/interchange/quotient rules discussed above are sufficient.

Note that
∑
γ` · f({M}) for some function f and general marginalization

∑
could be written as

EP
[(∑

φMj
`
· f({M})

)
· St(V; t = 0)

]
, using the definition of γ` (we call this procedure as ‘Extraction’ for this



proof). Then, one can see that FINDH(Aj({Mj
`},M

j
`) computes ∇γ` and conducts the extraction procedure. This implies

that an IF of Q [Dj ] can be obtained based on

∇gΨ = ∇g(Aj ◦ {Mj
`})

=

mj∑
`=1

∇∇gMj
`
Aj

= EP

[(
mj∑
`=1

COMPONENTUIF(Aj ,Mj
`)

)
· St(V; t = 0)

]
.

Notice EP
[∑mj

`=1 COMPONENTUIF(Aj ,Mj
`)
]

= 0, since
∑mj
`=1 COMPONENTUIF(Aj ,Mj

`) is a linear combination of IFs
of mSBD operators, which has mean zero, and finite variance under general positivity assumption. This completes the proof.

Corollary 1. If there are no marginalization operators
∑

inAj(·), then hAj ,Mj
`

= (VMj
`
−µMj

`
)(∂Aj({µMj

`
}mj`=1)/∂µMj

`
).

Proof. Note

∇gΨ = ∇g(Aj ◦ {Mj
`})

=

mj∑
`=1

∇∇gMj
`
Aj by multivariate chain rule of Gateaux derivative,

where

γ` ≡ ∇gMj
` = EP

[
φMj

`
· St(V; t = 0)

]
,

where φMj
`

an IF of a mSBD operatorMj
` , by definition of an IF of mSBD operator. Note

∇γ`Aj ≡ lim
t→0

Aj
(
Mj

` + tγ`

)
−Aj

(
Mj

`

)
t

.

Since Aj is an arithmetic combination, with a general positivity assumption, the derivative of Aj , denoted ∇Aj ≡ ∂

∂Mj
`

Aj ,
exists. Since Aj does not contain marginalization, the directional derivative in the direction γ` equals to ∇Aj · γ` (Marsden,
Hoffman et al. 1993, Thm. 6.4.1) (i.e.,∇γ`Aj = γ` · ∇Aj), we note

∇gΨ =

mj∑
`=1

∇∇gMj
`
Aj =

mj∑
`=1

∇γ`Aj =

mj∑
`=1

γ` · ∇Aj =

mj∑
`=1

γ` ·
∂

∂Mj
`

Aj .

By the ‘extraction’ procedure, defined in proof of Lemma 5; and the equality ∂

∂Mj
`

Aj({Mj
`}) = ∂

∂µ
Mj
`

Aj({µMj
`
}), we note

∇gΨ =

mj∑
`=1

EP

[
φMj

`

∂

∂µMj
`

Aj({µMj
`
}) · St(V; t = 0)

]

= EP

[(
mj∑
`=1

φMj
`

∂

∂µMj
`

Aj({µMj
`
})

)
· St(V; t = 0)

]
,

implying, from the proof of Lemma 5, that

COMPOUIF(Aj ,Mj
`) = φMj

`

∂

∂µMj
`

Aj({µMj
`
}) = (VMj

`
− µMj

`
)

∂

∂µMj
`

Aj({µMj
`
}).



Proof for Theorem 2
Theorem 2 (Influence functions for identifiable causal effects). Let the target functional ψ ≡ Px (y) be given by Eq. (4).
Then, an IF of ψ is given by φPx(y) = −ψ + VPx(y), where VPx(y) ≡ VPx(y)(V; η(P )) is an UIF given by

VPx(y) =
∑
d\y

A1(VM1
1
, {µM1

l
}m1
`=2)

kd∏
p=2

Ap({µMp
`
}mp`=1)

+
∑
d\y

m1∑
`=2

hA1,M1
`

kd∏
p=2

Ap({µMp
`
}mp`=1)

+
∑
d\y

kd∑
j=2

(mj∑
`=1

hAj ,Mj
`

)
kd∏
p=1
p6=j

Ap({µMp
`
}mp`=1), (A.32)

where Ap({µMp
`
}mp`=1) stands for Ap({Mp

`}
mp
`=1) with Mp

` substituted by µMp
`
, A1(VM1

1
, {µM1

l
}m1

`=2) replaces µM1
1

with

VM1
1
, and hAj ,Mj

`
= COMPONENTUIF(Aj ,Mj

`).

Proof. Note that the causal effect Px (y) is given by

Ψ(P ) ≡ Px (y) =
∑
d\y

kd∏
j=1

Q [Dj ] , (A.33)

by line 7 of DML-ID at Algo. 1, where Q [Dj ] = MCOMPILE(Dj ,Si, Q [Si]) where Si,Dj , Q [Sj ] are defined in line 2,3,5
of MOSAIC. Let Aj denote the arithmetic combination mapping such that Aj({Mj

`}
mj
`=1) = Q [Dj ]. Note Ajµ({µMj

`
}mj`=1) =

Aj({Mj
`}
mj
`=1) by the given setting.

Recall that Pt ≡ P (1+ tg) be the parametric-submodel, as defined in Sec. 2. LetM(Pt) be the mSBD operator defined over
the submodel Pt. Then, ∂

∂tΨ(Pt)|t=0 = E[φPx(y)St(V; t = 0)], by the definition of the IF. From the result in Lemma 5,

∂

∂t
Ψ(Pt)|t=0 = ∇g

∑
d\y

kd∏
j=1

Q [Dj ] (P )

= ∇g
∑
d\y

kd∏
j=1

(Aj ◦ {Mj
`(Pt)}

mj
`=1)(P )

=
∑
d\y

kd∑
j=1

∇g
(
Ajk ◦M

j
k

)
(P )

∏
p 6=j

Aj({Mp
`}
mj
`=1)

=
∑
d\y

kd∑
j=1

∇∇gMj
k
Ajk(Mj

k)
∏
p 6=j

Aj({Mp
`}
mj
`=1)

= EP

∑
d\y

kd∑
j=1

(
mj∑
`=1

hAj ,Mj
`

)∏
p 6=j

Aj({Mp
`}
mj
`=1)

 · St(V; t = 0)

 ,
implying that

φPx(y) =
∑
d\y

kd∑
j=1

(
mj∑
`=1

hAj ,Mj
`

)∏
p 6=j

Aj({µMp
`
}mj`=1).

Notice that EP
[
φPx(y)

]
= 0, since φPx(y) is expressed as a linear combination of IFs of mSBD operators, which has zero

mean. Under a general positivity assumption, a finite variance of φPx(y) is guaranteed by finite variances of IFs of mSBD
operators.

We now consider the primary mSBD operators. Note that Lemma. A.8 implies that any arithmetic operator Aj({M`}
mj
`=1)

could be written asAj({M`}
mj
`=1) =

∑
Mj

1Bj({M`}
mj
`=2) for some arithmetic combination operator B such that its argument

does not containMj
1.



We simplify the notation as A = Aj ; B = Bj ; and M1 = Mj
1. Let A′(M1, {M`}m`=2) ≡ M1B({M`}m`=2). Note

A({M`}m`=1) = A(M1, {M`}m`=2) =
∑
A′(M1, {M`}m`=2). Then, by running COMPUTEUIF, one can see that

hA,M1
= FINDH(A,M1)

=
∑

FINDH(M1B,M1), by Lemma A.8

=
∑
B({M`}m`=2)FINDH(M1,M1)

=
∑
B({M`}m`=2)φM1

=
∑
A′(φM1 , {M`}m`=2)

= A(φM1 , {M`}m`=2).

Using φM1
= VM1

− µM, one can rewrite it as hA,M1
= A(VM1

, {M`}m`=2)−A(µM1
, {M`}m`=2). ByM = µM, we have

hA,M1
= A(VM1

, {µM`
}m`=2)−A({µM`

}m`=2).

We now derive the UIF. Consider a following representation for an IF.

φPx(y)

=
∑
d\y

∑
j 6=1

(mj∑
`=1

hAj ,Mj
`

)∏
p6=j

Ap({µMp
`
}mp`=1) +

∑
d\y

(
m1∑
`=1

hA1,M1
`

)∏
p6=1

Ap({µMp
`
}mp`=1)

=
∑
d\y

∑
j 6=1

(mj∑
`=1

hAj ,Mj
`

)∏
p6=j

Ap({µMp
`
}mp`=1) +

∑
d\y

(
hA1,M1

1
+

m1∑
`=2

hA1,M1
`

)∏
p 6=1

A1({µMp
`
}m1
`=1)

=
∑
d\y

∑
j 6=1

(mj∑
`=1

hAj ,Mj
`

)∏
p6=j

Aj({µMp
`
}mj`=1) +

∑
d\y

(
A1(VM1

1
, {µM1

`
}m`=2)−A1({µM1

`
}m`=2) +

m1∑
`=2

hA1,M1
`

)∏
p6=1

Ap({µMp
`
}m1
`=1)

=
∑
d\y

∑
j 6=1

(mj∑
`=1

hAj ,Mj
`

)∏
p6=j

Aj({µMp
`
}mj`=1) +

∑
d\y

(
A1(VM1

1
, {µM1

`
}m`=2) +

m1∑
`=2

hAr,Mr
`

)∏
p 6=1

Ar({µMp
`
}m1
`=1)− ψ.

This implies that an UIF is given as

VPx(y) =
∑
d\y

∑
j 6=1

(
mj∑
`=1

hAj ,Mj
`

)∏
p 6=j

Aj({µMp
`
}mj`=1) +

∑
d\y

(
A1(VM1

1
, {µM1

`
}m`=2) +

m1∑
`=2

hAr,Mr
`

)∏
p 6=1

Ar({µMp
`
}m1

`=1).

Lemma A.9 (Specification of COMPONENTUIF(Aj ,Mj
`)). The output of COMPONENTUIF(Aj ,Mj

`) is given as

COMPONENTUIF(Aj ,Mj
`) =

∑
wj`

Bj` ({µMj
r
}mjr=1){VMj

`
− µMj

`
},

where Wj
` is some subset of variables V and Bj` is an arithmetic operator specified by running the procedure

COMPONENTUIF(Aj ,Mj
`).

Proof. Running line 1 of COMPONENTUIF(Aj ,Mj
`) results in

∑
wj`
Bj` ({Mj

r}
mj
r=1)φMj

`
, where φMj

`
is an IF ofMj

` equipped

with a true nuisance η. Note that φMj
`

= VMj
`
− µMj

`
by the definition of the UIF, and the fact that Mj

` = µMj
`
≡

EV
Mj
`

(V;η) [P ] when η is a true nuisance.

Corollary A.1 (An Influence Function of Px(y)). Let the target functional ψ ≡ Px(y) be given by Eq. (4). An influence
function of ψ ≡ Px(y), denoted φPx(y) is given as

φPx(y) =
∑
d\y

kd∑
j=1

mj∑
`=1

COMPONENTUIF(Aj ,Mj
`)

kd∏
p 6=j
p=1

Ap({µMp
r
}mpr=1), (A.34)



where VMj
`

= VMj
`
(V; η) is an UIF of an mSBD adjustmentMj

` and µMj
`
≡ EV

Mj
`

[P ], and

COMPONENTUIF(Aj ,Mj
`) =

∑
wj`

Bj` ({µMj
r
}mjr=1){VMj

`
− µMj

`
},

where Wj
` is some subset of variables V and Bj` is an arithmetic operator specified by running the procedure

COMPONENTUIF(Aj ,Mj
`).

Proof.

∂

∂t
Ψ(Pt)|t=0 =

∂

∂t

∑
d\y

kd∏
j=1

Aj({Mj
`(Pt)}

mj
`=1)|t=0

=
∑
d\y

kd∑
j=1

∂

∂t
Aj({Mj

`(Pt)}
mj
`=1)

∣∣∣∣
t=0

kd∏
p6=j
p=1

Ap({Mp
r}
mp
r=1)

1
=
∑
d\y

kd∑
j=1

mj∑
`=1

∂

∂t
(Aj ◦Mj

`)(Pt)

∣∣∣∣
t=0

kd∏
p 6=j
p=1

Ap({Mp
r}
mp
r=1)

2
= EP


∑

d\y

kd∑
j=1

mj∑
`=1

COMPONENTUIF(Aj ,Mj
`)

kd∏
p6=j
p=1

Ap({Mp
r}
mp
r=1)

 · S(V)


3
= EP


∑

d\y

kd∑
j=1

mj∑
`=1

∑
wj`

Bj` ({M
j
r}
mj
r=1)φMj

`

 kd∏
p 6=j
p=1

Ap({Mp
r}
mp
r=1)

 · S(V)


4
= EP


∑

d\y

kd∑
j=1

mj∑
`=1

∑
wj`

Bj` ({µMj
r
}mjr=1)(VMj

`
− µMj

`
)

 kd∏
p6=j
p=1

Ap({Mp
r}
mp
r=1)

 · S(V)

 ,
where S(V) is a score function of the parametric submodel Pt, and

• 1
= holds by the chain rule.

• 2
= holds since hAj ,Mj

`
= COMPONENTUIF(Aj ,Mj

`) computes ∂

∂Mj
`

(Aj ◦Mj
`).

• 3
= holds by Lemma A.9, and

• 4
= holds since φMj

`
= VMj

`
− µMj

`
and µMj

`
=Mj

` when η is a true nuisance.

Corollary A.2 (An Uncentered Influence Function of Px(y)). An uncentered influence function (UIF) of Px(y) is

VPx(y) =
∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)

+

(kd,mj)∑
(j,`)6=(1,1)

COMPONENTUIF(Aj ,Mj
`)

kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1), (A.35)

where

COMPONENTUIF(Aj ,Mj
`) =

∑
wj`

Bj` ({µMj
r
}mjr=1){VMj

`
− µMj

`
},

where Wj
` is some subset of variables V and Bj` is an arithmetic operator specified by running the procedure

COMPONENTUIF(Aj ,Mj
`).



Proof. For brevity, let

Cj` ≡ COMPONENTUIF(Aj ,Mj
`)

kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1).

Then, an influence function of Px(y) in Eq. (A.34) can be rewritten as∑
d\y

kd∑
j=1

mj∑
`=1

COMPONENTUIF(Aj ,Mj
`)

kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1) =

∑
d\y

kd∑
j=1

mj∑
`=1

Cj` .

Then, ∑
d\y

kd∑
j=1

mj∑
`=1

Cj` =
∑
d\y

C11 +

(kd,mj)∑
(j,`) 6=(1,1)

Cj` ,

where ∑
d\y

C11 =
∑
d\y

COMPONENTUIF(A1,M1
1)

kd∏
p=2

Ap({µMp
r
}mpr=1)

1
=
∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)−

∑
d\y

A1({µM1
r
}m1
r=1)

kd∏
p=2

Ap({µMp
r
}mpr=1)

=
∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)−

∑
d\y

kd∏
p=1

Ap({µMp
r
}mpr=1)

2
=
∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)−Ψ(P ).

To witness 1
= holds, we first note that,Mj

1 for any j is a primary mSBD operator. We recall the notion of the primary mSBD
operator in Lemma 4. To define, we first recap notations. Let D ≡ An(Y)G(V\X)). Let {Si}ksi=1 denote C-components of
G. Let {Dj}kdj=1 denote C-components in G(D). For each Dj ⊆ Si, the primary mSBD operator for Q[Dj ] is given as, for
j = 1, 2, · · · , kd,

Mj
1 ≡M[aj |pa(si)\si; si\aj ],

where Aj ≡ An(Dj)G(Si). Note Q [Aj ] =Mj
1. By the design of the DML-ID algorithm in Algorithm 1 (lines a.7), Q[Dj ] =

Aj({Mj
`}
mj
`=1) is given in the form of

∑
wj1
Mj

1 · Rj({M
j
`}
mj
`=2) for some arithmetic operator Rj and a set of variables Wj

1

Lemma A.8. Then,

A1({M1
`}
m1

`=1) =
∑
w1

1

M1
1R1({M1

`}
m1

`=2) (A.36)

for some functionR1. Then,

COMPONENTUIF(A1,M1
1) =

∑
w1

1

R1({µM1
`
}m1

`=2)
{
VM1

1
− µM1

1

}
(A.37)

=
∑
w1

1

VM1
1
R1({µM1

`
}m1

`=2)−
∑
w1

1

µM1
1
R1({µM1

`
}m1

`=2)

= A1(VM1
1
, {µM1

`
}m1

`=2)−A1({µM1
`
}m1

`=1), (A.38)

where the first equation is by the procedure COMPONENTUIF(A1,M1
1) and Eq. (A.36), and the third equation holds by

Eq. (A.36).
Also, 2

= holds by Eq. (4) and the fact that µMj
`

=Mj
` when η is a true nuisance. Therefore, an UIF is given as

VPx(y) =
∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1) +

(kd,mj)∑
(j,`) 6=(1,1)

Cj` .



Proof for Prop. 1

Proposition 1. Let the target functional ψ ≡ Px (y) be given in Eq. (4). The IF φPx(y) for ψ given in Thm. 2 is a Neyman
orthogonal score for ψ.

Proof. Let ηt ≡ η(Pt) where Pt ≡ P (1+ tg) for t ∈ R and g a bounded mean-zero function, is a parametric submodel. For the
choice of g, we choose g(V) = St(V; t = 0), a score function of the submodel Pt. Notice this choice satisfies the definition
of the parametric submodel – a set of distribution such that the true model P is included in the set (P0 = P ) and Pt is a valid
distribution (Tsiatis 2007). To see Pt(v) is a valid distribution, consider H(v) ≡ P (v)(1 + St(V; t = 0)). Note H(v) is a
valid density since

∫
P (v)St(v; t = 0)dv =

∫
∂
∂tPt(v)dv = ∂

∂t

∫
Pt(v)dv = 0. Then, we can view the submodel Pt as a

collection of distributions locating between two distributions P and H , since Pt = (1− t)P + tH .
Now, we prove a given IF is a Neyman orthogonal score, following a proof of (Chernozhukov et al. 2022, Thm. 1). Consider

the following:

0 = EPt
[
φPx(y)(v;ψ, ηt)

]
=

∫
φPx(y)(v;ψ, ηt)Pt(v)dv

= (1− t)
∫
φPx(y)(v;ψ, ηt)P (v)dv + t

∫
φPx(y)(v;ψ, ηt)H(v)dv.

Dividing both sides by t, we have

1

t

∫
φPx(y)(v;ψ, ηt)P (v)dv =

∫
φPx(y)(v;ψ, ηt)P (v)dv −

∫
φPx(y)(v;ψ, ηt)H(v)dv.

Since
∫
φPx(y)(v;ψ, η)P (v)dv = 0, by taking limt→0 for both sides,

∂

∂t

∫
φPx(y)(v;ψ, ηt)P (v)dv = 0−

∫
φPx(y)(v;ψ, η)H(v)dv

⇔ ∂

∂t
EP
[
φPx(y)(V;ψ, ηt)

]
|t=0 = −

∫
φPx(y)(v;ψ, η)H(v)dv = −

∫
φPx(y)(v;ψ, η)St(v; t = 0)P (v)dv.

That is,

∂

∂t
EP
[
φPx(y)(V;ψ, ηt)

]
|t=0 = −EP [φPx(y)(V;ψ, η) · St(V; t = 0)]

= −〈φPx(y)(V), St(V; t = 0)〉H,

where H denote the Hilbert space of mean-zero measurable random functions with finite second moment, where influence
functions reside, and 〈·, ·〉H denotes its inner product (Tsiatis 2007, Chap 2,3).

Since φPx(y) is an IF of a RAL estimator (see Sec. 2), φPx(y) resides in the space orthogonal to the parametric sub-
model nuisance tangent space (Tsiatis 2007, Chap 4.3, Thm. 4.2). By the definition of orthogonality in Hilbert space,
〈φPx(y)(V), St(V; t = 0)〉H = 0. Therefore,

∂

∂t
EP
[
φPx(y)(V;ψ, ηt)

]
|t=0 = 0.

This implies that φPx(y) is invariant of local perturbation of ηt, implying Neyman orthogonality. This completes the proof.

Proof for Theorem 3

Lemma A.10 (Simplification of the Average of the UIF). Let V̂Mj
`

denote the UIF VPx(y) in Eq. (6) equipped with an

estimated nuisance η̂; i.e., V̂Mj
`

= VMj
`
(V; η̂). Let µ̂Mj

`
≡ ED

[
V̂Mj

`

]
. Then,

ED
[
VPx(y)(V; η̂)

]
=
∑
d\y

kd∏
p=1

Ap({µ̂Mp
r
}mpr=1).



Proof.

EP ′
[
VPx(y)(V; η′)

]
= EP ′

∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)


+ EP ′

 (kd,mj)∑
(j,`)6=(1,1)

COMPONENTUIF(Aj ,Mj
`)

kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1)


= EP ′

∑
d\y

A1(VM1
1
, {µM1

r
}m1
r=2)

kd∏
p=2

Ap({µMp
r
}mpr=1)


+ EP ′

 (kd,mj)∑
(j,`)6=(1,1)

∑
wj`

Bj` ({µMj
r
}mjr=1){VMj

`
− µMj

`
}

 kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1)


1
= EP ′

∑
d\y

∑
w1

1

VM1
1
R1({µM1

`
}m1

`=2)

 kd∏
p=2

Ap({µMp
r
}mpr=1)


+ EP ′

 (kd,mj)∑
(j,`)6=(1,1)

∑
wj`

Bj` ({µMj
r
}mjr=1){VMj

`
− µMj

`
}

 kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1)


=
∑
d\y

∑
w1

1

EP ′
[
VM1

1

]
R1({µM1

`
}m1

`=2)

 kd∏
p=2

Ap({µMp
r
}mpr=1)

+

(kd,mj)∑
(j,`) 6=(1,1)

∑
wj`

Bj` ({µMj
r
}mjr=1){EP ′

[
VMj

`

]
− µMj

`
}

 kd∏
p 6=j
p=1

Ap({µMp
r
}mpr=1)

=
∑
d\y

∑
w1

1

µM1
1
R1({µM1

`
}m1

`=2)

 kd∏
p=2

Ap({µMp
r
}mpr=1)

+

(kd,mj)∑
(j,`)6=(1,1)

∑
wj`

Bj` ({µMj
r
}mjr=1)

���
���

�{µMj
`
− µMj

`
}

 kd∏
p6=j
p=1

Ap({µMp
r
}mpr=1)

=
∑
d\y

∑
w1

1

µM1
1
R1({µM1

`
}m1

`=2)

 kd∏
p=2

Ap({µMp
r
}mpr=1)

2
=
∑
d\y

A1({µMj
`
}m1

`=1)

kd∏
p=2

Ap({µMp
r
}mpr=1)

=
∑
d\y

kd∏
p=1

Ap({µMp
r
}mpr=1),

where 1
=,

2
= hold by Eq. (A.36).

Lemma A.11 (Doubly robustness of the UIF of the mSBD). Let VM(V; {µk0 , πk0}mk=1) denote the UIF of the mSBD adjust-
mentM given in Eq. (5). For any arbitrary nuisances {µk, πk}mk=1,

E
[
VM(V; {µk, πk}mk=1)− VM(V; {µk0 , πk0}mk=1)

]
=

m∑
k=1

OP
(∥∥πk − πk0∥∥∥∥µk − µk0∥∥) . (A.39)



Proof. For k = 1, · · · ,m, we define a quantity Qk as follows:

Qk ≡ µk(xk,X
(k−1),A(k−1)) +

m∑
r=k

π(k:r)(A(r−1),X(r))Ix(k:r)(X(k:r))(µr+1(xr+1,X
(r),A(r))− µr(X(r),A(r−1))),

where

π(k:r)(X(r),A(r−1)) ≡
r∏
b=k

πb(X(b),A(b−1)).

LetQm+1 ≡ Iy(Y). We note thatQ1 = VM(V; {µk, πk}mk=1). Also,Qk can be represented recursively as a function ofQk+1.
In particular,

Qk+1 − µk+1 =

m∑
r=k+1

π(k+1:r)(A(r−1),X(r))Ix(k+1:r)(X(k+1:r))(µr+1(xr+1,X
(r),A(r))− µr(X(r),A(r−1))).

Then, by multiplying πkIxk(Xk) on both sides, we have

πkIxk(Xk)
(
Qk+1 − µk+1(xk+1,X

(k),A(k))
)

=

m∑
r=k+1

π(k:r)(A(r−1),X(r))Ix(k:r)(X(k:r))(µr+1(xr+1,X
(r),A(r))− µr(X(r),A(r−1))).

Then,
Qk ≡ µk(xk,X

(k−1),A(k−1)) + πk(A(k−1),X(k))Ixk(Xk)(µk+1(xk+1,X
(k),A(k))− µk(X(k),A(k−1)))

+

m∑
r=k+1

π(k:r)(A(r−1),X(r))Ix(k:r)(X(k:r))(µr+1(xr+1,X
(r),A(r))− µr(X(r),A(r−1)))

= µk(xk,X
(k−1),A(k−1)) + πk(A(k−1),X(k))Ixk(Xk)(Qk+1 − µk(X(k),A(k−1))).

We now study the relation between Qk and µk0(xk,X
(k−1),A(k−1)). Specifically, we will study

Bk ≡ E
[
Qk − µk0(xk,X

(k−1),A(k−1))|X(k−1),A(k−2)
]
.

To simplify the notation, we will use P k ≡ P (·|X(k−1),A(k−2)). With this notation, we can rewrite Bk as

Bk ≡ EPk
[
Qk − µk0(xk,X

(k−1),A(k−1))
]
.

Since Q1 = VM(V; {µk, πk}), and µ0
0 = E[µ1

0] = M by Lemma A.6, it suffices to study B1 = E[Q1 − µ1
0] for the error

analysis. In particular, we will prove

B1 =

m∑
k=1

OP
(∥∥πk − πk0∥∥∥∥µk − µk0∥∥) .

We will prove by induction that for j = m, . . . , 1,

Bj =

m∑
r=j

OP (‖µr0 − µr‖ ‖πr0 − πr‖) . (A.40)

We first show that the hypothesis holds when j = m. To witness,
Bm ≡ EPm [Qm − µm0 ]

= EPm
[
[µm − µm0 ](xm,X

(m−1),A(m−1)) + πm(A(m−1),X(m))Ixm(Xm)
{
Iy(Y)− µm(A(m−1),X(m))

}]
1
= EPm

[
[µm − µm0 ](xm,X

(m−1),A(m−1)) + πm(A(m−1),X(m))Ixm(Xm)[µm0 − µm](A(m−1),X(m))
]

2
= EPm

[
πm0 Ixm(Xm)[µm − µm0 ](X(m),A(m−1)) + πmIxm(Xm)[µm0 − µm](A(m−1),X(m))

]
= EPm

[
πm0 Ixm(Xm)[µm − µm0 ](X(m),A(m−1))− πmIxm(Xm)[µm − µm0 ](A(m−1),X(m))

]
= EPm

[
Ixm(Xm) {µm − µm0 } {πm0 − πm} (A(m−1),X(m))

]
= OP (‖µm0 − µm‖ ‖πm0 − πm‖) ,



where the equation 1
= holds by applying the law of total expectation to Iy(Y), the equation 2

= holds since, for any arbitrary
function h,

EPm
[
πm0 Ixm(Xm)h(Xm,X

(m−1),A(m−1))
]

≡ EP
[
πm0 Ixm(Xm)h(Xm,X

(m−1),A(m−1))|X(m−1),A(m−2)
]

= EP
[

1

P (Xm|X(m−1),A(m−1))
Ixm(Xm)h(Xm,X

(m−1),A(m−1))|X(m−1),A(m−2)
]

= EP
[
P (xm|X(m−1),A(m−1))

P (xm|X(m−1),A(m−1))
h(xm,X

(m−1),A(m−1))|X(m−1),A(m−2)
]

= EP
[
h(xm,X

(m−1),A(m−1))|X(m−1),A(m−2)
]
.

Assume that the hypothesis holds when j = k + 1. For j = k,

Bk = EPk
[
Qk − µk0

]
= EPk

[{
µk − µk0

}
+ πkIxk(Xk)

{
Qk+1 − µk(X(k),A(k−1))

}]
= EPk

[{
µk − µk0

}
+ πkIxk(Xk)

{
Qk+1 − µk+1

0

}
+ πkIxk(Xk)

{
µk+1
0 − µk

}]
(a)
=

m∑
r=k+1

OP (‖µr0 − µr‖ ‖πr0 − πr‖) + EPk
[{
µk − µk0

}
+ πkIxk(Xk)

{
µk+1
0 − µk

}]
,

where the equality
(a)
= holds since

EPk
[
πkIxk(Xk)

{
Qk+1 − µk+1

0

}]
= E

[
πk(X(k),A(k−1))Ixk(Xk)

{
Qk+1 − µk+1

0 (xk+1,X
(k),A(k))

} ∣∣∣∣X(k−1),A(k−2)
]

= E
[
πk(X(k),A(k−1))Ixk(Xk)E

[
Qk+1 − µk+1

0 (xk+1,X
(k),A(k))

∣∣∣∣X(k),A(k−1)
] ∣∣∣∣X(k−1),A(k−2)

]

= E

πk(X(k),A(k−1))Ixk(Xk)EPk+1

[
Qk+1 − µk+1

0 (xk+1,X
(k),A(k))

]
︸ ︷︷ ︸

=Bk+1

∣∣∣∣X(k−1),A(k−2)


=

m∑
r=k+1

OP (‖µr0 − µr‖ ‖πr0 − πr‖) ,

where the last equality holds by the induction hypothesis. Continuing,

EPk
[{
µk − µk0

}
+ πkIxk(Xk)

{
µk+1
0 − µk

}]
(b)
= EPk

[{
µk − µk0

}
+ πkIxk(Xk)

{
µk0 − µk

}]
(c)
= EPk

[
πk0Ixk(Xk)

{
µk − µk0

}
+ πkIxk(Xk)

{
µk0 − µk

}]
= EPk

[
Ixk(Xk)

{
πk0 − πk

}{
µk − µk0

}]
= OP

(∥∥µk0 − µk∥∥ ∥∥πk − πk0∥∥) ,
where the equality

(b)
= holds since

E
[
πk(X(k),A(k−1))Ixk(Xk)µk+1

0 (xk+1,X
(k),A(k))

∣∣∣∣X(k−1),A(k−2)
]

= E

πk(X(k),A(k−1))Ixk(Xk)E
[
µk+1
0 (xk+1,X

(k),A(k))

∣∣∣∣X(k),A(k−1)
]

︸ ︷︷ ︸
=µk0

∣∣∣∣X(k−1),A(k−2)

 .



Also, the equality
(c)
= holds since

E
[
µk(X(k−1),A(k−1))

∣∣∣∣X(k−1),A(k−2)
]

≡ E
[
µk(xk,X

(k−1),A(k−1))

∣∣∣∣X(k−1),A(k−2)
]

= E
[
µk(xk,X

(k−1),A(k−1))

∣∣∣∣X(k−1),A(k−2)
]

=
∑
ak−1

µk(xk,X
(k−1),ak−1,A

(k−2))P (ak−1|X(k−1),A(k−2))

=
∑

x′k,ak−1

µk(x′k,X
(k−1),ak−1,A

(k−2))P (x′k,ak−1|X(k−1),A(k−2))
Ixk(x′k)

P (x′k|ak−1,X(k−1),A(k−2))

=
∑

x′k,ak−1

µk(x′k,X
(k−1),ak−1,A

(k−2))πk0 (x′k,X
(k−1),ak−1,A

(k−2))Ixk(x′k)P k(x′k,ak−1)

= Eµk(X(k),A(k−1))πk0 (X
(k),A(k−1))Ixk (Xk)

[
P k
]
.

This shows that

Bk =

m∑
r=k+1

OP (‖µr0 − µr‖ ‖πr0 − πr‖) +OP
(∥∥µk0 − µk∥∥∥∥πk − πk0∥∥)

=

m∑
r=k

OP (‖µr0 − µr‖ ‖πr0 − πr‖) .

By induction, we can conclude that, for all k = 1, 2, · · · ,m,

Bk =

m∑
r=k

OP (‖µr0 − µr‖ ‖πr0 − πr‖) .

Therefore,

B1 = EP
[
Q1 − µ1

0(x1,A0)
]

=

m∑
r=1

OP (‖µr0 − µr‖ ‖πr0 − πr‖) .

Lemma A.12 (Asymptotic Unbiasedness implies Consistency). Suppose an estimator TN is asymptotically unbiased to µ;
i.e., EP [TN − µ]→ 0 as N →∞. Suppose an estimator has vanishing variance; i.e., var(TN )→ 0 as N →∞. Then, TN is
a consistent estimator of µ.

Proof. By Markov inequality,

P (|TN − µ| > ε) = P ((TN − µ)2 > ε2) ≤ EP
[
(TN − µ)2

]
/ε2.

Also, for µN ≡ EP [TN ],

EP
[
(TN − µ)2

]
≤ 2EP

[
(TN − µN )2

]
+ 2(µN − µ)2

= 2var(TN ) + 2(µN − µ)2

→ 0.

where var(TN )+(µN−µ)→ 0 by the given assumptions that var(TN )→ 0 and EP [TN − µ] = µN−µ→ 0 asN →∞.

Lemma A.13 (Continuous Mapping Theorem for L2(P )). Let Xn, X denote a random sequence defined on a metric space
S. Suppose a function g : S → S′ (where S′ is another metric space) is continuous almost everywhere. Suppose g is bounded.
Then,

Xn
L2(P )→ X =⇒ g(Xn)

L2(P )→ g(X).



Proof. We first note that Xn
L2(P )→ X implies Xn

p→ X . Then, by continuous mapping theorem, g(Xn)
p→ g(X). Then,

lim
n→∞

‖g(Xn)− g(X)‖2 = lim
n→∞

∫
X
|g(Xn)− g(X)|2 d[P ]

∗
=

∫
X

lim
n→∞

|g(Xn)− g(X)|2 d[P ] = 0,

where the equation ∗= holds by dominated convergence theorem in L2(P ) space, which is applicable since g(Xn), g(X) are
bounded functions (from the given condition) and Xn

p→ X .

Lemma A.14 (Decomposition). Let fη ≡ f(V; η) denote a finite and continuous functional and η denote its nuisances. For
some samplesD ∼ P , let T ≡ ED [fη]. Let θ0 ≡ EP [fη0 ] for some η0. Let ED−P [fη] ≡ ED [fη]−EP [fη]. Then, the following
decomposition holds:

ED [fη]− θ0 = ED−P [fη0 ] + ED−P [fη − fη0 ] + EP [fη − fη0 ] . (A.41)

Suppose further that
1. Samples used for estimating η are independent and separate from D; and
2. ‖η − η0‖ = oP (1).
Then, Eq. (A.41) reduces to

ED [fη]− θ0 = R+ EP [fη − fη0 ] , (A.42)

where R is a random variable converging in distribution to a zero mean normal distribution at
√
n rate, where n ≡ |D|.

Proof. We first prove the equality in Eq. (A.41).

ED [fη]− θ0 = ED [fη]− EP [fη0 ]

= ED−P [fη] + EP [fη − fη0 ]

= ED−P [fη0 ]︸ ︷︷ ︸
≡A

+ED−P [fη − fη0 ]︸ ︷︷ ︸
≡B

+EP [fη − fη0 ] .

We now prove Eq. (A.42).

• A converges in distribution to the zero-mean normal distribution at
√
N rate by the central limit theorem.

• We note that a given condition ‖η − η0‖ = oP (1) implies ‖fη − fη0‖ = oP (1) by continuous mapping theorem for L2(P )
in Lemma A.13. In particular, Lemma A.13 is applicable since fη, fη0 is a bounded and continuous function, and ‖η − η0‖ =

oP (1). Then, B converges to zero at oP (1/
√
N) rate by (Kennedy et al. 2020, Lemma 2).

Then, R ≡ A+B converges in distribution to the zero-mean normal distribution at
√
N rate by the Slutsky’s theorem.

Lemma A.15 (Error analysis of DML-mSBD estimator). The DML-mSBD estimator µ̂M has the following property:
1. Doubly Robustness: If either µ̂k or π̂k is correctly specified (i.e., µ̂k is a consistent estimator for µk0 or π̂k is a consistent

estimator for πk0 ) for k = 1, 2, · · · ,m, then µ̂M is a consistent estimator forM.
2. Debiasedness: Suppose

∥∥µ̂k − µk0∥∥ = oP (1) and
∥∥π̂k − πk0∥∥ = oP (1) for all k = 1, 2, · · · ,m. Then, the error between the

DML-mSBD estimator µ̂M and the corresponding mSBD adjustmentM is

µ̂M −M = R+

m∑
k=1

OP
(∥∥π̂k − πk0∥∥∥∥µ̂k − µk0∥∥) , (A.43)

where R is a random variable converging to a zero mean normal distribution at
√
N rate.

Proof. We first show that µ̂M is an unbiased estimator ofM:

E [µ̂M]−M 1
= E

[
EV(V;{µ̂k,π̂k}) [D]

]
−M

= E
[
EV(V;{µ̂k,π̂k}) [D]

]
− E

[
V(V; {µk0 , πk0})

]
= E

[
V(V; {µ̂k, π̂k})

]
− E

[
V(V; {µk0 , πk0})

]
=

m∑
k=1

OP
(∥∥πk − πk0∥∥∥∥µ̂k − µk0∥∥)

= 0,



where 1
= holds by the definition of the estimator, the second equality holds since E

[
V(V; {µk0 , πk0})

]
= M as shown in

Lemma 3, the third equality holds by the setting where all samples are drawn from the same distribution, the fourth equality is
by Lemma A.11, and the last equality holds by the given condition for the doubly robustness. Also, under the assumption that
nuisances µ̂k is finite and π̂k are strictly positive,

varP (µ̂M) =
1

N
varP (VM(V; η̂))→ 0,

as N →∞ since VM(V; η̂) is bounded. Therefore, by Lemma A.12, TN is a consistent estimator ofM.
We now show the debiasedness. By applying Lemmas (A.11, A.14),

µ̂M −M = R+ E
[
V(V; {µ̂k, π̂k})

]
− E

[
V(V; {µk0 , πk0})

]
= R+

m∑
k=1

OP
(∥∥πk − πk0∥∥ ∥∥µ̂k − µk0∥∥) .

Definition 3 (DML-ID Estimator). Let D = {V(i)}Ni=1 denote samples drawn from P (v). Let {D0,D1} denote randomly
split two halves of D. Then, the DML-ID (Double Machine Learning estimator for any IDentifiable effect) TN for ψ = Px(y)
is constructed as follows:

1. For all j = 1, 2, · · · , kd, ` = 1, 2, · · · ,mj , estimate {µj,`,a0 , πj,`,a0 }rj,`a=1 as {µ̂j,`,a, π̂j,`,a}rj,`a=1 from D1 where

{µj,`,a0 , πj,`,a0 }rj,`a=1 are nuisances of the UIF of mSBD operatorMj
` . Evaluate µ̂Mj

`
≡ ED0

[
VMj

`
(V; {µ̂j,`,a, π̂j,`,a}rj,`a=1)

]
using D0.

2. Let TN (D0;D1) ≡
∑

d\y
∏kd
j=1Aj({µ̂Mj

`
}mj`=1).

3. Repeat steps (1-2) after switching D0,D1, and derive TN (D1;D0). Then,

TN =
TN (D0;D1) + TN (D1;D0)

2
.

Theorem 3 (Properties of DML-ID). Let Px (y) be any identifiable causal effects. Let {Mj
`}j∈{1,2,··· ,kd},`∈{1,2,··· ,mj} denote

the mSBD adjustments that compose the expression Eq. (4). Let {µj,`,a0 , πj,`,a0 }rj,`a=1 denote the set of nuisances constituting the
UIF ofMj

` given in Lemma 3, and let {µ̂j,`,a, π̂j,`,a}rj,`a=1 denote their estimates. Assume that µ̂j,`,a is bounded and π̂j,`,a is
strictly positive and bounded for all j, `, a. Let TN be the DML-ID estimator of Px(y) defined in Def. 4. Then,

1. Debiasedness:Suppose
∥∥∥µ̂j,`,a − µj,`,a0

∥∥∥ = oP (1) and
∥∥∥π̂j,`,a − πj,`,a0

∥∥∥ = oP (1) for all j, `, a. Then,

TN − Px(y)

= R+OP

(
kd∑
j=1

mj∑
`=1

rj,`∑
a=1

∥∥∥µ̂j,`,a − µj,`,a0

∥∥∥ ∥∥∥π̂j,`,a − πj,`,a0

∥∥∥) , (A.44)

where R is a variable that converges to a zero-mean normal distribution NORMAL(0, φ2Px(y)
) at
√
N rate, where φPx(y) =

φPx(y)(V; η) is the IF of Px(y) equipped with a true nuisance η given in Thm. 2.

2. Doubly Robustness: If, ∀j, `, a, either µ̂j,`,a or π̂j,`,a is correctly specified (i.e., µ̂j,`,a is a consistent estimator for µj,`,a0

or π̂j,`,a is a consistent estimator for πj,`,a0 ), then TN is a consistent estimator for Px(y).

Proof. Without loss of generality, we will prove for TN = TN (D0;D1), and set D = D0. In the proof, we use A to denote the
following arithmetic operator

A({µMj
`
}j,`) ≡

∑
d\y

kd∏
j=1

Aj({µMj
`
}mj`=1).

Then,

TN = A({µ̂Mj
`
}j,`)

Px(y) = A({µMj
`
}j,`),



where µMj
`
≡ EP

[
VMj

`
(V; η)

]
for the true nuisance η, and µ̂Mj

`
≡ ED0

[
VMj

`
(V; η̂)

]
where η̂ is an estimated nuisance from

D1 by Lemma A.10.
We first show the doubly robustness – TN is a consistent estimator for Px(y). It suffices to show that each µ̂Mj

`
is a consistent

estimator for µMj
`
, because, by continuous mapping theorem, A({µ̂Mj

`
}) is a consistent estimator for A({µMj

`
}) when µ̂Mj

`

is a consistent estimator for µMj
`

and A is a continuous function. Since A is a differentiable mapping under the condition that
µMj

`
and µ̂Mj

`
is strictly positive and bounded, it suffices to show that each µ̂Mj

`
is a consistent estimator for µMj

`
. By doubly

robustness property of µ̂Mj
`

stated in Lemma. A.15, µ̂Mj
`

is a consistent estimator of µMj
`

under given conditions. Therefore,
TN is a consistent estimator of Px(y).

Now we prove the debiasedness property. For {(a, b) :Ma
b ∈ {M

j
`}j,`}, we note that ∂

∂µMa
b

A({µMj
`
}j,`) is given in a form

of ∂
∂µMa

b

A({µMj
`
}j,`) =

∑
wab

Da
b ({µMj

`
}j,`) where Wa

b denotes a set of variables which could possibly be an empty set and

Da
b is some function.

Let Rj` ≡ ED−P
[
φMj

`

]
for all j, `. Then,

TN − Px(y) (A.45)
= A({µ̂Mj

`
}j,`)−A({µMj

`
}j,`) (A.46)

1
=

∑
(a,b):Ma

b∈{M
j
`}j,`

∑
wab

(
Da
b ({µMj

`
}j,`)

{
µ̂Ma

b
− µMa

b

}
+ oP (

{
µ̂Ma

b
− µMa

b

}
)
)

(A.47)

2
=
∑
a,b

∑
wab

(
Da
b ({µMj

`
}j,`)

{
Rab + oP (1/

√
N) +

ra,b∑
k=1

OP

(∥∥∥µ̂a,b,k − µa,b,k0

∥∥∥ ∥∥∥π̂a,b,k − πa,b,k0

∥∥∥)})

+
∑
a,b

∑
wab

(
oP (Rab ) + oP (1/

√
N) +

ra,b∑
k=1

OP

(∥∥∥µ̂a,b,k − µa,b,k0

∥∥∥∥∥∥π̂a,b,k − πa,b,k0

∥∥∥)) (A.48)

3
= oP (1/

√
N) +

∑
a,b

∑
wab

Da
b ({µMj

`
}j,`)Rab +

∑
a,b

ra,b∑
k=1

OP

(∥∥∥µ̂a,b,k − µa,b,k0

∥∥∥ ∥∥∥π̂a,b,k − πa,b,k0

∥∥∥) (A.49)

4
= oP (1/

√
N) +

∑
a,b

∑
wab

Da
b ({µMj

`
}j,`)ED−P

[
φMa

b

]
+
∑
a,b

ra,b∑
k=1

OP

(∥∥∥µ̂a,b,k − µa,b,k0

∥∥∥ ∥∥∥π̂a,b,k − πa,b,k0

∥∥∥) (A.50)

5
= oP (1/

√
N) + ED−P

[
φPx(y)

]︸ ︷︷ ︸
≡R

+
∑
a,b

ra,b∑
k=1

OP

(∥∥∥µ̂a,b,k − µa,b,k0

∥∥∥∥∥∥π̂a,b,k − πa,b,k0

∥∥∥) , (A.51)

where

1. 1
= holds by applying the Taylor Theorem up to the first order. We note that Taylor’s theorem is applicable since A is smooth
under the condition that µj,`,a, µ̂j,`,a <∞ and c < πj,`,a, π̂j,`,a <∞ for some c ∈ (0, 1/2).

2. 2
= holds by applying the error analysis µ̂Ma

b
− µMa

b
in Lemma. A.15.

3. 3
= holds because
• oP (Rab ) = oP (1/

√
N) since Rab = OP (1/

√
N) because it converges at rate

√
N by the central limit theorem, and

therefore, oP (Rab ) = oP (1/
√
N) (Van der Vaart 2000, Section 2.2).

• For any sequence aN and a constant c, oP (aN ) + oP (aN ) = oP (aN ) and c · oP (aN ) = oP (aN ). Also, OP (aN ) +
OP (aN ) = OP (aN ) and c ·OP (aN ) = OP (aN ).

4. 4
= holds because of the definition Rab ≡ ED−P

[
φMa

b

]
.

5. 5
= holds since

∑
a,b

∑
wab

Da
b ({µMj

`
}j,`)ED−P

[
φMa

b

]
= ED−P

∑
a,b

∑
wab

Da
b ({µMj

`
}j,`)φMa

b

 ,



where the equation holds because (1) µMj
`

are constants, and (2) by Coro. A.1 which states that an influence function of
Px(y) is given by applying the chain rule; specifically, φPx(y) is given a

φPx(y) =
∑

(a,b):Ma
b∈{M

j
`}j,`

COMPONENTUIF(A,Ma
b ) =

∑
(a,b):Ma

b∈{M
j
`}j,`

∑
wab

Da
b ({µMj

`
}j,`)φMa

b

where the first equation holds by Coro. A.1 and the second equation holds because COMPONENTUIF(A,Ma
b ) computes

the partial derivative of A w.r.t.Ma
b on the direction of the influence function φMa

b
. As a result, COMPONENTUIF(A,Ma

b )
outputs linear function of φMa

b
where its coefficients are given as a derivative of A w.r.t.Ma

b ; i.e., Da
b ({µMj

`
}j,`).

Finally, we note that R converges in a zero-mean normal distribution NORMAL(0, φ2Px(y)
) at
√
N rate, because ED−P

[
φPx(y)

]
converges in NORMAL(0, φ2Px(y)

) by central limit theorem, and ED−P
[
φPx(y

]
+oP (1/

√
N) converges in NORMAL(0, φ2Px(y)

)

by Slutsky’s theorem.



B Details in Experiments
The models in Examples 1 and 2 are constructed from a benchmark Bayesian network called ‘Alarm’ (Beinlich et al. 1989),
originally collected from a system used to monitor patients’ conditions. Given the original ‘alarm’ network (denoted Gpop) and
dataset (denotedDpop) 6, we derived the causal graphsG in Fig. 1a (Example 1) and Fig. 1b (Example 2) and the corresponding
datasetsD (N = 10000 samples each) by marginalizing/conditioning over some variables. The exact details of how the models
in Examples 1 and 2 are constructed are provided in Section B.2. All the variables in Fig. 1a and Fig. 1b are discrete. Their
correspondence with the original ‘Alarm’ network and their domains are provided in Table (1,2) respectively.

Variables W R X Y
Name CCHL HR CO BP
Domain (numeric) {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
Domain {Normal,High} {Low,Normal,High} {Low,Normal,High} {Low,Normal,High}

Table 1: Table for matching variables in Fig. 1a to the nodes in original ‘Alarm’ network.

Variables X1 Z R X2 Y
Name SHNT VTUB SAO2 VLNG CCHL
Domain (numeric) {0, 1} {0, 1, 2, 3} {0, 1, 2} {0, 1, 2, 3} {0, 1}
Domain {Normal,High} {Zero,Low,Normal,High} {Low,Normal,High} {Zero,Low,Normal,High} {Normal,High}

Table 2: Table for matching variables in Fig. 1b to the nodes in original ‘Alarm’ network.

The ground-truth values of the target causal effect µ(x) ≡ Px (Y = 1) are computed usingGpop andDpop. We computed the
ground-truth by µ(x) =

∑
pa(x\x) Ppop(y|x, Pa(x)\x)Ppop(Pa(x)\x) based on Gpop (Pearl 2000, Thm. 3.2.2), where Ppop

is estimated from Dpop.

B.1 Background information – Marginalizing and Conditioning

In this section, we introduce operations corresponding to marginalizing and conditioning over variables in a given graph and its
corresponding probability distribution.

Let Gpop ≡ (Vpop,Epop) be composed of nodes Vpop and and edges Epop. Let Dpop = {Vpop,(i)}Ni=1 a set of samples
drawn from a distribution Ppop(vpop) compatible with Gpop.

Marginalization Marginalizing the distribution Ppop over C ≡ Vpop\C for some C (i.e.,
∑

c P (vpop)) means to have
Ppop(c) =

∑
c P (vpop). The corresponding operation over the sample (marginalizing the samples) means to take D(c) =

{C(i)}Ni=1 by hiding columns corresponding to variables C in Dpop. This data set D(C) is a set of samples drawn from P (c).
Marginalizing the graph consists of a series of graphical operation to derive G[C] compatible with P (c). A series of

marginalizing operations is given as the following: For each Z ∈ C, and a pair of nodes (X,Y ) adjacent to Z, add the
corresponding edges between (X,Y ) according to Fig. B.3(a) (Koster et al. 2002) and then remove Z. The procedure yields a
graph compatible with P (Vpop\{Z}). As a simple example, suppose Gpop = {X ← Z → Y }, compatible with P (x, y, z).
Then, one can have a graph compatible with P (x, y) =

∑
z P (x, y, z) by removing Z and adding an edge X ↔ Y , following

Fig. B.3(a) row 2, column 3.

Conditioning Conditioning the distribution Ppop on C = c means to have Ppop(c|c). The corresponding operation to the
sample (conditioning the samples) means to take D|c = {Vpop,(i)}i:C(i)=c where C(i) ⊆ Vpop,(i). This data set D|c is a set of
samples drawn from Ppop(c|c).

Conditioning the graph on C consists of a series of graphical operation to derive G|c compatible with Ppop(c|c). A series
of conditioning operations is given as the following: For each Z ∈ C, and a pair of nodes (X,Y ) adjacent to Z, add the
corresponding edges between (X,Y ) according to Fig. B.3(b) (Koster et al. 2002) and then remove Z. The procedure yields
a graph compatible with P (Vpop|{Z}). As a simple example, suppose Gpop = {X ↔ Z ↔ Y }, compatible with P (x, y, z).
Then, one can have a graph compatible with P (x, y|z) by removing Z and addingX ↔ Y , following Fig. B.3(b) row 3, column
3.

6The network and dataset are available at https://www.bnlearn.com/bnrepository/.



Z ← Y Z → Y Z ↔ Y Z − Y
X → Z ∅ X → Y ∅ X − Y
X ← Z X ← Y X ↔ Y X ↔ Y X ← Y
X ↔ Z ∅ X ↔ Y ∅ X ← Y
X − Z X − Y X → Y X → Y X − Y

(a) Marginalizing Z.

Z ← Y Z → Y Z ↔ Y Z − Y
X → Z X − Y ∅ X → Y ∅
X ← Z ∅ ∅ ∅ ∅
X ↔ Z X ← Y ∅ X ↔ Y ∅
X − Z ∅ ∅ ∅ ∅

(b) Conditioning Z.

Figure B.3: An edge rendered by marginalizing and conditioning Z = z (Koster et al. 2002).

Augmentation In an augmentation operation, we create new variables C using some data-generating functions fC(W)
for some W ⊆ Vpop (i.e., C ← fC(W)). Augmenting variables C to the distribution Ppop means to have an aug-
mented distribution Ppop(c,vpop). The corresponding operation to the sample (augmenting the samples) means to take
D(C,Vpop) = {Vpop,(i),C(i)}Ni=1. This data set D(C,Vpop) is a set of samples drawn from Ppop(c,vpop). Augmenting
the graph means to have a graph G = ((Vpop,C), (Epop,EC)) where EC are edges from W to C.

B.2 Construction of models in Examples 1 and 2
Given the ’Alarm’ network Gpop and the data set Dpop, we design a series of marginalization/conditioning/augmentation oper-
ations to reach the target graph G. The corresponding dataset D is derived accordingly as described in Section B.1.

The details are described in the following.
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Figure B.4: The process of deriving Fig. 1a from Alarm network. Marginalized variables are represented in gray color. A square
node (i.e., ‘�S’) is a conditioned node, where S is generated by some structural causal function S ← fS(ANES,STKV).

Example 1 – Fig. 1a
In Fig. 1a, W = CCHL, R = HR, X = CO, Y = BP.

(Step 1) We first take a subgraph from Alarm network that contains the set of variables of interest (marginalization). The
subgraph is given as Fig. B.4a.

(Step 2,3) Graphs in Fig. (B.4b,B.4c) are obtained as follows:

1. We first marginalized variable TPR. By the marginalization, we will have a bidirected edge between CCHL and BP (see
Fig. B.3a (row 2, column 2)), as in Fig. B.4c). The marginalized variable is marked in a gray color in Fig. B.4b.

2. Then, we augment a binary S nodes using some structural causal function S ← fS(ANES,STKV).

3. Then, condition on samples with S = 1. This procedure generates a conditioned node �S in Fig. B.4b. Notice that this
conditioning generates an edge CCHL← ANES− STKV→ CO (see Fig. B.3b (row 1, column 1)).

4. We then marginalizing ANES,STKV, in turn. By marginalizing over ANES, we have CCHL ← STKV → CO (see Ta-
ble. B.3b (row 2, column 4)). By marginalizing STKV, we have CCHL ↔ CO (see Fig. B.3a (row 2, column 2)), as shown
in Fig. B.4c.



(Step 4) By setting W = CCHL, R = HR, X = CO, Y = BP and rearranging positions of nodes, we obtain the desired
graph.
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Figure B.5: The process of deriving Fig. 1b from Alarm network. Marginalized variables are represented in gray color. A
square node (e.g., ‘�Si’, for i = 1, · · · , 5) is a conditioned node, where Si is generated by some structural causal function
Si ← fSi(PaSi) where Pa(Si) is a parental set of Si.

Example 2 – Fig. 1b
In Fig. 1b, X1 = SHNT, Z = VTUB, R = SAO2, X2 = VLNG, Y = CCHL.

(Step 1) We first take a subgraph from Alarm network that contains the set of variables of interest. The subgraph is given as
Fig. B.5a.

(Step 2,3) The graphs in Fig. (B.5b,B.5c) are obtained as follows:

1. We augment a set of binary Si nodes using some structural causal function Si ← fSi(·). Specifically, S1 ←
fS1

(PMB, VMCH), S2 ← fS2
(SHNT, VMCH), S3 ← fS3

(SHNT, KINK), S4 ← fS4
(PMB, TPR), S5 ←

fS5
(VMCH, ANES).

2. Then, we conditioned on samples with S1 = 1, S2 = 1, · · · , S5 = 1. This procedure generates conditioned node �Si.

3. We conditioned on variables INT,PVS for blocking paths not included in a target graph. This generates �INT,�PVS.

4. We then marginalizing gray-colored variables in Fig. B.5b. This generates a causal graph in Fig. B.5c.

(Step 4) By setting X1 = SHNT, Z = VTUB, R = SAO2, X2 = VLNG, Y = CCHL and rearranging positions of nodes, we
obtain the desired graph.

Codes are available in here: https://github.com/yonghanjung/AAAI21-DR/.

B.3 Additional experimental results
On higher dimensional dataset. In this section, we test the DML-ID estimator on synthetic data sets of higher dimensional.
We use the causal graphs in Fig. 1a and 1b to generate synthetic data sets. For Fig. 1a, all variables are set to be binary except
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Figure B.6: Plots for (Top) Fig. 1a, and (Bottom) Fig. 1b in which D = 20. (a,b,c),(e,f,g) WAAE plots for scenarios ‘De-
biasedness’ (‘DB’), ‘Doubly Robustness’ (‘DR-1’ and ‘DR-2’). (d,h) Error bar charts comparing WAAE at N = 10, 000 for
Fig. (1a,1b). Shades are representing standard deviation. Plots are best viewed in color.
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(c) Example 1, ‘DR-2’
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Figure B.7: Plots for Example 1 comparing the proposed estimator (’DML-ID’) with the plug-in and CWO estimator. (a,b,c)
WAAE plots for scenarios ‘Debiasedness’ (‘DB’), ‘Doubly Robustness’ (‘DR-1’ and ‘DR-2’). (d) Error bar charts comparing
WAAE at N = 10, 000 for Example (1,2). Shades are representing standard deviation. Plots are best viewed in color.

W is D-dimensional binary. For Fig. 1b, all variables are set to be binary except Z is D-dimensional binary. We performed
experiments with D = 20.

We specify a SCM M for each causal graph and generate data sets D from M . In order to estimate the ground truth µ(x) ≡
EPx [Y ], we generate mint = 107 samples Dint from Mx, the model induced by the intervention do(X = x), and compute the
mean of Y in Dint. The code for generating the data sets are provided at the end of this section.
Debiasedness (DB) The WAAE plots for the debiasedness experiments are shown in Fig. B.6 (a) and (e) for Fig. 1a and 1b,
respectively. The DML-ID estimator exhibits the debiasedness property against the converging noise decaying at N−1/4 rates,
while the PI estimator converges much slower, for both Fig. (1a,1b)
Doubly robustness (DR) The WAAE plots for the doubly robustness experiments are shown in Fig. B.6 (b, c) for Fig. 1a and
(f, g) for Fig. 1b. Two misspecification scenarios are simulated for each example. For Fig. 1a, nuisance {P (x, y|r, w), P (w)}
are misspecified in ‘DR-1’, and {P (r|w)} is misspecified in ‘DR-2’. We note that PI estimator under DR-2 scenario does not
have model misspecification since P (r|w) is not a nuisance of PI estimator, resulting in that the DML-ID estimator is compared
with the correctly specified PI estimator. For Fig. 1b, nuisance {P (y|x1, x2, r, z), P (x1, z)} are misspecified in ‘DR-1’, and
{P (r, x2|x1, z)} is misspecified in ‘DR-2’. The results support the doubly robustness of DML-ID, whereas PI may fail to
converge, more prominently when misspecification is present (i.e., DR-1, or DR-2 for Fig. 1b).

Finally, to further assess the performance of DML-ID when compared against PI, we present the error bar chart of averages
and±1 standard deviations of WAAEs with the fixedN = 10, 000 for each of the three scenarios (DB, DR-1, DR-2) in Fig. B.6
(d) for Fig. 1a and in Fig. B.6 (h) for Fig. 1b.

Comparison with other estimators. To answer the feedback of the reviewer, we compared our DML-ID estimator with the
estimator (’CWO’) proposed by (Jung, Tian, and Bareinboim 2020a). We note that CWO covers some special settings and are
applicable to Example 1 (Fig. 1a), but not to Example 2 (Fig. 1b). The result indicates that the DML-ID estimator outperforms
the CWO estimator, enjoying debiasedness and doubly robustness. This result will be incorporated into the paper.
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