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Abstract
Causal inference provides a set of principles and tools that allows one to combine data and knowl-
edge about an environment to reason with questions of counterfactual nature – i.e., what would
have happened had reality been different – even when no data of this unrealized reality is currently
available. Reinforcement learning provides a collection of methods to learn a policy that optimizes
a specific measure (e.g., reward, regret) when the agent is deployed in an environment and pursues
an exploratory, trial-and-error approach. These two disciplines have evolved independently and
with virtually no interaction between them. We note that they operate over different aspects of
the same building block, i.e., counterfactual relations, which makes them umbilically connected.
Based on these observations, we further realize that various novel learning opportunities naturally
arise when this connection is explicitly acknowledged, understood, and mathematized. To real-
ize this potential, we further note that any environment where the RL agent is deployed can be
decomposed as a collection of autonomous mechanisms that lead to different causal invariances
and which can be parsimoniously modeled as a structural causal model; any standard RL setting
today is implicitly encoding one of these models. This natural formalization, in turn, will allow
us to put under a unifying treatment different modes of learning, including online, off-policy, and
causal calculus learning, which appear seemingly unrelated in the literature. One may surmise that
these three standard learning modalities are exhaustive in the sense that all possible counterfactual
relations are learnable through their continuous implementation. We show that this is not the case
by introducing several quite natural and pervasive classes of learning settings that do not fit these
modalities but entail novel dimensions and types of analysis. Specifically, we will introduce and
discuss through causal lenses the problem of generalized policy learning, where to intervene, imita-
tion learning, and counterfactual learning. This new set of tasks and understanding lead to a broader
view of counterfactual learning and suggests the great potential for the study of causal inference
and reinforcement learning side by side, which we call causal reinforcement learning (CRL).
Keywords: Structural Causal Models, Interventions, Counterfactuals, Reinforcement Learning,
Identifiability, Robustness, Generalizability, Off-policy Evaluation, Imitation Learning.

1. Introduction

AI will play an increasingly prominent role in society as significant portions of its decision-making
infrastructure are being delegated to automated systems. The transition from human-based to AI-
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based decision-making systems is underway and will likely accelerate in the coming years. The
new generation of AI systems is expected to be more efficient, robust, explainable, generalizable,
and, more importantly, to lead to outcomes aligned with society’s goals and expectations. There is a
growing understanding that robust decision-making relies on some knowledge of the environment’s
underlying causal mechanisms. For instance, an intelligent robot needs to know the cause-and-
effect relationships in its environment to plan its course of actions more robustly and communicate
them with humans; a physician needs to understand the individual and joint effects of multiple
available drugs to design an effective strategy for her patients while avoiding unethical experimen-
tation with human subjects and potentially harmful side effects; an economist needs to understand
the relationship between skill sets and the future job market demands so as to design new train-
ing and educational policies more efficiently. These examples of everyday decision-making found
across society rely on some understanding of the often complex, dynamic, and almost invariably
unobserved collection of causal mechanisms.

One of the primary goals and unifying themes found across Artificial Intelligence (AI) is to
develop a rational agent that operates in an environment capable of maximizing a performance
measure, and based on the prior knowledge that the agent has about it (Russell, 2010; Sutton and
Barto, 1998). Operationally, an agent perceives the environment’s state through sensory input (e.g.,
cameras, lidar, API) and then interacts with it through (physical or virtual) actuators. The agent
usually follows what is known as a policy, a sequence of decision rules that dictates the action
based on the evolving history of its perception and prior decisions. When the underlying system
dynamics are provided a priori (e.g., in the form of parameters set), one could obtain an optimal
policy by applying standard planning algorithms (Bellman, 1957; Puterman, 1994; Sutton and Barto,
1998; Bertsekas, 2005). Effective planning methods in structured environments are studied under
the rubrics of influence diagrams (Shachter, 1986; Lauritzen and Nilsson, 2001; Koller and Milch,
2003). In many practical applications, however, the parameters of the real, underlying environment
are not fully known, which entails some learning processes.

Reinforcement learning (RL) has become the de facto framework for reasoning about optimal
decision-making under uncertainty in AI and machine learning over the last decades. RL methods
could generally be categorized according to the types of interactions invoked during the learning
stage between the agent and the environment. First, there is the modality of off-policy learning
where the agent learns an optimal policy from offline data generated by a different behavior policy
or agent. Second, there is online learning, where the agent directly deploys policies in the actual
environment and observes subsequent outcomes. Several RL algorithms have been proposed on
the formalism (and the corresponding assumptions) known as Markov Decision Processes (MDPs),
where a finite set of state variables is statistically sufficient to summarize the treatments and co-
variates history (Bellman, 1957; Puterman, 1994; Sutton and Barto, 1998; Bertsekas, 2005; Jaksch
et al., 2010). There are a number of variations of this setting – both special cases and generaliza-
tions – including multi-armed bandits (MABs) (Thompson, 1933; Robbins, 1952; Lai and Robbins,
1985b; Auer et al., 2002a), contextual banduits (Auer et al., 2002c; Langford and Zhang, 2008b),
and partially-observable MDP (POMDPs) (Lovejoy, 1991; Singh et al., 1994; Jaakkola et al., 1995;
Littman et al., 1995),

As noted by Bellman, the “curse of dimensionality” is a pervasive challenge found in the RL lit-
erature, considering the exponential growth in the state-action space when solving the corresponding
dynamic programming problems (Bellman, 1957). Since real-world problems often involve more
than a few variables, it would appear unlikely that RL methods could be applied to practical settings
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of higher significance. Fortunately, the real world is often structured and modular, and components
are usually independent of each other in most systems. Hierarchical RL leverages the indepen-
dence relationships and allows the decomposition of the MDP model into a hierarchy of simpler
MDPs representing subtasks (Dietterich, 2000; Guestrin et al., 2001, 2003; Kulkarni et al., 2016).
Consequently, by implicitly exploiting the modularity following from the causal mechanisms, the
computational complexity of solving RL tasks could be significantly reduced. More recently, the
use of deep learning automates the learning of lower-dimensional and hierarchical representations
in RL, including deep Q-networks (Mnih et al., 2015), AlphaGo (Silver et al., 2016), and IBM’s
Watson DeepQA system (Ferrucci et al., 2010).

Given the compelling results obtained so far, one may surmise that the foundational picture is
essentially complete. In other words, all decision-making problems would eventually be solved
given additional resources – more data, more memory, and more computation. We will argue in this
part of the book that this is not the case. In fact, researchers are becoming increasingly aware that
AI systems deployed in the real world are very fragile, brittle, and are commonly sample inefficient
(“data-hungry”). They also lack robustness and generalizability capabilities, and are opaque, being
neither interpretable nor explainable, and subsequently, not trustworthy from a human perspective.
This observation does not constitute a fundamental impediment to their evolution, of course, but is
a simple realization of the current state of affairs, which is a necessary first step toward finding a
solution. As it will become apparent throughout our exposition, underlying these challenging issues
is the lack of an explicit language capable of accounting for the causal mechanisms and exogenous
sources of variations that amount to the environment where the agent is deployed, and fundamentally
generate the invariances, rewards, and dynamics of the system.

Interestingly, the field of causal inference (CI) provides a set of principles and tools that allows
one to combine data and structural invariances about the environment to reason about questions
of counterfactual nature, i.e., what would have happened had reality been different, even when
no data about this imagined reality is available, and the environment is not fully observable. The
conditions under which the effect of an action can be computed from observational and experimental
data have been extensively studied. Several conditions and algorithms have been proposed based on
qualitative knowledge about the environment (Part II). Notable results exist throughout the empirical
sciences (Cornfield, 1951; Flegal et al., 2005; Heckman, 2006; U.S. Department of Health and
Human Services, 2014), and more recently, in machine learning (Kallus and Zhou, 2018; Namkoong
et al., 2020; Etesami and Geiger, 2020; Kallus and Zhou, 2020; Tennenholtz et al., 2021) on how
to translate causal knowledge to support new policies and principled decision-making. However,
this area is still in its infancy, requiring substantive work and a significant amount of highly skilled
scientists.1 Our goal in AI is to create intelligent systems capable of reasoning and autonomous
actions. This requires a transition from a heuristic grasp of the interplay between causal knowledge

1. For instance, economists strive to understand the root causes of poverty, which could allow, in principle, the design of
new policies (i.e., causal interventions) to improve the population’s socioeconomic status (SES). A considerable body
of evidence was accumulated for many decades, notably by the University of Chicago’s Professor and Nobel Prize
laureate, James Heckman, who demonstrated the effects of early childhood education on families’ SES, among other
indicators (Heckman, 2006). The understanding following this causal link translated to the larger support of early
childhood education and a push for new policies aligned with these findings; for example, see Obama’s one billion
dollar investment (The White House, Office of the Press Secretary, 2014). There are many such cases throughout the
empirical sciences — e.g., evidence supports that tobacco smoking is one of the determinant factors of lung cancer
(Cornfield, 1951; U.S. Department of Health and Human Services, 2014), or obesity is responsible to shortening life
expectancy (Flegal et al., 2005), which, in turn, translated into new public health policies.
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Figure 1: The Agent-Environment interaction from Causal Reinforcement Learning (CRL).

and decision-making to a deeper and more fundamental understanding of the principles that connect
causal evidence and robust decision-making under uncertainty.

In this paper, we endeavor towards this aim, harnessing the strengths and synergies of CI and
RL to devise more sample-efficient, transparent, and robust decision-making systems. We refer to
this program as Causal Reinforcement Learning (CRL). Specifically, this chapter seeks to introduce
this framework and investigate the intricate and sometimes nuanced relationship between causal
knowledge and decision-making. The design of CRL agents will follow two simple and powerful
observations. First, the environment’s underlying causal mechanisms should be accounted for ex-
plicitly in the analysis. In particular, this is realized through formal language and a dual view, as
depicted in Fig. 1:

1. From the environment’s perspective, causal mechanisms and the probability distribution over the
exogenous conditions are described as a fully specified SCM M→ (on the figure’s right side).

2. From the agent’s perspective, a parsimonious representation of the environment’s invariances
will be maintained in the form of a causal model G (on the left side), such as a causal diagram.

In essence, while the environment and agent’s perspectives differ, they are tied through the pair,
an SCM M→ and its corresponding causal diagram G. There is formally a notion of compatibility
between these two objects, as discussed later in the book. This pairing can be articulated in different
forms, including typical template-like structures such as MABs, MDPs, POMDPs.2

The second observation that ground the CRL framework follows from the understanding that
every SCM M→ begets a mathematical construct named the Pearl Causal Hierarchy (PCH) (Pearl
and Mackenzie, 2018), which has been named in his honor and formalized in (Bareinboim et al.,
2020). The PCH consists of three qualitatively different types of distributions that are separated into
layers – the associational, the interventional, and the counterfactual. The PCH will play a central
role in formalizing the types of activities an agent can engage in when considering the environ-
ment it has been deployed into, including seeing, doing, and imagining. As illustrated in Table 1,
knowledge at each layer will allow the agent to reason about different classes of causal concepts,
or “queries.” In particular, Layer 1 deals with purely “observational”, factual information when the
agent passively observes the environment (or other agents interacting in the environment). Layer 2
encodes information about what would happen, hypothetically speaking, were some interventions

2. The current literature evokes this relationship mostly in an implicit fashion, assuming that there exists a match be-
tween the environment and the agent knowledge.
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Layer
(Symbol)

Typical
Activity

Quintessential
Question

Example Machine Learning

L1 Associational
P (y|x)

Seeing What is?
How would seeing X
change belief in Y ?

What does an obser-
vation tell us about
the underlying state?

Supervised /
Unsupervised
Learning

L2 Interventional
P (y|do(x))

Doing What if?
What if I do X?

What if I brake hard,
will my vehicle avoid
an accident?

Reinforcement
Learning

L3 Counterfactual
P (yx|x→, y→)

Imagining Why?
What if I had acted
differently?

Was it the hard brake
that prevented the ac-
cident?

Explanation
Transparency

Table 1: Summary of Pearl’s Causal Hierarchy including each of its layers, the symbolic represen-
tation, typical activities and questions, and examples where it appears in ML settings.

were performed, namely, the effects of actions. Interestingly, this is a typical activity in RL set-
tings, and answering such queries may be possible from data on interventions already performed or
from data collected passively under the first modality in layer 1. These will appear in the form of
online and offline learning modalities, discussed later in the text. Finally, Layer 3 involves queries
about what would have happened, counterfactually speaking, had some interventions or actions
been performed, given that something else in fact occurred, possibly conflicting with a hypothetical
intervention that has not actually happened. The causal hierarchy establishes a useful classification
of concepts that might be relevant for a given CRL inference task, thereby also classifying formal
frameworks in terms of the questions that agents are able to represent, and ideally answer.

There is a growing literature that investigates various points in the design space of CRL agents
and their policies and represents the more concrete examples currently available of this picture,
and CRL tasks and inferential machinery (Bareinboim et al., 2015; Forney et al., 2017; Lee and
Bareinboim, 2018b; Kallus and Zhou, 2018; Forney and Bareinboim, 2019; Lee and Bareinboim,
2019b; de Haan et al., 2019; Lee and Bareinboim, 2020; Namkoong et al., 2020; Etesami and Geiger,
2020; Kallus and Zhou, 2020; Bennett et al., 2021; Wang et al., 2021; Tennenholtz et al., 2021;
Kumor et al., 2021; Ruan and Di, 2022; Swamy et al., 2022). Still, the treatment provided in each
paper represent special cases of specific problems, and were not studied in generality and in a unified
manner. In fact, these problems can be seen as a basis on which a CRL agent should be built and
will be studied under the same formal umbrella that motivated their very existence.

1.1 Roadmap of the Paper

The remainder of the paper is organized as shown in Fig. 2. We provide in Sec. 2 the necessary
background and a logical foundation of causal inference to understand the rest of this paper. We
review the definition of structural causal models (Sec. 2.1), evaluation of observational and inter-
ventional distributions (Sec. 2.2), and the construction of causal diagrams representing qualitative
knowledge in SCMs (Sec. 2.3). Extensive examples are provided to illustrate these concepts.

Sec. 3 is a foundational chapter that connects the different learning modalities found in RL to
the causal language introduced in this chapter. In particular, Sec. 3 formalizes the policy learning
problem using the semantic language of SCMs, termed causal decision models (Sec. 3.1). Based
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Towards Causal Reinforcement Learning

Section 2
Foundations of

Causal Inference

2.1 Structural Causal
Models

2.2 Observational and
Interventional Distribu-
tions

2.3 Causal Diagrams

Section 3
Elements of CRL

3.1 Causal Decision
Models

3.2 Causal Reinforce-
ment Learning Tasks

3.3 Comparison with
Markov Decision Pro-
cess

Section 4
RL through

Causal Lenses

4.1 Online Learning

4.2 Off-Policy Learning

4.3 Causal Learning

Sections 5 - 8
Novel CRL Tasks

5 Offline-to-Online
Learning

6 Where to Intervene

7 Counterfactual Ran-
domization

8 Causal Imitation
Learning

Figure 2: Paper’s roadmap and organization.

on this framework, we introduce causal reinforcement learning tasks that consider the interaction
capabilities of the learning agent and the prior knowledge of the environment accessible to the agent
(Sec. 3.2). We compare the CRL formalisms with reinforcement learning under the standard model
assumptions of Markov decision processes, emphasizing that there exists no discretion here, and
causal knowledge is indispensable for solving CRL tasks.

Sec. 4 studies classic learning tasks of reinforcement learning and causal inference through the
CRL framework, including off-policy learning (Sec. 4.1), online learning (Sec. 4.2), and causal
identification (Sec. 4.3). In particular, we discuss several conditions and algorithmic procedures
for policy learning for each of these tasks. In the last section, we introduce a graphical criterion
that extends off-policy learning methods to the language of structural causality where unobserved
confounding is not ruled out a priori.

Sec. 5 considers the problem of causal offline-to-online learning (COOL), where the agent at-
tempts to first pre-train informative representations of optimal policies from offline data and then
fine-tune policy estimates by conducting online experimentations. Sec. 5.1 introduces a confound-
ing robust procedure for transferring observational data in bandit models. Secs. 5.2 and 5.3 extend
this transfer strategy to sequential decision-making settings where the agent has to determine a
series of actions in order to maximize the primary outcome (e.g., dynamic treatment regimes).

Sec. 6 introduces a new task called mixed policy learning. This task is concerned with whether
the agent should intervene in the system, and, if so, where the intervention should be targeted.
Sec. 6.1 investigates the structural properties inherent in a mixed policy space with atomic interven-
tion, where the properties can help the agent to explore the space more efficiently and effectively.
Sec. 6.2 further investigates a scenario where the agent can conduct soft intervention, selecting
which variables to observe for performing soft intervention.

Sec. 7 broadens the scope of policies and introduces a novel counterfactual decision crite-
rion that is applicable when agents have their own biases and operate in adversarial environments.
Sec. 7.1 formalizes the concept of counterfactual policies, enabling agents to perform counterfactual
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reasoning by accounting for their initial intended actions. Sec. 7.2 presents a new type of counter-
factual randomization strategy that supports the realization of the counterfactual decision criterion
and facilitates the learning of an optimal counterfactual policy. In the last section, we formalize the
trade-off between optimality and autonomy under the counterfactual decision criterion and provide
a practical planning algorithm to address this trade-off.

Sec. 8 studies the problem of policy learning from the observational data without complete
knowledge about the reward function measuring the performance of the agent - called imitation
learning. Sec. 8.1 develops a complete graphical condition for learning an imitating policy, achiev-
ing the expert’s performance using behavioral cloning. Sec. 8.2 extends this condition to produce
a policy that could consistently dominate the expert by exploiting parametric knowledge about the
unknown reward function via inverse RL. We also develop an algorithmic approach to apply inverse
RL in a more generalized family of SCMs provided with a causal diagram of the environment.

Finally, Sec. 9 concludes by summarizing the work and algorithms studied in previous sections
and giving final remarks. We also discuss other essential CRL tasks, including transportability,
generalizability and model induction, and outlines future challenges in designing CRL agents.

1.2 Notations

We introduce the basic notations used throughout this paper. Capital letters represent variables (X),
and small letters represent their values (x). Let D(X) represent the domain of X and PX the space
of probability distributions over D(X). Boldfaced capital letters X denote a collection of variables,
|X| its dimension, D(X) their joint domains, and boldfaced smaller letters x a particular joint
realization in the domain D(X). We will consistently use P (X) to represent the joint distribution
over X and P (x) represent probabilities P (X = x); similarly, notation P (Y | X) represents a
set of conditional distributions P (Y | X = x), →x. Finally, indicator function 1{Z = z} returns
1 if Z = z holds true; otherwise 1{Z = z} = 0.

For a directed acyclic graph (DAG) G, we denote by V (G) the set of vertices in G; similarly,
E(G) is the set of arrows in G. A vertex-induced subgraph is denoted by brackets, e.g., G[W ]
which includes vertices W ↑ V (G) and edges among its elements. For convenience, we define
G \X ↓ G [V (G) \X]. For arbitrary subsets W ,Z ↑ V (G), GWZ is a subgraph obtained from
G by removing edges pointing into any node W ↔ W and edges coming out of any node Z ↔ Z.

Also, we will use standard graph-theoretic abbreviations to represent relationships among nodes:
an(X)G , de(X)G , pa(X)G and ch(X)G stand for the set of ancestors, descendants, parents, and
children of a node X in a DAG G, not including X; subscript G is omitted when it is obvious. The
parent set of a node set X is all parents of any node in X , i.e., pa(X)G =

⋃
X↑X pa(X)G ; de(X)G,

an(X)G, and ch(X)G are similarly defined. Finally, Pa(X)G is the set union pa(X)G ↗X , and
so do De(X)G , An(X)G , and Ch(X)G .

2. Foundations of Causal Inference

We now provide a brief outline of this section and will lay out the basic CRL building blocks,
following the schema shown in Fig. 3. We will start in Sec. 2.1 with the underlying environment,
which will be described through formal causal semantics and the definition of SCMs. We will
further provide some specific examples, or instantiations of some SCMs that follow from canonical
examples found in the literature (e.g., MABs, MDPs). Each SCM induces the PCH, shown in the
bottom of the figure, modeling various interactions an agent can undertake in the environment,
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SCM M→

(Unobserved Environment)

Ux, Uy → P (Ux, Uy)

F =

{
X ↑ fX(Ux)

Y ↑ fY (X,Uy)

(L1) P (X,Y )

Observational

(L2) Px (Y )

Interventional

(L3) P (Yx|x↓, y↓)
Counterfactual

(c) Sec. 2.3

Causal Diagram G

X Y

I. Templates (MAB, MDP,...)

II. Prior Knowledge

III. Structural Learning

(a) Sec. 2.1

PCH
(b) Sec. 2.2

Figure 3: Building blocks of Causal RL analysis. (a) Unobserved model of the environment; (b) the
PCH (and not necessarily fully observed); (c) The structural constraints over the SCMs that may be
elicited through different methods, including prior knowledge and structural learning.

including observations, interventions, and counterfactual reasoning. In Sec. 2.2, we will formalize
the dynamics when the agent is only passively observing the environment – i.e., collecting the PCH’s
L1-type of data – which will give rise to what is known as the observational distribution. We will
then move to a more active mode of interaction whenever the agent can perform interventions in
the environment, which constitute L2-type of interactions, giving rise to what is known as the
interventional distribution. In Sec. 2.3, we discuss specifying structural assumptions about the
environment in a non-parametric and parsimonious manner using causal diagrams.

2.1 Structural Causal Models and the Environment

We build on the language of structural causal models, which is one of the most general and flexible
data-generating models known to date (Pearl, 2000; Bareinboim et al., 2020). The first element of
any CRL system is the environment where the agent will be deployed, which will be instantiated as
an SCM defined next.

Definition 1 (Structural Causal Model (Pearl, 2000)) A structural causal model (SCM, for short)
M is a 4-tuple ↘U ,V ,F , P ≃ where:

• A set of background or exogenous variables U = {U1, U2, ..., Uk}, representing factors out-
side the model, which nevertheless, affect relationships within the model;

• A set of endogenous variables V = {V1, V2, ..., Vn} representing variables inside the model.

• A set F of structural functions {fi : Vi ↔ V } s.t. each fi determines the value of Vi ↔ V ,

vi ⇐ fi(pa i,ui), (1)

where PAi ↑ V \ {V } and Ui ↑ U .

• A probability distribution over the exogenous variables, P (U). ↭
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Some observations follow from this definition. First, note that a typical SCM M partitions the
variables into two sets – exogenous (unobserved) U and endogenous (observed) V . The values
of exogenous variables U are decided outside the environment where the agent is deployed, fol-
lowing a probability distribution P (U) over all possible configurations of its states. In practical
settings, these variables represent unaccounted factors of the units and of the situations that affect
the environment under consideration; for instance, possibly the patients’ DNA, customers’ sensitive
demographics, robot’s physical constraints, and other features and states that affect the system but
are unobserved from the perspective of the CRL agent. For concreteness, consider a physician who
may not have access to the patient’s DNA before prescribing a certain treatment. At the same time,
such an attribute influences how well the patient will respond to the drug and whether they will
recover from their condition. Naturally, other physicians who may have access to this information
will use it when making their decisions. Alternatively, a robot may not be able to determine its pre-
cise location in the building, while others with more accurate sensors may have an almost perfect
reading of their positions. Of course, there is no “right” view of reality, and those are alternative
perspectives based on the contingencies and capabilities of each agent and the environment where
it is deployed.

More generally, the exogenous set U allows for the existence of unobserved confounding, which
is inherent in any real-world, complex setting in which not every bit of information can be measured
or assessed by the agent. This is a common phenomenon in environments where humans are present
since their existence precludes full observability.3 Unless otherwise specified, our referential frame
would always be from the CRL agent’s perspective, which will come with their specific perceptual
and interventional (L2) capabilities.

Second, the value of each endogenous variable Vi ↔ V in M is determined by a causal mech-
anism fi, which takes other endogenous and exogenous variables in the system as input. The ran-
domness of exogenous variables U induces variations in the endogenous variables V , which is
formalized in the next section. These causal mechanisms, together with the background factors
encoded in the distribution P (U), represent the data-generating process according to which the
environment decides observed states and rewards in each possible configuration.

One feature of the representation of SCMs is its flexibility: it could contain an arbitrary col-
lection of causal mechanisms. This naturally includes and allows one to model any standard RL
environment using the SCM framework, including MABs and MDPs, as illustrated below. One
important distinction is that standard RL models leave action variables X in the environment unin-
stantiated. On the contrary, SCMs explicitly model some secondary controlled process associated
with actions, such as a human operator or a different source agent demonstrating the task, or even
the effect of nature itself (e.g., gravity). Formally, we denote by fX = {fX | →X ↔ X} the col-
lection of functional relationships in the system determining values of X . By default, the system
is said to be under a behavior policy, in RL terminology (Sutton and Barto, 1998), or under the
natural regime, in CI language (Pearl, 1995, 2000; Dawid, 2002). For example, a physician makes
decisions about the patient’s treatment in the natural world, regardless of what the AI agent wants
to do. Also, the position and momentum of a particle may change with gravity, even though no

3. Some research from Neuroscience suggests that decision-making may be a process handled largely by subconscious
mental activity (Libet et al., 1993). Even several seconds before we consciously decide, its outcome can be largely
influenced by subconscious activity in the brain. In other words, this suggests that humans generally have a lack of
understanding of our decision-making process and have a hard time measuring all factors influencing our behaviors;
therefore, full observability is rarely realizable in practice.
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deliberate (or human) agent interferes in the system at each instant in time. The main observation
relevant to our context is that, regardless of how X attains its value, this does not happen naturally
under the control of the CRL agent, which is the one we care about here.

To start understanding Def. 1, we consider some examples showing how some classic, increas-
ingly refined RL environments should be modeled through the semantics of SCMs. We will take a
natural regime perspective, which considers the CRL agent (learner) passively observing a different
agent (e.g., a teacher, a physical law) making decisions in the environment; these other agents have
a possibly different set of perceptual and interventional capabilities.4

Example 1 (Multi-Armed Bandit (Robbins, 1952)) In a clinic where patients with a chronic dis-
ease are treated, physicians must choose how to select their treatment, one at a time. There are two
treatments or ‘arms’, X = 0 and X = 1, and the overall goal is to find the optimal treatment to
maximize the chance of patients’ recovery (Y ). This can be seen as an example of a multi-armed
bandit (MAB) model. Its roots can be traced back to work produced by Thompson (1933), which was
further developed in (Robbins, 1952; Gittins, 1979; Lai and Robbins, 1985a; Auer et al., 2002a).
Consider a MAB model described by an SCM

M→

MAB = ↘U = {U},V = {X,Y },F , P (U)≃, (2)

where U represents the patient’s age (e.g., normalized in a real interval [0, 1]). The causal mecha-
nisms are the following:

F =

{
X ⇐ 1{U < 0.8},
Y ⇐ 1{U < 0.4⇒”X}

(3)

where coefficient ” is a real number bounded in (0, 0.4); and P (U) is such that values of U are
drawn from a uniform distribution Unif(0, 1).

In words, the physician prescribes treatment X = 0 for senior patients (U ⇑ 0.8); otherwise,
an alternative treatment, X = 1, is prescribed. Meanwhile, the recovery Y of the disease depends
on the treatment (X) and the patient’s age (U ). Since the coefficient ” > 0, the chance of recovery
when prescribing X = 0 is higher than when prescribing X = 1. That is, X = 0 is the preferable
treatment in this context. ↭

Interestingly, note that the SCM given by Eq. 3 contains two qualitatively different types of mecha-
nisms – fX is controlled by the physician, and fY is controlled by Nature, representing in this case,
the patient’s biology. From the CRL’s agent point of view, both mechanisms are external and then
deemed as the environment.

Example 2 (Markov Decision Process (Puterman, 1994)) Markov Decision Process (MDP) has
emerged as the de facto framework for reasoning about the sequential decision-making in AI (Sutton
and Barto, 1998; Russell and Norvig, 2016). An example of MDP is the day-to-day management of
an inventory with a fixed maximum size (Szepesvári, 2010).

4. Since our goal here is not to discuss the subtleties of multi-agent systems, we will abstract away the identity of these
other agents and simply use the notion of an environment.
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SCM M→ CRL Agent C
Behavior
Regime

(other agents,
biology, physics)

L1

L2

L3

PCH

Interactions

X ⇐ ωb

Figure 4: Representation of the CRL agent (right side) interacting with the SCM (middle) through
natural (marked in blue) and interventional (green) regimes. Other behavior agents and their inter-
actions are shown in the left side (red).

On day i = 1, 2, . . . , the inventory manager observes the current size of the inventory Si,
decides whether to purchase new items to fill up the inventory Xi, and receives a subsequent profit
Yi by the end of day i. More specifically, consider an MDP model described by the SCM:

M→

MDP = ↘U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si},F = {Fi}, P (U)≃
i=1,2,... , (4)

where Ui,1, Ui,2, Ui,3 represent, respectively, human errors when stocking the inventory, and uncer-
tainties in demand, and monetary values of the goods. The causal mechanisms Fi representing the
system dynamics transitioning from day i⇒ 1 to i are defined as:

Fi =






Si ⇐ (Si↔1 ⇓Xi↔1)⇔ Ui↔1,1 ⇔ Ui↔1,2,

Xi ⇐ Si ⇔ Ui,1

Yi ⇐ Si ⇔Xi ⇔ Ui,1 ⇔ Ui,3

(5)

and P (U) is such that Ui,1, Ui,2, Ui,3 ↔ {0, 1} are independent variables drawn from distributions
P (Ui,1 = 1) = P (Ui,2 = 0) = P (Ui,3 = 0) = 0.9.

In words, the size of current inventory Si = 1 is full if it is also full Si↔1 = 1 on the previous
day or gets refilled Xi↔1 = 1; the operation error Ui↔1,1 and customers’ demand Ui↔1,2 could also
affect the inventory size. The manager’s decision Xi depend on the inventory size Si on the day
and potential operation errors Ui,1. The store only makes a profit Yi = 1 if the inventory is well
managed: it is refilled when empty, or no new goods is purchased when full. Similarly, operation
errors and price fluctuation could also affect the net profit on day i. ↭

A couple of observations follow. First, SCMs provide a flexible language that allows for the
natural encoding of standard RL environments. Second, the specific instantiation of each SCM will,
in general, not be visible to the agent, and the goal is just to represent the environment’s generative
processes and its implied PCH. Third, the SCM is different than the PCH’s corresponding datasets
(Sec. 2.2) and the assumptions the agent may make about them (Sec 2.3), as discussed next.

2.2 Learning through Observational & Interventional Regimes (PCH’s Layers 1 and 2)

One important feature of the CRL architecture described so far is the explicit division between the
agent and the environment where it lives, which induces a natural line between the set of endoge-
nous (V ) and exogenous (U ) variables. Interestingly, this implies that the partition between these

11
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variables is not referential-independent but agent-specific. Each agent has its way of partitioning
(seeing) the environment. Also, the environment can be thought of as a mediator of many types
of interactions, abstracting away potentially many other (behavior) agents who are also interacting
with and have their own perspectives compared to the CRL agent, which is the one we care about.
Fig. 4 illustrates this situation where the l.h.s. includes other agents interacting in the environment
following their own behavior policies or natural variations, such as the laws of nature, including the
wind, gravity, and natural selection. On the r.h.s., the CRL agent is depicted with its own views and
capabilities.

2.2.1 OBSERVATIONAL DISTRIBUTIONS

The CRL agent has two primary ways of interacting with the system: by perceiving the world
through its sensors (by “seeing”) or by performing intervention through its actuators (by “doing”).
This can be formalized through layers 1 and 2 of the PCH, which are shown in the middle of Fig. 4.
When the CRL agent passively observes how events unfold in time (marked in blue), the variations
and dynamics in the system come from the other behavior agents (in the left), which can be natural
or artificial. Since the CRL agent does not know the other agents’ perspectives (their views, goals,
and policies), these other interactions (marked in red) are of unknown nature and considered passive
observations. In this case, the CRL agent does not deliberately interfere with the underlying SCM at
any point in time. Actions X attain their values under the control of the natural/behavior’s regime.

For any SCM M, the collection of structural functions F defines a mapping from the sys-
tem’s exogenous (unobserved) variables U to the endogenous (observed) variables V . The distri-
bution over the exogenous variables P (U) induces a joint distribution over endogenous variables
V , P (V ), which is called the observational distribution.

Definition 2 (Observational Distribution (Bareinboim et al., 2020)) A SCM M = ↘U ,V ,F ,
P (U)≃ defines a joint probability distribution P (Y ) such that for any Y ↑ V ,

P (y) =
∑

u

1 {Y (u) = y}P (u), (6)

where Y (u) is the solution of Y after evaluating functions in F given U = u. ↭

We will consistently use P (Y ;M) to represent an observational distribution P (Y ) evaluated with
restriction in an SCM M. The input M is omitted when the SCM is obvious from the context. The
observational distribution in Eq. 6 could be evaluated following the procedure:

1. For each situation U = u,5 the environment evaluates the mechanisms in F following a
topological order (i.e., any variable in the l.h.s of function fi is evaluated after the ones in the
r.h.s.), and

2. The probability mass P (u) is accumulated for each realization U = u consistent with the
event Y = y.

We provide examples of this evaluation process below with the canonical RL models discussed
earlier, where the CRL agent passively observes the unfolding of other agents interacting with M.

5. Recall that each instantiation U = u represents unobserved factors that generate variations within the environment
of interest. In our context, this may represent an individual, a situation, or a state.

12
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Example 3 (MAB, Observational Distribution) Consider the MAB model M→
MAB defined earlier

in Eq. 3. By passively observing the behaviors of the physicians and collecting data, the CRL agent
can estimate that the average recovery rate of each patient as

P (Y = 1) = P (X = 0, Y = 1) + P (X = 1, Y = 1) (7)
= P (U ⇑ 0.8, U < 0.4) + P (U < 0.8, U < 0.4⇒”) (8)
= P (U < 0.4⇒”) (9)
= 0.4⇒”. (10)

The agent has access only to the value in the r.h.s. of Eq. 10, and Nature does the evaluation process
itself. In particular, patients are evaluated following the two 2-step procedure described in Def. 2,
following the population’s proportions and the corresponding structural mechanisms.

To further consider the effectiveness of the treatments, the CRL agent may collect data so that it
can also compute the recovery rate for the specific treatment X = 0. That is,

P (Y = 1 | X = 0) = P (U < 0.4 | X = 0) (11)
= P (U < 0.4 | U ⇑ 0.8) (12)
= 0 (13)

Similarly, the recovery rate conditioning on event X = 1 is given by

P (Y = 1 | X = 1) = P (U > 0.4⇒ ε | X = 1) (14)
= P (U > 0.4⇒” | U < 0.8) (15)
= 0.5⇒ 1.25”. (16)

Again, the CRL agent has access only to the r.h.s. of the equation through data coming from sam-
pling. Since the coefficient ” ↔ (0, 0.4), then 0.5⇒ 1.25” > 0, which implies that

P (Y = 1 | X = 0) < P (Y = 1 | X = 1). (17)

This seems to suggest that treatment X = 1 achieves a better recovery rate than treatment X = 0.
The conclusion that follows from Eq. 17 seems to be at odds with the earlier analysis based on

the full knowledge of the SCM and the specific mechanisms of how Y comes about (as shown in
Eq. 3), which concluded that X = 0 is the optimal treatment.

Note that this evaluation is based on passively collected data (from layer the PCH’s L1), which
means that a proper causal interpretation is generally not well-advised. The behavior agent may
not be efficient in allocation or have different goals in mind. ↭

Example 4 (MDP, Observational Distribution) Consider the MDP M→
MDP described in Eq. 5. We

are interested in evaluating the inventory manager’s cumulative profit E
[∑

↗

i=1 ϑ
i↔1Yi

]
, where ϑ is

a discount factor in the real interval (0, 1). Evaluating profit Yi on day i = 1, 2, . . . in M→
MDP gives:

Yi = Si ⇔Xi ⇔ Ui,1 ⇔ Ui,2

= Si ⇔ Si ⇔ Ui,1 ⇔ Ui,1 ⇔ Ui,2

= Ui,3 (18)
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Si+1 Si Xi P (si+1 | si, xi) E [Yi | si, xi]

0 0 0 0.9 0.1
0 0 1 0.9 0.1
0 1 0 0.1 0.1
0 1 1 0.1 0.1
1 0 0 0.1 0.1
1 0 1 0.1 0.1
1 1 0 0.9 0.1
1 1 1 0.9 0.1

(a)

S=0 S=1

X=0

X=1

X=0

X=1

Pobs

0.9,Y=0.1

0.9,Y=0.1

0.1,Y=0.1

0.1,Y=0.1

0.1,Y=0.1

0.1,Y=0.1

0.9,Y=0.1

0.9,Y=0.1

(b)

Figure 5: Observational distributions of the MDP model M→
MDP described in Eq. 5

That is, the manager’s inventory control policy generates an expected profit E[Yi] = P (Ui,2 = 1) =
0.1 every day. For concreteness, we consider ϑ = 0.9. The store’s expected cumulative reward is:

E
[

↗∑

i=1

ϑi↔1Yi

]
=

↗∑

i=1

ϑi↔1E[Yi]

=
0.1

1⇒ ϑ
= 1. (19)

We now consider the transition distribution P (Si+1 | Si, Xi) and expected reward E[Yi | Si, Xi]
conditional on decision Xi and inventory size Si on day i. First, evaluating the inventory size Si+1

on the next day in M→
MDP gives:

P (Si+1 | Si = si, Xi = xi) = P ((si ⇓ xi)⇔ Ui,1 ⇔ Ui,2 | Si = si, Xi = xi) (20)

For M→
MDP defined in Eq. 5, observing events Si = 0, Xi = 0 implies that Ui,1 = 0, so

P (Si+1 = 1 | Si = 0, Xi = 0) = P ((0 ⇓ 0)⇔ 0⇔ Ui,2 = 1 | Si = 0, Xi = 0) (21)
= P (Ui,2 = 1) (22)
= 0.1. (23)

The second step holds since the stochastic demand Ui,2 is an independent factor only affecting Si+1.
Similarly, evaluating the expected reward Yi in M→

MDP gives:

E [Yi | Si = si, Xi = xi] = E [si ⇔ xi ⇔ Ui,1 ⇔ Ui,3 | Si = si, Xi = xi] (24)

For Si = 0, Xi = 0, the above equation could be further written as

E [Yi | Si = 0, Xi = 0] = E [0⇔ 0⇔ 0⇔ Ui,3] (25)
= P (Ui,3 = 1) (26)
= 0.1 (27)
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The detailed parametrizations of the L1-distribution, P (Si+1 | Si, Xi) and E [Yi | Si, Xi], are
described in Fig. 5a. Following the convention in reinforcement learning, this parametrization
can be represented through a probabilistic finite-state machine as shown in Fig. 5b, which is read
as follows. Assuming the current state is S = 0, there are two outgoing transitions to X = 0
and X = 1, which represent two possible actions the inventory manager could be observed to
take. If the manager takes action X = 0, the transition of returning back to the state S = 0
has a probability of 0.9, and is associated with an average reward Y = 0.1, as indicated in the
arrow. That is, the transition probability P (Si+1 = 0 | Si = 0, Xi = 0) = 0.9, and the reward
function E [Yi | Si = 0, Xi = 0] = 0.1. On the other hand, it may also transition to state S = 1
with probability 0.1, resulting in a subsequent reward of Y = 0.1. That is, the transition function
P (Si+1 = 0 | Si = 1, Xi = 0) = 0.1, and the reward function E [Yi | Si = 1, Xi = 0] = 0.1. ↭

So far, we have defined a model for typical, template-like RL environments and some implica-
tions of passively observing such environments, including collecting data from the corresponding
observational (L1) distributions.

2.2.2 INTERVENTIONAL DISTRIBUTIONS

In this section, we discuss how to model the agent’s interventions in the world whenever they aim
to bring some state of affairs about. In particular, we consider interventions that build on previous
states’ history and actions. These types of interventions are usually called soft or policy interven-
tions, and we will follow the treatment developed in (Correa and Bareinboim, 2020a,b).6

Formally, we denote by ωX a sequence of decision rules {ωX | →X ↔ X} over an arbitrary
set of action variables X . Each ωX is a function that determines values of X taking some other
variables SX as input; that is, X ⇐ ωX(SX). With a slight abuse of notation, we denote it by
ωX(X | SX), the stochastic policy mapping from values of SX to the probabilities space over
domains of every X ↔ X .7 Such policies ωX are also referred to as adaptive treatment strategies
or treatment policies in the healthcare literature (Murphy et al., 2001a; Chakraborty and Murphy,
2014). These decision rules provide an effective vehicle for personalized medicine for chronic
conditions, in which treatment is repeatedly tailored to a patient’s dynamic state.

A policy dictates the actions that an agent (e.g., a physician, an ad-placement engine) could
take based on the values of the states that it observes in the underlying SCM. A policy intervention
do(X ⇐ ωX) following a policy ωX (for short, do(ωX)) is an operation that replaces the original
behavior policy fX associated with every variable X ↔ X with the corresponding decision rule
ωX .8 We formally define the new world that emerges when the current one is submitted to an
intervention through the notion of a submodel:

Definition 3 (Submodel) Let M = ↘U ,V ,F , P ≃ be an SCM and let ωX be a policy over actions
X ↑ V . A submodel MωX of M is an SCM ↘U ,V ,FωX , P (U)≃ where

FωX = {fV : →V ↔ V \X} ↗ {ωX : →X ↔ X}. (28)

6. There is a growing literature interested in different features of these interventions, refer to (Pearl, 2000, Ch. 4) for
some historical discussion, and also (Dawid, 2002; Didelez et al., 2006; Tian, 2008).

7. Formally, this means that the original pair, natural/behavior function fX and exogenous term UX is replaced with
another pair, a new function f

→
X and an independent noise U

→
X , generating the purported conditional distribution ωX

behavior. For simplicity, we ignore U
→
X and write a stochastic policy X → ω(x|sX).

8. This overwrites the natural/behavior policy and is, therefore, oblivious to how other agents, artificial or natural, were
operating in the environment before the intervention.
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↭

In words, whenever the causal system M is submitted to an intervention ωX , the equations relative
to the original mechanisms (whatever these were) are replaced with the ones corresponding to the
intervention, and all other equations remain the same; the resultant model is called MωX . A sig-
nificant special class of interventions is called atomic, do(X ⇐ x) (for short, do(x)), which sets
the values of variables X to some constants x. That is, decision rules are defined as X ⇐ x for
every variable X ↔ X .9 The submodel induced by an atomic intervention do(x) in an SCM M
is usually written as Mx (Pearl, 2000, p. 204). Further note that this is a derived model defined
over the original SCM M. In other words, the SCM is generative of multiple worlds, while Mx

represents one of these worlds.10

With the context of the sequential decision-making setting in mind, we provide a few concrete
examples below demonstrating the evaluation of policies in canonical RL environments.

Example 5 (MAB, Submodel) Let us consider again the MAB model M→
MAB in Eq. 3. Due to new

HIPAA privacy rules, the age of patients (U ) is protected and cannot be disclosed, meaning they are
unobserved from the CRL agent’s perspective. Consider a policy ω ↫ X ⇐ x that sets treatment
X to a constant x ↔ {0, 1}. The submodel M→

MABx
induced by atomic intervention do(X ⇐ x) is a

tuple

M→

MABx
= ↘U = {U},V = {X,Y },Fx, P (U)≃, (29)

where

Fx =

{
X ⇐ x,

Y ⇐ 1{U < 0.4⇒”X}
(30)

More broadly, a stochastic policy ω(X) is a probability distribution over domains of arm choice
X ↔ {0, 1}. The submodel entailed by intervention do(X ↖ ω(X)) is a tuple

M→

MABω
= ↘U = {U},V = {X,Y },Fω, P (U)≃, (31)

where

Fω =

{
X ↖ Bernoulli(ω(X = 1)),

Y ⇐ 1{U < 0.4⇒”X}
(32)

In words, the CRL agent following a stochastic policy ω(X) prescribes treatment X = x with
probability ω(X = x) where x ↔ {0, 1}. The patient’s age (U ) is not disclosed to the CRL agent
and thus is not considered when choosing the treatment at the decision-making time. ↭

9. This basic primitive has appeared at different times and contexts through causality’s history. It was introduced in
econometrics by Haavelmo (1943); Strotz and Wold (1960). In statistics, potential outcomes were introduced in
the context of randomized experiments by Neyman (1923) and then connected with observational studies by Rubin
(1974). In mathematical logic, counterfactuals were discussed by Lewis (1973) with possible worlds semantics. Pearl
developed a general and algorithmic treatment through graphical models in AI (Pearl, 1993, 1995) .

10. The importance of this notion comes from the fact that it will allow us to represent the idea of causal effect, which is
critical in evaluating the effect of actions. Of course, this is a semantical definition and operationalizing it in practice,
whenever M is unknown, will be part of the inferential challenge faced by the CRL agent.
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Example 6 (Markov Decision Process’s Submodel) Consider the MDP M→
MDP in Eq. 5 and an

atomic intervention do(X1 ⇐ x1, . . . , Xi ⇐ xi), where the stocking decision Xi for every day i is
fixed at constant xi = 0, 1. The induced submodel is described by the tuple

MMDPx = ↘U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si},Fx = {Fxi
}, P (U)≃

i=1,2,... (33)

and Fxi
is the post-interventional system dynamics from day i⇒ 1 to day i given by

Fxi
=






Si ⇐ (Si↔1 ⇓Xi↔1)⇔ Ui↔1,1 ⇔ Ui↔1,2,

Xi ⇐ xi

Yi ⇐ Si ⇔Xi ⇔ Ui,1 ⇔ Ui,3

(34)

To improve the long-term profit, the store decides to automate the day-to-day inventory control using
the CRL agent. Since operation errors Ui,1 and fluctuations in demands Ui,2 and pricing Ui,3 are
not recorded in the store’s system, they are unobserved from the CRL agent’s perspective.

A policy ω in the MDP model M is a sequence of decision rules ω = (ω1,ω2, . . . ), one for
every time step i. Every decision rule ωi(Xi | Si) is a conditional distribution mapping from the
domain of state Si to action Xi, for every step i = 1, 2, . . . . The submodel entailed by intervention
do(X1 ↖ ω1(X1 | S1), X2 ↖ ω2(X2 | S2), . . . ) is described by the tuple

M→

MDPω = ↘U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si},Fω = {Fωi
}, P (U)≃

i=1,2,... , (35)

where the causal mechanisms Fωi
transitioning from day i⇒ 1 to i is given by

Fωi
=






Si ⇐ (Si↔1 ⇓Xi↔1)⇔ Ui↔1,1 ⇔ Ui↔1,2,

Xi ↖ Bernoulli(ωi(Xi = 1 | Si))

Yi ⇐ Si ⇔Xi ⇔ Ui,1 ⇔ Ui,3

(36)

In words, the CRL agent following a stochastic policy ω = (ω1,ω2, . . . ) decides whether to restock
Xi = 1 with probability ωi(Xi = 1 | Si) for every time step i = 1, 2, . . . . The agent’s decision is
free from operation errors and thus is not affected by exogenous variables Ui,1, Ui,2, Ui,3. ↭

The usefulness of a submodel is that it gives semantics to how reality will behave when submitted
to a new interventional condition. Similar to the observational distribution (Def. 2), an SCM also
gives a natural valuation of consequences induced by interventions do(ωX) following a policy ωX .
The impact of the intervention on reward signals Y is called a potential response. The definition of
potential response of atomic intervention do(x) was provided in (Pearl, 2000, Def. 7.1.4), and next,
we introduce a generalization to policy interventions do(ωX).

Definition 4 (Potential Response) An SCM M = ↘U , V ,F , P ≃, let X and Y be two sets of
variables in V , ωX be a policy over X , and u be a unit. The potential response YωX (u) is defined
as the solution for Y of the set of equations FωX in M. That is, YωX (u) ↫ Y (u;MωX ).

Formally, the interventional distributions produced by do(ωX) in an SCM M are distributions over
endogenous variables in submodel MωX .
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Definition 5 (Interventional Distribution) An SCM M = ↘U , V ,F , P (U)≃ induces a family of
joint probability distributions over V , one for each intervention do(ωX), where ωX is a policy over
actions X ↑ V . For each endogenous set Y ↑ V ,

PωX (Y ) ↓
∑

u

{YωX (u) = y}P (u), (37)

where YωX (u) is the potential response of intervention do(ωX) on variables Y (Def. 4).

Distributions entailed by policy interventions do(ωX), defined in Eq. 37, could be evaluated using
a procedure described as follows.

1. Replace the mechanism of each X ↔ X with the corresponding functions ωX generating
functions FωX (Eq. 28), which induces a submodel MωX (of M);

2. For each situation U = u, the environment evaluates FωX following a valid order (where
any variable in the l.h.s. is evaluated after the ones in the r.h.s.), and

3. The probability mass P (U = u) is then accumulated for each instantiation U = u consistent
with the event Y = y in the submodel MωX .

As a special case, we denote by Px (Y ) the interventional distribution entailed by atomic inter-
ventions do(x), which is a joint distribution over variables Y in submodel Mx. The following
examples demonstrate the evaluation of both atomic and policy interventional distributions in some
canonical RL environments.

Example 7 (MAB, Interventional Distribution, Atomic) For the MAB model M→
MAB described in

Eq. 3, we compute the interventional distribution P (Y | do(X ⇐ x)), x ↔ {0, 1}. Evaluating the
recovery of the patient Y in submodel M→

MABX↑0
described in Eq. 30 gives

PX↘0 (Y = 1) = P (U < 0.4) (38)
= 0.4 (39)

Similarly, the patient’s recovery rate of treatment X ⇐ 0 is equal to

PX↘1 (Y = 1) = P (U < 0.4⇒”) (40)
= 0.4⇒”. (41)

Since the coefficient ” > 0,

PX↘0 (Y = 1) > PX↘1 (Y = 1) . (42)

A few observations follow. First, a policy prescribing treatment X ⇐ 0 implies a higher chance
of patients’ recovery compared to X ⇐ 1, i.e., X ⇐ 0 is the optimal treatment. Second, this
matches the analysis based on the true mechanism of Y as described in Eq. 3. ↭

A significant challenge arises since the agent doesn’t have access to the true description of the
environment, encoded as the SCM M, it will need to perform interventions physically and set action
X = x, despite the other factors, to obtain samples from the two distributions described by Eqs. 39
and 41. In turn, we discuss more complex interventions from a non-atomic policy.
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Si+1 Si Xi Pxi
(si+1 | si) Exi

[Yi | si]

0 0 0 0.18 0.82
0 0 1 0.82 0.18
0 1 0 0.82 0.18
0 1 1 0.82 0.82
1 0 0 0.82 0.82
1 0 1 0.18 0.18
1 1 0 0.18 0.18
1 1 1 0.18 0.82

(a)

S=0 S=1

X=0

X=1

X=0

X=1

Pinv

0.18,Y=0.82

0.82,Y=0.18

0.82,Y=0.18

0.82,Y=0.82

0.82,Y=0.82

0.18,Y=0.18

0.18,Y=0.18

0.18,Y=0.82

(b)

Figure 6: Interventional distributions of the MDP model described in Eq. 5

Example 8 (MAB, Interventional Distribution, Policy) For the same MAB environment M→
MAB

described in the previous example (and Eq. 3), we have that event X = 1 is equivalent to U < 0.5.
The observational distribution can be obtained by using Eq. 6 and M→

MAB, which leads to P (X =
1) = 0.5. In words, the physician seems to be prescribing treatment X uniformly at random. Recall
that the physician’s recovery rate based on Eq. 10 was P (Y = 1) = 0.5 + ε.

One may be tempted to surmise that the CRL agent could achieve the same performance as the
physician by ’cloning’ its random policy, i.e.,

ω(X = x) = P (X = x) = 0.5. (43)

Perhaps surprisingly, this is not the case. Specifically, evaluating the recovery Y in submodel
M→

MABω
described in Eq. 30, gives:

Pω (Y = 1) =
∑

x=0,1

ω(x)PX↘x (Y = 1) (44)

= 0.5 + 0.5ε. (45)

Whenever coefficient ε > 0, the recovery rate obtained by the CRL agent given by Eq. 45 will be
smaller than the physician’s (Eq. 10). ↭

This example highlights the clear difference between observational (seeing) and interventional
(doing) distributions from the perspective of the CRL agent. Also, when the behavior and the
CRL agents have different perceptual capabilities and views of the environment, naively copying
(or cloning) the nominal behavior policy P (X) may not lead to a successful policy (as shown by
Ex. 7). There is no formal basis to pursue such a strategy since these two distributions are different,
and the empirical gap could be significant.11

11. This leads to a more refined discussion of imitation learning, which is provided in Sec. 8 and accompanied by proper
causal modeling and solutions.
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Example 9 (MDP, Interventional Distribution, Atomic) Consider the MDP environment M→
MDP

described in Eq. 5 and the transition distribution Pxi
(Si+1 | Si) and expected reward Exi

[Yi | Si]
induced by performing intervention do(Xi ⇐ xi) at inventory size Si on day i. Evaluating the
inventory size Si+1 on the next day in MDP M→

MDPx (Eq. 34) gives

PXi↘xi
(Si+1 | Si = si) = P ((si ⇓ xi)⇔ Ui,1 ⇔ Ui,2 | Si = si) (46)

= P ((si ⇓ xi)⇔ Ui,1 ⇔ Ui,2) (47)

The second step holds since the stochastic demand Ui,2 is an independent variable only affecting
Si+1. For Si = 0, Xi ⇐ 0, the above equation could be written as

PXi↘0 (Si+1 = 1 | Si = 0) = P ((0 ⇓ 0)⇔ Ui,1 ⇔ Ui,2 = 1) (48)
= P (Ui,1 ⇔ Ui,2 = 1) (49)
= 0.82. (50)

Similarly, evaluating the expected reward Yi in MDP M→
MDPx gives:

EXi↘xi
[Yi | Si = si] = E [si ⇔ xi ⇔ Ui,1 ⇔ Ui,3 | Si = si] (51)

= E [si ⇔ xi ⇔ Ui,1 ⇔ Ui,3] (52)

For Si = 0, Xi ⇐ 0, the company’s expected profit is equal to

EXi↘0 [Yi | Si = 0] = E [0⇔ 0⇔ Ui,1 ⇔ Ui,3] (53)
= P (Ui,1 ⇔ Ui,3 = 1) (54)
= 0.82 (55)

The complete parametrizations of PXi↘xi
(Si+1 | Si = si) and EXi↘xi

[Yi | Si = si] are shown in
Fig. 6a. The dynamic process described in Fig. 6b shows a compact graphical representation of this
parametrization where transition probabilities T and reward function R are given by

T (s, x, s↓) = PXi↘x

(
Si+1 = s↓ | Si = s

)
(56)

R(s, x) = EXi↘x [Yi | Si = s] (57)

Note that compared with probabilities in Table 5a, interventional distributions PXi
(Si+1 | Si),

EXi
[Yi | Si] and observational distributions P (Si+1 | Si, Xi), E [Yi | Si, Xi)] do not coincide in

the MDP model M→
MDP described in Eq. 5. ↭

Following Examples 4 and 9, we note that the standard definition of MDP found in the literature
(Puterman, 1994; Sutton and Barto, 1998) based on a specific pair of transition probabilities T and
reward function R only provides an abstraction for distributions in a single layer of the PCH, either
observational or interventional. On the other hand, the SCM description of the MDP environment
(e.g., Eq. 5) provides a complete specification that allows for inferences across all layers of the
PCH. This observation is interesting considering the distinct nature of the PCH’s layers and each of
the type of distributions associated with each of them. We will elaborate on this further in Sec. 3.3.

We can also infer about the effects of non-atomic interventions following a Markov policy ω
which determines values of every action Xi based on the observed state Si at every decision horizon
i = 1, 2, . . . . Our next example demonstrates such complex interventions in MDP environments.
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Example 10 (MDP, Interventional Distribution, Policy) Consider the MDP M→
MDP described in

Eq. 5 and a policy ω = (ω1(X1 | S1),ω2(X2 | S2), . . . ). Evaluating the transition distribution from
the current state Si to next state Si+1 in submodel M→

MDPω (Eq. 36) gives

Pω (Si+1 | Si = si, Xi = xi) = P ((si ⇓ xi)⇔ Ui,1 ⇔ Ui,2 | Si = si, Xi = xi) (58)
= P ((si ⇓ xi)⇔ Ui,1 ⇔ Ui,2) (59)

The second step holds since the exogenous variable Ui,2 is an independent variable only affecting
the next state Si+1. It follows from the evaluation in Eq. 47 that the transition distribution remains
invariant across atomic and policy interventions. That is,

Pω (Si+1 | Si = si, Xi = xi) = PXi=xi
(Si+1 | Si = si) (60)

Similarly, evaluating the expected reward Yi conditioning on current state Si and observed action
Xi in submodel M→

MDPω gives:

Eω [Yi | Si = si, Xi = xi] = E [si ⇔ xi ⇔ Ui,1 ⇔ Ui,3 | Si = si, Xi = xi] (61)
= E [si ⇔ xi ⇔ Ui,1 ⇔ Ui,3] (62)

Again, it follows from Eq. 52 that the conditional reward function remains the same for both atomic
and policy interventions:

Eω [Yi | Si = si, Xi = xi] = EXi↘xi
[Yi | Si = si] (63)

More specifically, let policy ω be defined such that Xi ⇐ Si for every time step i = 1, 2, . . . .
Evaluating the profit Yi on day i evokes submodel M→

MDPω and is given by:

Eω [Yi] = EXi↘Si
[Si ⇔Xi ⇔ Ui,1 ⇔ Ui,3] (64)

= E [Si ⇔ Si ⇔ Ui,1 ⇔ Ui,3] (65)
= 0.82 (66)

The cumulative profit induced by policy ω with discount factor ϑ = 0.9 is then equal to:

Eω

[
↗∑

i=1

ϑi↔1Yi

]
=

↗∑

i=1

ϑi↔1Eω [Yi] (67)

=
0.82

1⇒ ϑ
(68)

Computing the above equation gives Eω

[∑
↗

i=1 ϑ
i↔1Yi

]
= 8.2, which outperforms the inventory

manager’s performance (behavior agent) E
[∑

↗

i=1 ϑ
i↔1Yi

]
= 1 (Eq. 19) under the behavior policy.

In other words, it is more profitable to replace the manager with the CRL agent and automate the
inventory management process in this case. ↭

2.3 Encoding Structural Assumptions through Causal Diagrams

Even though SCMs are well-defined and provide precise semantics to the various types of distribu-
tions underlying the PCH, as discussed previously, one critical observation is that, in practice, they
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are usually not observable by the CRL agent. Further assumptions are needed if one wants to reason
about the underlying SCM. We will introduce an object called a causal diagram to encode assump-
tions about this SCM. There are different ways a causal diagram can be specified, including (1) as
a template model (e.g., MABs, MDPs), (2) through prior knowledge, or (3) through a structural
learning algorithm. We first describe the semantics of this object and a construction procedure that
allows one to systematically articulate this causal diagram from a coarse, qualitative understanding
of the underlying SCM.

Definition 6 (Causal Diagram (Pearl, 2000; Bareinboim et al., 2020)) Consider the SCM M =
↘V ,U ,F , P (U)≃. A graph G is said to be a causal diagram (of M) if:

1. there is a vertex for every endogenous variable Vi ↔ V ,

2. there is an edge Vi ↙ Vj if Vi appears as an argument of the mechanism fj ↔ F ,

3. there is a bidirected edge Vi ↬⊜⊜⊜⊜≿ Vj if the corresponding Ui, Uj ∝ U are correlated or
the corresponding functions fi, fj share some Uij ↔ U as an argument. ↭

Figure 7: The space of SCMs/Causal
diagrams are shown on the left/right
side. The true SCM M→ and the corre-
sponding causal diagram G→ are explic-
itly shown. The yellow area represents
the subspace where these other SCMs
generate the same G→.

In words, there is an edge from endogenous variables
Vi to Vj whenever Vj “listens to”12 Vi for determining
its value. Similarly, a bidirected edge between Vi and Vj

indicates shared, unobserved information affecting how
both, or whether Vi and Vj “listens” to the same source
of exogenous variations. Note that while the SCM con-
tains explicit, quantitative information about all structural
mechanisms (F ) and exogenous probability distribution
(P (U)), in contrast, the causal diagram encodes only
qualitative information about which arguments were pos-
sibly used as inputs to the functions (from F ) and how
the exogenous variations are related (from P (U)). The
diagram abstracts out the specifics of the mechanisms F
and distribution P (U), retaining qualitative information
about their possible arguments and independence struc-
ture, respectively.13

I. Template models (knowledge-based). In practice, the CRL agent will not have access to the
fully specified SCM and will operate based on the assumptions encoded in the given causal diagram.
This will represent a major inferential challenge since the diagram is much weaker than the SCM,
and there are various SCMs (marked in yellow in Fig. 7) equally compatible with the same causal

12. This construction lies at the heart of the type of knowledge causal models represent, as suggested in (Pearl and
Mackenzie, 2018, pp. 129): “This listening metaphor encapsulates the entire knowledge that a causal network con-
veys; the rest can be derived, sometimes by leveraging data;” for technical details, (Bareinboim et al., 2020, Sec. 1.4).

13. Furthermore, the existence of a directed arrow, e.g., Vi ↓ Vj , encodes the possibility of the mechanism of Vj to
listen to variable Vi, but not its necessity. In this sense, the edges are non-committal; for instance, fj may decide
not to consider Vi’s value. More formally, the assumptions are not encoded in the arrows in the diagram but in the
missing arrows; each missing arrow ascertains that one variable is certainly not the argument of the other or that one
exogenous source of variation is not correlated to another. The same idea is true regarding the bidirected arrows and
the possibility of covariation of some unobserved factors.
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diagram. Still, whenever these inferences are allowed, this will translate into different gains in
decision-making precision and efficiency.

To ground this particular construction, we will consider the first way of specifying knowledge of
the underlying SCM through pre-specified template models, as illustrated in the following example.

Example 11 (MAB’s Causal Diagram) Consider a template family of MAB models MMAB which
consists of SCMs MMAB described by a tuple

MMAB = ↘U = {U},V = {X,Y },F , P (U)≃, (69)

The causal mechanisms F are structural functions of the form:

F =

{
X ⇐ fX(U),

Y ⇐ fY (X,U)
(70)

To apply the graphical construction dictated by Def 6, the AI engineer starts the modeling process
by examining each of the endogenous variables V = {X,Y }, and adding them as nodes in the
causal diagram. The corresponding diagram is illustrated in Fig. 8a and will be called GMAB.

They then consider the second and third conditions of Def. 6. The mechanism underlying the
context variable can be written as,

X ⇐ fX(U), (71)

which suggests that the action is determined by an exogenous variable U (in the natural regime).
This is regardless of the specific form, fX , of how these variables are realized in reality. The
engineer may, in turn, think about the reward function, namely,

Y ⇐ fY (X,U). (72)

Eq. 72 suggests how, in reality, the rewards that come about may be influenced by the action X .
Graphically, this is represented through the arrow X ↙ Y . Furthermore, since the mechanisms fX
and fY share the exogenous variable U , a bidirected arrow X ↬⊜⊜⊜⊜≿ Y is added to GMAB.

Consider now a detailed MAB environment M→
MAB defined in Eq. 3. Since M→

MAB belongs to the
template family MMAB, we could conclude that GMAB is a causal diagram associated with M→

MAB.
Note that this construction contrasts sharply with how detailed knowledge is encoded in the true
SCM M→

MAB, as delineated in Def. 6. Interestingly enough, an entirely different functional form of
the reward mechanism, say

Y ⇐ 1{U < 0.4 +”X} (73)

would be equally compatible with the causal diagram depicted in Fig. 8a. Compared with the
original reward in Eq. 3, the coefficient of X is flipped to ”. This means it is preferable to pull arm
X ⇐ 1, which is the opposite of the optimal choice X ⇐ 0 in the original model. ↭

Similar construction and argument can be used when considering an MDP environment described in
Eq. 5. The causal diagram in Fig. 8b is called GMDP and represents causal relationships among vari-
ables shared across a template family of MDP environments. In the same way as the template causal
diagram for MABs, this diagram GMDP is non-committal regarding the form of the mechanisms F
and the parametrization of the exogenous distribution P (U).
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Figure 8: Causal diagrams for (a) a multi-armed bandit (MAB); (b) a Markov decision process
(MDP); and (c) an SCM representing a refinement of the MAB environment.

II. General causal models (knowledge-based). The graphical models discussed so far based on
templates conveniently encapsulate structural information about the state, decision, and outcome
variables.14 As will become apparent in the following sections, this will naturally incur a cost in
many practical CRL tasks. For now, we note that in some settings, additional information may be
available that could be leveraged by the CRL agent.

For concreteness, consider the diagram in Fig. 8c. One way of thinking about it is as a refinement
of the MAB diagram shown in Fig. 8a, where a confounder Z and a mediator W are now explicit.
One natural question is how to test a model designed by the AI engineer. Interestingly enough, there
are constraints imprinted by the SCM over the observational distribution P (V ), as well as the other
PCH’s distribution, that will allow the CRL agent to check whether its current working hypothesis
is plausible, regardless of the idiosyncrasies of the properties of the distribution of exogenous P (U)
and the causal mechanisms F (e.g., monotonicity, linearity, separability).

We will discuss for now constraints known as conditional independences accompanied with a
criterion known as d-separation (Pearl, 2000) that allows us to read such constraints from the model.
A path p from a node X to a node Y in G is a sequence of edges that does not include a particular
node more than once. It may go either along or against the direction of the edges. A path consisting
of only bidirected edges is called a bidirected path. Formally, it goes as follows.

Definition 7 (d-separation (Pearl, 2000)) A set Z ↑ V is said to block a path p in G if either

1. p contains at least one arrow-emitting node that is in Z, or

2. p contains at least one collision node outside Z and has no descendant in Z.

If Z blocks all paths from set X to set Y , it is said to “d-separate X and Y .”15 ↭

Before discussing some examples, we state one of the main results that connect d-separation state-
ments made over the diagram G with constraints observed in the distribution P (V ).

Theorem 1 (Probabilistic Implications of d-Separation (Pearl, 2000)) If X,Y are d-separated
by Z in a causal diagram G, then X is independent of Y conditional on Z in every distribution P
compatible with G. Conversely, if X and Y are not d-separated by Z in a diagram G, then X and
Y are dependent conditional on Z in at least one distribution P compatible with G. ↭
14. In reality, this class of causal diagrams was introduced under the rubric of clustered diagrams and different properties

investigated, we refer readers to (Anand et al., 2021) for further details.
15. See Hayduk et al. (2003), Mulaik (2009), and Pearl (2009, pp. 335) for a gentle introduction to d-separation.
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To illustrate these results, consider the causal diagram G in Fig. 8c and whether X and Y are
d-separated. Note that there are two paths from X to Y ,

p1 : X ⇐ Z ↙ Y, (74)

p2 : X ↙ W ↙ Y. (75)

Since Z = {} in this case, both paths p1 and p2 are opened. One interpretation of this result is that
there is a flow of information from X that is transmitted through Z,W that affects Y . Now, let’s
consider the separation statement when the conditioning set Z = {Z,W}, or the confounder and
mediator are in Z. The first condition of the criterion is then immediately satisfied, and the paths p1
and p2 are “blocked.” We can see through Thm. 1 that the following independence holds in P (V ):

(Y ′′ X | {Z,W}) . (76)

Intuitively, once the values of Z and W are known, there is no information about X that will affect
the likelihood of Y through p1 and p2, respectively. Readers are invited to check that the criterion
is not satisfied if any intermediate variables are removed from the conditioning set.

III. General causal models (learning-based). Based on the marks imprinted by M→ on P (V ),
the agent may test whether the hypothesized graph G is compatible with the available data. There
exists a traditional literature known as causal discovery that attempts to perform the reverse process
(Pearl, 2000; Spirtes et al., 2000; Petersen et al., 2006). In other words, from the marks readable
from P (V ), the agent should infer what the compatible G that could have left these traces is. In
practice, assumptions regarding the simplicity of these models (à la Occam’s razor) are used to
avoid situations described above, in which a saturated model would be preferred.

A growing, more recent literature is concerned with combining both observational and experi-
mental distributions to learn a more restrictive equivalence class of causal diagrams (Kocaoglu et al.,
2017, 2019; Wang et al., 2017; Agrawal et al., 2019; Mooij et al., 2020; Jaber et al., 2020). In fact,
a richer set of constraints other than conditional independences emerge when we consider multiple
distributions across different regimes (observational and interventional).

3. Elements of Causal Reinforcement Learning

In this section, we will introduce a unified framework that lets us view the decision-making prob-
lem through causal lenses and solve reinforcement learning tasks using causal inference tools. First,
Sec. 3.1 formalizes the decision-making problem in the causal language by introducing a mathe-
matical object called causal decision models (CDMs). Every CDM comprises of a structural causal
model representing the underlying environment, a policy space encoding what the agent can control
and observe during the intervention, and a reward function that gauges the agent’s performance.

Armed with this new formalism, we can represent many canonical decision-making settings
found in the literature within the semantic framework of SCMs. These include multi-armed bandits
(MABs), Markov decision processes (MDPs), and dynamic treatment regimes (DTRs), among oth-
ers. In practical scenarios, a detailed parametrization of the environment isn’t always fully known,
giving rise to reinforcement learning in SCMs. Sec. 3.2 introduces the concept of causal reinforce-
ment learning task, and provides an initial catalog of tasks that will be studied through this section.
Each task is delineated by the manner in which the agent interacts with the environment (regime),
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any prior structural assumptions about that environment, and the specific policy space and reward
function the agent seeks to optimize. Lastly, Sec. 3.3 delves into the importance of causal knowledge
by examining policy learning within the conventional decision-making model of MDPs. Without
explicitly acknowledging the learning regime and structural assumptions, we’ll demonstrate that the
underlying data-generating mechanisms can yield multiple MDPs, all compatible with the observed
data, but with diverging implications for the optimization of decision-making. In simpler terms, the
observed data typically doesn’t fully dictate an optimal policy.

3.1 Causal Decision Models

We now formalize the policy optimization problem in SCMs based on the causal machinery intro-
duced earlier in this section. The underlying environment will be represented as an SCM M→ =
↘U ,V ,F , P ≃. We study the problem of interacting on action variables X ↑ V to optimize some
performance measures over reward signals Y ↑ V evaluated by M→. The agent determines values
of actions X by performing intervention do(ω) following some policies ω. The collection of all
candidate policies ω determining values of actions X defines a policy space #. Formally,

Definition 8 (Policy Space) For an SCM M→ = ↘U ,V ,F , P ≃, a policy space # is a collection
of policies ω over actions X = {X1, . . . , XH}. Each policy ω is a sequence of decision rules
(ω1 (X1 | S1) , . . . ,ωH (XH | SH)) such that for every i = 1, . . . , H ,16

• Action Xi is a non-descendent of Xi+1, . . . , XH , i.e., Xi ↔ V \De(Xi+1, . . . , XH);

• States Si are non-descendants of Xi, . . . , XH , i.e., Si ↑ V \De(Xi, . . . , XH).

Henceforth, we will consistently denote such a policy space by # = {↘X1,S1≃, . . . , ↘XH ,SH≃}. ↭

Policies

#full

#Markov

#stationary

Figure 9: Policy spaces
for a 2-stage DTR envi-
ronment.

Every policy ω ↔ # is a sequence of decision rules
(ω1 (X1 | S1) , . . . ,ωH (XH | SH)). An agent following policy ω se-
lects values of actions X following a temporal ordering X1, . . . , XH .
At every step of intervention i = 1, . . . , H , it performs the following

1. Observe some state variables Si = si;

2. Select a value of action xi ↖ ωi(Xi | Si = si) following the
decision rule ωi;

3. Perform an intervention do(Xi ⇐ xi) following the selected ac-
tion xi.

In words, a policy space # defines the action space X that the agent
could control after being deployed in the environment and the state space
S1, . . . ,SH that the agent could perceive at the time of intervention for
every action X1, . . . , XH . The subsequent examples illustrate the concept of policy space in dy-
namic treatment regimes (for short, DTRs), which is a class of sequential decision-making environ-
ments widely applied in healthcare and personalized medicine.

16. The policy space ! is also referred to a policy scope in (Lee and Bareinboim, 2020), which characterizes the agent’s
action and state scope - what it could interaction with and what it could observe at the time of interaction.
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Example 12 (Dynamic Treatment Regimes (Murphy, 2003)) In healthcare, a typical patient is
often treated at multiple stages; the physician repeatedly adapts each treatment, tailoring it to the
patient’s time-varying, dynamic state. Dynamic treatment regimes provide an appealing framework
for managing personalized medicine in the longitudinal setting.

For instance, consider a DTR for managing alcohol-dependent patients, adapted from (Murphy
et al., 2001a; Chakraborty and Moodie, 2013). The physician (i.e., the agent) has to decide the ini-
tial treatment X1 and the secondary treatment X2. Based on the condition of an alcohol-dependent
patient (S1), the physician may use behavioral therapy (X1 = 0) or prescribe medication (X1 = 1).
The patient is then classified as a responder or a non-responder (S2) based on the level of drink-
ing within the next two months. The physician must then decide whether to continue the initial
treatment (X2 = 0) or switch to a more intensive plan combining medication and behavioral ther-
apy (X2 = 1). We are interested in the primary outcome Y that measures the patient’s days of
abstinence over 12 months after the treatment.

More formally, consider a DTR environment M→
DTR that is a tuple given by

M→

DTR = ↘U = {U,U1, . . . , U4},V = {S1, S2, X1, X2, Y },FDTR, P (U)≃, (77)

where the underlying causal mechanisms FDTR are given by,

FDTR =






S1 ⇐ 1{U3 > 0},
X1 ⇐ 1{3S1 + ε1U + U1 > 0},
S2 ⇐ 1{0.1 + 0.1S1 + 0.1X1 + U4 > 0},
X2 ⇐ 1{3S2 + ε2U + U2 > 0},
Y ⇐ 1{3U ⇒ 3S1 ⇒ 3X1 ⇒ 3S1X1 + 3X2 ⇒ 3S2X2 + 3X1X2 > 0},

(78)

Among quantities in the above equations, we set coefficients ε1 = ε2 = 0. However, for examples
in subsequent sections, these coefficients will be non-zero.

The exogenous distribution P (U) is defined such that for i = 1, . . . , 4, Ui ↖ Logistic(0, 1)
is an independent variable drawn from a logistic distribution

P (Ui < u) =
1

1 + e↔u
(79)

and U ↖ Unif(0, 1) is an independent variable drawn uniformly over a real interval [0, 1]. ↭
It is possible to define different policy spaces in the DTR environment described above, depending
on the choices of input states Si for every action Xi, and parametric forms of decision rules ωi.

Example 13 (DTR, Policy Space) For the 2-stage DTR environment described in Eq. 78. We con-
sider a policy space #full = {↘X1, {S1}≃, ↘X2, {S1, X1, S2}≃} satisfying the perfect recall (Koller
and Friedman, 2009). That is, the agent determines every action based on all the past states and
actions’ history. More specifically, every adaptive treatment strategy (i.e., a policy) ω ↔ #full is a
pair of decision rules

ω = (ω1 (X1 | S1) ,ω2 (X2 | S1, X1, S2)) , (80)

where ω1 prescribes an initial treatment X1 based on the patient’s initial condition S1; and ω2
decides whether to continue or switch the previous plan X2 based on the patient’s responses S2 to
the previous treatment, the initial treatment, and condition X1, S1.
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One could also define a more restricted policy space #Markov = {↘X1, {S1}≃, ↘X2, {S2}≃}.
Every policy ω ↔ #Markov is a pair of decision rules

ω = (ω1 (X1 | S1) ,ω2 (X2 | S2)) , (81)

where every ωi, i = 1, 2, prescribes a treatment Xi based on the patient’s condition Si at the current
stage. Such policies are also referred to as Markov policies in planning literature (Puterman, 1994).
Note that for every Markov policy ω↓ ↔ #Markov, one could simulate it with a general policy ω ↔ #full
by setting ω2(X2 | S1, X1, S2) = ω↓

2(X2 | S2). It follows that #Markov ∝ #full, i.e., every Markov
policy is contained in the general policy space #full.

Finally, we define a stationary policy space #stationary ∝ #Markov. Every policy ω ↔ #stationary is
a Markov policy satisfying an additional parametric constraint such that decision rule ωi remains
invariant across all stages i = 1, 2. That is, for a stationary policy ω = (ω1,ω2),

ω1 (X1 | S1) = ω2 (X2 | S2) (82)

Since #Markov ∝ #full, we must have #stationary ∝ #Markov ∝ #full. Fig. 9 shows a Venn diagram
representing the relationship between #stationary, #Markov, and #full. The outer rectangle represents
all possible policies over actions X1 and X2, including over a singleton action Xi, i = 1, 2. ↭

The agent’s performance is measured by a reward function that takes a set of reward signals in
the environment as input.

Definition 9 (Reward Function) For an SCM M→ = ↘U ,V ,F , P ≃, a reward function R is a
function D(Y ) ∞↙ R mapping domains of a subset of endogenous variables Y ↑ V to a real value
in R. Moreover, the endogenous variables Y are called reward signals. ↭

Def. 9 covers most performance criteria in the decision-making literature. For instance, for a
sequence of reward signals Y = {Y1, . . . , YH}, the cumulative reward Rtotal(Y ) is given by

Rtotal(Y ) =
H∑

i=1

Yi. (83)

When the total number of reward signals H ↙ ∈, the above cumulative reward does not necessarily
converge. In this case, a reasonable criterion is to consider the average reward given by

Raverage(Y ) =
1

H

H∑

i=1

Yi. (84)

The above reward function is ensured to converge as the total number of reward signals H ↙ ∈.
Alternatively, let a discount factor ϑ ↔ (0, 1) and define the discounted cumulative reward as:

Rdiscount(Y ) =
H∑

i=1

ϑi↔1Yi. (85)

The discount factor can be interpreted in several ways; as an interest rate, the probability of living
another step, or the mathematical trick for bounding the infinite sum.
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Definition 10 (Causal Decision Model) A causal decision model (CDM) is a tuple ↘M→,#,R≃
where M→ = ↘U ,V ,F , P ≃ is an SCM, # is a policy space over actions X ↑ V , and R is a
reward function over reward signals Y ↑ V . ↭

Among elements in Def. 10, the SCM M→ represents the underlying environment; the policy
space # indicates the agent’s capabilities after deployed in the environment, i.e., what it could
control and observe at the time of interaction; the reward function R measures the performance of
the agent, from the system designer’s perspective. Formally, every CDM ↘M→,#,R≃ characterizes
a planning/decision-making task (Bellman, 1966) that attempts to find an optimal strategy from the
policy space # dictating the agent’s behaviors, provided with the complete parametrization of the
underlying environment M→. An optimal policy ω→ for a CDM ↘M→,#,R≃ is a policy in space #
that maximizes the reward function R evaluated by the underlying SCM M→, i.e.,

ω→ = argmax
ω↑!

Eω [R (Y ) ;M→] (86)

We will graphically represent every CDM ↘M→,#,R≃ using an augmented causal diagram G con-
structed from the environment M→ (Fig. 6); actions X and reward signals Y are highlighted in blue
and red respectively; for every action, Xi ↔ X , its input states Si are highlighted in light blue.
Fig. 10 shows the graphical representation for some canonical planning tasks.

A few observations are worth making at this point. First, the number of action variables H =
|X| represents the horizon of the decision sequence.17 When H = 1, the CDM corresponds to the
single-stage decision models such as MABs (Robbins, 1952). On the other hand, when H > 1, the
CDM defines a sequential decision-making problem, e.g., MDPs (Puterman, 1994), when the agent
has to sequentially determine values of actions Xi, i = 1, . . . , H , based on values of the observed
states Si at the time of the intervention.

Second, it is possible to define multiple CDMs in the same environment M→ by changing the
policy space # and the reward function R, resulting in different optimal policies. In other words,
the optimal policy ω→ is defined with regard to the agent’s capabilities to interact the environment
after being deployed and how the system designer incentives its behaviors. Consequently, changing
the forms of policy # and reward R affects the optimal solution ω→.

Example 14 (CDMs in DTR) Let M→
DTR be a DTR environment compatible with Fig. 10c. The

primary outcome Y is given by Y ⇐ X2 ⇔ S1; values of S1 are uniformly drawn from the binary
domain {0, 1}. Let #full and #Markov be policy spaces defined in Example 13.

We could define CDMs ↘M→
DTR,#full, Y ≃ and ↘M→

DTR,#Markov, Y ≃, which represent two different
planning tasks. The former searches for a general policy ω→

full ↔ #full determining actions Xi

based on the complete states and actions’ history S1, . . . , Si, X1, . . . , Xi↔1; while the latter finds a
Markov policy ω→

Markov ↔ #Markov selecting action Xi based on the current state Si.
First, for any Markov policy ωMarkov = (ω1,ω2) in #Markov, its expected reward is given by

EωMarkov [Y ] =
∑

x2,s1

E[x2 ⇔ s1]P (s1)
∑

s2

ω2(x2 | s2)P (s2) (87)

= 0.5 (88)

17. In episodic reinforcement learning, the agent collects data by interacting with the environment for repeated episodes
t = 1, . . . , T . The decision horizon H represents the total steps of actions X1, . . . , XH that the agent has to decide
in every episode. We will further elaborate on the episodic learning for optimizing CDMs in Sec. 3.2.
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Figure 10: Causal diagrams for CDMs representing canonical decision-making models.

The last step holds since S1 is uniformly drawn over the binary domain {0, 1}. Also, solving the
CDM ↘M→

DTR,#full, Y ≃ gives an optimal policy ω→

full = (ω→

1,ω
→

2) such that ω→

2 ↫ X2 ⇐ ¬S1. Evalu-
ating the expected reward of ω→

full in M→
DTR gives

Eω
→
full
[Y ] = E[S1 ⇔ ¬S1] (89)

Computing the above equation implies Eω
→
full
[Y ] = 1 which outperforms the best possible Markov

policy Eω
→
Markov

[Y ] = 0.5. Moreover, suppose the sign of the reward function is changed to R(Y ) ⇐
⇒Y . The same solution ω→

full is no longer optimal in a CDM ↘M→
DTR,#full,⇒Y ≃ since it now mini-

mizes the expected primary outcome Eω [⇒Y ] instead. ↭

More broadly, the formulation of CDMs permits one to represent canonical planning tasks (or
equivalently, decision-making models) in the literature across disciplines, including RL and health-
care, when the detailed parametrization of the underlying environment M→ is known. These canon-
ical tasks are graphically represented in Fig. 10, which we will briefly describe below.

• Multi-Armed Bandit (Robbins, 1952). Fig. 10a is induced by a MAB model ↘M→
MAB,#, Y ≃

consisting of an arm choice X and reward Y . Policy space # = {↘X, ∋≃} defines a set of
policies ω that selects values of action X following a probability distribution ω(X). Please
visit Example 15 for a detailed instance of a MAB model.

• Contextual Bandit (Langford and Zhang, 2008a). Fig. 10b is the graphical representation
of a contextual bandit (C-MAB) model ↘M→

CMAB,#, Y ≃. Compared with MABs, a context
variable S is now observed. The policy space # = {↘X, {S}≃} consists of candidate policies
ω(X|S) which selects values of action X based on the observed context S.

• Dynamic Treatment Regime (Murphy et al., 2001a). In a DTR model ↘M→
DTR,#, Y ≃, the policy

space # = {↘Xi, {S1, . . . , Si, X1, . . . , Xi↔1}≃}Hi=1 is a set of policies ω = (ω1, . . . ,ωH)
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consisting of a finite sequence of decision rules. For every i-th stage, the decision rule ωi(Xi |
S1, . . . , Si, X1, . . . , Xi↔1) selects values of action Xi based on all the past action and states’
history S1, . . . , Si, X1, . . . , Xi↔1. The goal is to maximize the primary outcome Y after
intervening on all actions X1, . . . , XH . Fig. 10c is the graphical representation of a 2-stage
DTR model; a detailed instance is provided in Example 12.

• Markov Decision Process (Bellman, 1957; Puterman, 1994). Consider a Markov decision
process (MDP) model ↘M→

MDP,#,R≃. Environment M→ consists of a set of states S =
{Si}↗i=1, a set of actions X = {Xi}↗i=1, and a set of reward signals Y = {Yi}↗i=1. The policy
space # = {↘Xi, Si≃}↗i=1 consists of a set of decision rules ω = (ωi(Xi | Si))↗i=1. The reward
function R can be described as the average reward Raverage(Y ) in Eq. 84 or the discounted
reward Rdiscount(Y ) in Eq. 85. In the discounted case, rewards obtained later are discounted
more than rewards obtained earlier. If the discounted factor ϑ = 0, the agent is said to be
myopic, i.e., it is only concerned about immediate rewards. Fig. 10d represents the causal
diagram of an MDP model spanning over steps i = 1, 2, 3. See Example 16 for a detailed
instance of a policy planning task in an MDP environment.

• Partially Observable MDP (Åström, 1965). A partially observable MDP (POMDP) is a gen-
eralization of MDP in which system dynamics are determined by an MDP environment, but
the agent could not directly utilize the underlying state S = {Si}↗i=1 as input to determine its
actions X = {Xi}↗i=1. Instead, it only receives a set of observation variables O = {Oi}↗i=1
depending on the underlying states. Fig. 10e shows a POMDP model ↘M→

POMDP,#,R≃ span-
ning over steps i = 1, 2, 3. The policy space # = {↘Xi, {O1, . . . , Oi, X1, . . . , Xi↔1}≃}↗i=1
defines a set of non-Markov policies ω = (ωi(Xi | O1, . . . , Oi, X1, . . . , Xi↔1))↗i=1. For every
i-th stage of intervention, an agent following a non-Markov policy ω ↔ # selects an action
xi ↖ ωi (Xi | O1, . . . , Oi, X1, . . . , Xi↔1) based on all the past observations and actions.

When the policy space # and the reward function R are well-specified, and detailed parameters
of the underlying environment M→ are provided, there exist efficient algorithms in the planning
literature to solve for an optimal policy in a CDM ↘M→,#,R≃ (Bellman, 1957; Puterman, 1994;
Shachter, 1986). For instance, for an MDP model graphically described in Fig. 10d, one could
obtain an optimal policy using standard dynamic programming algorithms (Bellman, 1957; Puter-
man, 1994). The same planning procedure applies to a DTR model (Murphy, 2003; Murphy et al.,
2001a; Murphy, 2005b), e.g., Fig. 10c. Due to the latent nature of underlying states, planning in
POMDP models (e.g., 10e) is more computationally challenging, and requires the planning algo-
rithm to maintain memory and possibly reason about beliefs over the states. A variety of heuristics
for approximate planning in POMDPs have been proposed (Jaakkola et al., 1994; Hansen, 1998;
Hauskrecht, 2000). Optimizing policies in a general CDM has been studied under the rubrics of
influence diagrams; several algorithms and approximate procedures have been proposed, including
(Shachter, 1986; Koller and Milch, 2003; Lauritzen and Nilsson, 2001).

The following examples illustrate CDMs in some canonical decision-making settings in the
literature, together with the planning procedure for computing the optimal policy.

Example 15 (MAB Planning) Consider a CDM described by the tuple

↘M→ = M→

MAB,# = {↘X, ∋≃},R(Y ) = Y ≃, (90)
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where M→
MAB is the MAB environment described in Example 1. Fig. 10a shows the graphical repre-

sentation of this CDM where action X and reward Y are highlighted in blue and red respectively.
Every policy ω(X) ↔ # is a probability distribution over domains of action D(X) = {0, 1}.

Evaluating the expected reward Y in submodel M→
MABω

gives

Eω [Y ] =
∑

x

∑

u

E [Y | x, u]P (u)ω(x) (91)

= EX↘0 [Y ]ω(X = 0) + EX↘1 [Y ]ω(X = 1) (92)

The last step follows from marginalizing over the exogenous variable U . Note that evaluation of
expected rewards Ex [Y ] of atomic interventions do(X ⇐ x) is provided in Example 7. Replacing
interventional queries Ex [Y ] in the above equation gives

Eω [Y ] = 0.4ω(X = 0) + (0.4⇒”)ω(X = 1) (93)
= 0.4⇒”ω(X = 1) (94)

The last step follows from
∑

x
ω(x) = 1. Since the coefficient ” > 0, the reward function R(Y ) =

Y evaluated in M→
MAB is maximized when probability ω(X = 1) = 0, That is, the optimal policy is

determinsitic ω→ : X ⇐ x→ with the optimal arm choice x→ = 0. ↭

Example 16 (MDP Planning, Dynamic Programming) Consider the MDP environment M→
MDP

given by Eq. 5. We are interested in optimizing the MDP model described by a CDM given by

↘M→ = M→

MDP,# = {↘Xi, {Si}≃}↗i=1,Rdiscount(Y )≃ (95)

where Rdiscount(Y ) is the discounted reward function given by Eq. 85 with ϑ = 0.9. We will focus on
stationary policies ω = (ωi(Xi | Si))

↗

i=1 such that decision rules ω1 = ω2 = . . . remain invariant
across decision horizons i = 1, 2, . . . .18

Let D(S) and D(X) denote the domain of state Si and action Xi at every stage i, respectively.
For any stationary policy ω ↔ #, a state-action value function Qω : D(S) △ D(X) ↙ R (also
called a Q-function) is defined as the expected cumulative reward following policy ω given the
starting state s and initial action x, i.e.,

Qω(s, x) = Eω




↗∑

j=0

ϑjYi+j | Si = s,Xi = x



 (96)

Since the structural functions fSi
and fYi

remains invariant across decision horizon i = 1, 2, . . . ,
for any policy ω, any state s, and any action x, the above expression can be recursively defined in
terms of a so-called Bellman Equation (Bellman, 1966):

Qω(s, x) = Eω

[
Yi + ϑYi+1 + ϑ2Yi+2 + · · · | Si = s,Xi = x

]
(97)

= Eω [Yi + ϑQω(Si+1, Xi+1) | Si = s,Xi = x] (98)

18. Indeed, it has been shown that there always exists a stationary policy that could optimize the cumulative reward in an
MDP model (Filar and Vrieze, 2012). It thus suffices to focus on stationary policies.
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S X Q→ S X Q→

0 0 8.2 1 0 7.56
0 1 7.56 1 1 8.2

Table 2: Optimal Q-function Q→(s, x) evaluated in the MDP model of Example 16.

The last step follows from the recursive definition of the value function Qω(s, x) and the Markov
property in the interventional distribution; see Example 9 for details. The above equation could be
further written as, by expanding on next state Si+1 and action Xi+1,

Qω(s, x) = Eω [Yi | Si = s,Xi = x] + ϑEω [Qω(Si+1, Xi+1) | Si = s,Xi = x] (99)
= Eω [Yi | Si = s,Xi = x] (100)

+ ϑ
∑

s↓

Pω

(
Si+1 = s↓ | Si = s,Xi ⇐ x

)∑

x↓

ωi+1(x
↓ | s↓)Qω(s

↓, x↓) (101)

Since the transition distribution and the conditional reward remain invariant across atomic and
policy interventions (Eqs. 60 and 63), the above equation could be further written as

Qω(s, x) = Rexp(s, x) + ϑ
∑

s↓

Texp(s, x, s
↓)
∑

x↓

ωi+1(x
↓ | s↓)Qω(s

↓, x↓) (102)

where the transition probability Texp and the reward function Rexp are given by

Texp(s, x, s
↓) = PXi↘x

(
Si+1 = s↓ | Si = s

)
(103)

Rexp(s, x) = EXi↘x [Yi | Si = s] (104)

Detailed parametrizations of interventional quantities T and R are provided in Fig. 6.
An optimal policy ω→ is such that Qω→(s, x) ⇑ Qω for all state-action pair s, x and all policies

ω. Optimizing Q-function leads to an expression called the Bellman optimality equation, i.e,

Q→(s, x) = Rexp(s, x) + ϑ
∑

s↓

Texp(s, x, s
↓)max

x↓
Q→(s

↓, x↓) (105)

The optimal policy ω→ is given by, for every stage i = 1, 2, . . . ,

ω→

i (Si = s) = argmax
x

Q→(s, x) (106)

for any state s ↔ D(S). We can compute the optimal Q-function evaluated in M→
MDP using value

iteration (Sutton and Barto, 1998). Detailed parametrizations are provided in Table 2. Complete
computations are provided in Appendix B. The optimal policy ω→ = (ω→

i
(Xi | Si))

↗

i=1 is given by
ω→

i
↫ Xi ⇐ Si, for every i = 1, 2, . . . . Evaluating its expected return gives Eω→

[∑
↗

i=1 ϑ
i↔1Yi

]
=

8.2; detailed derivation steps are provided in Example 10. ↭

Example 17 (DTR Planning, Dynamic Programming) Consider the DTR environment M→
DTR in

Eq. 78. Our goal is to maximize the patient’s days of abstinence Y over 12 months after the treat-
ment. This decision-making problem is described by a CDM given by

↘M→ = M→

DTR,# = {↘X1, {S1}≃, ↘X2, {S1, X1, S2}≃},R(Y ) = Y ≃ (107)

33



BAREINBOIM, ZHANG, AND LEE

S1 X1 Q(1)
→ S1 X1 Q(1)

→

0 0 0.8799 1 0 0.4716
0 1 0.8749 1 1 0.1003

(a) Q(1)
↑ (s1, x1)

S1 X1 S2 X2 Q(2)
→ S1 X1 S2 X2 Q(2)

→

0 0 0 0 0.7851 1 0 0 0 0.2149
0 0 0 1 0.9846 1 0 0 1 0.7851
0 0 1 0 0.7851 1 0 1 0 0.2149
0 0 1 1 0.7851 1 0 1 1 0.2149
0 1 0 0 0.2149 1 1 0 0 0.0008
0 1 0 1 0.9846 1 1 0 1 0.2149
0 1 1 0 0.2149 1 1 1 0 0.0008
0 1 1 1 0.7851 1 1 1 1 0.0154

(b) Q(2)
↑ (s1, x1, s2, x2)

Table 3: Evaluation of optimal Q-functions evaluated in the DTR system of Example 12.

Fig. 10c describes a causal diagram of M→
DTR where actions X1, X2 are highlighted in blue, primary

outcome Y in red, and input covariates {S1} and {S1, X1, S2} in light blue.
For every policy ω ↔ #, evaluating recovery rate Y in submodel M→

DTRω
gives

Eω [Y ] =
∑

s1,x1,s2,x2

ω2(x2 | s1, x1, s2)ω1(x1 | s1)
∑

u

E [Y | s1, x1, s2, x2, u]

P (s2 | s1, x1, u)P (s1 | u)P (u)


(108)

Since ω1,ω2 are not functions of the exogenous variable U , summing over domain of U we obtain

Eω [Y ] =
∑

s1,x1,s2,x2

Ex1,x2 [Y | s1, s2]ω2(x2 | s1, x1, s2)Px1 (s2 | s1)ω1(x1 | s1)P (s1) (109)

As shown in (Murphy et al., 2001a), the optimal policy ω→ is deterministic, and satisfies the Bellman
equation (Bellman, 1957)

ω→

1(s1) = argmax
x1

Q(1)
→ (s1, x1) (110)

ω→

2(s1, x1, s2) = argmax
x2

Q(2)
→ (s1, s2, x1, x2) (111)

The optimal Q-function is

Q(1)
→ (s1, x1) =

∑

s2

max
x2

Q(2)
→ (s1, s2, x1, x2)Px1 (s2 | s1) (112)

Q(2)
→ (s1, s2, x1, x2) = Ex1,x2 [Y | s1, s2] (113)

34



CAUSAL REINFORCEMENT LEARNING

We compute the parametrization of Q-functions evaluated in M→ and provide them in Table 3a.
See Appendix B for complete computation. The optimal actions ω→

1(s1), ω
→

2(s1, x1, s2) given every
state-action’s history is highlighted. Solving for an optimal policy gives ω→

1 ↫ X1 ⇐ 0 and ω→

2 ↫
X2 ⇐ 1. In words, in order to maximize the patient’s days of abstinence, the physician should
start with behavioral therapy and follow up with an intensive treatment combining both behavioral
therapy and medication. The expected reward of this policy ω→ is computable as:

Eω→ [Y ] =
∑

s1

Q(1)
→ (s1, X1 = 0)P (s1) (114)

= Q(1)
→ (S1 = 0, X1 = 0)P (S1 = 0) +Q(1)

→ (S1 = 1, X1 = 0)P (S1 = 1) (115)

Evaluating the above equation gives the optimal expected reward Eω→ [Y ] = 0.6758. ↭

3.2 Causal Reinforcement Learning Tasks

The causal decision model described so far assumes the full knowledge of the underlying envi-
ronment. However, in many real-world practical applications, the detailed parametrization of the
environment is very rarely known, which means that standard planning algorithms are not imme-
diately applicable. In order for the agent to optimize the performance of the underlying system, a
learning process must take place, leading to the learning paradigm of causal reinforcement learning.

To make the argument more precise, we start the discussion of a CDM ↘M→,#,R≃. Recall that
it defines a planning task of finding an optimal policy in space # that maximizes the reward function
R evaluated in the environment M→. A CRL agent C is assumed to have access to the policy space
# and the performance measurement R.19 However, the underlying environment M→ is not fully
known. Instead, the agent C only has access to some structural assumptions A encoding qualitative
knowledge about the environment M→, and a learning regime L dictating how it interacts with the
environment M→ to collect data. This partial knowledge constitutes new dimensions for the task
formulation of optimal decision-making under uncertainty, which we will briefly discuss below.

Learning Regimes (L). Following the discussion of the PCH, each CRL agent may be able to
interact with M→ in different ways, including through passive observations (i.e., L = see) or by
active interventions (L = do). These learning regimes model distinct types of interactions of the
agent with the environment. The former corresponds to off-policy reinforcement learning tasks (Li
et al., 2011, 2014); while the latter corresponds to online reinforcement learning tasks (Auer et al.,
2002b). More specifically, an agent passively observing the environment does not actively determine
actions. Instead, it receives observational data D ↖ P (V ) summarizing trajectories of another agent
(e.g., a human demonstrator) already operating in the environment, following a behavioral policy.
On the other hand, an agent may actively control actions X by performing interventions do(ω),
following some policies ω, and receiving experimental data D ↖ Pω (V ). We will investigate these
reinforcement learning algorithms in depth later on in this paper.

Structural Assumptions (A). Structural assumptions specify a hypothesis class of possible en-
vironmental models that the agent is operating with. One common way of specifying assumptions

19. The policy space ! and the reward function R are provided in most of the learning tasks considered in this paper.
However, there exist practical applications where the reward function R is not fully known. In this case, the agent
has to “guess” a surrogate reward function from a hypothesis class R and then compute an optimal policy estimate
with it. This setting is studied under the rubric of causal imitation learning in Sec. 8.
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Figure 11: Graphical representation of a causal reinforcement learning task

about the SCM M→ is through a causal diagram G (Def. 6). The hypothesis class M is thus defined
as the family of SCMs M compatible with the diagram G, i.e., G(M) = G. For instance, the causal
diagram in Fig. 10d specifies a family of MDP environments consisting of states Si, actions Xi,
and reward signals Yi, for i = 1, 2, . . . ; the underlying transition and reward distributions remain
un-specified. Other assumptions include constraints over the features of the behavior policy (Pearl
and Robins, 1995), or equivalence classes of causal diagrams (Zhang, 2008), to cite a few.

Consider again a CDM ↘M→,#,R≃, where the model of the environment M→ is not fully re-
vealed to the agent. Replacing M→ with the learning regime L and structural assumptions A leads to
a new signature ↘L,A,#,R≃ which characterizes a causal reinforcement learning task. Formally,

Definition 11 (Causal Reinforcement Learning Task) For an SCM M→ = ↘U ,V ,F , P ≃, a CRL
task T in the environment M→ is a 4-tuple ↘L,A,#,R≃, where

1. L is a learning regime of an agent’s interaction with the SCM M→, possibly see or do;

2. A is a set of structural assumptions about the SCM M→;

3. # is a policy space over actions X;

4. R is a reward function over reward signals Y . ↭

Formally, every CRL task ↘L,A,#,R≃ describes an optimal decision-making problem under un-
certainties about the underlying environment. Provided with input ↘L,A,#,R≃, the CRL agent
attempts to estimate an optimal policy ω→ ↔ # defined in Eq. 86 maximizing the reward R evalu-
ated in the unknown environment M→. Since M→ is not fully observed, we substitute it with the
learning regime L and structural assumptions A about the environment, depending on the specific
task. The goal of the agent is then to find a policy ω→ such that

ω→ = argmax
ω↑!

EM
→

ω


R (Y )

 A,L


(116)

Compared to the optimization given by Eq. 86, we move the unobserved SCM that evaluates the
agent as a superscript and leave what the agent has access to as part of the conditioning set.
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Algorithm 1 Causal Reinforcement Learning Agent C
Require: CRL task T = ↘L,A,#,R≃
Ensure: a policy estimate ω̂ ↔ # optimizing a CDM ↘M→,#,R≃.

1: Let data D = {}.
2: for all every episode t = 1, . . . , T do
3: Interact with the SCM M→ following regime L and receive samples V (t) ↖ PL (V ;M→).
4: Update data D = D ↗


V (t)


.

5: end for
6: return an empirical estimate ω̂ ↔ # of the optimal policy ω→ from data D and assumptions A.

For instance, Fig. 11 shows a graphical instance of a CRL task T in an unknown bandit environ-
ment M→ consisting of an arm choice X , reward Y , and a covariate Z. The goal is to find an optimal
policy X ⇐ x→ in the policy space # = {X, ∋} maximizing the expected reward Ex [R(Y )]. The
agent could passively observe the environment (L = See) and receives observational data drawn
from P (X,Y, Z); it could also actively intervene on the arm (L = Do) and receive interventional
data drawn from Px (Y, Z). The causal diagram A = Gbackdoor (bottom left) encodes structural
knowledge that the agent has about the environment: there is no spurious correlation between Z
and Y and between X and Y .

Alg. 1 provides pseudo-code describing the general learning strategy of a CRL agent to solve a
task ↘L,A,#,R≃. We follow the episodic reinforcement learning setting (Sutton and Barto, 1998)
where the agent interacts with the environment M→ for repeated episodes t = 1, . . . , T . For each
episode t, the agent interacts with the environment following the learning regime L and receives
sample V (t), consisting of realized actions X(t), observed states S(t), reward signals Y (t), and
other endogenous variables. For the observational regime L = see, the CRL agent passively ob-
serves another agent, currently deployed, to determine values of every action Xi ↔ X following
a behavioral policy fX . For the interventional regime L = do, the CRL agent actively intervenes
on every action Xi ↔ X following a policy ω, and receives subsequent states S and rewards Y .
Finally, the agent C computes an empirical estimate of an optimal policy ω→ in the policy space #
from the combination of the collected data D and structural assumptions A.

The formulation of the task signature and the CRL agent summarizes existing policy learning
problems and learning strategies in the reinforcement learning and causal inference literature. The
following examples illustrate CRL tasks in single-stage decision-making settings.

Example 18 (Off-Policy Learning (Sutton and Barto, 1998), MAB) Consider first a MAB model
↘M→, {↘X, ∋≃}, Y ≃ graphically described in Fig. 10a. A CRL agent C aims to learn an arm

x→ = argmax
x

Ex [Y ] (117)

with the maximal expected reward. The detailed parametrization of SCM M→ is unknown. Instead,
the agent could only passively observe the environment and receive the observational distribution
P (X,Y ) evaluated in M→. This leads to an off-policy learning task described through the following
signature:

Toff = ↘L = see,A = NUC,# = {↘X, ∋≃},R = Y ≃, (118)
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NUC stands for the assumption of “No Unmeasured Confounder”: there is no unobserved con-
founder affecting the action X and the reward Y simultaneously. All the observed correlations
between X and Y are fully explained by the causal relationships among them, which implies that

Px (Y ) = P (Y | X = x) (119)

Therefore, the agent could evaluate the expected reward of every arm x from the observational data
P (X,Y )20, and find optimal an optimal arm x→ with the maximal empirical reward estimates. ↭

Example 19 (Online Learning (Sutton and Barto, 1998), MAB) We will continue with the pre-
vious example of the MAB model ↘M→, {↘X, ∋≃}, Y ≃. Suppose the CRL can now actively intervene
in the underlying environment M→. This leads to an online learning task described by a signature

Ton = ↘L = do,A = ∋,# = {↘X, ∋≃},R = Y ≃, (120)

In order to evaluate every arm x, the CRL agent performs an intervention do(x) in SCM M→

and receives subsequent reward signals drawn from Px (Y ). The expected reward Ex [Y ] is thus
estimable from the experimental data by computing the empirical means. ↭

Example 20 (Causal Identification (Pearl, 2000), MAB) Consider the off-policy learning task of
Eq. 118 again. Suppose now that the NUC assumption no longer holds. Instead, a previously
unobserved covariate Z is now revealed; the CRL agent has access to a more detailed causal
diagram Gbackdoor (Fig. 11, bottom left) describing the underlying environment M→. Replacing the
NUC with structural assumptions encoded in diagram Gbackdoor leads to a causal identification task

Tid = ↘L = see,A = Gbackdoor,# = {↘X, ∋≃},R = Y ≃, (121)

Like off-policy learning, the CRL agent observes the environment and receives the observational
distribution P (X,Y, Z) evaluated in M→. Provided with the causal diagram Gbackdoor, applying the
backdoor adjustment formula (Pearl, 2000, Ch. 3.3) implies

Px (y) =
∑

z

P (y | z, x)P (x) (122)

That is, the expected reward of every arm x is computable from the observational data P (X,Y, Z).
Optimizing the expected reward over the action domain X leads to an optimal arm. ↭

Broadly speaking, the formalization of the CRL dimensions and the corresponding tasks, seman-
tically defined through structural causal models, allows us to describe most of the popular learning
settings studied in the literature. It also enables us to explore and study novel CRL learning tasks
beyond the current literature and that arises naturally in real-world applications. We first summa-
rize the more traditional RL-CI tasks with their corresponding signatures in Table 4. Specifically,
we will discuss in Sec. 4, the policy learning methods for traditional CI and RL tasks through the
language of CRL. In practice, this encompasses tasks such as off-policy and online learning and
causal identification. All of these focus on optimizing policies within an experimental policy space
#EXP (Def. 8). These tasks can be viewed as variations of the first two dimensions described in

20. We assume that the number of the observational data is sufficient, and joint distribution P (X,Y ) is recovered.
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Signature
Task Learning

Regime
(L)

Structural
Assumptions
(A)

Policy
Space
(#)

Reward
Function
(R)

Section

1 Off-policy
Learning

See NUC #EXP D(Y ) ∞↙ R 4.1

2 Online
Learning

Do - #EXP D(Y ) ∞↙ R 4.2

3 Causal
Identification

See DAG G #EXP D(Y ) ∞↙ R 4.3

Table 4: Summary of causal reinforcement learning tasks investigated in this paper, in terms of their
signatures and sections. We highlight in gray the most distinct feature introduced by the task.

the table, namely, the interactive regime and the structural assumptions, while the other dimensions
remain constant. Even though these tasks are prevalent in current literature, certain critical con-
ditions weren’t formally understood prior to our new formalization. For instance, determining the
validity of an off-policy method (e.g., inverse propensity weighting and dynamic programming),
specifically, whether it can find a policy consistent with optimal one given by the underlying SCM.
Analyzing these classical tasks through CRL perspective will be instrumental in illuminating other
foundational issues and illustrating how causal and RL formalisms intersect.

3.3 Comparison with Markov Decision Processes

The CRL tasks described so far (Def. 11) assume that the agent has access to either the learning
regime L under which the data are collected, or structural assumptions A encoding causal invari-
ances about the environment. In this section, we will demonstrate that such causal knowledge is
generally indispensable (necessary) for learning an optimal policy in an unknown SCM. Our dis-
cussion focuses on standard MDPs, which is a class of sequential decision-making models widely
used in practice.

Definition 12 (Standard MDP (Puterman, 1994)) A Markov decision process is tuple
↘D(S),D(X), T ,R≃ where

1. D(S) is a set of states called the state space;

2. D(X) is a set of actions called the action space;

3. T (s, x, s↓) ↔ [0, 1] is a transition probability that action Xi = x in state Si = s at stage i
will lead to state Si+1 = s↓ at stage i+ 1;

4. R(s, x) is the immediate reward received in state Si = s due to action Xi = x at stage i.

A policy ω(x|s) in a standard MDP is a function mapping from the state space D(S) to a probability
distribution over the action space D(X). For any indices i < j ↔ N, let V̄i:j denote a sequence
{Vi, Vi+1, . . . , Vj}. Given a policy ω and a distribution over the initial state P (S1), every standard
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S X Q→ S X Q→

0 0 9 1 0 9
0 1 9 1 1 9

Table 5: Optimal Q-function Q→(s, x) evaluated in the MDP model of Example 21.

MDP model defines a joint distribution over states S̄1:H , actions X̄1:H , and rewards Ȳ1:H up to
decision horizon H , i.e.,

Pω(s̄1:H , x̄1:H , ȳ1:H) = P (s1)
H

i=1

ω(xi | si)T (si, xi, si+1)1{R(si, xi) = yi} (123)

The key assumption of a standard MDP is that the transition probability and reward functions depend
on the past only through the current state of the system and the action selected by the decision
maker in that state. This assumption is called the Markov property (Puterman, 1994) and can be
characterized using the following independence relationships, for every stage i = 2, 3, . . . ,

(
S̄1:i↔1, X̄1:i↔1, Ȳ1:i↔1 ′′ S̄i+1:↗, X̄i:↗, Ȳi:↗ | Si

)
(124)

In other words, the standard MDP could be seen as a compact representation of a family of joint
distributions over observed trajectories of states S̄1:H , actions X̄1:H , and rewards Ȳ1:H , provided
that the Markov property holds. In the language of structural causality, the Markov property could
hold in both the observational distribution P (s̄1:H , x̄1:H , ȳ1:H) and the interventional distribution
Pω(s̄1:H , x̄1:H , ȳ1:H).21 We showed in Examples 4 and 9 the compression of the observational and
interventional distributions of an SCM instance to standard MDP models respectively.

To make the argument more precise, consider the SCM M→ graphically described in the MDP
diagram GMDP of Fig. 10d. For every state i = 1, 2, . . . , conditioning on state Si and action Xi

blocks all paths from history Sj , Xj , Yj for j < i to any future state Sk, action Xk, and reward
Yk for k > i (Def. 7). The observational distribution evaluated in M→ thus satisfies the Markov
property in Eq. 124 and can be represented using a standard MDP.22

Example 21 (MDP, Observational) Consider the MDP environment M→ described in Eq. 5. Its
observational distribution P (s̄1:H , x̄1:H , ȳ1:H) defines a standard MDP ↘D(S),D(X), Tobs,Robs≃
where the transition probability and the reward function are observational quantities given by

Tobs(s, x, s
↓) = P

(
Si+1 = s↓ | Si = s,Xi = x

)
(125)

Robs(s, x) = E [Yi | Si = s,Xi = x] (126)

Detailed parametrizations of system dynamics T and R can be compactly represented as a finite-
state machine and are shown in Fig. 5b.

Following the Bellman equation in Eq. 105, we solve for the optimal Q-function Q→(s, x) in the
standard MDP ↘D(S),D(X), Tobs,Robs≃ and provide it in Table 5. Maximizing the action x for
every state s in Q→(s, x) gives an optimal decision rule ω→

obs ↫ Xi ⇐ ¬Si. ↭
21. In this case, the decision rule ω(x|s) is set as the conditional distribution P (Xi = x | Si = s) defined by the

behavioral policy fX .
22. We will consistently assume that structural functions fSi

, fYi
and distributions P (USi

,UYi
) remain invariant across

decision horizons i = 1, 2, . . . . This is a common assumption for solving infinite-horizon MDP (Puterman, 1994).
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Consider a policy space # = {↘Xi, {Si}≃}↗i=1. Following a similar argument, we could show that
the interventional distribution induced by any policy ω ↔ # evaluated in SCM M→ satisfies the
Markov property, leading to an alternative standard MDP representation.

Example 22 (MDP, Interventional) Consider the MDP environment M→ described in Eq. 5. For
every policy ω = (ωi(Xi | Si))

↗

i=1, its interventional distribution Pω(s̄1:H , x̄1:H , ȳ1:H) satisfies
the Markov property in Eq. 124. It defines a standard MDP ↘D(S),D(X), Texp,Rexp≃ where the
transition probability and the reward function are interventional quantities given by Eqs. 103 and
104. Their parametrizations are described in the finite-state machine of Fig. 6b.

We also solve for the optimal Q-function Q→(s, x) in the MDP ↘D(S),D(X), Texp,Rexp≃ and
obtain an optimal decision rule ω→

exp ↫ Xi ⇐ Si. Revisit Example 16 for detailed computations. ↭
Some important observations follow from these two examples. First, the Markov property holds
in both the observational and interventional distributions evaluated in the SCM M→ described in
Eq. 5, resulting in two standard MDPs. Second, solving these MDPs leads to different policies ω→

obs
and ω→

exp. The previous discussion in Example 16 showed that only ω→
exp is the optimal policy in the

underlying environment M→; while ω→

obs is sub-optimal. This suggests that the model assumptions
of standard MDPs are generally insufficient in determining the optimal policy in the underlying
causal model, however many samples are provided.

Consider now a CRL agent that interacts with the environment M→ and receives observed data
D. Without specifying the learning regime L (see or do) or causal knowledge A, the agent cannot
determine whether data D is drawn from the observational or interventional distribution from the
Markov property. If data D is collected from passive observations, optimizing the learned standard
MDP model could lead to a sub-optimal policy, resulting in unsatisfactory performance. One may
wonder if it is possible to recover interventional quantities Texp and Rexp form the observational
data D ↖ P (V ) in MDP environments. Unfortunately, our next result suggests otherwise.

Proposition 1 For any SCM M→ compatible with the causal diagram GMDP of Fig. 10d, there is an
SCM M(1) compatible with GMDP such that for every stage i = 1, 2, . . . ,

P (1) (si+1 | si, xi) = P → (si+1 | si, xi) , E(1) [Yi | si, xi] = E→ [Yi | si, xi] (127)

while

P (1)
xi

(si+1 | si) ▽= P →

xi
(si+1 | si) , E(1)

xi
[Yi | si] ▽= E→

xi
[Yi | si] (128)

↭

The following example constructs an alternative SCM M(1) that generates the observational distri-
bution as the underlying environment M→, but differs significantly in interventional distributions.

Example 23 (MDP, Observational ▽̸ Interventional) Consider the following MDP environment

M(1) =

U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si},F =


F (1)

i


, P (1)(U)



i=1,2,...
, (129)

where the causal mechanisms F (1)
t

are defined as

F (1)
t

=






Si ⇐ Si↔1 ⇔ Ui↔1,2,

Xi ⇐ Si ⇔ Ui,1,

Yi ⇐ Ui,3,

(130)
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M→

Eq. (5)

M(1)

Eq. (119)

M(2)

Eq. (121)
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Figure 12: Causal Hierarchy Theorem (CHT) in MDP environments.

and P (1)(Ui,1, Ui,2, Ui,3) is such that Ui,1, Ui,2, Ui,3 are independent variables drawn from distri-
bution P (Ui,1 = 1) = 0.9, and P (Ui,2 = 1) = P (Ui,3 = 1) = 0.1.

We compute the observational distributions P (Si+1 | Si, Xi) and E[Yi | Si, Xi] evaluated in
M(1) and show their parametrization in the finite-state machine in Fig. 12(a). It is verifiable that
MDP models M(1) and M→ (defined in Eq. 5) generate the same observational distributions (L1),
i.e., the equalities in Eq. 510 hold. On the other hand, we also derive the interventional distribution
PXi

(Si+1 | Si), EXi
[Y | Si] evaluated in M(1). Their parametrization could also be summarized

using Fig. 12(a). It follows from previous discussions (Examples 4 and 9) that M(1) and M→ (Eq. 5)
differ in the interventional distribution (L2), i.e., inequalities in Eq. 511 hold. ↭

The above example shows that the optimal policy in an unknown MDP environment is generally un-
derdetermined by the observational distribution and the Markov property. Conversely, we also show
that one cannot recover observational quantities from the interventional data in MDP environments.

Proposition 2 For any SCM M→ compatible with the causal diagram GMDP of Fig. 10d, there is an
SCM M(2) compatible with GMDP such that for every stage i = 1, 2, . . . ,

P (2)
xi

(si+1 | si) = P →

xi
(si+1 | si) , E(2)

xi
[Yi | si] = E→

xi
[Yi | si] (131)

while

P (2) (si+1 | si, xi) ▽= P → (si+1 | si, xi) , E(2) [Yi | si, xi] ▽= E→ [Yi | si, xi] (132)

↭
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Our next example corroborates the aforementioned proposition by constructing an alternative SCM
M(2) that generates the same interventional distribution as the underlying environment M→ but
appears different from passive observations.

Example 24 (MDP, Interventional ▽̸ Observational) Consider the following MDP environment

M(2) =

U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si},F =


F (2)

i


, P (2)(U)



i=1,2,...
, (133)

where the causal mechanisms F (2)
t

are defined as:

F (2)
t

=






Si ⇐ (Si↔1 ⇓Xt↔1)⇔ Ui↔1,2,

Xi ⇐ Si ⇔ Ui,1,

Yi ⇐ Si ⇔Xi ⇔ Ui,3,

(134)

and P (2)(Ui,1, Ui,2, Ui,3) is such that Ui,1, Ui,2, Ui,3 are independent variables drawn from distri-
bution P (Ui,1 = 1) = 0.9, and P (Ui,2 = 1) = 0.82 = P (Ui,3 = 1) = 0.82.

We compute the interventional distribution PXi
(Si+1 | Si) and EXi

[Y | Si] evaluated in M(2)

and summarize them in the finite-state machine described in Fig. 12(b). It is verifiable that MDP
models M(2) and M→ (Eq. 5) define the same interventional distributions (L2), i.e., the equalities in
Eq. 526 hold. We also compute the observational distributions P (Si+1 | Si, Xi) and E[Y | Si, Xi]
of M(2) and provide their parametrizations in Fig. 12(b). The previous discussions (Examples 4 and
9) implied that M(2) and M→ (Eq. 5) differ significantly in the observational distribution (L1), i.e.,
inequalities in Eq. 527 hold. This complements previous examples and illustrates that interventional
queries are generally under-determined by observational data in MDP environments. ↭

The last two examples are summarized and the results are illustrated in Fig. 12. In the middle of
the figure, we show the true MDP model M→ initially discussed in Example 2 and its induced ob-
servational and interventional distributions (described in more detail in Figs. 5 and 6 respectively).
Assuming only observational data (L1) is available, one can construct an alternative SCM M(1)

(left side) that matches the observational distribution but have different interventional behavior (i.e.,
L→

1 = L(1)
1 , L→

2 ▽= L(1)
2 ). Formally, the interventional distribution is underdetermined by the ob-

servational distribution. Practically, this means that passively observing another agent acting in the
environment and collecting samples from it may not be enough to make claims about the agent’s
policies and their corresponding performance.

On the other hand, the same is the case in the reverse direction; say, whenever interventional
data (L2) is available, one can then construct an alternative SCM M(2) (right side) that matches
the interventional distribution but has a different observational one (i.e., L→

1 ▽= L(2)
1 , L→

2 = L(2)
2 ).

Formally, the observational distribution is underdetermined by the interventional distribution. This
may be counter-intuitive since interventions are usually believed to be more informative than just
passively observing the system unfold in time. Still, in practice, it doesn’t allow the CRL agent to
predict how other agents will behave when interacting in the environment. This impossibility will
translate into challenges when considering the communication and exchange of experience across
agents with the intent of accelerating learning.

More generally, the Causal Hierarchy Theorem (Bareinboim et al., 2020, Thm. 1) states that this
impossibility result is strict for almost all causal models. This means it is generically impossible to
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draw higher-layer inferences using only lower-layer information. Given that the actual underlying
SCM is rarely observable in practice, and no inferences across the layers of the PCH are possible,
the CRL agent will need to resort to some causal knowledge and assumptions to make claims about
these underlying mechanisms, as discussed in Sec. 2.3. Since the more typical language to describe
standard MDPs is constrained to one particular distribution, it’s somewhat limiting to consider it as
a baseline to the model of the environment/agent relationship given the more general types of tasks
that can be represented in terms of the PCH, as discussed earlier in this manuscript.

4. Reinforcement Learning through Causal Lenses

The formalization of causal reinforcement learning tasks (Def. 11) allows us to describe some of
the most common and popular learning settings studied in the classic literature of reinforcement
learning (RL) and causal inference (CI). This section will investigate learning methods for these
classic RL-CI tasks, including off-policy learning (Sec. 4.1), online learning (Sec. 4.2), and causal
identification from observational data (Sec. 4.3). These tasks are briefly described in Table 4 and
can be seen as variations of the first two dimensions described in the table, i.e., interaction regime
and structural assumptions, while the other dimensions are fixed. Lastly, Sec. 4.4 varies these
dimensions and moves toward a catalog of novel CRL tasks.

Even though the tasks of off-policy learning, online learning, and causal identification all come
from the classic literature, there are still subtle interplays between reinforcement learning and causal
invariances that were only formally understood with the CRL formalization. For instance, in the
language of structural causality, we will provide a formal justification for off-policy learning algo-
rithms, e.g., inverse propensity weighting and dynamic programming. This permits one to determine
when and how to apply RL algorithms to more generalized settings where unobserved confounders
exist in the observational dataset. Analyzing these classic tasks through CRL lenses will shed light
on other foundational issues and how CI and RL connect.

We will introduce some additional notations before studying these learning tasks in detail.
Specifically, we will optimize over a policy space with a finite decision horizon H = |X| < ∈. Let
actions X be ordered by X1, X2, . . . , XH , H = |X|, following a topological order in the underly-
ing SCM M→. For any indices i < j, let X̄i:j = {Xi, Xi+1, . . . , Xj} denote a sequence of actions
ranging from stage i to stage j. Similarly, let S̄i:j = {Si,Si+1, . . . ,Sj} denote the sequence of
states from stage i to stage j. For convenience, we will consistently write X̄i = X̄1:i and S̄i = S̄1:i.
Fix a policy ω ↔ #. For any indices i ≤ j, let (ωi, . . . ,ωj) denote a subsequence of decision rules
constrained in ω determining values of actions Xi, . . . , Xj .

4.1 Off-Policy Learning

This section investigates the off-policy learning problem where an agent attempts to learn an optimal
policy from observational data generated by a different behavior policy (Sutton and Barto, 1998),
provided that there is no unmeasured confounder (NUC) in the data (to be defined). First, we will
introduce the NUC assumption and discuss how it justifies the off-policy learning approach. We
then describe in Sec. 4.1.1 two primary methods in evaluating candidate policies in the off-policy
setting, including inverse propensity weighting and dynamic programming (Bellman, 1957).

An off-policy learning agent interacts with the underlying environment (SCM) through pas-
sively observing events unfolding over time. Fig. 13 is a graphical representation of the CRL agent
interacting with the environment for repeated episodes t = 1, . . . , T . For every episode t, the agent
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Episode t

X(1) Y(1) X(2) Y(2) X(3) Y(3) X(4) Y(4)

V (1) ↖ P (V ) V (2) ↖ P (V ) V (3) ↖ P (V ) V (4) ↖ P (V )

0 1 2 3

see see see see

Figure 13: Temporal diagram showing an off-policy learning agent interacting with the environment
for repeated episodes.

“sees” the SCM M→ (Def. 2) and receives an observation V (t) ↖ P (V ). The CRL agent currently
aims to use these observations to learn a policy from candidate space # that maximizes a reward
function R(Y ). This will be a useful representation to compare other learning modalities and types
of interactions. The following signature characterizes this learning setting:

Toff =

I = see,A = NUC,# = {↘Xi,Si≃}Hi=1,R = D(Y ) ∞↙ R


. (135)

where the agent uses observational data combined with the critical assumption A = NUC, which
means “No Unmeasured Confounder”. The agent’s goal is to obtain an optimal policy estimate from
the combination of the observational data and the NUC assumption, i.e.,

ω→ = argmax
ω↑!

EM
→

ω

[
R (Y )

 A = NUC, Dobs ↖ P (V )
]
. (136)

In practice, the NUC assumption will require that at every stage of intervention on action Xi ↔ X ,
its observed correlations with the reward Y given past actions and covariates’ history, is entirely
determined by the causal relationships between Xi and Y . In other words, no other variables gen-
erate non-causal variations between the decision Xi and the outcome Y . The following definition
formalizes this idea.

Definition 13 (No Unmeasured Confounder) Let M→ be a SCM and # = {↘Xi,Si≃}Hi=1 be a
policy space (Def. 8). The “no unmeasured confounder” (for short, NUC) condition holds if for
every action Xi ↔ X , its endogenous parents PAi and exogenous parents Ui satisfy the following
conditions:

1. Endogenous parents PAi are contained in the history X̄i↔1 ↗ S̄i, i.e., PAi ↑ X̄i↔1 ↗ S̄i;

2. Exogenous parents Ui are independent from exogenous noises Uj associated with all the
other endogenous variables Vj in the system, i.e., Ui ′′ {Uj | →Vj ↔ V \ {Xi}}.

In the above definition, Condition 1 says that all endogenous parents of every action Xi are ob-
served, contained in the past states and actions S̄i, X̄i↔1; Condition 2 says that given the past
history X̄i↔1 ↗ S̄i, values of every action Xi are decided by an independent noise Ui. Note that
in the underlying SCM M→, observational data are generated by a behavior policy fX which de-
termines values of every action Xi based on the endogenous PAi and exogenous parents Ui for all
time steps i = 1, . . . , H . The NUC condition implies that one could simulate the behavior policy
using a sequence of decision rules

(
ωi(Xi | X̄i↔1, S̄i)

)
H

i=1
such that for every step i = 1, . . . , H ,
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ωi(Xi | X̄i↔1, S̄i) = P (Xi | PAi). Allocating actions following these decision rules leads to the
following independence relationships, for any sequence of actions x̄H ,23


Xi ′′ Si+1x̄i

, . . . , SHx̄H↔1
, Yx̄H

, | X̄i↔1, S̄i


→i = 1, . . . , H (137)

Among quantities in the above equation, the potential response Six̄i↔1
, i = 1, . . . , H , is the observed

state in submodel M→
x̄i↔1

induced by the atomic intervention do(X̄i↔1 ⇐ x̄i↔1); similarly, Yx̄H
is

the future potential reward evaluated in submodel M→
x̄H

. The meaning of the NUC condition is
illustrated in the next examples.

Example 25 (DTR models where NUC holds) Consider a 2-stage DTR model ↘M→,#, Y ≃ where
SCM M→ is described in Eq. 78 and the policy space # = {↘X1, {S1}≃ , ↘X2, {S1, X1, S2}≃}. We
will next examine conditions of Def. 13 and show that they hold in this CDM.

First, note that for every treatment Xi, i = 1, 2, its endogenous parent PAi = {Si}, which is
contained in the corresponding input state Si. This implies Condition (1) of NUC holds.

Second, each structural function fXi
, i = 1, 2 affecting treatment Xi, the coefficients εi = 0

of the exogenous variable U is equal to zero. This means that there is no unobserved confounder
affecting Xi and other variables in the system, i.e., Condition (2) of NUC also holds. Therefore, we
conclude the NUC condition holds in the DTR model ↘M→,#, Y ≃. ↭

Example 26 (DTR models where NUC fails) Continuing with the DTR model ↘M→,#, Y ≃ in the
previous example, we now consider an alternative policy space #↓ = {↘X1, ∋≃ , ↘X2, ∋≃}. Every
policy ω ↔ #↓ decides values of treatment X1, X2 independently, regardless of values of other
variables in the system. For i = 1, 2, the history X̄i↔1 ↗ S̄i = ∋ prior to stage i is an empty set and
does not contain the endogenous parent Si of treatment Xi. Therefore, Condition (1) of NUC fails.

Alternatively, consider an SCM M↓ where for the structural function fXi
of treatment Xi, i =

1, 2, the coefficient of the exogenous variable U is equal to εi = ⇒3. This means that there exists
an unobserved confounder affecting treatments X1, X2 and the primary outcome Y simultaneously.
Consequently, Condition (2) of NUC does not hold. ↭

4.1.1 OFF-POLICY EVALUATION

Whenever the NUC assumption holds, there exist different strategies that allow one to estimate
and compare the effects of candidate policies from observational data without having to perform
online experiments in the environment. The first algorithm we discuss that implements this idea
is based on a technique known as “inverse probability weighting” (IPW) and is widely applied in
practice (Rubin, 1974; Robins et al., 2000; Murphy et al., 2001b; Wang et al., 2012; Swaminathan
and Joachims, 2015; Liu et al., 2018). Formally,

Theorem 2 (Inverse Propensity Weighting, under NUC) Let ↘M→,#,R≃ be a CDM where the
policy space # = {↘Xi,Si≃}Hi=1 and the reward function R : D(Y ) ∞↙ R. If NUC holds, for any
ω ↔ #, the expected reward is computable from the observational distribution P (V ) as

Eω [R(Y )] =
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]P (x̄H , s̄H) ︷︷ ︸
observational distribution

H

i=1

ωi (xi | si)
P (xi | x̄i↔1, s̄i)

 ︷︷ ︸
ratio ω and obs. probabilities

. (138)

23. The NUC assumption could also be characterized with a series of graphical conditions based on structural causality,
known as sequential backdoor condition. We will further elaborate on the graphical implication of NUC in Sec. 4.3.
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S1 X1 S2 X2 Y P (s1, x1, s2, x2, y) S1 X1 S2 X2 Y P (s1, x1, s2, x2, y)

0 0 0 0 0 0.0128 1 0 0 0 0 0.0042
0 0 0 0 1 0.0466 1 0 0 0 1 0.0011
0 0 0 1 0 0.0009 1 0 0 1 0 0.0011
0 0 0 1 1 0.0585 1 0 0 1 1 0.0042
0 0 1 0 0 0.0013 1 0 1 0 0 0.0004
0 0 1 0 1 0.0049 1 0 1 0 1 0.0001
0 0 1 1 0 0.0269 1 0 1 1 0 0.0098
0 0 1 1 1 0.0982 1 0 1 1 1 0.0027
0 1 0 0 0 0.0442 1 1 0 0 0 0.1013
0 1 0 0 1 0.0121 1 1 0 0 1 0.0008
0 1 0 1 0 0.0008 1 1 0 1 0 0.0796
0 1 0 1 1 0.0554 1 1 0 1 1 0.0218
0 1 1 0 0 0.0051 1 1 1 0 0 0.0130
0 1 1 0 1 0.0014 1 1 1 0 1 0.0001
0 1 1 1 0 0.0281 1 1 1 1 0 0.2566
0 1 1 1 1 0.1028 1 1 1 1 1 0.0040

Table 6: The observational distribution P (X1, X2, S1, S2, Y ) evaluated in the 2-stage DTR envi-
ronment described in Example 12.

Among the above quantities, P (xi | x̄i↔1, s̄i) measures the natural propensity of the behavior
policy for action Xi, i = 1, . . . , H , which is known as the propensity score. The IPW estimation
requires what is called the positivity assumption, i.e., the propensity scores P (xi | x̄i↔1, s̄i) > 0
for every entry x̄i, s̄i.24 The following example illustrates the application of the IPW method.

Example 27 Consider again the CDM ↘M→,#, Y ≃ described in Eq. 78 where coefficients ε1 =
ε2 = 0. We will apply IPW estimation to evaluate the effects of the policy ω = (X1 ⇐ 0, X2 ⇐ 1)
from the observational distribution P (S1, X1, S2, X2, Y ). Applying the estimation formula pro-
vided by Thm. 2 gives

EIPW
X1↘0,X2↘1 [Y ] =

∑

s1,x1,s2,x2

P (s1, x1, s2, x2, Y = 1)
1{x1 = 0}
P (x1 | s1)

1{x2 = 1}
P (x2 | s1, x1, s2)

(139)

24. This quantitative assumption is called overlap in (Rosenbaum and Rubin, 1983; Imbens, 2004). There are attempts
in the literature to relax it by assuming some parametric models that allow the interpolation of the unobserved areas,
e.g., refer to (Rosenbaum, 2002; Kallus and Zhou, 2018).
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The detailed parametrization of the observational distribution P (S1, X1, S2, X2, Y ) is provided
in Table 6. The above equation could be further written as:

EIPW
X1↘0,X2↘1 [Y ] =

P (S1 = 0, X1 = 0, S2 = 0, X2 = 1, Y = 1)

P (X1 = 0 | S1 = 0)P (X2 = 1 | S1 = 0, X1 = 0, S2 = 0)
(140)

+
P (S1 = 0, X1 = 0, S2 = 1, X2 = 1, Y = 1)

P (X1 = 0 | S1 = 0)P (X2 = 1 | S1 = 0, X1 = 0, S2 = 1)
(141)

+
P (S1 = 1, X1 = 0, S2 = 0, X2 = 1, Y = 1)

P (X1 = 0 | S1 = 1)P (X2 = 1 | S1 = 1, X1 = 0, S2 = 0)
(142)

+
P (S1 = 1, X1 = 0, S2 = 1, X2 = 1, Y = 1)

P (X1 = 0 | S1 = 1)P (X2 = 1 | S1 = 1, X1 = 0, S2 = 1)
(143)

Evaluating the above equation gives EIPW
X1↘0,X2↘1 [Y ] = 0.6757, which matches the expected re-

ward in Eq. 78, evaluated directly in the SCM M→. ↭

The numeric example above is one instantiation of the larger implication of the theorem showing
that the agent does not have to go online and try different actions, but it can learn a policy by simply
re-weighting the observational data whenever the conditions of the theorem hold. Interestingly, we
further note that by iteratively applying Bayes’ rule, the IPW formula in Eq. 138 can be written as

Eω [R(Y )] =
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]
H

i=1

P (si | x̄i↔1, s̄i↔1)ωi (xi | si) . (144)

Computing the above equation following a reverse topological ordering i = H, . . . , 1 over actions
leads to an alternative algorithm for evaluating the effects of candidate policies, based on dynamic
programming (for short, DP). DP was first introduced in (Bellman, 1957) and has been widely
applied in reinforcement learning (Puterman, 1994; Sutton and Barto, 1998). The following propo-
sition describes details for applying DP for off-policy evaluation from the observational distribution,
provided that the NUC condition holds.

Theorem 3 (Dynamic Programming) Let ↘M→,#,R≃ be a CDM where # = {↘Xi,Si≃}Hi=1 and
R : D(Y ) ∞↙ R. If NUC holds, for any ω ↔ #, the expected reward Eω [R(Y )] is computable from
the joint distribution P (V ) as follows:

Eω [R(Y )] = E
[
∑

x1

Q(1)
ω (x1,S1)ω1(x1 | S1)

]
, (145)

where the value function Q(i)
ω (x̄i, s̄i), for i = 1, . . . , H ⇒ 1, is given by:

Q(i)
ω (x̄i, s̄i) = E




∑

xi+1

Q(i+1)
ω (x̄i+1, s̄i,Si+1)ωi+1 (xi+1 | Si+1)


x̄i, s̄i



 (146)

and Q(H)
ω (x̄H , s̄H) = E [R(Y ) | x̄H , s̄H ] (147)

↭
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S1 X1 Q(1)
ω S1 X1 Q(1)

ω

0 0 0.8799 1 0 0.4716
0 1 0.8749 1 1 0.1003

(a) Q(1)
ω (s1, x1)

S1 X1 S2 X2 Q(2)
ω S1 X1 S2 X2 Q(2)

→

0 0 0 0 0.7851 1 0 0 0 0.2149
0 0 0 1 0.9846 1 0 0 1 0.7851
0 0 1 0 0.7851 1 0 1 0 0.2149
0 0 1 1 0.7851 1 0 1 1 0.2149
0 1 0 0 0.2149 1 1 0 0 0.0008
0 1 0 1 0.9846 1 1 0 1 0.2149
0 1 1 0 0.2149 1 1 1 0 0.0008
0 1 1 1 0.7851 1 1 1 1 0.0154

(b) Q(2)
ω (s1, x1, s2, x2)

Table 7: Evaluation of value functions Q(1)
ω (s1, x1), Q

(2)
ω (s1, x1, s2, x2) for the policy ω = (X1 ⇐

0, X2 ⇐ 1) in evaluated in 2-stage DTR environment described in Example 12.

It follows from the derivation in Eq. 144 that IPW and DP estimation are, in principle, equiva-
lent. That is, they return the same evaluation for Eω [Y ] provided with the same candidate policy ω
and observational data P (V ). The following example illustrates this equivalence.

Example 28 Consider again the CDM ↘M→,#, Y ≃ described in Eq. 78 where coefficients ε1 =
ε2 = 0. We will apply the DP estimation to evaluate the effect of the policy ω = (X1 ⇐ 0, X2 ⇐
1). Thm. 3 allows us to estimate the expected reward Eω [Y ] from the observational distribution
P (S1, X1, S2, X2, Y ) as follows:

Q(1)
ω (s1, x1) =

∑

s2,x1

Q(2)
ω (s1, x1, s2, x2)1{x2 = 1}P (s2 | x1, s1) (148)

Q(2)
ω (s1, x1, s2, x2) = P (Y = 1|s1, x1, s2, x2) (149)

We compute the parametrization of value functions Q(1)
ω (s1, x1), Q

(2)
ω (s1, x1, s2, x2) and provide

them in Table 7. The expected reward of the policy ω = (X1 ⇐ 0, X2 ⇐ 1) is computable as

EDP
X1↘0,X2↘1[Y ] =

∑

s1

Q(1)
ω (s1, x1)1{x1 = 0}P (s1) (150)

Evaluating the above equation gives EDP
X1↘0,X2↘1 [Y ] = 0.6757, which matches the expected re-

ward in Example 12, evaluated in the SCM M→. ↭
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Once IPW and DP evaluation formulas are obtained, efficient methods in the literature estimate
the expected rewards of candidate policies from finite samples drawn from the observational distri-
bution P (V ). For the IPW evaluation, the agent could weigh every observed reward signal with the
odds ratio between the target policy ω and the propensity score P (xi | x̄i↔1, s̄i), i.e., the second term
of Eq. 138. The expected reward is estimable by computing the empirical mean on the weighted
rewards. This IPW estimate was first developed to estimate the effects of candidate policies in the
single-stage decision setting, i.e., the decision horizon H = 1, but later adapted to the problem of
estimating the effects of policies in the sequential setting, with the decision horizon H > 1. See
(Rosenbaum and Rubin, 1983; Robins et al., 2000; Wang et al., 2012; Nahum-Shani et al., 2012)
for detailed explanations of how to apply IPW estimation from finite observations provided with the
NUC condition.

As for the DP evaluation, the agent first approximates the state-action value function Q in
Eq. 145 from the observational data using parametric models and then computes the expected re-
ward of a candidate policy (Tsitsiklis and Van Roy, 1996). For instance, it could approximate
Q-functions using a parametric family of linear functions; function parameters are obtainable using
the standard least squares regression (Murphy, 2005b). Other more flexible families of parametric
models for the Q-functions include regression trees (Ernst et al., 2005), kernels (Ormoneit and Sen,
2002), and neural networks (Mnih et al., 2013). The value function approximation has been studied
in the literature under the rubrics of batch reinforcement learning (Bertsekas and Tsitsiklis, 1995;
Lange et al., 2012).

When the expected rewards of candidate policies are computable, the agent could then search
over the policy space # and obtain an optimal policy estimate using policy gradient (Sutton et al.,
1999). Moreover, when the Q-function Q(i)

ω (x̄i, s̄i) only relies on the state-action value xi, si for
every stage of intervention i = 1, . . . , H , one could solve for an optimal policy through iteratively
optimizing every decision rule ωi following a reverse topological ordering over actions X (Lauritzen
and Nilsson, 2001; Koller and Milch, 2003). This local optimization procedure is analogous to the
well-celebrated Q-learning algorithm (Watkins and Dayan, 1992). We refer readers to (Uehara et al.,
2022) for a recent literature review on standard off-policy evaluation from finite observational data
under the NUC assumption.

Despite the positive results discussed above, IPW and DP methods may fail to recover the effects
of candidate policies from observational data whenever the NUC condition (Def. 13) does not hold.
The following examples demonstrate this looming challenge.

Example 29 Consider a MAB model ↘M→, {↘X, ∋≃} , Y ≃ graphically described in Fig. 10a where
SCM M→ is defined in Example 1. In this model, the NUC condition does not hold due to unobserved
confounder U affecting action X and reward Y . This implies that IPW is not necessarily applicable
to recover the expected reward Ex [Y ] from the observational distribution P (X,Y ).

We will proceed regardless and try to learn a policy ω : X ⇐ 0. Applying Thm. 2 gives:

EIPW
X↘0 [Y ] =

∑

x

E [Y | x]P (x)
1{x = 0}
P (x)

(151)

=
P (X = 0, Y = 1)

P (X = 0)
. (152)

Evaluating the above equation gives EIPW
X↘0 [Y ] = 0, which deviates significantly from the actual

expected reward EX↘0 [Y ] = 0.4 (Eq. 39) evaluated in SCM M→.
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We also apply DP to evaluate the effect of pulling arm X ⇐ 0, and through Thm. 3, we have:

EDP
X↘0 [Y ] =

∑

x

E [Y | x]1{x = 0} (153)

= P (Y = 1 | X = 0) (154)

Evaluating the above equation gives EDP
X↘0 [Y ] = 0, which, again, deviates from the actual expected

reward EX↘0 [Y ] = 0.4 (Eq. 39) evaluated directly in SCM M→. ↭

The above examples show that the validity of off-policy learning methods introduced so far hinges
on the NUC assumption. Such a critical assumption could be fragile and does not necessarily
hold in many practical settings. For instance, in electronic healthcare records, the physician might
prescribe a new drug to patients who are more likely to access high-quality healthcare, thus making
the drug appear more effective. For the remainder of this section, we will introduce alternative
policy learning assumptions and methods to overcome this issue.

4.2 Online Learning

An online learning agent evaluates candidate policies in space # by directly deploying them in the
underlying environment. A temporal graph illustrating this interaction is described in Fig. 14. In
causal language, the agent intervenes in the SCM M→ for repeated episodes t = 1, . . . , T . For every
episode t, it picks a policy ω(t) ↔ #, performs interventions do

(
X ⇐ ω(t)

)
on actions X following

ω(t), and receives subsequent observations V (t) ↖ P
ω(t) (V ).

Formally, an online learning task is described by the following signature:

Ton =

R = do,A = ∋,# = {↘Xi,Si≃}Hi=1,R = D(Y ) ∞↙ R


(155)

To see the specific optimization in this task, the agent will search for a policy ω→ such that

ω→ = argmax
ω↑!

EM
→

ω

[
R (Y )

 Dexp ↖ Px (V )
]
, (156)

Compared with the off-policy learning task (Toff), an online agent does not make additional struc-
tural assumptions about the underlying environment (A = ∋), beyond the temporal ordering over
state and action variables in the policy space # (Def. 8). This means that the NUC assumption
(Def. 13) discussed earlier does not necessarily hold. Note that for every policy ω ↔ #, in the sub-
model M→

ω induced by intervention do(ω), all input covariates Si affecting every action Xi ↔ X
and other variables in the system are observed and measured. This means that the NUC condition
is implied in the post-interventional system. The following proposition formalizes this intuition.

Lemma 1 (Experimental NUC) Let ↘M→,#,R≃ be a CDM where # = {↘Xi,Si≃}Xi↑X
and R :

D(Y ) ∞↙ R. For any policy ω ↔ #, the NUC condition (Def. 13) holds in ↘M→
ω,#,R≃ induced by

intervention do(ω). ↭

Following the NUC condition, the result above can be seen as a formal justification for using
standard off-policy learning methods, including IPW and DP, to evaluate other candidate policies
ω↓ ↔ # from data drawn from the interventional distribution Pω (V ) through Thms. 2 and 3.
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Episode t

X(1) Y(1)

ω
(1)

X(2) Y(2)

ω
(2)

X(3) Y(3)

ω
(3)

X(4) Y(4)

ω
(4)

V (1) ↖ P
ω(1) (V ) V (2) ↖ P

ω(2) (V ) V (3) ↖ P
ω(3) (V ) V (4) ↖ P

ω(4) (V )

0 1 2 3

do
(
ω(1)

)
do

(
ω(2)

)
do

(
ω(3)

)
do

(
ω(4)

)

Figure 14: Temporal diagram showing an online learning agent interacting with the environment
for repeated episodes.

Example 30 Consider the 2-stage DTR ↘M→,#, Y ≃ where SCM M→ is described in Eq. 78 with
coefficients ϖi = ⇒3; and the policy space # = {↘X1, {S1}≃ , ↘X2, {S1, X1, S2}≃}. It has been
shown in Example 26 that the NUC condition does not hold in this model. Now consider an online
agent that is deployed in the environment and follows a policy ω = (ω1,ω2), where

ωi ↫ 1 {3Si + Ui > 0} (157)

and Ui, i = 1, 2, are independent variable drawn from distribution Logistic(0, 1). Performing
interventions do(ω) following this policy leads to a submodel described by the following tuple

M→

ω = ↘U = {U,U1, . . . , U5},V = {S1, X1, S2, X2, Y },Fω, P (U)≃ , (158)

where the structural functions Fω are given by

Fω =






S1 ⇐ 1{U3 > 0},
X1 ⇐ 1{3S1 + U1 > 0},
S2 ⇐ 1{0.1 + 0.1S1 + 0.1X1 + U4 > 0},
X2 ⇐ 1{3S2 + U2 > 0},
Y ⇐ 1{3U ⇒ 3S1 ⇒ 3X1 ⇒ 3S1X1 + 3X2 ⇒ 3S2X2 + 3X1X2 > 0}.

(159)

In the above equations, the unobserved confounder U no longer affects treatments X1, X2, and the
NUC condition holds in the submodel ↘M→

ω,#, Y ≃. See Example 25 for a detailed discussion. ↭

4.2.1 RANDOMIZED CONTROLLED TRIALS

We will discuss different algorithms that systematize the discussion above and operate over the
environment in an online fashion. The first algorithm we consider will be called randomized con-
trolled trials (for short, RCT) and follows the idea of randomization, which dates back at least to
(Fisher, 1935). Fisher’s very motivation for considering randomizing the treatment assignment was
to eliminate the influence of unmeasured confounders in the collected data.25 It is a “explore-then-
commit” strategy where the agent first explores the environment by determining values of actions

25. Fisher’s motivation at the time was to understand the effect of some pesticides on the yield of certain crops (Fisher,
1926). Farmers were biased in how they used pesticides which tended to be applied in the best parts of the land. At
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Algorithm 2 Randomized Controlled Trails (RCT)
Require: the policy space #, the total number of trials N ↔ N.

1: for all episodes t = 1, 2, . . . do
2: Choose a policy ω(t) as follows.
3: if t ≤ N then
4: Let ω(t) be a uniform policy

ωUNIF = (X1 ↖ Unif(D(X1)), . . . , XH ↖ Unif(D(XH))) . (160)

5: else
6: Let ω(t) = argmaxω↑! Ê(N)

ω [Y ].
7: end if
8: Perform do(ω(t)) for episode t and receive observations V (t).
9: end for

X uniformly at random for a fixed number of times, and then exploits by committing to a policy
that appeared best during exploration.

Alg. 2 shows the detailed experimental design of RCT. It interacts with the underlying environ-
ment by repeated episodes of interventions t = 1, 2, . . . . More specifically, for every episode t, RCT
selects a policy ω(t) ↔ #, performs an intervention do

(
ω(t)

)
, and receives a subsequent observa-

tion V (t) ↖ P
ω(t) (V ). During the initialization, the algorithm considers a natural number N ↔ N,

called the total number of trials. It determines the total episodes of interventions for the algorithm to
explore the environment before committing to a specific policy. For episode t ≤ N , the algorithm
selects a uniform policy ωUNIF which determines values of every action X(t)

i
, i = 1, . . . , H , uni-

formly at random during the exploration phase. Note that the NUC condition holds under do(ωUNIF)

intervention (Lem. 1). This means that RCT could compute reward estimates Ê(N)
ω [Y ] for candidate

policies ω ↔ # from the experimental data PωUNIF (V ) collected during the exploration. The evalua-
tion procedures were previously described in Thms. 2 and 3. Finally, RCT selects a policy with the
highest empirical reward estimates and commits to it for all future episodes t > N .26

Example 31 We illustrate RCT in an MAB model ↘M→, {↘X, ∋≃} , Y ≃ where M→ is an SCM de-
scribed in Eq. 3 consisting of an arm choice X and reward signal Y . For any policy ω(x), the
expected reward Eω [Y ] is given by:

Eω [Y ] = ω(X = 0)EX↘0 [Y ] + ω(X = 1)EX↘1 [Y ] (161)

the end of the season, the pesticides had a higher effect. Fisher was suspicious of this procedure since, in modern
terminology, the NUC assumption did not hold. He then had the idea of allocating the treatment randomly to the
different plots of land. This insight departed from a tradition led by Pearson (Pearson, 1911) and started a new and
fundamental discipline of experimental design (Fisher, 1935).

26. The RCT algorithm described in Alg. 2 is also referred to as sequential multiple assignment randomized trials (for
short, SMART (Murphy, 2005a)) where every subject (at episode t) is randomized multiple times, one for each stage
of decision X1, . . . , XH . When the decision horizon H = 1, Alg. 2 reduces to the original randomized controlled
trials introduced by (Fisher, 1935).
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This means that for any stochastic policy ω(x) > 0, →x ↔ D(X), its performance could always be
improved by a deterministic policy X ⇐ x→ where the optimal arm choice given by27

x→ = argmax
x↑{0,1}

Ex [Y ] (162)

It is thus sufficient to estimate the expected reward Ex [Y ] induced by atomic intervention do(x).
Fix the total number of trials N (say, N = 1, 000). For every episode t ≤ N , RCT se-

lects an action X(t) uniformly at random over the binary domain {0, 1}, performs an intervention
do

(
X ⇐ X(t)

)
, and receives a reward Y (t) ↖ P

X(t) (P ). When the exploration phase is done
(t > N ), RCT estimates the expected reward Ex [Y ] for every action x ↔ {0, 1} from finite samples
X(t), Y (t)


t=1,...,N

. Applying the DP estimation formula (Thm. 3) implies

Ex [Y ] = EωUNIF [Y |x] (163)

The empirical reward estimate for an arm x is thus given by

Ê(N)
x [Y ] =

1

N(x)

N∑

t=1

Y (t)1{X(t) = x}, (164)

where N(x) =
∑

N

t=1 1

X(t) = x


is the total occurrence of event X(t) = x up to episode N . We

could also apply the IPW estimation (Thm. 2) and obtain:

Ex [Y ] =
∑

x↓

EωUNIF

[
Y | x↓

] 1{x↓ = x}
ωUNIF (x)

(165)

= Eωunif


Y
1{X = x}
ωUNIF (X)


(166)

The last step follows from the definition of expected values. Given samples

X(i), Y (i)


i=1,...,N

collected by RCT during exploration (t < N ), the IPW empirical estimate for the expected reward
of pulling arm x is thus given by

Ê(N)
x [Y ] =

1

N

N∑

t=1

Y (t)1{X(t) = x}
ωUNIF

(
X(t)

) =
2

N

N∑

t=1

Y (t)1{X(t) = x}. (167)

The last step holds since the uniform policy ωUNIF(x) = 1/2 for any action x ↔ {0, 1}. The
empirical estimates of DP (defined in Eq. 164) and IPW (Eq. 167) coincide if every arm x ↔ {0, 1}
is equally explored for episodes t ≤ N , i.e., the total occurrences N(x) = N/2. ↭

Cumulative Regret We will analyze the performance of RCT algorithm to understand its prop-
erties and theoretical guarantees better. Our analysis will focus on an MAB model ↘M→

MAB,#, Y ≃,
where M→

MAB is an MAB environment graphically described in Fig. 10a and the policy space # =
{↘X, ∋≃}. Recall that the optimal arm x→ = argmaxx Ex [Y ]. We denote by ”x = Ex→ [Y ]⇒Ex [Y ]

27. It can be shown that in any fixed CDM ↔M
→
,!,R↗, the performance of a stochastic policy ω could always be

improved by a deterministic one. This means that one could optimize the expected reward Eω [R(Y )] over only
deterministic policies ω ↘ ! without loss of generality (Liu and Ihler, 2012, Lem. 2.1).
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the gap between the expected reward of playing a suboptimal action x ↔ D(X) and the optimal arm
x→. For the analysis’ convenience, we also assume that every arm x ↔ D(X) is played the same
amount of times during the exploration phase, i.e., N(x) = N/K where K = |D(X)|.28

There are several ways to measure the performance of online learning algorithms. One popular
criterion is to study the algorithm’s cumulative regret (Auer et al., 2002a), which measures its cu-
mulative loss relative to an optimal strategy that always selects the optimal arm x→. Formally, the
cumulative regret for an online learning algorithm in an MAB environment M→ after T episodes of
trials can be defined as:

R(T,M→) = TEx→ [Y ;M→] ︷︷ ︸
Optimal Reward

⇒
T∑

t=1

E
X(t) [Y ;M→]

 ︷︷ ︸
Realized

. (168)

Naturally, minimizing the regret R(T,M→) is equivalent to maximizing the total expected reward
the agent obtains. A reasonable objective is to design an online learning algorithm that could achieve
a sublinear regret, i.e., R(T,M→) = o(T ).29 This would imply that its average cumulative regret
per episode is converging to zero (Lattimore and Szepesvári, 2020), i.e.,

lim
T≃↗

R(T,M→)/T = 0 (169)

The online learner will eventually close the gap between the optimal strategy that always commits
to an optimal arm x→. In other words, the learner is choosing an optimal arm almost all the time as
the total number of episodes T tends to be infinite, i.e.,

lim
t≃↗

E
X(t) [Y ] ↙ Ex→ [Y ] (170)

The analysis follows (Lattimore and Szepesvári, 2020, Theorem 6.1). Suppose that there are
D(X) = {1, . . . ,K} possible arms. Observe that the RCT algorithm only incurs regret in episodes
t where it plays a sub-optimal arm x with ”x > 0. The cumulative regret after T > 1 episodes of
interventions could be written as:

R(T,M→) =
∑

x:”x>0

”xE
[

T∑

t=1

1

X(t) = x

]
(171)

In the first N episodes, every arm is played exactly N/K times. Subsequently, it chooses a single
action to maximize the empirical reward during exploration. This implies

E
[

T∑

t=1

1

X(t) = x

]
=

N

K
+ (T ⇒N)P


X(t) = x


(172)

≤ N

K
+ (T ⇒N)P


Ê(N)
x [Y ] ▽= max

x↓ ⇐=x

Ê(N)
x↓ [Y ]


(173)

28. For a uniform policy ωunif, every arm x is expected to be played for E[N(x)] = N/K on average during exploration.
29. Here we use O notation, where f(n) = O(g(n)) if function f is bounded above by function g (up to constant factor)

asymptotically. That is, ≃k, ≃n0 such that f(n) ⇐ kg(n) for ⇒n > n0. Similarly, f(n) = o(g(n)) if ≃k, ≃n0,
f(n) < kg(n) for ⇒n > n0. For further details on this notation, see (Cormen et al., 2022, Ch. 1.3).
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The last step holds since for episodes t ⇑ N , a suboptimal arm x ▽= x→ is picked if and only if its
empirical reward estimate Ê(N)

x [Y ] is maximal (i.e., the largest). The error probability could thus
be bounded by

P


Ê(N)
x [Y ] ▽= max

x↓ ⇐=x

Ê(N)
x↓ [Y ]


≤ P


Ê(N)
x [Y ] > Ê(N)

x→ [Y ]


(174)

≤ P

Ê(N)
x [Y ]⇒ Ê(N)

x→ [Y ]⇒ (Ex [Y ]⇒ Ex→ [Y ]) > ”x


(175)

≤ exp


⇒N”2

x

4K


(176)

The last step follows the standard concentration inequality (Hoeffding, 1963). Replacing the error
probability Eq. 176 into Eq. 173 and summing over regret gives the following bound.

Theorem 4 (Regrets of RCT (Lattimore and Szepesvári, 2020)) For an MAB ↘M→, {↘X, ∋≃} , Y ≃,
let Y ↔ V be the reward variable with support on [0, 1] and let the domain of action X be
D(X) = {1, . . . ,K}. Fix the total number of trials N ↔ N+. The regret of RCT in MAB M→

after T > 1 episodes of interventions is bounded by

R(T,M→) ≤ N

K

∑

x:”x>0

”x

 ︷︷ ︸
exploration

+(T ⇒N)
∑

x:”x>0

”x exp


⇒N”2

x

4K



 ︷︷ ︸
exploitation

(177)

↭

The regret bound in Thm. 4 illustrates a trade-off between the exploration and the exploitation stages
of the agent’s strategy. The first term is the regret cumulated during the exploration (t ≤ N ), and the
second term is the expected regret of RCT for picking a suboptimal arm during the exploitation stage.
If the total number of trials N is large, the algorithm explores too long, and the regret cumulated
during the exploration phase will be large. On the other hand, if N is too small, then the empirical
estimate Ê(N)

x [Y ] is more likely to deviate from the expected reward Ex [Y ], and the regret in the
exploitation phase increases.

One fundamental question is, therefore, how to choose the optimal number of trials N to balance
the amount of exploration versus exploitation. Assume that the number of arms K = 2 and the
optimal arm x→ = 1, and write ” = ”2. The bound in Eq. 177 simplifies to

R(T,M→) ≤ N

2
”+ T” exp


⇒N”2

8


. (178)

For a large T , the right-hand side of Eq. 178 is minimized up to a rounding error by

N =

⌈
8

”2
log


T”2

4

⌉
. (179)

For this choice and any T > 1, after a few simplifications, the regret of RCT is bounded by

R(T,M→) ≤ ”+ C
∀
T (180)

56



CAUSAL REINFORCEMENT LEARNING

Figure 15: The regret of RCT with varying total number of trials.

where C is a universal constant. That is, RCT is able to achieve a sublinear regret R(T,M→) =
O
(
T 1/2

)
by fine-tuning the total number of trials N . However, note that the choice of N in Eq. 179

depends on the suboptimal gap ” and the total number of episodes T , which are not necessarily
known in advance. In the next section, we will see an online algorithm that does not depend on the
prior knowledge of the model parameter ” and the total episodes T .

Experiment 1 Fig. 15 shows the cumulative regrets of RCT when deploying in the MAB model
↘M→, {↘X, ∋≃} , Y ≃ described in Example 31 where the optimal arm choice X ⇐ 0 and the subop-
timal gap ” = 0.1. The optimal arm choice is X ⇐ 0, as shown in the derivation in Example 7.

Recall that the T represents the total number of episodes that the RCT algorithm interacts with
the environment, and the total number trials N represents the amount of exploration it performs (out
of T episodes). We evaluate the RCT algorithm with the number of episodes set to T = 5, 000 and
the number of trials set to N = 100, 300, 500, 700, 900. Each data point is the average of 1, 000
simulations, which makes the error bars invisible. The simulations show that RCT with N = 500
performs the best among all strategies, which is close to the analytical result in Eq. 179, setting
N ∃ 878. This means Eq. 179 provides a near-optimal choice of the total number of trials. ↭

4.2.2 THE UPPER CONFIDENCE BOUND ALGORITHM

The upper confidence bound (UCB) algorithm is based on the principle of optimism in the face of
uncertainty (OFU, Auer et al. 2002b), which states that the agent should act as if the environment is
as close to the best-case scenario as possible, given past observations. It offers several advantages
over RCT introduced in the previous section, which we summarize below:

• It does not depend on the prior knowledge of the parametrization of the underlying environment,
i.e., the gap ” in the expected rewards between an optimal and a suboptimal policy.

• It does not rely on prior knowledge of the total number of episodes T that the online algorithm
will intervene in the underlying environment.

• It achieves the same theoretical guarantees as RCT that fine-tunes the total number of trials N
based on prior knowledge of the suboptimal gap ” and the total episodes T .

The insight of the UCB algorithm is to evoke an adaptive randomization strategy (Robbins, 1952;
Lai and Robbins, 1985b; Berry and Fristedt, 1985), which means that the agent repeatedly ad-
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justs the probability of action assignment according to the past assigned actions and observed
outcomes during the experimentation. To make the argument more precise, for an MAB model
↘M→, {↘X, ∋≃} , Y ≃, UCB will utilize the prior actions and rewards’ history to compute an upper
confidence bound to each arm x, which is an overestimate of the unknown expected reward Ex [Y ]
with high probability.

In order to better understand the construction of the confidence bound, we need to introduce
some basic concentration results. Let


Y (1), . . . , Y (n)


be finite i.i.d. reward signals drawn from a

discrete distribution P (Y ). Let empirical estimates be Ê[Y ] = 1
n

∑
n

t=1 Y
(i). Applying Hoeffding’s

inequalities (Hoeffding, 1963) on the reward signal Y bounded in a real interval [0, 1] gives

P

(
E[Y ] ⇑ Ê[Y ] +

√
log(1/ϱ)

2n

)
≤ ϱ for all ϱ ↔ (0, 1) (181)

Fix a sequence of arm selections x(1), . . . , x(t) ↔ D(X). Let Nt(x) =
∑

t

i=1 1{X(t) = x} be the
total occurrence of arm x being played for every x ↔ D(X). Given finite samples


Y (1), . . . , Y (t)



drawn from interventional distributions P
x(1) (Y ) , . . . , P

x(t) (Y ) respectively, it follows from Eq. 181
that the upper confidence bound for the reward Ex [Y ] is defined as30

UCBt(x, ϱ) = Ê(t)
x [Y ] ︷︷ ︸

exploration

+

√
log(1/ϱ)

2Nt(x)
 ︷︷ ︸
exploitation

(182)

Among quantities in the above equation, the second term is the confidence width computed from
the concentration bound in Eq. 181. The first term is the empirical mean estimate Ê(t)

x [Y ] for the
expected reward and is given by

Ê(t)
x [Y ] =

1

Nt(x)

t∑

i=1

Y (i)1

X(i) = x


(183)

We summarize in Alg. 3 the details of the UCB algorithm when deployed in an unknown MAB
model M→

MAB. For every episode t, it computes confidence bounds UCBt↔1(x, ϱ) for every arm
x ↔ D(X) from prior interventional data


Y (1), . . . , Y (t↔1)


. It then selects an arm x(t) with the

maximal upper confidence bound, performs intervention do
(
x(t)

)
, and receives subsequent reward

Y (t). It can be shown that such an arm allocation strategy based on the upper confidence bound in
Eq. 182 balances the trade-off between exploration and exploitation. The algorithm is more likely
to play an arm x if it is (1) close to optimal since the empirical reward estimate Ê(t)

x [Y ] is large, or
(2) not sufficiently explored and Nx(t) is small. At Step 3, the error probability ϱ = t↔4 decreases
as the episode number t increases. This means that the upper confidence bound estimates for every
arm x become increasingly accurate as the online learning process continues.

Theorem 5 (Regrets of UCB in MABs (Auer et al., 2002b)) For an MAB ↘M→, {↘X, ∋≃} , Y ≃, let
Y be the reward variable with support on [0, 1], and let the domain of action X be D(X) =

30. For consistency, we also define UCBt(x, ε) = ⇑ if Nt(x) = 0.
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Algorithm 3 Upper Confidence Bound (UCB) in MAB
Require: a policy scope # = {↘X, ∋≃}.

1: for all episodes t = 1, 2, . . . do
2: Choose an arm x(t) = argmaxx UCBt↔1 (x, ϱ) where ϱ = t↔4.
3: Perform do

(
x(t)

)
for episode t and receive reward Y (t).

4: end for

{1, . . . ,K}. It holds the regret of UCB in SCM M→ after T > 1 episodes is bounded by

R(T,M→) ≤ 8
∑

x:”x>0

log(T )

”x

+


1 +

ω2

3

 ∑

x:”x>0

”x (184)

↭

After a few simplifications (Lattimore and Szepesvári, 2020), the regret bound in Eq. 184 could be
further written as:

R(T,M→) ≤ 5
∑

x:”x>0

”x + C
√
KT log(T ) (185)

where C is a universal constant. In words, UCB achieves a sublinear regret O
(
T 1/2 log(T )1/2

)
,

which is close to the regret bound obtained by RCT up to logarithmic terms. By employing sharper
concentration inequalities for the expected reward estimates, it is possible to shave the dependence
on the logarithmic term in the regret bound of UCB (Audibert and Bubeck, 2009). Broadly speaking,
the theory supports the claim that UCB is able to overcome the limitation of RCT by removing the
dependence on the prior knowledge of suboptimal gaps ” and the total number of episodes T while
achieving the same asymptotic guarantees. Still, in practice, two algorithms’ having similar regret
bounds does not mean they will perform the same when deployed in the environment. The reason
is that the analysis might be loose for one algorithm and not to the other, or by a different margin.
For this reason, we now compare the empirical performance of UCB and RCT.

Experiment 2 Fig. 16 shows the cumulative regret of UCB when deploying in the MAB model
described in Example 31. The setup is the same as in Experiment 1, which has T = 10000 and
parameter ε = 0.1. As a baseline, we also include RCT with various choices for the total number
of trials set to N . The simulation shows a common phenomenon – if RCT is fine-tuned with the
optimal choice of the trial number, it can outperform UCB by a small margin in the cumulative regret.
However, if the trial number N must be chosen without prior knowledge of the model parameter ”
and the total episodes of interventions T , UCB will generally dominate RCT in performance. ↭

The principle underpinning UCB has been applied to other RL environments and leads to sublinear
regrets, including contextual bandit (Li et al., 2010), Markov decision processes (Auer et al., 2009),
and factored MDPs (Osband and Van Roy, 2014), just to name a few. In Sec. 5, we will also see
a more generalized implementation of UCB that could find an optimal policy in an arbitrary CRL
system.
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Figure 16: Simulation results comparing performance of online learning algorithms UCB and RCT.

4.3 Causal Identification

Online learning algorithms ensure the NUC condition (Def. 13) holds by deploying candidate poli-
cies in the environment (Lem. 1). However, randomized experiments are not applicable in all set-
tings; for example, the effect of a risk factor such as smoking cannot ethically be addressed with
randomized controlled trials (Cornfield et al., 1959). Furthermore, performing randomized experi-
ments is expensive, and may even be infeasible due to financial constraints. For instance, in a survey
of phase trials of new drugs approved by the Food and Drug Administration (FDA) of the United
States from 2015-2016 (Moore et al., 2018), the trial cost was estimated at a median of $41,117
per patient. The increasing cost of certain trials calls for more generalized policy learning methods
without direct interventions.31

An alternative approach for policy evaluation is to relax the NUC assumption and explore other
more general structural assumptions in the underlying environment, represented as a causal diagram.
This leads to the setting of causal identification, characterized by a signature:

Tid =

R = see,A = G,# = {↘Xi,Si≃}Hi=1 ,R = D(Y ) ∞↙ R


(186)

The optimization in this task goes as follows:

ω→ = argmax
ω↑!

EM
→

ω

[
R (Y )

A = G, Dobs ↖ P (V )
]
, (187)

Similar to off-policy learning previously discussed in Sec. 4.1, a causal identification agent collected
data from the underlying SCM M→ through repeated episodes of passive observations (I = see). or
every episode t, the agent observes the SCM M→, and receives a sample drawn from the observa-
tional distribution P (V ). The key difference is that the agent does not assume the NUC condition
(Def. 13). Instead, it now has access to a causal diagram G associated with the underlying envi-
ronment M→ (Def. 6).3233 It will then incorporate experts’ domain knowledge to obtain a causal

31. The situation is more challenging in practice since even in settings where RCTs are applicable, there are still serious
concerns due to issues of transportability (also known in the literature as external validity/generalizability). For
further discussion, refer to (Bareinboim and Pearl, 2016; Correa and Bareinboim, 2020b).

32. There exist causal discovery algorithms to learn (an equivalence class of) causal diagrams from observational (Spirtes
et al., 2000; Pearl, 2000) and experimental data (Kocaoglu et al., 2017, 2019; Jaber et al., 2020).

33. This settings can be generalized to consider input distributions in which the other agent is known to have collected
data under a randomized regime, albeit of another action variable different than X , say Z. This problem has been
studied in the literature under the rubric of g-identification (Bareinboim and Pearl, 2012a; Lee et al., 2019).
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Episode t

X(1) Y(1)

Z(1)

X(2) Y(2)

Z(2)

X(3) Y(3)

Z(3)

X(4) Y(4)

Z(4)

V (1) ↖ P (V ) V (2) ↖ P (V ) V (3) ↖ P (V ) V (4) ↖ P (V )

0 1 2 3

see see see see

Figure 17: Temporal diagram showing a causal identification agent interacting with the environment
for repeated episodes.

diagram compatible with the underlying environment. See Sec. 2.3 for more discussion. This inter-
action is illustrated in the temporal diagram in Fig. 17.

The agent aims to learn an optimal policy ω→ ↔ # from the combination of the observational
data P (V ) and structural assumptions encoded in the causal diagram G. A key challenge is to find
a function of the observational distribution P (V ) that is guaranteed to be equal to the probability
query of interest in the intervened submodel Mω, for any SCM M compatible with structural
assumptions encoded in the diagram G. We introduce next this notion articulated more formally.

Definition 14 (Identifiability) Let subsets of variables X,Y ↑ V and ω be a policy over X . The
interventional distribution Pω (Y ) is identifiable from the structural assumptions A if Pω (Y ) is
uniquely computable from any positive observational distribution P (V ) in any SCM M satisfying
A. That is, if for every pair of SCMs M1 and M2 compatible with structural assumptions A,
Pω(Y ;M1) = Pω(Y ;M2) whenever P (V ;M1) = P (V ;M2) > 0.

For a causal identification task, the structural assumptions A will be encoded as a causal diagram
G. We say an interventional distribution Pω (Y ) is identifiable from a causal diagram G if for any
pair of SCMs M1,M2, Pω(Y ;M1) = Pω(Y ;M2) whenever P (V ;M1) = P (V ;M2) > 0 and
G(M1) = G(M2) = G. On the other hand, as for an off-policy learning task described in Sec. 4.1,
the structural assumptions A are specified using the NUC condition (Def. 13), which restricts the
form of the behavior policy fX determining values of actions X in the underlying environment. It
follows as a corollary from Thms. 2 and 3 that for any policy ω ↔ #, the expected reward Eω [R(Y )]
is identifiable provided with the NUC condition (Def. 13).

Corollary 1 For a policy space # = {↘Xi,Si≃}Hi=1 and reward function R : D(Y ) ∞↙ R, let a
policy ω ↔ #. Pω (Y ) is identifiable from the NUC condition (Def. 13) w.r.t. the policy space #.

The following example shows the identifiability guarantee from the NUC assumption.

Example 32 (Identification under NUC) We consider a 2-stage DTR ↘M→,#, Y ≃ described in
Fig. 10c where the policy space # = {↘X1, {S1}≃ , ↘X2, {S1, X1, S2}≃}. We further assume that the
NUC condition (Def. 13) holds, i.e., the unobserved confounder U does not affect actions X1, X2.
This means that for every action X1 (or X2), when its direct parents S1 (or S1, X1, S2) are observed
and measured, its values are only affected by independent noise.
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It follows from IPW estimation of Thm. 2 that the expected reward of any policy ω ↔ # is
computable from the observational distribution and policy’s definition, and is given by:

Eω [Y ] =
∑

s1,x1,s2,s2

E [Y | s1, x1, s2, s2]P (s1, x1, s2, s2)

P (x1|s1)P (x2|s1, x1, s2) ︷︷ ︸
observational distribution

ω1(x1|s1)ω1(x2|s1, x1, s2) ︷︷ ︸
policy ω

. (188)

The above equation is a function of the candidate policy ω (the second term) and the observa-
tional distribution P (S1, X1, S2, X2, Y ) (the first term). Formally, the expected reward Eω [Y ] is
identifiable from P (V ) provided with the NUC condition, i.e., no matter the specific form of the
mechanisms F and exogenous conditions P (u) of the underlying, true SCM M→. We also compute
the value function of policy ω ↔ # following the DP estimation in Thm. 3:

Q(1)
ω (x1, s1) =

∑

s2,x2

Q(2)
ω (x1, x2, s1, s2)P (s2|s1, x1)ω2(x2 | s1, x1, s2) (189)

Q(2)
ω (x1, x2, s1, s2) = E[Y |s1, x1, s2, s2]. (190)

Finally, the expected reward is identifiable by

Eω [Y ] =
∑

s1,x1

Q(1)
ω (x1, s1)ω1(x1 | s1)P (s1), (191)

and value functions Q(1)
ω , Q(2)

ω are both computable from distribution P (S1, X1, S2, X2, Y ). ↭

4.3.1 SEQUENTIAL BACKDOOR FOR POLICY EVALUATION

As previously discussed in Sec. 4.1, both IPW (Thm. 2) and DP (Thm. 3) are popular off-policy
evaluation algorithms in causal inference and reinforcement learning literature. Therefore, it is
worth understanding the conditions under which these algorithms are applicable for identifying the
expected rewards of policies in a policy space #, provided with an arbitrary causal diagram G. There
exists a graphical condition called he sequential backdoor (Pearl and Robins, 1995) that delimits
whether the effect of performing a sequence of atomic interventions can be identified by covariates
adjustments. In this section, we generalize the sequential backdoor criterion to evaluate the effects
of sequential policies (i.e., not necessarily atomic34), which select actions based on values of other
observed covariates in the system.

Before describing the details of the criterion, we first introduce some necessary notations. For
every policy ω ↔ #, let Gω denote the causal diagram associated with the submodel M→

ω induced
by policy intervention do(ω). Operationally, the manipulated diagram Gω is obtained from G by
performing the following procedures: for every i = 1, . . . , H ,

1. Remove all incoming arrows pointing into action node Xi;

2. Add arrows from nodes in input states Si to the action node Xi.

34. For a more nuanced and detailed discussion on the difference between atomic and non-atomic interventions, please
refer to (Correa and Bareinboim, 2020a, Appendix B).
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For a policy ω = (ω1, . . . ,ωH), let (ωi, . . . ,ωj) be a sub-policy consisting of decision rules with
restriction to indices 1 ≤ i < j ≤ H . The manipulated graph Gωi,...,ωj

is thus a causal diagram ob-
tained by intervention do (ωi, . . . ,ωj) following the sub-policy (ωi, . . . ,ωj).35 As an example, con-
sider the causal diagram G described Fig. 18a. For a policy (ω1 (X1 | S1) ,ω2 (X2 | S1, X1, S2)),
Fig. 18b shows the manipulated causal diagram Gω1,ω2 induced by intervention do(ω1,ω2); the
added incoming arrows to actions X1, X2 are highlighted in blue. The diagram Gω2 induced by
intervention do(ω2) following a sub-policy with restriction on action X2 is shown in Fig. 18c. For-
mally, the sequential backdoor condition for identifying policy interventions is defined as follows.

Definition 15 (Sequential Backdoor Condition (Policy Intervention)) Let G be causal diagram
and Y ↑ V be reward signals. A policy space # = {↘Xi,Si≃}Hi=1 is said to satisfy the sequential
backdoor condition w.r.t. Y in G (for short, # is backdoor admissible) if for every policy ω ↔ #,
the following condition hold: for every i = 1, . . . , H ,

(
Xi ′′ Y | X̄i↔1, S̄i

)
GXi,ωi+1,...,ωH

(192)

That is, conditioning on nodes X̄i↔1 ↗ S̄i d-separates all backdoor paths from action Xi to reward
signals Y that contains an arrow pointing into Xi in the manipulated graph Gωi+1,...,ωH

.

In spirit, the independence relationship in Eq. 192 is similar to the celebrated backdoor criterion
(Pearl, 2000, Def. 3.3.1). A backdoor path between nodes X and Y is a sequence of edges starting
with an arrow pointing into a node in X . This criterion ensures that at every stage i = 1, . . . , H , the
actions and covariates’ history X̄i↔1, S̄i effectively summarize all the information that the behavior
policy uses to determine values of action Xi, which are also relevant to the reward signal Y . In other
words, all the confounders between action Xi and reward Y are measured, and no other variables
could generate non-causal correlations between Xi and Y .

As a special case, let ω = (ω1, . . . ,ωH) be an atomic policy such that every decision rule
ωi ↫ Xi ⇐ xi for every step i = 1, . . . , H . In this case, the manipulated graph Gωi+1,...,ωH

,
i = 1, . . . , H , is a subgraph obtained from G by removing the incoming arrows of every action
node Xi+1, . . . , XH . The independence relationship in Eq. 192 reduces to the sequential backdoor
condition for atomic interventions do(x) in (Pearl and Robins, 1995) and could be written as:

(
Xi ′′ Y | X̄i↔1, S̄i

)
G
Xi,Xi+1,...,XH

. (193)

Note that in the above equation, G
Xi,Xi+1,...,XH

is a subgraph contained in the manipulated diagram
GXi,ωi+1,...,ωH

(w.r.t. an arbitrary policy ω over actions X). This means that the independence
condition in Eq. 192 is stronger than the one in Eq. 193. The atomic backdoor condition in (Pearl
and Robins, 1995) holds whenever the policy space # is backdoor admissible in diagram G.

Whenever the NUC condition (Def. 13) holds, note that the variables X̄i↔1, S̄i contain all direct
parents of action Xi. There is no unobserved confounder affecting Xi and any other variable in the
environment. Conditioning on the actions and states’ history X̄i↔1, S̄i thus “blocks” all backdoor
path from action node Xi to reward nodes Y . As a corollary, it follows immediately that Def. 15
subsumes the NUC condition (Def. 13).

35. Note that for i = 1, . . . , H , covariates Si are non-descendent of actions X̄i:H . It is verifiable that for every policy
ω ↘ !, the manipulated graph Gωi+1,...,ωH

, i = 1 . . . , H , is acyclic and preserves the topological ordering S1 ⇓

X1 ⇓ · · · ⇓ SH ⇓ XH .
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Figure 18: Causal diagram satisfying the NUC condition and its manipulated diagrams.

Corollary 2 For a CDM ↘M→,#,R≃ where # = {↘Xi,Si≃}Xi↑X
and R : D(Y ) ∞↙ R, let G be

the causal diagram associated with SCM M→. If the NUC holds in ↘M→,#,R≃, then # is backdoor
admissible w.r.t reward signals Y in diagram G.

Whenever the NUC condition holds in a CDM ↘M→,#,R≃, the above corollary implies that the
policy space # must satisfy the sequential backdoor with regard to reward signals Y in the causal
diagram G of the underlying SCM M→. The following example demonstrates this intuition.

Example 33 (NUC ̸ Sequential Backdoor) Consider a 2-stage DTR model ↘M→,#, Y ≃ con-
sisting of actions X1, X2, observed states S1, S2, and a primary outcome Y ; the policy space
# = {↘X1, {S1}≃ , ↘X2, {S1, X1, S2}≃}. Assume that the NUC condition holds (Def. 13), which
means that the unobserved confounder U does not affect actions X1, X2. Fig. 18a shows a more
detailed causal diagram G associated with the environment M→; the incoming arrows U ↙ X1,
U ↙ X2 are now removed.

We will next show that the policy space # satisfies sequential backdoor condition with regard
to the primary outcome Y in the causal diagram G. Consider first the action X1. For every policy
(ω1,ω2) ↔ #, the manipulated diagram Gω2 is shown in Fig. 18c. One could see by inspection that
conditioning on covariate S1 d-separates all backdoor paths from X1 to Y in Gω2 , i.e.,

(X1 ′′ Y | S1)GX1,ω2
(194)

We also examine the independence relationship of Eq. 192 with regard to X2, which is the last action
in the decision sequence. It is thus sufficient to consider the causal diagram G of Fig. 18a. Again,
conditioning input covariates S1, X1, S2 d-separates backdoor paths from X2 to Y in G, i.e.,

(X2 ′′ Y | S1, X1, S2)GX2
(195)

We thus conclude the policy space # is backdoor-admissible w.r.t. the primary outcome Y in G. ↭

Interestingly, Def. 15 covers more general conditions than the NUC. There are CDMs ↘M→,#,R≃
where the NUC does not hold while the policy space # satisfies the sequential backdoor condition
in the causal diagram G associated with the SCM M→.

Example 34 (Sequential Backdoor ▽̸ NUC) More formally, consider an SCM

M→ =

U = {Ui}5i=1,V = {S1, S2, X1, X2, Y },F , P (U)


(196)
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Figure 19: Causal diagram satisfying the sequential backdoor and its manipulated diagrams.

consisting of actions X1, X2 and a reward signal Y . The causal mechanisms F are defined as:

F =






S1 ⇐ U1,

X1 ⇐ U1 ⇔ U4,

S2 ⇐ S1 ⇔X1 ⇔ U2,

X2 ⇐ U2 ⇔ U5,

Y ⇐ S1 ⇔X1 ⇔ U3,

(197)

The exogenous distribution P (U) is defined such that U1, U2, U3 are independent binary variables
following distribution P (Ui = 0) = 0.9, i = 1, . . . , 3; also, U4, U5 are independent noise uniformly
drawn over {0, 1}. Fig. 19a shows the causal diagram G associated with the SCM M→.

Consider a policy space # = {↘X1, {S1}≃, ↘X2, {S1}≃}. One could see by inspection that the
NUC condition does not hold in the CRL system ↘M→,#, Y ≃ due to the presence of unobserved
confounders Ui, i = 1, 2, affecting action (Xi) and state (Si) variables, simultaneously. We next
examine the scope # and see if it satisfies the sequential backdoor criterion in the diagram G. For
a policy (ω1,ω2) ↔ #, the manipulated diagram Gω2 is shown in Fig. 19c. Conditioning on the
covariate S1 d-separates the backdoor path X1 ↬⊜⊜⊜⊜≿ S1 ↙ Y in Gω2 , i.e.,

(X1 ′′ Y | S1)GX1,ω2
(198)

Similarly, conditioning on S1 also blocks the backdoor path X2 ↬⊜⊜⊜⊜≿ S2 ⇐ X1 ↬⊜⊜⊜⊜≿ S1 ↙ Y
between action X2 and reward Y , i.e.,

(X2 ′′ Y | S1)GX2
(199)

The above independence relationships imply # satisfies the sequential backdoor w.r.t. the reward Y
in the diagram G even when the NUC does not hold in the decision model ↘M→,#, Y ≃. ↭

One important observation here is that the NUC condition is hard to ascertain unless implied by the
(physical) randomization procedure or assumptions following the model, such as the ones required
by the sequential back-door condition. This means that despite the NUC condition being popular
throughout the literature, the same is not a primitive but a byproduct of more fundamental notions.
Our next result establishes the identifiability of the effects of candidate policies in #, provided that
the policy scope # is backdoor-admissible in the causal diagram G.

Theorem 6 Let G be a causal diagram, # = {↘Xi,Si≃}Hi=1 be a policy space, and R : D(Y ) ∞↙ R
be a reward function. If # is backdoor-admissible w.r.t. Y in G (Def. 15), for any policy ω ↔ #, the
expected reward Eω [R(Y )] is identifiable from G. Moreover, Eω [R(Y )] is computable from the
observational distribution P (V ) following the IPW (Thm. 2) or the DP (Thm. 3) estimation. ↭
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S1 X1 X2 Y P (s1, x1, x2, y) S1 X1 X2 Y P (s1, x1, x2, y)

0 0 0 0 0.2025 1 0 0 0 0.0025
0 0 0 1 0.0225 1 0 0 1 0.0225
0 0 1 0 0.0225 1 0 1 0 0.0225
0 0 1 1 0.2025 1 0 1 1 0.0025
0 1 0 0 0.2025 1 1 0 0 0.0025
0 1 0 1 0.0225 1 1 0 1 0.0225
0 1 1 0 0.0225 1 1 1 0 0.0225
0 1 1 1 0.2025 1 1 1 1 0.0025

Table 8: The observational distribution P (S1, X1, X2, Y ) of the SCM M→ defined in Eq. 197.

In words, the sequential backdoor condition in Def. 15 generalizes standard off-policy learning
methods to settings where the NUC does not hold, and there exist unobserved confounders affecting
actions and other variables in the system. As long as the sequential backdoor holds, one could apply
IPW and DP algorithms to evaluate candidate policies from the observational data while ascertaining
the validity of the estimation procedure in the limit.

Example 35 Consider again the SCM M→ described in Eq. 197. We are interested in evaluating
a policy ω = (ω1,ω2) such that ω1 : X1 ⇐ S1,ω2 : X2 ⇐ ¬S1. The submodel entailed by
intervention do(ω1,ω2) is described by the tuple

M→

ω =

U = {Ui}5i=1,V = {S1, X1, S2, X2, Y },Fω, P (U)


, (200)

where the structural functions Fω is given by

Fω =






S1 ⇐ U1,

X1 ⇐ S1,

S2 ⇐ S1 ⇔X1 ⇔ U2,

X2 ⇐ ¬S1,

Y ⇐ S1 ⇔X1 ⇔ U3,

(201)

Evaluating the expected reward Y in submodel M→
ω results in

EX1↘S1,X2↘¬S1 [Y ] = E [S1 ⇔ ¬S1 ⇔ U3] (202)
= P (0⇔ U3 = 1) (203)

Evaluating the above equation gives EX1↘S1,X2↘¬S1 [Y ] = 0.9. Since the agent does not have
access to M→, we apply next the IPW estimation procedure (Thm. 2) to evaluate the effects of
policy ω = (X1 ⇐ S1, X2 ⇐ ¬S1) from the observational distribution. Recall that scope # =
{↘X1, {S1}≃, ↘X2, {S1}≃} is backdoor-admissible in the causal diagram G of Fig. 18a. Thm. 6
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S1 X1 Q(1)
ω S1 X1 Q(1)

ω

0 0 0.9 1 0 0.9
0 1 0.9 1 1 0.9

(a) Q(1)
ω (s1, x1)

S1 X1 X2 Q(2)
ω S1 X1 X2 Q(2)

ω

0 0 0 0.1 1 0 0 0.9
0 0 1 0.9 1 0 1 0.1
0 1 0 0.1 1 1 0 0.9
0 1 1 0.9 1 1 1 0.1

(b) Q(2)
ω (s1, x1, x2)

Table 9: Evaluation of value functions Q(1)
ω , Q(2)

ω for policy ω = (X1 ⇐ S1, X2 ⇐ ¬S1) in SCM
M→ described in Eq. 197.

allows us to compute the expected reward from P (S1, X1, X2, Y ) as follows:

EIPW
X1↘S1,X2↘¬S1

[Y ] =
∑

s1,x1,x2

P (s1, x1, x2, Y = 1)
1{x1 = s1}
P ↓ (x1 | s1)

1{x2 = ¬s1}
P (x2 | s1, x1)

= 4
∑

s1,x1,x2

P (s1, x1, x2, Y = 1)1{x1 = s1, x2 = ¬s1} (204)

The last step holds since X1 ⇐ U1 ⇔ U4, X2 ⇐ U2 ⇔ U5; and U4, U5 are independent noise
uniformly drawn over {0, 1}. The complete parametrization for the observational distribution
P (S1, X1, X2, Y ) is provided in Table 8. The above equation could thus be further written as:

EIPW
X1↘S1,X2↘¬S2

[Y ] = 4P (S1 = 0, X1 = 0, X2 = 1, Y = 1)

+ 4P ↓(S1 = 1, X1 = 1, X2 = 0, Y = 1) (205)

The above evaluation matches the expected reward in Eq. 203, evaluated in SCM M→. ↭

Example 36 We also apply the DP estimation (Thm. 3) to evaluate the effect of policy ω = (X1 ⇐
S1, X2 ⇐ ¬S1) in SCM M→, described in Eq. 197. By applying Thm. 6, we obtain the expected
reward Eω [Y ] from the observational distribution P (S1, X1, X2, Y ) as follows:

Q(1)
ω (s1, x1) =

∑

x2

1{x2 = ¬s1}Q(2)
ω (s1, x1, x2) (206)

Q(2)
ω (s1, x1, x2) = P (Y = 1|s1, x1, x2) (207)

We compute the above value functions Q(1)
ω (s1, x1), Q

(2)
ω (s1, x1, x2); their parameterizations

are provided in Table 9. Finally, the expected reward is identifiable by

EDP
X1↘S1,X2↘¬S1

[Y ] =
∑

s1,x1

1{x1 = s1}Q(1)
ω (s1, x1)P (s1)

= Q(1)
ω (0, 0)P (S1 = 0) +Q(1)

ω (1, 1)P (S1 = 1) (208)

The above computation matches the expected reward in Eq. 203, evaluated in SCM M→. ↭
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M(0): Identifiability (Def. 14)

M(1): SBC (Def. 15)

M(2): NUC (Def. 13)

M(3): Exp-NUC (Lem. 1)

Figure 20: Assumptions under which IPW and DP algorithms are applicable

We provide in Fig. 20 a summary of the relationships of structural assumptions about the data-
generating process discussed so far that permit the evaluation of the effects of candidate policies.

• Sec. 4.1 provides a sufficient assumption called the NUC (Def. 13) that allows one to evalu-
ate policy effects from the observational data via the application of IPW and DP algorithms
(Thms. 2 and 3). The family of SCMs satisfying the NUC condition is denoted by M(2),
which is marked in red in the figure, and is the baseline of most of the current literature.
However, the NUC assumption is opaque and not testable in practice, which may lead to
potentially wrong inferences about the optimal policy (as shown in Examples 29).

• In Sec. 4.2, we show that the NUC condition holds in all submodels induced by interventions
do(ω) following candidate policies ω ↔ #, which is called Exp-NUC. This family of sub-
models is denoted by M(3) and is marked in dark green in the figure. In words, whenever an
agent goes online in the environment and collects experimental data following a known pol-
icy, the same data can be used to evaluate the effect of new policies, as implied by Lemma 1.
Formally, this implies the NUC condition and constitutes a sufficient condition for the identi-
fication of the effects of policy interventions.

• On the other side in blue, Sec. 4.3.1 provides a more generalized graphical condition, called
the sequential backdoor criterion (SBC, Def. 15). The family of SCMs satisfying the sequen-
tial backdoor condition is denoted by M(1). This graphical condition is defined based on the
causal diagram encoding the underlying causal mechanisms, which could be more readily
evaluatable from the available data and by domain experts. It is sufficient in determining
whether IPW and DP are applicable to evaluate candidate policies from observational data.

• Finally, the outer ellipse M(0) describes the set of all environments (SCMs) where the effects
of candidate policies are identifiable from the underlying data-generating mechanisms.

After all, Fig. 20 shows that M(3) ∝ M(2) ∝ M(1); and this containment relationship is strict.
This means that there exists a causal model that is not induced by the intervention do(ω) and satisfies
the NUC condition (Example 25). There also exists a causal model where the NUC does not hold,
but is backdoor admissible (Example 34). One may wonder if the containment M(1) ∝ M(0) is also
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strict. We will show next that this is the case. Particularly, there are learning settings where the se-
quential backdoor criterion does not hold, but the agent could still explore the structural constraints
in the causal diagram to recover the effects of candidate policies from the observational data.

4.3.2 DO-CALCULUS LEARNING

Our discussion begins with an example illustrating policy evaluation from observational data under
a set of non-parametric constraints known as the front-door (Pearl, 2000, Sec. 3.1.2).

Example 37 (Front-door Environment) Consider the causal diagram G described in Fig. 21a,
which is also known as the “front-door” diagram. We are interested in evaluating the expected
reward Ex[Y ] of an atomic policy ω : X ⇐ x that sets the value of action X to a constant x. Due to
the presence of a backdoor path X ↬⊜⊜⊜⊜≿ Y , the policy space # = {↘X, ∋≃} does not satisfy the
backdoor criterion (Def. 15), and standard off-policy learning algorithm do not generally apply.

In our context, this means that the policy from which the data is coming from was implemented in
the environment where the agent had access to the unobserved confounder, marked as the dashed-
bidirected arrow in the graph. This unobserved confounder seems to suggest that the expected
reward Ex [Y ] is not identifiable from the Front-Door diagram, and the agent should, therefore, go
online following the discussion in Sec. 4.2.

However, existing results in causal inference suggest otherwise. By applying the Front-Door
adjustment in (Pearl, 2000, Thm. 3.3.4), the expected reward Ex [Y ] can be computed from the
observational distribution P (X,Y,W ) through the following mapping:

Ex [Y ] =
∑

w

P (w | x)
∑

x↓

E
[
Y | w, x↓

]
P (x↓). (209)

Among the quantities in the above equation, P (w | x), E [Y | w, x↓], and P (x↓) are all functions
of the observational distribution P (X,Y,W ). Therefore, the expected reward Ex [Y ] is identifiable
from the front-door diagram. The learner could then evaluate the expected reward of every arm
X ⇐ x from the observational data and solve for the optimal treatment x→. ↭

For the remainder of this section, we will introduce complete machinery to identify the expected
rewards of candidate policies ω ↔ # from the causal diagram G. Our discussion begins with a pro-
cedure to reduce the original identification problem into identifying effects of atomic interventions
(e.g., do(x)) from the same diagram G. Let Y ↑ V be an arbitrary subset of endogenous variables.
For any policy ω ↔ #, evaluating the joint distribution over Y in submodel Mω is given by:

Pω (y) =
∑

v\y

∑

u

P (u)


V ↑V \X

P (v | paV ,uV )


Xi↑X

ωi(xi | si) (210)

Recall that Gω is a manipulated graph obtained from G by replacing incoming arrows of node Xi

with arrows from covariates Si to Xi for every action Xi ↔ X . Let Z = An(Y )Gω
be ancestors of
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nodes Y . Then all the non-ancestor nodes can be summed out from the above equation leading to36

Pω (y) =
∑

z\y

∑

u

P (u)


V ↑Z\X

P (v | paV ,uV )


Xi↑X⇒Z

ωi(xi | si) (211)

=
∑

x→,s→

Px→(y, s→) ︷︷ ︸
atomic intervention



Xi↑X→

ωi(xi | si) ︷︷ ︸
new policy ω

(212)

where X→ = X ¬ Z are actions in X that are ancestors of Y in the post-interventional graph Gω;
S→ = Z \ (X ↗Y ) are ancestors of Y in Gω, excluding Y and X . It follows from Eq. 212 that the
interventional distribution Pω (Y ) is identifiable if the distribution Px→(Y ,S→) induced by atomic
intervention do(x→) is identifiable. The following proposition implies that the reverse also holds.

Proposition 3 (Correa and Bareinboim (2019); Tian (2004)) Let G be a causal diagram, # be a
policy space {↘Xi,S≃}Hi=1, and Y ↑ V be a set of variables. For any policy ω ↔ #, Pω(Y ) is
identifiable from G if and only if Px→(Y ,S→) for any x→ ↔ D(X→) is identifiable from G. ↭

The following examples demonstrate the decomposition in Eq. 212 with various causal diagrams.

Example 38 Consider the Front-door diagram G described in Fig. 21a and a policy scope # =
{↘X, ∋≃}. For any policy ω(X), the post-interventional graph Gω is a chain X ↙ W ↙ Y . For the
reward Y in this graph, its ancestor action X→ = An(Y ) ¬ {X} = {X} and other ancestor nodes
S→ = An(Y ) \ {Y,X} = {W}. Following the decomposition in Eq. 212, the expected reward
Eω [Y ] for any policy ω ↔ # could be written as

Eω [Y ] =
∑

y

yPω (y)

=
∑

y

y
∑

x,w

Px (y, w)ω(x) (213)

Among quantities in the above equation, Px (Y,W ) is the interventional distribution induced by
atomic intervention do(X ⇐ x). ↭

Example 39 Figs. 18a and 18b show a causal diagram G and the post-interventional diagram Gω

associated with a policy space # = {↘X1, {S1}≃, ↘X2, {S1}≃}. For the reward node Y in graph Gω,
ancestor actions X→ = An(Y )¬{X1, X2} = {X2}; and covariates S→ = An(Y )\{Y,X1, X2} =
{S1}. For any policy ω ↔ #, the expected reward Eω [Y ] could be written as:

Eω [Y ] =
∑

y

yPω (y)

=
∑

y

y
∑

x2,s1

Px2 (y, s1)ω2(x2|s1) (214)

The last step follows from the decomposition of Eq. 212. Among quantities in the above equation,
Px2 (Y, S1) is the interventional distribution induced by atomic intervention do(X2 ⇐ x2). ↭

36. The decomposition in Eq. 212 was introduced in (Tian, 2004) and extended for identifying policy effects from out-
of-domain distributions in (Correa and Bareinboim, 2020b) .

70



CAUSAL REINFORCEMENT LEARNING

Lem. 3 implies that in order to evaluate candidate policies from the observational distribution, it
is sufficient to identify the corresponding effects induced by atomic interventions. Such a problem
has been studied in the literature, and several algorithms and graphical criteria have been proposed
(Pearl, 2000; Spirtes et al., 2001). First and foremost, we formally introduce do-calculus (Pearl,
1995), which consists of three inferential rules. Each rule dictates that two interventional distribu-
tions are equivalent under a condition that can be read off from the causal diagram corresponding to
the underlying, unobserved SCM.

Theorem 7 (Rules of do-calculus (Pearl, 2000)) Let G be a causal diagram compatible with a
structural causal model M, with endogenous variables V . For any disjoint subsets X,Y ,Z,W ↑
V , the following rules hold for interventional distributions compatible with G:
Rule 1 Insertion/deletion of observations:

Px(y | z,w) = Px(y | w) if (Y ′′ Z | X,W ) in GX (215)

Rule 2 Action/observation exchange:

Px,z(y | w) = Px(y | z,w) if (Y ′′ Z | X,W ) in GXZ (216)

Rule 3 Insertion/deletion of actions:

Px,z(y | w) = Px(y | w) if (Y ′′ Z | X,W ) in GXZ(W ) (217)

where Z(W ) is the subset of nodes in Z that are not ancestors of W -nodes in GX ↭

The first rule affirms that the d-separation criterion also holds for causal diagrams under interven-
tion. The second rule gives the condition for when observing and intervening on variables Z are
equivalent from the perspective of outcomes Y . The third rule gives the conditions for when the
do-operator can be removed entirely from the expression, i.e., there is no causal effect of Z on Y .

We call do-calculus learning an algorithmic procedure to identify causal effects from the ob-
servational distribution through the applications of do-calculus together with standard mathemat-
ical rules, or in some equivalent, perhaps more systematic form (Tian and Pearl, 2002b). Such a
procedure can be shown sufficient and necessary to identify causal effects from observational (Sh-
pitser and Pearl, 2006a; Huang and Valtorta, 2006b) and interventional distributions (Bareinboim
and Pearl, 2012b; Lee et al., 2019). This means that if Px(Y ) cannot be expressed in terms of
observational probabilities P (V ) (or Pz(V ), for some Z) by repeated applications of these three
rules together with basic probability algebra, such an expression does not exist, and the effect is
non-identifiable.

Proposition 4 Rules of Do-calculus, together with standard probability manipulations, are sound
and complete for determining the identifiability of all interventional distributions of the form Px(Y )
from a causal diagram G and the available observational and interventional distributions. ↭

The following examples demonstrate how to apply do-calculus learning to evaluate candidate poli-
cies with an arbitrary policy space # from the observational distribution in different causal diagrams.

Example 40 Consider the front-door diagram G in Fig. 21a. The decomposition in Eq. 213 implies
that in order to evaluate the effect of a policy ω(X), it is sufficient to identify the interventional dis-
tribution Px (Y,W ). We try to remove the subscript from every probability term that appears in the
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X W Y

(a) G

X W Y

(b) GX

X W Y

(c) GXW

X W Y

(d) GX,W

X W Y

(e) GW

X W Y

(f) GW

Figure 21: A front-door graph and its manipulated representations.

expression of Px (Y,W ) since its absence represents the fact that the causal effect is expressible in
terms of the observational distribution, hence computable from the available data (independent from
the underlying functions and exogenous variables). A derivation of a ‘subscript-free’ expression for
Px (Y,W ) is given below Eqs. 218 and 224. We illustrate the application of rules of do-calculus,
Eqs. 219-224, in Figs. 21b-21f.

Px (y, w) = Px(y|w)Px(w) Probability Axioms (218)
= Px(y|w)P (w|x) Rule 2 (W ′′ X)GX

(219)

= Px,w(y)P (w|x) Rule 2 (Y ′′ W | X)G
XW

(220)

= Pw(y)P (w|x) Rule 3 (Y ′′ X | W )G
X,W

(221)

= P (w|x)
∑

x↓

Pw(y|x↓)Pw(x
↓) Probability Axioms (222)

= P (w|x)
∑

x↓

P (y|w, x↓)Pw(x
↓) Rule 2 (Y ′′ W | X)GW

(223)

= P (w|x)
∑

x↓

P (y|w, x↓)P (x↓) Rule 3 (X ′′ W )G
W

(224)

We note that the do-operator (i.e., the subscript) does not appear in the final expression in Eq. 224,
so even though we do not possess any quantitative knowledge about the unobservable variable U
(neither its distribution nor its dimensionality), besides the fact that it influences both {X,Y }, we
are still able to compute the causal effect purely from the observational distribution P (V ) together
with the assumption encoded in G. This together with Eq. 213 allows us to evaluate the effect of any
policy ω(X) from the observational data, i.e.,

Eω[Y ] =
∑

y

y
∑

x,w

P (w|x)
∑

x↓

P (y|w, x↓)P (x↓)ω(x) (225)

=
∑

x,w

P (w|x)
∑

x↓

∑

y

yP (y|w, x↓)P (x↓)ω(x) (226)

=
∑

x,w

P (w|x)
∑

x↓

E[Y |w, x↓]P (x↓)ω(x) (227)

This recovers the front-door adjustment formula in Eq. 209. ↭
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(b) GX2

S1

X1 S2 X2 Y

(c) GX2

Figure 22: A causal diagram of the SCM described in Eq. 197 and its manipulated diagrams.

Example 41 Consider the causal diagram G in Fig. 22a. We are interested in evaluating the effects
of a policy of the form ω = (ω1(X1 | S1),ω2(X2 | S1)). The decomposition in Eq. 214 implies that
it is sufficient to identify the interventional distribution Px2 (Y, S1).

Our goal then will be to remove the subscript from every probability term in the expression of
Px2 (Y, S1), as shown next. We illustrate the application of the do-calculus in the equations below
and with the sub-graphs shown in Figs. 22b-22c. We start by writing the target expression:

Px2 (y, s1) = Px2(y|s1)Px2(s1) Probability Axioms (228)
= Px2(y|s1)P (s1) Rule 3 (S1 ′′ X)G

X2
(229)

= P (y|s1, x2)P (s1) Rule 2 (Y ′′ X2 | S1)GX2
(230)

The above formula, together with Eq. 214, allows us to identify the expected reward of any policy
of the form ω = (ω1(X1 | S1),ω2(X2 | S1)) from the observational data, i.e.,

Eω[Y ] =
∑

y

y
∑

x2,s1

P (y|s1, x2)P (s1)ω2(x2|s1) (231)

=
∑

x2,s1

∑

y

yP (y|s1, x2)P (s1)ω2(x2|s1) (232)

=
∑

x2,s1

E[Y |s1, x2]P (s1)ω2(x2|s1) (233)

More specifically, let policy ω = (X1 ⇐ S1, X2 ⇐ S1). The above equation leads to an evaluation
of the expected reward given by:

EX1↘S1,X2↘¬S2 [Y ] =
∑

x2,s1

E[Y |s1, x2]P (s1)1{x2 = ¬s1} (234)

The complete parametrizations for the conditional reward E[Y |S1, X1] and distribution P (S1) are
provided in Table 10. The above equation could thus be further written as:

EX1↘S1,X2↘¬S2 [Y ] = E[Y |S1 = 0, X2 = 1]P (S1 = 0) (235)

The above computation matches the reward in Eq. 203, as evaluated in SCM M→. ↭
In the above examples, how we apply the rules of do-calculus in the right sequence to obtain a
desirable expression is rather unclear. Fortunately, researchers have algorithmatized the procedure
to obtain such a sequence, in light of identifiability problems (Tian and Pearl, 2002b; Shpitser and
Pearl, 2006b; Huang and Valtorta, 2006a; Bareinboim and Pearl, 2012b; Lee et al., 2019). This
means that there exist efficient algorithms to determine the identifiability of the expected rewards
of candidate policies from the causal diagram, and if exits, return the identification formula for the
target effects from the observational distribution. The algorithms run in a polynomial number of
steps relative to the number of nodes and edges in the causal diagram.
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S1 P (s1)

0 0.9
1 0.1

(a) P (S1)

S1 X1 E[Y |s1, x1] S1 X1 E[Y |s1, x1]

0 0 0.1 1 0 0.9
0 1 0.9 1 1 0.1

(b) E[Y |S1, X1]

Table 10: Evaluation of P (S1) and E[Y |S1, X1] in SCM M→ defined in Eq. 197.

4.4 Novel Causal Reinforcement Learning Tasks

We recall the CRL agent is embedded in a CDM ↘M→,#,R≃ (Def. 10), where the SCM M→ is
not fully observed, # represents the policy space, and R is the reward function. Even though the
agent is still evaluated by M→, we substitute it with the learning regime L and structural assump-
tions A about the environment, which lead to a new signature ↘L,A,#,R≃, characterizing a causal
reinforcement learning task (Def. 11). The goal of the agent is then to find a policy ω→ such that

ω→ = argmax
ω↑!

EM
→

ω [R (Y ) | A,L] (236)

In words, the CRL agent aims to find an optimal policy ω→ within the policy space # that maximizes
the reward R when evaluated in the unknown environment M→ while having assumptions about the
environment A and access to data collected through a learning regime L.

A summary of the signature of the tasks studied so far in this section is shown in the upper
part of Table 11, serving as a grounding tool for the discussion here. For instance, each of the
tasks accounts for a different dimension in terms of the task signature, as was previously discussed.
Off-policy learning considers the more traditional offline modality where the NUC assumption is
assumed to hold. In this case, traditional DP or IPW methods could be applied to leverage data
collected under one regime – collected under an observational policy – to make inferences about
another – a new interventional policy. We also introduced online learning where the learning regime
is interventional, and data is collected in an active manner by the agent. Causal assumptions are
minimal in this case since the data precisely matches the inferential target. Finally, we studied a
more nuanced case of offline learning called “causal identification,” which relies on more explicit
causal knowledge that allows one to verify the NUC condition or evaluate the optimization given
in Eq. 236, even when unconfoundedness doesn’t hold. These three modalities touch on different
learning regimes and structural assumptions about the underlying M→.

For the remainder of this paper, we will study natural and pervasive classes of learning tasks that
do not fit into these existing modalities but involve novel dimensions and types of analysis relevant
to real-world applications. Up next, we list some of these tasks that are also shown in Table 11:

CRL 1. Causal Offline-to-Online Learning (COOL). How can we pre-train an online agent to
accelerate its learning process by leveraging imperfect knowledge about the effects of
candidate policies obtained from confounded observational data?
Computing the effect of candidate policies from observational data might be infeasi-
ble, as discussed in Secs. 4.1 and 4.3. On the other hand, it is also undesirable for the
AI system to rely solely on brute force, trial-and-error-based experimentation to im-
prove its accuracy. How can we minimize the number of interventions the AI system
makes by leveraging the invariances extrapolated from the causal model? In terms of
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Signature
Task Learning

Regime
(L)

Structural
Assumptions
(A)

Policy
Space
(#)

Reward
Function
(R)

Section

1 Off-policy
Learning

See NUC #EXP D(Y ) ∞↙ R 4.1

2 Online
Learning

Do - #EXP D(Y ) ∞↙ R 4.2

3 Causal
Identification

See DAG G #EXP D(Y ) ∞↙ R 4.3

4 Offline-to-Online
Learning

See + Do - #EXP D(Y ) ∞↙ R 5

5 Where to do
& What to see

Do DAG G #MIX D(Y ) ∞↙ R 6

6 Counterfactual
randomization

Ctf-Do - #CTF D(Y ) ∞↙ R 7

7 Causal Imitation
Learning

See DAG G #EXP - 8

Table 11: Summary of causal reinforcement learning tasks investigated in this paper, in terms of
their signatures and sections. We highlight in gray the most distinct feature introduced by the task.

the prototypical CRL agent depicted in Fig. 11, the green line represents the online
learning interactions, while the blue line represents the offline regime using observa-
tional data. In Sec. 5, we explore how to combine both modalities when the conditions
of offline learning are provably not attainable, yet unlimited experimentation remains
undesirable.

CRL 2. Where to do and What to look for. Should an agent intervene in the environment to
achieve its goal of bringing about a certain state of affairs? If so, where should the
intervention take place? The agent’s objective is to learn an optimal policy from a
collection of candidate policies, each encompassing different actions to intervene and
input states to consider when determining these actions, including the null intervention
(allowing the system to evolve naturally).

As considered earlier, the agent has a fixed action space #EXP and tries to identify the
intervention do(X = x) that optimizes its reward measure. In Sec. 6, we explore the
structure of the action space in complex systems, #MIX, focusing on settings where
each action plays a qualitatively different role. Practically, this challenge could arise
when evaluating the effectiveness of drug combinations given the exponential growth
in the total number of possible interactions.
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CRL 3. Counterfactual Decision-Making. The agent makes a certain decision X = x and won-
ders: would I be better off had I taken an alternative action, do(X = x↓)? The agent’s
objective is to evaluate this counterfactual statement to account for its natural and po-
tentially biased decision-making process.

The previous settings considered an experimental policy scope, where typical Fisherian
randomization eliminated the agent’s natural inclinations. In Sec. 7, we expand the
possibilities and allow for such introspective construct, which evokes a new learning
regime Ctf-Do. This new regime based on what we call counterfactual randomization
will allow the agent to navigate through the larger scope of counterfactual policies,
#CTF. In practice, this challenge could appear when evaluating adversarial settings
where the agent’s natural inclinations were leveraged to trick the agent and minimize
its reward in a systematic fashion.

CRL 4. Causal Imitation Learning. Does perfectly mimicking an expert always lead to high
decision-making performance? If not, under what conditions does imitation learning
work? The goal of the agent here is to learn an effective policy from the combination of
observational data and a causal diagram when the reward function is not well-specified
and unobserved confounding generally exists.

The previous settings we investigated assumed that the reward function was known,
which is not always the case. For instance, consider an autonomous vehicle trained
from the observed trajectories of a human driver operating the vehicle. It is non-trivial
to design a universal reward function evaluating the human’s driving performance.
How can we program the autonomous vehicle to operate effectively from the demon-
stration data without knowing the driver’s performance measure?

This expanded set with new tasks and understanding paves the way to a broader view of coun-
terfactual learning. It underscores the potential of studying causal inference and reinforcement
learning side by side, a program we call causal reinforcement learning.

5. Causal Offline-to-Online Learning (CRL Task 1)

Learning algorithms introduced in the previous section rely exclusively on one type of interaction
with the underlying environment, either through passive observation (“see”/offline) or direct inter-
vention (“do”/online), despite their strong theoretical guarantees. A natural question that arises
is whether the agent could combine both learning regimes and achieve better performance. This
leads to the setting of offline-to-online learning. Existing offline-to-online methods in reinforce-
ment learning literature (Taylor and Stone, 2009; Lazaric, 2012; Lee et al., 2022) rely on the NUC
assumption (Def. 13), thus are not applicable when unobserved confounders generally exist in the
observed data. We will relax the NUC assumption and first study causal offline-to-online learning
task (for short, COOL) from confounded observational data.37 This task was studies in (Zhang and

37. More recently, there is growing interest in causal inference to identify treatment effects by combining observational
and experimental datasets (Bareinboim and Pearl, 2012b; Lee et al., 2019), and further estimating these under the
NUC condition (Colnet et al., 2020; Rosenman et al., 2020; Cho, 2022; Lin and Evans, 2023; Ball et al., 2023),
or more general conditions (Jung et al., 2023b,a). These works are orthogonal to offline-to-online learning since
they focus on the offline setting where experimental data are provided in priori; the learner does not control the
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Episode t

X(1) Y(1) X(2) Y(2) X(3) Y(3)

ω
(3)

X(4) Y(4)

ω
(4)

V (1) ↖ P (V ) V (2) ↖ P (V ) V (3) ↖ P
ω(3) (V ) V (4) ↖ P

ω(4) (V )
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see see do
(
ω(3)

)
do

(
ω(4)

)

Figure 23: Temporal diagram showing an offline-to-online learning agent interacting with the envi-
ronment for repeated episodes.

Bareinboim, 2017, 2019), where several algorithms have been proposed. This section will summa-
rize such results under a more unified CRL framework.

The mechanism of how the CRL agent operates in this task and switches from an offline to an
online mode when interacting with the underlying environment is illustrated in Fig. 23. Specifically,
the CRL agent first passively observes the environment for a number of episodes t = 1, . . . , n, and
receive the observational samples V (t) ↖ P (V ). For episode t = n + 1, . . . , n + T , the agent
then picks a policy ω(t), directly intervenes do

(
ω(t)

)
in the environment, and receives subsequent

outcomes V (t) ↖ P
ω(t) (V ). The agent will leverage the observational data


V (1), . . . ,V (n)


to

accelerate the future online learning process. The following task signature characterizes this offline-
to-online learning setting:

Toff+on =

I = {see, do},A = ∋,# = {↘Xi,Si≃}Xi↑X

,R = D(Y ) ∞↙ R

. (237)

This means that the agent will try to find a policy ω→ such that

ω→ = argmax
ω↑!

EM
→

ω


R (Y )

 Dobs ↖ P (V ), Dexp ↖ Px (V )


, (238)

where the distinct feature here is the combination of observational and interventional interactions.
In order to make this argument more precise, we will describe an online-to-offline strategy

that combines the observational data with the learning process of UCB algorithm (Alg. 3), pro-
vided that the NUC assumption (Def. 13) holds. Consider an MAB model ↘M→, {↘X, ∋≃} , Y ≃
graphically described in Fig. 10a. Let Dobs =


X(i), Y (i)

n

i=1
be i.i.d. samples drawn from

the observational distribution P (X,Y ). For UCB algorithm allocating an arm at episode t, let
D(t)

exp =

X(n+i), Y (n+i)

t↔1

i=1
be the experimental data collected by UCB up to episode t. By

combining the observational data Dobs and experimental data D(t)
exp, we define the empirical reward

estimate for every arm x as follows:

Ê(n+t)
x [Y ] =

1

Nn+t(x)

(
n∑

i=1

Y (i)1

X(i) = x


+

t↔1∑

i=1

Y (n+i)1

X(n+i) = x

)
(239)

experiments. On the other hand, the key challenge in COOL is to use observational data to design randomized
experiments.
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Algorithm 4 Upper Confidence Bound in Direct Offline-to-Online Transfer (UCB-)

1: Input: a policy space # = {↘X, ∋≃}, observational data Dobs =

X(i), Y (i)

n

i=1
2: for all episodes t = 1, 2, . . . do
3: Choose an arm

X(n+t) = argmax
x↑D(X)

UCBn+t(x, ϱ), where ϱ = t↔4 (243)

4: Perform do(X(n+t)) for episode t and receive reward Y (n+t).
5: end for

where Nn+t(x) =
∑

n+t↔1
i=1 1{X(i) = x} is the total occurrence of observing arm x being played

in the combined dataset Dobs ↗ D(t)
exp. The augmented upper confidence bound for an arm x by

combining the observational and interventional data is given by

UCBn+t(x, ϱ) = Ê(n+t)
x [Y ] +

√
log(1/ϱ)

2Nn+t(x)
(240)

The augmented UCB algorithm directly transfers observational data as if they were obtained from
direct interventions. We summarize in Alg. 4 details of a direct online-to-offline transfer strategy
using standard off-policy learning methods, which we call UCB-. For every episode t, it computes
an upper confidence bound UCBn+t(x, ϱ) for every arm x, plays an arm with the most significant
confidence bound, and observed subsequent reward.

We will analyze the performance of UCB- and show that the direct transfer strategy could accel-
erate the UCB’s performance, under the NUC assumption (Def. 13). Suppose the NUC condition
holds in the MAB model ↘M→, {↘X, ∋≃} , Y ≃. Applying Thm. 3 we compute the expected reward
of every arm x ↔ D(X) from the observational distribution P (X,Y ),

Ex [Y ] = E [Y | x] (241)

Recall that for any policy ω(X), the NUC holds in the intervened model ↘M→
ω, {↘X, ∋≃} , Y ≃. The

expected reward of arm x is computable from the interventional distribution Pω (X,Y ) as

Ex [Y ] = Eω [Y | x] (242)

The above estimation formulas allow the agent to evaluate the effects of arms by pooling the ob-
servational and experimental data. Eq. 239 provides consistent estimates for the expected rewards
Ex [Y ] provided with the NUC assumption. When sufficient observations are provided, UCB- will
immediately identify the optimal arm; only a few episodes of online interventions are required.
Broadly, when the NUC assumption holds, the learner could consistently evaluate candidate poli-
cies from the observational data using standard off-policy learning methods. These pre-trained
estimations could then be directly transferred to “warm-start” the future online learning process.38

On the other hand, the NUC assumption could be fragile and does not hold in many practical
applications. For this reason, it is wise to evaluate the performance and robustness of UCB- when
the NUC assumption doesn’t hold, which we do in the following experiment.

38. Sec. 4.1 provides a more detailed discussion about the NUC condition and off-policy learning algorithms.
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(a) Cumulative Regret (b) UCB- (c) UCB

Figure 24: Simulation results comparing UCB learner with direct transfer of observational data
(UCB-) and standard UCB without any prior observations.

Experiment 3 Fig. 24a shows the cumulative regret of UCB- in the MAB environment M→ described
in Example 1 with the suboptimal gap ” = 0.1, taking as input 5, 000 observational samples
drawn from the distribution P (X,Y ). The NUC assumption does not hold in this model due to the
unobserved confounder U affecting action X and reward Y simultaneously. As a baseline, we also
include a vanilla UCB starting from scratch, which does not utilize any prior observations. One can
see by inspection the significant disparity between the performance of UCB (blue) and UCB- (red).

We show in Fig. 24b the empirical estimates µ̂x of the expected rewards Ex [Y ] computed by
UCB-; shaded areas represent confidence intervals evaluated at 95% percentile. For comparison,
Fig. 24c shows the empirical reward estimates computed by the standard UCB without using prior
observations. Simulation results demonstrate a significant bias in the reward estimation of UCB-,
favoring the suboptimal arm x = 1. This bias was not fully corrected until the end of the online
learning process (T = 10, 000). On the other hand, UCB is able to obtain accurate estimations of
the expected rewards after a few episodes of interventions and identify the optimal arm x→ = 0. ↭

X E[Y |X = x] EX↘x [Y ] Causal Bound

x = 0 0 0.4 [0, 0.8]

x = 1 0.5⇒ 1.25” 0.4⇒” [0.4⇒”, 0.6⇒”]

Table 12: Evaluations of E[Y |x] and Ex [Y ] in MAB environment M→ defined in Example 3.

The above example suggests that in MAB models where unobserved confounders exist, the NUC
condition does not hold, which implies that directly transferring observational data may introduce a
significant bias into the empirical estimation of arms’ expected rewards. This, in turn, slows down
the learning process of online algorithms, and in some cases may even hinder these algorithms’
convergence. In order to confirm this intuition and further explain the negative transfer phenomenon,
we compute the expected reward E [Y | x] conditioning on the event that the learner observes arm
X = x is played in the MAB environment M→ defined in Example 3. We also compute the expected
reward Ex [Y ] induced by the learner playing an arm do(X ⇐ x) in M→. The analytical results
are summarized in Table 12. One can see by inspection that the evaluations of observed expected
rewards E [Y | x] differ significantly from the interventional expected rewards Ex [Y ]. This means
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that the identification formula in Eq. 241 does not apply due to unobserved confounding between the
action X and reward Y , which makes some arms x appear observationally more effective than they
interventionally are. When the suboptimal gap ” > 0, optimizing the observed reward E [Y | x]
leads to a suboptimal arm x = 1. On the other hand, the optimal arm x→ = 0 maximizes the
interventional reward Ex [Y ] in the underlying MAB environment.

Broadly, off-policy estimation methods may fail to recover the unknown expected rewards of
candidate policies without the NUC assumption. Naively transferring estimated rewards introduces
inaccuracies in optimal policy estimation of the online learning algorithm, resulting in a negative
impact on its performance. Moreover, since the effects of interventions are never measured (before
the online learning stage starts), the learner could not detect biases arising from the off-policy eval-
uation step based on observational data.39 This implies to significant challenges in offline-to-online
learning when the NUC does not generally hold. One may surmise, therefore, that the learner should
start the online learning process from scratch without utilizing past observations of the environment,
however abundant they are.40

This section aims to show that this is not the case and overcome the challenges outlined by
the confounded situation as described above. We will study the problem of causal offline-to-online
learning (COOL), which accelerates online reinforcement learning by leveraging offline observa-
tional data. We focus on the settings where the NUC condition does not hold, and the expected
rewards of candidate policies are not computable from the observational data.41 Directly applying
off-policy evaluation could lead to significant bias in the reward estimation, harming the online
learning process instead. More specifically, the remainder section is divided as follows.

• Sec. 5.1 introduces a novel causal offline-to-online learning strategy in MAB models and
proves that it consistently dominates standard UCB algorithm in term of performance. It
utilizes bounds to evaluate unknown expected rewards from the observational data, which are
then incorporated to accelerate the online learning process.

• Sec. 5.2 generalizes UCB algorithm to general CDMs (beyond MABs) where the agent needs
to decide on a sequence of actions based on values of corresponding states at the time of
intervention. This algorithm achieves the near-optimal regret bound without additional obser-
vational data and structural knowledge about the underlying environment.

• Sec. 5.3 derives novel bounds capable of exploiting observational data to infer underlying
interventional transitional probabilities and the reward functions. These bounds are then in-
corporated, in a systematic way, to accelerate online learning in an arbitrary CDM.

5.1 Confounding Robust Offline-to-Online Learning

This section studies the offline-to-online learning in MAB models when the NUC assumption does
not hold and standard off-policy learning algorithms, including IPW (Thm. 2) and DP (Thm. 3)

39. On the other hand, whenever the agent goes online, a sufficient test would entail evaluating whether Px(Y ) =
P (Y |X = x), which is known as marginal ignorability or no-confounding conditions (Pearl, 2000, Ch. 6); see also
(Bareinboim et al., 2020, Def.16(iii)). In practice, the finite-sample version of such test has to be evaluated.

40. This is, of course, against human experience where we learn by observing other agents interacting, even when our
perceptions and models of the world do not fully match. Here, we can see that one bit difference between the input
of the behavioral agent versus the agent who is using the data can lead to a catastrophic behavior.

41. Of course, whenever NUC holds, this would be a trivial, special case for the approach discussed here.

80



CAUSAL REINFORCEMENT LEARNING

estimation, do not apply. Causal researchers may wonder if it is possible to estimate the expected
rewards of arms from the observational data using causal identification algorithms, e.g., do-calculus
learning (Def. 7). Indeed, it has been shown that the expected rewards are not identifiable in MAB
environments without additional assumptions. The following corollary could be derived based on
the formal definition of identifiability described in Def. 14.

Corollary 3 (Non-Identifiability) Consider endogenous variables X,Y ↑ V and let ω be a pol-
icy over X . The interventional (policy) distribution Pω (Y ) is not identifiable from structural as-
sumptions A and observational distribution P (V if there exist two SCMs M1,M2 compatible with
A such that P (V ;M1) = P (V ;M2) > 0 while Pω(Y ;M1) ▽= Pω(Y ;M2). ↭
In words, the expected rewards Ex [Y ] of arms x are not identifiable in MAB models if there exist
two MAB environments that generate the same observational distribution P (X,Y ), but differ in
the expected rewards Ex [Y ]. This means the agent could not uniquely determine the expected
rewards of arms from the observational distribution alone. Our next example demonstrates this
non-identifiability result in MAB models.

Example 42 Consider an MAB environment M↓ described by an SCM

M↓ = ↘U = {U1, U2},V = {X,Y },F ↓, P (U1, U2)≃, (244)

The causal mechanisms are the following:

F ↓ =

{
X ⇐ 1{U1 < 0.8},
Y ⇐ 1{U2 < 0.5⇒ 1.25”}△X

(245)

where coefficient ” is a real number bounded in (0, 0.5); and P (U1, U2) is such that U1, U2 are
independent variables drawn from a uniform distribution Unif(0, 1). It is verifiable that M↓

MAB

defines the same observational distribution P (X,Y ) as the MAB environment M→ defined in Ex-
ample 3. First, marginal probabilities P (X = 0) = 0.2 and P (X = 1) = 0.8 in M↓

MAB since U1

is uniformly drawn from the real interval [0, 1]. Evaluating the conditional distribution P (Y |X) in
M↓ gives

P (Y = 1 | X = 0) = P (1{U2 < 0.5⇒ 1.25”}△ 0 = 1 | X = 0)

= 0 (246)

Similarly, the recovery rate conditioning on event X = 1 is given by

P (Y = 1 | X = 1) = P (U2 < 0.5⇒ 1.25”)

= 0.5⇒ 1.25”. (247)

On the other hand, M↓ defines different expected rewards for interventions do(X ⇐ x) from that
defined by M↓. More precisely, the submodel Mx induced by do(X ⇐ x) is a tuple

M↓

x = ↘U = {U1, U2},V = {X,Y },F ↓

x, P (U1, U2)≃, (248)

where the structural functions F ↓
x is defined as

F ↓

x =

{
X ⇐ x,

Y ⇐ 1{U2 < 0.5⇒ 1.25”}△X
(249)
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Evaluating the expected reward Y in submodel M↓

X↘0 described in Eq. 249 gives

EX↘0 [Y ] = E [1{U2 < 0.5⇒ 1.25”}△ 0]

= 0 (250)

Similarly, the expected reward of playing an arm do(X ⇐ 1) is equal to

EX↘1 [Y ] = P (U2 < 0.5⇒ 1.25”)

= 0.5⇒ 1.25”. (251)

For detailed computations of P (X,Y ) and Ex [Y ] in MAB model M→, revisit Examples 3 and 7. To
sum up, MAB models M↓ and M→ are both compatible with the causal diagram GMAB of Fig. 10a
such that they define the same observational distribution P (X,Y ) while differ significantly in the
expected reward Ex [Y ]. This means the expected rewards of arms x are not identifiable from the
observational distribution P (X,Y ) in MAB models. ↭

The result so far seems to suggest that when unobserved confounders exist and no additional causal
knowledge is provided, no prior observations could be useful in evaluating the expected rewards
of arms in MAB models. However, we will show this is not the case by deriving bounds over the
unknown expected rewards from the observational data, which we call causal bounds. This means
that while it is infeasible to determine the values of the non-identifiable expected reward, the learner
could still extrapolate partial knowledge from the observational data to improve the estimates of
its feasible region. For MAB models with an arm choice X and a reward Y , the seminal results
in (Manski, 1990; Robins, 1989) allow the derivation of informative causal bounds (to be defined)
containing the expected reward of an arm x from the observational distribution.

Theorem 8 (Natural Bounds (Manski, 1990)) For any SCM M→ containing an action X and a
reward Y , let the domain of X be discrete and finite, and Y be bounded in the real interval [0, 1].
The expected reward for any arm x is bounded in Ex [Y ] ↔ [lx, rx] where

lx = E [Y | x]P (x) ︷︷ ︸
observational

, rx = E [Y | x]P (x) + 1⇒ P (x) ︷︷ ︸
observational

(252)

↭

The lower and upper bounds in Eq. 252 are both functions of the observational distribution P (X,Y )
and are, therefore, estimable from the observational data. The above bounds are informative and
strictly contained in the interval [0, 1] when marginal probabilities P (x) > 0 are positive for any
arm x ↔ D(X). The natural bounds have been proved to be optimal in MAB models (Zhang and
Bareinboim, 2017, 2021), i.e., they cannot be improved without additional assumptions and data.

Example 43 Consider the MAB environments M→,M↓ described in Examples 1 and 42, respec-
tively. Applying Thm. 8 we obtain a lower bound contained the expected reward EX↘0 [Y ] com-
puted from the observational distribution P (X,Y ) as

EX↘0 [Y ] ⇑ E [Y | X = 0]P (X = 0)

= 0. (253)
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The upper bound over the expected reward for arm x = 0 is given by:

EX↘0 [Y ] ≤ E [Y | X = 0]P (X = 0) + 1⇒ P (X = 0)

≤ 0.8 (254)

Similarly, we could also obtain a natural bound for the expected reward of arm x = 1 from the
observational distribution P (X,Y ) and is given by

EX↘1 [Y ] ⇑ E [Y | X = 1]P (X = 1)

= (0.5⇒ 1.25”)△ 0.8

= 0.4⇒”. (255)

and the upper bound implies

EX↘1 [Y ] ≤ E [Y | X = 1]P (X = 1) + 1⇒ P (X = 1)

≤ 0.4⇒”+ P (X = 0)

≤ 0.6⇒” (256)

We summarize in Table 12 natural bounds computed from the observational distribution P (X,Y ).
The results support the soundness of the natural bound in Thm. 8 in MAB models since it contains
the real expected rewards Ex [Y ] evaluated in both M→ and M↓. ↭

The causal bounds Ex [Y ] ↔ [lx, rx] could be used to improve the estimate of the upper confidence
bound assigned to every arm x during online learning. More precisely, for UCB algorithm selecting
an arm at episode t, the causally-clipped upper confidence bound for arm x is defined as

UCBt(x, ϱ) = min {max {UCBt(x, ϱ), lx} , rx} . (257)

Among quantities in the above equation, UCBt(x, ϱ) is the standard upper confidence bound for
MAB models defined in Eq. 182. The clipping ensures the new upper bound UCBt(x, ϱ) ↔ [lx, rx]
is contained in the causal bound. In words, the causal bound for an arm x always takes priority when
it is incompatible with the confidence bound computed from the experimental data collected from
online learning to episode t. The incompatibilities generally arise at the beginning of the learning
process (t is small) where the standard upper bound UCBt(x, ϱ) is loose. It eventually converges
between the causal bound [lx, rx] as more experimental data Nt(x) are collected. The algorithm
consistently prefers causal bounds since the observational data is often abundant while conducting
interventions is expensive; causal bounds in Thm. 8 are valid and could be accurately estimated with
sufficient observational data.

Alg. 5 summarizes the augmented UCB algorithm incorporating causal bounds computed from
the observational data, which we call UCB+. It takes as input arguments causal bounds Ex [Y ] ↔
[lx, rx] over the expected rewards for candidate arms x. For every episode t, it computes the clipped
upper bound UCBn+t(x, ϱ) for every arm x by combining the experimental data collected up to
episode t and the causal bound [lx, rx]. Finally, the agent plays an arm with the highest clipped
confidence bound and receives a subsequent reward.
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Algorithm 5 Upper Confidence Bound combined with Causal Bounds in MAB (UCB+)
1: Input: a policy space # = {↘X, ∋≃}, causal bounds Ex [Y ] ↔ [lx, rx].
2: for all episodes t = 1, 2, . . . do
3: Choose an arm

X(t) = argmax
x↑D(X)

UCBn+t(x, ϱ), where ϱ = t↔4. (258)

4: Perform do(X(t)) for episode t and receive reward Y (t).
5: end for

Theorem 9 For any MAB model ↘M→, {↘X, ∋≃} , Y ≃, let Y be the reward variable with support on
[0, 1] and let the domain of action X be D(X) = {1, . . . ,K}. It holds the regret of UCB+ in SCM
M→ after T > 1 episodes is bounded by

R(T,M→) ≤ 8
∑

x: ”x>0
rx⇑µx→

log(T )

”x

+


1 +

ω2

3

 ∑

x:”x>0

”x (259)

↭

Let D(X)↔ = {x ↔ D(X) | ”x > 0} be the set of suboptimal arms. Let D(X)→ be the set
of suboptimal arms such that the causal upper bound rx for every arm x is larger than or equal
to the optimal expected reward µx→ = Ex→ [Y ], i.e., D(X)→ = {x ↔ D(X) | ”x > 0, rx ⇑ µ→}.
Since D(X)→ ↑ D(X)↔, the regret bound of Thm. 9 consistently dominates the regret bound
of the standard UCB in Thm. 5. When there are some suboptimal arms x with rx < µx→ , the
augmented UCB+ is able to outperform UCB by utilizing quantitative knowledge extrapolated from
the observational data.42

To illustrate, assume the total number of arms K = 2 and x = 0 is the optimal arm; the
suboptimal gap ” = EX↘0 [Y ]⇒ EX↘1 [Y ]. Applying UCB gives the regret bound

R(T,M→) ≤ 8 log(T )

”
+


1 +

ω2

3


” (260)

Suppose that the causal bound [l1, r1] of arm x = 1 is informative and r1 < µ0. Thm. 9 implies that
the regret bound of UCB+ taking into account this causal bound is

R(T,M→) ≤

1 +

ω2

3


” (261)

In words, when the causal bound is informative, UCB+ enjoys a constant regret O(1) which is
orders of magnitude smaller than the sublinear regret O (log(T )/”) of UCB. On the other hand, if
the causal bound is not informative and r1 ⇑ µ0, the regret bound of UCB+ coincides with the regret
of UCB in Eq. 260, and no negative transfer occurs.

42. Another line of popular bandit algorithm is called Thompson sampling (TS, Thompson (1933); Chapelle and Li
(2011); Agrawal and Goyal (2012)). We show in Appendix C that causal bounds could also be utilized to accelerate
the convergence of the TS algorithm.
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(a) ” = 0.3 (b) ” = 0.1

Figure 25: Simulation results comparing UCB+ learner augmented with causal bounds over the
expected rewards, standard UCB, and UCB- with direct transfer of observational data.

Experiment 4 Fig. 25 shows the cumulative regret of UCB+ in the MAB environment M→ described
in Example 1 with the suboptimal gap ” = 0.3 and ” = 0.1 respectively. It takes as input the
natural bounds [lx, rx] over the expected rewards of arm x = 0, 1, computed from taking as input
5, 000 observational samples drawn from the distribution P (X,Y ). As a baseline, we also include
a vanilla UCB starting from scratch without utilizing any prior observations, and UCB- with the
confounded observational data directly transferred.

One can see by inspection the significant disparity between the performance of UCB+ and UCB
for ” = 0.3. In this case, the causal bound for the suboptimal arm x = 1 is r1 = 0.6⇒” = 0.3 <
µ0, and UCB+ converges to the optimal arm x = 0 almost immediately after the learning starts. On
the other hand, when the suboptimal gap ” = 0.1 and the causal bound r1 = 0.6⇒” = 0.5 > µ0,
the performance of UCB+ and UCB virtually coincides. The simulation results corroborate the
theory that the transfer strategy of UCB+ enjoys no negative impact. As expected, the direct transfer
UCB- performs the worst among all strategies due to unobserved confounding. ↭

5.2 Online Learning in Sequential Decision-Making

The offline-to-online learning strategy described so far focuses on the MAB models with a sin-
gle decision horizon H = 1. The remainder of this section will extend this strategy to optimize
a general CDM ↘M→,#,R≃ where the policy space # = {↘Xi,Si≃}Hi=1 and the reward function
R : D(Y ) ∞↙ R taking a set of signals Y as input. We will first introduce a purely online learn-
ing algorithm to optimize a CDM ↘M→,#,R≃ without detailed parametrization of the underlying
environment M→. Compared to bandit algorithms previously described for MAB models, our pro-
posed algorithm also interacts with the underlying SCM M→ for repeated episodes t = 1, . . . , T .
For each episode t, instead of selecting a single arm X , our algorithm will determine values of a
sequence of actions X1, . . . , XH . More specifically, it will pick a policy ω(t) =


ω(t)
1 , . . . ,ω(t)

H


at

the beginning of episode t. For every step i = 1, . . . , H of interventions, our algorithm observed
state S(t)

i
, selects an action X(t)

i
↖ ω(t)

i


Xi | S(t)

i


following the decision rule ω(t)

i
, and perform

intervention do

Xi ⇐ X(t)

i


. The cumulative regret for an online learning algorithm operating in

a CDM ↘M→,#,R≃ after T > 1 episodes of interventions is defined as follows, compared to an
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idealized agent following the optimal policy ω→ for all episodes of interactions t = 1, . . . , T ,

R(T,M→) = TEω→ [R(Y );M→]⇒
T∑

t=1

E
ω(t) [R (Y )] . (262)

Similar to the bandit setting, a nice property for an online algorithm is to achieve a sublinear regret
R(T,M→) = o(T ) so that it eventually converges to an optimal policy ω→.43

There exists an experimental design of randomized trials for optimizing policies over a finite
sequence of actions X in an unknown environment, called sequential multiple assignment random-
ized trials (for short, SMART (Murphy, 2005a)). It is an explore-then-commit algorithm. More
specifically, fix a total number of trials N ↔ N. For the first t ≤ N episodes, the SMART algorithm
explores by sampling values X(t)

i
of every action Xi, for i = 1, . . . , H , from its domain D(Xi)

uniformly at random. For episodes t > N , the algorithm commits to a policy ω(t) maximizing
the empirical reward estimates Êω [R(Y )] computed from experimental data D(N)

exp collected during
exploration. Details of the algorithm is summarized in Alg. 2.

When the total number of trials N is sufficiently large, SMART is able to recover the effects
of candidate policies and find an optimal policy from the experimental data (Murphy et al., 2001a;
Murphy, 2005b). However, as previously discussed in Sec. 4.2, explore-then-commit algorithms
suffer from a linear regret during the exploration phase (t ≤ N ). Determining the optimal trial
number N is theoretically challenging, requiring prior parametric knowledge about the underlying
environment and the total episodes of interactions T .

We will next describe a novel online learning algorithm for optimizing a policy space over a
sequence of actions X = {X1, . . . , XH}. It is able to achieve a sublinear regret R(T,M→) = o(T )
without parametric knowledge of the SCM M→ and total episodes T . Our discussion begins with
the decision with some necessary notations and technical tools. Recall that for every i = 1, . . . , H ,
X̄i = {X1, . . . , Xi} is a sequence of actions up to stage i and S̄i = {S1, . . . ,Si} is the sequence
of corresponding states. For any policy ω ↔ #, using basic probabilistic operations and the Bayes’
rule, the expected reward Eω [R(Y )] could be written as

Eω [R(Y )] =
∑

x̄H ,s̄H

Eω [R(Y ) | x̄H , s̄H ] ︷︷ ︸
reward

H↔1

i=0

Pω (si+1 | x̄i, s̄i) ︷︷ ︸
transition probabilities

ωi+1 (xi+1 | si+1) ︷︷ ︸
policy

(263)

The above equation follows that in submodel M→
ω, values of every action Xi are determined by the

function ωi. Among the quantities above, probabilities of policy ω are known. It is sufficient to
estimate transition distributions Pω (si+1 | x̄i, s̄i) and the conditional reward Eω [R(Y ) | x̄H , s̄H ].

The NUC condition holds in the post-interventional system ↘M→
ω,#,R≃ (Lem. 1). Therefore,

for every i = 0, . . . , H ⇒ 1, conditioning on past states S̄i d-separates all backdoor paths between
actions X̄i and another variables in submodel M→

ω. Applying Rule 2 of do-calculus (Thm. 7),

Pω (si+1 | x̄i, s̄i) = Px̄i
(si+1 | s̄i) , (264)

Eω [R(Y ) | x̄H , s̄H ] = Ex̄H
[R(Y ) | s̄H ] (265)

In words, the transition distribution Pω (si+1 | x̄i, s̄i) and conditional reward Eω [R(Y ) | x̄H , s̄H ]
remain invariant across policies ω ↔ #. Therefore, they could be consistently estimated by pooling
interventional data collected by different candidate policies in #.

43. See Sec. 4.2 for a detailed discussion of the online learning task and properties of cumulative regret.
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Algorithm 6 Upper Confidence Bound (UCB) for CDMs

Require: a policy space # = {↘Xi,Si≃}Hi=1, a reward function R : D(Y ) ∞↙ [0, 1]
1: for all episodes t = 1, 2, . . . do
2: Construct a set Mt↔1(ϱ) of all candidate SCMs M, with error probability ϱ = t↔4, that are

compatible with the interventional data

V (1), . . . ,V (t↔1)


collected up to episode t.

3: Find the optimal policy ω(t) of an optimistic SCM M(t) ↔ Mt↔1(ϱ) such that

E
ω(t)

[
R(Y );M(t)

]
= max

ω,M

Eω

[
R(Y );M

]
s.t. ω ↔ #,M ↔ Mt↔1 (ϱ) . (269)

4: Perform do
(
ω(t)

)
for episode t and receive observations V (t).

5: end for

Throughout this section, we will consistently assume that the domains of the states S and
actions X are finite; the reward function R(Y ) is bounded in a real interval [0, 1]. Fix a fi-
nite sequence ω(1), . . . ,ω(t) ↔ #. Given finite samples


V (1), . . . ,V (t)


drawn from distribu-

tions P
ω(1) (V ) . . . , P

ω(t) (V ) respectively, empirical mean estimates for the transition distribution
Px̄i↔1 (Si | s̄i↔1), i = 1, . . . , H ⇒ 1, and the conditional reward Ex̄H

[Y | s̄H ] are defined as:

→i = 1, . . . , H ⇒ 1, P̂ (t)
x̄i

(si+1 | s̄i) =

∑
t

j=1 1

X̄(j)

i
= x̄i, S̄

(j)
i+1 = s̄i+1



Nt(x̄i, s̄i)
, (266)

and Ê(t)
x̄H

[R(Y ) | s̄H ] =

∑
t

j=1 1

X̄(j)

H
= x̄H , S̄(j)

H
= s̄H


R

(
Y (j)

)

Nt(x̄H , s̄H)
, (267)

Among quantities in the above equations, for every i = 1, . . . , H , Nt(x̄i, s̄i) is the event count for
every state-action pair (x̄i, s̄i) ↔ D(X̄i ↗ S̄i) defined as

→i = 1, . . . , H, Nt(x̄i, s̄i) = max




1,
t∑

j=1

1

X̄(j)

i
= x̄i, S̄

(j)
i

= s̄i




 . (268)

Alg. 6 shows details of UCB algorithm capable of optimizing an unknown CDM ↘M→,#,R≃.
It works in phases of model construction, optimistic planning, and policy execution. In Step 2, UCB
constructs a set Mt↔1(ϱ) of plausible SCMs from interventional data


V (1), . . . ,V (t↔1)


. For ev-

ery SCM M ↔ Mt↔1(ϱ), its transition distributions Px̄i

(
Si+1 | S̄i

)
, i = 1, . . . , H ⇒ 1, and the

conditional reward Ex̄H
[R(Y ) | s̄H ] are contained in convex intervals centering around their cor-

responding empirical estimates computed from interventional data collected prior to episode t. The
error probability ϱ is set as a decreasing function of the episode number t so that Mt↔1(ϱ) contains
the underlying SCM M→ with high probability as the algorithm continues and more interventional
data are collected. It then computes in Step 3 an optimal policy ω(t) of the most optimistic SCM
M(t) ↔ Mt↔1(ϱ) that induces the maximal expected reward. We will discuss the details of the
model construction and the optimistic planning later. Finally, policy ω(t) is executed throughout
episode t and new samples V (t) ↖ P

ω(t) (V ) are collected (Step 4).

Model Construction Let

Y (1), . . . , Y (n)


be i.i.d. samples drawn from a discrete distribution

P (Y ). Let P̂ (y) = 1
n

∑
n

t=1 1

Y (i) = y


be empirical estimates of probabilities P (y). Generally,
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the L1-deviation of the true distribution and the empirical distribution is bounded according to
(Weissman et al., 2003)

P

(∥∥∥P̂ (·)⇒ P (·)
∥∥∥
1
>

√
2 |D(Y )| log (2/ϱ)

n

)
≤ ϱ (270)

Fix ϱ ↔ (0, 1). Let Mt(ϱ) be the set of all SCMs M with endogenous variables V , and with
its transition distribution Px̄i

(Si+1 | s̄i) close to the empirical distribution P̂ (t)
x̄i

(Si+1 | s̄i), i =

0, . . . , H ⇒ 1, and the reward Ex̄H
[R(Y ) | s̄H ] close to the empirical reward Ê(t)

x̄H
[R(Y ) | s̄H ],

i.e.,

→i = 0 . . . , H ⇒ 1,
∥∥∥Px̄i

(·|s̄i;M)⇒ P̂ (t)
x̄i

(·|s̄i)
∥∥∥
1
≤ ςi(ϱ), (271)

and
Ex̄H

[R(Y )|s̄H ;M]⇒ Ê(t)
x̄H

[R(Y )|s̄H ]
 ≤ ςH(ϱ). (272)

where the confidence width ςi(ϱ) is a function given by,

→i = 0, . . . , H ⇒ 1, ςi(ϱ) =

√
2 |D(Si+1)| log(4H

D(S̄i ↗ X̄i)
 /ϱ)

Nt(x̄i, s̄i)
(273)

and ςH(ϱ) =

√
log(8H

D(S̄H ↗ X̄H)
 /ϱ)

2Nt(x̄H , s̄H)
(274)

Applying a union bound over the concentration inequalities in Eq. 270 and Hoeffding’s inequality
in Eq. 181, we obtain the following error probability:

P (M→ ▽↔ Mt(ϱ)) ≤
H↔1∑

i=0

∑

x̄i,s̄i

P
∥∥∥Px̄i

(·|s̄i;M→)⇒ P̂ (t)
x̄i

(·|s̄i)
∥∥∥
1
> ςi(ϱ)


(275)

+
∑

x̄H ,s̄H

P
Ex̄H

[R(Y )|s̄H ;M]⇒ Ê(t)
x̄H

[R(Y )|s̄H ]
 > ςH(ϱ)


(276)

=
H↔1∑

i=0

∑

x̄i,s̄i

ϱ

2H
D(S̄i ↗ X̄i)

 +
∑

x̄H ,s̄H

ϱ

2H
D(S̄H ↗ X̄H)

 (277)

< ϱ (278)

That is, the underlying SCM M→ is contained in SCM family Mt(ϱ) with probability at least 1⇒ ϱ.

Optimistic Planning Step 7 of UCB tries to find an optimal policy ω(t) for an optimistic SCM
M(t). For a fixed SCM M, standard planning algorithms (Bellman, 1957; Koller and Milch, 2003)
are applicable to allow one to find an optimal policy in space # that maximizes the expected reward.
However, the optimization problem of Eq. 269 also requires the learner to find an SCM M(t) that
defines the maximal optimal reward among all plausible SCMs in family Mt↔1(ϱ).

Generally, we can formulate this problem as a polynomial program as follows. The decompo-
sition in Eq. 263, together the invariances in Eqs. 264 and 265, allows one to write the expected
reward Eω [R(Y )] as follows

Eω [R(Y )] =
∑

x̄H ,s̄H

Ex̄H
[R(Y ) | s̄H ]

H↔1

i=0

Px̄i
(si+1 | s̄i)ωi+1 (xi+1 | si+1) (279)

88



CAUSAL REINFORCEMENT LEARNING

where every decision rule ωi(Xi | Si), i = 1, . . . , H , is a proper conditional distribution mapping
from the domains of states Si to action Xi. Probabilities of transition distributions Px̄i

(Si+1 | s̄i)
for i = 0, . . . , H ⇒ 1 are contained in the convex set defined in Eq. 271; values of the conditional
reward Ex̄H

[R(Y ) | s̄H ] are contained in the convex polytope R defined in Eq. 272.
Solving for a policy ω(t) and an optimistic SCM M(t) in Eq. 269 is equivalent to solving a

polynomial program with objective function Eω [R(Y )] defined in Eq. 279 with transitional prob-
abilities Px̄i

(Si+1 | s̄i) ↔ P i, i = 0, . . . , H ⇒ 1, and reward mean Ex̄K
[R(Y )|s̄K ] ↔ R; and

probabilistic constraints
∑

xi
ωi(xi | si) = 1 and ωi(xi | si) ⇑ 0, for every i = 1, . . . , H . There

exists an efficient dynamic programming procedure to solve this polynomial program when the pol-
icy space # satisfies the perfect recall condition (Koller and Friedman, 2009, Def. 23.5). In words,
this conditions states that Si ↗ {Xi} ↑ Sj whenever i < j, which means that the agent does not
forget the previous decision or information it once had.44 An optimistic policy ω(t) is obtainable by
solving following extended Bellman equations, for →i = 1, . . . , H ,

Q→(s̄i, x̄i↔1) = max
xi




 max
Px̄i

(·|s̄i)↑Pi





∑

si+1

Q→(s̄i+1, x̄i)Px̄i
(si+1|s̄i)









 ,

and Q→(s̄H , x̄H↔1) = max
xH

max
Ex̄H

[R(Y )|s̄H ]↑R
Ex̄H

[R(Y ) | s̄H ] , (280)

The inner maximum in the above equation is a linear program (LP) over the convex polytope Pk

(or R), which is solvable using by an iterative algorithm introduced by (Strehl and Littman, 2008).
For grounding purposes, we provide the complete algorithm in Appendix. D.

Theorem 10 Let ↘M→,#,R≃ be a CDM where # = {↘Xi,Si≃}Hi=1 and R : D(Y ) ∞↙ [0, 1]. For
any ς ⇑ 0, the regret of UCB in SCM M→ after T > 1 episodes is bounded by

R(T,M→) ≤ max
ω↑!o:”ω>ε

172H2 |D(X ↗ S)| log(T )
”ω

+ max
ω↑!o:”ω⇓ε

”ωT +
ω2

6
. (281)

where #o = {ω ↔ # : ω is deterministic} is the set of all deterministic policies in the policy space
#; and ”ω = Eω→ [Y ;M→]⇒Eω [Y ;M→] is the gap from the optimal reward for any policy ω ↔ #.
Moreover, fix ς = 0. The regret of UCB could be further written as

R(T,M→) ≤ max
ω↑!o:”ω>0

172H2 |D(X ↗ S)| log(T )
”ω

+
ω2

6
. (282)

↭
Thm. 10 implies that Alg. 6 is able to achieve a sublinear regret O

(
H2 |D(X ↗ S)| log(T )/”

)

where H is the total number of actions (i.e., the decision horizon), |D(X ↗ S)| is the cardinality
of the state-action domain; T is the total episodes of online interventions; and ” is the gap in the
expected reward between the second-best deterministic policy ω and the optimal policy ω evaluated
in the underlying SCM M→. This means that UCB is able to converge and eventually obtain an
optimal policy ω→ as the total episodes of intervention T increases. Moreover, suppose M→ is an
MAB model with K candidate arms, i.e., H = 1 and |D(X ↗ S)| = K. The regret bound of
Eq. 282 is equal to O (K log(T )/”), which matches the analytical result in Thm. 5.

44. In many real-world healthcare applications where the decision horizon H is low, the perfect recall assumption is
quite natural and automatically satisfied. On the other hand, in some practical settings where the horizon H is high or
even infinite, the policy space ! satisfying the perfect recall is high-dimensional. Planning in ! is computationally
challenging even when parameters of the underlying SCM are fully known (Papadimitriou and Tsitsiklis, 1987).
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(a) ε1 = 3,ε2 = ⇒3 (b) ε1 = ⇒12,ε2 = ⇒3

Figure 26: Simulation results comparing UCB learner optimizing a 2-stage DTR model and RCT
determining values of actions X1, X2 uniformly at random.

Experiment 5 Fig. 26 shows the cumulative regret of UCB+ in the 2-stage DTR environment M→

described in Example 12 with the coefficients (ε1,ε2) set to (3,⇒3) and (⇒12,⇒3) respectively.
It takes as input the causal bounds over PX1 (S2 | S1) and EX1,X2 [Y | S1, S2], computed from the
observational distribution P (S1, X1, S2, X2, Y ). As a baseline, we include a randomized controlled
trials (RCT) deciding treatments X1, X2 uniformly at random, as introduced by (Murphy, 2005a),
which extended the one-shot, classical treatment by (Fisher, 1935).

One can see by inspection UCB is able to achieve a sublinear regret in both DTR models. Sim-
ulations corroborate the analytical results UCB is able to eventually converge to an optimal policy
ω→ as the total number of trials T increases. As expected, the randomized strategy RCT performs
the worst among all strategies due to the linear regret during exploration. ↭

5.3 Learning from Observational Data

Despite its performance guarantee, the online learning algorithm introduced in Alg. 6 does not make
use of any knowledge in the observational distribution P (V ). When the NUC condition (Def. 13)
holds in the underlying CDM ↘M→,#,R≃, the state and actions’ history X̄i↔1, S̄i blocks all back-
door paths every action Xi to any other variable in the causal diagram G. One could thus estimate
the transition distribution Px̄i

(Si+1 | s̄i), i = 0, . . . , H ⇒ 1 and reward Ex̄H
[R(Y ) | s̄H ] using

the corresponding conditional distribution P (Si+1 | x̄i, s̄i) and E [R(Y ) | x̄H , s̄H ]. The validity
of the estimation procedure follows from Rule 2 of do-calculus (Def. 7). These estimations could
then be directly transferred to “warm-start” UCB algorithm. However, issues of non-identifiability
could arise in general settings where the NUC does not hold and no additional causal assumptions
are provided.45

Given such challenges, we then consider the partial identification of the transition distributions
and the expected reward from the observational distribution. Our first result bounds interventional
transition probabilities Px̄i

(si+1 | s̄i) from the observational distribution P (V ).

45. The non-identifiability of transition distributions Px̄i
(Si+1 | s̄i), i = 2, . . . , H ⇔ 1 and reward Ex̄H

[R(Y ) | s̄H ]
has been acknowledged in (Lee et al., 2019; Correa and Bareinboim, 2019).
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Theorem 11 Let ↘M→,#,R≃ be a CDM where the policy space # = {↘Xi,Si≃}Hi=1. For every
i = 1, . . . , H ⇒ 1, Px̄i

(si+1 | s̄i) ↔ [lx̄i
(s̄i+1), rx̄i

(s̄i+1)] where

lx̄i
(s̄i+1) =

P (s̄i+1, x̄i)

$(s̄i, x̄i↔1)
, rx̄i

(s̄i+1) =
$(s̄i+1, x̄i)

$(s̄i, x̄i↔1)
. (283)

and $(s̄i+1, x̄i) is a function of the observational distribution P (V ) defined as:

$(s̄i+1, x̄i) =

{
P (s1) if i = 0

P (s̄i+1, x̄i)⇒ P (s̄i, x̄i) + $(s̄i, x̄i↔1) if i = 1, . . . , H ⇒ 1
(284)

↭
The upper bound in Eq. 283 could be written as:

$(s̄i+1, x̄i)

$(s̄i, x̄i↔1)
=

P (s̄i+1, x̄i)⇒ P (s̄i, x̄i) + $(s̄i, x̄i↔1)

$(s̄i, x̄i↔1)
(285)

= 1⇒ P (s̄i, x̄i)⇒ P (s̄i+1, x̄i)

$(s̄i, x̄i↔1)
(286)

Considering the denominator, note that the gap P (s̄i, x̄i)⇒P (s̄i+1, x̄i) > 0 whenever observational
probabilities P (s,x) > 0 are positive for all realizations of the state-action pair. This means that
the causal bounds in Thm. 11 are generally informative, i.e., strictly contained in the real interval
[0, 1]. The bounds following Thm. 11 can be seen as a generalization of the natural ones given in
Thm. 8 to the sequential settings with multiple actions H > 1. The following example illustrates
this connection.

Example 44 Consider the 2-stage DTR model M→ described in Example 12. We will bound the
interventional distribution Px1 (S2 | s1) from the observational distribution P (S1, X1, S2, X2, Y ).
Applying Thm. 11, we obtain the lower bound

Px1 (s2 | s1) ⇑
P (s1, s2, x1)

$(s1)
(287)

⇑ P (s2, x1 | s1) (288)

The last step follows from $(s1) = P (s1). Similarly, function $(s1, s2, x1) could be written as:

$(s1, s2, x1) = P (s1, s2, x1)⇒ P (s1, x1) + $(s1) (289)
= P (s1, s2, x1)⇒ P (s1, x1) + P (s1) (290)

Therefore, we could obtain the upper bound

Px1 (s2 | s1) ≤
$(s1, s2, x1)

$(s1)
(291)

≤ P (s1, s2, x1)⇒ P (s1, x1) + P (s1)

P (s1)
(292)

≤ P (s2, x1 | s1)⇒ P (x1 | s1) + 1 (293)

The above bounds could be seen as an application of natural bounds (Thm. 8) with action X1 and
outcome S2 conditioning on the covariate S1. We evaluate transition probabilities Px1 (s2 | s1) in
the underlying SCM M→, compute their corresponding causal bounds in Table 13a. ↭
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S1 X1 S2 P l r S1 X1 S2 P l r

0 0 0 0.4750 0.1021 0.8872 1 0 0 0.4502 0.0069 0.9915
0 0 1 0.5250 0.1128 0.8979 1 0 1 0.5498 0.0085 0.9931
0 1 0 0.4502 0.3534 0.5683 1 1 0 0.4256 0.4190 0.4344
0 1 1 0.5498 0.4317 0.6466 1 1 1 0.5744 0.5656 0.5810

(a) PX1 (S2 | S1)

S1 X1 S2 X2 E l r S1 X1 S2 X2 E l r

0 0 0 0 0.7851 0.0587 0.9779 1 0 0 0 0.2149 0.0007 0.9959
0 0 0 1 0.9846 0.0333 0.9990 1 0 0 1 0.7851 0.0014 0.9992
0 0 1 0 0.7851 0.0138 0.9963 1 0 1 0 0.2149 0.0002 0.9991
0 0 1 1 0.7851 0.0744 0.9663 1 0 1 1 0.2149 0.0009 0.9934
0 1 0 0 0.2149 0.1279 0.6254 1 1 0 0 0.0008 0.0007 0.2417
0 1 0 1 0.9846 0.1170 0.9975 1 1 0 1 0.2149 0.0288 0.8232
0 1 1 0 0.2149 0.0490 0.8917 1 1 1 0 0.0008 0.0002 0.7897
0 1 1 1 0.7851 0.4021 0.8917 1 1 1 1 0.0154 0.0102 0.2472

(b) EX1,X2 [Y | S1, S2]

Table 13: Interventional distributions PX1 (S2 | S1) and EX1,X2 [Y | S1, S2] and their causal bounds
defined by a 2-stage DTR environment described in Example 12.

Similarly, one could bound conditional rewards Ex̄H
[R(Y ) | s̄H ] from the observational data.

Theorem 12 Let ↘M→,#,R≃ be a CDM where the policy space # = {↘Xi,Si≃}Hi=1 and the reward
function R : D(Y ) ∞↙ [0, 1]. Ex̄H

[R(Y ) | s̄H ] ↔ [lx̄H
(s̄H), rx̄H

(s̄H)] where

lx̄H
(s̄H) =

E [R(Y ) | s̄H , x̄H ]P (s̄H , x̄H)

$(s̄H , x̄H↔1)

rx̄H
(s̄H) = 1⇒ (1⇒ E [R(Y ) | s̄H , x̄H ])P (s̄H , x̄H)

$(s̄H , x̄H↔1)
(294)

Since the conditional reward E [R(Y ) | s̄H , x̄H ] ↔ [0, 1], the bounds in Eq. 294 must be strictly
contained in [0, 1] whenever the observational probability P (s̄H , x̄H) is positive, and are thus in-
formative. The bounds developed so far are functions of the observational distribution P (V ), which
is identifiable by the sampling process, and so generally can be estimated consistently. We could
estimate causal bounds in Thms. 11 and 12 by the corresponding sample mean estimates. Standard
concentration inequalities are applicable to control the uncertainties due to finite samples.
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Algorithm 7 Upper Confidence Bound with Causal Bounds (UCB+)

Require: a policy space # = {↘Xi,Si≃}Hi=1, a reward function R : D(Y ) ∞↙ [0, 1], causal bounds
[lx̄i

(s̄i+1), rx̄i
(s̄i+1)], i = 1, . . . , H ⇒ 1, and [lx̄H

(s̄H), rx̄H
(s̄H)] for all state-action pairs

(x, s) ↔ D(X ↗ S).
1: Let Mc be the set of all SCMs M with endogenous variables V , and with the transition dis-

tribution Px̄i
(Si+1 | s̄i;M) compatible with bounds [lx̄i

(s̄i+1), rx̄i
(s̄i+1)], i = 0, . . . , H ⇒ 1,

and rewards Ex̄H
[Y | s̄H ;M] compatible with [lx̄H

(s̄H), rx̄H
(s̄H)], that is,

→i = 0 . . . , H ⇒ 1, lx̄i
(s̄i+1) ≤ Px̄i

(si+1 | s̄i;M) ≤ rx̄i
(s̄i+1), (299)

and lx̄H
(s̄H) ≤ Ex̄n

[Y | s̄n;M] ≤ rx̄H
(s̄H). (300)

2: for all episodes t = 1, 2, . . . do
3: Construct a set of plausible SCMs Mt↔1(ϱ) with ϱ = t↔4 following Steps 2-4 of Alg. 6.
4: Find the optimal policy ω(t) of an optimistic SCM M(t) ↔ Mt↔1(ϱ) ¬Mc such that

E
ω(t)

[
Y ;M(t)

]
= max

ω,M

Eω

[
Y ;M

]
s.t. ω ↔ #,M ↔ Mt↔1(ϱ) ¬Mc. (301)

5: Perform do
(
ω(t)

)
for episode t and receive observations V (t).

6: end for

Example 45 Continue with the 2-stage DTR model in Example 44. We also apply Thm. 12 to bound
the expected reward Ex1,x2 [Y | s1, s2]. Precisely,

Ex1,x2 [Y | s1, s2] ⇑
E [Y | s1, s2, x1, x2]P (s1, s2, x1, x2)

$(s1, s2, x1)
(295)

⇑ E [Y | s1, s2, x1, x2]P (s1, s2, x1, x2)

P (s1, s2, x1)⇒ P (s1, x1) + P (s1)
(296)

The last step follows from the evaluation of $(s1, s2, x1) in Eq. 290. Similarly,

Ex1,x2 [Y | s1, s2] ≤ 1⇒ (1⇒ E [Y | s1, s2, x1, x2])P (s1, s2, x1, x2)

$(s1, s2, x1)
(297)

≤ 1⇒ (1⇒ E [Y | s1, s2, x1, x2])P (s1, s2, x1, x2)

P (s1, s2, x1)⇒ P (s1, x1) + P (s1)
(298)

We evaluate the conditional reward Ex1,x2 [Y | s1, s2] directly in the underlying SCM M→, compute
their corresponding causal bounds derived above and provide them in Table 13b. ↭

We are ready to introduce a generalized UCB+ algorithm utilizing causal bounds in the sequential
decision-making setting. Alg. 7 summarizes the details of its implementation. It takes as input
arguments a policy space #, and bounds over transition probabilities [lx̄i

(s̄i+1), rx̄i
(s̄i+1)], i =

1, . . . , H⇒1, and rewards [lx̄H
(s̄H), rx̄H

(s̄H)] computed from the observational distribution P (V ),
following the derivation in Thms. 11 and 12. More specifically, in Step 1, UCB+ constructs a family
Mc of plausible SCMs with transition distributions Px̄i

(si+1 | s̄i) ↔ [lx̄i
(s̄i+1), rx̄i

(s̄i+1)] and
with rewards Ex̄H

[Y | s̄H ] ↔ [lx̄H
(s̄H), rx̄H

(s̄H)] compatible with the provided causal bounds.
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Since bounds in Thms. 11 and 12 are sound and the observational data are often abundant, this
ensures that the underlying SCM M→ ↔ Mc with high probability. For every episode t, it computes
the optimal policy ω(t) of an optimistic SCM M(t) in set intersection Mt ¬ Mc (Step 4). The
construction of the SCM family Mt follows Steps 2-4 of UCB defined in Alg. 6. Similar to the
optimistic planning procedure described previously, ω(t) could be obtained by solving a polynomial
program with the objective Eq. 263, subject to interventional constraints of Eqs. 271 and 272, and
additional constraints of Eqs. 299 and 300 imposed by causal bounds.

The causal bounds in over transition distributions [lx̄i
(s̄i+1), rx̄i

(s̄i+1)], i = 1, . . . , H ⇒ 1,
and rewards [lx̄H

(s̄H), rx̄H
(s̄H)] also permits a partial identification strategy to bound the expected

rewards of candidate policies ω ↔ #. Formally, the expected reward Eω [R(Y )] ↔ [lω, rω] such that

lω = min
M↑Mc

Eω [R(Y );M] , rω = max
M↑Mc

Eω [R(Y );M] . (302)

where Mc is the set of all SCMs compatible with constraints imposed by causal bounds. Interest-
ingly, these bounds [lω, rω] also characterize conditions under which the confounded observational
data accelerate the performance of online learning algorithms.

Theorem 13 Let ↘M→,#,R≃ be a CDM where # = {↘Xi,Si≃}Hi=1 and R : D(Y ) ∞↙ [0, 1]. The
regret of UCB+ in SCM M→ after T > 1 episodes is bounded by

R(T,M→) ≤ max
ω↑!o:”ω>0,

rω⇑µ
→

172H2 |D(X ↗ S)| log(T )
”ω

+
ω2

6
. (303)

where µ→ = Eω→ [R(Y );M→] is the expected reward of an optimal policy ω→ ↔ #. ↭

Thm. 13 implies that UCB+, utilizing the observational data, consistently dominates UCB (Alg. 6)
in terms of the performance. Broadly, it enjoys the same asymptotic regret bound as UCB, provided
in Thm. 10. When the causal bounds are informative, i.e., there exist some suboptimal policies ω
with the upper bound rω < µω→ smaller than the expected reward of the optimal policy ω→, UCB+ is
able to outperform UCB that learns from scratch, without using any prior observations. For instance,
consider a multi-armed bandit model with action |D(X)| = K and states S = ∋. The regret bound
of UCB+ is O(K log(T )/”x) where ”x is the smallest gap among sub-optimal arms x with causal
upper bound rx ⇑ µ→. The improvement condition matches the analytical result in Thm. 9, derived
for the special case of MAB models.

Experiment 6 Fig. 27 shows the cumulative regret of UCB+ in the 2-stage DTR environment M→

described in Example 12. The setup is the same as in Experiment. 5. It takes as input the causal
bounds over PX1 (S2 | S1) and EX1,X2 [Y | S1, S2], computed from the observational distribution
P (S1, X1, S2, X2, Y ). Simulation results show the significant disparity between the performance
of UCB+ and UCB for (ε1,ε2) = (3,⇒3). In this case, the causal bound for the expected reward
of a suboptimal policy ω = (X1 ⇐ 1, X2 ⇐ 0) is r = 0.6283, which is smaller than the optimal
expected reward µω→ = 0.6757. On the other hand, when the coefficients (ε1,ε2) = (⇒12,⇒3)
and the causal bound r = 0.9875 > µω→ , the performance of UCB+ and UCB coincides. These
results corroborate the theory that the learning strategy of UCB+ enjoys no negative impact. ↭

Table 14 summarizes online learning and offline-to-online learning algorithms studied so far in
Secs. 4.1 and 5. These algorithms could be categorized into two lines of learning strategies: UCB
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(a) ε1 = 3,ε2 = ⇒3 (b) ε1 = ⇒12,ε2 = ⇒3

Figure 27: Simulation results comparing UCB+ learner augmented with causal bounds over the
expected rewards, standard UCB, and RCT determining values of action uniformly at random.

Decision Horizon Algorithm Regret Bound

H = 1
UCB (Alg. 3) O (|D(X)| log(T )/”)

UCB+ (Alg. 5) O (|D(X)| log(T )/”→)

H ⇑ 2
UCB (Alg. 6) O

(
H2 |D(X ↗ S)| log(T )/”

)

UCB+ (Alg. 7) O
(
H2 |D(X ↗ S)| log(T )/”→

)

Table 14: Summary of UCB and UCB+ studied in Secs. 4.1 and 5. The performance gap ” ≤ ”→.

is an online algorithm that does not utilize any observational data, and UCB+ is an offline-to-online
algorithm that leverages on observational data through causal bounds. More specifically,

• Consider first when the decision horizon H = 1 and the input covariates S = ∋. In this
case, UCB achieves a regret bound O (|D(X)| log(T )/”) where ” is the smallest perfor-
mance gap between the optimal arm x→ and a suboptimal arm x. Alg. 3 shows its imple-
mentation. On the other hand, UCB+ utilizes the causal bounds and achieves a regret bound
O (|D(X)| log(T )/”→) where ”→ the smallest performance gap between the optimal arm x→

and a suboptimal arm x with a causal bound rx ⇑ µx→ . Alg. 5 shows its implementation.
Since by definition, the performance gap ” ≤ ”→,UCB+ performs at least as well as UCB.

• We also studied settings where the decision horizon H ⇑ 2 and every actions Xi is as-
sociated with a set of input covariates Si for i = 1, . . . , H . UCB, described in Alg. 6,
is able to achieve a regret bound O

(
H2 |D(X ↗ S)| log(T )/”

)
where ” is the small-

est performance gap between the optimal policy ω→ and a suboptimal deterministic pol-
icy ω. Meanwhile, UCB+ (Alg. 7) exploits the causal bounds and enjoys a regret bound
O
(
H2 |D(X ↗ S)| log(T )/”→

)
where ”→ is the smallest performance gap between the opti-

mal policy x→ and a suboptimal deterministic policy x with a causal bound rω ⇑ µω→ . Again,
since the performance gap ” ≤ ”→, UCB+ generally outperforms UCB in sequential settings.
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After all, our analytical results reveal that causal bounds are robust to the confounding bias in the
observational data, and could consistently improve the performance of online learners.

6. Mixed Policy Learning: Where to Intervene (CRL Task 2)

Agents are deployed in complex and uncertain environments, where they are exposed and need
to process high volumes of information while being expected to operate efficiently, surgically, and
safely. This requires the agent to identify an optimal policy to bring about a desirable state of affairs.
A prevalent assumption in the literature, including the discussion in the previous sections, is that
the action space is fixed. For example, it could be defined over variables X , where |X| = k. This
implies that the agent will explore policies within the domain of X , for example, encompassing 2k

possible configurations in the binary case.
In this section, we will relax the assumption that the policy scope is fixed and explore more flexi-

ble action spaces, including situations where the agent is not required to perform interventions. This
is motivated by the observation that such a strategy, while viable in controlled, artificial environ-
ments (e.g., actions executed in a simulator or gaming scenarios), where interventions are harmless,
becomes less ideal and sometimes infeasible in real-world settings due to their potentially harmful
side effects.

Another complementary property, perhaps surprisingly, in non-Markovian causal systems is
that controlling all intervenable variables, denoted as do(X ⇐ x), does not necessarily lead to
an optimal policy. In particular, we will show that in certain settings, a partial intervention, where
do(X ↓ ⇐ x↓) with X ↓ ∝ X , can outperform the case where full control is exerted. In such
systems, a larger search would be required to examine all possible subsets of X , including 3k

possible configurations, which will need to be evaluated in a systematic manner.
In real-world causal systems, it’s interesting to recognize that full controllability is not always

necessary. For instance, natural mechanisms often govern the action variables X in many scenarios,
meaning that forcing the variable to take some value by external interventions might lead to unde-
sirable effects. Robots inevitably obey the laws of physics, such as inertia and gravity, which makes
their joints move naturally when their gears are disengaged; similarly, physicians treat patients based
on their experience while adhering to varying rules and regulations by location. Therefore, in cer-
tain situations, it may be sufficient to intervene in only a subset of variables among X , allowing the
remaining variables to vary according to their natural dynamics, as determined by the underlying
mechanism fX . Fig. 28 illustrates these dynamics, where the agent performs interventions over
different sets of variables in each episode, and sometimes just acts naturally.

Towards formalizing this setting, we put these observations together and define a mixed policy
space, which is a collection of policy spaces in which each action and context are defined as subsets
of intervenable variables Xϑ and context variables Sϑ, respectively. That is,

#MIX = {{↘X,SX≃}X↑X↓ : X ↓ ↑ Xϑ,SX ↑ Sϑ}.

Every policy space in #MIX lies between two extremes — observational and experimental policies.

Definition 16 (Mixed Policy Space & Policy) Let G be a causal diagram, Y ↔ V (G) be a reward
variable. Xϑ ↑ V \ {Y } be a set of intervenable variables, and Sϑ ↑ V \ {Y } be a set of context
variables. A mixed policy space #MIX is the collection of policy spaces where each policy space # ↔
#MIX is defined with actions X ↑ Xϑ and contexts S ↑ Sϑ such that # = {↘Xi,Si≃}i|Xi↑X , S =
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Episode t

X(1) Y(1)Z(1)

S(1)

X(2) Y(2)Z(2)

S(2)

X(3) Y(3)Z(3)

S(3)

X(4) Y(4)Z(4)

S(4)

V (1) ↖ P (V ) V (2) ↖ P
ω(2) (V ) V (3) ↖ P

ω(3) (V ) V (4) ↖ P
ω(4) (V )

0 1 2 3

see do(ωX) do(ωZ) do(ωX,Z)

Figure 28: Temporal diagram showing the dynamics of a mixed policy learning while the agent in-
teracts with the environment with different policy scopes at each episode.

⋃
i|Xi↑X

Si, and G! is a DAG. Given a mixed policy space #MIX with respect to ↘G, Y,Xϑ,Sϑ≃, a
mixed policy ω ↔ # ↔ #MIX is a policy ω following the policy space #. ↭

For simplicity, we may use ω ↔ #MIX, which is the shorthand notation for ω ↔ # ↔ #MIX. The
following task signature characterizes this learning setting involved in a mixed policy space:

TMIX =

I = do,A = G,#MIX =


{↘Xi,Si≃ | Si ↑ Sϑ}

Xi↑X


X⇔Xε

,R = D(Y ) ∞↙ R

.

Note that the policy space is not fixed but an element of a mixed policy space. This means that the
agent will search for a policy ω→ such that

ω→ = argmax
ω↑!MIX

EM
→

ω


R (Y )

 G, Dexp ↖ Px (V )


, (304)

where the distinct feature of the task is the mixed policy scope.
In Section 6.1, we introduce the marginal case of mixed policy spaces, where no context vari-

ables are present. Even without considering contexts, the problem of deciding where the agent
should intervene in the system is challenging and sets the ground for further explorations. We then
investigate in Section 6.2 mixed policy spaces with context variables, or where the agent should
intervene (do) and look (see) to determine the optimal policy.

6.1 Mixed Policy with No Context

In this section, we investigate how an agent should behave to efficiently identify an optimal action
given a mixed policy space and an underlying causal diagram. For simplicity, we focus on MAB
settings where each policy ω ↔ #mix is an experimental policy (ω1, . . . ,ω|X↓|) over a subset of
actions X ↓ ↑ Xϑ with each decision rule ω(x) involved in an empty context. Thus, ω(x↓) ↔ #mix
for x↓ ↔ D(X ↓) and X ↓ ↑ Xϑ. The following example illustrates the challenge of this task.

Example 46 (Where to intervene) Consider a MAB environment described by an SCM

M→ = ↘U = {U1, U2},V = {X1, X2, Y },F , P (U1, U2)≃, (305)
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X
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Y

(a)

X2

X1

U

Y

(b)

{}

{X1} {X2}

{X1, X2}

(c) (d)

Figure 29: (a) True causal diagram G for environment M→. (b) Hypothesized model in the agent’s
mind, after intervention. (c) Structure of the action space. (d) Two agents’ cumulative regret with
Thompson sampling (solid line) and UCB (dashed line) together with shaded areas representing
95% confidence interval. Two lines for the All-at-once agent are overlapped.

where the endogenous variables V are all binary. The causal mechanisms are the following:

F =






X1 ⇐ U1,

X2 ⇐ X1 ⇔ U2,

Y ⇐ X2 ⇔ U2,

(306)

and the exogenous distribution:

P (U1) = P (U2) = 1/2. (307)

The causal diagram associated with M→ is shown in Fig. 29a.
We now consider an agent deployed in M→ with the goal of optimizing the outcome variable Y

while being capable of intervening on (or controlling) variables X1, X2. Specifically, the goal of
the agent is to find

ω→ = argmax
x1,x2

EX1↘x1,X2↘x2 [Y ;M→] (308)

The structure of the mixed policy space is shown in Fig. 29c, which highlights the various pol-
icy scopes available. In particular, this space represents the power set of action variables Xϑ =
{X1, X2}, which entails 2|Xε

| possible intervention sets. This setting may be translated to a tradi-
tional MAB instance such that each arm corresponds to intervening on a subset of {X1, X2} to a
specific value, which results in 9 arms in this case.46 ,47

We start our analysis with an agent that is oblivious to the causal structure underlying the action
space and adheres to a strict experimentalist approach. In other words, this means that it will ab-
stract away the causal diagram and perform interventions on one action variable X = {X1, X2}.

46. {do(↖), do(X1 ↑ 0), do(X1 ↑ 1), do(X2 ↑ 0), do(X2 ↑ 1), do(X1 ↑ 0, X2 ↑ 0), do(X1 ↑ 0, X2 ↑

1), do(X1 ↑ 1, X2 ↑ 0), do(X1 ↑ 1, X2 ↑ 1)}
47. The same observation applies for MDPs or any more complex model, as discussed later on in the section.
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We call the agent following such a strategy “all-at-once,” since all variables are intervened to-
gether.48 Each intervention on do(X) corresponds to interventions on the lower-level variables
{do(X1 ⇐ 0, X2 ⇐ 0), do(X1 ⇐ 0, X2 ⇐ 1), do(X1 ⇐ 1, X2 ⇐ 0), do(X1 ⇐ 1, X2 ⇐ 1)}.
Under an interventional regime, the causal structure compatible with this strategy is shown in
Fig. 29b, which is clearly different from the environment’s causal diagram.

Despite what is in the agent’s mind, or optimization function, it will still be evaluated by the
underlying SCM M→. The natural question that arises here is whether it is okay to be oblivious to
the pair (G,M); would it be sufficient to perform more interventions to make up for the ignorance of
the causal structure? In other words, more samples from the do(X1 ⇐ x1, X2 ⇐ x2) distribution
should be sufficient to eventually learn an optimal policy?

This agent is deployed in the environment M→ and after some interventions, it is able to learn a
policy and obtain the following reward:

Ex1,x2 [Y ] = E[x2 ⇔ UX2,Y ] = 0.5x2 + 0.5(1⇒ x2) = 0.5. (309)

This policy is, in fact, independent of the specific values of X1 and X2, and Y reaches its highest
value at most 0.5 of the time. At this point, the expectation by some is that there is an issue of
sample complexity, but not of asymptotic convergence. In other words, the agent can be oblivious
to the causal structure, G, compensating by accumulating more samples, but it would eventually be
able to learn the optimal policy.

Now we examine an alternative policy within the mixed policy space in which the agent controls
only one variable X1. The evaluation of such a policy goes as follows:

Ex1 [Y ] = E[(x1 ⇔ UX2,Y )⇔ UX2,Y ] = x1 (310)

This means that if the goal is to keep Y as high as possible, the agent should perform an intervention
do(X1 ⇐ 1), which would imply that Y = 1 in each subsequent round.

The implication of such a result is that the strategy “all-at-once”, oblivious to the environment’s
structure, will never converge, no matter how many interactions are allowed to the agent. We
compare empirically this with an alternative strategy called “brute-force”, which searches over the
entire policy space, including all possible subsets of {X1, X2}. The performance of both agents
is shown in Figure 29d, where the y-axis represents a cumulative regret. In fact, the all-at-once
agent does not converge while the brute-force approach is able to find the optimal policy, since
do(X1 ⇐ 1) is inside the mixed policy space.

The question here is whether we can do better by leveraging the underlying causal invariances
of M→, as represented in G. We answer this question by examining the expected rewards over the
entire mixed policy space. First, using Rule 3 of do-calculus, we note that P (y | do(x1, x2)) =
P (y | do(x2)), since X1 has no effect on Y under intervention on X2. That is, the corresponding
expected rewards are equivalent, µx1,x2 = µx2 , for any x1 and x2. Hence, µ→

X1,X2
= µ→

X2
. Since the

all-at-once strategy can be discarded, we examine 5 arms based on 3 intervention sets as follows:

E[Y ] = E[(X1 ⇔ UX2,Y )⇔ UX2,Y ] = E[X1] = 0.5 (311)
Ex1 [Y ] = E[(x1 ⇔ UX2,Y )⇔ UX2,Y ] = x1 (312)
Ex2 [Y ] = E[x2 ⇔ UX2,Y ] = 0.5x2 + 0.5(1⇒ x2) = 0.5. (313)

48. Formally, this can be thought of as a specific instance of a cluster causal diagram, an object that has been studied in
the literature; for a more detailed discussion, refer to (Anand et al., 2021).
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interventions do(↖) do(x2)do(x1) do(x1, x2)

distributions P (y, x1, x2) Px2(y, x1)Px1(y, x2) Px1,x2(y)

expected rewards µ↗ µx2µx1 µx1,x2

∑
x1

µx1P (x1)

P (y, x2 | x1) Px2(y)

P (x
1 )

P
(x1)

=
Px2

(x1)

Figure 30: Relationships among quantities such as probability distributions and expected rewards
arising in the mixed policy relative to causal model in Fig. 29a.

Therefore, the optimal action is do(X1 ⇐ 1) for the model with µ→

X1↘1 = 1. Again, intervening
{X1, X2} will incur regrets and cannot converge to the optimal solution.

To explain this further, we now investigate the relationships among interventional probabilities
in the causal model in Fig. 29a. The observational probability P (y) = P (y | do(∋)) can be viewed
as a convex combination of {P (y | do(x1))}x1↑D(X1),

P (y) =
∑

x1

P (y | x1)P (x1) =
∑

x1

Px1 (y)P (x1). (314)

That is, µ↖ =
∑

x1
µx1P (x1). By replacing µx1 to µ→

X1
= maxx1 µx1 , then,

µ↖ =
∑

x1

µx1P (x1) ≤
∑

x1

µ→

X1
P (x1) = µ→

X1
. (315)

This equation holds for any model conforming to the causal diagram in Fig. 29a, namely, it affects
whether the agent should play some arms since playing non-optimal arms will incur regrets. At this
point, playing the arms over X2 is preferred to the arms over both X1 and X2 (i.e., do(X1, X2)),
since it minimizes the number of arms that need to be played to find the optimal, and do(X1) is
preferred to do() as µ↖ cannot be strictly better than the best achievable expected reward obtainable
by intervening on X1 to x→1.

Regarding the superiority of intervening on a set of variables over other set of variables, a
natural question is, then, whether the comparisons among µx2 and µx1 can be made as well, noting
that µ→

X2
< µ→

X1
in M→. In fact, we can show that the inequality µ→

X2
> µ→

X1
is also realizable.

To witness, consider an SCM M↓ identical to the one defined previously (Eq. 306) but for Y ’s
mechanism:

fY ⇐ X2 + UX2,Y . (316)

Then, we can evaluate the expected rewards in M↓ as follows:

E[Y ] = E[(X1 ⇔ UX2,Y ) + UX2,Y ] = 1

Ex1 [Y ] = E[(x1 ⇔ UX2,Y ) + UX2,Y ] = 0.5x1 + 0.5(2⇒ x1) = 1

Ex2 [Y ] = E[x2 + UX2,Y ] = x2 + 0.5
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Hence, the optimal action is do(X2 ⇐ 1) with µ→

X2↘1 = 1.5. This demonstrates the impossibility
that arises in some cases of deciding a priori to prefer one interventional scope over the other solely
based on the causal diagram, and this depends on the specific instantiation of the environment. ↭

Considering the example, we note that ignoring the underlying causal structure, and the interplay
between action space and reward, may result in a suboptimal performance due to playing such
regret-incurring arms. If one is negligent to the influence of unobserved confounder and simply
chooses to intervene on every variable, do(x1, x2), or to intervene on the one closest to Y , do(x2),
it is possible that the agent will never converge to the optimal arm, e.g., do(x→1).

Exploring this example, we have shown the existence of equivalence classes among actions
with respect to their expected rewards. Also, certain partial-orders emerge among subsets of ac-
tion variables with respect to their optimal expected rewards. Also, the expected reward of an
action is related to other actions, e.g., an observational probability written with probabilities from
do(x1) and do(x2), P (y) =

∑
x1

Px1(y)P (x1) =
∑

x1
Px1(y)Px2(x1). Figure 30 illustrates re-

lationships among different distributions and their rewards. Four different interventions are shown
with their distributions where some distributions can yield other distributions, e.g., Px1(y, x2) from
P (y, x1, x2). Further, the expected reward for observation (mentioned above) can be represented as
an expression made of probabilities from other arms. We will later see that such a formula improves
the performance of online learners. We now more formally investigate these phenomena as studied
in (Lee and Bareinboim, 2019a, 2018a, 2020).

6.1.1 STRUCTURAL PROPERTIES IN MIXED POLICY LEARNING IN A MAB SETTING

Here, we provide three structural properties emerging in a bandit setting with a mixed policy. These
properties among different actions arise due to the shared causal mechanisms and can be understood
through do-calculus and related machinery.

Property 1. Equivalence among actions Do-calculus provides rules to examine equivalence
relationships in the space of conditional interventional distributions. Hence, it naturally partitions
the space into equivalence classes. In particular, we focus on Rule 3, which ascertains a graphical
condition such that a set of interventions does not have an effect on the outcome variable, i.e.,
P (y | do(x, z),w) = P (y | do(x),w). Since actions correspond to interventions (including the
null intervention) and there is no contextual information, we consider examining P (y | do(x, z)) =
P (y | do(x)) through (Y ′′ Z | X) in GX↙Z , which implies that µx,z = µx. If d-separation holds
in the manipulated graph, this condition implies that it is sufficient to play only one action among
actions in the equivalence class regarding finding an optimal arm efficiently. In an online learning
setting where its objective is minimizing a cumulative regret, it is desired to play a smaller subset
of arms given a set of arms as far as the subset contains the best arm. Against this background, we
define a minimal intervention set.

Definition 17 (Minimal Intervention Set (MIS)) A subset of action variables X ↓ ↑ Xϑ is said to
be a minimal intervention set relative to G, Xϑ, and Y if there is no proper subset X ↓↓ ∝ X ↓ such
that µx↓↓ = µx↓ for every SCM conforming to G and x↓↓ ↔ D(X ↓↓) consistent with x↓. ↭

Whether a subset of action variables X ↓ ↑ Xϑ is an MIS can be examined through a rather simple
procedure involving in an ancestral relationship.
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Proposition 5 (Minimality) A set of variables X ↓ ↑ Xϑ is a minimal intervention set for G with
respect to Y if and only if X ↓ ↑ an(Y )G

X↓ . ↭

This characterization demonstrates that one can consider only directed edges among variables, not
the unobserved variables, in acquiring MISes. Intervening nothing or a single variable (an ancestor
of Y in G) constitutes MISes. Further, intervening on W = pa(Z) \ Z is also an MIS for any
Z ↑ an(Y )G since each variable W ↔ W has a directed path towards Y without passing through
the rest of W , i.e., W \ {W}.

Property 2. Partial-orders among minimal intervention sets We now explore the partial-orders
among the subsets of Xϑ within the MISes. Given a causal diagram G, it is possible that intervening
on some variables is always as good as intervening on another set of variables. Formally, there can
be two different sets of variables W ,Z ↑ Xϑ such that

max
w↑D(W )

µw ≤ max
z↑D(Z)

µz

in every possible SCM conforming to G. If that is the case, it would be unnecessary (and possibly
harmful in terms of the sample efficiency) to play actions over D(W ). We define Possibly-Optimal
MIS, which incorporates the partial-orderedness among MISes denoting the optimal value for X ↓ ↑
Xϑ given an SCM by x↓→.

Definition 18 (Possibly-Optimal Minimal Intervention Set (POMIS)) Given G, Xϑ and Y , let
X ↓ ↑ Xϑ be a MIS. If there exists an SCM conforming to G such that µx↓→ > →Z↑Z\{X↓}µz→ ,
where Z is the set of MISes with respect to G, Xϑ and Y , then X ↓ is a possibly-optimal minimal
intervention set with respect to G, Xϑ and Y . ↭

To determine whether intervening on a subset of Xϑ is a POMIS or not, one may list all possible
partial-orders among MISes in a brute-force manner, and select those that are not dominated by
any other MISes. However it is unclear whether we can compare two arbitrary MISes under what
conditions and, further, whether such conditions are complete. As a starting point, we provide a
way to obtain a single partial-order among two MISes. Consider intervening on an MIS W . By
basic algebra, we can express the expected reward for do(w) for some Z ↑ Xϑ:

Ew [Y ] =
∑

z

Ew [Y | z]Pw (z) .

If it is possible to exchange the observation z to an intervention z using Rule 2 of do-calculus, then
the expression becomes

Ew [Y ] =
∑

z

Ez,w [Y ]Pw (z)

≤
∑

z

E(z,w)→ [Y ]Pw (z)

= E(z,w)→ [Y ]

= E(z↓,w↓)→ [Y ] .

where Z ↓ ↗W ↓ is an MIS corresponding to the intervention set Z ↗W and → over (z,w) indicates
the values for (z,w) maximizing the expectation.
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Figure 31: Illustrative examples demonstrating how partial-orders can be obtained from Figure 31a.
(b and c) demonstrates no better intervention than do(X1) is obtained, (d to f) illustrates µ→

X2
≤ µ→

X3
.

Light blue areas represent variables having a backdoor path to Y under the intervention.

To find such Z ↑ Xϑ under the intervention on W , we examine Rule 2 of do-calculus: Z must
satisfy (Y ′′ Z | W ) in GWZ , which is equivalent to (Y ′′ Z) in (G \W )Z . If no backdoor path
from Z to Y exists in G \W , then µ→

W ≤ µ→

W ,Z = µ→

W ↓,Z↓ . One may iteratively apply this idea to
find a set which leads to a higher expected reward when intervened on until stuck at a graph where
every non-intervened subset of Xϑ in the graph involves a backdoor path to Y .

A few examples are illustrated in Figure 31. In the example with a causal diagram where none
is intervened on (Figure 31a), every Xi with i > 1 has a backdoor path through Z while X4 is also
directly confounded with Y . The light blue area in Figure 31b covers backdoor paths from a subset
of X to Y in G

X1
. Thus, µ↖ ≤ µx1 can be inferred. One may directly facilitate a graph obtained

by projecting out variables neither X nor Y , and still backdoor paths can be equally examined in
the resulting graph (Figure 31c). For intervening on X2 (Figure 31d), both X1 and X3 have no
backdoor path to Y (Figure 31e). Considering the minimality, we derive µ→

X2
≤ µ→

X2,X3,X1
≤ µ→

X3

(Figure 31f). We can avoid considering X1 in the beginning by excluding variables ineffective to Y
under the intervention do(x2). We define a set of variables having backdoor paths to Y in a given
graph:

Definition 19 (Minimal Unobserved-Confounders’ Territory) Given a diagram G and a node Y ,
let H be G[An(Y )G ]. A set of variables T ↑ V (H) containing Y is called a UC-territory on G
with respect to Y if T is closed under descendants and c-component, that is, De(T )H = T and
there is no bidirected edge between T and V \ T in H. If there is no UC-territory T ↓ ⊋ T , then T
is a minimal UC-territory. ↭

The subgraph induced by Minimal Unobserved-Confounders’ Territory (MUCT) represents how Y
is determined through the variables ruled by unobserved confounders under the intervention outside
the MUCT. MUCT is tightly related to Rule 2 of do-calculus, and the procedure iteratively extends
variables that have a backdoor path to Y so that the rest of the variables can be exchangeable
between condition and intervention.
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Figure 32: Obtaining MUCTs (variables in light blue areas) and IBs (variable in green) under in-
tervention (variables in blue) with Xϑ = V \ {Y } (or equivalently G maybe viewed as the latent
projection of an original graph by retaining only Xϑ ↗ {Y }). Here, µ→

B
≤ µ→

D
and µ→

E
≤ µ→

E,F
.

This has a connection to the partial-orders we are seeking — this demonstrates that µ↖ ≤
µ→

V \T = µpa(T )\T if Xϑ is defined as V \ {Y }. We define MUCT(G, Y ) as the MUCT of G
with respect to Y and IB(G, Y ) = pa(T )G \ T as the Interventional Border (IB) of G with respect
to Y where T = MUCT(G, Y ). For an arbitrary Xϑ ↑ V \ {Y }, one can obtain a MUCT and IB
from, say H, the latent projection of G onto X ↗ {Y }. Then, µ→

W ≤ µ→

IB(HW ,Y ). A more involved
example is shown in Figure 32 where MUCT can be procedurally constructed by iteratively updat-
ing {Y } by including the variables connected with it via bidirected edges and descendants of them.
For example, MUCT under do(B) in Figure 32c can be obtained by first removing A in the graph
and expanding {Y } with its confounded variables C, its descendants E, and, again, its confounded
variable F to ultimately arrive at {Y,C,E, F}.

Equipped with MUCT and IB, one can check whether there exists a better MIS than a given
MIS with respect to their maximum achievable expected rewards. However, the current procedure
does not tell us whether there are other MISes better than the one obtained by an interventional
border. The following theorem asserts that the interventional border approach provides a way to
establishing a complete collection of POMISes given G, Xϑ, and Y :

Theorem 14 Given G, Xϑ, and Y , let X ↓ ↑ Xϑ be an MIS and let H be the latent projection of G
onto X ↗ {Y }. Then, X ↓ is a POMIS if and only if IB(HX↓ , Y ) = X ↓. ↭

This result (Lee and Bareinboim, 2018a, 2019a) can be best explained by that, under the distri-
butions of the set of unobserved confounders in a MUCT, the mechanisms of the variables in the
MUCT are orchestrated to yield the best result given a configuration (values set outside the MUCT).
When any external force (interventions on any variables in the MUCT) is applied, the delicately or-
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do() do(b) do(d) do(e) do(b, d) do(d, e)

Pd,e(y | a, b) P (y | a, b, d, e) Pd(y | a, b, e) Pe(y | a, b, d)
Pd,e(a, b) P (a, b) Pd(a, b) Pe(a, b)
Pa,c(e) P (e | a, c) Pb(e | a, c) Pd(e | a, c) Pb,d(e | a, c)
Pc(d) P (d | c) Pb(d | c) Pe(d | c)
Pb(c) P (c | b) Pd(c | b) Pe(c | b) Pb,d(c) Pd,e(c | b)

Table 15: For each term shown in Equation 318 (rows), its equal probability quantities that are
obtainable from data sampled by playing POMIS arms (columns) are shown. Note, for example,
that Pe(d | c) = Pc(d) implies that this holds true for every e ↔ D(E).

chestrated mechanism is disrupted and a subpar reward is obtained. In Figure 31, arms intervening
on {X1}, {X3}, and {X4} are POMISes.

Property 3. Expressions among actions The two aforementioned structural properties help ban-
dit agents to focus only on a set of minimal arms that can possibly be optimal without examining
any collected data. We now consider the third property, which connects the causal effect of playing
an arm and the distributions from data acquired through playing other arms.

Consider the causal diagram in Figure 33 with Xϑ = {B,D,E} where POMISes are ∋, {B},
{D}, {E}, {B,D}, and {D,E}. Then, an online agent playing POMIS arms will obtain samples
from P (V ), Pb(V \{B}), . . . , and Pd,e(V \{D,E}). In this example, one can rewrite the expected
reward for, e.g., do(∋) according to c-factorization (Tian and Pearl, 2002a), as

E[Y ] =
∑

a,b,c,d,e,y

yPd,e(y, a, b)Pa,c(e)Pc(d)Pb(c) (317)

=
∑

a,b,c,d,e,y

yPd,e(y | a, b)Pd,e(a, b)Pa,c(e)Pc(d)Pb(c) (318)

Other arms’ expected rewards can be similarly factorized. Here, each term can be replaced by
other probabilities obtainable from different POMIS arms with the help of do-calculus (Table 15),
which is derived from subsequent applications of do-calculus. These equalities not only imply that
a term can be replaced by another but also suggest that each quantity can be estimated from the
combination of them. For example, the term Pc(d) can be estimated by a weighted combination of
Pc(d), P (d | c), Pe(d | c), Pb(d | c) as

NcP̂c(d) +N↖|cP̂ (d | c) +
∑

e
Ne|cP̂e(d | c) +

∑
b
Nb|cP̂b(d | c)

Nc +N↖|c +
∑

e
Ne|c +

∑
b
Nb|c

,

where Nw|z is the number of samples with Z = z in do(W = w). This expression is nothing
but estimating the probability of D = d based on a maximum likelihood principle by aggregating
compatible data instances together. Plugging in such estimator for each term in the expression for
Ê[Y ] results in an estimator taking advantage of other arms’ data.

Imagine an online learning scenario in which µ↖ = E[Y ] is relatively smaller than the optimal
arm. The agent in the scenario will likely play more on other arms with higher rewards. The agent
would occasionally play less-played arms when the agent is not completely confident that such arms
are not the best arm (e.g., UCB or Thompson sampling). With the expression provided and other
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Figure 33: A causal diagram G and the visualization of original c-factorization of P (v).

0 5,000 10,000
Episodes

0

100

200

300

400

500

600

C
um

.R
eg

re
t

POMIS+ID
POMIS
MIS
Brute-force

Figure 34: Cumulative regrets of different bandit agents based on Brute-force, MIS, POMIS, and
POMIS with identification formula (POMIS+ID). Shaded areas represent standard deviation based
on 2000 simulations.

arms’ data utilized, the agent can improve confidence on what µ↖ is by playing other arms only
avoiding accumulating regrets.

In (Lee and Bareinboim, 2019a), the posterior of expected reward for each POMIS arm is ap-
proximated by bootstrapping samples from multiple data sources and integrated into Thompson
sampling. Similarly, based on the variance of expected reward from bootstraps, the effective num-
ber of arms played can be approximated and translated back to upper confidence bounds so as to be
incorporated into a UCB algorithm.

Experiment 7 Figure 34 illustrates the cumulative regrets of UCB agents based on different arm
candidates in an environment whose causal diagram is depicted in Figure 33 (leftmost) and Ta-
ble 15. In this experiment, A and C are not intervenable, and the agent can intervene in the all
possible combinations of {B,D,E}. An agent with brute-force strategy attempts to learn the ex-
pected reward for each combination while other agent with MIS or POMIS strategy respectively
employs only intervening MISes or POMISes. POMIS+ID indicates an agent actively infers each
arm’s expected reward from other arms as well if possible. Simulation results illustrate clear gaps
among the performances of different strategies. At the end (10,000th episodes), Brute-force, MIS,
POMIS, and POMIS+ID respectively yields cumulative regret (mean and standard deviation) of
655.96 ± 69.68, 467.19 ± 66.85, 358.86 ± 63.11, and 280.80 ± 60.83. These results demonstrate
that the refinement of arms by considering causal structure improves the efficiency of agents in them
interacting with the underlying domain. ↭
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Figure 35: (a) a causal diagram, (b) abstract representation of a contextual bandit policy, and (c,d,e)
policy-induced graphs. ω nodes are intervention indicators, which will be left implicit throughout
the section.

In this section, we presented that an agent should be aware that choosing variables to intervene
is not a trivial problem that can be simply answered like, i.e., intervene variables as many as it
can, but a sophisticated problem that can be addressed with the knowledge of causal structure. In
the next section, we further consider the case where agents can make use of states/contexts in their
decision.

6.2 Mixed Policy with Context

As seen in the previous section, a causal understanding of the underlying world enables us to rec-
ognize a wide range of policies across various policy spaces, allowing agents to choose their mode
of interaction. This involves decisions about not only which variables to intervene in but also to
observe as part of the context. In light of this, we explore the use of causal relationships in system-
atic decision-making over mixed policies with contexts involved. To illustrate the concept of mixed
policy with context more clearly, let’s consider an agent operating within an environment depicted
as in Figure 35a.

Example 47 In this graph, we have intervenable variables Xϑ = {X1, X2} and contexts Sϑ =
{C,X1}. The primary objective of the agent is to maximize the reward, denoted as µω, which is
defined as the expected value of Y when following a mixed policy ω chosen from a mixed policy
space #MIX.

In the realm of contextual bandit (CB) problems, the objective is to optimize a policy denoted as
ωCB (as depicted in Figure 35b). This policy can be viewed as a stochastic mapping from contexts
to actions. Alternatively, it can be represented as a pair of decision rules: ωCB can be expressed
as (ω(X1 | C),ω(X2 | X1, C)) or more generally (ω(X1, X2 | C)) (illustrated in Figure 35c).
Traditionally, this policy is optimized within a constrained space denoted as #CB, which consists
of pairs, ↘X1, {C}≃ and ↘X2, {X1, C}≃. However, an issue arises in that the optimal policy ω→

CB,
determined as argmaxω↑!CB

µω, may not necessarily be the best possible, i.e., µ→

!CB
↫ µω

→
CB
< µ→.

Consider a scenario where all variables are binary and U1 and U2 are unobserved confounders
connected to X1 and X2, respectively. Think of these as fair coin flips. Additionally, there’s a noise
ς associated with X1, which follows a distribution with P (ς = 1) = 0.2.

F =






X1 ⇐ U1 ⇔ ς,

C ⇐ U1,

X2 ⇐ U2 ⇔X1 ⇔ C,

Y ⇐ (1⇒ (X2 ⇔ U2)) ⇓ C

(319)
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!CB =
{↔X1, {C}↗,

↔X2, {C,X1}↗}

!e =
{↔X2, {C}↗}

!d =
{↔X1, {C}↗}

!a =
↖

↙,=µ

∝

↙,′µ

↙ ↙

Figure 36: Relationships among the policy spaces based on two aspects.

Given that the chosen policy renders X2 independent of U2 and that the context C is also unrelated
to U2, it’s deduced that the optimal value for µ→

!CB
equals 0.75. In this setup, the most effective policy

involves intervening solely on X1 while considering the context C. This policy ensures that, when
X1 is set equal to C, the noise ς affecting X1 is eliminated, resulting in X2 becoming equivalent to
U2. Consequently, the policy attains an optimal expected reward of 1.0 in this environment. ↭

Desiderata for Optimal Mixed Policies From the mixed policy space associated with Figure 35a,
we can elicit 15 policy spaces from the mixed policy space. These different modes of interaction
can be categorized based on two desiderata: minimality and optimality. We explain these desiderata
through an illustration (Figure 36) of the four policy spaces #a = {}, #CB, #d = {↘X1, {C}≃},
and #e = {↘X2, {C}≃} where each subscript represents the label of figure. We say # subsumes #↓,
denoted by #↓ ↑ #, if X(#↓) ↑ X(#) and S↓

X
↑ SX , for every ↘X,S↓

X
≃ ↔ #↓ where X(·) is a

set of intervened variables in the policy space. We use ⇑µ (or =µ) to indicate whether one’s optimal
reward is as good as or better than the other’s in every scenario compatible with a causal diagram.
This establishes equivalence classes among policy spaces based on their optimal rewards.

In simpler terms (to be formalized later on), minimality means that removing any actions or
contexts from a policy space can worsen its performance. In other words, given two policy spaces
# and #↓, if # ⫅̸ #↓ and # =µ #↓, then # is said to be redundant. For instance, since #CB ∅ #e

while #CB =µ #e, the CB policy (Figure 35c) is redundant and the CB agent wastes its resources
not only for intervening on X1 (a redundant action) but also for taking X1 into account for X2 (a
redundant context).

Furthermore, optimality of a policy space # represents that there exists no other policy space
#↓ (not in the equivalence class of #) such that #↓ ⇑µ #. For example, #d, when optimized,
is at least as good as #a (i.e., µ→

!d
⇑ µ→

!a
) in every environment, and can outperform it in some

environments (i.e., µ→

!d
> µ→

!a
), which demonstrates that #a does not meet the optimality criterion.

Not all policy spaces can be directly comparable: #e is not comparable to #a nor #d. After careful
examination, we find that policy spaces #CB, #d, #e meet the optimality criterion. Both minimality
and optimality are satisfied only by #d and #e among all 15 policy spaces. This example illustrates
that a smart agent should selectively intervene in variables with relevant contexts to achieve optimal
rewards. Against this background, we will delve into the evaluation of mixed policies in terms of
their expected rewards.

6.2.1 CONTEXTUAL MINIMALITY IN OPTIMAL MIXED POLICIES

Optimizing a mixed policy involves assessments of the effectiveness of its policy space so that an
agent can avoid intervening or observing unnecessary actions or contexts. It is well-known that an
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Figure 37: Causal diagrams where the relevance of some contexts can be further eliminated under
the optimality of policy.

action on X is worthy if it can affect Y through the change of its mechanism ωX and each context
in S ↔ SX is relevant to its associated action X if the context provides information relative to
other contexts SX \ {S} (Lauritzen and Nilsson, 2001; Zhang and Bareinboim, 2020). This simple
characterization of (non-)minimality of an individual action and an individual context of policy
space is, unfortunately, insufficient to fully grasp, e.g., whether a subset of contexts over multiple
actions would be still relevant, especially when ω ↔ # is optimized. We explain this insufficiency
through an example.

Example 48 In Figure 37a, both X1 and X2 utilize C3 as their contexts where µω = EC3 [Eω[Y |
C3]]. Since there exists c→3 = argmaxc3↑D(C3) Eω[Y | c3], we can derive that µω ≤ EC3 [Eω[Y |
c→3]] = Eω[Y | c→3]. Given that c→3 is merely a constant, new decision rules

ω↓(xi | c1) ↫ Pω(xi | ci, c→3) = ω(xi | ci, c→3)

for i ↔ {1, 2} yield the same optimal reward. That is, X1 and X2 (as if they are two agents) agree
to assume that C3 is fixed to some value. ↭

This example first demonstrates the idea of fixing where it is viable to treat a variable in the context
as a fixed value without sacrificing optimal performance. Once fixed, decision rules in the mixed
policy can free the variable from being a context, resulting in a simpler policy space. A more
sophisticated example is shown in Figure 37b where a redundant context can be fixed conditionally
on the remaining contexts.

Example 49 In the policy illustrated in Figure 37b, both intervened variables are relying on the
same contexts C1 and C2. The expected reward is expressed as

µω =
∑

y,x,s

yPx(y, c1, c2)ω(x1 | c1, c2)ω(x2 | c1, c2).

Given that Px(y, c1, c2) = Px(c2 | y, c1)Px(y, c1) = P (c2 | c1)Px(y, c1) based on basic do-
calculus,

=
∑

c1,c2

P (c2 | c1)
∑

y,x

yPx(y, c1)ω(x1 | c1, c2)ω(x2 | c1, c2)

 ︷︷ ︸
define µω(c1,c2)

(320)
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This expression can be viewed as the sum of weighted rewards for each C1 value. Let c→2 be a
function taking c1 such that c→2(c1) = argmaxc2 µω(c1, c2) for c1 ↔ D(C1). Then,

≤
∑

c1,c2

P (c2 | c1)µω(c1, c
→

2(c1))

=
∑

c1

µω(c1, c
→

2(c1))

=
∑

y,c1,x

yPx(y, c1)ω(x1 | c1, c→2(c1))ω(x2 | c1, c→2(c1)).

By incorporating c→2 into ω, we can devise a smaller mixed policy ω↓ such that ω↓(x1 | c1) = ω(x1 |
c1, c→2(c1)) and ω↓(x2 | c1) = ω(x2 | c1, c→2(c1)).

=
∑

y,c1,x

yPx(y, c1)ω
↓(x1 | c1)ω↓(x2 | c1) = µω↓ .

↭

The key idea demonstrated in this derivation is finding contexts that can be fixed to some desirable
values relative to other contexts (or none) so that decision rules can be equivalently performed
without relying on the contexts fixable via remaining contexts. Relationships between the two types
of contexts best captured in Equation 320. More generally, the values to be fixed does not have to be
contexts to yield an expression that is ‘greater than equal to’ the previous expression. The restriction
is (to meet our purpose to rewrite the expression to the expected reward of a smaller policy space)
that any fixed context should be inferred from the rest of context (e.g., c2 relative to c1). Further,
this process may involve the use of intervened variables that are fixed (determined) by their contexts
under optimality (to show later).

Against this background, we will define and characterize the minimality of policy space under
optimality, which has practical implications to an agent learning an optimal policy.

Definition 20 (Minimality under Optimality) Given ↘G, Y,Xϑ,Sϑ≃, a policy space # is said to
be minimal under optimality if there exists an SCM M compatible with G such that µ→

! > µ→

!↓ for
every strictly subsumed policy space #↓ ⊋ #, that is,

ℜM ↖ G →#↓ ⊋ # (µ→

! > µ→

!↓).

↭
We will develop a sufficient condition for non-minimality under optimality by generalizing the idea
presented earlier. The condition is made of two parts. The first part is obtaining a specific form
of an intermediate expression for expected reward given a set of variables to fix. In the next part,
based on the intermediate expression, it checks whether the variables can indeed be fixed to yield a
new simpler policy. Before we proceed to investigate conditions for finding a simpler policy, let us
briefly discuss what we mean by fixing. Consider the following form of expression,

∑

a,b,d

P (a | b, c)f(a, b,d) ≤
∑

b,d

f(a→(b), b,d) =
∑

b,d

f ↓(b,d).

With C fixed to a constant, we say a is fixed conditional on B. For the purpose of eliciting a simpler
policy, decision rules (implicit in f ) also drop a from its argument by inferring it from b and c.
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Step 1: obtaining an intermediate expression from an expected reward Given a policy space
# satisfying the basic minimality, let X ↓ ↑ X(#) be actions of interest (of which we would like
to change its decision rules), S↓ ⊋ SX↓ \ X ↓ non-action contexts of interest (that is, contexts to
keep among the contexts of X ↓). Given (i) a subset of exogenous variables U ↓ in G!

49, (ii) a subset
of endogenous variables Z in G! that disjoints with S↓ ↗ X ↓ and subsumes unselected contexts
SX↓ \ (S↓ ↗ X ↓), and (iii) an order ℑ over V ↓ ↫ S↓ ↗ X ↓ ↗ Z, if the triple ↘U ↓, Z, ℑ≃ satisfies
certain conditions (Lee and Bareinboim, 2020, Lemma 1), then we can write µω as

µω =

marginally fixable︷ ︸ ︷∑

u↓

Pω(u
↓)

∑

y,s↓,x↓

y Q↓

x↓(y, s↓)

 ︷︷ ︸
irrelevant to Z

to fix conditionally︷ ︸ ︷∑

z



Z↑Z

Pω(z | v↓

∝Z ,u
↓)

 ︷︷ ︸
defines dependency



X↑X↓

ω(x |

given︷ ︸ ︷
sX \ z,

to infer︷ ︸ ︷
sX ¬ z)

 ︷︷ ︸
to become ω

↓(x | sX \ z)

,

(321)

where Q↓ = Pω\X↓ is a distribution under ω except X ↓. The conditions are mainly designed to elicit
the term Q↓

x↓(y, s↓) without Z so that fixing does not affect the term, and later we can transform the
expression into the expected reward for a simpler policy relying only on context S↓.

We explain the intermediate expression. To begin with we replace Pω(Z | V ↓

∝Z
,U ↓) to Pω(Z |

VZ) where VZ is a minimal subset of V ↓

∝Z
↗ U ↓ dependent to Z. The purpose of intermediate

expression is to be transformed to µω↓ such that all decision rules (ω(X | SX)) for X ↔ X ↓

become (ω(X | SX \ Z)). We achieve this by fixing all the contexts containing Z as dictated in
Pω(z | vZ) similar to P (c2 | c1) in the earlier example. What we have found is that fixing variables
other than unnecessary contexts can ultimately help to fix and remove those unnecessary contexts.
This explains why some of the exogenous variables and variables other than unnecessary contexts
are involved. Finally, the order explicitly decides how probability terms are factorized following a
chain rule and, thus, how variables are fixed relative to other variables.

Step 2: transforming intermediate expression into the expected reward for a simpler policy
Once we attain the intermediate expression for some ↘U ↓,Z,ℑ≃, we examine whether the expres-
sion can be converted to µω↓ where #↓ ↫ (#\X ↓)↗{↘X,SX \Z≃}X↑X↓ . Algorithmically speaking,
we can first fix u↓ unconditionally. Then, check whether any currently unfixed Z ↔ Z can be fixed
since V ↓

∝Z
are all fixed, which are made of contexts, actions, and other endogenous variables. Other

than fixing value of Z to the best possible value to drop the term P (Z | ·), action variables can be
fixed in a similar way.

Example 50 Through Figure 38, we will show that, C2 and C3 are redundant contexts under op-
timality. Given S↓ = {C1} and X ↓ = {X1, X2}, consider Z = {C2, C3}, U ↓ = ∋, and order
ℑ= ↘C3, C1, X2, C2, X1≃. We can derive the following expression for the expected reward (with
subscripts concatenated),

µ→

! =
∑

y,x,c1

yQ↓

x(y | c1)
∑

c23

Pω(c123,x)

=
∑

y,x,c1

yQ↓

x(y | c1)
∑

c23

Pω(c3)Pω(c1 | c3)Pω(x2 | c13)Pω(c2 | c13, x2)Pω(x1 | c123, x2)

49. Formally speaking, we are selecting unobserved variables associated with a clique formed by bidirected edges in G!.
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Figure 38: (a) A minimal policy space and (b) its dependency graph derived in Example 50 where
C1 is given.

=
∑

c3

Pω(c3)
∑

y,x,c1

yQ↓

x(y, c1)
∑

c2

Pω(c2 | c13, x2)ω(x2 | c3)ω(x1 | c12). (322)

C3 can be fixed to a constant c→3 so that,

≤
∑

y,x,c1

yQ↓

x(y, c1)
∑

c2

Pω(c2 | c1, c→3, x2)ω(x2 | c→3)ω(x1 | c1, c2).

This expression can be rearranged so that
∑

x2
ω(x2 | c→3) starts the expression where there exists

x→2 ↔ D(X2), which allows us to substitute ω(x2 | c→3) with ω↓(x2) where ω↓(x→2) = 1.

≤
∑

y,x,c1

yQ↓

x(y, c1)
∑

c2

Pω(c2 | c1, c→3, x→2)ω↓(x2)ω(x1 | c1, c2).

Here, although we can drop both x2 from summation and ω↓(x2) from the expression, we keep them
to connect to the expected reward of the resulting simpler policy. Next, the optimal c2 is determined
with respect to c1, i.e., Pω(c2 | c1, c→3, x→2), where we can replace ω(x1 | c1, c→2(c1)) by ω↓(x1 | c1).
We start by reordering terms for readability.

=
∑

c1,c2

Pω(c2 | c1, c→3, x→2)
∑

y,x

yQ↓

x(y, c1)ω
↓(x2)ω(x1 | c1, c2)

≤
∑

y,x,c1

yQ↓

x(y, c1)ω
↓(x2)ω(x1 | c1, c→2(c1))

=
∑

y,x,c1

yQ↓

x(y, c1)ω
↓(x1 | c1)ω↓(x2) = µ→

!↓ . (323)

Since µ→

!↓ ≤ µ→

! by the existence of ω ↔ # that can emulate ω↓ ↔ #↓, and µ→

!↓ ⇑ µ→

! by the
derivation (Equation 323), we can conclude that µ→

!↓ = µ→

!. As a consequence, policy space # is
not minimal under optimality due to the ineffective contexts {C2, C3} with respect to {X1, X2}. ↭

The procedure leading to a simpler policy from the intermediate expression can be described
as constructing and examining a dependency graph as follows. Based on the distributions over Z
and U ↓, we can construct a dependency graph in the form of DAG. Initially, vertices are U ↓, Z,
Z’s parents, and the parents of intervened variables. Directed edges are added so that the parents
of each node is the set of conditions in its distribution, that is, Pω(Z | VZ) yields Z having VZ
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Figure 39: (left) Cumulative regrets (in a log scale) of different arm strategies based on all possible
mixed policy spaces (brute-force, BF), naive contextual bandit (CB), Minimality under Optimality
(MuO), and possibly optimal policy spaces (PO-PS). Shaded areas represent standard deviation
based on 100 simulations. (right) Probability each agent selecting the optimal arm.

as its parents in the graph. This similarly applies to the decision rules ω(x | sx). The dependency
graph for the Example 50 is shown in Figure 38b with Z = {C2, C3} and their parents determined
through factorization in Equation 322.

Once a dependency graph is constructed, we can then figure out whether all Z’s can be fixed
to yield a simpler policy. Contexts to keep S↓ do not have parents in the dependency graph and
are marked to indicate they are available to fix other variables. Here, C1 is available to fix, e.g.,
C2, for its values. Nodes are marked if its parents are all marked. For example, C3 can be marked
unconditionally. X2 is marked given that C3 is marked. With C3 and X2 marked, altogether with
C1, C2 is marked, resulting in fixing to c→2(c

→

3, x
→

2(c
→

3), c1) = c→2(c1). Finally, if (i) all Z’s in the
dependency graph are marked, and (ii) the ancestors of each intervened variable X do not include
any of context variables that will not be available in the simpler policy, that is, S↓\(SX \Z), then we
can yield a simpler policy. More detailed results are presented in Theorem 2 (Lee and Bareinboim,
2020).

Experiment 8 Figure 39 depicts the cumulative regrets of UCB agents based on different arm se-
lection strategies in the environment described in Example 47. There are four strategies where each
strategy considers a subset of policy spaces in the mixed policy space. Brute-force makes use of all
policy spaces. A naive contextual bandit (CB) implements intervening both given C (Figure 35c),
which can be modeled as intervening on X1 given {C} and X2 given {C,X1}. The minimality
under optimality (MuO) agent plays only the arms without redundant interventions or contexts. Fi-
nally, possibly optimal policy spaces (PO-PS) discards policy spaces among the minimal policy
spaces that are not strictly better than other policy spaces (see Lee and Bareinboim (2020) for
details). With a smaller number of policy spaces to consider, PO-PS converges faster than other
strategies. MuO is better than the brute-force agent, which finds out the optimal policy among all
possible options. Although brute-force agent is slow, it converges since the optimal policy space is
included. However, the naive CB agent is unable to converge since, in this example, intervening on
X2 leads to suboptimal policy due to the mechanism involving the unobserved confounder between
X2 and Y . Average cumulative regret of PO-PS, MuO, BF, and naive CB respectively was 49.60,
195.03, 1134.84, and 3198.42. ↭

Discussion Mixed policy learning provides a flexible framework when variables to be intervened
associated with natural mechanisms for how their values to be determined. We have showed that
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naively intervening on the underlying system while ignoring natural mechanisms can result in a
suboptimal policy, incurring regrets indefinitely. We have characterized mixed policies with and
without contexts. In the case without contexts, complete characterizations for the minimality and
possible-optimality of a policy space within a given mixed policy space are provided. With context,
we provide a procedure to detect non-minimality. These characterizations do not require samples
through interacting the given environment. Lee and Bareinboim (2020) provide accounts on the
possible-optimality of policy space with context. A complete characterization of both minimality
and possible-optimality (partial-order) for the case of mixed policy space with contexts is an open
problem.

7. Counterfactual Decision-Making (CRL Task 3)

In this section, we investigate a novel type of interaction between the agent and the environment
via layer 3 of the PCH. For the tasks described so far, the agent interacts with the underlying en-
vironment through passive observations (seeing), active experimentation (doing), or a combination
of both, which in the context of the PCH evokes layers 1 and 2-interactions. The new interac-
tive modality will allow the agent to search over the large space of counterfactual policies, #CTF.
More specifically, an online learning task with counterfactual randomization is characterized by a
signature defined as follows:

Tctf-rand = ↘I = ctf,A = ∋,# = #CTF,R = D(Y ) ∞↙ R≃ . (324)

This means that the agent will try to find a policy ω→ such that

ω→ = argmax
ω↑!CTF

EM
→

ω


R (Y )

 Dctf ↖ P
(
Vx | x↓

)
, (325)

where the distinct feature of the task is the counterfactual type of interactions. To make this argu-
ment more precise, recall that for an experimental policy space #EXP (Def. 8), performing an inter-
vention do(ω) following a policy ω ↔ #EXP induces an interventional distribution Pω (V ) (Def. 5),
which follows from Fisherian randomization. On the other hand, interaction following a counter-
factual policy ω ↔ #CTF allows the agent to access a specific type of counterfactual distribution, the
x-specific effect of the decision on the outcome (Plecko and Bareinboim, 2022, Sec. 4.1.1).50

As it will become clear throughout this section, we will introduce a new type of counterfactual
randomization (for short, ctf-rand), which will allow the agent to behave optimally in challenging
decision-making settings. The following example illustrates one of such scenario using an instance
of MAB environment, graphically described in Fig. 10a.

Example 51 (Greedy Casino) A group of investors decide to develop a new casino in Las Vegas
and wants to make their machines as lucrative as possible at all costs, which we will call the Greedy
casino incorporated (GCI). GCI’s owners are determined about their mission and divide their efforts
in three phases: research, setup, and operations.

50. This quantity is also known in the literature as the effect of treated on the treated (ETT). For further discussion and
historical context, refer to (Heckman, 1992) and (Pearl, 2000, Ch. 8.2.).
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Figure 40: Temporal diagram showing an agent interacting with the environment for repeated
episodes through counterfactual policies.

Phase 1. Research GCI’s executives hire a team of cognitive scientists, psychologists, and cogni-
tive scientists to investigate human’s behaviors in the casinos’ floors currently in operation around
town. The team conducts a battery of studies and discovers that two features, out of hundreds exam-
ined, accurately predict the gambling behavior of players on a casino floor: each player’s inebri-
ation and the machine’s conspicuousness (e.g., whether a machine is blinking and making noise).
Coding these traits as binary variables, we let UB ↔ {0, 1} denote whether or not a machine is
blinking, and UD ↔ {0, 1} denote whether or not the gambler is drunk.

As another outcome of the team’s comprehensive study, they discover that the gambling pop-
ulation tends to prefer attracting less attention and naturally tends to be shy. However, their be-
havior changes when they become intoxicated, and they are more drawn towards the more effusive
machines, such as those blinking and making noise. Formally, a gambler’s ’natural’ choice is de-
scribed by the following mechanism (starting at 0):

X ⇐ fX(UB, UD) = ¬(UD ⇔ UB), (326)

where X = 1 represents staying in the current machine, and X = 0 represents switching to the
neighbor machine. For instance, the gambler will stay in the slot machine they are currently in
(“X = 1”) whenever the current machine is blinking (UB = 1) and he is drunk (UD = 1), or this
machine is not blinking (UB = 0) and he is sober (UD = 0). Alternatively, the gambler will get
uncomfortable and switch machines (“X = 0”) whenever the machine is blinking (UB = 1) but he
is not drunk (UD = 0), or the machine is not blinking (UB = 0) and he is drunk (UD = 1). The
table in Fig. 16b summarizes this behavior.

Phase 2. Setup The GC owners take the information gathered during the research stage and
devise a new plan to leverage it in order to maximize profitability. Specifically, they purchase brand
new machines with several important capabilities, including:

1. High-definition cameras capable of recording the gamblers’ faces and body language.
2. New lighting and sound systems that enable the machines to blink and make noise.
3. The latest deep learning software that allows the machines to analyze the gamblers’ behavior.
The machines can be configured to operate in a network, so that they can share capabilities to

make the look and feel of the casino’s floor more pleasant. In practice, GC’s executives decide to
have the machines operate in pairs, meaning they share the same source of randomness. This config-
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(a)

UB UD X
0 0 1
0 1 0
1 0 0
1 1 1

(b)

Figure 41: (a) Illustration of the machines configurations. (b) Table summarizing gamblers natural
predispositions.

UD = 0 UD = 1

UB = 0 UB = 1 UB = 0 UB = 1

X = 0 0.50 *0.10 *0.20 0.40
X = 1 *0.10 0.50 0.40 *0.20

(a)

E[Y |X] Ex [Y ]

X = 0 0.15 0.3
X = 1 0.15 0.3

(b)

Table 16: (a) Payout rates P (Y = 1 | X,UD, UB) decided by reactive slot machines as a function
of arm choice, sobriety, and machine conspicuousness. Players’ natural arm choices under UD, UB

are indicated by asterisks. (b) Payout rates according to the observational, P (Y = 1|X), and
interventional Px (Y = 1), distributions, where Y = 1 represents winning (shown in the table).

uration is illustrated in Fig. 41a, where a blinking/noisy machine is paired with a non-blinking/silent
one.

The gambler arrives at one of the machines and can immediately play it or switch to the alterna-
tive one. (Importantly, the gamblers are already drunk or not just before arriving, and the machines
are already blinking or not regardless of the gambler, those are two independent events.) We will
call the former by machine 1 (X = 1) and the latter by 0 (X = 0). Also, the outcome of each
gamble is represented by a variable Y , where 0 means that the patron lost, and 1 otherwise.

Moreover, to keep the system in an equilibrium, and under the radar, the casino distributes free
drinks and sets up the machines such that every gambler has an equal chance of being intoxicated
and each machine has an equal chance of blinking its lights at a given time. In formal notation, this
means that P (UD = 0) = P (UD = 1) = 0.5 and P (UB = 0) = P (UB = 1) = 0.5.

The owners are also cognizant of current’s state gambling regulations that require casinos to
maintain a minimum attainable payout rate for slots of 30%. While still wanting to maximize profits,
GCI executives decide to take advantage of the players’ propensities by leveraging the machines’
sensing capabilities. They then set up the payout rates fY of the machines as depicted in Table 16a.
In words, if UD = 0, UB = 0, the player will naturally select action X = 1, following Eq. 326,
which will lead to a positive outcome, Y = 1, only 10% of the time (the same with UD = 1, UB =

116



CAUSAL REINFORCEMENT LEARNING

1). Also, if UD = 0, UB = 1 (or UD = 1, UB = 0), the player will decide for action X = 0,
to switch, which will lead to a positive outcome 20% of the time. These configurations are marked
with an ⊤ in the table.

Phase 3. Operational The GC debuts and is a big hit; many new patrons enjoy their evenings
playing in the new machines. Interestingly, they are not aware (conscious) that their behavior is
influenced by their inebriation and whether the machine is looking conspicuous. The variables
UB, UD are exogenous and remain unobserved, following the causal language introduced earlier.

Still, some patrons know about GC owners’ reputations and are suspicious of the casino’s ethi-
cal standards. These patrons decide to collect some data on the other gamblers’ behavior, through
random sampling, which leads to the distribution shown in Table 16b. In other words, it seems that
the casino is paying ordinary gamblers only 15% of the time. Also, no matter whether they play
machine X = 0 or X = 1, the average payout is the same.

The state is called to investigate the issue and, being blind to the GC’s payout strategy, claims
that this data is observational (non-causal), and, therefore, is “invalid”. They then decide to con-
duct a randomized study to verify whether the win rates in the floor meet the legal standards. The
government’s inspectors follow the RCT procedure discussed in Sec. 4.2. First, they recruit random
players from the casino floor, pay them to play a random slot, and then observe the outcome. The
experiment yields a favorable outcome for the casino, with win rates precisely meeting the 30% cut-
off – no more, no less than. The data looks like Table 16b, and is again insensitive to the machine’s
choice.

As RL enthusiasts, we decide to run a series of experiments using more refined and sample-
efficient adaptive strategies (e.g., ς-greedy, Thompson Sampling, UCB1, EXP3) to test the new slot
machines on the casino’s floor. We obtain data encoded in Fig. 42. The first plot shows that the
probability of choosing the correct action is no better than a random coin flip even after a consid-
erable number of steps. We note, somewhat surprised, that the cumulative regret continues without
abating, indicating our inability to learn a superior arm. We also realize that the results obtained
by the standard algorithms align with the randomized study (orange line).

After all, the casino seems to be, at the same time, (1) exploiting gamblers’ natural predilections
as a function of their intoxication and the machine’s blinking behavior (based on Eq. 326), (2)
paying, on average, less than the legally allowed (15% instead of 30%), and (3) fooling state’s
inspectors since the randomized trial payout meets the legal requirement. ↭

Some observations are worth noting after this example. Firstly, the situation described in the
greedy casino is far from contrived. There is a growing body of literature in the cognitive sciences
that recognizes a significant aspect of human decision-making occurring at a subconscious level,
with individuals often unaware of the reasons behind their actions (Kouider et al., 2010).51"

Second, under the presence of unobserved confounders, such as in the GC example, the in-
terventional quantity Ex [Y ] used throughout the RL literature does not seem to capture critical
information required to maximize payout, but rather the average payout akin to choosing arms by
a coin flip (as shown in the plot earlier). Specifically, the payout given by coin flipping is the same

51. Interestingly, the work of psychology Professor Daniel Kahneman, a Nobel Prize laureate, revolves around recogniz-
ing and studying various biases and mechanisms in human decision-making. For more insights, refer to (Tversky and
Kahneman, 1974; Bargh and Chartrand, 1999; Dijksterhuis and Nordgren, 2006) for a survey on these results.
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(a) (b)

Figure 42: Performance of different bandit strategies in the greedy casino example; x-axis represents
the total episodes of interactions. (a) No algorithm is able to perform better than random guessing.
(b) Regret grows without bounds.

for both machines,

EX↘0 [Y ] = EX↘1 [Y ] = 0.3, (327)

which means that the arms are statistically indistinguishable in the limit of a large sample size.
Further, if we consider using the observational data from watching gamblers on the casino floor
(based on their natural predilections), the average payoff is also independent of the machine choice,

E [Y = 1 | X = 0] = E [Y = 1 | X = 1] = 0.15, (328)

albeit with an even lower payout. Based on these observations, we can see why no arm choice is
better than the other under either distribution alone, which explains the reason any algorithm based
on these distributions will fail to learn an optimal policy.

Third, and more fundamentally, one may be puzzled by the discrepancy between observational
and interventional distributions. After all, even though the interventional distribution refers to the
causal effect, the typical player receives payouts that come from the observational data; how can
this be reconciled? Furthermore, could this difference reveal insights about the unobserved con-
founders, offering clues on how to differentiate the arms? Lastly, from a more practical standpoint,
acknowledging this phenomenon and considering the data in Table 16b, what would be the optimal
way to play at the GC? Is it possible to devise a strategy that yields a higher payout than the two
methods previously discussed?

In this section, our goal is to further understand and answer these questions. To achieve this,
we will introduce novel causal machinery designed to exploit PCH’s layer 3 distributions, thereby
enabling the agent to achieve higher performance in challenging decision-making scenarios, such
as the greedy casino discussed in Example 51. We aim to formalize the concept of counterfactual
randomization, including canonical environments such as MABs (Fig. 10a) and MDPs (Fig. 10d).
We will provide a systematic augmentation procedure that empowers existing online learning agents
to optimize counterfactual policies in these environments. The contributions of these sections are
summarized as follows:
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• Sec. 7.1 proposes a novel counterfactual decision criterion in bandit models. This strategy
determines the values of actions based on a specific type of counterfactual quantity, namely,
the effect of the treatment on the treated. This approach leads to a new family of counterfac-
tual policies that take advantage of the agent’s intended actions (i.e., intuitions). Sec. 7.1.1
extends this counterfactual criterion to a canonical family of sequential decision-making en-
vironments, specifically Markov decision processes with unobserved confounders (MDP).

• Sec. 7.2 develops a novel counterfactual randomization to enable the realization of counter-
factual decision-making in the underlying environment. Sec. 7.2.1 extends this novel random-
ization procedure to enhance existing online algorithms in MDP environments. We demon-
strate this procedure by augmentating a state-of-art MDP algorithm UCBVI (Azar et al.,
2017). The analysis suggests that the new counterfactual randomization strategy is statis-
tically efficient and consistently outperforms standard online algorithms that lack counterfac-
tual reasoning.

• Sec. 7.3 connects the idea of counterfactual policies and the notion of autonomy in decision-
making. In particular, we introduce a novel trade-off between autonomy and optimality: while
a fully autonomous system is preferable, discarding the human input could harm the optimal
performance of the decision system, leading to suboptimal strategies. An effective planning
algorithm is developed to balance this autonomy-optimality trade-off, enabling an agent to
learn an optimal counterfactual policy in an MDP environment under a budget constraint on
the frequency of using human input.

7.1 Counterfactual Decision Criterion

We begin the discussion by describing the causal mechanisms that encode the agent’s interaction
regimes with the MAB environment. First, when the agent passively observes events unfolding
in the underlying causal model, the underlying causal mechanisms remain unchanged. Fig. 43a
illustrates the causal diagram of a canonical MAB environment. Note that fX represents the sys-
tem’s behavioral policy generating the observational data. It takes as input the unobserved factors
U affecting the reward signal Y and determines an observed arm choice X; the presence of U
is represented by the bidirected arrow X ↬⊜⊜⊜⊜≿ Y (Def. 6). One way to interpret this arrow is
through the concept of players’ natural predilections. For instance, in the greedy casino (Exam-
ple 51), the predilection could correspond to choices made by gamblers when allowed to play freely
on the casino’s floor (e.g., intoxicated players favoring blinking machines), or doctors prescribing
drugs based on their “gut feeling” (e.g., physicians prescribing the more expensive drug to wealthier
patients). The rewards associated with these predilections are encoded in the observational quantity
E [Y | x].

On the other hand, the interventional quantity Ex [Y ] encodes the reward induced by the process
in which the natural predilections are overridden or ceased by external and deliberate policies. In
the casino’s example, this reward arises when the government’s inspectors flip a coin and direct
gamblers to machines based on the coin’s outcome via intervention do(x), regardless of their natural
predilections. Fig. 43b depicts the causal diagram of the post-interventional MAB environment.
Here, the bidirected arrow between X and Y is removed, as the unobserved confounder U does
not influence the intervention do(x) and how the value of X attains its value. The exogenous
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distribution P (U) and the reward function fY (X,U) encompass the expected reward parameters
for each arm, which are typically the focus of analysis in RL literature.52

Among the two interaction regimes described above, the observational agent (“see”) does not
deliberately search for a better alternative other than its natural predilections. Meanwhile, the in-
terventional agent (“do”) explores the environment by randomly playing arms, thus disregarding
its natural predilections. Remarkably, it is possible to leverage the information embedded in these
distinct interaction regimes (and their corresponding distributions) to understand and improve the
agents’ natural predilections in these MAB instances.

To witness, assume the agent is now more introspective and starts operating through the fol-
lowing protocol on the casino’s floor. The gambler observes itself and intercepts its decision-flow
when is just about to pull the arm of machine “0”. He then contemplates whether following his
natural predilection (“0”) or going against it (playing “1”) would lead to a better outcome. The
drunk gambler, for example, who is a clever machine learning student and familiar with Figs. 43a
and 43b, says that such evaluation cannot be computed a priori. He affirms that, despite spending
hours on the casino estimating the expected payoff based on players’ natural predilections (namely,
E[Y | x]), it is not feasible to relate this natural predilection with the hypothetical construction what
would have happened had he decided to play differently. He further acknowledges that the interven-
tional quantity Ex [Y ], devoid of the gamblers’ predilections, does not support any clear comparison
against his personal strategy. The oracle says this type of reasoning is possible, but first one needs
to define the concept of counterfactual distributions:

Definition 21 (Counterfactual Distribution (Bareinboim et al., 2020)) An SCM M = ↘U ,V ,
F , P ≃ induces a family of joint distributions over counterfactual events Yx, . . . ,Zw, for any
Y ,Z, . . . ,X,W ↑ V :

P (yx, . . . , zw) ↓
∑

u

1 {Yx(u) = y, . . . ,Zw(u) = w}P (u), (329)

↭
Note that the l.h.s. of Eq. 329 contains variables with different subscripts, which, syntactically,
encode different counterfactual worlds. The evaluation implied by this equation can be described as
the following process:

1. For each set of subscripts relative to each set of variables (e.g., do(x), . . . , do(w) for Y , . . . ,
Z, respectively), replace the corresponding mechanisms with the appropriate constants and
generate Fx, . . . ,Fw (Def. 3), creating submodels Mx, . . . ,Mw (of M);

2. For each situation U = u, the environment evaluates the modified causal mechanisms (e.g.,
Fx, . . . ,Fw) following a valid order (i.e., any variable in the l.h.s. is evaluated after the ones
in the r.h.s.) to obtain the potential responses of the observables, and

3. The probability mass P (U = u) is then accumulated for each instantiation U = u that is
consistent with the events over the counterfactual variables – for instance, Yx = y . . . ,Zw =
z, i.e., Y = y, . . . ,Z = z in the submodels Mx, . . . ,Mw, respectively.

52. The standard MAB literature focuses on the unconfounded case depicted in Fig. 43b), where Ex [Y ] = E[Y | x]
(Def. 13). Throughout this section, we focus on the general setting where the NUC assumption does not hold and the
unobserved confounder U cannot be ruled out a priori.
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X Y

fX

(a) See

X Y

ωX

(b) Do

X’ X Y

fX ωX

(c) Ctf

Figure 43: Causal diagrams for different interaction regimes in the MAB environment.

Among quantities in Def. 21, the counterfactual event Yx(u) = y could be read as a sentence:
“Y would be y (in situation U = u), had X been x.” This definition of counterfactuals naturally
leads to the judgment suggested by the oracle.

Example 52 (Counterfactual reasoning through SCMs (GC continued)) Consider again the
MAB model M→ describing the greedy casino environment in Example 51. We are interested in
evaluating whether the new statement, “Would I (the agent) win (Y = 1) had I played X = 0?”
can be formally written as a counterfactual event. Assuming that the agent’s natural predilection
is to play machine X = 1, the agent now engages in introspection to compare the odds of win-
ning following his “gut feeling” or going against his intuition. This statement can be written in
counterfactual language, formally, as

E [YX↘0 | X = 1] , (330)

which reads as “the expected value of winning (Y = 1) had I played X = 0 given that I am about
to play X = 1”. This statement contrasts with the alternative quantity

E [YX↘1 | X = 1] (331)

which reads as “the expected value of winning (Y = 1) had I played X = 1 given that I am about to
play X = 1”. This quantity is also called the X-specific effect of X on Y (Plecko and Bareinboim,
2022, Sec. 4.1.1)..

More specifically, for quantities in the form of Eq. 331, the composition axiom (Pearl, 2000,
Ch. 7.3) implies that

E [YX↘1 | X = 1] = E [Y | X = 1] , (332)

where the l.h.s. is computable from the observational distribution P (X,Y ). Using the previous
discussion in Example 51, computing the above equation gives

E [YX↘1 | X = 1] = 0.15 (333)

The counterfactual quantity in the form of Eq. 330 could be written as

E [YX↘0 | X = 1] = P (YX↘0 = 1 | X = 1) (334)

=
P (YX↘0 = 1, X = 1)

P (X = 1)
(335)
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E[Yx | X = 0] E[Yx | X = 1]

X = 0 0.15 *0.45
X = 1 *0.45 0.15

Table 17: Payout rates according to the counterfactual distribution P (YX↘x | X = x↓).

where the denominator is trivially obtainable since it only involves observational probabilities.
Following the behavioral policy in Eq. 326, we obtain

P (X = 1) = P (UD = 0, UB = 1) + P (UD = 1, UB = 0) (336)
= 0.5 (337)

On the other hand, the numerator, P (YX↘1 = 1, X = 0) is more interesting and refers to two
different worlds and cannot be written in the languages of observational and interventional distri-
butions since they do not allow for probability expressions involving more than one subscript (each
encoding a different version of the environment). Using the procedure dictated in Eq. 329, we obtain

P (YX↘0 = 1, X = 1) =
∑

uB ,uD

1{YX↘0(uB, uD) = 1, X(uB, uD) = 1}P (uB, uD) (338)

Noting that UD = 1, UB = 1 and UD = 0, UB = 0 are not compatible with the event X = 0,
through Eq. 326, we can write:

P (YX↘0 = 1, X = 1) = 0.25△

{YX↘0(1, 0) = 1, X(1, 0) = 1} (339)

+ {YX↘0(0, 1) = 1, X(0, 1) = 1}


(340)

Considering the first factor and going back to fY , as shown in Table 12a, we note that Y = 1 when
D = 0, B = 1, X = 0 with probability 0.5, and when D = 1, B = 0, X = 0 with probability 0.4.
Putting this back into Eq. 335 leads to:

P (YX↘0 = 1, X = 1) =
0.25

0.5
⊤ 0.9 = 0.45 (341)

For completeness, we also compute the other values for the x-specific effect, E[Yx | x↓], for all
x, x↓ = 0, 1, as shown in Table 17. The conclusion following this analysis is clear – the payout rate
would have tripled had the agent played machine X = 0 in situations where its natural predilections
suggest X = 1, and machine X = 1 in situations where its natural predilections suggest X = 0. ↭

The counterfactual analysis in the previous example suggests a novel decision-making criterion in
the MAB environment. Instead of using a decision rule comparing the average payouts associated
with arms, namely (for action x),

x→ = argmax
x

Ex [Y ] , (342)
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we should consider the rule using the comparison between the average payouts obtained by players
for choosing in favor or against their intuition, respectively,

ω→(x) = argmax
x

E



 YX↘x ︷︷ ︸
realized action

| X = x↓ ︷︷ ︸
intended action



 , →x ↔ {0, 1} (343)

where x↓ is the player’s natural predilection, and x is their final decision.
We call this procedure counterfactual decision criterion (CDC) to emphasize the counterfactual

nature of this reasoning step and the idea of either following or disobeying the agent’s intuition.
Remarkably, CDC takes into account the agent’s individuality and the fact that their natural incli-
nation provides valuable information about the confounders that also affect the payout, importantly,
even when unknown to the very agent. In the binary case, for example, assuming that X = 1 is the
player’s natural choice at some time step, if

E [YX↘0 | X = 1] ⇑ E [YX↘1 | X = 1] , (344)

this would suggest that the player should act against their intuition, i.e., refraining of playing ma-
chine X = 1 in favor of playing machine X = 0. Conversely, if

E [YX↘0 | X = 1] ≤ E [YX↘1 | X = 1] , (345)

it would imply that the player should follow their intuition, in this case, playing machine X = 1.
Performing CDC leads to a novel type of counterfactual policies in MAB environment.

Definition 22 (Counterfactual Policy - MAB) Let M be an MAB environment graphically de-
scribed in Fig. 43a. A counterfactual policy space #CTF is a collection of policies ω(X | X ↓)
mapping from the domain of an intended action X ↓ to the space of probability distribution over
the domain of a realized action X . Henceforth, we will consistently denote such a policy space by
#CTF = {↘X, {X ↓}≃}.

At first glance, a counterfactual policy ω(X | X ↓) might be counter-intuitive since the input and
output of the policy ω appear to be the same, over the domain of action variable X . This suggests
that deploying a counterfactual policy introduces a self-reference in the underlying environment.
Semantically speaking, this is a well-defined counterfactual quantity and computable for any SCM
M. While its input X ↓ and output X share the same domain, they represent action variables in
two different worlds – the input X ↓ is the agent’s natural predilection, similar to the obtained in
the observational distribution in layer 1 (Fig. 43a), while the output X is the agent’s realized action
generating the interventional distribution in layer 2 (Fig. 43b). Determining the realized intervention
do(X ⇐ x) based on the agent’s natural predilection X = x↓ leads to the expected reward of a
counterfactual policy ω(X | X ↓).

Definition 23 (Counterfactual Submodel, MAB) Let M be an MAB environment graphically de-
scribed in Fig. 43a such that

M = ↘U = {U},V = {X,Y },F = {fX , fY }, P = P (U)≃ (346)

Let ω(X | X ↓) be a counterfactual policy over action X . A submodel Mω of M is a modified SCM

Mω =

U = {U},Vω = {X ↓, X, Y },Fω, P = P (U)


, (347)
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where the structural functions Fω are defined as

Fω =






X ↓ ⇐ fX(U)

X ↖ ω(X | X ↓)

Y ⇐ fY (X ↓, U)

(348)

↭

Fig. 43c provides a graphical representation of the submodel Mω induced by a counterfactual policy
ω(X | X ↓). Note that a new, virtual variable X ↓ is added to represent the intended action, which
is used as an input to determine the realized action X affecting the reward signal Y . Formally, we
define the expected reward Eω [Y ;M] of a counterfactual policy ω(X | X ↓) evaluated in an MAB
environment as the expected reward E [Y ;Mω] evaluated in the submodel Mω. That is,

Eω [Y ;M] =
∑

x↓,x

E
[
Y | x, x↓;Mω

]
P
(
x | x↓;Mω

)
P
(
x↓;Mω

)
(349)

=
∑

x↓,x

E
[
Y | x, x↓;Mω

]
ω
(
x | x↓

)
P
(
x↓
)

(350)

The last step holds since in the counterfactual submodel Mω defined by Eq. 348, the values of the
intended action X ↓ are decided by the behavioral policy fX determining action in the original SCM
M. Since the counterfactual policy ω does not take the unobserved confounder U affecting other
variables in the system, conditioning on the intended action X ↓ “blocks” the backdoor paths from the
realized action X to the subsequent reward Y . Computing the expected reward of Y conditioning
on both the intended and realized actions X ↓, X in submodel thus recovers the counterfactual ETT
quantity. The above equation can be further written as

Eω [Y ;M] =
∑

x,x↓

E
[
YX↘x | X = x↓

]
ω
(
x | x↓

)
P
(
x↓
)

(351)

The following example demonstrates counterfactual policies in the Greedy Casino environment
described previously in Example 51.

Example 53 Consider the MAB environment M→ described in Example 51. Performing interven-
tion ctf(ω) following a counterfactual policy ω ↫ X ⇐ ¬X ↓ defines a submodel M→

ω described by
the following tuple

M→

ω =

U = {UD, UB},Vω = {X ↓, X, Y },Fω, P = P (UD, UB)


(352)

The structural functions in Fω are defined as

Fω =






X ↓ ⇐ UD ⇔ UB

X ⇐ ¬X ↓

Y ⇐ fY (X,UD, UB)

(353)

Table 18 shows the detailed parametrization of the joint distribution P (X,X ↓, Y ) evaluated in the

124



CAUSAL REINFORCEMENT LEARNING

X ↓ = 0 X ↓ = 1

X = 0 X = 1 X = 0 X = 1

Y = 0 0 0.275 0.275 0
Y = 1 0 0.225 0.225 0

Table 18: The joint distribution P (X ↓, X, Y ) evaluated in the submodel M→
ω induced by a counter-

factual policy ω ↫ X ⇐ ¬X ↓.

counterfactual submodel M→
ω described in Example 53. The expected reward of Y in submodel M→

ω

is given by

Eω [Y ] = P
(
X ↓ = 0, X = 0, Y = 1

)
+ P

(
X ↓ = 1, X = 0, Y = 1

)
(354)

+ P
(
X ↓ = 0, X = 1, Y = 1

)
+ P

(
X ↓ = 1, X = 1, Y = 1

)
(355)

Computing the above equation gives Eω [Y ] = 0.45, which outperforms the expected reward of
atomic intervention Ex [Y ] = 0.15 for every arm x = 0, 1. ↭

More generally, note that the counterfactual policy space #CTF contains the experimental policy
#EXP = {↘X, ∋≃} in MAB environments. For every experimental policy ω(X), one could simulate
it using a counterfactual ω(X | X) by selecting realized action do(X ⇐ x) regardless of natural
predilection X ↓ = x↓, i.e., ω(x) = ω(x | x↓), →x, x↓. In this case, the expected reward in Eq. 351
could be further written as:

Eω [Y ] =
∑

x

ω(x)
∑

x↓

E
[
YX↘x | X = x↓

]
P (x↓) (356)

=
∑

x

ω(x)E[Yx] (357)

By the definition of potential outcomes (Def. 4) and interventional distributions (Def. 5), the coun-
terfactual quantity E[Yx] = Ex [Y ]. The above equation thus coincides with the expected reward of
an experimental policy ω(x). As shown next, an optimal counterfactual policy consistently domi-
nates the best possible experimental policy in terms of performance.

Theorem 15 (Counterfactual dominates Interventional Policies (MAB)) For an MAB environ-
ment M→, let policy spaces #CTF = {↘X, {X}≃} and #EXP = {↘X, ∋≃}. Then, an optimal counter-
factual policy is never worse than an optimal interventional policy, namely,

argmax
ω↑!CTF

Eω [Y ] ⇑ argmax
ω↑!EXP

Eω [Y ] (358)

↭

A natural question at this point is when the equality in the equation holds, and the standard interven-
tional agent is able to achieve the optimal performance of an counterfactual agent. When the NUC
condition (Def. 13) holds in the underlying MAB environment, there is no unobserved confounder
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affecting the action X and the reward Y , simultaneously. This implies that the agent’s intended
action X is independent of the potential outcome Yx induced by intervention do(x), namely,53

(X ′′ Yx) (359)

When the above independence relationship holds, Eq. 351 could be further written as:

E [Y ;Mω] =
∑

x

E [YX↘x]
∑

x↓

ω
(
x | x↓

)
P
(
x↓
)

(360)

=
∑

x

E [YX↘x]Pω(x) (361)

In the last step, probabilities Pω(x) =
∑

x
ω (x | x↓)P (x↓) are obtained by marginalizing over the

domain of the intended action X . An agent could thus simulate the performance of the counter-
factual policy ω(x↓|x) using an experimental policy ω(x) = Pω(x). In other words, the optimal
performance of counterfactual and experimental policies coincide whenever the NUC holds.

7.1.1 MARKOV DECISION PROCESS WITH UNOBSERVED CONFOUNDERS

The remainder of this section expands on the concept of counterfactual policies to a more general
sequential decision-making setting where the agent must decide on the values of a sequence of ac-
tions. Our discussion will focus on a canonical family of environments that extend Markov decision
processes (Puterman, 1994) through the language of structural causality.

Definition 24 (MDP Environment) Consider an SCM describing an MDP environment

M = ↘U ,V ,F , P (U)≃ , (362)

where for a decision horizon H ↔ N+,54

• U = {U1, . . . , UH} is a sequence of exogenous variables Ui;

• V = {S,X,Y } is a set of endogenous variables consisting of a sequence of states S =
{S1, . . . , SH}, actions X = {X1, . . . , XH}, and rewards Y = {Y1, . . . , YH};

• F is a set of functions determining values of S,X,Y such that for every i = 1, . . . , H ,55

F =






Si ⇐ fS(Si↔1, Xi↔1, Ui)

Xi ⇐ fX(Si, Ui)

Yi ⇐ fY (Si, Xi, Ui)

(363)

• P is a joint distribution over U such that P (U) =
∏

H

i=1 P (Ui) and U1, . . . , UH are i.i.d.
variables drawn over a domain D(U), i.e., P (U1) = · · · = P (UH).56

53. This independence relationship is also referred to as ignorability in the literature (Rosenbaum and Rubin, 1983).
54. The decision horizon H could be finitely large, i.e. H = ⇑. The model M is called an infinite-horizon MDP.
55. With a slight abuse of notation, we denote by Si↔1 = ↖, Xi↔1 = ↖ if i = 1, i.e., the initial state S1 ↑ fS(U1).
56. Compared with dynamic treatment regimes (Murphy et al., 2001a), MDPs explicitly encode the locality in both the

underlying causal mechanisms and exogenous noises affecting states, actions and rewards at every time step. This
structural constraint manifests in the Markov property in system dynamics, as discussed in Sec. 3.3.
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Figure 44: Causal diagrams for the MDP environment and its submodel induced by a counterfactual
policy ω = (ω1(X ↓

1 | S1, X1), . . . ,ωH(X ↓

H
| SH , XH)).

↭
Def. 24 describes a generalized family of environments similar to MDPs, where the NUC condition
does not hold and unobserved confounders are not excluded a priori. Consequently, this family
of environments is referred to in the literature as MDP with unobserved confounders (MDPUCs)
(Zhang and Bareinboim, 2022). In an MDP environment, the Markov property holds for both the
observational distribution P (S,X,Y ) and interventional distribution Pω (S,X,Y ) induced by a
policy ω = (ω1(X1 | S1), . . . ,ωH(XH | SH)). For every time step i = 1, . . . , H , all the future
state S̄i+1:H , actions X̄i:H and rewards Ȳi:H are independent of the history S̄1:i↔1, X̄1:i↔1, Ȳ1:i↔1

given the current state Si, namely:
(
S̄i+1:H , X̄i:H , Ȳi:H ′′ S̄1:i↔1, X̄1:i↔1, Ȳ1:i↔1 | Si

)
(364)

The above independence relationship could be read from the causal diagram of the MDP environ-
ment, shown in Fig. 44a, following the d-separation rules (Def. 7). However, due to the presence
of unobserved confounders, the transition probabilities and conditional reward in the observational
and interventional distributions do not necessarily coincide, i.e. for every step i = 1, . . . , H ,

P (si+1 | si, xi) ▽= Pxi
(si+1 | si) (365)

E [Yi | si, xi] ▽= Exi
[Yi | si] (366)

Recall the more detailed discussion of the Markov property and the NUC assumption in Sec. 3.3. For
instance, Example 2 shows an MDP environment concerning the inventory management of a retail
store; potential unobserved confounders include human errors of the store manager, uncertainties
in the customers’ demands, and monetary values of the goods. Both its observational and inter-
ventional distributions can be compactly represented using finite-state automata. However, detailed
parameters of these automata differ significantly due to the presence of unobserved confounders;
detailed computation is provided in Examples 23 and 24.

We next formalize the concept of counterfactual policies in MDP environments. Similar to
MABs, an agent following a counterfactual policy can be thought of as selecting the values of every
action Xi ↔ X based on its original intended action. However, unlike in the previous MAB settings,
the agent will also consider observed values of the current Si before taking action Xi.

Definition 25 (Counterfactual Policy - MDP) For an MDP environment M→, a counterfactual
policy space #CTF is a collection of policies

ω =
(
ω1(X1 | S1, X

↓

1), . . . ,ωH(XH | SH , X ↓

H)
)
, (367)
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where every decision rule ωi(Xi | Si, X ↓

i
) is a function mapping from the domain of state Si and

intended action X ↓

i
to the space of probability distribution over the domain of realized action Xi.

Henceforth, we will consistently denote such a policy space by #CTF = {↘Xi, {Si, X ↓

i
}≃}H

i=1. ↭

Similar to MAB environments, an agent interacting an MDP environment M following a counter-
factual policy ω leads to a submodel Mω with additional intended actions X ↓

i
mediating between

every realized action Xi and its direct parents, including the current state Si and the unobserved
confounder Ui. Formally,

Definition 26 (Counterfactual Submodel, MDP) Let M = ↘U ,V ,F , P (U)≃ be an MDP en-
vironment, and ω = (ω1(X1 | S1, X ↓

1), . . . ,ωH(XH | SH , X ↓

H
)) be a counterfactual policy over

actions X1, X2, . . . . A submodel Mω of M is an SCM

Mω =

U ,Vω =


S,X ↓,X,Y


,Fω, P = P (U)


, (368)

where X = {X1, . . . , XH} is a sequence of realized actions; Fω is a set of structural functions
defined as

Fω =






Si ⇐ fS(Si↔1, Xi↔1, Ui)

X ↓

i
⇐ fX(Si, Ui)

Xi ↖ ωi(Xi | Si, X ↓

i
)

Yi ⇐ fY (Si, Xi, Ui)

(369)

↭

The causal diagram in Fig. 44b is associated with the submodel Mω induced by an MDP environ-
ment and a counterfactual policy ω(Xi, | Si, X ↓

i
). Formally, we define Pω (S,X ↓,X,Y ) of a coun-

terfactual policy ω(Xi, | Si, X ↓

i
) as the joint distribution over endogenous variables S,X ↓,X,Y in

submodel Mω. One could see by inspection that the data-generating mechanisms in Fig. 44b define
a Markov chain (Puterman, 1994). For every stage of intervention i = 1, 2, . . . , the state Si and
intended action X ↓

i
satisfy the Markov property with regard to past state and actions’ history. More

specifically, the following independent relationships hold in the counterfactual submodel Mω,

P
(
Si+1, X

↓

i+1 | S̄1:i, X̄ ↓
1:i, X̄1:i;Mω

)
= P

(
Si+1, X

↓

i+1 | Si, X
↓

i, Xi;Mω

)
(370)

E
[
Yi | S̄1:i, X̄ ↓

1:i, X̄1:i;Mω

]
= E

[
Yi | Si, X

↓

i, Xi;Mω

]
(371)

The following example demonstrates the Markov property in a counterfactual MDP submodel. The
following example demonstrates counterfactual policies in MDP environments.

Example 54 (Autonomous vs. Semi-autonomous Systems) Consider the MDP environment M→

described in Eq. 5, where the decision horizon H = ∈. Recall that the experimental policy space
#EXP = {↘Xi, {Si}≃}↗i=1 contains a collection of policies ω = (ω1(X1 | S1),ω2(X2 | S2), . . . ).
Every decision rule ωi(Xi | Si) is a probability distribution mapping from state Si to action Xi.
Operationally, the experimental decision model ↘M→,#EXP,R≃ defines an autonomous inventory
management system that determines whether to refill Xi based on the current inventory size Si.
Note that the manager’s intended decision Xi is not accounted in the system’s decision-making
process, and can thus be discarded.
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Si+1 Xi+1 Si X ↓

i
Xi P Si+1 Xi+1 Si X ↓

i
Xi P

0 0 0 0 0 0.09 1 0 0 0 0 0.09
0 0 0 0 1 0.01 1 0 0 0 1 0.81
0 0 0 1 0 0.01 1 0 0 1 0 0.81
0 0 0 1 1 0.09 1 0 0 1 1 0.09
0 0 1 0 0 0.09 1 0 1 0 0 0.09
0 0 1 0 1 0.09 1 0 1 0 1 0.09
0 0 1 1 0 0.01 1 0 1 1 0 0.81
0 0 1 1 1 0.01 1 0 1 1 1 0.81
0 1 0 0 0 0.09 1 1 0 0 0 0.01
0 1 0 0 1 0.01 1 1 0 0 1 0.09
0 1 0 1 0 0.01 1 1 0 1 0 0.09
0 1 0 1 1 0.09 1 1 0 1 1 0.01
0 1 1 0 0 0.09 1 1 1 0 0 0.01
0 1 1 0 1 0.09 1 1 1 0 1 0.01
0 1 1 1 0 0.01 1 1 1 1 0 0.09
0 1 1 1 1 0.01 1 1 1 1 1 0.09

Table 19: Evaluation of the counterfactual transition distribution P (Si+1xi
, Xi+1xi

| Si, Xi = x↓
i
)

evaluated in the MDP environment of Example 2.

We now consider the counterfactual policy space #CTF = {↘Xi, {Si, Xi}≃}↗i=1. Every counter-
factual policy ω ↔ #CTF is a sequence of decision rules (ω1(X ↓

1 | S1, X1),ω2(X ↓

2 | S2, X2), . . . ).
Operationally, the counterfactual decision model ↘M→,#CTF,R≃ defines an inventory management
system that repeatedly calibrates the manager’s intended action Xi based on the observed state
Si. Note that this decision-making system is semi-autonomous since it proactively accounts for the
manager’s decision. Compared with the autonomous system described above, the counterfactual
intervention does not entirely replace the human behavioral policy operating in the environment.57

More specifically, let a counterfactual policy ω = (ω1(X1 | X1, S1),ω2(X2 | X2, S2), . . . ) such
that for every i = 1, 2, . . . , the decision rule ωi is defined as,

ωi ↫ Xi ⇐ Si ⇔X ↓

i ⇔ Ui,4 (372)

where Ui,4 is a new independent noise uniformly drawn over {0, 1}. Performing counterfactual
intervention ctf(ω) leads to a submodel M→

ω described as a tuple

M→

ω =

U = {Ui,1, . . . , Ui,4},Vω = {X ↓

i, Yi, Si, Xi},Fω, P (U)

i=1,2,...

, (373)

57. The connection between the counterfactual intervention and semi-autonomous systems was first formalized and ex-
plored in (Zhang and Bareinboim, 2022).
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Si Xi X ↓

i
E Si Xi X ↓

i
E

0 0 0 0.1 1 0 0 0.1
0 0 1 0.9 1 0 1 0.9
0 1 0 0.9 1 1 0 0.9
0 1 1 0.1 1 1 1 0.1

Table 20: Evaluation of the counterfactual expected reward E[Yixi | Si, Xi = x↓
i
] evaluated in the

MDP environment of Example 2.

The structural functions Fω are defined as, for every i = 1, 2, . . . ,

Fi =






Si ⇐
(
Si↔1 ⇓X ↓

i↔1

)
⇔ Ui↔1,1 ⇔ Ui↔1,2,

X ↓

i
⇐ Si ⇔ Ui,1

Xi ⇐ Si ⇔X ↓

i
⇔ Ui,4

Yi ⇐ Si ⇔Xi ⇔ Ui,1 ⇔ Ui,3

(374)

Note that the structural function Xi ⇐ Si⇔Ui,1. Given values of observed state Si = si and action
Xi = xi in submodel M→

ω, one could infer values of the unobserved confounder Ui,1 as

Ui,1 = xi ⇔ si (375)

Since the next state Si+1 ⇐ (Si⇓Xi)⇔Ui,1⇔Ui,3, given the current state Si = si, intended action
Xi = xi, and realized action X ↓

i
= x↓

i
, event Si+1 = si+1 implies the following

Ui,3 = si+1 ⇔ (si ⇓ x↓i)⇔ Ui,1 (376)
= si+1 ⇔ (si ⇓ x↓i)⇔ xi ⇔ si (377)

The last step follows from Eq. 375. Evaluating the transition distribution on the next state Si+1 and
next intended action Xi+1 given the current state Si, intended action Xi, and realized action X ↓

i
in

submodel M→
ω gives

P
(
Si+1 = si+1, Xi+1 = xi+1 | Si = si, Xi = xi, X

↓

i = x↓i
)

(378)
= P

(
Ui,3 = si+1 ⇔ (si ⇓ x↓i)⇔ xi ⇔ si, Xi+1 = xi+1 | Si = si, Xi = xi, X

↓

i = x↓i
)

(379)
= P

(
Ui,3 = si+1 ⇔ (si ⇓ x↓i)⇔ xi ⇔ si, Ui+1,1 = xi+1 ⇔ si+1

)
(380)

The first step follows from Eq. 377; the second step follows from the equation X ↓

i+1 ⇐ Si+1⇔Ui+1,1.
Moreover, given values of the current Si, X ↓

i
, Xi, the past history S1, . . . , Si↔1, X ↓

1, . . . , X
↓

i↔1, and
X1, . . . , Xi↔1 are independent from the exogenous variables Ui,3, Ui+1,1, i.e., the Markov prop-
erty holds. We compute the detailed parametrization of the conditional transition distribution
P
(
Si+1, X ↓

i+1 | Si, X ↓

i
, Xi

)
and provide them in Table 19.

Similarly, note that values of the reward signal Yi ⇐ Si⇔Xi⇔Ui,1⇔Ui,2. Given state Si = si,
intended action X ↓

i
= x↓

i
and realized action Xi = xi, event Yi = yi implies the following

Ui,2 = yi ⇔ si ⇔ xi ⇔ Ui,1 (381)
= yi ⇔ si ⇔ xi ⇔ si ⇔ x↓i (382)
= yi ⇔ xi ⇔ x↓i (383)
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The second step follows from Eq. 375. Evaluating the expected reward Yi conditioning on the state
Si, intended action X ↓

i
and realized action Xi in submodel M→

ω gives

E
[
Yi | Si = si, X

↓

i = x↓i, Xi = xi
]

(384)
= P

(
Yi = 1⇔ xi ⇔ x↓i | Si = si, X

↓

i = x↓i, Xi = xi
)

(385)
= P

(
Ui,2 = 1⇔ xi ⇔ x↓i

)
(386)

Detailed parametrization of E [Yi | si, x↓i, xi] are computed and provided in Table 20. ↭
More importantly, it is possible to show that the above conditional distributions in submodel coin-
cide with ETTs of action Xi on the reward signal Yi and next state Si+1 and action Xi+1, provided
with the current state Si. Such ETTs remain invariant across every stage i = 1, . . . , H ,

Lemma 2 Let M be an MDP environment, ω(Xi | Si, X ↓

i
) be a counterfactual policy over actions

X1, . . . , XH , and Mω be an induced counterfactual submodel of M. Then, for every i = 1, . . . , H ,
the transition distribution over Si+1 and the expected reward over Yi conditioning on Si, X ↓

i
, Xi in

submodel Mω is equal to

P
(
Si+1, Xi+1 | si, x↓i, xi;Mω

)
= P


Si+1Xi↑xi

, Xi+1Xi↑xi
| si, X ↓

i = x↓i;M


(387)

E
[
Yi | si, x↓i, xi;Mω

]
= E

[
YiXi↑xi

| si, X ↓

i = x↓i;M
]

(388)

Moreover, the above quantities remain invariant across stage i = 1, . . . , H , i.e.,

P

Si+1Xi↑xi

, Xi+1Xi↑xi
| si, X ↓

i = x↓i


= · · · = P


S2X1↑x1

, X2X1↑x1
| s1, X ↓

1 = x↓1


(389)

E
[
YiXi↑xi

| si, X ↓

i = x↓i

]
= · · · = E

[
Y1X1↑x1

| s1, X ↓

1 = x↓1

]
(390)

↭
Among the above equations, Eqs. 387 and 388 follow from the definition of counterfactual inter-
vention. Eqs. 389 and 390 hold since structural functions fX , fY , fS and the exogenous distribution
P (Ui) remain invariant across all stages of interventions i = 1, . . . , H .

Example 55 Consider the MDP environment M→ described in Eq. 5. Given values of state Si =
si, X ↓

i
= x↓

i
, one could infer values of the unobserved confounder Ui,1 as

Ui,1 = x↓i ⇔ si (391)

Given current state and action Si = si, X ↓

i
= x↓

i
, the counterfactual event Si+1Xi↑xi

= si+1 implies

Ui,3 = si+1 ⇔ (Si ⇓X ↓

i)⇔ Ui,1 (392)
= si+1 ⇔ (si ⇓ xi)⇔ x↓i ⇔ si (393)

The last step follows from Eq. 391. Evaluating the ETT of action Xi on the next state Si+1 and
action Xi+1 conditioning on the current state Si in the underlying MDP environment M→ gives

P

Si+1Xi↑xi

= si+1, Xi+1Xi↑xi
= xi+1 | Si = si, X

↓

i = x↓i


(394)

= P

Ui,3 = si+1 ⇔ (si ⇓ xi)⇔ x↓i ⇔ si, Xi+1Xi↑xi

= x↓i+1 | Si = si, X
↓

i = x↓i


(395)

= P
(
Ui,3 = si+1 ⇔ (si ⇓ xi)⇔ x↓i ⇔ si, Ui+1,1 = x↓i+1 ⇔ si+1

)
(396)
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The above equation coincides with Eq. 380. This means that the counterfactual ETT distribution
P

Si+1Xi↑xi

, Xi+1Xi↑xi
| si, x↓i


evaluated in the MDP environment M→ is equal to the condi-

tional transition distribution P
(
Si+1, X ↓

i+1 | si, x↓i, xi
)

evaluated in submodel M→
ω. Its detailed

parametrizations are provided in Table 19. Moreover, this counterfactual distribution remains the
same for all decision horizon i = 1, 2, . . . since structural functions F and exogenous distribution
P (Ui,1, Ui,2, Ui,3) are invariant with regard to the horizon i.

Similarly, given state and action Si = si, X ↓

i
= x↓

i
, the potential outcome YiXi↑xi

= yi implies

Ui,2 = yi ⇔ si ⇔ xi ⇔ Ui,1 (397)
= yi ⇔ si ⇔ xi ⇔ si ⇔ x↓i (398)
= yi ⇔ xi ⇔ x↓i (399)

The second step follows from Eq. 391. Evaluating the ETT of action Xi on the reward signal Yi
conditioning on the current state Si in the underlying MDP environment M→ gives

E
[
YiXi↑xi

| Si = si, X
↓

i = x↓i

]
= P


YiXi↑xi

= 1⇔ xi ⇔ x↓i | Si = si, X
↓

i = x↓i


(400)

= P
(
Ui,2 = 1⇔ xi ⇔ x↓i

)
(401)

The last step coincides with Eq. 386. This means that the conditional x-specific causal effects
E
[
YiXi↑xi

| si, x↓i
]

evaluated in the MDP environment M→ equates to the conditional expected
reward E[Yi | si, x↓i, xi] evaluated in submodel M→

ω. Its detailed parametrizations remain invariant
for every decision horizon i = 1, 2, . . . , and are provided in Table 20. ↭

Lem. 2 permits us to represent the distribution Pω (S,X ↓,X,Y ) induced by a counterfactual policy
ω = (ω1(X1 | S1, X ↓

1), . . . ,ωH(XH | SH , X ↓

H
)) using a standard MDP (Def. 12)

↘D(S)△ D(X),D(X), Tctf,Rctf≃ (402)

Here, D(S) and D(X) are, respectively, the domain of state Si and action Xi for every stage
i = 1, . . . , H . The transitional distribution Tctf and the reward function Rctf are conditional
ETTs evaluated in the underlying MDP environment M→ given by, for any s, s↓ ↔ D(S) and any
x, x↓, x↓↓ ↔ D(X),

Tctf(s, x, x
↓, s↓, x↓↓) = P


Si+1

Xi↑x↓ = s↓, Xi+1
Xi↑x↓ = x↓↓ | Si = s,Xi = x


(403)

Rctf(s, x, x
↓) = E

[
Yi

Xi↑x↓ | Si = s,Xi = x
]

(404)

Let R(Y ) ↔ R be a reward function taking reward signal Y = {Y1, . . . , YH} as input. Our goal
is to obtain an optimal counterfactual policy ω→ ↔ #CTF maximizing the expected reward over
Eω [R(Y )] evaluated in the underlying MDP environment M→. The reduction to a standard MDP
model ↘D(S)△ D(X),D(X), Tctf,Rctf≃ allows us to solve for an optimal counterfactual policy
ω→ using standard dynamic programming algorithms (Bellman, 1966), provided that the detailed
parametrization of the underlying MDP environment M→ is available.

To make this argument more precise, we will consider a discounted cumulative reward function
R(Y ) =

∑
↗

i=1 ϑ
i↔1Yi over an infinite horizon H = ∈, where the discount rate ϑ ↔ (0, 1). The
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Si Xi X ↓

i
Q→ Si Xi X ↓

i
Q→

0 0 0 1 1 0 0 1
0 0 1 9 1 0 1 9
0 1 0 9 1 1 0 9
0 1 1 1 1 1 1 1

Table 21: Optimal augmented Q-function Q→(s, x, x↓) evaluated in the MDP model of Example 2.

classic result in planning literature (Puterman, 1994) implies that it is sufficient to consider a class
of stationary counterfactual policies ω = (ω1(X1 | S1, X1),ω2(X2 | S2, X2), . . . ) such that the
decision rule ωi remains invariant across the decision horizon i = 1, 2, . . . , i.e., ω1 = ω2 = . . . .

The state-action value function Qω : D(S) △ D(X) △ D(X) ↙ R for a counterfactual policy
ω evaluated in the MDP environment M→ is defined as the expected cumulative reward following
policy ω, given the starting state s, intended action x, and realized action x↓. Formally,

Qω(s, x, x
↓) = E




↗∑

j=0

ϑjYi+j | Si = s,Xi = x,X ↓

i = x↓;M→

ω



 (405)

By exploring the Markov property in submodel M→
ω (Eqs. 370 and 371, the above Q-function could

be further written as an augmented Bellman Equation using the intended action X as an additional
side information:

Qω(s, x, x
↓) (406)

= E
[
Yi + ϑYi+1 + ϑ2Yi+2 + · · · | Si = s,Xi = x,X ↓

i = x↓;M→

ω

]
(407)

= E
[
Yi + ϑQω(Si+1, Xi+1, X

↓

i+1) | Si = s,Xi = x,X ↓

i = x↓;M→

ω

]
(408)

= Rctf(s, x, x
↓) + ϑ

∑

s↓,x↓↓

Tctf(s, x, x
↓, s↓, x↓↓)

∑

x↓↓↓

ωi+1(x
↓↓↓ | s↓, x↓↓)Qω(s

↓, x↓↓, x↓↓↓) (409)

The last step follows from the equality relationships in Lem. 2. An optimal counterfactual policy
ω→ is obtainable by recursively computing the Q-function and optimizing the realized action x↓ for
every state s and intended action x. The following example demonstrates such a procedure.

Example 56 Consider the MDP environment M→ defined in Eq. 5. Note that an optimal counter-
factual policy ω→ is such that its induced value function Qω→(s, x, x↓) ⇑ Qω(s, x, x↓) for all state
s, intended action x, and realized action x↓. Optimizing Q-function leads to a counterfactual aug-
mented (ctf-augmented) Bellman optimality equation using the intended action X as an additional
context, i.e,

Q→(s, x, x
↓) = Rctf(s, x, x

↓) + ϑ
∑

s↓,x↓↓

Tctf(s, x, x
↓, s↓, x↓↓)max

x↓↓↓
Q→(s

↓, x↓↓, x↓↓↓) (410)

The optimal policy ω→ is given by, for every stage i = 1, 2, . . . , for any state s ↔ D(S),

ω→(Si = s,Xi = x) = argmax
x↓

Q→(s, x, x
↓) (411)
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We compute the optimal augmented Q-function evaluated in the MDP environment M→ using the
value iteration algorithm (Sutton and Barto, 1998). Detailed parametrizations are provided in
Table 21. The optimal policy ω→ = (ω→

i
(Xi | Si, Xi))

↗

i=1 is given by ω→

i
↫ Xi ⇐ ¬Xi, for every

i = 1, 2, . . . .
After all, this means that, in this case, the agent should always go against its intended action.

Evaluating its expected return gives Eω→
[∑

↗

i=1 ϑ
i↔1Yi

]
= 9, which outperforms the best possible

experimental policy ωi ↫ Xi ⇐ ¬Si. Derivations of the best experimental policy are provided in
Example 16. ↭
More generally, experimental policies in #EXP = {↘Xi, {Si}≃}Hi=1 are contained in the counter-
factual policy space #CTF = {↘Xi, {Si, Xi}≃}Hi=1. This means that one could simulate the ex-
pected reward of any experimental policy ω↓ = (ω↓

i
(Xi | Si))

H

i=1 using a counterfactual policy
ω = (ωi(Xi | Si, Xi))

H

i=1 such that ω↓

i
(x↓ | s) = ωi(x↓ | s, x) for all s, x, x↓. In this case, intended

actions X do not affect values of reward signals Y in submodel M→
ω induced by counterfactual

intervention ctf(ω). Marginalizing intended actions X reduces Mω to the experimental submodel
M→

ω↓ induced by intervention do(ω↓). The performance of the counterfactual policy ω and the ex-
perimental policy ω↓ thus coincides, i.e., Eω [R(Y )] = Eω↓ [R(Y )]. This observation implies that
an agent optimizing the environment following counterfactual interventions ctf(ω) must perform at
least as well as its counterpart following experimental intervention do(ω). Formally,

Theorem 16 (Counterfactual dominates Interventional policies) For an MDP environment M→,
let R be a reward function over reward signals Y = {Y1, . . . , YH}. Let policy spaces #CTF =
{↘Xi, {Si, Xi}≃}Hi=1 and #EXP = {↘X, {Si}≃}Hi=1. Then,

argmax
ω↑!CTF

Eω [R(Y )] ⇑ argmax
ω↑!EXP

Eω [R(Y )] (412)

↭
Thm. 16 implies that it is preferable to learn an optimal counterfactual policy in the MDP envi-
ronment when determining values for a sequence of actions, which consistently dominates the best
possible experimental policy that does not account for the agent’s intended actions Xi for every
stage of decision i = 1, . . . , H . On the other hand, when the NUC holds in M→ (Def. 13), condi-
tioning on current state Si and realized action Xi d-separates the intended action Xi from all the
future rewards Yi, Yi+1, . . . and states Si+1, Si+2, . . . . We thus have the following, for any xi, si, x↓i,

P

Si+1

Xi↑x
↓
i

, Xi+1
Xi↑x

↓
i

| Si = si, Xi = xi

= PXi↘x

↓
i
(Si+1 | Si = si) (413)

E
[
Yi

Xi↑x
↓
i

| si, Xi = xi
]
= EXi↘x

↓
i
[Yi | Si = si] (414)

In words, the counterfactual transition probabilities Tctf and reward function Rctf coincide with their
experimental counterparts Texp and Rexp. An agent can thus simulate the performance of an optimal
counterfactual policy using an experimental one; observing the agent’s intended action provides no
value of information to the learning task and could be ignored.

7.2 Counterfactual Randomization

So far, we have described effective planning algorithms to obtain an optimal counterfactual policies
that account for the agent’s intended actions in canonical decision environments, such as MABs
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Figure 45: Illustration of decision flow, fX , where U is taken as input and the natural predilections
X ↓ is returned as output. The process is refined through multiple stages.

and MDPs. However, how can an optimal counterfactual policy be learned by computing the coun-
terfactual quantities entailed by the underlying, unknown environment? To illustrate, consider the
MAB environment as an example. When the intended action (coming from fx) and the executed
action match (i.e., x↓ = x), the counterfactual quantity E[Yx | x] coincides with the observational
reward E[Y | X = x], following the composition axiom (Pearl, 2000, Ch. 7.3). For the general case
when intended and executed actions do not match (x↓ ▽= x), the x-specific effect E[Yx | x↓] is not
computable from any combination of passive observations and controlled experiments, without the
detailed parametrization or additional assumptions of the underlying causal model.58

In settings where the x-specific effect is identifiable, a more challenging question arises: How
can an agent implement the counterfactual policy in the environment? This question stems from
the observation that agents may consider various alternatives during the deliberation process and
change their opinion about the best course of action. Consequently, only the final choice matters,
actually representing the agent’s natural predilections. To illustrate this concept, the diagram in
Fig. 45 depicts an example of an agent’s deliberation process. Initially, the agent intends to play
X ↓ = x1 but reconsiders, thinking it might be sub-optimal, and decides to switch to X ↓ = x2,
where x1 ▽= x2. As time passes, the agent may realize that X ↓ = xt↔1 was not ideal and switch to
an alternative, X ↓ = xt. Ultimately, the final decision defines the agent’s individuality, irrespective
of the path taken to reach it.59

This challenge calls for novel counterfactual machinery to allow for the counterfactual interac-
tion following layer 3 as discussed in the previous section, in theory. Here, we introduce a novel
type of randomization for intention-specific groups, namely, interrupt any reasoning agent before
they execute their choice, treat this choice as their intention, deliberate, and then act. The x-specific
effect will then be computed in an alternative fashion, based on the idea of intention-specific ran-
domization. This section discusses the algorithmic implementation of this randomization.

Alg. 8 shows the detailed design of randomized controlled trials augmented with counterfactual
interventions, which we name Ctf-RCT. More specifically, it takes as input the domain of action X

58. One exception is the binary case, as elaborated in (Pearl, 2000, Sec. 8.2).
59. Note that whenever the agent pursues an interventional (layer 2) strategy by leveraging Fisherian randomization,

the entire deliberation process is bypassed. In this case, the randomization itself determines which action should be
executed. This is illustrated in Fig. 45.
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Algorithm 8 Counterfactual Randomized Controlled Trials (Ctf-RCT) in MAB
Require: the domain of action D(X), the total number of trials N ↔ N.

1: for episodes t = 1, 2, . . . do
2: Perceive an intended action X(t) and store it.
3: Choose a realize action X

↓(t) as follows.

X ↓(t) =






Unif(D(X)) if t ≤ N

argmax
x

Ê(N)
[
YX↘x | X = X(t)

]
if t > N

(416)

4: Perform do(X ↓(t)) for episode t and receive reward Y (t).
5: end for

and an integer N indicating the total number of trials. For every episode t, the agent first perceives
its intended action X(t), decided by the behavioral policy fX . During the exploration phase (i.e.,
episode t ≤ N ), the algorithm selects a realized action X(t) from the action space D(X) uniformly
at random. During the exploitation phase (episode t > N ), it selects a realized action maximizing
the empirical estimates of the x-specific effect provided with the intended action X = X(t), com-
puted from samples collected from the first N episodes of interventions. Formally, the empirical
estimates of the counterfactual quantity E [YX↘x | X = x↓] computed from samples up to episode
t are defined as:

Ê(t)
[
YX↘x | X = x↓

]
=

∑
t

i=1 Y
(i)1


X ↓(i) = x↓, X(i) = x



Nt (x↓, x)
(415)

where Nt(x, x↓) =
∑

t

i=1 1

X(i) = x,X ↓(i) = x


is the total number of occurrence of intercepting

intended actions X(i) = x and selecting realized actions X ↓(i) = x↓. It follows that Eq. 415 is a
consistent estimate of the x-specific effect of X on Y . Finally, Ctf-RCT performs an intervention
do(X ↓(t)) following the selected action throughout episode t and receives subsequent reward Y (t).

One could also apply the same principle of counterfactual interventions to adaptive online ran-
domization algorithms such as UCB (Alg. 3) to obtain an optimal counterfactual policy with sublin-
ear regret. Precisely, by applying Hoeffiding’s inequalities for every intended action X = x↓, we
define the upper confidence bound over ETT E [YX↘x | X = x↓] computed from samples collected
up to episode t as follows, for every pair x↓, x ↔ D(X),

UCBt

(
x, x↓, ϱ

)
= Ê(t) [YX↘x↓ | X = x] +

√
log(1/ϱ)

2Nt(x, x↓)
, (417)

where the error probability ϱ ↔ (0, 1) is an arbitrary real value. For every episode t = 1, 2, . . . ,
the algorithm incorporating counterfactual interventions first perceives and intercepts the agent’s
intended action X(t). It then computes the confidence bounds UCBt↔1

(
x,X(t), ϱ

)
for every arm x↓

from samples collected up to episode t ⇒ 1, and picks a realized action X(t) with the highest UCB
estimates provided with the intended action X ↓(t). Finally, the algorithm performs an intervention
do(X(t)) following the selected action throughout episode t and receives subsequent reward Y (t).

The detailed implementation of the counterfactual UCB algorithm, named Ctf-UCB, is sum-
marized in Alg. 9. For every episode t = 1, 2, . . . , the error probability ϱ is set as a non-increasing
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Algorithm 9 Counterfactual Upper Confidence Bound (Ctf-UCB) in MAB
Require: the domain of action D(X).

1: for episodes t = 1, 2, . . . do
2: Receive an intended action X(t).
3: Choose an arm X ↓(t) = argmaxx UCBt↔1

(
x,X(t), ϱ

)
where ϱ = Nt

(
X(t)

)↔4.
4: Perform do(X ↓(t)) for episode t and receive reward Y (t).
5: end for

function of the total occurrences Nt

(
X(t)

)
=

∑
t

j=1 1

X(j) = X(t)


of the agent’s intended ac-

tion perceived at episode t from past samples collected so far. In words, the algorithm uses a separate
instance of UCB for every intended action X = x. Let K = |D(X)| denote the total number of
candidate arms. The cumulative regret of Ctf-UCB after T episodes of interventions is bounded by
summing the regrets of each UCB instance for every intended action X = x. Specifically, summing
regrets in Eq. 185 gives

R(T,M→) ≤
∑

x

C

√√√√K
T∑

t=1

1

X(t) = x


log(T ), (418)

where C is a universal constant. Since the square root is a concave function, applying Jensen’s
inequality allows us to further bound the regret as follows.

Theorem 17 (Regrets of Ctf-UCB in MABs) For an MAB ↘M→,#, Y ≃, let # be a counterfactual
policy space {↘X, {X}≃}, Y be the reward variable with support on [0, 1], and let the domain of
action X be D(X) = {1, . . . ,K}. The regret of Ctf-UCB in SCM M→ after T > 1 episodes is
bounded by

R(T,M→) ≤ CK
√
T log(T ) (419)

where C is a universal constant. ↭

Thm. 17 implies that Ctf-UCB is able to eventually learn an optimal counterfactual policy
ω→(X | X ↓) that consistently improves the agent’s intended action. On the other hand, without per-
ceiving the agent’s intended action, the standard UCB algorithm only performs atomic interventions
do(x). Note that an optimal counterfactual policy consistently dominates the best possible inter-
ventional one (Thm. 15). One important observation is that the standard UCB generally experiences
linear regret when compared with an optimal counterfactual agent.

Corollary 4 Let # be an experimental policy space {↘X, ∋≃}, Y be the reward variable with sup-
port on [0, 1], and let the domain of action X be D(X) = {1, . . . ,K}. There exists an MAB
environment M→ such that for any algorithm (e.g., UCB) optimizing over space # after T > 1
episodes is lower bounded by

R(T,M→) ⇑ 0.5T (420)

↭
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(a) (b)

Figure 46: Performance of standard UCB performing atomic interventions and the augmented
Ctf-UCB using counterfactual interventions; x-axis represents the total episodes of interactions.
The x-axis represents, respectively, the probability of picking an optimal action and the cumulative
regret in (a) and (b); the y-axis represents the number of episodes in both (a) and (b).

In words, there is an MAB environment such that for any online algorithm employing Fisherian
randomization, it must incur at least 0.5 regret on average per episode of interaction. It is thus
unable to achieve an optimal counterfactual policy accounting for the agent’s intuition.60

The proposed augmentation procedure may appear to be an immediate extension of UCB in con-
textual bandits using the agent’s natural predilection as an extra context. However, the augmented
Ctf-UCB differs from contextual UCB in the following.61

1. The agent’s intended action X is semantically different from a context S. The former is
a variable only existing under the observational regime (see), as shown in Fig. 43a. It is
replaced by the agent’s realized action and does not appear under the interventional regime
(do), as shown in Fig. 43b. On the other hand, the context variable S is not affected by the
agent’s interaction regime with the environment.

2. The realization of using the agent’s intended action X as an additional context is a con-
sequence of counterfactual intervention (ctf-do). On the other hand, online RL algorithms
interacts with the environment by repeatedly performing randomized interventions (do), dis-
carding the agent’s natural predilection.

Experiment 9 We evaluate the standard UCB algorithm that attempts to maximize rewards based
on Ex [Y ], ignoring the agent’s intended arm choice, and Ctf-UCB described in Alg. 9, which max-
imizes the rewards based on ETT E [YX↘x↓ | X = x] via counterfactual interventions. All reported
simulations are partitioned into rounds of T = 1, 000 trials averaged over N = 1, 000 repetitions.

The Greedy Casino parameterization (specified in Table 16) illustrates the scenario where each
arm’s payout appears to be equivalent under the observational and experimental distributions

60. See Example 51 for details of the construction of this MAB environment.
61. This augmentation procedure is applicable to empower other bandit algorithms, including Thompson sampling

(Bareinboim et al., 2015; Forney et al., 2017; Forney and Bareinboim, 2019), with the capability of counterfactual
randomization and obtain an optimal counterfactual policy.
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alone. Only when we concert the two distributions and condition on a player’s predilection the
optimal policy can be obtained. Fig. 46 shows the cumulative regret and probability of selecting
optimal arms for evaluated algorithms. Simulations support the efficacy of counterfactual interven-
tions. Analyses revealed a significant difference in the regret experienced by Ctf-UCB compared
to standard UCB, which, predictably, is not a competitor experiencing linear regret. ↭

So far we have introduced a novel type of interaction between the agent and the environment, i.e., the
counterfactual randomization, in single-stage decision-making settings such as MABs. We showed
online learning agents using counterfactual randomizations consistently outperform their experi-
mental counterparts that do not actively consider the agent’s intended action. Novel adaptive coun-
terfactual randomization procedures were proposed to optimize an unknown MAB environment.

7.2.1 COUNTERFACTUAL RANDOMIZATION FOR MDPS

In this section, we generalize the counterfactual randomization to the more generalized sequen-
tial decision-making setting, e.g., MDPs. We will endow online algorithms in an unknown MDP
with the ability of counterfactual reasoning so that they can learn optimal counterfactual policies,
accounting for the agent’s intended action and natural predilections.

To make the argument more precise, we will focus on the episodic learning setting in an un-
known MDP environment M→ with a finite horizon H . The algorithm will interact with M→ for
repeated episodes t = 1, 2, . . . , T . For every episode t, the algorithm picks a counterfactual policy
ω(t) =


ω(t)
1 (X1 | S1, X ↓

1), . . . ,ω
(t)
H
(XH | SH , X ↓

H
)


in the counterfactual space #CTF, performs

intervention ctf
(
ω(t)

)
, and receives subsequent reward signals Y (t) =


Y (t)
1 , . . . , Y (t)

H


. We are

interested in maximizing the undiscounted cumulative reward R(Y ) =
∑

H

i=1 Yi.
62 For the con-

venience of the analysis, we will assume that parameters of the counterfactual reward function
Rctf(s, x, x↓) = E

[
Yi

Xi↑x↓ | Si = s,Xi = x
]

are known. However, our analysis generalizes im-
mediately to settings where the reward function is not accessible.

We will utilize UCBVI (Azar et al., 2017), an online reinforcement learning algorithm that
can learn the best possible experimental policy ω ↔ #EXP in a finite-horizon MDP environment.
Alg. 10 shows an augmented procedure that incorporates counterfactual randomization which we
call Ctf-UCBVI. More specifically, for every episode t, it computes a policy ω(t) based on the data
H(t↔1) collected prior to episode t. At Step 3, it calls UCB-Q-values (Alg. 11), which returns
upper confidence bounds on the optimal Q-values Q→(s, x, x↓). This is computed using an empirical
Bellman operator with an additional confidence bonus, estimated based on Chernoff-Hoeffding’s
concentration inequality. The empirical estimates of the counterfactual transition distributions Tctf
and the conditional reward Rctf are consistent following Lem. 2. At Step 6 in UCB-Q-values,
the linear operator


T̂t · V (h+1)

t


(s, x, x↓) is defined as,


T̂t · V (h+1)

t


(s, x, x↓) =

∑

s↓,x↓↓

T̂t(s, x, x↓, s↓, x↓↓)V (h+1)
t

(s↓, x↓↓) (426)

At Steps 5 – 9, Ctf-UCBVI sequentially performs counterfactual intervention ctf on every action
X1, . . . , XH . For every decision horizon i = 1, . . . , H , it observes the current state Si = S(t)

i
, and

62. If the decision horizon H is sufficiently large, the undiscounted cumulative reward provides an approximation to the
discounted cumulative reward with an infinite horizon (Kearns et al., 1999).
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Algorithm 10 Counterfactual UCBVI in MDP (Ctf-UCBVI)

Require: a policy space # = {↘Xi, {Si, Xi}≃}Hi=1, a reward function R(Y ) =
∑

H

i=1 Yi.
1: Initialize data H(0) = ∋.
2: for episodes t = 1, 2, . . . do
3: Q̂t↔1 = UCB-Q-values(H(t↔1)).
4: for step i = 1, . . . , H do
5: Observe current state Si = S(t)

i
.

6: Intercept the agent’s intended action Xi = X(t)
i

.
7: Pick a new action X ↓(t)

i
= argmaxx Q̂

(i)
t↔1


S(t)
i
, X(t)

i
, x


.

8: Perform do(Xt ⇐ X ↓(t)
i

) and receive reward Y (t)
i

.
9: Update data H(t) = H(t↔1) ↗


S(t)
i
, X(t)

i
, X ↓(t)

i


.

10: end for
11: end for

intercepts the agent’s intended action X ↓

i
= X(t)

i
. The algorithm then computes an alternative action

X(t)
i

by maximizing the empirical Q-values Q̂t↔1 computed from data H(t). Finally, it performs
the selected action do(Xt ⇐ X ↓(t)

i
) and receives a subsequent reward Y (t)

i
.

Following the derivation in (Azar et al., 2017), it is possible to show that Ctf-UCBVI, empow-
ered with counterfactual randomization, is able to obtain an optimal counterfactual policy in #CTF

while achieving a sublinear regret. Formally,

Theorem 18 (Regrets of Ctf-UCBVI in MDPs) For an MDP ↘M→,#,R≃ with horizon H ↔ N,
let # be a counterfactual policy space {↘Xi, {Si, Xi}≃}Ni=1, R(Y ) =

∑
H

i=1 Yi be a cumulative
reward function over bounded reward signals Yi ↔ [0, 1]. It holds the regret of Ctf-UCBVI in
SCM M→ after T > 1 episodes is bounded by

R(T,M→) ≤ CH3/2
√

|D(S)△ D(X)|T log(T ) (427)

where C is a universal constant; D(S) and D(X) are domains of every state Si and action Xi,
i = 1, 2, . . . , respectively. ↭

On the other hand, without considering the agent’s intended action, online algorithms performing
randomized experiments may never be able to converge to an optimal counterfactual policy. The
linear regret could occur when the intended action Xi reveals valuable information about the unob-
served confounder Ui, as highlighted by the next proposition.

Corollary 5 Let # be an experimental policy space {↘Xi, {Si, Xi}≃}Hi=1, R(Y ) =
∑

H

i=1 Yi be a
reward function over bounded reward signal Yi ↔ [0, 1]. There exists an MDP environment M→

such that for any algorithm (e.g., UCBVI) optimizing over space # after T > 1 episodes is lower
bounded by

R(T,M→) ⇑ 0.08HT (428)

↭
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Algorithm 11 UCB-Q-values

Require: Data H(t) =

S(i),X(i),X ↓(i),Y (i)

t

i=1

1: For all s, s↓ ↔ D(S) and all x, x↓, x↓↓ ↔ D(X), compute from data H(t)

Nt(s, x, x
↓) =

t∑

k=1

H∑

i=1

1

S(k)
i

= s,X(k)
i

= x,X ↓(k)
i

= x↓


(421)

N ↓

t(s, x, x
↓) =

t∑

k=1

H∑

i=1

Y (k)
i

1

S(k)
i

= s,X(k)
i

= x,X ↓(k)
i

= x↓


(422)

Nt(s, x, x
↓, s↓, x↓↓) =

t∑

k=1

H∑

i=1

1

S(k)
i

= s,X(k)
i

= x,X ↓(k)
i

= x↓, S(k)
i+1 = s,X ↓(k)

i+1 = x↓↓


(423)

2: Let K = {(s, x, x↓) ↔ D(S)△ D(X)△ D(X) | Nt(s, x, x↓) > 0}.
3: For (s, x, x↓) ↔ K, compute estimates

T̂t(s, x, x↓, s↓, x↓↓) =
Nt(s, x, x↓, s↓, x↓↓)

Nt(s, x, x↓)
, R̂t(s, x, x

↓) =
N ↓

t(s, x, x
↓)

Nt(s, x, x↓)
(424)

4: Initialize V (H+1)
t

(s, x) = 0, Q(H)
t

(s, x, x↓) = H for all (s, x, x↓) ↔ D(S)△ D(X)△ D(X).
5: for i = H,H ⇒ 1, . . . , 1 do
6: For all (s, x, x↓) ↔ K, compute function Q(h)

t
as

Q(h)
t

(s, x, x↓) = min

Q(h)

t↔1(s, x, x
↓), H, R̂t(s, x, x

↓) +

T̂tV (h+1)

t


(s, x, x↓) + b(h)

t
(s, x, x↓)



where the bonus function b(h)
t

is defined as

b(h)
t

(s, x, x↓) = 7H

√
ln (5|D(S)△ D(X)△ D(X)|T/ϱ)

Nt(s, x, x↓)
(425)

7: Let V (h)
t

(s, x) = maxx↓ Q(h)
t

(s, x, x↓).
8: end for

Similarly to the MAB setting, the above proposition implies that there is an MDP environment
such that for any online algorithm following Fisherian randomization, it suffers at least a constant
regret on average per every step of the interaction. Therefore, these existing algorithms are gen-
erally incapable of obtaining an optimal counterfactual policy in MDPs while achieving a sub-
linear regret. Fortunately, one could augment these RL algorithms with counterfactual reasoning
by replacing standard interventions with counterfactual interventions. The proposed Ctf-UCBVI
(Alg. 10) demonstrates this augmentation procedure in the UCBVI algorithm. The following simu-
lation demonstrates the performance of Ctf-UCBVI in a simple MDP environment.
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(a) (b)

Figure 47: Performance of standard UCBVI performing atomic interventions and the augmented
Ctf-UCBVI using counterfactual interventions.

Environment Structural Assumptions
Optimality

Autonomy
#EXP #CTF

MAB
NUC ✁ ✁ ✁

- ✂ ✁ ✂

MDP
NUC ✁ ✁ ✁

- ✂ ✁ ✂

Table 22: The performance of counterfactual policies #EXP and experimental policies #CTF in canon-
ical environments including MABs and MDPs.

Experiment 10 We evaluate standard UCBVI that attempts to maximize rewards based on inter-
ventional transitional probabilities Texp and reward function Rexp, while it ignores the agent’s in-
tended actions. We also evaluate the augmented Ctf-UCBVI algorithm described in Alg. 10 which
attempts to maximize cumulative reward based on counterfactual transitional probabilities Tctf and
reward function Rctf. It actively accounts for the agent’s intended actions by performing coun-
terfactual interventions. All reported simulations are partitioned into rounds of T = 5000 trials
averaged over N = 1000 repetitions.

The detailed parameterization of the MDP environment with unobserved confounders is pro-
vided in Eq. 5 where the decision horizon H = 10. Fig. 47 shows the cumulative regret and proba-
bility of selecting optimal arms for evaluated algorithms. Simulation results support our proposed
online RL algorithms using counterfactual interventions. Analyses revealed that standard UCBVI
suffered from a linear regret. Meanwhile, the augmented Ctf-UCBVI achieved a sublinear regret,
showing that it is able to obtain an optimal counterfactual policy actively accounting for the agent’s
intended actions in the decision-making process. ↭
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7.3 The Tradeoff between Autonomy and Optimality

We have established that an agent following a counterfactual policy generally outperforms an in-
terventional one, as summarized in Table 22. The “Environment” column lists canonical decision-
making environments covered in this section, such as MABs and MDPs. The “Structural Assump-
tions” column details additional structural assumptions applied to the environment, including no
unmeasured confounding (NUC, Def. 13). The “Optimality” column indicates whether optimizing
within the corresponding policy space could lead to an optimal decision strategy, using an optimal
counterfactual policy in #CTF as the baseline. Here, a check (cross) mark in #EXP under “Optimal-
ity” denotes whether experimental policies are capable (or not) of achieving optimal performance in
the respective environment, compared to their counterfactual counterparts. In environments where
unobserved confounders generally exist, full autonomy (as indicated in the “Autonomy” column)
is attainable only when it does not compromise optimality. This occurs when the performance of
experimental policies #EXP and counterfactual policies #CTF coincide.

This suggests a fundamental tradeoff between optimality and autonomy in the design of RL
systems. While full autonomy is preferable, the agent could potentially achieve superior perfor-
mance by leveraging a human’s capabilities through counterfactual reasoning. For instance, as
demonstrated in Example 54, a counterfactual policy in #CTF characterizes interactions in a semi-
autonomous system that incorporates the human operator’s intended action as input. On the other
hand, deploying an interventional policy in #EXP eliminates the need for a human operator in the
underlying environment, resulting in a fully autonomous system. Consequently, Thm. 16 implies
that while full autonomy is preferable, the agent could potentially achieve better performance by
leveraging the human’s intuition through a counterfactual decision criterion.

We will model this autonomy-optimality tradeoff as a constrained transfer of control (TOC)
problem such that a decision system tries to maximize its rewards while repeatedly switching be-
tween experimental and counterfactual policies, subject to a budget constraint over the total time of
using the agent’s intended action, i.e., no more than ϱ ↔ (0, 1) ratio of the total running time. For
instance, an autonomous vehicle could ask for the human driver’s input when necessary, but no more
than ϱ = 10% of the total expected driving time. Formally, we first define hybrid policies, which is
a restricted family of counterfactual policies #CTF that contains experimental policies #EXP.

Definition 27 (Hybrid Policies) For an MDP environment M→, a hybrid policy space #HYB is a
subset of counterfactual policies #CTF. For any hybrid policy ω = (ω1, . . . ,ωH) in #HYB, its deci-
sion rule ωi = (fi ⊥ gi) is a composition of functions fi, gi such that, for i = 1, . . . , H ,

• gi is a probability distribution mapping from the current state Si to an extended action
Ai ↔ {0, 1} where “0” stands for experimental decision criterion and “1” for counterfactual
decision criterion. That is,

Ai ↖ gi (Ai | Si) (429)

• fi is a probability distribution mapping from the current state Si, the intended action Xi, and
the extended acton Ai to the realized action X ↓

i
. Moreover, the extended action Ai decides

the realized action Xi as follows:

fi
(
Xi | Si, X

↓

i, Ai

)
=

{
fi (Xi | Si) , if Ai = 0

fi (Xi | Si, X ↓

i
) , if Ai = 1

(430)
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S1

X1 X’1

A1 Y1

S2

X2 X’2

A2 Y2

S3

X3 X’3

A3 Y3

Figure 48: Causal diagram for the MDP environment induced by a hybrid policy where extended
actions Ai are added to control the modes of experimental and counterfactual decision criteria.

↭

In words, the decision-making process of a hybrid policy consists of two phases. First, it determines
an extended action Ai ↔ {0, 1} based on the current state Si. Here, Ai is a switch variable indicating
whether to utilize counterfactual reasoning (Ai = 1), or stay in the standard experimental decision
criterion (Ai = 0). The human’s intuition Xi is included as an evidence to decide the realized
decision X ↓

i
if Ai = 1; otherwise, it is ignored. Fig. 48 shows the augmented causal diagram of

an MDP environment induced by a hybrid policy where extended actions Ai are added to control
the modes of decision-making criterion. Fix a budget ϱ ↔ [0, 1]. For a hybrid policy ω that does
not apply counterfactual decision criterion with a probability higher than ϱ as the decision stage i
grows, it must satisfy the following constraint:

lim
i≃↗

Pω (Ai = 1) ≤ ϱ. (431)

If the above equation holds, this means that an agent following policy ω will not utilize the human’s
intuition more than ϱ △ 100% of the total running time in long-term.

Example 57 Recall the MDP environment M→ described in Eq. 5, where the decision horizon
H = ∈. Let a hybrid policy ω = (ω1(X1 | X1, S1),ω2(X2 | X2, S2), . . . ) such that for every
i = 1, 2, . . . , the decision rule ωi is defined as,

ωi ↫ Xi ⇐ ¬X ↓

i ·Ai + ¬Si · (1⇒Ai) (432)

where the extended action Ai is drawn over the binary domain {0, 1} such that P (Ai = 1) = 0.1.
Evidently, an agent following such a hybrid policy ω must satisfy Pω (Ai = 1) = 0.1 for every
i = 1, 2, . . . . That is, the agent will not utilize the intended action for more than 0.1△100% of total
running time in long term. ↭

We next introduce a planning algorithm to solve for an optimal hybrid policy in an MDP envi-
ronment subject to the budget constraint in Eq. 431. Our previous discussion provided dynamic
programming approaches (e.g., value iteration and policy iteration) for optimizing the discounted
expected cumulative rewards over counterfactual policies. Here, we first describe an alternative
planning strategy using linear programming. Formally, optimizing discounted rewards over coun-
terfactual policies #CTF in an MDP environment M→ can be reduced to solving the following equiv-

144



CAUSAL REINFORCEMENT LEARNING

alent linear program (LP) (d’Epenoux, 1963; Kallenberg, 1983),

max
∑

s,x,x↓

Rctf(s, x, x
↓)φ(s, x, x↓)

subject to →s, x ↔ S △ X , φ(s, x, x↓) ⇑ 0
∑

x↓

φ(s, x, x↓) = ε (s, x) + ϑ
∑

s↓,x↓↓,x↓

φ
(
s↓, x↓↓, x↓

)
Tctf(s, x, x

↓, s↓, x↓↓)

(433)

where ε (s, x↓) = P (S(1) = s,X(1) = x↓) specifies the observational distribution over the initial
state and action. The optimization variables φ(s, x, x↓) are called the occupation measure of a
policy, where φ(s, x, x↓) is the total discounted number of times action Xi = x is realized in the
observed state Si = s, provided with the intended action Xt = x. An optimal counterfactual policy
in #CTF is stationary and can be computed from a solution to the above LP as, for i = 1, 2, . . . ,

ω→

i (x
↓|s, x) = φ(s, x, x↓)∑

x↓ φ(s, x, x↓)
. (434)

Next we extend the LP formulation in Eq. 433 to solve for an optimal hybrid policy under a budget
constraint. Let optimization variables φ(s, x, x↓, a) denote the occupation measure of a hybrid
policy over the realized action X ↓

i
= x↓, observed state Si = s, the intended action Xt = x,

and the extended action Ai = a. Since the extended action Ai does not directly affect the reward
signal Yi and next state Si+1, the transition probabilities Tctf and reward function Rctf induced by
hybrid policies remain the same as those induced by counterfactual policies. An unconstrained
hybrid policy optimizing the MDP environment is thus obtainable by solving the following LP,

max
∑

s,x,x↓,a

Rctf(s, x, x
↓)φ(s, x, x↓, a)

subject to →s, x ↔ S △ X , →a ↔ {0, 1}, φ(s, x, x↓, a) ⇑ 0
∑

x↓,a

φ(s, x, x↓, a) = ε (s, x) + ϑ
∑

s↓,x↓↓,x↓,a

φ
(
s↓, x↓↓, x↓, a

)
Tctf(s, x, x

↓, s↓, x↓↓)

(435)

Meanwhile, the budget constraint over the intended action in Eq. 431 could be written as:
∑

s,x,x↓

φ
(
s, x, x↓, 1

)
≤ ϱ

∑

s,x,x↓,a

φ
(
s, x, x↓, a

)
(436)

φ (s, x, x↓, 0)∑
x↓ φ (s, x, x↓, 0)

=

∑
x
φ (s, x, x↓, 0)∑

x,x↓ φ (s, x, x↓, 0)
(437)

∑
x↓ φ (s, x, x↓, a)∑
x↓,a φ (s, x, x↓, a)

=

∑
x,x↓ φ (s, x, x↓, a)

∑
x,x↓,a φ (s, x, x↓, a)

(438)

Among the above equations, Eq. 436 ensures that for an agent operating in the MDP environment,
its total time steps applying counterfactual decision criterion (Ai = 1) is no more than ϱ△ 100% of
the total time steps (discounted so that future visits count less than present ones). Eq. 437 ensures
that when an agent applies the experimental decision criterion (Ai = 0), the policy ω does not
take the intended action X ↓

i
= x↓ as an input. Finally, Eq. 438 reflects the functional constraint

145



BAREINBOIM, ZHANG, AND LEE

(a) (b)

Figure 49: Simulations comparing the performance (a) and occupancy composition (b) of exp and
ctf decision criteria; y-axis in (b) represents the ratio of total time performing the experimental or
counterfactual decision criterion.

that the extended action Ai only depends on the current state Si. An optimal hybrid policy in
#HYB satisfying the ϱ-budget constraint is thus obtainable by solving the LP specified in Eq. 435
subject to additional constraints in Eqs. 436 - 438. This mathematical program forms a polynomial
optimization problem (Tuy et al., 1998), which is neither linear nor convex. Despite its difficulty,
several efficient methods of polynomial optimization can be used in this case, for example, the RLT
method (Sherali and Adams, 2013), and a SDP relaxation method (Lasserre, 2001).

Experiment 11 We evaluate the performance of optimal hybrid policies in an MDP environment
subject to different budget constraints. Recall that ϱ is a constraint over the ratio between the total
time of performing the counterfactual decision criterion (using the intended action) and the total
running time of the system. We compute policies for three hybrid agents with the ratio constraint
ϱ set to 0.1, 0.5, 0.9, labeled as hyb1, hyb5 and hyb9, respectively. We also include the best ex-
perimental and counterfactual policies in #EXP and #CTF as the baseline, labeled as exp and ctf
respectively. We use value iteration for MDP planning. As for hybrid policy planning, we employ
the SDP relaxation method for polynomial optimization. SDPs are constructed using SparsePOP
(Waki et al., 2008) and solved with SeDuMi (Sturm, 1999).

Detailed parameterization of the MDP environment with unobserved confounders is provided
in Eq. 5. Fig. 49a shows the discounted cumulative reward for all algorithms. Simulation results
reveal that the performance of hybrid policies converges to the best possible counterfactual policy as
ϱ ↙ 1. In particular, hyb1 (ϱ = 0.1) shows limited performance improvement over the experimental
policy exp, while hyb9 (ϱ = 0.9) experiences higher cumulative reward, which is comparable to the
best counterfactual policy ctf. Predictably, the performance of hyb5 (ϱ = 0.5) lies in between
hyb1 and hyb9. We also show the composition graph of experimental and counterfactual decision
criteria in 49b. Two hybrid policies with ϱ = 0.3, 0.7 are included. The simulations support that
the polynomial optimization reduction worked as expected, where hyb1 and hyb3 tend to stay in the
autonomous mode. In contrast, hyb7 and hyb9 are more semi-autonomous and actively account for
the human’s intended action. Unsurprisingly, hyb5 kept neutral. ↭
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This section investigated a novel interaction regime, called counterfactual randomization, that
allows the agent to actively account for human intuition during decision-making using counterfac-
tual reasoning. Our analysis revealed that in almost all cases, a standard agent employing Fishe-
rian randomization is constrained to sub-optimal behaviors; while a counterfactual agent is able to
consistently achieve better performance. More generally, our results implied that human intuition
should be kept “in the loop” as long as it has access to information about the tasks at hand, even
after the agent completes its learning and builds a model of the environment. To resolve the tension
between the autonomy and optimality of the system, we proposed a novel RL task subject to a bud-
get constraint. Automated decision-making systems are playing an increasingly prominent role in
society, and we hope this work constitutes a step towards a better understanding of the principles
underlying human-machine interactions.

8. Causal Imitation Learning (CRL Task 4)

Reinforcement Learning (RL) has been deployed and shown to perform exceptionally well in highly
complex environments in the past decades (Sutton and Barto, 1998; Mnih et al., 2013; Silver et al.,
2016; Berner et al., 2019; Kumar et al., 2022). One critical assumption behind many of the classical
RL algorithms is that the reward function could be well-specified. In many real-world applications,
however, it might be impractical to design a suitable reward function that evaluates each and every
scenario (Randløv and Alstrøm, 1998; Ng et al., 1999). For example, in the context of human
driving, it is challenging to design a precise reward function, and experimenting in the environment
could be ill-advised; still, watching expert drivers operate is usually feasible.

In the context of reinforcement learning, the imitation learning (IL) paradigm investigates the
problem of how an agent should behave and learn in an environment with an unknown reward
function by observing demonstrations from a human expert (Argall et al., 2009; Billard et al., 2008;
Hussein et al., 2017; Osa et al., 2018). Formally, a causal imitation learning task is characterized by
the following signature.

Timitate =

I = see,A = G,# = {↘Xi,Si≃}Hi=1 ,R = ∋


. (439)

Figure 50: The tail light of
the front car is unobserved in
highway (aerial) drone data.

This means that the agent will try to find a policy ω→ such that

ω→ = argmax
ω↑!EXP

EM
→

ω


R (Y )

G,Dobs ↖ P (V ),R = ∋

, (440)

the distinct feature of the task is that the reward function measuring
the system’s performance is not fully specified and is unknown from
the learner’s perspective.

An imitation learning agent attempts to learn a policy in space
# from the demonstration data generated by a demonstrator (e.g.,
a driver, a physician), following a different behavioral policy. For every episode t = 1, . . . , T ,
the agent observes the demonstrator operating in the underlying environment M→, and receives
trajectories V (t) ↖ P (V ) drawn from the observational distribution. It could also access certain
structural assumptions of the environment, e.g., a causal diagram A = G. Compared with off-policy
learning and causal identification tasks, the departing point of imitation learning is that the reward
function is not revealed to the learning agent and is not well-specified (R = ∋), posing a significant
learning challenge.
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Corollary 6 Let endogenous variables X,Y ↑ V . If detailed parametrization of the reward
function R : D(Y ) ∞↙ R is unknown, the expected reward Eω [R(Y )] for any policy ω over actions
X is not identifiable from a causal diagram G.

The following example demonstrates non-identifiability posed by an unknown reward function.

Example 58 For concreteness, consider a learning scenario depicted in Fig. 50, describing tra-
jectories of human-driven cars collected by drones flying over highways (Krajewski et al., 2018;
Etesami and Geiger, 2020). Using such data, we want to learn a driving policy ω(x) deciding on
the acceleration (action) X of the following car to optimize the distance Y between the following
car and the front car. In reality, the human demonstrator’s behaviors are affected by an unobserved
noise U representing the operational error. The driver’s performance is evaluated by an unknown
polynomial reward function R(Y ) over the car distance Y .

More specifically, consider an MAB environment M→ described by the tuple

M→ = ↘U = {U},V = {X,Y },F , P (U)≃ (441)

where the structural functions F are given by:

F =

{
X ⇐ U,

Y ⇐ X
(442)

U ↔ {0, 1} is a binary variable drawn from the exogenous distribution P (U = 1) = 0.9. Due to
the uncertainty of the reward function R(Y ), the expected reward Eω [R(Y )] for any driving policy
ω(X) is not identifiable from the observational distribution P (X,Y ).

To make this argument more precise, let R(Y ) = εY be a linear function with an unknown real
coefficient ε ↔ R. For any policy ω(X), the expected reward Eω [R(Y )] is given by

Eω [R(Y )] = εEX↘0 [Y ]ω(X = 0) + εEX↘1 [Y ]ω(X = 1) (443)
= εω(X = 1) (444)

The last step holds since values of Y are determined by Y ⇐ X . Note that every coefficient ε ↔ R
defines a unique expected reward Eω [R(Y )]. Since ε is not a parameter of the SCM M→, changing
values of ε does not affect the evaluation of the observational distribution P (X,Y ). This means the
expected reward Eω [R(Y )] is not uniquely discernible from the observational distribution P (X,Y )
in MAB models, i.e., Eω [R(Y )] is not identifiable if the reward function R is unknown. ↭

Corol. 6 implies that when the reward function R is unknown, it is infeasible to uniquely determine
the expected reward Eω [R(Y )] from the observational distribution P (V ) in the causal diagram G.
This precludes direct applications of causal identification approaches described in Sec. 4.3, includ-
ing do-calculus learning (Pearl, 2000), Identify algorithm (Tian, 2002), and soft-do-calculus
learning (Correa and Bareinboim, 2020a). To circumvent issues of non-identifiability, a common
approach is to assume that the observed trajectories are generated by an “expert” demonstrator with
satisfactory performance E [R(Y )], e.g., no less than a certain threshold (E [R(Y )] ⇑ ↼ ). If we
could find a policy ω that performs at least as well as the expert’s policy, the agent’s performance is
also guaranteed to be satisfactory.
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Definition 28 For a CDM ↘M→,#,R≃, an imitating policy ω→ is a policy such that its expected
reward is lower bounded by the expert’s reward, i.e.,

Eω→ [R(Y );M→] ︷︷ ︸
Agent’s Performance

⇑ E [R(Y );M→] ︷︷ ︸
Expert’s performance

(445)

↭

In words, the right-hand side represents the expert’s performance that the agent wants to achieve,
while the left-hand side represents the real expected reward experienced by the agent evaluated
in the underlying environment M→. We will call this the fundamental equation of the imitation
learning problem, which the agent aims to solve toward finding a policy ω→ that could perform at
least as well as the demonstrating expert.

The literature can be partitioned into two major learning modalities that realize imitation :

• behavioral cloning (BC) (Widrow, 1964; Pomerleau, 1989; Muller et al., 2006; Mülling et al.,
2013; Mahler and Goldberg, 2017), and

• inverse reinforcement learning (IRL) (Ng et al., 2000; Ziebart et al., 2008; Ho and Ermon,
2016; Fu et al., 2017).

Specifically, BC methods attempt to directly mimic the expert’s behavior policy by learning a map-
ping from the observed states to the expert’s action via supervised learning. On the other hand, IRL
methods first learn a surrogate reward function under which the expert’s behavior policy is opti-
mal. The imitator then obtains a policy using standard off-policy learning methods (see Sec. 4.1)
to maximize the learned reward function. Under some common assumptions, both BC and IRL can
obtain policies that achieve the expert’s performance (Ng et al., 2000; Abbeel and Ng, 2004). When
additional parametric knowledge about the reward function is provided, IRL may produce a policy
that outperforms the expert’s in the underlying environment (Syed and Schapire, 2008; Li et al.,
2017; Yu et al., 2020).

Despite the performance guarantees provided by existing BC and IRL methods, these are con-
tingent on the assumption that the expert’s input observations match those available to the imitator.
On the other hand, when some expert’s observed states remain latent to the imitator, unobserved
confounders (UCs) are generally present in the demonstration data, violating the NUC assumption
(Def. 13). Perhaps surprisingly, we will show later in this section, when the NUC does not hold,
naively applying BC or IRL methods does not necessarily lead to satisfactory performance, even
though the expert itself behaves optimally. After all, it is unclear how to perform imitation learning
with unobserved confounding in the expert’s demonstrations. This section answers this question
and, more broadly, investigates the problem of imitation learning through causal lenses. We will
provide novel algorithms capable of learning an imitating policy that performs at least as well as the
expert from the demonstration data while allowing the presence of UCs. In particular, our contribu-
tions are summarized as follows.

• Confounding Robust BC. Sec. 8.1 introduces a sufficient and necessary graphical criterion
for determining the feasibility of BC-type learning procedure from demonstration data and
qualitative knowledge about the data-generating process represented as a causal diagram.
When such a condition holds, an imitating policy is obtainable using standard BC algorithms
to achieve the expert’s performance.
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• Confounding Robust IRL. Sec. 8.2 derives a new graphical condition for deciding whether
an imitating policy can be computed from the available data and knowledge, which provides a
robust generalization of current IRL algorithms to general settings where the NUC assumption
does not hold. These algorithms include GAIL (Ho and Ermon, 2016), and MWAL (Syed and
Schapire, 2008).

8.1 Causal Behavioral Cloning

We first consider the behavioral cloning approach, where the agent attempts to learn an imitating
policy by mimicking conditional observational distributions P (Xi | Zi) over domains of every
action Xi given a subset of input states Zi ↑ Si. Formally

Definition 29 (Behavioral Cloning Policy) Let # = {↘Xi,Si≃}Hi=1 be a policy space, and P (V )
be an observational distribution. A behavioral cloning policy ω ↔ # is an expression in terms of
P (V ) such that for every i = 1, . . . , H , ωi(Xi | Zi) = P (Xi | Zi) for some Zi ↑ Si.63 ↭

There exist algorithms in imitation learning literature to perform behavioral cloning from observed
demonstration data (Widrow, 1964; Pomerleau, 1989; Muller et al., 2006; Mahler and Goldberg,
2017). The following example illustrates BC learning in an MAB environment.

Example 59 (Behavioral Cloning in MAB) Consider again the MAB environment M→ described
in Eq. 442 concerning with learning a driving policy ω(X) following the front car. Since ω(X)
belongs to a policy space # = {↘X, ∋≃}, a behavioral cloning policy ωBC(X) is given by

ωBC(X = 1) = P (X = 1) (446)
= P (U = 1) (447)

Computing the above equation gives ωBC(X = 1) = 0.9. Recall the reward function R(Y ) ⇐ εY is
a linear function with an unknown coefficient ε. Evaluating the expected reward R(Y ) in submodel
M→

ωBC
gives, following the decomposition in Eq. 444:

EωBC [R(Y )] = εωBC(X = 1) (448)
= 0.9ε (449)

We will next show that the BC policy ωBC achieves the demonstrator’s performance. By evaluating
the expected reward R(Y ) in SCM M→, we obtain

E [R(Y )] = εE [Y ] (450)
= εP (U = 1) (451)

Computing the above equation gives the evaluation of the demonstrator’s performance E [R(Y )] =
0.9ε, which matches the performance of BC policy ωBC. ↭

63. There could exist multiple behavioral policies in a policy space ! simulating the same conditional distributions
P (Xi | Zi). For instance, for ! = {↔X, ↖↗} and P (X = 1) = 0.9, behavioral policies ω,ω

↓
↘ ! are given by

ω(X = 1) = 1{U ⇐ 0.9} and ω
↓(X = 1) = 1{U ′ 0.1} where U is an uniform distribution over [0, 1].
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More generally, behavioral cloning is able to imitate the expert’s performance when the NUC as-
sumption holds (Def. 13) and the input states Si for every action Xi are sufficiently large (to be
defined). More precisely, provided with the NUC, for any policy ω ↔ #, the expected reward
Eω [R(Y )] could be decomposed as, following the IPW identification formula (Thm. 2),

Eω [R(Y );M→] =
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]P (x̄H , s̄H)
H

i=1

ωi (xi | si)
P (xi | x̄i↔1, s̄i)

. (452)

Let ω be a behavioral cloning policy in # such that ωi(Xi | Si) = P (Xi | Si) for action Xi. The
above equation could be written as

Eω [R(Y );M→] =
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]P (x̄H , s̄H)
H

i=1

P (xi | si)
P (xi | x̄i↔1, s̄i)

. (453)

Let the input states Si for every action Xi be sufficiently large such that the following independence
relationships hold in the observational distribution P (V ),

(
Xi ′′ X̄i↔1, S̄i↔1 | Si

)
→i = 1, . . . , H. (454)

One example for the above condition to hold is when states Si contain all observed parents PAi for
action Xi. Since the NUC holds, values of every Xi are determined by independent noise Ui given
input states Si. Eq. 453 could be further written as

Eω [R(Y );M→] =
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]P (x̄H , s̄H)
H

i=1

P (xi | si)
P (xi | si)

(455)

=
∑

x̄H ,s̄H

E [R(Y ) | x̄H , s̄H ]P (x̄H , s̄H) (456)

= E [R(Y )] (457)

The last step follows by summing over states and actions S̄H , X̄H . In words, the behavior policy
ω ↔ # achieves the expert’s performance. Formally,

Theorem 19 (Behavioral Cloning from NUC) Let ↘M→,#,R≃ be a CDM where # =
{↘Xi,Si≃}Hi=1 and R : %(Y ) ∞↙ R. Consider the following conditions:

1. The NUC condition (Def. 13) holds for the policy space # in SCM M→;

2. For every action Xi, i = 1, . . . , H , its endogenous parents PAi ↑ Si.

Then, there is a behavioral cloning policy ω ↔ # (Def. 29), where the expected reward Eω [R(Y )]
matches the expert’s performance evaluated in M→,

Eω [R(Y );M→] = E [R(Y );M→] . (458)

Moreover, such a policy ω is given by ωi(X1 | Si) = P (Xi | Si) for every i = 1, . . . , H . ↭

Example 59 shows that behavioral cloning is able to achieve the expert’s performance in an
MAB environment. Our next example demonstrates behavioral cloning in the sequential setting.
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Example 60 (Behavioral Cloning in DTR) Consider the 2-stage DTR ↘M→,#, Y ≃ where SCM
M→ is described by Eq. 78 with coefficients ε1 = ε2 = 0; and the policy space # =
{↘X1, {S1}≃ , ↘X2, {S1, X1, S2}≃}. Evidently, Condition 1 of Thm. 19 is satisfied since NUC holds
in this model (please revisit Example. 25). Also, Condition 2 of Thm. 19 holds since the endoge-
nous parents of the actions X1, X2 are PA1 = {S1} and PA2 = {S2}, respectively, which are
both contained in the input states. Applying Thm. 19 implies the learner could achieve the expert’s
performance with a behavioral cloning policy ω = (ω1,ω2) given by

ω1(X1 | S1) = P (X1 | S1) , ω2(X2 | S1, X1, S2) = P (X2 | S1, X1, S2) (459)

Evaluating the above equation gives decision rules

ωi : Xi ⇐ 1{3Si + Ui > 0}, →i = 1, 2 (460)

where Ui, i = 1, 2, are independent variables drawn from a logistic distribution Logistic(0, 1).
It follows from Eq. 78 submodel M→

ω coincides with SCM M→. As a consequence, we must have
Eω [Y ] = E[Y ], i.e., the learned policy achieves the expert’s performance. ↭

However, the behavioral cloning strategy does not always achieve the expert’s performance in all
environments, especially when the input variables of the imitator’s and the expert’s policy mismatch,
and unobserved confounders generally exist in the demonstration data. Our next example illustrates
the challenges of unobserved confounding.

Example 61 (Behavioral Cloning fails without NUC) Consider again the driving scenario de-
scribed in Example 58. Suppose now that the distance Y between the demonstrator and font car is
affected by the deceleration U of the front car. Also, the human driver perceives the deceleration U
of the front car through its tail light and determines the action X . However, since the tail light is
not recorded in the drone footage, variable U is thus unobserved from the imitator’s perspective.

More specifically, this environment is described by an SCM M defined as

M = ↘U = {U},V = {X,Y },F , P (U)≃ (461)

where structural functions F are given by

F =

{
X ⇐ ¬U,
Y ⇐ X ⇔ U

(462)

U ↔ {0, 1} is a binary variable drawn from the exogenous distribution P (U = 1) = 0.5. Since U
is now an observed confounder affecting both action X and outcome Y , the NUC condition does
not hold in this environment M.

Let the driver’s performance be measured by a reward function R(Y ) = εY with an unknown
coefficient ε ↔ R. Evaluating the expected reward in M gives:

E [R(Y )] = εE [Y ] (463)
= εE [X ⇔ U ] (464)
= εE [¬U ⇔ U ] (465)
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The last step holds since X ⇐ ¬U in SCM M→. Computing the above equation gives the expert’s
performance E [R(Y )] = ε.

We now apply the behavioral cloning strategy in Thm. 19 and see if it imitates the expert’s
performance even when the NUC does not hold. Mimicking the marginal distribution P (X) results
in a behavioral policy ωBC(X) such that

ωBC(X = 1) = P (X = 1) (466)
= P (U = 1) (467)

Computing the above equation gives ωBC(X = 1) = 0.5, i.e., the imitator randomly accelerates the
demonstrator car. Evaluating the expected reward R(Y ) in submodel MωBC implies

EωBC [R(Y )] =
∑

x

εEx [Y ]ωBC(x) (468)

= 0.5ε (EX↘0 [Y ] + EX↘1 [Y ]) (469)

Since values of Y are given by Y ⇐ X ⇔ U , we further have

EωBC [R(Y )] = 0.5εE[0⇔ U + 1⇔ U ] (470)
= 0.5ε (471)

Suppose the actual coefficient ε > 0 is positive. The imitator’s performance EωBC [R(Y )] = 0.5ε
is far from the expert’s performance E [R(Y )] = ε. ↭

In words, behavioral cloning does not guarantee to achieve the expert’s performance when the NUC
condition does not hold, which calls for alternative cloning strategies. We will next study a more
generalized imitation setting from the expert’s demonstration, provided with a causal diagram en-
coding the underlying qualitative knowledge about the environment.

8.1.1 BACKDOOR CRITERION FOR IMITATION

Our discussion starts with a variant of the sequential backdoor criterion (Def. 15) that allows the
learner to imitate the expert’s performance (Zhang et al., 2020; Kumor et al., 2021). Recall that for
any policy ω ↔ #, Gωi+1,...,ωH

, i = 0, . . . , H ⇒ 1, is a manipulated graph obtained from the causal
diagram G by replacing incoming arrows of every action node Xj ↔ {Xi+1, . . . , XH}, with arrows
from input states in Sj to Xj . In the context of imitation learning, Gωi+1,...,ωH

can be seen as G with
all future actions after the i-th stage of the intervention is already encoded in the graph. Formally,
the imitation backdoor criterion is defined as follows:

Definition 30 (Imitation Backdoor Condition) Let G be a causal diagram and X,Y ↔ V be
subsets of variables. A policy space # = {↘Xi,Si≃}Hi=1 is said to satisfy the imitation backdoor
condition w.r.t. Y in G (for short, # is imitation admissible) if for every policy ω ↔ #, every action
Xi ↔ X , one of the following conditions hold:

1. Xi is not an ancestor of Y in Gωi+1,...,ωH
, i.e., X ▽↔ An(Y )Gωi+1,...,ωH

;

2. Si d-separates all backdoor path from node Xi to nodes in Y in Gωi+1,...,ωH
, i.e., (Y ′′

Xi|Si) in GXi,ωi+1,...,ωH
. ↭

153



BAREINBOIM, ZHANG, AND LEE

Z

X1 W X2 Y

(a)

Z

X1 W X2 Y

(b)

Z

X1 W X2 Y

(c)

Figure 51: A causal diagram and its manipulated subgraphs.

The first condition in Def. 30 corresponds to the case where an action at Xi does not affect the
value of Y once future actions are taken. Since Gωi+1,...,ωH

has modified parents for future actions
X̄i+1:H , the value of Xi might no longer be relevant at all to Y , i.e. Y would get the same input
distribution no matter what policy is chosen for Xi. This allows Xi to fail Condition (2), meaning
that it is not clonable by itself, but still be part of a clonable set X , because future actions can shield
Y from errors made at Xi. The second condition is similar to the backdoor criterion where Zi is a
set of variables that effectively encodes all information relevant to imitating Xi with respect to Y .
In other words, if the joint distribution P (Zi, Xi) over the observed states Zi and action Xi matches
when both expert and imitator are acting, then an adversarial reward function Y cannot distinguish
between the two and imitation could be successfully realized.

Example 62 (Imitation Backdoor ▽̸ Sequential Backdoor) We will illustrate the distinction be-
tween Conditions (1) and (2) in the causal diagram G of Fig. 51a. Consider a policy space

#1 = {↘X1, ∋≃, ↘X2, {Z}≃} . (472)

For every policy (ω1,ω2) ↔ #1, the manipulated diagram Gω2 is shown in Fig. 51b. As for action
X1, since its input states S1 = ∋, there is no valid adjustment set that can d-separate X1 from Y .
However, since the policy for action X2 uses Z as input instead of W or X1 (i.e. ω2(X2 | Z)), X1

will no longer be an ancestor of Y in Gω2 and Condition (1) holds. In effect, the action made at X2

ignores the mistakes made at X1 due to not having access to unobserved confounders when taking
action. Conditioning on covariate node Z d-separates all backdoor paths between X2 and Y in the
subgraph G, satisfying Condition (2). Therefore, the policy space #1 is imitation admissible w.r.t.
the reward signal Y in the causal diagram G. ↭

An interesting observation follows from the above example. While #1 = {↘X1, ∋≃, ↘X2, {Z}≃} is
imitation admissible in Fig. 51a, #1 does not satisfy the sequential backdoor condition of Def. 15.
This is the case since the input state S1 = ∋ fails to block the backdoor path between X1 and Y via
covariate Z. On the other hand, in some settings, there exist policy spaces satisfying the sequential
backdoor condition (Def. 15) but are not imitation admissible.

Example 63 (Sequential Backdoor ▽̸ Imitation Backdoor) Consider the causal diagram G de-
scribed in Fig. 51a and a policy space #2 : {↘X1, {Z}≃, ↘X2, {W}≃}. For every policy (ω1,ω2) ↔
#2, the manipulated diagram Gω2 is shown in Fig. 51c. As for action X1, Condition (2) holds since
policy ω1(X1 | Z) for X1 takes Z as input, and conditioning on Z d-separates all backdoor paths
from X1 to reward Y in Gω2 . As for action X2, Condition (1) does not hold since X2 is a direct
parent of Y . Condition (2) fails to apply since input variable W is a collider and conditioning on
W opens the backdoor path between X and Y in G, e.g., X2 ↬⊜⊜⊜⊜≿ W ⇐ Z ↙ Y . Still, condi-
tioning on all past actions and states’ history X1, Z,W d-separates backdoor paths from X2 to Y
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in G. This means #2 satisfies the sequential backdoor condition of Def. 15 and the expected reward
of policy ω ↔ #2 is identifiable from P (X1, Z,W,X2, Y ). ↭

The imitation backdoor condition provides an effective algorithm for deciding whether a policy
compatible with a policy space in a causal diagram is imitable or not. Next, we describe some
necessary notations.

Definition 31 (Policy Subspace) For a policy space # = {↘X1,Si≃}Hi=1, a policy subspace #↓ of
#, denoted by #↓ ↑ #, is a sequence {↘Xi,Zi≃}Hi=1 where Zi ↑ Si for every action Xi ↔ X . ↭

In words, every policy space # is also a subspace of itself. A subspace #↓ contained in # is
proper if #↓ ▽= # is not equal to #, which we denote by #↓ ∝ #. Note that for every policy
ω↓ ↔ #↓ compatible with a subspace #↓, one could always simulate it using a policy ω ↔ # such that
ωi(xi | si) = ω↓

i
(xi | zi), i = 1, . . . , H , for all realizations xi, si, zi. That is, input states in the set

difference Si \Zi do not affect values of action Xi. It follows that policy ω↓ ↔ # is also compatible
with space # if it is compatible with a subspace #↓ ↑ #.

Theorem 20 (Behavioral Cloning from Imitation Backdoor) Let G be a causal diagram, # be
a policy space over actions X , and Y ↑ V be a subset of variables. If there exists a subspace
#↓ = {↘Xi,Zi≃}Hi=1 contained in # such that #↓ is imitation admissible w.r.t. Y in G, then there is
a behavior cloning policy ω ↔ #↓ such that for any SCM M→ compatible with diagram G,

Eω [R(Y );M→] = E [R(Y );M→] . (473)

Moreover, such a policy ω ↔ #↓ is given by ωi (Xi|Zi) = P (Xi|Zi) for every i = 1, . . . , H . ↭

Thm. 20 implies that whenever an imitation admissible subspace #↓ ↑ # is found, the expert’s
performance is achievable using behavioral cloning, i.e., mimicking the conditional distribution
P (Xi|Zi) for every action Xi ↔ X . Moreover, it has been shown that the imitation backdoor
criterion is also necessary for determining the feasibility of behavioral cloning for a general class
of policy spaces such that for every action Xi, the input states Si contain all variables preceding
Xi following a temporal ordering in the diagram G (Zhang et al., 2020; Kumor et al., 2021).64 That
is, if there is no imitation admissible subspace in #, then for any behavioral cloning policy ω ↔ #,
one could always construct an SCM M compatible with the causal diagram G such the BC policy
ω fails to achieve the expert’s performance.

Example 64 Consider again the causal diagram G described in Fig. 51a and a policy space # =
{↘X1, {Z}≃, ↘X2, {Z,W}≃}. Note that #1 = {↘X1, ∋≃, ↘X2, {Z}≃} is a subspace contained #
and, as discussed previously, is imitation admissible in diagram G. It follows from Thm. 20 that the
expert’s performance E [R(Y )] is achievable from observational data using a behavioral cloning
policy ω = (ω1,ω2) given by ω1(X1) = P (X1) and ω2(X2 | Z) = P (X2 | Z). ↭

For every action Xi ↔ X , the imitation backdoor criterion requires that the covariates Zi is a
back-door adjustment set in the manipulated diagram Gωi+1,...,ωH

. There exist efficient methods
for finding adjustment sets in the literature (van der Zander and Liśkiewicz, 2020). The learner
could run these algorithms on each action Xi iteratively to find each backdoor admissible set Zi

following a reverse topological ordering XH ℵ XH↔1 ℵ · · · ℵ X1, which will lead to an imitation

64. Indeed, this is the largest possible policy space defined over action X in an SCM.
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# Causal Diagram Causal BC BC – Observed Parents BC – All Observed

G1

X1 X2 Y

Z

0.04± 0.04% 0.05± 0.04% 0.13± 0.18%

G2

X1 X2 Y

Z

0.05± 0.03% 0.20± 0.25% 0.05± 0.03%

G3

X1 X2 Y

Z

0.04± 0.03% 0.27± 0.40% 0.26± 0.39%

G4

X1 X2 Y

Z

Not Imitable 0.19± 0.29% 0.19± 0.29%

Table 23: Performance gap |Eω [Y ] ⇒ E[Y ]| from behavioral cloning using different input states in
randomly sampled SCMs consistent with each causal diagram.

admissible subspace #↓ = {↘Xi,Zi≃}Xi↑X
in the end. When the state variables Si, i = 1, . . . , H ,

contain all variables preceding every action Xi following a topological ordering in the diagram G,
(Kumor et al., 2021) provides a polynomial-time algorithm to find an imitation admissible subspace
#↓. This means that a policy subspace #↓ satisfying the imitation backdoor condition in Def. 30 is
generally easier to obtain if it exists. If that is the case, an imitating policy could be obtained from
demonstrations by “cloning” the expert’s nominal policy, following standard behavioral cloning
algorithms (Widrow, 1964; Pomerleau, 1989).

Experiment 12 We evaluate BC algorithms in randomly sampled SCMs consistent with various
causal diagrams. These algorithms use different criteria to select input states/features for every
action, which we summarize as follows. (1) Our proposed causal BC selects input states using
the imitation backdoor condition, following the procedure described in Thm. 20. (2) Standard BC
algorithm mimics the expert’s nominal policy, taking observed direct parents for every action as
input. (3) Standard BC algorithm considers all state variables available to the imitator at the time
of each action, described by the policy space.

For each causal diagram, 10, 000 random discrete causal models are sampled, the expert’s
performance is measured, and then the expert’s policy is replaced with imitating policies ωi(Xi |
Zi) = P (Xi|Zi) for every action Xi ↔ X , with input covariates Zi determined by the tested BC
algorithm described above. The performance of algorithms is evaluated using the gap between the
expert’s performance E[Y ] and the expected reward of the policy Eω [Y ] obtained by the imitator.
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Simulation results are shown in Table 23, with causal diagrams and policy spaces described in the
first column, followed by the performance gap between the expert and the imitator.

For the diagram G1, including Z when developing a policy for X1, X2 leads to a biased answer,
which makes the average error of using all observed covariates (red) larger than just the sampling
fluctuations present in the other columns. Similarly, Z needs to be considered in G2, but it is not
explicitly used by X2, so a method relying only on observed parents leads to bias here. In G3, Z is
not observed at the time of determining action X1, making standard BC algorithms fail to achieve
the expert’s performance. Our method recognizes that X2’s policy can fix the imitation error made
at X1, and is the only method that leads to an unbiased result. Finally, in G4, the non-causal
approaches cannot determine non-clonability, and return biased results in all such cases. ↭

8.2 Causal Inverse RL

This section studies an alternative imitation learning strategy, called inverse reinforcement learning
(IRL, Ng et al. (2000); Ziebart et al. (2008); Ho and Ermon (2016); Fu et al. (2017)), in a CDM
↘M→,#,R≃. Similar to behavioral cloning, detailed parametrizations of the underlying environment
M→ and the reward function R are not fully unknown. However, the imitator now has access to a
parametric family R ↑ {→R : D(Y ) ∞↙ R} containing the actual reward function R. We will start
the discussion by describing an IRL strategy when the NUC assumption (Def. 13) holds. We will
next relax the NUC and study inverse RL in a more general class of causal models, provided with a
causal diagram G encoding its qualitative knowledge.

Following the game-theoretic approach introduced in (Syed and Schapire, 2008), we formulate
imitating learning (Def. 28) as learning to play a two-player zero-sum game in which the agent
chooses a policy, and the adversarial (e.g., Nature) chooses a worst-case reward function from the
parametric reward family R. Now consider the optimization problem defined as follows.

↽→ = min
ω↑!

max
R↑R

E [R(Y );M→]⇒ Eω [R(Y );M→] . (474)

The inner maximization in the above equation can be viewed as a causal IRL step where we attempt
to “guess” a worst-case reward function R̂ ↔ R that prioritizes the expert’s policy. That is, the
gap in the performance between the expert’s and the imitator’s policies is maximized. Meanwhile,
note that the expert’s reward E [R(Y );M→] is not affected by the imitating’s policy ω. The outer
minimization is equivalent to a planning step that finds a policy ω→ optimizing a CDM


M→,#, R̂



with the worst-case reward R̂. Obviously, the solution ω→ is an imitating policy if the performance
gap ↽→ = 0. In cases where the expert is sub-optimal, we may have ↽→ < 0, i.e.,

E
[
R̂(Y );M→

]
< Eω

[
R̂(Y );M→

]
, ℜω ↔ # (475)

In words, the solution ω→ will dominate the expert’s policy fX in the worst-case scenario, regardless
of the detailed form of the reward function R. To some extent, the imitating policy ω→ ignores the
sub-optimal expert and instead exploits prior knowledge about the unknown reward function. When
the prior knowledge is informative, solving the optimization program in Eq. 474 could produce a
policy that could significantly outperform the expert in the underlying environment with respect to
the unknown reward function, while at the same time guaranteed to be no worse.
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Example 65 (Inverse RL in MAB) Consider again the MAB environment M→ described in
Eq. 442 concerning learning a driving policy from highway footage. Suppose that the reward func-
tion R(Y ) = εY is linear with a positive coefficient ε > 0. The minimax program in Eq. 474 could
be written as

↽→ = min
ω(X)

max
ϖ>0

εE [Y ]⇒ εEω [Y ] (476)

Evaluating the distance from the front car Y in the environment M→ gives:

E[Y ] = P (X = 1) = 0.9 (477)

Note that the NUC condition holds in this environment. The interventional quantity Eω [Y ] is a
function of the observational distribution P (X,Y ) and policy ω(x) is given by, following the DP
formula in Thm. 3 (or the IPW formula in Thm. 2),

Eω [Y ] = E[Y | X = 0]ω(X = 0) + E[Y | X = 1]ω(X = 1) (478)
= ω(X = 1) (479)

The last step holds since values of Y are determined by Y ⇐ X . By substituting Eqs. 477 and 479
into Eq. 476, we can further write the performance gap ↽→ as:

↽→ = min
ω(X)

max
ϖ>0

ε (0.9⇒ ω(X = 1)) (480)

For any coefficient ε > 0, the above program is minimized with a solution ω(X = 1) = 1. Solving
the above equation thus leads to an IRL policy ωIRL : X ⇐ 1. In this case, the performance gap is
equal to ↽→ = ⇒0.1ε < 0, which means that the IRL imitator outperforms the expert.

To verify this intuition, we evaluate the expected reward R(Y ) in submodel M→
ωIRL

, following
the evaluation formula in Eq. 444,

EωIRL [R(Y )] = εωIRL(X = 1) (481)

This means that the IRL policy achieves the expected reward EωIRL [R(Y )] = ε, which outperforms
both the expert and BC’s policies E [R(Y )] = EωBC [R(Y )] = 0.9ε (see Example 59 for detailed
computations). ↭

Despite its clear semantics, solving the optimization problem in Eq. 474 requires the detailed
parametrization of the underlying SCM M→, which is not accessible to the agent in most real-world
settings. It is then important to study conditions under which the solution of Eq. 474 is identifiable
and could be formulated from the observational distribution P (V ). Fix a reward function R ↔ R.
First, the expect’s performance E [R(Y );M→] is obtainable from P (V ) by computing the arith-
metic mean of R(Y ) weighted by the marginal distribution P (Y ). If the NUC assumption (Def. 13)
holds, the imitator’s performance Eω [R(Y );M→] is computable from the observational distribution
P (V ), following off-policy learning algorithms including IPW (Thm. 2) and DP (Thm. 3). The im-
itator could then formulate the minimax program in Eq. 474 from the observational distribution
P (V ), the hypothesis reward class R, and the policy space #. Solving this optimization program
leads to an imitating policy. We demonstrate in Example 65 the IRL strategy under NUC in an MAB
environment.
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On the other hand, however, when the input variables of the expert and the imitator’s policies
mismatch, and unobserved confounders generally exist, performing IRL with the standard off-policy
evaluation does not necessarily lead to an imitating policy achieving the expert’s performance. The
following example illustrates the challenges of unobserved confounders for IRL methods.

Example 66 (Inverse RL fails without NUC) Consider the alternative MAB environment M de-
scribed in Eq. 462 where the front car’s deceleration U is an unobserved confounder affecting both
the human demonstrator’s action X and the distance Y between the demonstrator and the front car;
so the NUC does not hold in this environment.

Evaluating the expected value of Y in this MAB environment M gives

E[Y ] = E[X ⇔ U ] (482)
= E[¬U ⇔ U ] (483)

Computing the above equation gives the evaluation E[Y ] = 1. Applying the DP formula in Thm. 3
(or the IPW formula in Thm. 2) gives the following evaluation, for any policy ω(X),

Eω [Y ] = E[Y | X = 0]ω(X = 0) + E[Y | X = 1]ω(X = 1) (484)

Among the above quantities, the conditional mean E[Y | X] is given by, for any x,

E[Y | X = x] = E[X ⇔ U | X = x] (485)
= E[x⇔ ¬x | X = x] (486)

The last step holds since values of X are given by X ⇐ ¬U in the MAB environment M. Computing
the above equation gives E[Y | X = x] = 1 for x = 0, 1. Eq. 484 could be further written as

Eω [Y ] = ω(X = 0) + ω(X = 1) = 1 (487)

Again, let R(Y ) = εY be a linear reward function with a positive coefficient ε > 0. By substituting
evaluations E[Y ] = 1 and Eω [Y ] = 1 into Eq. 476, we obtain the following minimax program:

↽→ = min
ω(X)

max
ϖ>0

εE [Y ]⇒ εEω [Y ] (488)

= min
ω(X)

max
ϖ>0

ε⇒ ε (489)

= 0 (490)

This means that any fixed coefficient ε > 0, the imitator is able to achieve the expert’s performance
using any policy ω(x). To verify this conclusion, let an IRL policy ωIRL : X ⇐ 1. Evaluating the
expected reward R(Y ) in submodel MωIRL implies

EωIRL [R(Y )] = εEX↘1 [Y ] (491)
= εE[1⇔ U ] (492)
= 0.5ε (493)

The last step holds since U is uniformly drawn over the binary domain {0, 1}. This means that the
IRL policy (EωIRL [R(Y )] = 0.5ε) fails to achieve the expert’s performance E[R(Y )] = ε. ↭
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Figure 52: Causal diagrams where X represents an action (shaded blue) and Y represents a latent
reward (shaded red). Input covariates of the policy space # are shaded in light blue.

8.2.1 MINIMAL IMITATION BACKDOOR

We will next study causal IRL in more general settings where the NUC assumption does not hold,
and there exist unobserved confounders in the demonstration data affecting both actions and other
variables in the environment. Our algorithm relies on a refinement of the imitation backdoor condi-
tion (Def. 30), based on the concept of minimal d-separating sets.

Definition 32 (Minimal Imitation Backdoor) Let G be a causal diagram and X,Y ↔ V be sub-
sets of variables. An imitation admissible space # over X is said to be minimal if there exists no
proper subspace #↓ ∝ # satisfying the imitation backdoor w.r.t. Y in G. ↭
In words, an imitation admissible space # = {↘Xi,Si≃}Xi↑X

is minimal if for every action Xi ↔
X , Si is a minimal d-separating set between action Xi and reward signals Y is the manipulated
diagram GXi,ωi+1,...,ωH

; or states Si = ∋ whenever Xi is not an ancestor of Y in diagram Gωi+1,...,ωH
.

Example 67 Consider the causal diagram G described in Fig. 52a and a policy space #1 =
{↘X1, {Z1}≃, ↘X2, {Z2}≃}. For a policy (ω1,ω2) ↔ #, the manipulated diagram Gω2 is shown in
Fig. 52b. It is verifiable that #1 satisfies the imitation backdoor condition w.r.t. the outcome Y in G
since the following independence relationships hold: (X1 ′′ Y | Z1) in GX1,ω2 and (X2 ′′ Y | Z2)
in GX2 , respectively. However, the same space #1 is not minimal since {Z1} is not a minimal d-

separating set and (X1 ′′ Y ) holds in G(1)
X1

. On the other hand, #2 = {↘X1, ∋≃, ↘X2, {Z2}≃} is
minimal imitation admissible since conditioning on the covariate set {Z2} d-separates the backdoor
path X2 ⇐ Z2 ↙ Y in diagram GX2; removing node Z2 opens the backdoor path. ↭

A key property of a minimal imitation admissible space # is that for every policy ω ↖ #, the in-
terventional distribution Pω (Y ) is identifiable from the observational distribution P (V ), provided
with the structural assumptions encoded in the causal diagram G.

Theorem 21 Let G be a causal diagram, # be a policy space over actions X , and Y ↑ V be
a subset of variables. If there exists a subspace #↓ = {↘Xi,Zi≃}Hi=1 contained in # such that #↓

is minimal imitation admissible w.r.t. Y in G, then for every policy ω ↔ #↓, the interventional
distribution Pω (Y ) is computable from P (V ) and given by

Pω (y) =
∑

x̄H ,z̄H

P (y | x̄H , z̄H)
H

i=1

P (zi | x̄i↔1, z̄i↔1)ωi (xi | zi) . (494)
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where X̄i = {X1, . . . , Xi} and Z̄i = {Z1, . . . ,Zi} are sequences of actions and input covariates
up to the decision horizon i = 1, . . . , H . ↭

However, the same identifiability result does not generally hold for policies in a non-minimal
imitation admissible space. The following example demonstrates such an instance.

Example 68 Consider the causal diagram G of Fig. 52a again. Let us focus on the minimal imita-
tion admissible space

#2 = {↘X1, ∋≃, ↘X2, {Z2}≃} (495)

For ever policy ω ↔ #2, the post-interventional diagram Gω is shown in Fig. 52b. By applying
Thm. 21 we obtain

Pω (y) =
∑

x1,x2,z2

P (y | x1, x2, z2)P (z2 | x1)ω2(x2 | z2)ω1(x1) (496)

On the other hand, the same identification result in Thm. 21 does not necessarily hold for a non-
minimal imitation admissible space.

More specifically, consider a policy space

#1 = {↘X1, {Z1}≃, ↘X2, {Z2}≃} (497)

For ever policy ω ↔ #1, the post-interventional diagram Gω is shown in Fig. 52c. As discussed pre-
viously (Example 67), #1 is not minimal. This means that, for any policy ω ↔ #1, the interventional
distribution Pω (Y ) is not computable from the identification formula in Eq. 494. More generally,
Pω (Y ) for policies ω ↔ #1 is not identifiable from the observational distribution P (V ) in diagram
G. Following the decomposition in Eq. 212, Pω (Y ) can be written as,

Pω (y) =
∑

x1,x2,z1,z2

Px1,x2 (y, z1, z2)ω1(x1 | z1)ω2(x2 | z2) (498)

Prop. 3 implies that Pω (Y ) is identifiable if and only if the interventional distribution
Px1,x2 (Y, Z1, Z2) is identifiable in the causal diagram G. However, such quantity Px1,x2 (Y, Z1, Z2)
is not identifiable due to the presence of the bi-directed path X2 ↬⊜⊜⊜⊜≿ Z2 ↬⊜⊜⊜⊜≿ Z1 ↬⊜⊜⊜⊜≿ Y
(Tian, 2002, Thm. 16). Indeed, the non-identifiability of the effects of policies ω ↔ #1 in the causal
diagram G described in Fig. 52a has been shown in (Tian, 2008; Correa and Bareinboim, 2019). ↭

The concept of minimal imitation backdoor in Def. 32 and the identification result in Thm. 21 pro-
vide a natural algorithm for performing causal IRL when unobserved confounders generally exist.
Instead of searching for imitating policies in the policy space #, the agent will focus on a minimal
imitation admissible subspace #↓ ↑ #. Specifically, as discussed previously in Sec. 8.1, there exist
efficient algorithms finding admissible policy subspaces satisfying the imitation backdoor. Once
such an admissible subspace is found, one could obtain a minimal imitation admissible subspace by
iteratively removing input state variables from Si for every action Xi until the imitation backdoor
does not hold. This procedure could be done in polynomial steps with regard to the total number of
states S and actions X variables.
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8.2.2 IMITATION VIA INVERSE RL

Once a minimal imitation admissible subspace #↓ ↑ # is obtained, one could obtain an imitating
policy by solving the minimax program in Eq. 474 with the policy space # substituted with #↓. By
expanding values of Y , this optimization program could be written as,

↽→ = min
ω↑!↓

max
R↑R

∑

y

R(y)( P (y) ︷︷ ︸
expert’s occupancy

⇒ Pω (y) ︷︷ ︸
imitator’s occupancy

) (499)

Among quantities in the above equation, the first term is the expert’s occupancy measures over do-
mains of signals Y , which is a marginal observational distribution P (Y ). The second term is the
expert’s occupancy measures over domains of Y , which is an interventional distribution Pω (Y ).
Since #↓ is a minimal subspace satisfying the imitation backdoor criterion, applying Thm. 21 per-
mits one to compute Pω (Y ) from the observational distribution P (V ) and the policy ω.65

Provided with some common choices of the hypothesis class R, the minimax program in
Eq. 499 is solvable using some state-of-art IRL algorithms. Due to this reason, we consistently refer
to Eq. 499 as the canonical IRL program. To make this argument more precise, we will demonstrate
this reduction procedure with the multiplicative-weights algorithm (MWAL) (Syed and Schapire,
2008) and the generative adversarial imitation learning (GAIL) (Ho and Ermon, 2016).

Causal MWAL (Abbeel and Ng, 2004; Syed and Schapire, 2008) study IRL in Markov decision
processes where the reward function R(y) is a linear combination of k-length feature expectations
vectors ω(y). Particularly, let R(y) = w · ω(y) for a coefficient vector w in a convex set

Pk =

w ↔ Rk | AwA1 = 1 and w B 0


. (500)

Let ω(i) be the i-th component of feature vector ω and let deterministic policies with space # be
ordered by ω(1), . . . ,ω(n). The canonical program in Eq. 499 is reducible to a two-person zero-sum
matrix game under linearity.

Proposition 6 For a hypothesis class R = {R = w ·ω | w ↔ Pk}, the solution ↽→ of the canonical
program in Eq. 499 is obtainable by solving the following minimax problem

↽→ = min
ω↑!↓

max
w↑Pk

w∞Gω, (501)

where G is a k △ n matrix given by G(i, j) =
∑

y ω
(i)(y) (P (y)⇒ P

ω(j)(y)). ↭
There exist effective multiplicative weights algorithms for solving the matrix game in Eq. 501,

including MW (Freund and Schapire, 1999) and MWAL (Syed and Schapire, 2008).

Causal GAIL (Ho and Ermon, 2016) introduces the GAIL algorithm for learning an imitating
policy in Markov decision processes with a general family of non-linear reward functions. In par-
ticular, R(y) takes values in the real space R, i.e., R ↔ RY where RY = {r : D(Y ) ∞↙ R}. The
complexity of reward function R is penalized by a convex regularization function ⇀ (R), i.e.,

↽→ = min
ω↑!↓

max
R↑RY

∑

y

R(y) (P (y)⇒ Pω(y))⇒ ⇀(R) (502)

65. More generally, the imitator could search over all policies ω ↘ ! such that the imitator’s occupancy measure Pω (Y )
induced by do(ω) is identifiable in diagram G. This imitation approach has been studied in (Ruan et al., 2023).
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Henceforth, we will consistently refer to Eq. 502 as the penalized canonical program of causal IRL.
It is often preferable to solve its conjugate form. Formally,

Proposition 7 For a hypothesis class R = {R : D(Y ) ∞↙ R} regularized by ⇀, the solution ↽→ of
the penalized canonical program in Eq. 502 is obtainable by solving the following problem

↽→ = min
ω↑!↓

⇀→ (P ⇒ Pω) (503)

where ⇀→ be a conjugate function of ⇀ and is given by ⇀→ = maxR↑RY a∞R⇒ ⇀(R). ↭
Eq. 503 seeks a policy ω which minimizes the divergence of joint probabilities over reward

signals Y between the imitator and the expert, as measured by the function ⇀→. When we utilize
a regularizer ⇀(r) similar to (Ho and Ermon, 2016, Eq. 13), the convex conjugate function ⇀→ in
Eq. 503 is further written as:

min
ω↑!↓

⇀→ (P ⇒ Pω) = min
ω↑!↓

max
D↑(0,1)Y

E [log(D(Y ))] + Eω [log(1⇒D(Y ))] , (504)

where function D ↔ D(Y ) ∞↙ (0, 1) is a discriminator classifier (e.g, a neural network). The above
equation draws the connection between causal imitation learning and the computational framework
of generative adversarial networks (Goodfellow et al., 2014), which could be viewed as two neural
networks competing against each other in a zero-sum game. When the discriminator D cannot dis-
tinguish the occupancy measure generated by the policy ω from the expert, then ω has successfully
matched the expert’s performance. Solving the minimax program of Eq. 504 requires finding a sad-
dle point (ω, D). This could be done by iteratively optimizing policy parameters ω and discriminator
D following the implementation procedure of GAIL algorithm (Ho and Ermon, 2016).

Experiment 13 We demonstrate our causal imitation framework on an SCM M→ compatible with
the causal diagram in Fig. 52a. Particularly,

M→ = ↘U = {U1, U2, U3, U4},L = ∋,V = {X1, X2, Z1, X2, Y },F , P (U)≃ (505)

where structural functions F is defined as

F =






Z1 ⇐ U1 ⇔ U3,

X1 ↖ Bern(0.68)

Z2 ⇐ U1 ⇔ U2 ⇔ U4,

X2 ⇐ U2 ⇔ Z2

Y ⇐ (X1, X2, Z1, Z2, U3)

(506)

Among quantities in the above equation, reward signal Y = (Y1, . . . Y5) is a feature vector contain-
ing 5 elements; the exogenous distribution P (U1, U2, U3, U4) is defined such that Ui, i = 1, . . . , 4
are independent variables given by

U1 ↖ Bern(0.8), U2 ↖ Bern(0.8), U3 ↖ Bern(0.2) U4 ↖ Bern(0.1) (507)

The agent’s goal is to optimize a CDM ↘M→,#,R≃ where environment M→ is defined in Eq. 505; the
policy space # = {↘X1, {Z1}≃ , ↘X2, {Z1, X1, Z2}≃}; and the reward function R(Y ) = ⇔5

i=1Yi.
We will then apply different imitation strategies to learn an imitating policy in space # without

detailed parametrization of the reward function R(Y ). These imitation algorithms are
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Figure 53: Simulation results evaluating causal IRL when imitation backdoor condition holds.

• Standard BC algorithm utilizes all observed states Si for every action Xi ↔ X .

• Standard IRL algorithm utilizes all observed states Si for every action Xi ↔ X . We will
apply GAIL algorithm (Syed and Schapire, 2008) when R(Y ) is non-linear;

• Causal-BC algorithm, described in Thm. 20, selects a set of covariates Zi for every action
Xi ↔ X following the imitation backdoor criterion (Def. 30). It then learns an imitating
policy ω with subspace #↓ = {↘Xi,Zi≃}Xi↑X using standard BC algorithms.

• Our proposed Causal-IRL algorithm first finds a minimal imitation admissible subspace #↓

(Thm. 21) and then obtains an imitating policy by solving the canonical program in Eq. 499.
We will use Causal GAIL algorithm since R(Y ) is non-linear. Reward augmentation (RA) is
performed to incorporate the parametric knowledge that R(Y ) is a monotone function con-
cerning values of Y1, Y2 (Li et al., 2017). This is done by adding an additional regularization
function in Eq. 504 to encourage assigning higher values of features Y1, Y2.

Simulation results are shown in Fig. 53. The analysis reveals that Causal-IRL consistently outper-
forms the expert’s policy and other imitation strategies by exploiting additional parametric knowl-
edge about the reward function; Causal-BC obtains a policy that mimics the expert’s performance.
As expected, BC and IRL failed to obtain a policy that matches the expert’s performance. ↭

This section investigates imitation learning in the semantics of structural causal models. The goal is
to find an imitating policy that can perform at least as well as the expert behaviors from combina-
tions of demonstration data and qualitative knowledge about the data-generating process represented
as a causal diagram. First, we provided a novel graphical criterion that is sufficient for determining
the feasibility of learning an imitating policy that mimics the expert’s performance. When such a
condition holds, one could obtain an effective imitating learning using standard behavioral cloning.
We also investigate imitation learning via inverse reinforcement learning (IRL), provided with ad-
ditional quantitative knowledge about the reward function. We provide a graphical criterion based
on the sequential backdoor, which allows one to obtain an imitating policy by solving a canonical
optimization equation of causal IRL. Such a canonical formulation addresses the challenge of the
presence of unobserved confounders (UCs) and is solvable by leveraging standard IRL algorithms.
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9. Conclusions

The current generation of AI agents capable of optimal decision-making builds on the theoretical
framework of reinforcement learning (RL). Most of these RL systems do not explicitly represent
the underlying causal models or engage in causal reasoning. On the other hand, there is a growing
recognition across many fields and sciences that effective decision-making relies on an understand-
ing of the causal mechanisms in the environment. For example, an intelligent robot needs to grasp
the cause-and-effect relationships within its surroundings to plan its actions effectively; a physi-
cian must understand the effects of available medications to devise a suitable treatment strategy
for her patients; an economist, too, needs to envision the relationship between skill sets and the
future job market in order to create an effective educational policy. These scenarios illustrate how
decision-making across various sectors of society depends on understanding complex, dynamic, and
often unobserved causal mechanisms. Although there have been some attempts to integrate causal
knowledge into RL tasks, a systematic approach and a cohesive foundation are still lacking.

To address this challenge, we combine the capabilities of RL agents with Pearl’s Structural
Causal Models (SCMs) theory to encode causal knowledge and perform counterfactual reasoning.
This marriage leads to an algorithmic and theoretical framework for robust decision-making under
uncertainties, which is part of an emerging branch of research called Causal Reinforcement Learn-
ing (CRL). Building on this framework, we are able to bring improvement to RL algorithms in
some key aspects. First, The CRL framework enables us to relax certain key assumptions regarding
the causal mechanisms that generate the observed data. We have developed innovative algorithms
that are resilient to unobserved confounding bias in offline settings, which include off-policy learn-
ing and imitation learning. Additionally, we proposed more efficient online learning algorithms
that effectively identify optimal policies while achieving near-optimal regret. These advancements
leverage causal conclusions drawn from biased offline data.

The final important distinction presented in this manuscript is the difference between the regimes
in which AI agents operate to interact with their environment. Specifically, supervised learning
agents identify patterns from data gathered through passive observation, while reinforcement learn-
ing (RL) agents actively engage with the system and modify their policies based on the responses
they receive. By generalizing these interaction regimes, we open up new learning possibilities that
have not been explored in the existing literature. The problem of where to intervene allows us to
design agents to achieve better performance by combining both passive observation and active in-
tervention. Counterfactual randomization generalizes the classic Fisherian randomized experience,
enriching agents with capabilities of counterfactual reasoning, which we believe is critical to design
the next generation of AI systems.
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Appendix A. Comparison with Partially Observed MDPs

In this section, we will extend the Causal Hierachy Theorem (CHT, (Bareinboim et al., 2020,
Thm. 1)) to a general family of stochastic processes where the Markov property does not hold
for states and actions across time steps. Specifically, we focus on the partially observed Markov
decision processes (POMDP, Sondik (1971)) that model the dependence between observations over
a long sequence of time steps through latent states and dynamics. Formally,

Definition 33 (Standard POMDP (Sondik, 1971)) A partially observable Markov decision pro-
cess is tuple ↘D(S),D(X),D(O), T ,R,O≃ where

1. D(S),D(X), T and R describe a Markov decision process;

2. D(O) is a finite set of observations the agent can perceive of its world, called the observation
space;

3. O(x, s, o) is the observation function, which gives, for each action Xi = x and resulting state
Si+1 = s, a probability distribution over possible observations Oi+1 = o.

A policy ω in a standard POMDP is a sequence of stochastic decision rules {ω1,ω2, . . . }; each
decision rule ωi is a function mapping from the observations and actions history Ō1:i, X̄1:i↔1 to a
probability distribution over the action space D(X). Given a policy ω and a distribution over the
initial state and observation P (S1, O1), every standard PMDP model defines a joint distribution
over observations Ō1:H , actions X̄1:H , and rewards Ȳ1:H up to decision horizon H , i.e.,

Pω(ō1:H , x̄1:H , ȳ1:H)

=
∑

s̄1:H

P (s1, o1)
H

i=1

ω(xi | si)T (si, xi, si+1)O(xi, si+1, oi+1)1{R(si, xi) = yi}
(508)

Due to the presence of latent states, the Markov property no longer holds with regard to the perceived
observations. This argument is corroborated with the network structure in the causal diagram GPOMDP

of Fig. 10e. For every stage i = 1, 2, . . . , conditioning on the observation Oi and action Xi fails to
block all paths from observed history Oj , Xj , Yj for j < i to any future observation Ok, action Xk,
and reward Yk for k > i (Def. 7). Specifically, such long-sequence dependency is generated from
the latent states Si, e.g., the open causal path O1 ⇐ S1 ↙ S2 ↙ O2, which could be represented
using a standard POMDP.

Example 69 (POMDP, Observational) Consider the following SCM environment M→ adapted
from Eq. 5, unrolling over stages i = 1, 2, . . .

M→ = ↘U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si, Oi},F = {F →

i } , P →(U)≃
i=1,2,... . (509)

The above SCM is identical to the model M→ defined in Eq. 5, except that the underlying state
Si is now latent to the learner; and the endogenous variables include an observation Oi fixed at
a constant Oi ⇐ 0. This means that the learning agent, interacting with the environment, ac-
cesses samples drawn from marginal observational P (ō1:H , x̄1:H , ȳ1:H) or interventional distribu-
tion Pω(ō1:H , x̄1:H , ȳ1:H), depending on the regimes of interactions.

We compute the observational distributions P
(
Si+1 | Ō1:i, X̄1:i

)
and E

[
Yi | Ō1:i, X̄1:i

]

and summarize them using a standard POMDP ↘D(S),D(X),D(O), Tobs,Robs,O≃ where
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M→

Eq. (5)

M(1)

Eq. (119)

M(2)

Eq. (121)

S=0 S=1

X=0

X=1
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X=1

0.9,Y=0.1
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0.1,Y=0.1

0.1,Y=0.1
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S=0 S=1

X=0

X=1

X=0

X=1

0.18,Y=0.82

0.82,Y=0.18

0.82,Y=0.18

0.82,Y=0.82
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Inv. (L2)

Obs. (L1)
Inv. (L2)

Figure 54: Causal Hierarchy Theorem (CHT) in POMDP environments.

D(S),D(X), Tobs,Robs form a standard MDP described in Example 21; the observation func-
tion O(x, s, o) = 1 for observation o = 0 given any action Xi = x and subsequent state Si+1 = s.
Fig. 54 (a) shows a finite automaton that describes its detailed system dynamics. The shaded ellipse
around the states S = 0 and S = 1 indicates that both states yield the same observation. ↭
Following a similar argument, we could show that any interventional distribution evaluated in a
SCM M→ graphically described in Fig. 10e violates the Markov property, leading to an alternative
standard POMDP representation.

Example 70 (POMDP, Interventional) Consider again the SCM M→ described in Example 69.
Its interventional distributions PX̄1:i

(
Si+1 | Ō1:i

)
and EX̄1:i

[
Y | Ō1:i

]
a standard POMDP

↘D(S),D(X),D(O), Texp,Rexp,O≃ where D(S),D(X), Texp,Rexp are described in the standard
MDP of Example 22; the observation function O(x, s, o = 0) = 1 given any action Xi = x and
state Si+1 = s. The system dynamics of this POMDP are described in the finite automaton of
Fig. 54 (b). The ellipse around the states indicates that both states yield the same observation. ↭
In both examples above, the observational and interventional distributions evaluated in the SCM
M→ could be represented using standard POMDPs. However, the detailed system dynamics in
these standard POMDPs differ, as illustrated in the finite automata shown in Fig. 54. One may
wonder if it is possible to recover interventional quantities Texp and Rexp from the observational
data in POMDP environments. Our next result shows this is not the case.

Proposition 8 For any SCM M→ compatible with the causal diagram GPOMDP of Fig. 10e, there is
an SCM M(1) compatible with GPOMDP such that for every stage i = 1, 2, . . . ,

P (1) (oi+1 | ō1:i, x̄1:i) = P → (oi+1 | ō1:i, x̄1:i) , E(1) [Yi | ō1:i, x̄1:i] = E→ [Yi | ō1:i, x̄1:i] (510)
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while

P (1)
x̄1:i

(oi+1 | ō1:i) ▽= P →

x̄1:i
(oi+1 | ō1:i) , E(1)

x̄1:i
[Yi | ō1:i] ▽= E→

x̄1:i
[Yi | ō1:i] (511)

↭

The following example constructs an alternative SCM M(1) that generates the observational distri-
bution as the underlying environment M→, but differs significantly in interventional distributions.

Example 71 (POMDP, Observational ▽̸ Interventional) We will construct an alternative SCM
M(1) where its system dynamics collapse to the associational layer (L1) with respect to the SCM
M→ described in Example 69. More specifically,

M(1) =

U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si, Oi},F =


F (1)

i


, P (1)(U)



i=1,2,...
. (512)

Similarly to the construction of M→, the above SCM is identical to the model M(1) defined
in Example 23 except that for every stage i = 1, 2, . . . , the learner does not observe the
state Si, but only receives new endogenous variable Oi ⇐ 0. We compute the observational
distributions P

(
Si+1 | Ō1:i, X̄1:i

)
and E

[
Yi | Ō1:i, X̄1:i

]
and the interventional distributions

PX̄1:i

(
Si+1 | Ō1:i

)
and EX̄1:i

[
Y | Ō1:i

]
evaluated in M(1), following the discussion in Exam-

ple 23. The analysis suggests that the observational and interventional distributions collapse in the
model M(1), which could be described using the same finite-state automaton shown in Fig. 54(a).

Compared with system dynamics in M→, the model M(1) coincides with M→ in the observa-
tional distributions (L1), but deviates significantly in the interventional distributions (L2). More
specifically, given any observations and actions’ history ō1:i, x̄1:i, the induced reward function in
M(1) is given by,

E(1)
x̄1:i

[Yi | ō1:i] = E(1) [Yi | ō1:i, x̄1:i] (513)
= 0.1 (514)

On the other hand, suppose the state occupancy rate P (si) = 0.5 for any state si = 0, 1 in the
model M→. Evaluating the transition distribution in M→ gives, for any action xi = 0, 1 and any
state si+1 = 0, 1,

Pxi
(si+1) = 0.5. (515)

For instance, let xi = 0 and si+1 = 1. Expanding on the current state Si gives,

PXi↘0 (Si+1 = 1) (516)
= PXi↘0 (Si+1 = 1 | Si = 0)P (Si = 0) + PXi↘0 (Si+1 = 1 | Si = 1)P (Si = 1) (517)
= 0.82△ 0.5 + 0.18△ 0.5 (518)
= 0.5 (519)

The above equations imply the following intermediate reward evaluated in the model M→

E→

x̄1:i
[Yi | ō1:i] =

∑

si

E→

xi
[Yi | si]P →

x̄1:i↔1
(si | ō1:i) (520)

= 0.5, (521)
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which deviates from the corresponding query in M(1). For instance, let xi = 0. Expanding on the
current state Si gives,

E→

x̄1:i
[Yi | ō1:i] (522)

= E→

Xi↘0 [Yi | Si = 0]P →

x̄1:i↔1
(Si = 0 | ō1:i) + E→

Xi↘0 [Yi | Si = 1]P →

x̄1:i↔1
(Si = 1 | ō1:i) (523)

= 0.82P →

x̄1:i↔1
(Si = 0 | ō1:i) + 0.18P →

x̄1:i↔1
(Si = 1 | ō1:i) (524)

= 0.5 (525)

The last step holds since the occupancy rate P →
x̄1:i↔1

(si | ō1:i) = 0.5 for any state si = 0, 1.
This example corroborates Prop. 8 and illustrates that observational queries are generally under-
determined by randomized experiments in POMDP environments. ↭

The above example shows that interventional distributions in an unknown POMDP environment
are generally not fully determined from the observational distribution. Conversely, we also show
that it is generally infeasible to recover observational quantities from randomized experiments in
non-Markov processes.

Proposition 9 For any SCM M→ compatible with the causal diagram GPOMDP of Fig. 10e, there is
an SCM M(2) compatible with GPOMDP such that for every stage i = 1, 2, . . . ,

P (2)
x̄1:i

(oi+1 | ō1:i) = P →

x̄1:i
(oi+1 | ō1:i) , E(2)

x̄1:i
[Yi | ō1:i] = E→

x̄1:i
[Yi | ō1:i] (526)

while

P (1) (oi+1 | ō1:i, x̄1:i) ▽= P → (oi+1 | ō1:i, x̄1:i) , E(1) [Yi | ō1:i, x̄1:i] ▽= E→ [Yi | ō1:i, x̄1:i] (527)

↭

The following example corroborates the proposition mentioned above by constructing an alternative
SCM M(2) compatible with the causal diagram of Fig. 10e that induces the same interventional
distribution in the underlying environment but generates different observations.

Example 72 (POMDP, Interventional ▽̸ Observational) Consider the following SCM environ-
ment rolling over stages i = 1, 2, . . . ,

M(2) =

U = {Ui,1, Ui,2, Ui,3},V = {Xi, Yi, Si, Oi},F =


F (2)

i


, P (2)(U)



i=1,2,...
. (528)

Similar to the previous example, the above SCM is identical to the model M(2) defined in Ex-
ample 24 except that for every stage i = 1, 2, . . . , the learner does not observe the state
Si, but only receives new endogenous variable Oi ⇐ 0. We compute the observational
distributions P

(
Si+1 | Ō1:i, X̄1:i

)
and E

[
Yi | Ō1:i, X̄1:i

]
and the interventional distributions

PX̄1:i

(
Si+1 | Ō1:i

)
and EX̄1:i

[
Y | Ō1:i

]
evaluated in M(2), following the discussion in Exam-

ple 24. The analysis suggests that the observational and interventional distributions coincide in the
model M(2), which could be described using the same finite automaton of Fig. 54(b).

Comparing with system dynamics in the SCM M→ described in Example 71, we find that model
M(2) coincides with M→ in the interventional distributions (L2), but disagree in the observational
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distributions (L1). More specifically, given any observations and actions’ history ō1:i, x̄1:i, the
observed intermediate reward in M(2) is given by,

E(2) [Yi | ō1:i, x̄1:i] = E(2)
x̄1:i

[Yi | ō1:i] (529)
= 0.5 (530)

On the other hand, evaluating the observed intermediate reward given the history ō1:i, x̄1:i in the
model M→ gives

E→ [Yi | ō1:i, x̄1:i] = 0.1, (531)

which differs from the corresponding query in M(2). This complements previous examples and
illustrates that interventional queries are generally non-identifiable from the observational data in
POMDP environments. ↭

We organize the examples and results discussed in this section and summarize them in Fig. 54. The
agent interacts with the ground-truth SCM M→ (Example 71) in the middle, through passive obser-
vation or active intervention, and generates the observational and interventional distributions. The
system dynamics of these distributions do not satisfy the Markov property and can be represented
using the latent states in standard POMDPs. The finite automata in Fig. 54 (a, b) describes these
latent dynamics, respectively.

Assuming only observational data (L1) is available, one can construct an alternative SCM M(1)

(left side) that generates the same the observational data but have different interventional distribu-
tions (i.e., L→

1 = L(1)
1 , L→

2 ▽= L(1)
2 ). This implies that, in practice, natural trajectories of other be-

havioral agents collected from passive observations are generally insufficient to make claims about
the learning agent’s actions and performance. Conversely, whenever the interventional data (L2) is
available, one can construct an alternative SCM M(2) (right side) that generates the same interven-
tional distribution but has a different observational one (i.e., L→

1 ▽= L(2)
1 , L→

2 = L(2)
2 ). This might

seem counterintuitive, as interventions are generally thought to be more informative than simply
observing a system as it evolves over time. However, in practice, this approach does not enable the
learning agent to predict how other agents will behave within the same environment.
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