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Abstract

The challenge of generalizing causal knowledge across different environments is
pervasive in scientific explorations, including in AI, ML, and Data Science. Exper-
iments are usually performed in one environment (e.g., in a lab, on Earth) with the
intent, almost invariably, of being used elsewhere (e.g., outside the lab, on Mars),
where the conditions are likely to be different. In the causal inference literature,
this generalization task has been formalized under the rubric of transportability
(Pearl and Bareinboim, 2011), where a number of criteria and algorithms have
been developed for various settings. Despite the generality of such results, trans-
portability theory has been confined to atomic, do()-interventions. In practice,
many real-world applications require more complex, stochastic interventions; for
instance, in reinforcement learning, agents need to continuously adapt to the chang-
ing conditions of an uncertain and unknown environment. In this paper, we extend
transportability theory to encompass these more complex types of interventions,
which are known as “soft,” both relative to the input as well as the target distribution
of the analysis. Specifically, we develop a graphical condition that is both necessary
and sufficient for deciding soft-transportability. Second, we develop an algorithm
to determine whether a non-atomic intervention is computable from a combination
of the distributions available across domains. As a corollary, we show that the
σ-calculus is complete for the task of soft-transportability.

1 Introduction

Generalizing causal knowledge across disparate domains (i.e., populations, settings, environments)
is at the heart of many inferences across the empirical sciences as well as AI [26, 33, 29]. In
economics, for example, the Nobel Prize of 2019 was awarded to Duflo, Banerjee, and Kremer “for
their experimental approach to alleviating global poverty”. Their work is in fact about systematically
performing experiments on the effect of complex policies related to poverty, and then carefully trying
to extrapolate the gathered evidence to other populations [1, 12].1 The same need to generalize across
disparate conditions is present in Reinforcement Learning. For instance, consider a rover trained in
the California desert for digging rocks. After exhaustive months of training, NASA wants to deploy
the vehicle on Mars, where the environment is not exactly the same, but somewhat similar to Earth.
The expectation is that the rover will need minimal “experimentation” (i.e., trial-and-error) on Mars
by leveraging the knowledge acquired here, operating more surgically and effectively there.

1They acknowledge and discuss the challenges of pursuing such task [12]: “the number of possible variations
on a given program is potentially infinite, and a theoretical framework is definitely needed to understand which
variations are important to replicate and which are not.” Some typical question they try to answer include: “If a
program worked for poor rural women in Africa, will it work for middle-income urban men in South Asia?”
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Figure 1: (a) A causal graph representing the target domain π∗ (before intervention). (b) and (c)
filled squared nodes encode the differences between π∗ and π1, π2. Squared hollow nodes indicate
intervened variables due to policies σ1, σ2. (d) represents π∗ under the intended policy σ∗X1,X2

.

The solution to these apparently disparate tasks faced by Duflo, NASA, and so many other scien-
tists, perhaps surprisingly, relies on a common ingredient, namely, the invariances of some causal
mechanisms shared across the different settings. The task of leveraging causal invariances so as to
extrapolate experimental knowledge across settings has been formally studied in the causal inference
literature under the rubric of transportability [28, 2, 19, 20, 4, 5]. Recent work by [22] provided
complete graphical and algorithmic treatment for this task, bringing under the same umbrella previous
identification results on how to combine observations and experiments [36, 34, 31, 15, 3, 21].

Most of this literature, however, focuses on atomic interventions, often times represented by the
celebrated do-operator [25, 26, Ch. 3]. Formally, do(X=x) represents the symbolic operation of
replacing the underlying causal mechanism that naturally dictates the behavior of variable X with
a constant value x. While the do(·) is a grounding element in causal analysis, many real-world
situations involve soft interventions, or policy interventions, which respond in a stochastic manner to
other variables in the system [38, 14, 7, 27]. The do-operator was used to support some types of soft
interventions [26, Ch. 4], and was expanded towards a broader set of interventions in the context of
dynamic plans [30, 18, 13, 35, 11, 32, 8, 9]. Despite the generality of these results, there is still no
formal treatment of transportability/generalizability settings in the context of soft interventions.

For concreteness, consider a medical setting (e.g., in the context of HIV, Cancer, and Chronic Diseases
[23, 24]), where patient data collected under different treatment protocols and locations need to be
combined to generate a policy in a different site. In the causal graph in Fig. 1(a), X1 and X2 are
treatments applied in sequence, Z is a secondary condition detected after the first treatment (X1) that
affects the application of X2, and Y represents survival. With the task of designing a new protocol
σ∗X1,X2

to treat the condition, three sources of data are available:

1. an observational study from the current hospital (π∗), where the protocol is to be implemented;
2. a controlled study from hospital π1 that is under policy σ1, where treatment X1 is randomized

and X2 administered only if X1 is given; and
3. another controlled study from hospital π2 that follows protocol σ2, where the treatment X1 is

applied as in π∗ but X2 is determined by X1 and the secondary condition Z.

Figs. 1(b),(c) represent the selection diagrams (to be formally defined in the next section) that show
the qualitative differences between π∗ and, respectively, π1 and π2. The square nodes pointing to
Y and Z indicate that the corresponding distributions are different for the populations of hospitals
π1 and π2, respectively. The square nodes annotated with σ1 and σ2 point to treatment variables
following the protocols described above. Given the causal description of these protocols, the question
is then – how to combine these various datasets, collected across disparate conditions, so as to
estimate the effect of the new policy in π∗, i.e., P ∗(Y ;σ∗X1,X2

)? It turns out that the new policy can
be evaluated from the available data using the following formula:

P ∗(y;σ∗X1,X2
) =

∑
x1,z,x2

P 2(y | x1, x2;σ2)︸ ︷︷ ︸
from π2

P 1(z | x1;σ1)︸ ︷︷ ︸
from π1

P (x2 | z, x1;σ∗)P (x1;σ∗)︸ ︷︷ ︸
defined by σ∗X1,X2

(1)

This is a delicate mixture of soft experimental data from π1 and π2, where each of the factors alone
are not sufficient, but combined they are necessary for the evaluation of the new policy. In this paper,
our goal is to explicate this non-trivial formula, and, more broadly, characterize under what conditions
the causal effect of a new policy can be computed from disparate data sources.
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Type Strategy Function

Idle σX=∅ f ′x = fx
Atomic/do σX=x f ′x = x, for some x ∈ Dom(X )
Conditional σX=g(Pa′x) f ′x = g(Pa′x)

Stochastic/Random σX=P ′(X|Pa′x) f ′x s.t. P ′(x|Pa′x)=
∑

u′x
P (f ′x(Pa′x,ux)=x)P (ux)

Table 1: Summary of the types of interventions considered. Each row contains the type of intervention,
its representation using the regime indicator and the way the corresponding replacement function.

More specifically, our contributions are as follow:

1. Reduction to atomic case. We reduce the problem of transporting P ∗(y;σX) to that of transport-
ing the effect of an atomic-intervention. We then prove the tightness of the reduction.

2. Algorithmic solution. We design an efficient algorithm to determine the existence of an estimand
for the effect of a non-atomic intervention as a function of the available distributions.

3. Symbolic characterization. We prove that the σ-calculus is necessary and sufficient for the task
of transportability when both the input and the output distributions involve soft interventions.

4. Graphical characterization. We derive a complete graphical condition for this task.

Preliminaries. Random variables are represented with uppercase letters (e.g, C) and their re-
alizations with lowercase ones (e.g, c). Letters in bold (e.g, C) represent sets of variables, and
lowercase-bold letters (e.g., c) a joint value assignment for the variables in the set. Given a graph G,
GWX is the result of removing edges coming into variables in W and going out from variables in X.
Also, G[C] is the subgraph of G made only of nodes in C⊂V and the edges between them. We define
Pa(C) and An(C), as the union of C⊂V with its parents and ancestors in the graph, respectively.

We use the Structural Causal Model (SCM) paradigm [26, Ch. 7] to represent the causal structure
of the system and elucidate the effects of changing it. An SCMM is a 4-tuple 〈U,V,F , P (u)〉,
where U is a set of exogenous (latent) variables; V is a set of endogenous (observable) variables;
F is a collection of functions {fi}Vi∈V. Each fi is a mapping from a set of exogenous variables
Ui ⊆ U and a set of endogenous variables Pai ⊆ V \ {Vi} to the domain of Vi. The uncertainty
is encoded through a probability distribution over the exogenous variables, P (U). Each SCMM
induces a causal diagram where every Vi ∈ V is a vertex, there is a directed edge (Vj → Vi) for
every Vi ∈ V and Vj ∈ Pai, and a bidirected edge (Vi L9999K Vj) for every pair Vi, Vj ∈ V such
that Ui ∩Uj 6= ∅ (Vi and Vj have a common exogenous parent). We assume the underlying model
is recursive, that is, there are no cyclic dependencies among the variables.

An intervention on a variable X replaces fx with a new function f ′x of some Pa′x ⊆ V \ {X} and
variables U′x. Pa′x could differ from Pax, and U′x ∩U = ∅. In particular, Pa′x need not be a subset
of Pax as long as it does not include any descendant of X . We consider four types of interventions
summarized in Table 1. An idle intervention leaves the function as it is, so we often omit σX=∅ in
any expression. Atomic interventions fix the intervened variable to a constant value. Conditional
and stochastic interventions allow the intervened variable to change as a deterministic function or
a conditional probability distribution of a set of observable parents. For interventions on a set of
variables X ⊆ V let σX={σX}X∈X, that is, the result of applying one intervention after the other.
Each σX affects a different variable, so the order in which they are considered is not important.
Given an intervention σX a new model can be defined asMσX

= 〈V,U ∪U′x,F ′, P (U,U′x)〉,
where U′x =

⋃
X∈X U′x and F ′ = (F \ {fx}X∈X) ∪ {f ′x}X∈X. Hereafter, we will only consider

interventions that result in a recursiveMσX
. The modelMσX

induces a probability distribution

P (v;σX) =
∑
u,u′x

∏
{i|Vi∈X}

P (vi|pai,ui,u′i;σX)P (u′x;σX)
∏

{i|Vi∈V\X}

P (vi|pai,ui)P (u), (2)

and a causal graph GσX
. Here the notation P (· ; σX) is used to refer to the probability distribution

under σX similar to the way P (· | do(x)) is used in the atomic case. Following the representation in
[8] we annotate GσX

with extra nodes called regime indicators [10] to mark the variables inMσX

whose functions have been replaced relative toM. Specifically, GσX
contains a node σXi for every

Xi ∈ X together with an edge (σXi → Xi).

The proofs are provided in the Appendix (Supplemental Material).
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Figure 2: Diagram (a) represents the natural regime in π∗ and (b) the regime after the target
intervention. The selection diagram (c) compares π∗ with π1 and π2, while (d) and (e) are selection
diagrams specific to domains π1 and π2 under interventions σ1

Z and σ2
W , respectively.

2 Transporting Causal Relations across Domains

Our goal is to predict the effect of a soft intervention σX using assumptions encoded in the form of a
graph and different observational and/or experimental distributions arising from different domains.
Let Π = {π∗, π1, π2, . . .} be the set of domains/populations involved in the analysis where π∗ has a
special status as the target domain where the query is to be inferred.

To better understand this setting, let us consider an example of a hypothetical study of government-
backed loan programs and successful payment of family house purchases (inspired on studies such as
[6, 17]). In city π∗, the percentage of the value of the property that can be borrowed (X) depends
mainly on the credit history of the applicant (W ) and his current employment conditions. The amount
borrowed (or principal), Z, depends on the allowed percentage and the characteristics (R) of the
property — mainly cost and location — as well as financial aspects of the borrower. The goal of the
policy is to increase the number of families purchasing their own homes and paying their mortgages,
so Y represents an indicator of the progress of the payment after a certain amount of years. Fig. 2(a)
represents this situation in π∗. Let π1 be another city where the distributions of credit history W
is different than in π∗, and π2 another where the distribution of R is the one that differs. These
differences are called “domain discrepancies”, formally defined next.

Definition 1 (Domain Discrepancy). Let πa and πb be domains associated, respectively, with SCMs
Ma andMb conforming to a causal diagram G. We denote by ∆a,b ⊆ V a set of variables such that,
for every Vi ∈ ∆a,b, there might exist a discrepancy if fai 6= f bi or P a(Ui) 6= P b(Ui).

We will write ∆∗,i simply as ∆i to represent the differences between the target and each source
domain, with ∆∗=∅. In this example, ∆1={W} and ∆2={R}, which can be encoded in a selection
diagram G∆ shown in Fig. 2(c), which according to the following definition:

Definition 2 (Selection Diagram). Given a causal diagram Gi = 〈V,E〉 and domain discrepancies
∆i, let S = {Sv | ∃ni=1V ∈ ∆i} be called selection variables. Then, a selection diagram G∆i is
defined as a graph 〈V ∪ S,E ∪ {Sv → V }Sv∈S〉.

Policy makers in city π∗ are planning to increase the percentage X by offering loaners insurance
from default as long as the percentage ought is above the regular threshold, for properties within
certain locations (accounted in R). We denote this policy as σ∗X and represent the resulting regime
in Fig. 2(b). To assess the impact of such policy, data of the current mortgage payments in π∗
have been collected together with data from other two cities, π1 and π2. The administration of π1

allocated loans where the amount Z was determined as a function of the allowed percentage (X)
and the property (R), as depicted in Fig. 2(d). In city π2, a study selected borrowers at random
and had loaners process their applications with randomized credit history W , to observe its effect
on Y (Fig. 2(e)). Data available in each domain is specified by Z = {Zi | πi ∈ Π}, where
each Zi = {σZ1

, σZ2
, . . .}, Zj ⊆ V, corresponds to domain πi. This means that distributions
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{P i(V;σZj ) | Zj ∈ Zi}Zi∈Z are assumed to be available. Notice that P i(V;σ∅) = P i(V) is a
valid distribution and describes the observational (non-interventional) distribution in domain πi. In
this example, Z = {Z∗={σ∅},Z1={σZ},Z2={σW }}.
The effect of the new policy σ∗X can be measured by comparing E[Y ;σ∗X ] with E[Y ] for π∗. While
the latter is readily estimable via P ∗(Y ), which is part of the input; the challenge is to assess
P ∗(Y ;σ∗X). The ability to infer the target effect from the input distributions is formalized next.

Definition 3 (Effect Transportability). Let Y,X,W ⊂ V with W ∩ Y = ∅. The (conditional)
effect intervention σX on a set of outcome variables Y, conditional on W, P ∗(y|w;σX), in a target
environment π∗, is said to be transportable from 〈G∆,Z〉, if it is uniquely computable from the set of
distributions Z for every assignment (y,w) and every set of models {Mi}πi∈Π inducing G∆ and Z.

To solve this particular transportability instance, we use σ-calculus [9] and standard probability
axioms.2 For simplicity σX=σ∗X , σZ=σ1

Z and σW=σ2
W are simply written as σX , σZ and σW .

P ∗(y;σX) =
∑

r,x,z
P ∗(y|z, x, r;σX)P ∗(z|x, r;σX)P ∗(x|r;σX)P ∗(r;σX). (3)

By rule 3 and the separation (R ⊥⊥ X) in Gσ∗XX and GX , we have P ∗(r;σX)=P ∗(r), which is
estimable from the input distribution P ∗(V). The factor P ∗(x|r;σX) is determined by σ∗X (and
the policy’s specification). For the second factor, P ∗(z|x, r;σX)=P ∗(z|x, r;σX , σW ) by rule 3
and (Z ⊥⊥ W | X,R) in GσXσWW and GσXW . Then, by rule 2 and (Z ⊥⊥ X | R) in GσXσWX
and GσWX , we obtain P ∗(z|x, r;σW ). From the graph G∆2

σW (Fig. 2(e)), (Z ⊥⊥ Sr | R,X) hence
P ∗(z|x, r;σW ) = P 2(z|x, r;σW ) estimable from the given P 2(V;σW = σ2

W ).
The first factor is equal to P ∗(y|z, x, r;σX , σZ=z) by rule 2 and (Y ⊥⊥ Z | X,R) in GσXσZ=zZ

and GσXZ . We remove the observed X by rule 1 and (Y ⊥⊥X | Z,R) in GσXσZ=z . Then, by rule 3
and (Y ⊥⊥X | Z,R) in GσXσZ=zX and GσZ=zX , this is equal to P ∗(y|z, r;σZ=z) and transportable
from π1 since (Y ⊥⊥ Sw | Z,R). We sum over X and use rule 2 with (Y ⊥⊥ Z | X,R) in GσZ=zZ

and GσZZ to exchange σZ=z with σZ=σ1
Z (see Appendix B.1 for the detailed derivation). Then

P ∗(y;σX)=
∑
r,x,z

(∑
x′
P 1(y|z, x′, r;σZ)P 1(x′|r;σZ)

)
︸ ︷︷ ︸

from σ1
Z in π1

P 2(z|x, r;σW )︸ ︷︷ ︸
from σ2

W in π2

P ∗(x|r;σ∗X)︸ ︷︷ ︸
def. σ∗X

P ∗(r)︸ ︷︷ ︸
from π∗

. (4)

To solve this kind of transportability instances, we can leverage the transportability theory for
atomic interventions. Accordingly, we establish a crisp relationship between any instance with soft
interventions and its atomic counterpart.

Theorem 1. Let Y,X ⊆ V be any two sets of variables, and let σ∗X be an atomic, conditional or
stochastic intervention. Then, the effect of σ∗X on Y can be written as

P ∗(y;σX=σ∗X) =
∑

d\y
P ∗(d \ x;σX=x)

∏
X∈X∩D

P ∗(x | pax;σX=σ∗X). (5)

Moreover, this effect is transportable from 〈G∆,Z〉 if and only if P ∗(d \ x;σX=x) is transportable
from 〈G∆,Z〉, where D = An(Y)GσX .

For the example just discussed,

P ∗(y;σX) =
∑

r,x,z
P ∗(y, z, r;σX=x)P ∗(x | r;σX=σ∗X), (6)

where the first factor can be transported with a similar derivation to the one described above.

Given the tightness of the reduction provided by Thm. 1, one may surmise that it is possible to blindly
use existing transportability algorithms (e.g., GTR [22]) to solve for soft interventions. In particular,
if one pretends the input consist of do()-experiments, as expected by known algorithms, the resulting
expression cannot be mapped directly in terms of the original soft-experiments (for further details,
see Appendix B.3). This motivates the clean algorithmic approach undertaken in the next section.

2The rules of σ-calculus are provided in Appendix A.
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3 A Complete Algorithm for Soft Transportability

Both input and output of the transportability task refer to probability distributions within different
domains and for different interventions. A key building block of our algorithm is the ability to
decompose such distributions in factors with the finest granularity possible. We use the concept of
C-factors and C-components developed by Tian and Pearl in [36, 37]. The set V can be partitioned
into C-components such that two variables belong to the same C-component if they are connected
in G by a path made entirely of bidirected edges. For instance the graph in Fig. 1(a) induces two
C-components {X1, Z} and {X2, Y }.

For any C ⊆ V, the quantity Qk[C;σX](v) is the C-factor of C under intervention σX in domain
πk, and denotes the following function

Qk[C;σX](v) =
∑

u(C)

∏
{i|Vi∈C}

P k(vi | pai,ui;σX)P k(u(C);σX), (7)

where U(C)=
⋃
Vi∈C Ui. When C=V, Qk[V;σX](v)=P k(v;σX). For simplicity we write

Qk[C;σX](v) as Qk[C;σX], Qk[C;σX] as kQ[C] if σX=∅, Qk[{Vi};σX] just as Qk[Vi;σX], and
Q[C] when talking about C-factors in general, for any domain and intervention.

A C-factor Q[C] can be further factorized according to the C-component structure of G[C], the
subgraph with only variables in C, as stated in the following lemma from [37].
Lemma 1. [C-component decomposition] Let C ⊆ V, C1, . . . ,Cl the C-components of G[C]. Then
Q[C] =

∏
j Q[Cj ], and for any topological order C1 < C2 < Cn of the variables in C

Q[Cj ] =
∏
{Ci∈Cj}

Q[C1, . . . , Ci]

Q[C1, . . . , Ci−1]
, where Q[C1, . . . , Ci] =

∑
ci+1,...,cn

Q[C]. (8)

This result allow us to decompose C-factors as products of minimal C-factors. Once both input and
output distributions factorized that way, the task is solvable if every factor of the output can mapped
to factors in the input distributions. First, we discuss how to match C-factors across different regimes:

Lemma 2. Let X,Z ⊂ V be disjoint sets of variables, σX and σZ be any two interventions, and
C ⊆ V. Then, Q[C;σX, σZ] = Q[C;σX] whenever C ∩ Z = ∅.

For instance, the C-factor Q∗[Z, Y ] in Fig. 1(a) is equal to Q∗[Z, Y ;σX1,X2
] because {Z, Y } does

not intersect {X1, X2}. Similarly, in Fig. 2(d), (e), Q1[R, Y ;σ1
Z ] = Q1[R, Y ;σ1

Z , σ
2
W ] = Q1[R, Y ]

because {R, Y } is not affected by σ1
Z or σ2

W . Next, we consider matching C-factors across domains:
Lemma 3. Let G∆ be a selection diagram for

〈
Mk,M l

〉
, then Qk[C;σX] = Ql[C;σX] if G∆ does

not contain selection nodes Svi pointing to any variable in Vi ∈ C, that is, Vi /∈ ∆k,l.

From the selection diagram in Fig. 2(c), we can infer Q∗[X,Z, Y ] = Q1[X,Z, Y ] = Q2[X,Z, Y ],
and Q∗[W ] = Q2[W ], but not Q∗[W ] = Q1[W ], for example. Next, a query of interest can be
written in terms of C-factors based on Thm. 1:
Corollary 1. Let Y,X ⊆ V be any two sets of variables, and let σX=σ∗X be an atomic, conditional
or stochastic intervention. The effect of σX on Y is given by

P ∗(y;σX= σ∗X) =
∑

d\y
Q∗[X ∩D;σX=σ∗X]Q∗[D \X], (9)

where D = An(Y)GσX . Furthermore, this effect is transportable from 〈G∆,Z〉 if and only if
Q∗[D \X] is transportable from 〈G∆,Z〉.

The effect of an intervention conditioned on some evidence W=w, P (y|w;σX), may involve less
C-factors than P (y,w;σX) depending on the topology of the graph. The exact factorization of the
conditional query is given by the following theorem.
Theorem 2. Let Y,X,W ⊂ V, W ∩Y = ∅, σX be any intervention, and GσX

the corresponding
interventional causal graph. Then, the effect of σX on Y conditioned on W is given by

P (y|w;σX) = P (y|wy;σX, σWy
=wy) =

∑
a\(y∪wy)

Q[A;σX]

/∑
a\wy

Q[A;σX] , (10)

where Wy ⊆W is the set of variables in W connected to any Y ∈ Y by any path (regardless of the
directionality) in GσX[D]W , with D=An(Y∪W)GσX , Wy = W\Wy, and A=An(Y∪Wy)GσXW

.
Furthermore, this effect is transportable from 〈G∆,Z〉 iff Q[A;σX] is transportable from 〈G∆,Z〉.

6



Algorithm 1 σ-TR(Y,W, σX,Z,G∆)

Input: G∆ selection diagrams over variables V for domains Π; Y,W ⊆ V disjoint subsets of
variables; an intervention σ∗X defined over a set X ⊆ V; and available distribution specification Z.
Output: P ∗(y|w;σX) in terms of available distributions or FAIL if not transportable from 〈G∆,Z〉.

1: let A be defined as in Thm. 2, and let A1, . . . ,An be the C-components of GσX[A].
2: for each Ai s.t. Ai ∩X = ∅, σZ ∈ Zk ∈ Z s.t. Ai ∩ Z = ∅ and Ai ∩∆k = ∅ do
3: let Bi be the C-component of GσZ

such that Ai ⊆ Bi, compute Qk[Bi;σZ] from Qk[V;σZ].
4: if IDENTIFY(Ai,Bi, Q[Bi;σZ],GσZ

) does not FAIL then
5: let Q∗[Ai;σX] = IDENTIFY(Ai,Bi, Q[Bi;σZ],GσZ

).
6: move to the next Ai.
7: end if
8: end for
9: for each Ai containing variables in X let Q∗[Ai;σX] = REPLACE(Ai, σX).

10: if any Q∗[Ai] was not assigned then return FAIL.
11: let Q∗[A;σX] =

∏
iQ
∗[Ai;σX].

12: return
∑

a\(y∪w)Q
∗[A;σX]

/∑
a\w Q∗[A;σX] .

For instance, the effect P ∗(y | r, z;σX=σ∗X) in the example of Fig. 2(b) can be transported as

P ∗(y | r, z;σX) = P ∗(y | r;σX , σZ=z) = Q∗[R, Y ;σX ]
/∑

y
Q∗[R, Y ;σX ] . (11)

Using Lemma 3 we have Q∗[R, Y ;σX ] = Q1[R, Y ;σX ] and by Lemma 2 equal to
Q1[R, Y ;σZ ]. From Q1[V;σZ ]=P 1(v;σZ) we obtain Q1[R, Y,W,X;σZ ], using Lemma 1,
as Q1[V;σZ ]/Q1[Z;σZ ] = P 1(v;σZ)/P 1(z|w, r, x;σZ) = P 1(y|z, x, r, w;σZ)P 1(x, r, w;σZ).
Then, since R < Y < W < X is a valid topological order in G[R,Y,W,X], Eq. (8) leads to
Q1[R, Y ;σZ ] =

∑
x,wQ

1[R, Y,W,X] =
∑
x,w P

1(y|z, x, r, w;σZ)P 1(x, r, w;σZ). Replacing
in Eq. (11) and simplifying results in:

P ∗(y | r, z;σX) =
∑

x,w
P 1(y|z, x, r, w;σZ)P 1(x,w | r;σZ). (12)

Building on the observations and results we have so far, we design the algorithm σ-TR (Alg. 1) that
takes as input the variables defining a query, the specification of σX (i.e., what type of intervention
is being applied and its arguments), a set of available distributions (Z), and the selection diagrams.
Internally σ-TR uses the subroutine IDENTIFY from [36] that applies Lemma 1 systematically to
obtain a C-factor Q[A] from Q[B], where A ⊆ B, and the subroutine ‘REPLACE’ to determine the
factors of intervened variables according to the particular type of intervention.

Recall the example from the introduction of the paper where the target effect is P ∗(y;σX1,X2 = σ∗)
corresponding to the regime shown in Fig. 1(d). With Y={Y }, W=∅, Z={{σ∅}, {σ1

X1,X2
}, {σ2

X2
}}

and G∆ as in Figs. 1(b), (c); σ-TR is invoked so that A={X1, Z,X2, Y } with C-components
A1={X1}, A2={Z}, A3={X2} and A4={Y } (Gσ∗[A]=Gσ∗). The loop in line 2 will take A2

for domain πk, k=1 and σZ=σ1. Bi={Z} is the C-component of Gσ1 (Fig. 1(b)) that con-
tains A2, and Q1[Z;σ1] = P 1(z | x1;σ1) by Lemma 1. Then IDENTIFY is called and re-
turns Q∗[A2] = P 1(z | x1;σ1). Similarly, Q∗[A4] is obtained from π2 with Bi={Y } as
Q2[Y ;σ2] = P 2(y|x1, x2;σ2). Next, Q∗[X1;σ∗] and Q∗[X2;σ∗] are given by policy σ∗ as
P ∗(x1;σ∗) and P ∗(x2|z, x1;σ∗). Finally, line 12 returns an expression equivalent to Eq. (1).

Determining non-transportability is non-trivial task, however, σ-TR is both sufficient and necessary:
Theorem 3. [σ-TR Completeness] The effect P (y | w;σX) is transportable from Z in G∆ if and
only if the algorithm σ-TR (Alg. 1) outputs an estimand for it.

σ-TR finds an estimand for the query or determines non-transportability efficiently, in O(n4z) time,
where n = |V| and z =

∑
πi |Zi| (see Appendix B.1). Moreover, every step in σ-TR can be mapped

to a derivation with σ-calculus and probability axioms like the one given in the previous section.
Corollary 2. [σ-calculus Completeness] The σ-calculus together with standard probability axioms
is complete for the task of transportability with soft interventions.
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4 Graphical Characterization

We proved that the procedure σ-TR, discussed in the previous section, is both sufficient and necessary
for transportability task at hand. In this section, we investigate a sufficient and necessary graphical
conditions to decide the transportability of a query by graphical inspection.

R

W

X Z

Y

π1

π2

σ∗

Figure 3: Selection dia-
gram depicting interven-
tion σ∗X .

Consider once more the loan program example in Section 2. If we learn
that R also differs from those in π∗ (i.e., R is also in ∆1), then the target
query is not transportable from the given input distributions. We can ex-
amine the reason σ-TR outputs FAIL for the query P ∗(y;σX). On line 1,
since W=∅, A={R,X,Z} with C-factors A1={R, Y }, A2={Z}, and
A3={X}. There are three sources of data in Z, namely, Z∗={σ∅},
Z1={σ1

Z} and Z2={σ2
W }. If R ∈ ∆1,∆2, no C-factor including R can

be transported from Z1 or Z2. Then, the loop in line 2 only runs for
σ∅ ∈ Z∗ such that Bi={W,R,X,Z, Y }, and IDENTIFY fails to obtain
Q∗[R, Y ] from Q∗[Bi]. At line 10, σ-TR detects that Q∗[R, Y ] was not
transported and outputs FAIL.

Overall, σ-TR fails when there exists some C-component Ai of GσX[A],
a C-component Ci of G∆

[An(Ai)], and for every σZ ∈ Zk ∈ Z at least
one of the following three conditions occur:

(i) Ai ∩∆k 6= ∅, that is, at least one variable in Ai has a different mechanism in πk, or
(ii) Ai ∩ Z 6= ∅, meaning at least one of the variables in Ai have been intervened by σZ in πk, or

(iii) there exists some Ti s.t. Ai ⊂ Ti ⊆ Ci, GσZ[Ti] has a single C-component.

Condition (iii) occurs whenever IDENTIFY (in line 4) fails to obtain Q∗[Ai]=Q
k[Ai;σZ] from

Qk[Bi;σZ] in GσZ
[16, Thm. 3]. The following result follows immediately from Thm. 3:

Corollary 3. Given query P ∗(y;σX=σ∗X), selection diagram G∆, and the distribution specified by
Z, let A be defined as in Thm. 2. Then, the query is not transportable from 〈G∆,Z〉 if and only if
there exists a C-component Ai of Gσ∗X[A] and a C-component Ci of G∆

[An(Ai)] such that for every
σZ ∈ Zk ∈ Z, Ai satisfies conditions (i), (ii), or (iii).

For instance consider G∆ in Fig. 3 with Z={{σ∅}, {σX=x}, {σW=g(R), σR = P ′(R)}} and
intervention σX=σ∗X , where σ∗X enforces some some pre-specified P ∗(X|R,W ;σ∗X). The edge
R→ X is added due to σ∗X while the two bidirected edges in grey are removed by it. Let Ai={Z,R}
and Ci={R,X,W,Z}. We can verify that condition (iii) is satisfied for σ∅ from π∗ and σW from π2.
From π1, σX=x cannot be used due to condition (i) and σR in π3 satisfies condition (ii). Although
for this instance there is no s-Thicket [22] — a graphical structure precluding transportability in the
atomic case — for P (y | do(x)), the effect of σ∗X is not transportable. Instead, the condition in Cor. 3
can be proved equivalent to the presence of an s-Thicket for the effect P (a | do(x, an(a) \ a)) (see
Lemma 10 in Appendix D).

5 Conclusions

We studied the problem of transporting effects of soft interventions from knowledge encoded in
the form of a selection diagram and a combination of observational and experimental data from
multiple, different domains. We showed how the problem can be solved by transporting the effect
of an atomic intervention from the same input (Thm. 1). Similarly, we proved that a conditional
effect is transportable only if the marginal effect derived through Thm. 2 is transportable. We then
developed an efficient algorithm called σ-TR (Alg. 1) that is both sufficient and necessary for finding
a function of the available data that matches the target effect (whenever such a function exists). As a
corollary, we conclude that σ-calculus together with basic probability axioms are complete for the
soft transportability task (Cor. 2). Finally, we described a complete graphical condition to determine
the transportability of any transportability instance (Cor. 3). We hope that this series of results related
to soft interventions, and knowledge of its relationship with atomic interventions, can help data
scientists to apply causal inference in broader and more realistic scenarios.
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Broader Impact

Our work investigates the formal conditions under which knowledge acquired in one domain (e.g.,
setting, population, environment) can be generalized to a different one that may be related, but
is unlikely to be the same. This is known in the causal inference literature as the problem of
"transportability." As alluded to in the introduction, issues of transportability are pervasive throughout
the empirical sciences as well as AI and ML. We believe that having a more foundational tool
that allows the empirical investigator to determine whether (and how) her/his understanding of the
underlying system is sufficient to support the generalization of an empirical claim is a critical addition
to the scientific toolbox. Not having such a tool, on the other hand, may lead researchers to operate
on a more heuristical basis, which may lead to a lack of understanding of when things can go wrong
and how to fix them. For instance, public policies that will fail or have unintended consequences,
potentially harming people, or spending unnecessary societal resources. In the context of automated
decision-making in AI, we could have systems following policies that harm the users, can act unfairly,
or discriminate against certain groups (e.g., the policy was trained in Scandinavia and moved to the
US). By and large, we believe this research on the theory of generalization of policies based on soft
interventions can benefit a large group of individuals, including empirical scientists, policy-makers,
AI researchers, and society in general.
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