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Abstract
We develop a a new polynomial-time algorithm
for identification of structural coefficients in lin-
ear causal models that subsumes previous state-
of-the-art methods, unifying several disparate ap-
proaches to identification in this setting. Building
on these results, we develop a procedure for iden-
tifying total causal effects in linear systems.

1. Introduction
Regression analysis is one of the most popular methods
used to understand the relationships across multiple vari-
ables throughout the empirical sciences. The most common
type of regression is linear, where one attempts to explain
the observed data by fitting a line (or hyperplane), minimiz-
ing the sum of the corresponding deviations. This method
can be traced back at least to the pioneering work of Leg-
endre and Gauss (Legendre, 1805; Gauss, 1809), in the
context of astronomical observations (Stigler, 1986). Linear
regression and its generalizations have been the go-to tool
of a generation of data analysts, and the workhorse behind
many recent breakthroughs in the sciences, in businesses,
and throughout engineering. Based on modern statistics and
machine learning techniques, it’s feasible to handle regres-
sion instances up to thousands, sometimes even millions of
variables at the same time (Hastie et al., 2009).

Despite the power entailed by this family of methods, one of
its main drawbacks is that it only explains the association (or
correlation) between purported variables, while remaining
silent with respect to any possible cause and effect relation-
ship. In practice, however, learning about causation is often
the main goal of the exercise, sometimes, the very reason
one engaged in the data collection and the subsequent anal-
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ysis in the first place. For instance, a health scientist may
be interested in knowing the effect of a new treatment on
the survival of its patients, while an economist may attempt
to understand the unintended consequences of a new policy
on a nation’s gross domestic product. If regression analysis
doesn’t allow scientists to answer their more precious ques-
tions, which framework could legitimize such inferences?

The discipline of causal inference is interested in formal-
izing precisely these conditions, and, more broadly, pro-
viding a principled approach to combining data and partial
understanding about the underlying generating processes
to support causal claims (Pearl, 2000; Spirtes et al., 2000;
Bareinboim & Pearl, 2016). One popular framework used to
study this family of problems is known as structural causal
models (SCMs, for short). Given the pervasiveness of linear
regression in data-driven disciplines, we’ll focus on the class
of linear structural models, following the treatment provided
in Wright (1921) and as discussed more contemporaneously
in Pearl (2000, Ch. 5).

In this class of SCMs, the set of observed variables are
determined by a linear combination of their direct causes
and latent confounders (or errors terms). Formally, this is
represented as a system of linear equations X = ΛTX + ε,
where X is a vector of observed variables, ε is a vector
of latent variables, and Λ is an upper triangular matrix of
direct effects, otherwise known as path coefficients, whose
ijth element, λij gives the magnitude of the direct causal
effect of xi on xj . The errors terms are commonly as-
sumed to be normally distributed, which means that the
covariance matrix Σ characterizes the observational distri-
bution. This matrix can be linked to the underlying struc-
tural parameters through the system of polynomial equations
Σ = XXT = (I − Λ)−TΩ(I − Λ)−1. Identification then
is reduced to finding the elements of Λ that are uniquely
determined by the above system. If a structural parameter
can be expressed in terms of the elements of Σ alone, it is
said to be generically identifiable (Foygel et al., 2012; Drton
& Weihs, 2015).

Generic identification can be fully solved using computer
algebra as shown in García-Puente et al. (2010). In prac-
tice, however, this method has a doubly-exponential com-
putational complexity (Bardet & Chyzak, 2005), becoming
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impractical for instances larger than four or five variables
(Foygel et al., 2012). It is currently unknown whether the
identifiability of an arbitrary structural parameter can be
determined in polynomial time.

Instead, most efficient identification algorithms search for
patterns in the covariance matrix known to correspond to
specific, solvable subsystems of direct effects. The most
well-known of such methods is known as instrumental vari-
able (IV) (Wright, 1928). In modern terminology, an “in-
strument” z relative to a direct effect λxy needs to be d-
separated (Koller & Friedman, 2009) from y, while it can-
not be d-separated from x in the modified graph where the
target edge x→ y is removed (Pearl, 2000). The existence
of such a variable means that λxy =

σzy

σzx
, and, therefore, is

uniquely determined by the observational distribution.

The IV and its generalizations, the conditional IV (cIV), are
heavily exploited in the literature, particularly in the field of
econometrics (Fisher, 1966; Bowden & Turkington, 1984).
Despite its success, many identifiable effects in a linear
system cannot be found with IVs and cIVs. Therefore, the
past two decades has witnessed a push in the development
of successively more sophisticated identification methods.

Two promising avenues towards efficiently solving generic
identification are conditional Auxiliary Variables (cAV)
(Chen et al., 2017) and Instrumental Cutsets (IC) (Kumor
et al., 2019), both of which provide poly-time algorithms
encompassing previous works such as the half-trek crite-
rion (HTC) (Foygel et al., 2012), the generalized half-trek
criterion (gHTC) (Chen, 2016; Weihs et al., 2018), auxil-
iary variable sets (AVS) (Chen et al., 2016), and conditional
instrumental variables (cIV) (Van der Zander et al., 2015).

Another class of graphical criteria has no known efficient
algorithm to date. These methods currently require an ex-
ponential number of steps. One such algorithm, the gener-
alized instrumental set (gIS) (Brito & Pearl, 2002) and its
generalization, the quasi-AV set (qAVS) (Chen et al., 2017),
have thus far eluded characterization. The perceived diffi-
culty of finding gIS (Tian, 2007) is compounded by a proof
that given a candidate set of instruments, finding whether
conditioning sets exist to make a gIS is NP-hard (Van der
Zander & Liskiewicz, 2016). This was further exasperated
when Kumor et al. (2019) proved that finding simplified
conditional instrumental sets (scIS) is also NP-hard.

We roughly summarize these methods in Fig. 1, even though
it lies outside the scope of this paper to survey this rich
literature. It can be seen that the literature is splintered
among several competing methods, with the state-of-the-art
in poly-time identification being IC or cAV, depending on
the setting. It’s not currently known how these methods
compare to qAVS, which has undetermined complexity.

The main goal of this paper is to provide an unifying treat-

ACID (new)

qAVS

IC

cAV

IS, HTC, AVS, gHTC

gIS, scIS

cIV

IV

Figure 1. Summary of the discussed identification methods. a→ b
means all methods in b subsume all methods in a. Green boxes
represent existence of polynomial-time algorithms, orange ones are
undetermined or NP-hard. ACID is the newly proposed algorithm.

ment of the threads and corresponding algorithms found
in this literature, under the umbrella of a single, efficient
algorithm. In particular, our contributions are:

• We develop the Auxiliary Cutset Identification Algo-
rithm (ACID), which runs in polynomial-time, and
unifies and strictly subsumes existing efficient iden-
tification methods (such as IC and cAV) as well as
conditioning-based methods with unknown complexity
(qAVS).

• We design a strategy for identification of total effects
based on the decomposition of the target query into
smaller, more manageable effects that can be effec-
tively and systematically solved by algorithms de-
signed for direct effects.

2. Preliminaries
The causal graph of an SCM is defined as a triple G =
(V,D,B), representing the nodes, directed, and bidirected
edges, respectively. A linear SCM has a node vi for each
variable xi, a directed edge between vi and vj for each non-
zero λij , and a bidirected edge between vi and vj whenever
there is latent confounding between the variables, i.e., non-
zero εij = σεiεj (Fig. 2a). When clear from the context,
we will use λij and εij to refer to the corresponding di-
rected and bidirected edges in the graph. In keeping with
other works, we define Pa(xi) as the set of parents of xi,
An(xi) as ancestors of xi, De(xi) as descendants of xi,
and Sib(xi) as variables connected to xi with bidirected
edges (i.e., variables with latent common causes).

A path in the graph is said to be “active" conditioned on a
(possibly empty) set W if it contains a collider only when
b ∈W ∪An(W ), and if it does not otherwise contain ver-
tices from W (see d-separation (Koller & Friedman, 2009)).
Active paths without conditioning do not contain colliders,
and are referred to as treks (Sullivant et al., 2010). The
covariances of observed variables have a graphical inter-
pretation in terms of a sum over all treks between nodes in
the causal graph, namely σxy =

∑
π(x, y), where π is the

product of structural parameters along the trek.
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Figure 2. In (a), z is an instrument for λxy . (b) shows a directed flow graph encoding the covariances between variables, with σxy

highlighted in blue. (c) λx1y cannot be solved using a conditional instrument, but can be approached using the instrumental set {z1, z2}.
(d) knowledge of λzx can be used to remove the backdoor path from x to y, shown in (e)’s flow graph (f) λx1y cannot be solved by either
IC nor cAV, but can be solved using gIS. (g) After applying Tian’s model decomposition to the graph in (f), it becomes equivalent to the
one in c, making the desired parameter efficiently solvable.

While methods such as Wright’s rules of path analysis are
commonly used for reading covariances directly from the
causal graph, we follow the identification literature and
define a “flow graph”, which explicitly encodes the treks
between nodes in its directed paths, allowing a direct algo-
rithmic approach to path analysis.

Definition 2.1. (Sullivant et al., 2010; Weihs et al., 2018;
Kumor et al., 2019) The flow graph of G = (V,D,B) is the
graph with vertices V ∪ V ′ containing the edges:

• j → i and i′ → j′ with weight λij if i→ j ∈ D

• i→ i′ with weight εii for all i ∈ V

• i→ j′ with weight εij if i↔ j ∈ B

This graph is referred to as Gflow. The nodes without ′ are
called “source”, or “top” nodes, and the nodes with ′ are
called “sink” or “bottom” nodes.

As an example, consider the instrumental variable graph of
Fig. 2a. Each trek corresponds to a directed path in the flow
graph shown in Fig. 2b. Summing over all paths from x to
y′ (in blue), we obtain the covariance between these two
variables,

σxy = λzxεzzλzxλxy + εxxλxy + εxy = σxxλxy + εxy

Reading covariances from the flow graph can help in visu-
alizing the IV: σzy

σzx
=

εzzλzxλxy

εzzλzx
= λxy. Finally, in Fig. 2c,

there is no single instrument, but one can use the instrumen-
tal set {z1, z2} to construct a solvable system of equations
(Brito & Pearl, 2002),

σz1y = σz1x1
λx1y + σz1x2

λx2y

σz2y = σz2x1
λx1y + σz2x2

λx2y

(1)

To simplify discussion of paths in the graph, we define the
partial effect of a on b avoiding set C, denoted as δab.C ,

as the causal effect of a on b when holding all variables in
C constant (δab.C = ∂

∂a IE[b | do(a), do(C)]). This corre-
sponds to the sum of all products of direct effects along the
directed paths from a to b that do not cross any nodes in C.
In particular, two special cases are worth noting. First, when
C = ∅, then δab.C = δab is the total effect of a on b. When
C = Pa(a), we recover the direct effect δab.C = λab.

2.1. Auxiliary Variables

One can leverage direct effects that were previously iden-
tified to create new variables to help with the identifica-
tion of further edges. For example, in Fig. 2d, λzx can
be trivially identified with the regression coefficient of z
on x, λzx = σzx

σzz
. Once λzx is known, one can create an

auxiliary variable (AV) x∗ = x − λzxz subtracting out
the direct effect of z. This new variable behaves as if the
edge λzx did not exist in the graph, eliminating the back-
door path from x to y, and allowing the identification of
the direct effect of x on y with the regression coefficient
of x∗ on y, i.e, λxy =

σx∗y
σx∗x

(Chen et al., 2016). This
phenomenon can also be observed in the flow graph of
Fig. 2d, shown in Fig. 2e. The covariance of x∗ with y
reads σx∗y = σxy − λzxσzy = εxxλxy. That is, the op-
eration to create x∗ effectively removes the source edge
λzx (red) from the flow graph. Next, dividing σx∗y by
σx∗x = σxx − λzxσzx = εxx gives λxy .

2.2. Trek Systems & Determinants

Instrumental variables and instrumental sets can be gener-
alized in the flow graph by exploiting properties of deter-
minants of the minors of the covariance matrix (Sullivant
et al., 2010). Denote by Σz1z2,x1x2

the minor of the co-
variance matrix with columns z1, z2 and rows x1x2. This
gives us det Σz1z2,x1x2

= σz1x1
σz2x2

− σz2x1
σz1x2

. As
shown by Gessel & Viennot (1989), the value of this deter-
minant can be read directly from the flow graph as the sum
of non-intersecting sets of paths (i.e, paths which do not
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share any vertices) between z1, z2 and x′1, x
′
2, multiplied by

the sign of the permutations (see Gessel & Viennot (1989)
for details). This is due to the fact that terms that come from
intersecting paths cancel out when computing the determi-
nant, leaving only terms corresponding to non-intersecting
paths. We therefore have det Σz1z2,x1x2

as the product of
non-intersecting paths between z1 → x′1 and z2 → x′2, with
the non-intersecting paths between z1 → x2 and z2 → x1

subtracted out. If any such path set exists, the determinant
can be shown to be generically non-zero.

For illustration, consider the flow graph of Fig. 2c, which
is shown in Fig. 3. There is only one non-intersecting path
set between z1 → x1 and z2 → x2, namely εz1z1λz1x1

and
εz2z2λz2x2

. Similarly, the non-intersecting path set between
z1 → x2 and z2 → x1 consists of the paths εz1z1λz1x2

and
εz2z2λz2x1

. The determinant is given by

det Σz1z2,x1x2
= (εz1z1λz1x1

)(εz2z2λz2x2
)

− (εz1z1λz1x2
)(εz2z2λz2x1

) (2)

Weihs et al. (2018) realized that this property can be ex-
ploited for the identification of structural parameters. Solv-
ing for det Σz1z2,yx2 , the same non-intersecting paths exist
between the sets as shown in Fig. 3, but all paths to x′1 are
now extended to y′. This yields

det Σz1z2,yx2
= λx1y det Σz1z2,x1x2

(3)

allowing identification of λx1y =
det Σz1z2,yx2

det Σz1z2,x1x2
, which

formally recovers Cramer’s rule solution of Eq. (1) for λx1y .

2.3. Model Decomposition

One can also decompose a graph into smaller sub-graphs.
First proposed by Tian (2005), the decomposition hinges
upon the concept of a c-component, consisting of a set
of variables connected through paths consisting solely of
bidirected edges. Consider Fig. 2f. Here, x1 has a bidi-
rected edge to y, which in turn is connected to x2 and w via
bidirected edges. This makes {w, x1, x2, y} a c-component.
Likewise, {z1, z2} is also a c-component.

Given a c-component, we can define a subgraph consisting
of the nodes in the c-component and its direct parents, with
all other variables and edges removed. This subgaph is
called a “mixed component” of G.
Definition 2.2. (Tian, 2005; Drton & Weihs, 2015) Given
G = (V,D,B), let C1, ..., Ck ⊂ V be the unique parti-
tioning of V where v, w ∈ Ci iff ∃ path from v to w com-
posed only of bidirected edges, and let Vi = Ci ∪ Pa(C1),
Di = {v → w ∈ G|v ∈ Vi, w ∈ Ci} and Bi = {v ↔ w ∈
G|v, w ∈ Ci}. Then Gi = (Vi, Di, Bi), i = 1...k are the
mixed components of G.

The mixed component of {w, x1, x2, y} in Fig. 2f is shown
in Fig. 2g. Whereas existing efficient methods fail to identify

y′y

x1 x′1 x2 x′2

z1 z′1 z2 z′2

y′y

x1 x′1 x2 x′2

z1 z′1 z2 z′2

Figure 3. The flow graph of Fig. 2c, showing the two non-
intersecting path sets from z1, z2 to x1, x2

λx1y in Fig. 2f, it is easily identifiable in Fig. 2g. As shown
by Tian (2005), this means the effect is also identifiable in
the original graph.

3. Identification with the Auxiliary Cutset
In this section, we develop a polynomial-time algorithm that
subsumes the state-of-the-art for efficient identification in
linear SCM. We begin by defining a new type of auxiliary
variable, which can help with the identification of new co-
efficients in the model. We then devise an identification
criterion for partial effects, and show how to use it to ef-
ficiently create these new AVs. Finally, we show how our
results can be used to recursively identify direct effects.

3.1. Auxiliary variables using total and partial effects

Standard auxiliary variables enable the use of previously
identified direct effects to remove edges from the flow graph.
In some cases, such as in Fig. 2d, this allows us to directly
identify a target parameter, bypassing the need to search for
a conditioning set. However, in many cases, auxiliary vari-
ables using only identifiable direct effects are not sufficient
for this task.

An example of such a model is given in Fig. 2f. Here, al-
though the generalized instrumental set {z1, z2} conditional
on w is sufficient for identifying λx1y and λx2y , we cannot
achieve the same result with AVs. While z∗2 = z2 − λwz2w
can be computed (because λwz2 is identified), the AV
z∗1 = z1 − λwz1w − λz1z2z2 cannot, since that requires
the identification of both λwz1 and λz1z2 . This suggests that
there is something missing from AVs that rely solely on
direct effects.

The source of the issue can be revealed in the mixed com-
ponent of the model (Fig. 2g). Here, w is disconnected
from z1 and z2, which becomes equivalent to the model
in Fig. 2c. In the mixed component, λx1y and λx2y can
be easily identified using an unconditional instrumental set
{z1, zw}. This leads to the realization that it may not be
necessary to identify the direct effects λwz1 and λz1z2 to
disconnect z1 from w—it suffices to identify the total effect
of w on z1. As it happens, this effect is easily computable
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Figure 4. (a) A naïve application of total-effect AVs can’t be used
here. (b) Only ACID can solve for λx1y .

with the regression coefficient of w on z1, i.e, δwz1 =
σwz1

σww
.

We can now create a new type of AV, z†1 = z1 − δwz1w,
which indeed behaves as if z1 had no path to w. Combining
z†1 with the standard AV z∗2 leads to a system of equations
that can be solved for λx1y and λx2y ,

σz†1y
= σz1y − δwz1σwy = λx1yσz†1x1

+ λx2yσz†1x2

σz∗2y = σz2y − λwz2σwy = λx1yσz∗2x1
+ λx2yσz∗2x2

One needs to be careful when generalizing the results of this
example—sometimes, a naïve subtraction of total effects
can backfire. Consider, for instance, the model of Fig. 4a,
and suppose we want to use x as an AV for the target query
λxy. Note we can identify the total effects δax and δdx.
But also note that in the “naïve AV” x‡ = x − δdxd −
δaxa, subtracting out both total effects, does not remove the
backdoor paths of x with y,

σx‡y = σxy − δaxσay − δdxσdy = λxyσx‡x−δdxλadεay
This happens because the total effect of a already includes
parts of the total effect of d, and thus when constructing the
“naïve AV” x‡ we subtracted the path λadλdx twice.

One way to avoid this problem is to use only the portions
of the effect of a on x that do not pass through d. That is,
instead of subtracting out the total effect δax, we subtract out
the partial effect δax.d, leading to x† = x− δdxd− δax.da.
Indeed, as desired, this removes all backdoor paths,

σx†y = σxy − δax.dσay − δdxσdy = λxyσx†x

In other words, by using only paths that do not intersect any
other variable subtracted in the AV, we can avoid subtracting
any path more than once, allowing us to effectively remove
all of x’s backdoor paths to both a and d at the same time.
We formalize this idea in Theorem 3.1.
Theorem 3.1. Given a variable x, and a subset C of the
ancestors of x, the covariance of the auxiliary variable
x† = x−

∑
i δcix.C × ci with variable v can be determined

by the sum of paths from x to v′ in Gflow with source edges
λcidj removed where ci ∈ C and dj ∈ An(x).

a a′

d

d′

x′x

c c′

b b′

Figure 5. The flow graph of Fig. 4a, excluding y. To find the partial
effects δax.d and δdx.a (a′, d′ in blue), we can use the partial-effect
instrumental set a, b (red).

3.2. Instrumental sets for partial-effects

Theorem 3.1 gives us a principled way to incorporate knowl-
edge of partial effects into the flow graph in order to help
existing identification algorithms. A natural question now
arises: how can we identify those partial effects? In this
subsection, we demonstrate how a modified version of in-
strumental sets can solve this task. In particular, we exploit
the same property that was used to identify a direct effect in
the example of Eq. (3).

Continuing with the model of Fig. 4a, we want to identify
δdx.a = δdx and δax.d. To help with understanding the
general approach, we will operate on the flow graph of
Fig. 4a excluding y, shown in Fig. 5. We have placed a′, d′

(blue) in the sink nodes. Notice that the paths from a′ to x′

form δax. All paths from a′ to x′ that do not intersect with
d′ form δax.d. Likewise, the paths from d′ to x′ form δdx,
which in this case is the same as δdx.a. Our goal is to exploit
the non-intersection property of paths in the determinant of
a trek system to automatically find all paths from a to x that
do not pass through d.

Observe that a and b are two candidate instruments for
x, that is, they are non-descendants of {x} ∪ Sib(x).
Furthermore, all paths from the source nodes a and
b (red) to x′ in the flow graph cross either a′ or d′.
Computing the determinant between a, b and a′, d′ gives
det Σab,ad = (εaa)(εbbλbd), since there is only one valid
path set, a→ a′ and b→ d′.

Next, replace a′ with x′ in the determinant. That is:

det Σab,xd = (εaa(λax + λacλcx))(εbbλbd)

= δax.d det Σab,ad (4)

We have therefore found that δax.d =
det Σab,xd

det Σab,ad
. Similarly,

δdx.a =
det Σab,ax

det Σab,ad
. What we have created here is the analog

of a standard instrumental set, which uses the set {a, b} as
instruments to identify the partial effects of a and d on x.

The formalization of instrumental sets for identifying partial
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Figure 6. In this graph, w and z are both candidate instruments,
but the min-cut between w, z (blue) and x′1, x′2, x′3 (red) is w, z′ -
with w as a source node.

effects is given in Definition 3.1 and Theorem 3.2.

Definition 3.1. Given target node x, a set C ⊂ An(x),
and a set Z such that |Z| = |C|, then, if there is a non-
intersecting path-set between source nodes of Z and sink
nodes of C in Gflow, and all paths from source nodes Z to
sink node x′ cross through the sink nodes of C, the set Z is
said to be a Partial-Effect Instrumental Set (PEIS) relative
to C and x.

Theorem 3.2. If Z is a PEIS relative to C and x, then
the partial effects of C on x are identified, and given by

δcix.C =
det ΣZ,Cx

−i

det ΣZ,C
, where Cx−i is the ordered set C with

ci replaced by x.

Whenever there exists a PEIS Z relative to C and x, we call
C a feasible ancestral cutset of x, because C cuts x from
Z in the flow graph. Finally, we would like to emphasize
that, while in this work we mainly use the PEIS for the
purpose of constructing AVs, this is a general criterion for
finding partial effects, and can be used independently for
other purposes.

3.3. Auxiliary cutset: “best” feasible ancestral cutset

In general, given a target node x for which we want to create
an auxiliary variable x†, there will be multiple feasible an-
cestral cutsets we can choose from. For instance, in Fig. 4a,
d alone is a feasible ancestral cutset (using b as an instru-
ment). Clearly, however, an auxiliary variable constructed
by subtracting the effect of d alone cuts x from strictly less
variables than using {a, d}. Moreover, an x† constructed
in this way is not independent of y (a path through a still
exists), and can no longer be used as an AV to identify λxy .
It is useful, therefore, to define a notion of the best feasible
ancestral cutset C for generating an auxiliary variable x†.
This is called the auxiliary cutset.
Definition 3.2. The auxiliary cutset (AC) is the feasible
ancestral cutset C of x such that sink nodes of C intersect
all paths from sink nodes ofC ′ to x′ for all feasible ancestral
cutsets C ′ for x in G.

Algorithm 1 - AC: is given a graph, target vertex x, a set of
candidate instruments (which can themselves be AVs), a set
of identified structural parameters, and returns the Auxiliary
Cutset for x

Input: G, x, Z,Λ
Ghf ← AUXHALFFLOWGRAPH(G, x,Λ)
C ← ∅
repeat
Z ← {z ∈ Z : UNREMOVEDANCESTORS(z) ∩ C =
∅}
C ← vertex min-cut closest to x between Pa(x) and Z

until UNREMOVEDANCESTORS(Z) ∩ C = ∅
Z ′ ← {zi ∈ Z : zi has non-zero flow to ci ∈ C}
return (Z ′, C)

Definition 3.2 ensures that the AC of x results in an auxiliary
variable x† that has all the removed ancestral paths of any
other possible auxiliary varible x†

′
removed. In other words,

for every other feasible auxiliary variable x†
′
, we know that

the x† constructed using the AC is the “best”, meaning that,
if a path is removed using any other feasible ancestral cutset,
it is also removed using the auxiliary cutset.

To find the AC, we follow a procedure similar to the one
used in Kumor et al. (2019). The core idea can once again be
demonstrated on Fig. 5. In this flow graph, only a and b are
source nodes whose paths to x all go through the sink nodes
of Pa(x). This means that a and b are both “candidate
instruments"—only candidate instruments can possibly be
instruments of a feasible ancestral cutset. We then run a
vertex min-cut algorithm (Picard & Queyranne, 1982) from
{a, b} to the sink nodes of parents of x, namely {c′, d′}, and
find the min-cut that is closest to x. In this case, the min-cut
is a′, d′, meaning that {a, d} is the auxiliary cutset of x.

By using the closest vertex min-cut C between candidate in-
struments Z and sink nodes of parents of x, we guarantee all
the conditions of Definition 3.1 are satisfied automatically
by Z ′ and C, with Z ′ ⊆ Z, except for the requirement that
C consists entirely of sink nodes. An example where this is
violated is given in Fig. 6—the min-cut there includes source
node w. In such cases, we know that the associated node
is not part of any possible AC, so we can remove it from
candidacy, and rerun the min-cut algorithm. After removing
w, and then z, we are left with no possible AC in Fig. 6.
The general version of this procedure (which includes con-
cepts from Section 3.4) is implemented in Algorithm 1, and
always finds the AC if it exists.

Theorem 3.3. If there exists a feasible ancestral cutset for
x in G, then the AC exists, and is found by Algorithm 1.
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3.4. Putting everything together: the ACID Algorithm

The final question remaining is: how can we use this newly
generated AV x† for identification? We want to both use
it recursively in Algorithm 1, and within our identification
algorithm (IC), to identify direct effects. When the set
of candidate instruments consists of original variables we
can easily find the AC using the standard flow graph, as
it was done in the example in Fig. 5. However, once the
candidate instruments have their own auxiliary cutsets, with
each candidate’s cutset being specific to that candidate, we
run into difficulties trying to encode non-intersecting paths.
To understand why, we will use the concept of “unremoved
ancestors"

Definition 3.3. Let y be a target node with auxiliary cutset
C. The unremoved ancestors of y are all v ∈ An(y) such
that there exists a directed path from v to y in G that does
not cross any c ∈ C.

When using multiple AVs at once, e.g, z†1 and z†2, where each
AV has source-paths in the flow graph to its own unremoved
ancestors, some of which might be shared, it is unclear how
to efficiently find a path set from both AVs at once that does
not intersect. Theorem 3.4 shows we do not need to encode
paths in the source nodes at all.

Theorem 3.4. Let A be the unremoved ancestors of the AV
x†. If x† is a candidate instrument for y, then all elements
of the AV a† of a ∈ A are also candidate instruments for y.

Therefore, since all the unremoved ancestors of a candi-
date instrument are candidate instruments themselves, any
candidate with a path in the source nodes can be switched
with the candidate at which the path crosses over to the
sink nodes. This means we only need to encode edges from
source nodes to sink nodes, which can be done with the
Auxiliary Half-Flow Graph (Definition 3.4).

Definition 3.4. The auxiliary half-flow graph of G =
(V,D,B) given target node y and set of identified edges
Λ is the graph with vertices V ∪ V ′ containing the edges:

• i′ → j′ with weight λij if i→ j ∈ V and j 6= y

• i′ → y′ with weight λiy if i→ y ∈ V and λiy /∈ Λ

• i→ i′ with weight εii for all i ∈ V

• i→ j′ with weight εij if i↔ j ∈ B

This graph is referred to as Ghf . The nodes without ′ are
called “source” nodes, and the nodes with ′ are called “sink”
or “bottom” nodes.

This completes the tools needed to specify the ACID algo-
rithm (Algorithm 2), which internally uses a version of the

Algorithm 2 - ACID: Given a graph, returns a set of identi-
fiable structural parameters.

Input: G
Λid ← ∅
v† = v ∀ vertices v ∈ G
repeat

for all vertices v ∈ G in topological order do
Z ← {z† : UNREMOVEDANCESTORS(z†) ∩
(Sib(y) ∪ {y}) = ∅, ∀z ∈ G}
Ghf ← AUXHALFFLOWGRAPH(G, x,Λid)
Λid ← Λid ∪ IC(Ghf , v, Z)
v∗ = v −

∑
λav∈Λid

λav
(Z ′, C)← AC(G, v, Z,Λid)

v† = v∗ −
∑
ci∈C

det Σ
Z′,Cv∗

i

ΣZ′,C
ci

end for
until no change in this iteration
return Λid

IC algorithm (Kumor et al., 2019) adapted to make use of
partial-effect AVs and Half-Flow graphs.1

ACID unifies the state-of-the-art for identification in linear
SCMs. Moreover, the AC’s ability to block certain ances-
tors turns out to be the missing piece needed for auxiliary
variable methods to finally overtake methods based on con-
ditioning. Methods built upon conditioning such as the
gIS and qAVS have undetermined complexity, with several
NP-Hardness results for similar methods. ACID is the first
efficient identification algorithm that subsumes these ap-
proaches, obviating the discussion of their computational
complexity.

Theorem 3.5. If λab is identifiable with either the cAV, IC,
or qAVS criteria, then it is identifiable with ACID.

4. Decomposition of total effects
The ACID algorithm identifies individual direct effects. It
does not include total effects, which play an important
role in virtually all causal inference tasks, such as policy-
making, model testing, z-identification, and sensitivity anal-
ysis (Pearl, 2000; Bareinboim & Pearl, 2012; Chen et al.,
2017; Cinelli et al., 2019; Lee et al., 2019; Cinelli & Ha-
zlett, 2020). Unlike direct effects, the identification of total
effects in linear models has not received as much attention
and existing approaches fall broadly into two categories.

The first approach is to appeal to the foundational meth-
ods of identification, such as the instrumental variable, the
front-door, or the back-door criterion (or, more generally,
the do-calculus) (Pearl, 2000; Tian, 2004). While sound,
these methods ignore recent advances in the linear identi-

1For details of the modified IC, refer to the appendix.
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fication literature. A second approach is to decompose the
total effect of x on y into the sum of structural parameters
along all directed paths from x to y, and use state-of-the-art
identification algorithms for direct effects to identify all
structural parameters along these paths. This is sub-optimal,
as it misses cases in which the total effect is identifiable, but
some individual parameters are not.

To bridge the gap between these two extremes, we derive a
decomposition of total effects that relies on the identification
of only some of the direct effects of which it is composed.
The method makes use of ancestor and c-component decom-
positions to recursively break the total effect into a set of
partial effects and direct effects, which can then be attacked
with current identification algorithms for linear models.

Suppose our target query is the total effect δxy in Fig. 7a.
This effect is not identifiable non-parametrically, as there
are bidirected edges between x and its children. Second,
an approach based on current state-of-the-art methods that
relies on identifying all direct effects of δxy would equally
fail, since no existing method can identify λce.

We begin by defining the “top boundary” of a mixed com-
ponent as the parents of variables in a c-component that are
in other c-components.

Definition 4.1. Given graph G, with c-components
C1, ..., Ck, the top boundary Tb(Ci) of the c-component
Ci is defined as Tb(Ci) = Pa(Ci) \ Ci.

The concept of top boundary is useful for two reasons: first,
we can always identify the “total effect” in the mixed com-
ponent G′ of its top boundary on any other node in the
mixed component (this “total effect” in G′ may correspond
to a partial effect in the original model G); second, the total
effect of x on y can be decomposed as the sum of the total
effect of x in the nodes of the top boundary (in G) times the
“total effect” of the top boundary nodes in y in the mixed
component. This is formalized in Theorem 4.1.

Theorem 4.1. Let GAn(y) be the graph G with the non
ancestors of y removed. Let Cy be the c-component of y in
GAn(y) and G′ its corresponding mixed component. Then,
if x ∈ Cy , the total effect of x on y, δxy , can be decomposed
as, δxy = δ′xy +

∑
b∈Tb(Cy) δxbδ

′
by otherwise, if x /∈ Cy,

we have, δxy =
∑
b∈Tb(Cy) δxbδ

′
by where Tb(Cy) is the

top boundary of the c-component Cy and δ′by is the total
effect of node b ∈ Tb(Cy) on y in the mixed component G′.
Moreover, all δ′by for b ∈ Tb(Cy) are identified.

The recursive application of this idea enables us to iteratively
identify parts of the total effect via a combination of ances-
tral and c-component decompositions, leaving only a portion
of the path to be identified using algorithms specialized for
direct effects. In our example, note that h is not an ancestor
of y, therefore GAn(y) does not include h. This allows us to

x

a b

dc

e h

f

g

y

(a)

x

a b

dc

e

f

(b)

Figure 7. In (a), we can reduce δxy into queries on δxe, δxd, δxf
in (b), and then to λxa and λxb by iteratively decomposing the
model.

Algorithm 3 - TED: Given a graph and a target total-effect
δxy , returns a set of direct effects that suffice to identify δxy

Input: G, δxy
GAn ← An(y)
G′ ← MIXEDCOMPONENT(GAn, y)
B ← TOPBOUNDARY(G′) ∩An(y,G′)
if x ∈ G′ and x /∈ B then

return {λab : ∀λab ∈ δ′xy} ∪
⋃
b∈B TED(G, δxb)

else
return

⋃
b∈B TED(G, δxb)

end if

decompose the pruned graph into the the mixed component
G′ of the c-component {y, g}. Since the total effect of x
on y needs to necessarily pass through the top boundary of
G′, we have that, as per Theorem 4.1, the total effect can be
decomposed as δxy = δxeδ

′
ey + δxdδ

′
dy + δxfδ

′
fy, and all

direct effects starting from the top boundary in the mixed
component (δ′) can be identified. The query δxy is then
broken down into three smaller subqueries, δxe, δxd, δxf .

Now we can apply Theorem 4.1 for each of the remaining
queries (shown in Fig. 7b). Pruning the non-ancestors of f
leaves us with just f , and δxf = 0. Looking at e, note that
f is not its ancestor, and the c-component decomposition al-
lows identification of δ′ae and δ′be, with resulting subqueries
δxa and δxb. Applying the same logic to d leads us to
identify δ′ad and δ′bd, with identical remaining subqueries.
This leaves only two directed edges left to be identified
δxa = λxa and δxb = λxb. We have thus reduced the iden-
tification of the total effect of δxy to the identification of
λxa and λxb only, both of which can be solved using f as
an instrumental variable. The full algorithm for the total
effect decomposition is given in Algorithm 3, which given a
target total-effect δxy , returns a set of direct effects that are
sufficient for identifying the desired quantity.
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5. Conclusion
We developed an efficient algorithm for linear identification
that subsumes the current state-of-the-art, unifying disparate
approaches found in the literature. In doing so, we also intro-
duced a new method for identification of partial effects, as
well as a method for exploiting those partial effects via aux-
iliary variables. Finally, we devised a novel decomposition
of total effects allowing previously incompatible methods
to be combined, leading to strictly more powerful results.
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A. Appendix
This appendix consists of 3 sections. The first section, A.1,
presents the proofs for the theorems of Section 3 in the
paper. The second section, A.2, contains the proof for the
total-effect decomposition, as well as a method for easily
solving for the covariance matrix of a mixed component
using only the covariance matrix of the original model. Fi-
nally, the last Section, A.3, shows that generalizing ancestral
decomposition as defined by Drton & Weihs (2015) is NP-
Hard, making decomposition-based methods sub-optimal as
a general strategy for identification.

A.1. Auxiliary Cutsets

In this section, we prove the theorems of Section 3. For sim-
plicity of exposition, hereafter, unless otherwise specified
(such as in Theorem 3.1), for any variable v, we use v† to
denote the variable

v† = v −
∑
ci∈C

δciv.Cci

where C is the (possibly empty) Auxiliary Cutset (Defini-
tion 3.2) for v constructed by the ACID algorithm. In this
sense, whenever certain properties of v† are stated, this
means that, when the ACID algorithm constructs the AV v†

for the variable v, then v† constructed in this way must have
those properties.
Theorem 3.1. Given a variable x, and a subset C of the
ancestors of x, the covariance of the auxiliary variable
x† = x−

∑
i δcix.C × ci with variable v can be determined

by the sum of paths from x to v′ in Gflow with source edges
λcidj removed where ci ∈ C and dj ∈ An(x).

Proof. Let c1, ..., cn be the set C ordered in topological
order over Gflow. By definition of topological order, any
paths from x to ci cannot pass through any node cj where
j > i. Defining Ci = {c1, ..., ci}, we therefore have
δcix.C = δcx.Ci−1 (remember that paths in the source nodes
ofGflow go in the reverse direction of arrows in the original
graph - so δcx in the original graph is reflected by source-
paths from x to c in the flow graph).

Define x†i = x −
∑i
j=1 δcix.Ci−1

ci and Giflow as the flow
graph encoding the covariances of x†i . We will proceed by
induction on i.

In the base case, i = 0, and x†0 = x, making G0
flow =

Gflow. This holds by the definition of the flow graph.

Now, suppose that the covariances of x†i are encoded by
Giflow, which is Gflow with source edges λcjdi removed
for j < i. We now observe x†i = x†i−1 − δcix.Ci−1

ci. The
variable’s covariance with v is therefore

σx†iv
= σx†i−1v

− δcix.Ci−1σciv

Here, σx†i−1v
consists of all paths between x and v′ inGi−1

flow

by the inductive hypothesis. Likewise, δcix.Ci−1
consists

of all paths from x to ci in Gi−1
flow, since all paths from x

to ci crossing elements of Ci−1 have had their edges to
Ci−1 removed. Likewise, σciv can be computed in Gflow,
however, by the topological ordering, none of Ci−1 are
reachable from ci in Gflow, meaning that the paths from
ci to v in Gi−1

flow also encode this covariance (none of the
edges in the descendants of ci were removed).

Finally, we observe that δcix.Ci−1σciv can therefore be seen
as all the paths from x to v′ that cross through ci in Gi−1

flow.
The covariance σx†iv, therefore, consists of all paths in

Gi−1
flow that don’t cross ci. This can be achieved by defin-

ing Giflow by removing the source edges incoming to ci in
Gi−1
flow.

We have therefore shown by induction that Gnflow of
x† = x†n encodes the covariance as described in the theo-
rem.

Theorem 3.2. If Z is a PEIS relative to C and x, then
the partial effects of C on x are identified, and given by

δcix.C =
det ΣZ,Cx

−i

det ΣZ,C
, where Cx−i is the ordered set C with

ci replaced by x.

Proof. Please note that this theorem refers to Z as variables,
which are not themselves ACs. A simple modification to
make this proof work for recursive application of ACs is
given in Corollary A.1.

We will start by looking at ΣZ,Cx
−i

, specifically the column
that was replaced with x. The jth row of this column is
σzjx. We will decompose this covariance into treks, and
split it into paths crossing the elements of C. In particular:

σzjx =
∑

treks from zj to x′

We now group the treks for each ck in C, such that the
k’th trek set contains all the treks from zj to x′ where ck is
the last element of C crossed by the trek. We can do this,
because by the definition of PEIS, all paths from z to x are
intersected by C ′ (the source nodes of C in Gflow).

σzjx =
∑
ck∈C

sum treks from zj to x′ crossing c′k last of ∀c′ ∈ C ′

We can focus the group of treks for ck. We can decompose
this into the paths to ci, and the paths from ci:

(treks from zj to c′k)×(paths from c′k to x′ avoiding all c ∈ C)
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The last term was because ck was the last element of C on
the treks from zj to x. This corresponds to:

σzjx =
∑
ck∈C

σzjckδckx.C (5)

Finally, plugging this into the determinant det ΣZ,Cx
−i

det


σz1c1 · · · σz1ci−1

σz1x σz1ci+1
· · · σz1cn

σz2c1 · · · σz1ci−1
σz2x σz2ci+1

· · · σz2cn
... · · ·

... · · ·
...

σznc1 · · · σznci−1
σznx σznci+1

· · · σzncn



= det


σz1c1 · · ·

∑
ck∈C σz1ckδckx.C · · · σz1cn

σz2c1 · · ·
∑
ck∈C σz2ckδckx.C · · · σz2cn

... · · ·
... · · ·

...
σznc1 · · ·

∑
ck∈C σznckδckx.C · · · σzncn


Using the multilinearity of the determinant, this is equivalent
to:

=
∑
ck∈C

δckx.C det


σz1c1 · · · σz1ck · · · σz1cn
σz2c1 · · · σz2ck · · · σz2cn

... · · ·
... · · ·

...
σznc1 · · · σznck · · · σzncn


All terms Ck where k 6= i have columns already in the
matrix, meaning that these determinants are 0. This means:

= δcix.C det


σz1c1 · · · σz1ci · · · σz1cn
σz2c1 · · · σz2ci · · · σz2cn

... · · ·
... · · ·

...
σznc1 · · · σznci · · · σzncn


Finally, we divide by the given determinant to get the desired
result:

det ΣZ,Cx
−i

= δcix.C det ΣZ,C

det ΣZ,Cx
−i

det ΣZ,C
= δcix.C

Since Z and C have a full path-set to each-other, ΣZ,C is
full-rank, so its determinant is generically non-zero, com-
pleting the proof.

Corollary A.1. If Z† is a PEIS relative to C and x, then
the partial effects of C on x are identified, and given by

δcix.C =
det Σ

Z†,Cx
−i

det Σ
Z†,C

, where Cx−i is the ordered set C with
ci replaced by x.

Proof. We will perform a tiny modification of the proof
of Theorem 3.2. In particular, the decomposition given in
Eq. (5) needs to be modified to reference paths in the flow
graph for z†i ∈ Z as defined in Theorem 3.1:

σz†jx
=

∑
ck∈C

σz†j ck
δckx.C

Note that δckx.C is identical in all graphs of Z†, since no
paths in the sink nodes are modified. Here, σz†j ck is found in

the flow graph of z†j . However, notice that other than using
covariances of v†, the proof of Theorem 3.1 works without
modification.

Theorem A.1. Let C be the vertex-min-cut between a set
Z and set P , closest to P in DAG G. If C ′ is the vertex
min-cut between a set Z ′ = Z ∪ {z′} and P closest to P ,
then

1. |C| ≤ |C ′|

2. if |C| = |C ′| then C = C ′

3. all paths from C to P intersect C ′

Proof. (1) can be proved by simply noticing that if |C ′| <
|C|, since C ′ also cuts Z from P , then C ′ is a valid cut that
is smaller than C - a contradiction of min-cut property of
C.

(2) Suppose C 6= C ′, then ∃v ∈ C ′ such that v /∈ C. There
are two possibilities - either v /∈ De(Z), in which case
C ′ \ {v} is a min-cut for Z - a contradiction, since this cut
is smaller than the min-cut, or v ∈ De(Z), in which case C
is already the min-cut of De(Z) closest to P , meaning that
C ′ cannot be the closest min-cut.

(3) If |C| = |C ′|, C = C ′, so this holds. If |C| < |C ′|,
we can construct a cut C∗ for Z ′ to P by defining C∗ =
C∪{z′}. The closest-min-cutC ′ must be eitherC∗ or closer
to P . This means that all paths from C∗ must intersect the
closest min-cut, and C ⊂ C∗, so all paths from C to P must
intersect C ′.

Corollary A.2. Given a set Z which has a full flow to set C,
where C intersects all paths from Z to P in DAG G, then
all paths from C to P intersect the min-cut C ′ between Z
and P closest to P .

Proof. By the fact that Z has a full flow to C, it means
that any min-cut between Z and C must be of size |C|. If
the min-cut C ′ closest to P is of size |C|, then all paths
from any other min-cut to P must pass through C ′. If C ′ is
smaller than C, we know that it must be in descendants of
C, since Z has a full flow to C.

Lemma A.1. Given a set of candidate instruments Z, and
a target node x, then if the vertex min-cut C from Z to the
sink nodes of Pa(x) has an element c ∈ C in the source
nodes, then if a candidate instrument zi ∈ Z has a path to
c in Gflow, it is not part of any PEIS.
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Proof. By contradiction. Suppose there exists a PEIS Z ′

relative to C ′ and x, where zi ∈ Z ′. By definition of C ′,
the sink nodes of C ′ cut Z ′ from the sink nodes of Pa(x).
Using Corollary A.2, and the fact that sink nodes do not
have directed paths to any source nodes in Gflow, we know
that there is a closest-min-cut C∗ between Z and Pa(x),
where C∗ is made up of sink nodes, and all paths from C ′

cross C∗. Now, using Theorem A.1, by adding all other
candidate nodes Z to Z ′, we get the closest vertex-min-cut
C between Z and Pa(x), and we know that all paths from
C∗ are intersected by Cs ⊆ C. This means that all paths
from zi in C are cut using only sink nodes Cs - meaning
that the element c is redundant, as it does not block any
previously unblocked paths. This is a contradiction to the
min-cut property of C.

Theorem 3.3. If there exists a feasible ancestral cutset for
x in G, then the AC exists, and is found by Algorithm 1.

Proof. Using Corollary A.3, we know that we can find the
closest min-cut from all candidate instruments Z, some of
which can have ACs by using the half-flow graph Ghf .

In the first steps of the algorithm, we exploit Lemma A.1
to eliminate all zi from candidacy which cannot be part
of any PEIS. After running the loop, we can construct the
min-vertex-cut C closest to Pa(x) from the remaining can-
didates Z ′ ⊆ Z, where all nodes in the cut are sink nodes.
At this point, any PEIS must have as its instrumental set
Z∗ ⊆ Z, and feasible ancestral cutset C∗, which by Corol-
lary A.2 and Theorem A.1 (3) must have all its paths to
Pa(x) intersect C. Next, by running a max-flow between
Z ′ and C (by definition of vertex min-cut, the flow will be
of size |C|), we get a set Z ′′ of elements of Z with flow 1
through them, which is a valid PEIS for C, making C the
Auxiliary Cutset.

Theorem 3.4. Let A be the unremoved ancestors of the AV
x†. If x† is a candidate instrument for y, then all elements
of the AV a† of a ∈ A are also candidate instruments for y.

Proof. If a ∈ A has no path to {y} ∪ Sib(y), then it is
already a candidate instrument by definition. The only case
that requires consideration is when {y} ∪ Sib(y) is an an-
cestor of a in G. Since a is an unremoved ancestor of x, it
means that there is a path from x to a in Gflow with edges
incoming into the auxiliary cutset C removed. This means
that the cutset of x† must include a subset C ′ = C ∩An(a)
that cuts a from {y} ∪ Sib(y) (otherwise, since there is a
path from a to x, the path from {y}∪Sib(y) to a combined
with the path from a to xmakes a path from {y}∪Sib(y) to
x, which would mean that x† is not a candidate instrument -
a contradiction).

Our goal here is to show that C ′ is a feasible ancestral cutset
for a, meaning that using Corollary A.2 and Theorem A.1,

a† will also have all paths to {y} ∪ Sib(y) subtracted out.
Let Z ′ be the instruments for C ′ in the original PEIS that
was created for x†. We show that Z ′ are also candidate
instruments for a, and that C ′ cuts them from a, which will
complete the proof.

Suppose that z ∈ Z ′ is not a candidate instrument for a.
This means that z has {a} ∪ Sib(a) in its unremoved ances-
tors. This is equivalent to saying that C ′ does not cut all
paths from z to a, since the path from z, to {a} ∪ Sib(a)
and then to a exists. But any such path can be extended to
x, since C does not block all paths from x to a, since a is
an unremoved ancestor. But C was defined as a full cutset
for the instruments - a contradiction.

Now, since allZ ′ are candidate instruments, andC ′ is a valid
cutset, we know that the AC created for a will cut away all
paths throughC ′, including those through {y}∪Sib(y).

Corollary A.3. Given all candidate instruments Z for x, a
vertex min-cut between Z and the sink nodes of Pa(x) in
Ghf is the same as the vertex min-cut between Z and the
sink nodes of Pa(x) in Gflow where each candidate has its
subtracted paths removed.

Proof. Using Theorem 3.4, we know that all source nodes
reachable by z† ∈ Z are also candidate instruments. This
means that the closest min-cut must cut all edges to sink
nodes from each of these variables in both Ghf and Gflow.
That is, suppose that z† has a path to Pa(x) which goes up
in the source nodes to z′, crosses down to sink nodes, and
continues to Pa(x). Since z′ must be a candidate instrument
too, the path must be blocked at or after z′ - blocking it in
the source nodes before z′ would not block the path from z′

itself. However, the path from z′ exists in Ghf , so all such
source paths will be blocked in Ghf in the same way as they
would be blocked in Gflow - meaning that the two graphs
have identical closest min-cuts for Z.

For the next theorem, we need to recall the definition of a
match-block given in Kumor et al. (2019).
Definition A.1. (Kumor et al., 2019) Given a directed
acyclic graph G = (V,D), a set of source nodes S and
sink nodes T , the sets Sf ⊆ S and Tf ⊆ T , with |Sf | =
|Tf | = k, are called match-blocked iff for each si ∈ Sf , all
elements of T reachable from si are in the set Tf , and the
max flow between Sf and Tf is k in G where each vertex
has capacity 1.

Theorem A.2. Any edges returned by the IC algorithm
when run over Ghf , when given a set Z† of candidate in-
struments are identifiable. That is, the modified IC algorithm
(Algorithm 4) is sound.

Proof. First, we use the fact that the closest min-cut as used
by the IC is found with the half-flow graph (Corollary A.3).
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Algorithm 4 - IC: The IC algorithm from Kumor et al.
(2019), modified to accept a set of candidate instruments Z.
See Theorem A.2 for a proof of the modifications’ correct-
ness.

Input: G, y,Λ∗, Z
Ghf ← AUXHALFFLOWGRAPH(G,y,Λ∗)
T ← all sink-node parents of y′ in Ghf
C ← CLOSESTMINVERTEXCUT(Ghf , Z, T )
Sf ← elements of S that have a full flow to C
Gc ← Ghf with edges to C removed
(Cm, Tm)← MAXMATCHBLOCK(Gc, C, T )
Tf ← elements of T that are part of a full flow between
C \ Cm and T \ Tm
(Sf , Tf ∪ Tm, Tm)

This means that all paths from v† in each v†’s flow graph
must cross C. There also exists a flow of size |C| from the
candidate instruments Z to C (by definition of min-cut). We
can therefore always decompose the paths for a candidate
instrument v†i into paths that cross the cutset. Our proof
will therefore be a near-verbatim repeat of Theorem 3.2.
The main difference between the two is that the IC allows
elements of the cutset to be in the source nodes, meaning
that we can no longer easily interpret parts of paths as partial
effects. We will also show that the v† each having different
paths in the source nodes does not affect our conclusions.

Decompose the paths from v†i to a parent node xj of y into
paths crossing each element ck ∈ C of the cutset. Like in
the proof of Theorem 3.2, the decomposition is such that a
path from v†i to xj is assigned to ck if ck is the last element
of C along the path.

σv†i xi
=

∑
ck∈C

pvick|v†i
p−C
ckxj |v†i

In the above equation, we used the notation p−C to repre-
sent all paths that do not cross any elements of C, and the
subscript |v†i to represent the paths of the flow graph for v†i .

We now make the claim that the paths which don’t intersect
C are identical for all elements of V †. That is,

p−C
ckx|v†i

= p−C
ckx|v†j

= p−Cckx

This means that we can drop the subscript |v†i . This claim is
trivial when ck is in the sink nodes, as it is in the PEIS, since
the flow graphs for all V † are identical in the sink nodes.

If ck is in the source nodes, however, we no longer have
this guarantee. Nevertheless, we can exploit the results of
Theorem 3.4 to claim that any path that crosses from ck
in the source nodes to any other source node, means that
the other source node is also a candidate instrument, and C
intersects all paths from it - meaning that ck is not the last

element of C that intersects the path. This is a contradiction
to the definition of p−C , so we can conclude that all paths
from p−C must cross directly into the sink nodes, meaning
that they are identical for all elements of V †.

We therefore have:

σv†i xi
=

∑
ck∈C

pvick|v†i
p−Cckxj

Now, suppose that the IC given is between sets V and T ,
with tn being x, and usable to identify edge λxy . We observe
the determinant ΣV †,Ty

−i
:

ΣV †,Ty
−i

= det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1

σv†1y
· · · σv†ny



= det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1∑

ck∈C pv1ck|v†i
p−Ccky · · ·

∑
ck∈C pvnck|v†i

p−Ccky


By the multilinearity of determinant, we can move the sum
outside the matrix:

=
∑
ck∈C

det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1

pv1ck|v†i
p−Ccky · · · pvnck|v†i

p−Ccky



Now, we can decompose p−Cckx into a sum over the T , in the
same way as was done above:

p−Cckx =
∑
ti∈T

p−Ccktip
−C−T
tiy

Note that all the T are in the sink nodes (The T are a subset
of the sink nodes of Pa(y) as defined by IC algorithm), so
we can use the notation of total effects:

p−Cckx =
∑
ti∈T

p−Ccktiδtiy,CT

Replacing the above in the determinant, and once again
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exploiting the multilinearity property, we get:

=
∑
ck∈C

∑
ti∈T

δtiy,CT det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1

pv1ck|v†i
p−Cckti · · · pvnck|v†i

p−Cckti



=
∑
ti∈T

δtiy,CT det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1

σv†1ti
· · · σv†nti


Just like in Theorem 3.2, all i 6= n makes the determinant
have a repeated row, and be equal to 0, giving:

= δtny,CT det



σv†1t1
· · · σv†nt1

σv†1t1
· · · σv†nt2

... · · ·
...

σv†1tn−1
· · · σv†ntn−1

σv†1tn
· · · σv†ntn


This gives us the equation:

det ΣV †,Ty
−i

= δtny,CT det ΣV †,T

allowing us to solve: δtny,CT =
det Σ

V †,Ty
−i

det Σ
V †,T

.

Finally, we realize that Kumor et al. (2019) proved that
whenever there is a match-block for x, we have that
δtny,CT = λxy .

Theorem A.3. ACID runs in Polynomial-time

Proof. The ACID algorithm runs in a loop while "anything
changed". We show that this loop is executed at most V 2

times (V is the number of vertices), where each iteration is
polynomial. First, we use the result from Theorem A.1, to
claim that the auxiliary cutset of a vertex can only increase
in size over iterations. This is because if a new cutset is the
same size as a previous one, it is identical, meaning that
there is "no change". It it is different, it means that it is
strictly larger. A cutset cannot get larger than the number
of vertices in the graph, so each node will have a new AC
(i.e. a change) at most V times. At worst, only one AV will
change in each iteration, meaning that the loop will need to
run V times for each V variables.

Each iteration of the loop is polynomial, since it consists
only of max-flows, set operations, and an invocation of the
IC algorithm (which is polynomial).

Theorem A.4. LetCv be the c-component of v, and Tb(Cv)
be the nodes on the top boundary of mixed component of
Cv . Then v†’s paths don’t cross the source nodes of Tb(Cv)
(i.e. there is an AC for v that cuts away Tb(Cv)).

Proof. We will prove this by induction on the nodes of G
in any topological order, including the one where G is just
a graph of the ancestors of v - allowing us to make Cv the
ancestral c-component.

Let Vi be the first i nodes in a topological order over G.
In the base case, with V1, there is a single node v1, where
Cv1 = {v1}, which does not have a top boundary, meaning
that the theorem holds.

Suppose that the theorem holds for all vertices Vn−1. Ob-
serve the nodes in Tb(Cvn). All of these nodes are in differ-
ent c-components than Cvn . Each t ∈ Tb(Cvn) has a corre-
sponding t†, for which Theorem A.4 holds by the inductive
hypothesis. This means that all paths from t† to vn must
cross the bottom boundary of Ct, and therefore must cross
through the sink nodes of Tb(Cvn) in Gflow. This means
that the set of sink nodes Tb(Cvn)′ is a feasible ancestral
cutset for PEIS Tb(Cvn) to vn. By Corollary A.2 and Theo-
rem A.1, the AC for v†n cuts all the paths to Tb(Cvn).

Corollary A.4. If there exists a conditioning set W that
d-separates y from v in a graph where all edges xi → y are
removed, then v† is a candidate instrument for y.

Proof. It is sufficient to prove that any {y} ∪ Sib(y) that
are ancestors of v are in a different c-component from v,
which allows us to invoke Theorem A.4 to prove that v† has
all ancestral paths to {y} ∪ Sib(y) cut, meaning that it is a
candidate instrument.

Suppose v is in the same c-component as s ∈ {y} ∪ Sib(y),
and s is an ancestor of v. We note that Theorem A.4
was proven for any topological ordering of nodes, so we
choose the ordering such that v is in the same ancestral c-
component. This means that Sib(s) ⊂ An(v) in the graph
of v’s ancestors. Since s is an ancestor of v, there must be
at least one conditioning node blocking the backdoor paths
from v to s, meaning that s can be used as a collider, so all
Sib(s) must also have their paths blocked by conditioning.
Continuing this recursively, we need to condition on the en-
tire ancestral c-component, which will create an unblocked
path from s to y using only bidirected edges. This shows
that s must be in a different c-component, completing the
proof.

Definition A.2. Let the v-subset of conditioning setW from
instrument z be the subsetWv ⊆W such that eachw ∈Wv

has an unblocked path to z starting from an edge incident
to w, and optionally crossing v-structures of W . That is,
there exists a path w ↔ a1 ↔ ... ↔ ak ↔ z, where
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a1, ..., ak ∈W , and↔ represents a trek that doesn’t cross
any element of W except at its endpoints.

Lemma A.2. Given conditioning set W that d-separates
y from z in a graph where all edges xi → y are removed,
each element of the v-subset of z is a candidate instrument.

Proof. We show that each element v of the v-subset of z
must have a conditioning set Wv that d-separates y from
v in the graph with all directed edges incident to y are
removed. Suppose not. That means that there does not exist
a conditioning set blocking v from y. If a conditioning set
exists, then a set exists that is made up of ancestors of v
(y’s incident edges were removed) (Van der Zander et al.,
2015). Since such a set does not exist, there is a path into
v’s ancestors that leads to y, but by definition of v-subset,
we can then create a path to y from z, a contradiction.

We then invoke Corollary A.4 to show that indeed, the ele-
ment is a candidate instrument.

Theorem A.5. The Conditional Instrumental Variable (cIV)
method is strictly subsumed by ACID.

Proof. Suppose we have a cIV z conditioned on W for
identifying edge λx1y, with an unblocked path p from z to
x1. Our proof consists of two parts: (i) we first show that
the existence of such W, z and p allows the construction of
auxiliary variables that can be used as candidate instruments.
And, then (ii) we show how one can use those AVs to con-
struct an instrumental cutset which can be used to identify
λx1y in the ACID algorithm.

To begin, we claim that all elements of V †, constructed
from the v-subset V of z, are candidate instruments using
Lemma A.2.

Next, we look at p. It consists of a series of treks, start-
ing at z, and ending at x1, with all intermediate trek end-
points on elements of W , and with no elements of W oth-
erwise in p (i.e. an unblocked path can cross multiple v-
structures at ws, but is not otherwise blocked). Decom-
pose p into the series of treks p = z ↔ w1 ↔ w2... ↔
x1 = [t1, t2, ..., tk] Let HT (ti) be the last element of
Left(ti) along the trek (i.e. the last element in the source
nodes when viewing the trek in a flow graph). Now, let
Pht = {HT (t1), HT (t2), ...,HT (tk)}. We claim that set
of variables P †ht are also candidate instruments. Note that
all HT (ti) are part of a active backdoor path from either
z or a node w that is d-connected to z. That means that a
subset of W must block each HT (ti) from Sib(y)∪ {y} in
the graph of HT (ti)’s ancestors (otherwise, there would be
an unblocked path between z and y, a contradiction to the
requirements of a cIV). We can therefore use Corollary A.4
to claim that all elements of P †ht are candidate instruments.

Finally, we use Theorem 3.4 to claim that all unremoved
ancestors A† of P †ht ∪ V † are also candidate instruments.

We have therefore showed that at a certain iteration of the
ACID algorithm, the setZ = P †ht∪V †∪A† are all candidate
instruments. We will next show that there exists a cutset
C where |C| ≤ |Z|, there is a flow of size |C| from Z to
C, and C cuts Z from the sink nodes of Pa(y). In this
cutset, there will be a match-block for x1, meaning that the
closest min-cut as found by the IC algorithm will also have
a match-block to x1, showing that λx1y can be identified
(Kumor et al., 2019).

We construct the cut C between source nodes of Z and the
sink nodes of Pa(y) by including the following nodes in C:

• All the sink nodes of V

• All the source nodes of A \ (V ∪ Pht)

• The sink node of x1

With the set C constructed as above, we now prove that it
cuts Z from the sink nodes of Pa(y). We will proceed by
showing this for each component of Z = P †ht ∪ V † ∪ A†
individually.

Let a ∈ A† \ (V † ∪P †ht). The source node is part of the cut,
which automatically blocks all paths from a†.

Let v ∈ V †. All paths from v to x′1 are cut by x′1, so we
focus on the paths from v to the sink nodes of other parents
of y. Furthermore, v′ is part of the cut, so all directed paths
from v to Pa(y) are cut by v′. This leaves us with paths
from v to Pa(y) starting either with a bidirected edge to
a sibling of v, or an edge into a parent of v that was an
unremoved ancestor of v†.

Suppose that the path starts from a bidirected edge to a
sibling of v. Each such path to Pa(y) \ {x1} must be
intersected by an element of V , because v was part of the
v-subset, so if a path from v to a sibling of v, and down to
Pa(y) \ {x1} was not intersected by W , it means that there
is an active path to another parent of y from z, violating the
cIV condition. Each element of vi ∈ V has the sink node
v′i ∈ C, so all such paths are blocked by C.

Next, suppose that the path from v starts with an edge into
an unremoved parent of v. All such parents are elements of
A, so if the parent is an element of A \ (V ∪ Pht), the path
is blocked by the source node of the parent, which is part of
the cutset.

Finally, this leaves us with the paths from v starting with
an edge into an unremoved parent which is an element of
V ∪ Pht, at which point the arguments outlined above can
be repeated recursively if the parent is an element of V , and
the arguments claiming that elements of Pht are cut by C
(below) can be used otherwise.
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This leaves us with the claim that each h ∈ Pht is also cut
by C from the sink nodes of the parents of y. We know
that all paths using outgoing edges or bidirected edges to
siblings of h must intersect elements of V ′ or x′1, meaning
that they are cut (otherwise we would have an unblocked
path from z to y, violating the cIV assumption). Just like
with v, this leaves paths into the unremoved parents of h,
which are either elements ofA\(V ∪Pht), in which case the
paths are blocked directly, or V ∪ Pht, where the argument
can be repeated recursively for the parent.

This completes the proof that all elements of the candidate
instruments Z are cut by the cutset C. We now show that
there is a flow of size |C| from Z to C. We will match the
variables as follows:

1. each element of A \ (V ∪ Pht) with itself

2. The elements of v ∈ V that are endpoints of a trek in
p are not matched - instead, their sink nodes that are
part of the cutset, are matched with the element of Pht
that is part of the trek ending at the sink element of v,

3. The element x′1 is matched with the element of Pht
whose trek ends at x′1.

4. All other v ∈ V are matched to their own sink nodes.

None of these matched paths intersect, giving a flow of size
|C|. Finally, by definition of instrumental variable, x′1 has
no unblocked (by C) directed path to Pa(y) \ {x1}, since
otherwise z would have a path to that variable also. This
means that x′1 is match-blocked with x′1, showing that λx1y

is identifiable with IC.

Finally, the graph in Fig. 2c is not identifiable with cIV, but
can be identified by ACID, showing strict subsumption.

Corollary A.5. The Conditional Auxiliary Variable (cAV)
is strictly subsumed by ACID.

Proof. Consider the first iteration of the algorithm. As
shown by the previous theorem (Theorem A.5), we know
that ACID identifies at least as many coefficients as cIV. In
the next iteration, both the cIV and ACID will construct
AVs with the previously identified coefficients, which will
be used as candidate instruments. Again, ACID identifies at
least as many coefficients as cIV. Since this holds for every
step of the algorithm, any instrument enabled for cAV is
also enabled for ACID.

Finally, Fig. 2c can also be used here to show strict sub-
sumption.

Theorem A.6. The Generalized Instrumental Set (gIS) is
strictly subsumed by ACID

Proof. We will follow the same procedure as was done
for Theorem A.5. It is recommended that readers first un-
derstand the proof of that theorem, since this proof is an
extension of the arguments made for cIV.

Suppose we have a generalized instrumental set
(z1,W1, p1), ..., (zk,Wk, pk). Chen et al. (2017) showed
that the paths of a gIS can be reduced to half-treks, so each
pi is a half-trek from zi to xi, meaning the trek takes its
first edge from a source node to the sink nodes in the flow
graph (not taking any backdoor paths).

To begin, we construct a set of candidate instruments for y
similar to the one constructed in the proof of Theorem A.5.
First, we use Corollary A.4 to claim that each z†i is a candi-
date instrument, Lemma A.2 to claim that all elements of
the v-subset Vi of zi are also candidates, and Theorem 3.4
to claim that the ACs of all unremoved ancestors Ai of
{z†i } ∪ V

†
i are candidates.

Next, we define P as the set of nodes along the paths
p1, ..., pk excluding the paths’ start/endpoints. Define
V = (

⋃
i Vi) \ (P ∪ {z1, ..., zk}), and A = (

⋃
iAi) \

(V ∪ {z1, ..., zk})

We now use the set Z = {z†1, ..., z
†
k}∪V †∪A† as the set of

candidate instruments, and show that the min-cut from Z to
Pa(y) closest to y′ contains the elements x′1, ..., x

′
k, which

are match-blocked, allowing to identify the edges with IC
(Kumor et al., 2019).

Define the cut C as follows:

1. Sink nodes x′1, ..., x
′
k are part of the cut

2. Sink nodes of all elements of V are part of the cut,

3. Source nodes of all elements of A are part of the cut.

We have a full flow by matching each zi to x′i, each V to its
own sink node, and each A to itself. By the definitions of A
and V , none of these paths intersect.

Next, we show that C intersects all paths from Z. We
make the same arguments here as were made in the proof of
Theorem A.5, with the major caveat that V has elements of
P removed. Therefore, we know that any unblocked path
must pass through an element of Vi that was removed as
part of P . However, suppose that the element e is part of pj ,
and was part of Vi. Any paths from the instrument’s Vi or zi
that pass through the sink node e′ are no longer blocked by
e′. However, all such paths are blocked by elements of Vj ,
since pj is not blocked for the instrument zj . If any such
elements of Vj are on yet another path, we can continue the
same argument recursively.

Finally, by definition of gIS, x′i has no unblocked (by C)
directed path to Pa(y) \ {x1, ..., xk}, since otherwise z
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x2 •x1 •
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Figure 8. Taken from Kumor et al. (2019), λx1y is not identifiable
with qAVS, but can be identified with IC (and therefore ACID)

would have a path to that variable also. Since x′i has a
path to x′i (they are the same node), the set x′1, ..., x

′
k are

match-blocked, showing that λx1y, ..., λxky is identifiable
with IC.

Corollary A.6. The qAVS is strictly subsumed by ACID

Proof. The qAVS is identical to the gIS, with the addition
of auxiliary variables to the instruments and to y. The IC
algorithm and AC algorithms both explicitly include both
types of AVs, meaning that any instrument usable for qAVS
is also enabled for ACID.

Finally, Fig. 8 can be used here to show strict subsumption.

Theorem A.7. The Instrumental Cutset is strictly subsumed
by ACID

Proof. The IC algorithm is run as a sub-component of
ACID, with the only difference being additional candidate
instruments. This means that any candidates present for
IC, are also available for ACID, making the same edges
identifiable.

Strict subsumption can be seen with Fig. 2f, which is not
captured by IC (Kumor et al., 2019), but can be computed
with ACID.

Theorem 3.5. If λab is identifiable with either the cAV, IC,
or qAVS criteria, then it is identifiable with ACID.

Proof. See Corollary A.5, Corollary A.6, and Theorem A.7.

An example parameter that is only identifiable with ACID,
but cannot be identified with any of the previous algorithms
is given in Fig. 9. To see why this is the case, we first show
how ACID identifies the edge,and then show that IC, cAV,
and qAVS all fail.

When ACID starts, it uses w2 to identify λw2z3 , creating z†3,
and uses w2 as a PEIS for w2, giving z†2 = z2 − δw2z2w.
Then, ACID uses these three AVs to construct the IC with
cutset x′1, w

′
1, x
′
4, identifying λx1y and λx4y .

y

x2x1 x3 x4

w1
z1 z2 z3

w2

Figure 9. λx1y is only identifiable with ACID

The cAV works in a similar way, identifying
λw2z3 , λz3x4 , λz2w1 , λz1w1 , λz1x1 , λw1z2 , λw1z3 . None of
the AVs resulting from these identified edges can be used
to identify any additional parameters, since w1 cannot be
conditioned.

Likewise, qAVS identify all the same parameters as cAV
here, but no conditioning exists that is able to cut an instru-
ment for x1 from x2 and x3, for which no instrumental set
exists.

Finally, the IC fails here, since it cannot construct z†2, leaving
only 2 candidate instruments, z1 and z∗3 - for which there is
no match-block to any x.

Also note that the entire graph is a single c-component, so
no form of c-component decomposition can be used here to
aid in identification.

A.2. Total-Effect Decomposition

Theorem 4.1. Let GAn(y) be the graph G with the non
ancestors of y removed. Let Cy be the c-component of y in
GAn(y) and G′ its corresponding mixed component. Then,
if x ∈ Cy , the total effect of x on y, δxy , can be decomposed
as, δxy = δ′xy +

∑
b∈Tb(Cy) δxbδ

′
by otherwise, if x /∈ Cy,

we have, δxy =
∑
b∈Tb(Cy) δxbδ

′
by where Tb(Cy) is the

top boundary of the c-component Cy and δ′by is the total
effect of node b ∈ Tb(Cy) on y in the mixed component G′.
Moreover, all δ′by for b ∈ Tb(Cy) are identified.

Proof. Given δxy, take the mixed component of y, G′,
which has top boundary B. We know by the definition
of paths in the graph that δxy is the sum of all possible
directed paths starting from x, and ending at y.

There are two cases:

1. x is not in y’s c-component. All paths in δxy cross
elements of B at least once, since they must cross into
y’s c-component. Decompose the paths of δxy such
that δbxy is the sum of all paths where b is the LAST
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element of B on the path. We then have:

δxy =
∑
b∈B

δbxy

Next, we split each path in δbxy into the portion from x
to b, and the portion from b to y.

Looking at the portion from b to y, we know that none
of the paths cross any boundary nodes (because b was
the last boundary node along the path), and that these
are ALL such paths. This corresponds to the sum of
paths from b to y in the mixed component of y.

Finally, observing the portion from x to b, there are
no restrictions on these paths - they are all paths in G
that start at x, and end in b, possibly crossing other
nodes in B before getting to b. This corresponds to δxb.
Therefore, we have:

δxy =
∑
b∈B

δG
′

by δxb

2. x is in y’s c-component, first take out the δ′xy as all
paths that do not cross any boundary. Then split the
remaining paths as was done in part 1. We get:

δxy = δG
′

xy +
∑
b∈B

δG
′

by δxb

A.2.1. SOLVING FOR THE DECOMPOSED COVARIANCE
MATRIX

In this section, we develop a decomposition algorithm which
is equivalent to the decomposition described by Tian (2005).
The main difference of our method is that it operates directly
upon the covariance matrix, and has an intuitive interpreta-
tion as selecting paths in the flow graph. That is, we define a
system of linear equations whose solution is the covariance
matrix of the desired mixed component. This covariance
matrix can then be used to compute the terms required for
the total-effect decomposition described in the text.

We begin by defining the “boundary” of a mixed compo-
nent as the variables that are also present in other mixed
components:

Definition A.3. Given graph G, with c-components
C1, ..., Ck, the top boundary of Ci is Tb(Ci) = Pa(Ci) \
Ci, and the bottom boundary is Bb(Ci) = Pa(

⋃
j 6=i Cj)∩

Ci. Their union is called the boundary set.

In Fig. 2f, {z1, z2} is the top boundary, and {w} is the
bottom boundary for the c-component {w, x1, x2, y}. The
boundary corresponds to the nodes at which treks need to
be modified to create the decomposed graph (Fig. 2g). Our

algorithm hinges on keeping track of the “missing paths”
between the top boundary and all other boundary nodes in
the decomposed graph, which are kept in the boundary ma-
trix. Specifically, given two boundary nodes, v, w, where
w is on the top boundary, Bvw is the sum of treks that start
at v, take a directed or bidirected edge that is not in G′, and
end at w′ (without passing v′ in the flow graph if v is a top
node).

With the boundary matrix, and the covariances of the mixed
component, we can create a system of equations reconstruct-
ing the original model’s covariance matrix:

Definition A.4. Given the following:

1. G′ is a mixed component of G corresponding to c-
component C,

2. Σ is the (known) covariance matrix of G,

3. v1, ..., vn is a topological ordering of nodes in G′, ac-
cording to the graph of G

4. Tbi = Tb(C) ∩ {v1, ..., vi} and Bbi = Bb(C) ∩
{v1, ..., vi} according to the topological ordering.

5. B is the boundary matrix of C, Σ′ is the mixed compo-
nent’s covariance matrix. Both are unknown.

Then the decomposition system is a system of equations
defined over Σ′, B: for each vi, with h = 1...i,

1. if vi ∈ Tbi and h = i, let σii = σ′ii.

2. if vi ∈ Tbi, h 6= i and vh ∈ Tbi ∪Bbi, define:

σhi =
∑

t∈Tbi−1

σ′ht
σtt

Bti +
∑

b∈Bbi−1

σ′hbBbi

Furthermore, let σ′hi = 0, and let all Bji = 0 where
j ∈ Bb(C) \Bbi.

3. otherwise, define

σhi = σ′hi +
∑

t∈Tbi−1

∑
u∈Tbi−1\{t}

σ′ht
σtt

Btu
σ′ui
σuu

+
∑

t∈Tbi−1

∑
b∈Bbi−1

σ′ht
σtt

Btbσ
′
bi

+
∑

b∈Bbi−1

∑
t∈Tbi−1

σ′hbBbt
σ′ti
σtt

We will demonstrate the intuition behind the decomposition
system by manually decomposing the model in Fig. 10. In
particular, given Σ, we want to find the values of Σ′ such
that they are consistent with the model in Figs. 10b and 10d.
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(a)

w x y

(b)
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(c)

x yw

x’ y’w’

λxy

λxy

σxx εyyεzz

εwy

εwy

(d)

Figure 10. (a) shows the original graph, with the flow graph in (c).
The decomposed model is in (b), with its flow graph in (d).

Going in topological order, we first have w, which is not on
the top boundary (it is on the bottom boundary), and with
no other boundary nodes thus far, condition 3 gives σww =
σ′ww, which is identical in both Fig. 10c and Fig. 10d. Next
in topological order comes x, which is on the top boundary.
Here, condition 1 gives σxx = σ′xx, and since w was a
bottom boundary, condition 2 gives σ′wx = 0 and σwx =
σ′wwBwx. This results in Bwx = λwx.

Finally, we are left with y. Since it is not on the top bound-
ary, all of its equations are constructed using condition 3:

σwy = σ′wy +
σ′wx
σxx

Bwxσ
′
wy + σ′wwBwx

σ′xy
σxx

σxy = σ′xy +
σ′xx
σxx

Bwxσ
′
wy + σ′xwBwx

σ′xy
σxx

σyy = σ′yy +
σ′yx
σxx

Bwxσ
′
wy + σ′ywBwx

σ′xy
σxx

Focusing on the first two equations, we can simplify them
using values that were previously solved:

σwy = σ′wy + εwwλwx
σ′xy
σxx

σxy = λwxσ
′
wy + σ′xy

Notice that this is a system of two equations with 2 un-
knowns. In both equations, the σ′ add in all treks that make
up G′, additionally including treks that make up σxx. The
boundary terms complete the system by adding paths that
move across the boundaries, in particular, in σwy, the trek
εwwλwxλxy, and in σxy, the trek λwxεwy. Finally, having
solved this system, the equation for σyy has only a single un-
known variable, σ′yy , giving the desired mixed component’s
covariance matrix.

This procedure can always be performed, and leads to a
unique covariance matrix Σ′ for the mixed component:

Theorem A.8. Given a decomposition system, the equa-
tions can be iteratively solved for all B and Σ′ as a series

of linear systems of equations. Each of these systems is
full-rank.

Proof. By generating the equations in topological order,
we can define consecutive full rank systems of equations.
Suppose that all systems up to node i− 1 were solved for
B and σ′. We have two cases in the generator, one when i
is a top boundary, and h is a boundary, and one “otherwise”.
We show that both can be turned into full rank systems.

In the case where i is a top node and h is a boundary node, it
suffices to look at the system of equations for all boundary
nodes h with i:



σt1i
...

σtni
σb1i

...
σbmi



=



σ′t1t1

σt1t1
· · · σ′t1tn

σtntn
σ′t1b1 · · · σ′t1bm

...
...

...
...

σ′tnt1

σtnt1
· · · σ′tntn

σtntn
σ′tnb1 · · · σ′t1bm

σ′b1t1

σt1t1
· · · σ′b1tn

σtntn
σ′b1b1 · · · σ′b1bm

...
...

...
...

σ′bmt1

σt1t1
· · · σ′bmtn

σtntn
σ′bmb1 · · · σ′bmbm





Bt1i
...

Btni
Bb1i

...
Bbmi



To show that the system is full rank, it suffices to show that
the determinant of the center matrix is generically non-zero:

det



σ′t1t1

σt1t1
· · · σ′t1tn

σtntn
σ′t1b1 · · · σ′t1bm

...
...

...
...

σ′tnt1

σtnt1
· · · σ′tntn

σtntn
σ′tnb1 · · · σ′t1bm

σ′b1t1

σt1t1
· · · σ′b1tn

σtntn
σ′b1b1 · · · σ′b1bm

...
...

...
...

σ′bmt1

σt1t1
· · · σ′bmtn

σtntn
σ′bmb1 · · · σ′bmbm


Using the fact that multiplying a column by a constant is
equivalent to multiplying the entire determinant by the same
constant, we can extract all factors of 1

σtiti
, giving us:

=

n∏
i=1

1

σtiti
det Σ′Tbi−1∪Bbi−1,T bi−1∪Bbi−1

However, here Σ′ corresponds to the covaraince of vari-
ables with themselves, which by Sullivant et al. (2010) is
generically non-zero, because we have a path in the flow
graph from each variable’s top node to its own bottom node.
Therefore the system is full rank, and can be uniquely solved
for the Bhi.

Next, we show that we can always solve the second case.
Here, we have a system where i is any non-top node, and
h is any node. Observe the subsystem of equations where
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h is the set of boundary nodes. All terms except σ′bi where
b is a boundary node were previously solved. This once
again describes a system of linear equations. We will show
that this system has a non-zero determinant by showing that
its value is 1 + ..., where all other terms contain at least
one structural parameter (our models are not assumed to be
normalized, so treks won’t generically add up to 1).

To show this, we will observe that the matrix has ones on
its diagonal, and any non-diagonal term contains structural
parameters. Notice that σ′hi has a factor of 1. We show that
none of the summations contain σ′hi, this making the matrix
diagonal 1:

σhi = σ′hi +
∑

t∈Tbi−1

∑
u∈Tbi−1\{t}

σ′ht
σtt

Btu
σ′ui
σuu

+
∑

t∈Tbi−1

∑
b∈Bbi−1

σ′ht
σtt

Btbσ
′
bi

+
∑

b∈Bbi−1

∑
t∈Tbi−1

σ′hbBbt
σ′ti
σtt

Suppose h is in the top boundary. Then, to match σ′hi, in
the first summation, u must be h:∑

t∈Tbi−1

σ′ht
σtt

Bth
σ′hi
σhh

However, σ′ht is 0 between nodes in the top boundary, and
t 6= h, since u 6= t by the definition of the summation over
u. This term is therefore 0.

Similarly, the only other way to get a σ′hi term is in the last
summation, which would be:∑

b∈Bbi−1

σ′hbBbh
σ′hi
σhh

σ′hb can be non-zero only if b is later than h in topological
order. However, Bbh is 0 for b later in topological order,
making this term also 0.

Next, suppose that h is in the bottom boundary. The only
term that can match σ′hi in this case is the middle summa-
tion. ∑

t∈Tbi−1

σ′ht
σtt

Bthσ
′
hi

Once again, either σ′ht or Bth is 0, since σ′ht 6= 0 means
t is an ancestor of h, but Bth is 0, since boundary matrix
element between bottom and top boundary can only be
nonzero when t is later in topological order.

We therefore know that the matrix has 1s on its diagonal.
Next, we know that wherever there is a non-zero term in an

off-diagonal element, it must contain a Bij , which are guar-
anteed to contain structural parameters that are not present
in σ′ (so they cannot cancel when dividing σtt).

This is sufficient to prove that the above defined system of
equations is full rank, and has a unique solution for all σ′hi
where h is on the boundary. Finally, we show that we can
exploit the solutions for boundary nodes to solve the system
where h is not on the boundary:

σhi = σ′hi +
∑

t∈Tbi−1

∑
u∈Tbi−1\{t}

σ′ht
σtt

Btu
σ′ui
σuu

+
∑

t∈Tbi−1

∑
b∈Bbi−1

σ′ht
σtt

Btbσ
′
bi

+
∑

b∈Bbi−1

∑
t∈Tbi−1

σ′hbBbt
σ′ti
σtt

Here, notice that only σ′hi has not yet been solved - all other
terms have been solved either in the system of equations
with boundary nodes, or in previous systems. This means
that we can solve for this single variable.

This completes the proof - we have demonstrated an order in
which solving the system leads to full rank systems of linear
equations, giving unique solutions to all of the unknowns.

Theorem A.9. The covariance matrix Σ′ found using the
decomposition system for c-component C corresponds to
the covariance matrix of the mixed component of C defined
such that each top boundary node t has variance σtt, and all
other edges inG′’s flow graph are identical to their matched
values in G.

Proof. To achieve this, we will show that the equations in
Definition A.4 correspond directly to a sum over sets of
treks, which, due to the uniqueness and linearity proved in
Theorem A.8, must match the decomposition’s values. We
will go through the 3 cases individually.

In case 1, σtt = σ′tt by definition. This allows the t node
to include all treks starting from t, going into its ancestors,
and continuing back down to t (and into descendants).

In case 2, i is a top boundary node (which has no parents in
G′), and h all come before i in topological order, so there is
no trek between h and i in G′, making σ′hi = 0. Likewise,
Bij = 0 for all j ∈ Bb later than i in topological order,
because all paths from j not in G′ must pass down into j’s
descendants using directed edges, making none of these
treks able to return to i.

Finally, since i is a top node, all treks from h to i will cross
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through the boundary, meaning that:

σhi =
∑
b

treks t ∈ T from h to i with b as first
boundary node where b′ /∈ t if b ∈ Tbi−1

We exclude treks that cross top boundary b, and then cross
b′ (the bottom node of b in the flow graph), since such treks
are already accounted for when we defined σbb. Since such
treks move back to G′, we instead use the next boundary
node they cross as b in the above summation.

In the above equation, if b is a top boundary, the portion
of the trek from h to b can be written as σ′hb

σbb
, since σbb is

the b node’s variance, and needs to be removed. The rest
of the trek to i crosses the boundary, making it part of the
boundary matrix element Bbi.

Similarly, if b is a bottom boundary, the treks from h to b
can be writted as σ′hb, and from b, the paths are from the
boundary matrix. This gives the desired equation:

σhi =
∑

t∈Tbi−1

σ′ht
σtt

Bti +
∑

b∈Bbi−1

σ′hbBbi

Finally, in case 3, we use the same reasoning, but simply
need to add paths from the boundary nodes, to the target
node, as well as the possibility of certain paths not crossing
boundary nodes at all:

σhi = σ′hi +
∑

t∈Tbi−1

∑
u∈Tbi−1\{t}

σ′ht
σtt

Btu
σ′ui
σuu

+
∑

t∈Tbi−1

∑
b∈Bbi−1

σ′ht
σtt

Btbσ
′
bi

+
∑

b∈Bbi−1

∑
t∈Tbi−1

σ′hbBbt
σ′ti
σtt

+
∑

b∈Bbi−1

∑
u∈Bbi−1

σ′hbBbuσ
′
ui

Finally, by observing that Bbu must be 0 when both b and u
are boundary nodes, we get the desired equation:

σhi = σ′hi +
∑

t∈Tbi−1

∑
u∈Tbi−1\{t}

σ′ht
σtt

Btu
σ′ui
σuu

+
∑

t∈Tbi−1

∑
b∈Bbi−1

σ′ht
σtt

Btbσ
′
bi

+
∑

b∈Bbi−1

∑
t∈Tbi−1

σ′hbBbt
σ′ti
σtt

We have therefore shown that the decomposition given in
Definition A.4 is a valid decomposition according to Σ′,

y

x2x1 x3

z1 z2

wh1

h2

Figure 11. In order to identify λx1y with an IS combined with
Tian’s decomposition, one would need to marginalize only h1, and
leave h2.

and since we showed that the solutions to the unknowns are
unique in Theorem A.8, we can conclude that the covariance
matrix Σ′ solved using these systems must match the mixed
component’s graph with identical structural parameters.

A.3. Generalizing Ancestral Decomposition

One question that might come up is whether one can sim-
ply combine existing efficient methods with a variant of
ancestral decomposition (Drton & Weihs, 2015) to gain
an efficient identification algorithm. While this algorithm
would still miss examples such as the one in Fig. 4b, we
go further, by showing that efficiently extending Ancestral
Decomposition to work in a generalized context is NP-Hard.

To demonstrate the source of complexity, refer to Fig. 11,
which is an extension of Fig. 2f. Notice that h1 and h2 are
non-ancestors of y. The ancestral decomposition algorithm
of Drton & Weihs (2015) would first attempt to identify
λx1y, λx2y, λx3y in the original graph, which is a single c-
component. It would then marginalize all non-ancestors of
y, giving the graph where h1 and h2 are removed. In this
case, z1 and z2 are no longer in y’s c-component, allowing
a model decomposition. However, z1, z2 are insufficient to
operate as an instrumental set for any edges incident to y -
it is only when h2 is also available that the IS h2, z1, z2 can
be used to identifiy λx1y, λx2y, λx3y .

This means that Ancestral decomposition as defined by Dr-
ton & Weihs (2015) is insufficient here. One would need
to extend their algorithm to both marginalize over h1, and
leave h2 to successfully identify the given edges. This sec-
tion demonstrates that deciding which non-ancestors of y to
marginalize to enable identification with the IS algorithm is
NP-Hard.

Theorem A.10. Given a boolean formula F in conjunctive
normal form, if a graphG is constructed as follows, starting
with a target node y:
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y

pcpbpax

q

c1 c2

da

wa ha

ta1 fa2

wb hb

db

wc hc

dctb1 tb2 fc1 fc2

Figure 12. Encoding of (a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬c ∨ b). Bidirected edges from wa, wb and wc to y were left out for clarity.

1. For each clause ci ∈ F , a node ci is added with edges
ci → y and ci ↔ y

2. For each variable vi ∈ F , create nodes wi, hi, di, pi,
with edges wi ↔ y, wi ↔ hi, hi ↔ di, wi → di,
di → pi, pi → y, pi ↔ y.

3. For each variable vi ∈ F , if clause cj ∈ F contains:

• vi: Add node tij , with edges wi → tij , tij → cj ,
tij ↔ hi

• ¬vi: Add node fij , with edges hi → fij , hi ↔
fij , cj ↔ fij

4. Add nodes x and q, with edges x→ y, x↔ y, q → x,
and q → pi, q → cj , ∀pi, cj .

Then there exists a set of nodes /∈ An(y) that can be
marginalized such that the resulting mixed component for y
has an instrumental set that can be used to solve for λxy if
and only if F has a satisfying assignment.

An example graph for the formula (a∨b∨¬c)∧(¬a∨¬c∨b)
is given in Fig. 12. In particular, looking at ha, if both fa2

and ha are marginalized, then da and ta1 are in a separate
mixed component, cutting their back-paths through wa to
y, and allowing da to match with pa, and ta1 to match with
c1 (i.e. the value being true (marginalized) allows satisfying
clause c1). If ha is not marginalized, then ha is matched
to pa, and fa2 can match to c2, meaning that ¬a satisfies
clause c2.

This general procedure works for all 3SATs

Proof. →: If there is a satisfying assignment to the vari-
ables, then we can sum out hk for all variables k which are
true, and leave hj and fj for all variables j that are false in
the assignment. We can then construct the instrumental set
by choosing a variable that satisfies each clause - suppose ci

is satisfied by v. Then tvi is a valid instrument for ci, since
it has no path to w in the mixed component. Similarly, fvi
is a valid instrument if the clause is satisfied by ¬v. Each of
the pi has either di or hi as valid instruments, and q can be
matched to x, which is a full IS for all the parents of y.

←: Suppose there is no satisfying assignment to the vari-
ables. We can only marginalize over the f and h, since
all other variables are ancestors of y. Marginalizing over a
variable f does not break any c-components, and removes
a candidate instrument, so it cannot help. Let h1, ..., hk be
a set of h that is marginalized. We know that the 3SAT
has no satisfying assignment, so at least one clause cj is
not satisfied by setting all variables corresponding to the
marginalized h to true, and all others to false. cj has no
possible instrument, since all t that are ancestors are in
y’s c-component, and therefore have path to y (and their h
were not marginalized, because otherwise the clause would
have been satisfied). Similarly, all f that have a path to cj
were marginalized, since otherwise they’d be instruments,
and setting that variable to false would satisfy the clause.
Therefore, there is no instrumental set here.


