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Abstract

One fundamental problem in the empirical sciences is of reconstructing the causal
structure that underlies a phenomenon of interest through observation and ex-
perimentation. While there exists a plethora of methods capable of learning the
equivalence class of causal structures that are compatible with observations, it is
less well-understood how to systematically combine observations and experiments
to reconstruct the underlying structure. In this paper, we investigate the task of
structural learning in non-Markovian systems (i.e., when latent variables affect
more than one observable) from a combination of observational and soft experi-
mental data when the interventional targets are unknown. Using causal invariances
found across the collection of observational and interventional distributions (not
only conditional independences), we define a property called Ψ-Markov that con-
nects these distributions to a pair consisting of (1) a causal graphD and (2) a set
of interventional targets I . Building on this property, our main contributions are
two-fold: First, we provide a graphical characterization that allows one to test
whether two causal graphs with possibly different sets of interventional targets
belong to the same Ψ-Markov equivalence class. Second, we develop an algorithm
capable of harnessing the collection of data to learn the corresponding equivalence
class. We then prove that this algorithm is sound and complete, in the sense that
it is the most informative in the sample limit, i.e., it discovers as many tails and
arrowheads as can be oriented within a Ψ-Markov equivalence class.

1 Introduction

Learning cause-and-effect relationships is one of the fundamental problems for various fields, in-
cluding biology [28, 6], epidemiology [26], and economics [12]. A prominent approach for causal
discovery models the underlying system as a causal graph represented by a directed acyclic graph
(DAG), where nodes denote random variables (measured or latent) and directed edges denote causal
effects from tails to arrowheads [22, 29, 24]. Accordingly, the task of structural learning entails
piecing together the constraints found in the data (and implied by the underlying, unobserved causal
system) to infer the corresponding causal graph. In practice, however, these constraints are almost
never sufficient to determine the true causal graph, and a collection of compatible graphs ends up
being the target of the analysis, which forms what is known as an equivalence class (EC).
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The formal understanding and characterization of equivalence classes have been an important part of
the causal discovery literature for various reasons. For instance, one needs to understand how the
output of a learning algorithm relates to the true underlying system that they are trying to infer. Also,
ECs are defined with respect to certain constraints implied by the underlying structure in the data (e.g.,
conditional independences (CIs)), which need to be made explicit and fully understood if one wants
to learn from the data (including due to false positives, negatives). Whenever only observational
(non-experimental) data is available, the Markov equivalence class (for short, MEC) characterizes the
causal graphs that imply, by the d-separation criterion, the same set of conditional independences
(CIs) over the measured variables [32]. The availability of interventional (i.e., experimental) data
opens up new opportunities to reduce the size of the equivalence class down, possibly to recover the
true causal graph [10, 18, 8]. An intervention on a (measured) variable X modifies the mechanism by
which it is generated, inducing an interventional distribution over the measured variables V, denoted
as PX(V) or PX [22]. The works in [9, 34, 17] characterize the so called I-Markov equivalence class,
which uses distributional invariances within and across the available mixture of observational and
interventional distributions. For instance, the graphsD1 = {X → Y, X ← L→ Y}, where L is latent,
and D2 = {X ← Y} are indistinguishable from observational data alone as no CI is implied (i.e.,
X 6⊥⊥ Y). Still, they are immediately distinguishable given 〈P, PX〉 by contrasting P(Y) and PX(Y).

In this paper, we investigate soft interventions such that the mechanism of an intervened node Vi
is modified without fully eliminating the effect of its parents. This operation is also known as a
mechanism change [31] or a parameter change [5], and it presents in many settings a more realistic
model than hard or perfect interventions, where variables are forced to a fixed value (see also
[2, 3, 33, 22, Sec. 3.2.2]). Furthermore, we relax the interventional setting by assuming the targets
of the intervention to be unknown. For example, in molecular biology, the effects of various added
chemicals to the cell are not set to one specific value nor they are precisely known [4].

The unknown interventional target setting requires a separate treatment than the known one since
it’s certainly less informative, i.e., the equivalence class of causal graphs is usually larger (never
smaller), and many of the proposed characterizations and algorithms do not immediately apply. For
concreteness, consider the two causal graphs mentioned above (D1, D2) that are distinguishable
under a known interventional target set I = 〈∅, {X}〉, where ∅ denotes the observational setting and
{X} denotes an intervention on the variable. However, they turn out to be indistinguishable when
D1 is associated with I1 = 〈∅, {X}〉 but D2 is associated with I2 = 〈∅, {X,Y}〉. In other words, the
distributional invariances (to be formally defined in Section 3) accept both hypotheses that a pair of
distributions with unknown intervention targets 〈P1, P2〉 is generated by 〈D1,I1〉 or 〈D2,I2〉, where
P1 = P(V) in both, P2 = PX(V) forD1, and P2 = PX,Y (V) forD2. Since the data is compatible with
both I1,I2 for different graphs, the EC is underdetermined relative to known interventional targets.

Various approaches have been proposed to learn the causal graph from interventional distributions with
unknown interventional targets. The works in [4, 23, 38, 30, 15] assume Markovianity (the absence
of latent confounders). Another approach described in [27] learns cyclic causal graphs assuming
linearity from unknown shift interventions, which is a specific type of soft interventions. Finally, [20]
presents a framework called JCI, which pools the various distributions together by constructing
context variables and then running traditional learning algorithms to identify the corresponding EC.1

In this work, we take a more fundamental approach and explicitly formalize the constraints that are
being tested among the mixture of observational (when available) and interventional distributions, as
well as provide a characterization of the equivalence class with respect to those constraints. Assuming
a tuple of distributions P = 〈Pi〉

m
i=1 is generated by the same system, i.e., causal graph with latents,

we define a property called Ψ-Markov that connects P to a pair consisting of (1) a causal graph
D and (2) a set of interventional targets I . Building on this property in Section 3, we provide a
graphical characterization that allows one to test whether two causal graphs with possibly different
sets of intervention targets belong to the same Ψ-Markov equivalence class. We show that a graphical
characterization for the causally sufficient case follows as a special case of this result. In Section 4,
we develop Ψ-FCI, a constraint-based algorithm capable of harnessing the distributional invariances
found across the combined data to learn the corresponding equivalence class. Finally, we prove
that this algorithm is sound and complete, in the sense that it is the most informative in the sample
limit. In other words, Ψ-FCI discovers as many tails and arrowheads as can be oriented within the
corresponding Ψ-Markov equivalence class. In summary, our contributions are as follow:

1We provide detailed discussion on how some of these works compare to ours in the full report [13, Appx. D].
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1. We formulate a graphical characterization to test whether two pairs of causal graphs and their
corresponding interventional target sets, 〈D1,I1〉 and 〈D2,I2〉, are in the same Ψ-Markov
equivalence class, i.e., they are indistinguishable with respect to the available datasets.

2. We develop a sound and complete algorithm to learn equivalence classes of causal graphs from a
collection of observational and experimental distributions with unknown interventional targets.

2 Preliminaries

We introduce in this section the necessary concepts and notation used throughout the paper. Upper
case letters denote random variables and lower case letters denote an assignment. Also, bold letters
denote sets. For X,Y,Z, the CI relation X is independent of Y conditioned on Z is written as
X ⊥⊥ Y |Z . The d-separation statement X is d-separated from Y given Z in graph D is written as
(X ⊥⊥ Y |Z )D. DX denotes the graph obtained from D where all the incoming edges to the nodes
in X are removed. Similarly, DX denotes the removal of outgoing edges. We assume there is no
selection bias. A star on edge endpoints is used as a wildcard to denote circle, arrowhead, or tail.

Causal Bayesian Network (CBN): Let P(V) be a probability distribution over a set of variables V,
and Px(V) denote the distribution resulting from the hard intervention do(X = x), which sets X ⊆ V
to constants x. Let P∗ denote the set of all interventional distributions Px(V), for all X ⊆ V, including
P(V). A directed acyclic graph (DAG) over V is said to be a causal Bayesian network compatible
with P∗ if and only if, for all X ⊆ V, Px(v) =

∏
{i|Vi<X} P(vi|pai), for all v consistent with x, and where

Pai is the set of parents of Vi [22, 1, pp. 24]. Given that a subset of the variables are unmeasured or
latent,D(V ∪ L,E) will represent the causal graph where V and L denote the measured and latent
variables, respectively, and E denotes the edges. Following the convention in [22], for simplicity, a
dashed bi-directed edge is used instead of the corresponding latent variables. The CI relations can be
read from the graph using a graphical criterion known as d-separation [21].

Soft Interventions: Under this type of interventions, the original conditional distributions of the
intervened variables X are replaced with new ones, without completely eliminating the causal
effect of the parents. Accordingly, the interventional distribution PX(v) for X ⊆ V is such that
P∗(Xi|Pai) , P(Xi|Pai), ∀Xi ∈ X. We refer to the mixture of observational and interventional
distributions as interventional for simplicity, which factorizes as follow:

PX(v) =
∑

L

∏
{i|Xi∈X}

P∗(xi|pai)
∏
{ j|T j<X}

P(t j|pa j) (1)

Ancestral Graphs: A mixed graph can contain directed and bi-directed edges. A is an ancestor of B
if there is a directed path from A to B. A is a spouse of B if A↔ B is present. If A is both a spouse
and an ancestor of B, this creates an almost directed cycle. A path is a sequence of edges joining a
unique sequence of nodes. An inducing path relative to L is a path on which every non-endpoint node
X < L is a collider on the path (i.e., both edges incident to the node are into it) and every collider is
an ancestor of an endpoint of the path. A mixed graph is ancestral if it does not contain directed or
almost directed cycles. It is maximal if there is no inducing path (relative to the empty set) between
any two non-adjacent nodes. A Maximal Ancestral Graph (MAG) is a graph that is both ancestral
and maximal [25]. Given a causal graphD(V∪L,E), a unique MAGMD over V can be constructed
such that both the independence and the ancestral relations among V are retained; see, [36, p. 6].

A triple 〈X,Y,Z〉 is an unshielded triple if X and Y are adjacent, Y and Z are adjacent, and X and Z
are not adjacent. If both edges are into Y , then the triple is referred to as unshielded collider. A path
between X and Y , p = 〈X, . . . ,W,Z,Y〉, is discriminating for Z if every node between X and Z is a
collider on p and is a parent of Y . Two MAGs are Markov equivalent if and only if (1) they have the
same adjacencies; (2) the same unshielded colliders; and (3) if a path p is a discriminating path for Z
in both graphs, then Z is a collider on p in one graph if and only if it is a collider on p in the other.
A PAG represents an MEC of a MAG and is learnable from data. The output of the celebrated FCI
algorithm is a PAG, which is proven sound and complete for the corresponding MEC [37].

3 Interventional Equivalence with Unknown Targets

In this section, we formalize the notion of interventional equivalence class when the interventional
targets are unknown. Let V j

i denote an intervention on Vi with a unique mechanism identified by
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j. Hence, interventions denoted by V j
i and Vk

i force different mechanisms such that PV j
i
(Vi|Pai) ,

PVk
i
(Vi|Pai). Accordingly, each interventional target I = {V j

i }i∈|V| is defined by a set of variables with
corresponding mechanism identifiers denoted by j ∈ N. We drop the mechanism identifier whenever
it is not necessary. Next, we define an important operation between two interventional targets.

Definition 1 (Symmetrical Difference ∆). Given two interventional targets I and J, let I∆J denote
the symmetrical difference set such that Vi ∈ I∆J if V j

i ∈ I and V j
i < J or vice versa.

In words, the operation identifies the set of variables that have a unique interventional mechanism
across two interventional targets. For example, given I = {X1,Y,Z} and J = {X2,Y}, then I∆J = {X,Z}.

Next, we generalize the interventional Markov property (I-Markov) [17] for the case when the
targets are unknown, which we call Ψ-Markov. This property features prominently the different tests
that emerge when a combination of observational and experimental distributions is available.

Definition 2 (Ψ-Markov Property). Let D = (V ∪ L,E) denote a causal graph, let P denote an
ordered tuple of distributions, and let I denote an ordered tuple of interventional targets such that
|P| = |I |. Tuple P satisfies the Ψ-Markov property with respect to the pair 〈D,I〉 if the following
holds for disjoint Y,Z,W ⊆ V:

(a) For Ii ∈ I: Pi(y|w, z) = Pi(y|w) if Y ⊥⊥ Z |W inD

(b) For Ii, I j ∈ I: Pi(y|w) = P j(y|w) if Y ⊥⊥ K |W \WK inDWK,R(W),

where K B Ii∆I j, WK CW ∩K, R B K\WK, and R(W) ⊆ R are non-ancestors of W inD.

ΨI (D) denotes set of distribution tuples that satisfy the Ψ-Markov property with respect to 〈D,I〉.

For concreteness and to illustrate this definition, we provide two examples with tuples of distributions
that satisfy and do not satisfy the corresponding Ψ-Markov property, respectively.

Example 1. Consider the causal graphD∗ = {X → Y, X ← L→ Y} where L is a latent node, and let
the pair of distributions 〈P1, P2〉 be the result of intervening on the targets I∗ = 〈∅, {X}〉. It is easy to
check that P satisfies the Ψ-Markov property with respect to 〈D∗,I∗〉 as no constraint of type (a) or
(b) is applicable. For example, if (Y ⊥⊥ X)D∗X , then the invariance P1(y|x) = P2(y|x) must hold. Since
the d-separation fails, the invariance is not required. Similarly, P satisfies the Ψ-Markov property
with respect to 〈D,I〉 whereD = {X ← Y} and I = 〈∅, {X,Y}〉 or I = 〈{X}, {Y}〉.

Example 2. Consider the pair 〈D∗,I∗〉 and the corresponding tuple of distributions P from Ex. 1.
We check if P satisfies the Ψ-Markov property with respect to 〈D∗,I〉 for I = 〈∅, {Y}〉. Now,
K = ∅∆{Y} = {Y} and we have (X ⊥⊥ Y)DY

, so P1(X) = P2(X) should hold according to Constraint (b).
However, the invariance does not hold simply because P2, in truth, corresponds to the interventional
distribution on X. Therefore, P does not satisfy the Ψ-Markov property with respect to 〈D∗,I〉.

A few remarks are relevant about the Ψ-Markov property at this point. First, an ordered tuple of
interventional distributions P with unknown interventional targets is said to satisfy the Ψ-Markov
property if two qualitatively different types of constraints hold – (a) the “traditional” Markov property,
where separation in the causal graphD implies CI in the corresponding distribution (including the
interventional ones); (b) invariances across pairs of distributions given separation statements in the
mutilated graph. These mutilations depend on the symmetrical difference set (K) of the interventional
targets. Intuitively, should Ii, I j correspond to the true interventional targets of Pi, P j, respectively,
(b) verifies distributional invariances between PIi and PI j if the corresponding separation holds.

Second, the importance of the property stems from the fact that a tuple of interventional distributions
generated by a causal graphD satisfies the Ψ-Markov property relative to it and the corresponding
true interventional targets. See [13, Thm. 4 in Appx. A] for an explicit statement. Third, we note
that if the interventional targets are known (i.e., I1 = I2), the Ψ-Markov property still generalizes
I-Markov [17] by relaxing the assumption of controlled experiment setting. In practice, it may be
hard to ascertain that interventions over the same variable are performed exactly in the same way,
which makes this more refined characterization potentially interesting even to when the interventional
target is known. Finally, decoupling the distributions from the corresponding interventional targets is
instrumental to formulate interventional equivalence when the targets are unknown as shown below.
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(e) MAG(AugI2D2))
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(f) MAG(AugI3D3))

Figure 1: Pairs of causal graphs and intervention-target sets and the corresponding I-MAGs.

Definition 3 (Ψ-Markov Equivalence). Given the causal graphs D1 = (V ∪ L1,E1) and D2 =
(V ∪ L2,E2), and the corresponding interventional targets I1,I2, the pairs 〈D1,I1〉 and 〈D2,I2〉

are said to be Ψ-Markov equivalent if ΨI1 (D1) = ΨI2 (D2).

In words, two pairs of causal graphs and their corresponding sets of interventional targets 〈D1,I1〉

and 〈D2,I2〉 are Ψ-Markov equivalent if they can induce the same set of distribution tuples. In
practice, it may be challenging to evaluate whether the premises of the Ψ-Markov property hold since
they entail different graph mutilations ofD. In order to ameliorate this task, we build on the graph
augmentation construction following [17].

Definition 4 (Augmented graph). Consider a causal graphD = (V∪L,E) and a set of interventional
targets I . Let the multiset K be defined as such K = {K1,K2, . . . ,Kk} = {K|I, J ∈ I ∧ I∆J = K}.
The augmented graph of D with respect to I , denoted as AugI(D), is the graph constructed as
follows: AugI (D) = (V ∪ L ∪ F ,E ∪ E) where F B {Fi}i∈[k] and E = {(Fi, j)}i∈[k], j∈Ki .

For each pair of interventional targets I, J ∈ I such that K = I∆J, the augmented graph appends
the causal graphD with a utility F-node that is a parent to each node in K. The significance of this
construction follows from Proposition 1 where separation statements in the Ψ-Markov definition are
tied (shown to be equivalent, formally speaking) to ones in the augmented graph, with no need to
perform any graphical mutilation.The result is illustrated in the following example.

Proposition 1. Consider a causal graphD = (V ∪ L,E), a set of interventional targets I , and the
augmented graph AugI(D), where F = {Fi}i∈[k]. Let Ki be the set of nodes adjacent to Fi,∀i ∈ [k].
The following equivalence relations hold for disjoint Y,Z,W ⊆ V, where WiBW∩Ki,R B Ki\Wi.2

(Y ⊥⊥ Z |W )D ⇐⇒ (Y ⊥⊥ Z
∣∣∣W, F[k] )AugI (D) (2)

(Y ⊥⊥ Ki |W \Wi )DWi ,R(W)
⇐⇒ (Y ⊥⊥ Fi

∣∣∣W, F[k]\{i} )AugI (D) (3)

Example 3. Consider D = {X → Y ← L → Z} where L is latent and let I = 〈{X,Z1}, {Z2}〉. The
corresponding augmented graph D′ is composed of D appended with X ← F1 → Z. By Prop. 1,
(X ⊥⊥ Z)D can be tested by (X ⊥⊥ Z |F1 )D′ . Also, (Y ⊥⊥ {X,Z})DX,Z

can be tested as (F1 ⊥⊥ Y |X )D′ .

Maximal Ancestral Graphs (MAGs) provide a convenient representation capable of preserving all the
tested constraints in augmented graphs represented by d-separations [25]; see also [36, p. 6]. This is
formalized in Definition 5 and the construct is referred to as an I-MAG; see Example 4 below.

Definition 5 (I-MAG). Given a causal graphD = (V ∪ L,E) and a set of interventional targets I ,
an I-MAG is the MAG constructed over V from AugI (D), i.e., MAG(AugI (D)).

Example 4. Consider D∗ from Ex. 1. AugI(D∗) = {F1 → X → Y, X ← L → Y} for I = 〈∅, {X}〉.
Then, the corresponding I-MAG is MAG(AugI (D∗)) = {X ← F1 → Y, X → Y}.

Putting these results together, we derive next a graphical characterization for two causal graphs with
corresponding sets of interventional targets to be Ψ-Markov equivalent.

2All the proofs can be found in Appendices A & B of the full report [13].
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Theorem 1 (Ψ-Markov Characterization). Given causal graphs D1 = (V ∪ L1,E2),D2 = (V ∪
L2,E2) and corresponding sets of interventional targets I1,I2, 〈D1,I1〉 and 〈D2,I2〉 are Ψ-Markov
equivalent if and only if forM1 = MAG(AugI1 (D1)) andM2 = MAG(AugI2 (D2)):3

1. M1 andM2 have the same skeleton;

2. M1 andM2 have the same unshielded colliders;

3. If a path p is a discriminating path for a node Y in bothM1 andM2, then Y is a collider on
the path in one graph if and only if it is a collider on the path in the other.

Theorem 1 states that the pairs 〈D1,I1〉 and 〈D2,I2〉 are Ψ-Markov equivalent if their corresponding
I-MAGs satisfy the corresponding three conditions, as illustrated in the example below.
Example 5. Consider the pairs 〈D1,I1〉 and 〈D2,I2〉 in Figs. 1a and 1b, respectively. The corre-
sponding I-MAGs are shown in Figs. 1d and 1e satisfy the three conditions in Thm. 1, hence the
pairs are Ψ-Markov equivalent. Note K , according to Def. 4, is {{X}} for I1 and {{X,W}} for I2.
Hence, F1 is adjacent to {X} in AugI1 (D1) and F1 is adjacent to {X,W} in AugI2 (D2). However, F1
is adjacent to W in Fig. 1d due to the inducing path 〈F1, X,W〉 in AugI1 (D1). On the other hand,
〈D3,I3〉 in Fig. 1c is not Ψ-Markov equivalent to either one of the other pairs as we violate all three
conditions of Thm. 1. For instance, the I-MAGs in Figs. 1e and 1f do not share the same skeleton,
〈F1, X,W〉 is an unshielded collider only in Fig. 1f, and p = 〈F1, X,Z,Y〉 is a discriminating path for
Z in both; however, Z is a collider along p in Fig. 1f while it is a non-collider in Fig. 1e.

In a setting where the observational distribution is available and identified among the available
distributions, it becomes necessary to fix ∅ across I1,I2, which is a special case of Thm. 1. Further,
note that the graphical characterization introduced in [17] for causal graphs with known interventional
targets is a special case of Thm. 1 whenever I1 = I2 with the controlled experiment setting.

3.1 Markovian Case

One special class of causal graphs that is of high interest in the literature is known as Markovian,
where there is no latent variable affecting more than one observable node (i.e., no bidirected arrows).
It follows from Theorem 1 the following graphical characterization for this class of models.
Corollary 1. Given causal graphs without latents,D1 = (V,E2),D2 = (V,E2), and the correspond-
ing interventional targets I1,I2, the pairs 〈D1,I1〉 and 〈D2,I2〉 are Ψ-Markov equivalent if and
only if AugI1 (D1) and AugI2 (D2) have (1) the same skeleton and (2) the same unshielded colliders.

Note that under known interventional targets (i.e., I1 = I2), Corol. 1 recovers and generalizes the
characterization in [34, Thm. 3.9] by encoding different interventional mechanisms and thus identify-
ing a smaller equivalence class. For a more detailed comparison, we refer readers to Appendix D.1.

4 Learning Algorithm: Soundness and Completeness

We investigate in this section the problem of how to learn the Ψ-Markov EC (Def. 3) from a tuple of
interventional distributions generated by some unknown pair 〈D,I〉. The characterization provided
in Thm. 1 together with PAGs motivate the following definition of Ψ-PAG.
Definition 6 (Ψ-PAG). Given a pair of causal graph and interventional target, 〈D,I〉, let M =
MAG(AugI (D)), and let [M] be the set of I-MAGs corresponding to all the pairs 〈D′,I ′〉 that are
Ψ-Markov equivalent to 〈D,I〉. The Ψ-PAG for 〈D,I〉, denoted P, is a graph such that:

1. P has the same adjacencies asM, and any member of [M] does; and

2. every non-circle mark (tail or arrowhead) in P is an invariant mark in [M].

Some remarks follow immediately from this definition. First, Ψ-PAG generalizes PAGs, as used
in the observational case. Second, even though the augmented F-nodes are part of the Ψ-PAG,
which is the very target of the learning process, they never transpire as random variables, and are

3We assume the symmetrical difference sets K1, corresponding to I1, and K2, corresponding to I2, are
indexed following the same pattern such that K1 3 Kk = Ii∆I j where Ii, I j ∈ I1 iff K2 3 Kk = Ii∆I j where
Ii, I j ∈ I2. This is required to maintain the correspondence between the F-nodes inM1 andM2.
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Algorithm 1 Ψ-FCI: Algorithm for Learning a Ψ-PAG
Input: Tuple of distributions P = 〈P1, . . . , Pm〉

Output: Ψ-PAG P
1: F ← ∅, k ← 0, σ : N→ N × N
2: for all pairs Pi, P j ∈ P do k ← k + 1, F ← F ∪ {Fk}, σ(k)→ (i, j)
3: Phase I: Skeleton
4: Form a complete graph P over V ∪ F with ◦−◦ edges between every pair of nodes.
5: for every pair X,Y ∈ V ∪ F do
6: if X ∈ F ∧ Y ∈ F then SepSet(X,Y)← ∅, SepFlag← True
7: else (SepSet(X,Y), SepFlag)← InvToSep(P, X,Y,V,F , σ)
8: if SepFlag = True then Remove the edge between X,Y in P.
9: Phase II: Unshielded Colliders

10: R0: For every unshielded triple 〈X,Z,Y〉 in P, orient it as X∗→ Z ←∗Y iff Z < SepSet(X,Y)
11: Phase III: Orientation Rules
12: Rule R+: For any Fk ∈ F , orient adjacent edges out of Fk.
13: Apply the seven FCI rules in [37] (R1 − R4,R8 − R10) until none applies.

14: function InvToSep(P, X,Y,V,F , σ)
15: SepSet← ∅, SepFlag← False
16: if X < F ∧ Y < F then Pick Pi ∈ P arbitrarily.
17: for W ⊆ V \ F do
18: if Pi(y|w, x) = Pi(y|w) then SepSet←W ∪ F , SepFlag← True, break
19: else Suppose X ∈ F ,Y < F , and let Fk denote X.
20: (i, j)← σ(k)
21: for W ⊆ V \ {Y} do
22: if Pi(y|w) = P j(y|w) then SepSet←W ∪ F \ {Fk}, SepFlag← True, break

return (SepSet, SepFlag)

merely graphical instruments used to represent the equivalence class. In fact, the real invariance
tests across distributions are stated in the Ψ-Markov property (Def. 2). Third, as expected in any
learning setting, some type of faithfulness assumption is needed to infer graphical properties from the
corresponding distributional constraints [37, 34, 17, 30]. Hence, we assume that the given collection
of interventional distributions is c-faithful to the true generating causal graphD as defined next.
Definition 7 (c-faithfulness). Consider a causal graphD. A tuple of distributions 〈PI〉I∈I ∈ ΨI (D)
is called c-faithful toD if the converse of each of the Ψ-Markov conditions (Def. 2) holds.

The new algorithm is called Ψ-FCI and is shown in Alg. 1. Ψ-FCI starts by mapping every pair of
distributions in P to a constructed F-node (line 2). In Phase I, Ψ-FCI learns the skeleton of the Ψ-PAG
P. It starts by creating a complete graph of circle edges (◦−◦) over V ∪ F , and then uses the function
InvToSep(·) at line 7, which we discuss next, to infer a separation set for every pair of nodes, if such
a set exists. Line 6 handles a special case in which both nodes are F-nodes and are separable by the
empty set, by construction. Phase II recovers the unshielded colliders 〈X,Z,Y〉 by checking that Z
does not belong to the corresponding separation set SepSet(X,Y). Finally, the algorithm orients all
the edges incident on F-nodes out of them in R+ followed by a subset of the FCI rules until none
applies anymore. Note that we drop three of the FCI rules (R5 − R7) as they are only applicable in
the presence of selection bias which we do not consider.

InvToSep(·) can be considered as the most fundamental part of Ψ-FCI. This function infers separation
sets for pairs of nodes in P from the invariances found across the distributions.4 The separation sets
are key in Ψ-FCI to learn the skeleton and orient the edges of P. If both X and Y are not F-nodes,
then we pick an arbitrary distribution Pi ∈ P and check if there exists a subset of the variables W
such that (X ⊥⊥ Y |W ) in Pi (lines 3-5). The reason we choose an arbitrary distribution in P is that the
set of conditional independences that can be read from an observational or interventional distribution
is the same under soft interventions. For the next step, recall that every F-node is mapped to a unique
pair of distributions in P. If one of the two nodes is an F-node, denoted Fk, then we search for a
subset of variables W such that Pi(y|w) = P j(y|w) where (i, j)← σ(k). If such an invariance exists,

4There are different ways of implementing hypothesis testing for the distributional invariances, as required
in line 22 of Ψ-FCI. In fact, these tests can be seen as evaluating statements in the form |P̂i(y|w) − P̂ j(y|w)| ≤ ε,
where the hat represents the empirical distribution. Ψ-FCI is agnostic to the particular implementation of the test,
which is in general chosen based on the specific details of the setting.
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Figure 2: Different phases of Ψ-FCI to learn Ψ-PAG P given a tuple of distributions 〈P1, P2〉 that is
generated by the unknown pair 〈D,I〉, shown in Fig. 1a.

we mark W ∪ F \ {Fk} as a separating set between Fk and Y . The validity of this function follows
from the constraints of the Ψ-Markov property (Def. 2) and the equivalences in Proposition 1 coupled
with the c-faithfulness assumption in Def. 7. We illustrate the use of Ψ-FCI in the example below.

Example 6. Consider a tuple of distributions 〈P1, P2〉 and let the pair 〈D,I〉 in Fig. 1a be the true
and unknown causal graph and set of corresponding interventional targets. I-MAGM is shown in
Fig. 1d and the aim is to recover the corresponding Ψ-PAG P. Fig. 2a shows the output of Phase
I. For instance, F1 and Y are separable by {X,Z}, which is inferred by the distributional invariance
P1(Y |X,Z) = P2(Y |X,Z). Phase II recovers the unshielded colliders as shown in Fig. 2b. For example,
〈F1,W,Y〉 is oriented as a collider since W < SepSet(F1,Y) = {X,Z}. Finally, Phase III applies the
orientation rules which gives the graph in Fig. 2c. The edges incident on F1 are oriented out of it by
R+, X → Y by R1, the arrowhead on X◦→ W by R2, and Z → Y by R4.

Putting these observations together, finally, the next theorem ascertains the soundness of Ψ-FCI.

Theorem 2 (Ψ-FCI Soundness). Assuming tuple P is generated by unknown pair 〈D,I〉, then Ψ-FCI
is sound in the sample limit, i.e., MAG(AugI(D)) has the same skeleton as PΨ-FCI, the Ψ-PAG
learned by Ψ-FCI, and shares all its tail and arrowhead orientations.

4.1 Ψ-FCI Completeness

One common question for any learning algorithm is how close it can get to the underlying causal
structure. In the limit, one would like to discover all the invariant features of the corresponding
Ψ-Markov EC, a property called completeness. Concretely, for every circle mark on an edge end
in PΨ-FCI, we need to establish the following. There exist two pairs 〈D1,I1〉 and 〈D2,I2〉 that are
Ψ-Markov equivalent to the true pair 〈D,I〉 such that the corresponding I-MAGsM1 andM2 have
different marks for that end (i.e., one has a tail while the other has an arrowhead), as illustrated next.

Example 7. Consider Ψ-PAG P in Fig. 2c from Ex. 6. I-MAGs in Figs. 1d and 1e are both in the
corresponding equivalence class represented by P. Notice that for every circle mark in P, the mark
is a tail in one of the I-MAGs while it is an arrowhead in the other. Hence, the orientations are
complete. If the observational distribution is known, then consider the graph D2 in Fig. 1b with
I∗2 = 〈∅, {X,W}〉. The corresponding I-MAG is the one in Fig. 1e, so we obtain the same result.

To understand the challenge of establishing Ψ-FCI’s completeness, denote byM′ a complete orienta-
tion of PΨ-FCI. Note that even thoughM′ may satisfy the three conditions of Thm. 1 with respect to
the true I-MAGM, it is not implied thatM′ is a valid I-MAG. Following the further requirements
of Def. 5, we show next that there exists a pair 〈D′,I ′〉 such that MAG(AugI′ (D′)) =M′.

Lemma 1. LetD(V ∪ L,E) denote a causal graph, I denote a set of interventional targets,M =
MAG(AugI (D)), andM′ denote an arbitrary MAG over V ∪ F . If the following holds:

1. All the edges incident on F inM′ are out of F ; and,

2. M andM′ share the same separation statements over V ∪ F ,

then there exists a pair 〈D′,I ′〉, including when ∅ ∈ I and is fixed, such that MAG(AugI′ (D′)) =M′.
In other words,M′ is an I-MAG and the pair 〈D′,I ′〉 is Ψ-Markov equivalent to 〈D,I〉.

Based on this result, completeness can be finally proved as shown next.

Theorem 3 (Ψ-FCI Completeness). Assuming tuple P is generated by unknown pair 〈D,I〉, then
Ψ-FCI is complete, i.e., P contains all the common edge marks in the Ψ-Markov equivalence class.
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A few compelling connections emerge from this proposition. Leveraging Corollary 1, one can show
that a variant of Ψ-FCI constrained to Meek’s rules (which we called Ψ-PC) is also complete in the
Markovian case for both known and unknown interventional targets. On the other hand, perhaps
surprisingly, it can also be shown that the same result does not hold when sufficiency cannot be
ascertained. For a more detailed discussion on these subtleties, see [13, Appendix C].

5 Conclusion

In this work, we investigated the problem of learning causal graphs with latent variables from a
mixture of observational and interventional distributions with unknown interventional targets. We
started by defining the Ψ-Markov property that connects a tuple of distributions with unknown targets
to a pair of causal graph D and a corresponding possible interventional target set I . Accordingly,
two pairs 〈D1,I1〉 and 〈D2,I2〉 are said to be Ψ-Markov equivalent if they license the same tuples
of distributions. Based on this refined equivalence relation, we derived a graphical characterization to
evaluate whether two pairs are in the same Ψ-Markov equivalence class. Finally, we developed a sound
and complete algorithm that recovers a Ψ-Markov equivalence class given a tuple of distributions.
This work grounds the theoretical aspects of learning from unknown soft-interventions, thus, as we
envision, paving the way for a new family of more robust and scalable methods that can address issues
of computational and sample complexity, including score-based and approximation algorithms.

Broader Impact

Learning cause-and-effect relationships is one of the fundamental problems for various fields, includ-
ing biology [28, 6], epidemiology [26], and economics [12]. The introduced characterization and
algorithm provide a clear understanding on how to accomplish this task while leveraging interven-
tional data, even when the interventional targets are unknown. Moreover, the proposed approach can
be instrumental towards explainability in artificial intelligence, which has been a topic of increas-
ing importance recently. On the other hand, performing experiments to obtain interventional data
poses some ethical challenges, such as randomizing the smoking factor which would require forcing
individuals to smoke. Therefore, such limitations and concerns should be taken into consideration.
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– Supplementary Material

A Proofs of Section 3

Theorem 4 (CBN Invariances). LetD = (V ∪ L,E) denote the causal graph of a CBN, and let P be
a tuple of interventional distributions generated byD. Then, the following distributional invariances
hold for disjoint Y,Z,W ⊆ V:

(a) For PI ∈ P: PI(y|w, z) = PI(y|w) if Y ⊥⊥ Z |W inD

(b) For PI, PJ ∈ P: PI(y|w) = PJ(y|w) if Y ⊥⊥ K |W \WK inDWK,R(W),

where K B I∆J, WK CW ∩K, R B K\WK, and R(W) ⊆ R are non-ancestors of W inD.

Proof. Constraint (a) follows from the factorization of PI(V) according to Equation 1 and the
d-separation criterion [7, Thm. 2].

To prove (b), we construct a hypothetical CBN while modeling the intervention on each variable with
an endogenous root node/variable. This is valid because we assume the soft interventions are triggered
by exogenous agents that are not affected by any variable inD. Let In, Jn denote the set of nodes in
I, J without the mechanism identifiers. We augmentD with the set of nodes F = {Fi|Vi ∈ In ∪ Jn}

and edges E = {Fi → Vi|Fi ∈ F }. We refer to the constructed causal graph asD′. For each variable
Vi with Fi, we have a new set of parents Pa′i = Pai ∪ {Fi}. The distribution of P(Vi|Pa′i) is given as
follows where P j(Vi|Pai) is a unique conditional probability for each identifier j.

P(Vi|Pa′i) =

{
P(Vi|Pai), if Fi = 0/idle
P j(Vi|Pai), if Fi = j.

Finally, each Fi has an arbitrary prior distributions over its domain. This induces a new distribution
P′ over V ∪ L ∪ F and P′ factorizes according toD′. Then, PI(V) relates to P′ as follows where we
condition on every Fi ∈ F such that (1) Fi = idle if Vi < In and (2) Fi = k if Vk

i ∈ I.

PI(V) =
∑

L

P′(V ∪ L|Fi = j, . . . ) (4)

A similar expression applies for PJ(V). Now, let FK = {Fi|Vi ∈ I∆J}. If (FK ⊥⊥ Y |W )D′ , then
changing the conditioning values of FK is irrelevant to Y and we get PI(y|w) = PJ(y|w).

Finally, let G = Aug{I,J}(D). By Prop. 1, the d-separation statement in Constraint (b) is equivalent
to (F1 ⊥⊥ Y |W )G. The differences between D′ and G are: (1) D′ has the additional F nodes for
(In ∪ Jn) \ (I∆J), and (2) G merges FK in node F1. It is easy to see that the differences do not affect
the separation statement, so (FK ⊥⊥ Y |W )D′ ⇐⇒ (F1 ⊥⊥ Y |W )G. This concludes the proof. �

Proof of Proposition 1. This result has been established in [17, Proposition 1]. �

Proof of Theorem 1. (If) IfM1 andM2 satisfy the three graphical conditions, then they entail the
same separation statements ([37, Def. 5 & Prop. 2]). This in turn implies that the corresponding
augmented graphs entail the same separation statements as well ([25, Theorem 4.18]). It follows
by Proposition 1 that the pairs 〈D1,I1〉 and 〈D2,I2〉 impose the same set of graphical constraints
mandated by Definition 2. Hence, a tuple of distributions P satisfies the Ψ-Markov property with
respect to 〈D1,I1〉 if and only if it satisfies the Ψ-Markov property with respect to 〈D2,I2〉. Therefore,
〈D1,I1〉 and 〈D2,I2〉 satisfy Definition 3 and they are Ψ-Markov equivalent.

(Only if) This proof follows exactly as the necessity condition (only if) of [17, Theorem 2]. �
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Proof of Corollary 1. In the absence of latent nodes, AugI(D) = MAG(AugI(D)) which justifies
the use of the augmented graphs directly instead of the I-MAGs. Note that the augmented graph is a
special I-MAG with no bi-directed edges. It follows that for every discriminating path for a node Y
in AugI (D), Y has to be a non-collider. This trivially satisfies the third condition of Theorem 1. This
concludes the proof. �

B Proofs of Section 4

Proof of Theorem 2 (soundness). Assuming the data is generated by some unknown pair 〈D,I〉,
then P satisfies the Ψ-Markov property with respect to 〈D,I〉 by Theorem 4. This implies that the
Ψ-PAG learned in Ψ-FCI over P is defined relative to 〈D,I〉. The correctness of Phase I of Ψ-FCI
follows from Proposition 1 and the faithfulness assumption (Def. 7) with regard to the Ψ-Markov
property in Def. 2. Orienting the unshielded colliders follows from the soundness of InvToSep(·) and
recovering the separation sets (SepSet). Finally, R+ is valid by construction of every I-MAG in the
equivalence class. The FCI orientation rules are sound since an I-MAG is a MAG as well and does
not contain cycles or almost directed cycles. This concludes the proof. �

Proof of Lemma 1. First, we construct an interventional target set I∗ such that the adjacencies of F
in both AugI∗ (D) andM are the same. We construct I∗ as follows:

1. Let I∗ = 〈I∗1, . . . , I
∗
|I |〉 and I∗i = {V i

1, . . . ,V
i
|V|} where V i

j denotes an intervention on V j with a
mechanism unique for I∗i as opposed to the other interventional targets.

2. Choose any pair of nodes Fk ∈ F ,Vp ∈ V that are adjacent in AugI∗(D) but not adjacent
inM. For I∗i ,I

∗
j such that I∗i ∆I∗j = Kk, switch the mechanism V i

p to V j
p in I∗i and in every

interventional target that has the mechanism V i
p.

3. Repeat step 2 until it is not applicable anymore.

Step 1 initializes I∗ such that, in AugI∗ (D), every node in F is adjacent to all the nodes in V. Step 2
is applied recursively to remove adjacencies of F-nodes in AugI∗ (D) that are not present inM. Note
that Step 2 does not add any adjacencies to AugI∗ (D). It is left to show that Step 2 does not remove a
required adjacency that is inM.

For the sake of contradiction, consider the first iteration of Step 2 such that a required adjacency
is lost and let it be between the pair Fl and Vm where Fl is adjacent to Kl = I∗a∆I∗b, following the
construction in Def. 4. Obviously, I∗a, I∗b are not the modified targets in Step 2 since Fl and Vm do
not satisfy the condition. Then, there exists a subset of I∗, denoted 〈I∗a, I∗i , I

∗
j , I
∗
b〉, such that (1) I∗i , I

∗
j

are the pair of targets in which the mechanism of Vm is modified to be the same in Step 2, and (2)
the mechanism of Vm in the pairs I∗a, I∗i and I∗j , I

∗
b are the same from previous iterations of Step 2

which makes them consistent (required to be the same mechanisms). If I∗a, I∗j or I∗i , I
∗
b require the

same mechanism for Vm so that it is not adjacent to the corresponding F-node, then we obtain a
triple 〈I∗h1

, I∗h2
, I∗h3
〉, where h1 = a, h2 = i (or h2 = j), and h3 = b, and all the targets have the same

mechanism for Vm; yet, the mechanism is only required to be different between I∗a and I∗b such that
Fl and Vm are adjacent. Otherwise, I∗a, I∗j (and I∗i , I

∗
b) require a different mechanism for Vm and we

obtain a similar triple with h2 = j (or h2 = i). Next, we prove that such a triple in I∗ cannot exist.

Now, the required difference in the mechanism of Vm between I∗h1
and I∗h3

is due to the adjacency of Fl

and Vm inM. If this adjacency is in AugI(D), then the difference in the mechanism of Vm between
I∗h1

and I∗h3
exists in I . This leads to a contradiction as the inconsistent pattern of mechanisms in the

subset of I∗ would exist in I as well; which is impossible.

Alternatively, Fl and Vm are not adjacent in AugI (D) but they are adjacent inM. It follows that Fl is
adjacent to some node Vs in AugI(D) and there is an inducing path between Fl and Vm through Vs.
Consider the interventional targets 〈Ih1 , Ih2 , Ih3〉 in I which correspond to 〈I∗h1

, I∗h2
, I∗h3
〉 in I∗. The

mechanism of Vs in Ih1 , Ih3 is different based on the previous observation. Hence, the mechanism of
Vs in Ih2 must be different than Ih1 or Ih3 . Without loss of generality, let the mechanism of Vs in Ih2

be different than that in Ih1 . Thus, the corresponding F-node of Ih1 , Ih2 is adjacent to Vs in AugI (D),
and consequently adjacent to Vm inM due to the inducing path. But, Vm has the same mechanism in
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I∗h1
, I∗h2

consistently with the absence of an adjacency between the corresponding F-node and Vm in
M; a contradiction. Therefore, the given algorithm to construct I∗ is sound.

If ∅ ∈ I for some Ir (could be more than one) and it is fixed/known, then apply the following
adjustment to I∗. For every V j

i ∈ I∗t such that V j
i ∈ I∗r , remove V j

i from I∗t . Note this leads to I∗r = ∅.
This gives a valid construction for I∗ where the observational target set is fixed relative to I .

Finally, consider the pair 〈D∗,I∗〉, whereD∗ is the induced subgraph ofM′ over V while replacing
every bidirected edge i↔ j with i← Ui, j → j, and I∗ is the set of interventional targets constructed
earlier. It is easy to show that MAG(AugI∗(D∗)) = M′. First, MAG(D∗) = M′V, the induced
subgraph of M′ over V. Second, I∗ generates F-nodes and corresponding adjacencies as those
inM by construction. Also, M andM′ share the same skeleton following the second condition
of the lemma at hand, and the edges incident on the F-nodes in M′ are out of them by the first
condition. Hence, the F-node adjacencies in AugI∗(D∗) are the same asM, and consequentlyM′.
Third, there are no inducing paths between non-adjacent nodes in AugI∗ (D∗) except for i← Ui, j → j.
Assume for the sake of contradiction that such an inducing path exists. Then, the same path, while
replacing i← Ui, j → j with↔, would exist inM′. However, this is not possible sinceM′ is a MAG
(maximal property); a contradiction. It follows that MAG(AugI∗(D∗)) =M′ andM′ is an I-MAG.
Therefore, 〈D∗,I∗〉 is Ψ-Markov equivalent to 〈D,I〉 as their corresponding I-MAGs satisfy the
three conditions of Theorem 1 by the second condition of the current lemma. �

B.1 Ψ-FCI (Algorithm 1) Completeness

To prove completeness of the orientations, we need to establish that none of the circle marks left in a
Ψ-PAG output by Ψ-FCI, denoted PΨ-FCI, hide an arrowhead or tail orientation that is common for all
the I-MAGs in the equivalence class. The result is established in two phases. The first one proves
that the arrowheads in PΨ-FCI are complete while the second proves it for the tails.

B.1.1 Arrowhead Completeness

This proof follows the same procedure in [37] to prove the completeness of the PAG (FCI output).
We start with the following graphical property which is crucial for the completeness proof.

Lemma 2. In PΨ-FCI, the following property holds:

for any three nodes A, B, C, if A∗→ B ◦−∗ C, then there is an edge between A and C with an
arrowhead at C, namely, A∗→ C. Furthermore, if the edge between A and B is A→ B, then the edge
between A and C is either A→ C or A◦→ C (i.e., it is not A↔ C).

Proof. For the sake of contradiction, suppose the property does not hold and there exists at least one
triple 〈A, B,C〉 such that the edge between A and B is into B and the edge between B and C has a
circle incident on B, but the consequent does not hold. First, it is easy to see that A and C have to
be adjacent, otherwise the circle mark incident on B would be oriented by R0 or R1. The rest of the
proof extends that of [37, Lemma A.1] which exhausts the orientation rules (R0 − R4) that could
orient the edge between A and B into B while violating the property, and reaches a contradiction in
all. In the last case, suppose A∗→ B is oriented by R+ which means that A is an F node. It trivially
follows by R+ that the edge between A and C is out of A and into C which is a contradiction. This
concludes the proof. �

The following property follows from Lemma 2 with exactly the same proof of [35, Lemma 3.3.2].

Lemma 3. In PΨ-FCI, for any two nodes A and B, if there is a circle path, i.e., a path consisting of
◦−◦ edges, between A and B, then:

(i) if there is an edge between A and B, the edge is A ◦−◦ B.

(ii) for any other node C, C∗→ A if and only if C∗→ B. Furthermore, C ↔ A if and only if
C ↔ B.

Proof. The proof follows that of [35, Lemma 3.3.2]. �
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We refer to the subgraph of PΨ-FCI consisting of circle edges (◦−◦) as PC . We have the following
property.

Lemma 4. For every A ◦−◦ B in PC , PC can be oriented into a DAG with no unshielded colliders in
which A→ B appears, and can also be oriented into a DAG with no unshielded colliders in which
A← B appears.

Proof. The work in [19] shows that all chordal undirected graphs have the desired property. Hence,
it is sufficient for the sake of establishing the property to show that PC is chordal. Suppose for
the sake of contradiction that there is a chordless cycle of four or more circle edges in PC . Let
〈V0,V1,V2,V3, . . . ,V0〉 be the shortest such cycle. Note that no two non-consecutive nodes on the
cycle are adjacent in PΨ-FCI as the edge would have to be a circle edge by Lemma 3 which creates
a shorter cycle. This leads to a contradiction as Ψ-FCI would have detected at least one collider
by R0 along this undirected cycle; otherwise, we have a directed cycle in the causal graph and the
corresponding I-MAG which is not possible. This concludes the proof. �

Using the above properties, we show that the following procedure generates a special I-MAG that is
in the equivalence class of a given PΨ-FCI output by Ψ-FCI.

Lemma 5. LetH be the result of applying the following procedure to PΨ-FCI:

1. orient the circles on ◦→ edges as tails; and

2. orient PC into a DAG with no unshielded colliders.

ThenH is an I-MAG in the equivalence class of PΨ-FCI.

Proof. The proof extends that of [35, Lemma 3.3.4] which proves that the resulting graph, denoted
M, is a MAG and shares the same independence model as that of the true (I-MAG) MAG. Note here
the true I-MAG is generated by some pair 〈D,I〉. Also, all the edges incident on the F-nodes inM
are out of them since the orientations ofM are consistent with PΨ-FCI which applies R+. It follows by
Lemma 1 thatM is an I-MAG in the corresponding equivalence class. This concludes the proof. �

Finally, the construction in Lemma 5 along with the property in Lemma 4 establishes the following
result of arrowhead completeness. This concludes the first phase of the completeness proof. It is left
to prove that the tail marks are complete as well.

Proposition 2. PΨ-FCI is arrowhead complete, i.e., each circle inPΨ-FCI is not an invariant arrowhead,
and it is a tail in some I-MAG in the equivalence class of PΨ-FCI.

Proof. This result follows from Lemmas 4 and 5. �

B.1.2 Tail Completeness

Lemmas 4 and 5 together establish that for every circle edge inPΨ-FCI, a circle mark can be oriented as
an arrowhead in some I-MAG in the corresponding equivalence class. To prove the tail completeness,
it is left to show that a circle mark on a partially directed edge ◦→ can be oriented as an arrowhead in
some I-MAG in the equivalence class. This is established by the following proposition.

Proposition 3. PΨ-FCI is tail complete, i.e., each circle in PΨ-FCI is not an invariant tail, and it is a
arrowhead in some I-MAG in the equivalence class of PΨ-FCI.

Proof. This proof follows almost exactly the same procedure in [37, Subsection 4.2] to establish the
analogous result in PAGs, while assuming the absence of selection bias which rules out the orientation
rules R5 − R7 and the presence of undirected edges in the I-MAGs. For each MAGM constructed
in the proof, we use the utility result in Lemma 5 to establish thatM is in fact an I-MAG generated
by a pair 〈D,I〉 that is in the Ψ-Markov equivalence class. �

Proof of Theorem 3. This follows from Propositions 2 and 3. �
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Algorithm 2 Ψ-PC: Algorithm for Learning a Ψ-PDAG
Input: Tuple of distributions P = 〈P1, . . . , Pm〉

Output: Ψ-PDAG P
1: F ← ∅, k ← 0, σ : N→ |P| × |P|
2: for all pairs Pi, P j ∈ P do k ← k + 1, F ← F ∪ {Fk}, σ(k)← (i, j)
3: Phase I: Skeleton
4: Form a complete graph P over V ∪ F with ◦−◦ edges between every pair of nodes.
5: for every pair X,Y ∈ V ∪ F do
6: if X ∈ F ∧ Y ∈ F then SepSet(X,Y)← ∅, SepFlag← True
7: else (SepSet(X,Y), SepFlag)← InvToSep(P, X,Y,V,F , σ)
8: if SepFlag = True then Remove the edge between X,Y in P.
9: Phase II: Unshielded Colliders

10: R0: For every unshielded triple 〈X,Z,Y〉 in P, orient it as X∗→ Z ←∗Y iff Z < SepSet(X,Y)
11: Phase III: Orientation Rules
12: Rule R+: For any Fk ∈ F , orient adjacent edges out of Fk.
13: Apply the three orientation rules from [19], shown in Fig. 3, until none applies.

C Complete Algorithm for Causally Sufficient Models

In this section, we present a sound and complete algorithm to learn an equivalence class of causal
graphs under causal sufficiency from interventional data with unknown interventional targets.
Definition 8 (Ψ-PDAG). Given a pair of causal graph with no latents and interventional target,
〈D,I〉, let G = AugI (D), and let [G] be the set of augmented graphs corresponding to all the pairs
〈D′,I ′〉 that are Ψ-Markov equivalent to 〈D,I〉. The Ψ-PDAG for 〈D,I〉, denoted P, is a graph
such that:

1. P has the same adjacencies as G, and any member of [G] does; and

2. every non-circle mark (tail or arrowhead) in P is an invariant mark in [G].

The algorithm is named Ψ-PC, following the PC algorithm for the Markov equivalence class, and is
shown in Alg. 2. Ψ-PC is almost identical to Ψ-FCI except for the orientation phase where we apply
the three rules in Fig. 3 from Meek [19] instead of the FCI rules. The soundness of Ψ-PC follows
from the completeness of Ψ-FCI and [19, Thm. 2]. Our main objective is to prove the completeness
of Ψ-PC under causal sufficiency akin to Ψ-FCI. This claim is established in Thm. 5 below.
Theorem 5 (Ψ-PC Completeness). Assuming tuple P is generated by unknown pair 〈D,I〉, then
Ψ-PC is complete, i.e., P contains all the common edge marks in the Ψ-Markov equivalence class.

Proof. Let PC denote the subgraph of PΨ-PC consisting of undirected/circle edges and their corre-
sponding nodes. By Lemma 6, it is easy to show that PC is chordal using a proof similar to that of
Lemma 4. It follows by [19, Lemma 5] that we can orient PC as a DAG with no unshielded colliders
with any circle edge A ◦−◦ B oriented as A→ B in one and A← B in another.

Consider G′ to be any fully oriented graph starting from PΨ-PC and consistent with the previous
property. Assume for the sake of contradiction that G′ contains a cycle and consider the shortest one
denoted p. Then, we must have A → B ◦−◦ C along p in PΨ-PC. By Lem. 6, we have A → C and
we obtain a shorter cycle in G′; contradiction. Similarly, assume G′ contains an unshielded collider
that is not in PΨ-PC. Then, we must have A→ B ◦−◦C in PΨ-PC such that A is not adjacent to C and
B ◦−◦C is oriented B← C in G′. This is not possible as A,C are adjacent in PΨ-PC by Lem. 6. Hence,
G′ is a DAG with the same skeleton and unshielded colliders as the true augmented graph G.

Finally, let D′ denote the induced subgraph of G′ over V. In the absence of latents, it is easy to
see that AugI(D′) = G′, where 〈D,I〉 is the true pair. It follows by Corollary 1 that 〈D′,I〉 is
Ψ-Markov equivalent to 〈D,I〉 and G′ ∈ [G]. This concludes the proof. �

Lemma 6. In PΨ-PC, the output of Ψ-FCI, the following property holds: if A→ B◦−◦C, then A→ C.

Proof. Suppose for the sake of contradiction that there is a triple A, B,C such that the above property
does not hold. If A and C are not adjacent, then B ◦−◦C will be oriented by R1. Also, we can’t have
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Figure 3: The three orientation rules used in Ψ-PC.

A← C as B ◦−◦C will be oriented by R2. The rest of the proof extends that of [19, Lemma 1] where
we consider every orientation rule that could orient A→ B and reach a contradiction in each. Last
option is A→ B is oriented by R+. This means that A is an F-node and we also have A→ C, which
is a contradiction to the initial assumption. This concludes the proof. �

It is relevant to note that Meek [19] introduces a fourth rule that is only applicable when background
knowledge is available. The additional rule is necessary to prove the completeness of the PDAG for
the Markov equivalence class with arbitrary background knowledge. However, given the restricted
nature of the background knowledge we have, represented by R+, this rule turns out to be not needed,
i.e., not applicable.

C.1 Known Interventional Targets

Given a pair 〈D,I〉, we can see by Corol. 1 that the corresponding Ψ-Markov equivalence class
with I known/fixed (I-Markov) is a subset of the Ψ-Markov equivalence class with unknown
interventional targets. Hence, the completeness result for unknown interventional targets raises the
question of whether the algorithm is also complete for known interventional targets. The following
lemma is key to answer this question.

Lemma 7. Let 〈D1,I1〉 and 〈D2,I2〉 be two arbitrary pairs, each with a causal graph with no latents
and an interventional target sets. If 〈D1,I1〉 is Ψ-Markov equivalent to 〈D2,I2〉, then 〈D1,I1〉 is
Ψ-Markov equivalent to 〈D2,I1〉 and 〈D1,I2〉 is Ψ-Markov to 〈D2,I2〉.

Proof. If 〈D1,I1〉 is Ψ-Markov equivalent to 〈D2,I2〉, then AugI1 (D1) and AugI2 (D1) share the
same skeleton and unshielded colliders (Corol. 1). By Def. 4, it is easy to see that AugI2 (D1) and
AugI1 (D2) share the same skeleton and unshielded colliders with AugI1 (D1) and AugI2 (D1). Hence,
the result in the lemma follows. �

In words, Lemma 7 establishes that the size, i.e., number of causal graphs, of a Ψ-Markov equivalence
class under unknown interventional targets is the same as that with known interventional targets. This
implies that knowing the interventional targets does not have an impact on the causal discovery task.
Hence, the next result follows easily.

Theorem 6 (Completeness with Known Targets). Assuming tuple P is generated by unknownD with
known interventional targets I , then Ψ-PC is complete, i.e., P contains all the common edge marks
in the Ψ-Markov equivalence class.

Proof. This follows from Lemma 7 and Theorem 5. �

An important remark here is that Lemma 7 does not hold in the presence of latents. For instance, the
pairs 〈D1,I1〉 and 〈D2,I2〉 in Fig. 1a and 1b are Ψ-Markov equivalent as shown in Ex. 5. However,
〈D2,I1〉 is not Ψ-Markov equivalent to 〈D1,I1〉. This is also evident by the additional orientation
rule in [17, Alg. 1, Rule 9] which is not sound for unknown interventional targets. Hence, the
question of completeness for causal discovery from interventional data with known interventional
targets remains open.
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Figure 4: Two causal graphD1 andD2 with the interventional target set I = 〈∅, {X1,Y1}, {X2,Y1}〉.

D Connections with Previous Work

In this section, we explore how our framework compares with some of the related work in the area
of causal discovery from interventional data. In general, we show that the proposed work identifies
equivalence classes that are strictly smaller than the ones recovered by other methods.

D.1 Yang et al. [34] & Squires et al. [30]

The work in [34] investigates learning equivalence classes of causal graphs without latents from
interventional data with known interventional targets. They use interventional nodes, which are anal-
ogous to F-nodes in our approach, to graphically characterize causal graphs that are interventionally
equivalent (i.e., I-Markov equivalent). We note they do not encode the different mechanisms for
variables within each interventional target in I . The work in [30] builds on this characterization
and develop a learning algorithm under unknown interventional targets. First, we consider the case
when the observational distribution is available, i.e., ∅ ∈ I , as this is handled separately in [34, Thm.
3.9]. The next example shows that our equivalence class is strictly more informative under causal
sufficiency (Corol. 1) and known interventional targets.

Example 8. Consider the causal graphs in Figs. 4a, 4d, denoted by D1,D2, respectively, and
the known set of interventional targets I = 〈∅, {X1,Y1}, {X2,Y1}〉. Note X is intervened on with
different mechanisms (X1, X2) while Y is intervened on with the same mechanism (Y1). The graphical
characterization of [34, Thm. 3.9] does not encode different mechanisms, and appends graphD with
one interventional node per interventional target, excluding the observational (∅), and adds directed
edges from the interventional nodes to the corresponding interventional targets. The constructed
graph is referred to as I-DAG DI . Back to the example, the corresponding I-DAGs for D1,D2
are shown in Figs. 4c, 4f, respectively. The two graphs are said to be I-Markov equivalent as their
corresponding I-DAGs share the same skeleton and unshielded colliders. On the other hand, our
approach constructs the corresponding augmented graphs shown in Figs. 4b, 4e, following Def. 4,
where F3 maps to {X1,Y1}∆{X2,Y1} = {X}. By Corol. 1, D1 and D2 are not Ψ-Markov equivalent
under the same interventional target set I as the augmented graphs do not share the same unshielded
colliders – 〈F3, X,Y〉 is a collider in Fig. 4e while it is not in Fig. 4b. So, the separation statement
(F3 ⊥⊥ Y) holds in AugI (D2) but not in AugI (D1). More fundamentally, this corresponds to testing
for the invariance PX1,Y1 (Y) = PX2,Y1 (Y), which holds for data generated byD2, but not forD1.

In contrast to [34, Defs. 3.3& 3.6], the Ψ-Markov property tests for distributional invariances over
variable Y between two interventional distributions even if Y is intervened on in both given that the
mechanism is the same; e.g., PX1,Y1 (Y) = PX2,Y1 (Y) in Example 8. More formally, the above example
coupled with the following proposition establish that Corol. 1 subsumes that in [34, Thm. 3.9].

Proposition 4. Consider two causal graphs without latents G1,G2, and a set of interventional targets
I , where ∅ ∈ I . The causal graphs G1 and G2 are I-Markov equivalent by [34, Thm. 3.14] if
〈G1,I〉 and 〈G2,I〉 are Ψ-Markov equivalent by Corol. 1.
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Proof. We prove the contrapositive of the statement. If G1 and G2 are not I-Markov equivalent by
[34, Thm. 3.14], then the corresponding I-DAGs GI

1 and GI
2 do not have the same skeletons or they

do not have the same unshielded colliders. By the construction of the I-DAG in [34, Def. 3.5] and
the augmented graph in Def. 4, it is easy to see that the interventional nodes and their adjacencies
in I-DAGs are a node-induced subset of the F-nodes and their adjacencies when ∅ ∈ I . Hence,
AugI (G1) and AugI (G2) must have different skeletons or different unshielded colliders. �

Next, when the observational distribution is not available, i.e., ∅ < I , [34, Theorem 3.14] presents
a generalization of Theorem 3.9 to handle sets of interventional targets that are conservative, i.e.,
∀Vi ∈ V,∃I ∈ I s.t. Vi < I for all mechanisms. Whenever the mechanism of each intervened node
is different across the interventional targets, i.e., ∀I, J ∈ I , if V j

i ∈ I and Vk
i ∈ J, then j , k, Prop. 5

below shows that the graphical characterization in [34, Thm. 3.14] and Corol. 1 are equivalent.

Proposition 5. Consider two causal graphs without latents G1,G2, and a conservative set of inter-
ventional targets I . If the mechanism changes for each intervened node are different across the
interventional targets, then 〈G1,I〉 and 〈G2,I〉 are Ψ-Markov equivalent by Corol. 1 if and only if
G1 and G2 are I-Markov equivalent by [34, Thm. 3.14].

Proof. (only if) Pick I ∈ I . Let FI,J for J ∈ I − {I} be the F-node obtained for the pair of
interventional targets (I, J). Consider the induced subgraph of AugI (G1) and AugI (G2) on the nodes
V ∪ {FI,J : J ∈ I − {I}}. Since AugI (G1) and AugI (G2) have the same skeleton and same unshielded
colliders, these two induced subgraphs have the same skeleton and unshielded colliders as well.
Since the mechanism changes are assumed to be different, then I∆J = I ∪ J (ignoring the variable
mechanisms in the union) as per Def. 1. Hence, the two induced graphs are identical to GĨI

1 and GĨI
2 ,

which implies G1 and G2 are I-Markov equivalent. This concludes this direction of the proof.

(if) Since G1 and G2 are I-Markov equivalent, then GĨI
1 and GĨI

2 have the same skeleton and
unshielded colliders for all I ∈ I (by [34, Thm. 3.14]). From the argument above (in only if), the
corresponding graph union of GĨI

1 and GĨI
2 across all I ∈ I is AugI (G1) and AugI (G2), which must

have the same skeleton as well. Furthermore, both augmented graphs must have the same set of
unshielded colliders of the form X → Y ← Z for X,Y,Z ∈ V, otherwise GĨI

1 and GĨI
2 would have

different unshielded colliders for all I. Also, by construction, AugI (G1) and AugI (G2) have the same
set of unshielded colliders of the form Fi → X ← F j, irrespective of the topology of G1 and G2. It
is left to show that unshielded colliders of the form FI,J → X ← Y are identical across AugI(G1)
and AugI (G2). This must be true, otherwise GĨI

1 and GĨI
2 would have different unshielded colliders.

Thus, 〈G1,I〉 and 〈G2,I〉 are Ψ-Markov equivalent. This concludes the proof. �

Finally, it is important to note that the algorithms proposed here, Ψ-FCI (Algorithm 1) and Ψ-PC
(Algorithm 2), do not require knowledge of the interventional targets and their mechanisms, yet they
are able to leverage their existence to learn a smaller equivalence class.

D.2 Mooij et al. [20]

The work in [20] proposes JCI as a framework to pool multiple datasets with unknown interventional
targets and then employ traditional causal discovery algorithms to learn the causal graph. Under this
framework, FCI-JCI [20, Sec. 4.2.4] is an adaptation of the FCI algorithm to learn causal graphs with
latents over the pooled datasets, which combine observational and interventional datasets.

In this comparison, we consider the formulation denoted in [20, Sec. 4.2.4] by FCI-JCI123 since it
is the most comparable to the role of the F-nodes in our characterization and subsequent algorithms.
They assume that C-nodes are source variables as background knowledge to help orient the graph.
We assume data from the observational distribution is available since this seems to be the assumption
in [20]. Hence, we have the datasets 〈D0,D1, . . . ,DM〉, where D0 denotes samples from the observa-
tional distribution P0 and Di denotes samples from the interventional distribution Pi. The algorithm
pools all the datasets into one, denoted D∗, and appends D∗ with context variables C = {Ci}

M
i=1 such

that C = 0 for D0, and Ci = 1 iff the sample is in Di, otherwise Ci = 0. Then, FCI-JCI runs FCI on
D∗ (combining the observational and all the interventional datasets). According to the assumptions in
FCI-JCI123, Ci ↔ C j,∀i, j and Ci → V j if Ci and V j are adjacent after the skeleton phase of FCI.
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Figure 5: Comparing Ψ-FCI and FCI-JCI with the interventional target set I = 〈∅, {X,Y}, {X,Y,Z}〉.

In the following example, we illustrate how Ψ-FCI powered by the characterization in Thm. 1 learns
more about the true generating causal graph than FCI-JCI, thus identifying a more informative
equivalence class. In fact, the previous example in Fig. 4 applies here as well, however, we choose
another example to illustarte the use of latent variables.

Example 9. Consider the causal graph in Fig. 5a, denoted D1 with U latent, and let 〈P0, P1, P2〉

be distributions generated by D1 with the corresponding set of interventional targets I = {∅, I =
{X,Y}, J = {X,Y,Z}}. Following our notation, the absence of a mechanism identifier for each variable
implies that X in I, J is being intervened on with the same mechanism (same applies for Y). The
output of Ψ-FCI is shown in Fig. 5b, where it is able to identify the edge marks of both edges (i.e., Y
causes X and the existence of a latent variable between X and Z). On the other hand, JCI-FCI123
constructs one context variable per interventional dataset Di sampled from Pi, where i , 0. The
output from FCI-JCI123 is shown in Fig. 5c, where C1 is adjacent to X,Y and C2 is adjacent to
X,Y,Z. Ψ-FCI is able to orient the edge between Y and Z into the latter while FCI-JCI123 cannot.

To understand why Ψ-FCI is more informative, we consider the augmented graphs in Figs. 5e and 5h,
which correspond to the graphs in Figs. 5d and 5g. Node F3 creates an unshielded collider 〈F3,Z,Y〉
in Fig. 5e while the same is a non-collider in Fig. 5h. This can be tested by the invariance PX,Y (Y) =
PX,Y,Z(Y), which holds in distributions generated by D1. On the other hand, the causal graphs
corresponding to the meta-system, according to [20], are shown in Figs. 5f and 5i. Node Z is not an
unshielded collider across 〈C2,Z,Y〉 in neither graph, hence the two graphs are indistinguishable.

In general, the advantage of the proposed approach is that distributional invariances across all
the available distributions are tested, following the definition of the Ψ-Markov property (Def. 2).
These invariances are identified graphically using the F-nodes and their separation statements in the
augmented graph (Prop. 1). This is not the case for FCI-JCI123 as illustrated in Example 9.

Now, we perform a small set of experiments to confirm the behavior of this example (i.e., the causal
graph in Fig. 5a) with different sample sizes. We start by discussing the parametrization used in the
simulations. For simplicity, all observable variables are binary. For each variable Vi, P(Vi = 0|pai) is
obtained through the logistic function. Specifically, we have P(Vi = 0|pai) = σ(

∑
z∈pai

czz + c0), for
all configurations of pai, where σ(.) is the logistic function. The coefficients ci are randomly chosen
from the interval [0.8, 0.95] except the intercept term c0, which is set to 0.01. Let c denote the vector
of {cz}z∈pai along with the constant c0. The last element (in order) of c is c0. The interventional set is
given by I = 〈∅, {X,Y}, {X,Y,Z}〉. For a soft intervention on X, the logistic model governing X is set
to c = (0.8, 0.2), for Y , it is set to c = (0.3, 1), and for Z, it is changed according to c = (0.2, 1). This
ensures that the nodes that are connected in the graph are statistically dependent, which is essential
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Figure 6: Comparison of Ψ-FCI and FCI-JCI123 using data from 〈D1,I〉 in Fig. 5. (a) Bar plots
for precision and recall for skeleton discovery and accuracy for edge orientations. (b) and (c) show
the most informative graph that are output by Ψ-FCI and FCI-JCI123, respectively across all the
runs and all sample sizes.

for using conditional independence and dependence statements to reverse-engineer the graph (i.e., to
avoid faithfulness violations). We use disCItest tester for discrete Data from pcalg package and
all results are thresholded at the p-value of 0.05 for producing the results.

We compare our algorithm with FCI-JCI123 and report the results for precision and recall for
discovering the true skeleton (undirected version of the underlying graph) as well as the accuracy for
correctly detecting edge orientations. The results are shown in Fig. 6(a). The errors bars are after
averaging with 30 runs. We observe that in terms of discovering the graph skeleton, both algorithms
perform similarly. Correctly detecting edge orientations is harder with small number of samples
for both methods. The result is not surprising in the sense that they use virtually the same tests to
discover the skeleton (conditional independences in the observational and experimental distributions).
However, as the number of samples is increased, our method can learn the most informative equiv-
alence class (Fig. 6b), whereas FCI-JCI123 does not show performance improvement beyond a
certain point (Fig. 6c). This is expected as well since, as we point out in Example 9, the invariances
across interventional distributions are not fully utilized, which is informative in this case.

One might surmise that it may be possible to choose a different configuration for the context variables
(i.e., a different initialization of values) and have all the tests covered. To answer this question
formally, Proposition 6 proves that there exists no configuration for the context variables that allows
FCI-JCI123 to test for the invariances prescribed by the Ψ-Markov property, i.e., those of the form
Pi(y|w) = P j(y|w), where i, j , 0.

Proposition 6. If there are at least three distributions, then there does not exist a configuration for
the context variables that enables FCI-JCI123 to perform all the distributional invariance tests
across every pair of distributions required by the Ψ-Markov property.

Proof. Let the distributions be labeled as {1, . . . , k}. First, note that [20, Lemma 19] shows that, for
CI tests involving C-variables, it is sufficient to condition on all the remaining C-variables. Suppose
that the design matrix (i.e., the pooled dataset with context variables) is such that for every pair of
distributions (1, i), there exists a j such that (C j ⊥⊥ X|W,C[k]−{ j}) ⇐⇒ p1(x|w) = pi(x|w). We can
assume without loss of generality i = j, i.e., the C-node used to check invariance across distributions
(1, i) is Ci,∀i. We show that this set of constraints fixes the design matrix irrespective of the number
of C variables/nodes introduced: It has to be either T or 1 − T where T is the following matrix. The
first row of T is all-zeros. The ith row of T is 1 only at the i − 1th column. Note that a necessary
condition for an independence test between a node Cl and X to check the invariance Pi(X) = P j(X) is
to have the design matrix satisfy the following constraint: Row i and row j differs only in column l.
It is easy to see that neither T nor 1 − T satisfies this condition. �

To summarize, we have shown in Example 9 that the equivalence class (EC) captured by FCI-JCI123
is strictly less informative than the one discovered by Ψ-FCI. In fact, we utilized the smallest possible
causal model (with 3 observable and 1 latent variable) such that this fact could be highlighted, and so
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Figure 7: Comparing Ψ-FCI and [17, Alg. 1] given causal graphD and I = 〈∅, {X}〉.

that it would be more clear from the characterization, and the corresponding tests, why the Ψ-Markov
property leads to a more informative EC with respect to the same collection of distributions. We then
showed a small set of experiments that support this findings, i.e., that asymptotically Ψ-FCI find the
most informative EC. Finally, we showed that this gap is not specific to this example, but is a general
phenomenon (Prop. 6), more formally, there is no design matrix compatible with JCI that can capture
all the tests entailed by the Ψ-Markov-equivalence class.

D.3 Kocaoglu et al. [17]

The work in [17] considers the problem of learning causal graphs with latents from soft interventions
when the interventional targets are known. They present a graphical characterization for when two
causal graphs are in the same interventional equivalence class, denoted I-Markov. Building on the
characterization, they propose a sound algorithm to learn I-Markov equivalence classes of causal
graphs with latents represented by an augmented PAG, which is analogous to the Ψ-PAG.

In this work, we consider the problem of learning causal graphs with latents from soft interventions
when the interventional targets are unknown. The Ψ-Markov property generalizes the I-Markov
property by detaching the distributions from the interventional targets and considering the set of
interventional targets I to be a variable along with the causal graphD. Accordingly, the graphical
characterization of Ψ-Markov equivalence generalizes the one in [17, Thm. 2] by considering different
sets of interventional targets with the corresponding causal graphs. It is easy to see that both theorems
are equivalent given the same interventional target set as shown below.

Proposition 7. Consider two causal graphs with latentsD1,D2, and the set of interventional targets
I . Assuming controlled experimental setting, 〈D1,I〉 and 〈D2,I〉 are Ψ-Markov equivalent if and
only ifD1 andD2 are I-Markov equivalent according to [17, Thm. 2].

Proof. Under the controlled experimental setting, we can drop the mechanism identifier for each
intervened variable and the symmetrical difference (Def. 1) reduces to that in [17]. In this case,
the construction of the augmented graph in Def. 4 differs from that in [17, Def. 3] by having
duplicate symmetrical difference sets in K, and thus additional redundant F-nodes. It follows that the
corresponding augmented MAGs according to [17] are induced subgraphs of the respective I-MAGs
with the difference being redundant F-nodes. Hence, the claim of the proposition follows easily. �

As for the learning algorithm, we point out the following differences between Ψ-FCI and that of [17,
Alg. 1]. First, running [17, Alg. 1] is not possible under unknown interventional targets since the
construction of the F-nodes takes the set I as input, which is not available in the problem considered
here. Moreover, the output could have incorrect orientations even if we fix the F-node construction
due to Rule 9 in [17, Alg. 1], which is only sound under known interventional targets (as shown
in Example 10 below). Finally, Ψ-FCI is complete for learning with unknown targets as shown in
Thm. 3 while [17, Alg. 1] is sound with no claim of completeness.

Example 10. Consider the causal graph in Fig. 7a with a pair of distributions 〈P1, P2〉 and the
corresponding set of interventional targets I = 〈∅, {X}〉. When the interventional targets are known,
[17, Alg. 1] learns the augmented PAG shown in Fig. 7c. The edge between X and Y is oriented
due to Rule 9 in [17, Alg. 1]. On the other hand, the output of Ψ-FCI is shown in Fig. 7b when the
interventional targets are unknown. Notice the edge between X and Y is not oriented here. That is
because 〈D,I〉 is Ψ-Markov equivalent to 〈D′,I ′〉 whereD′ = {X ← Y} and I ′ = 〈∅, {X,Y}〉.
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In summary, we consider the problem of learning from interventional data with unknown interven-
tional targets, a setting which cannot be handled by the work in [17]. When considering the results
in [17], we make the following contributions:
1. We formulate the Ψ-Markov property and derive a graphical characterization that subsumes that of

[14], which is formally shown in Proposition 7, Appendix D.3.
2. We show that the algorithm introduced in [14] is not applicable under unknown interventional

targets and present a complete algorithm (Ψ-FCI) under unknown interventional targets (Example
10).

3. We handle causal sufficiency as a special case of the derived results. Subsection 3.1 establishes
a graphical characterization for this case, and Section C, in the Appendix, presents an algorithm
for learning an equivalence class from interventional data under causal sufficiency. We prove this
algorithm to be complete for both known and unknown interventional targets. The work in [14]
does not discuss the causally sufficient case nor completeness.

D.4 Peters et al. [23]

The work in [23] proposes using invariances among conditional distributions of a specific target
variable, given subsets of the predictor variables. Specifically, for a target variable Y , they identify
subsets S of the predictor variables such that Pi(Y |S ) are identical across all distributions Pi(.), for all
environments i. It is easy to show that, as long as the target variable is not intervened on, the causal
parents of Y is a valid set S , i.e., Pi(Y |PaY ) does not change across different environments.

The advantage of this framework is that it does not require the knowledge of interventional targets.
The authors provides sufficient conditions for their framework to uniquely identify the true causal
parents of Y . They assume linear SCMs without latent variables and also impose certain conditions on
the set of interventions. A follow-up work in [39] relaxes the linearity assumption. In the following,
we only discuss the idea of using invariances across distributions, ignoring the parametric assumptions
of the framework.

One can imagine applying this framework recursively to identify the parents of each node to eventually
learn the underlying causal graph. However, there are some difficulties with this approach: Suppose
in iteration i, we seek for the set of parents of Xi. Given an arbitrary set of interventional targets, it’s
not possible, in general, to identify a subset of interventions where Xi is not intervened on.

To illustrate this point, consider the simple causal chain Z → Y → X with the distributions P, PY , i.e.,
the observational distribution and the interventional distribution on Y . Suppose these interventional
targets are not known. Let us assume we start with X. Then we identify P(X|Y) = PY (X|Y). Then Y
can be declared as the parent of X. Suppose we consider Y as the next node. It can be seen that there
is no invariance P(Y |S ) for any S . Therefore, one might either wrongfully infer Y → Z or halt the
algorithm. This is, of course, due to the fact that the new target variable Y is intervened on.

In general, one could expect that looking for invariances that hold across all environments should
be less informative than looking for invariances across pairs of environments. For example, in the
same graph above, consider the interventional distributions PX,Y , PX,Z , PY,Z , where each variable is
intervened with the same mechanism change, if it is an interventional target. It is easy to see that
there is no conditional distribution that is invariant across all environments. However, we have
PX,Y (X|Y) = PX,Z(X|Y), which can be used for discovering the edge between X and Y using our
framework.

D.5 Zhang et al. [38]

Another related work that uses changes in the mechanism for learning the underlying causal graph is
[38]. Without distinguishing whether this change happens in time or across different contexts, the
authors propose using auxiliary random variables to capture the mechanism changes. In that sense,
JCI [20] can be seen as an extension of this idea. Therefore, similar to JCI, our approach differs in
how we treat these auxiliary nodes as parameters, rather than random variables. Later, authors also
connect this approach to independence of cause and mechanism principle used previously for causal
discovery from observational data [14], in order to discover some of the edges that are otherwise not
identifiable, such as the ones adjacent to a context variable. In that sense, it would be interesting to
invoke this and other observational discovery methods [11, 14, 16] to identify edges that are otherwise
not identifiable using our work.
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Figure 8: Comparison of the Ψ-FCI output after running it on Sachs’ dataset [28] under different
significance levels. Fig. 8a presents the full output of Ψ-FCI while Figs. 8b& 8c remove the F-nodes
for clarity.

D.6 Rothenhäusler et al. [27]

We do not conduct a thorough comparison between the work in [27] and Ψ-FCI given the very nature
of both approaches, they are not really comparable. On the one hand, [27] considers the broader
class of cyclic causal models while ours is restricted to acyclic models. On the other hand, our work
makes no assumption about the functional form or type of soft intervention, while [27] considers
linear causal relations and shift interventions.

D.7 Sachs et al. [28]

We also run our Algorithm on the interventional datasets obtained from single cell fluorescence based
measurements of proteins involved in T-4 cell signalling. This is a standard benchmark used in other
causal inference studies. We used the pre-processed and quantized dataset from the link in [41].
Interventions are various drugs injected to inhibit or activate various signalling proteins involved in
the pathways. We provide the output of our algorithm for various significance levels (0.05, 0.1 and
0.15) used for the CI testers in Figure 8. We display the full output along with F nodes one each for a
pair of interventions in Figure 8a. To enhance readability, we provide the induced subgraph on the
protein nodes alone in Figures 8b and 8c. While the true ground truth network is not exactly known,
a plausible one has been used in [22]. In that network, Plcg, PIP3, PIP2 form a sub-network which
is recovered by our outputs (specifically in Figure 8c).
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