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Abstract
Causal effect identification is one of the most prominent and
well-understood problems in causal inference. Despite the
generality and power of the results developed so far, there are
still challenges in their applicability to practical settings, ar-
guably due to the finitude of the samples. Simply put, there is
a gap between causal effect identification and estimation. One
popular setting in which sample-efficient estimators from fi-
nite samples exist is when the celebrated back-door condition
holds. In this paper, we extend weighting-based methods de-
veloped for the back-door case to more general settings, and
develop novel machinery for estimating causal effects using
the weighting-based method as a building block. We derive
graphical criteria under which causal effects can be estimated
using this new machinery and demonstrate the effectiveness
of the proposed method through simulation studies.
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1 Introduction
Computing the effects of interventions is one of the cen-
tral tasks in data-intensive sciences. This problem comes
in the literature under the rubric of causal effect identi-
fication (Pearl 2000, Def. 3.2.4), which asks whether the
causal distribution P (Y = y|do(X = x)) (for short,
Px (y)) can be uniquely identified from a combination of
substantive knowledge about the phenomenon under in-
vestigation, usually in the form of a causal graph G, and
the observational distribution P (V ), where V is the set of
observed variables. Causal identification has been exten-
sively studied based on the do-calculus (Pearl 1995). Build-
ing on this logic, a number of solutions were developed
for variants of this problem, including complete graphical
and algorithmic conditions (Tian 2002; Huang and Valtorta
2006; Shpitser and Pearl 2006; Bareinboim and Pearl 2012;
2016; Jaber, Zhang, and Bareinboim 2018; Lee, Correa, and
Bareinboim 2019).

Even though causal identification has been well-
understood and solved in principle, there are still outstand-
ing challenges to the application of these results in practice.
By and large, these results assume that the precise observa-
tional distribution, P (V ), is available for use, while in re-
ality one has access to only a limited number of samples
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drawn from P (V ). One setting where estimators for esti-
mating Px(y) from finite samples have been systematically
developed is when the well-known back-door (BD) criterion
holds (Pearl 2000, Ch. 3.3.1). That is, if a set of variables Z
(called covariates) satisfy the BD criterion relative to (X,Y )
then the effect Px (y) can be identified by covariate adjust-
ment as Px (y) =

∑
z P (y|x, z)P (z), and the correspond-

ing mean as:

EPx(y) [Y ] =
∑
z

E[Y |x, z]P (z). (1)

Computing Eq. (1) naively – i.e., estimating E[Y |x, z] and
summing over all values Z = z is computationally and
statistically challenging whenever the set Z is high dimen-
sional. Regarding the former, summing over Z = z en-
tails an exponential computational burden in |Z|, the car-
dinality of Z; regarding the latter, covering the support of
E[Y |x, z], P (z) with some statistical significance is hardly
realizable.

A series of robust and efficient estimators for estimating
the BD estimand (Eq. (1)) from finite samples have been de-
veloped to circumvent these challenges with great practical
success, including propensity score matching (Rosenbaum
and Rubin 1983), inverse-probability or stabilized weight-
ing (IPW, SW) (Horvitz and Thompson 1952; Robins, Her-
nan, and Brumback 2000), doubly robust (Bang and Robins
2005), target maximum likelihood estimator (TMLE) (Van
Der Laan and Rubin 2006), and outcome-regression such as
BART (Hill 2011), just to cite a few. These techniques have
been extended to BD-like estimands for time-series and have
been called the g-formula by Robins (1986). This formula
holds whenever sequential exchangeability or the sequential
back-door (SBD) condition holds (Pearl and Robins 1995).

Despite all their power, these BD-like conditions only
cover a limited set of identifiable scenarios, while causal ef-
fects could be identifiable in many settings that are not in the
form of an adjustment, for which no general purpose esti-
mators have been developed. For instance, we discuss below
two practical examples where the causal effects are identifi-
able but not by BD-like adjustment.
Example 1: Surrogate endpoints. The causal graph in
Fig. 1a illustrates a data-generating process of an experimen-
tal study that leverages a surrogate endpoint X , a variable
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intended to substitute for a clinical endpoint Y when the
clinical endpoint is hardly accessible. Suppose one is inter-
ested in estimating the causal effect of X (e.g., CD4 cell
counts) on Y (e.g., Progression of HIV) to validate the CD4
cell counts as a surrogate endpoint (Hughes et al. 1998). W2

denotes the treatment for the CD4 cell counts and W1 is a
set of confounders affecting the treatment (e.g., a previous
disease history). The resultant estimand is given by Px(y) =(∑

w1
P (x, y|w1, w2)P (w1)

)
/
(∑

w1
P (x|w1, w2)P (w1)

)
,

which is clearly not BD-like. To the best of our knowledge,
no effective statistical estimator exists for this type of
estimands.
Example 2: Causal mediators. Consider the causal graph
in Fig. 1b, where X represents the level of body mass index
(BMI), Z4 the level of multiple, possibly high-dimensional,
metabolites, and Y the occurrence of breast cancer (Derkach
et al. 2019). Suppose we observe Z1 (e.g., age), Z2 (e.g., di-
ets), and Z3 (e.g., smoking), a set of confounding variables
affecting levels of BMI, metabolites, and breast cancer. The
goal of the analysis is to assess the effect of BMI levels on
breast cancer. The resultant estimand is given by Px(y) =∑

z P (z4|x, z(3))P (z(3))
∑

x′ P (y|x′, z)P (x′|z(3)), where
Z = (Z1, Z2, Z3, Z4) and Z(3) = (Z1, Z2, Z3), but no sta-
tistical estimator is readily available for this estimand.

In general, many graphical and algorithmic conditions
have been developed for determining the identifiability of
a causal effect Px(y) in a given causal graph. However, no
general method exists in the literature for estimating Px(y)
from finite samples whenever it is identifiable (for example,
as given in Eq. (9)) but not in the form of BD-like adjustment
as in Eq. (1)1. In short, we note that: given a causal graph G,
(i) Complete solutions have been developed for identifying
Px(y) from P (V ); (ii) There exist a plethora of methods
aiming to estimate BD-like estimands from finite samples
when G satisfies the BD/SBD criteria, but the fact is the
BD/SBD criteria only capture a small fraction of the scenar-
ios under which causal effects are identifiable; (iii) No sys-
tematic treatment exists for estimating arbitrary causal effect
estimands that are not BD-like. In this paper, we aim to start
bridging the gap between causal “identification” and causal
“estimation”. Specifically, we propose to extend weighting-
based methods developed for BD case (Robins, Hernan, and
Brumback 2000) to settings beyond the BD, and further use
the weighting-method as a building block to estimate com-
plex causal effect estimands. The contributions of the paper
are as follows:

1. We introduce a weighting operator as a building block
estimand that could be estimated efficiently using existing
statistical techniques developed for the BD estimand.

2. We develop novel machinery for estimating complex
causal effects based on the composition of weighting opera-
tors.

3. We prove graphical criteria (mSBD, Surrogate, and
mSBD composition) that go beyond the BD, under which

1Estimators for specific settings, including the SBD and front-
door, have been developed based on influence functions (IF)
(Fulcher et al. 2019).
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Figure 1: Causal graphs corresponding to Example 1 and 2.
Nodes representing the treatment and outcome are colored
in blue and red, respectively.

a causal estimand can be expressed as a weighting operator
or their composition, and, therefore, lends itself to effective
estimators. Simulation studies demonstrate the effectiveness
of the proposed estimators.

All the proofs are provided in Appendix D in the supplemen-
tal material.

2 Preliminaries
We use the language of structural causal models (SCMs)
(Pearl 2000, pp. 204-207) as our basic semantical frame-
work. Each SCM M over a set of variables V has a causal
graph G associated to it. Solid-directed arrows encode func-
tional relationships between observed variables, and dashed-
bidirected arrows encode unobserved common causes (e.g.,
see Fig. 1a). Within the structural semantics, performing an
intervention, and setting X = x, is represented through the
do-operator, do(X = x), which encodes the operation of re-
placing the original equations of X by the constant x and
induces a submodel Mx and an experimental distribution
Px(v). Given a causal graph G over a set of variables V,
a causal effect Px(y) is said to be identifiable in G if Px(y)
is uniquely computable from P (v) in any SCM that induces
G. For a detailed discussion of SCMs, refer to (Pearl 2000).

Each variable will be represented with a capital letter
(X) and its realized value with the small letter (x). We will
use bold letters (X) to denote sets of variables. Given an
ordered set of variables X = (X1, · · · , Xn), we denote
X(i) = (X1, · · · , Xi), and X≥i = (Xi, · · · , Xn).

We use the typical graph-theoretic terminology
PA(C), Ch(C), De(C), An(C) to represent the union
of C and respectively the parents, children, descendants,
and ancestors of C. We use GC1C2

to denote the graph
resulting from deleting all incoming edges to C1 and all
outgoing edges from C2 in G. (X ⊥⊥ Y | Z)G denotes that
X is d-separated from Y given Z in G. E[f(Y)|x] denotes
the conditional expectation of f(Y) over P (Y|x). We use
P̂ (v) to denote the corresponding empirical distribution.

3 Effect Estimation by Weighting Operators
In this section, we start by formally defining a weighting
operator as a causal estimand that could be estimated using
existing statistical techniques and further used as building
blocks to construct more complex causal estimands. We then



present graphical conditions under which a causal estimand
can be expressed as a weighting operator.

3.1 Weighting Operator
Causal effect estimation by the BD adjustment is widely
used in practice in part due to the availability of efficient
estimators from finite samples. In particular, weighting-
based statistical estimators for estimating the BD estimand
in Eq. (1) have been developed, including the inverse-
probability weighting (IPW) and stabilized weighting (SW)
(Robins, Hernan, and Brumback 2000). To present weight-
ing techniques, we first define the notion of weighted distri-
bution as follows:

Definition 1 (Weighted distribution PW (v)). Given a dis-
tribution P (v) and a weight function W (v) > 0, a
weighted distribution PW (v) is given by

PW (v) ≡ W (v)P (v)∑
v′W (v′)P (v′)

. (2)

Weighting-based estimators for BD adjustment have been
developed based on the following reformulation of the ad-
justment equation:

Proposition 1. Let X,Y,Z ⊆ V. If the causal effect
Px (y) is identifiable by the BD adjustment, then Px (y) =

PW (y|x) whereW = P (x)
P (x|z) , and

EPx(y) [Y] = EPW(y|x) [Y|X = x] . (3)

Remarkably, one can estimateW = P (x)
P (x|z) as the weight

of each individual sample, and treat the reweighted samples
as if they were drawn from the causal distribution Px (y)
(Pearl 2000, Ch. 3.6.1). In other words, letting Dobs denote
samples drawn from P (x,y, z), and DWobs ∼ PW (x,y, z)
represent the reweighted Dobs, Prop. 1 says DWobs plays
the role of samples drawn from the post-intervention dis-
tribution Px (y). Therefore, the expected causal effects may
be estimated by computing conditional expectation on the
reweighted samples. Such weighting-based estimators have
also been developed for estimating the g-formula (i.e., g-
estimation) (Robins 1986; Robins, Hernan, and Brumback
2000) whenever the SBD condition holds.

In this paper, we will extend the weighting techniques to
situations beyond the BD and the g-formula. Towards this
goal, we formally define a weighting operator as follows:
Definition 2 (Weighing operator B). Given a weight func-
tionW (v) > 0, a function h (Y), a set of variables X = x,
the weighting operator B [h (Y) | x;W] is defined by

B [h (Y) | x;W] ≡ EPW (y|x) [h (Y) |x] =
∑
y

h(y)PW (y|x) .

Note that h (Y) is an arbitrary function over Y, and B
is a function of X = x. We’ll describe in Sec. 5 an empir-
ical estimator of the weighting operator B from finite sam-
ples, which extends the existing statistical techniques devel-
oped for BD adjustment. Therefore, whenever a causal esti-
mand is expressed as a weighting operator, it will lend itself

to effective estimators. In particular, in the form of weight-
ing operator, the BD causal estimand in Prop. 1 is given by
EPx(y) [Y] = B [Y | x;W], whereW = P (x)

P (x|z) .
As alluded earlier, the BD-like conditions cover just a lim-

ited set of identifiable scenarios. In many settings, causal
effects are identifiable but not in the form of an adjust-
ment, and no effective estimators have been developed. In
the sequel, we go beyond the BD condition and propose new
graphical conditions under which a causal estimand can be
expressed as a weighting operator. In Sec. 4, we further show
that weighting operators can be used as building blocks to
construct more complex causal estimands.

3.2 Multi-outcome Sequential Back-door (mSBD)
Criterion and Weighting

One setting of practical interest where the causal estimand
can be expressed as a weighting operator is in the time-series
domain with a sequence of treatments X1, . . . , Xn and cor-
responding covariates Z1, . . . , Zn. We highlight that the BD
criterion has been extended to the sequential BD (SBD) cri-
terion in the time-series domain (Pearl and Robins 1995),
where the outcome variable Y is assumed to be a singleton.
Here, we generalize the SBD criterion to accommodate the
situation when Y is a set of variables, for example, for when
the outcomes are longitudinal2.
Definition 3 (Multi-outcome sequential back-door (mSBD)
criterion). Given the pair of sets (X,Y), let X =
{X1, X2, · · · , Xn} be topologically ordered as X1 <
X2 < · · · < Xn. Let Y0 = Y \ De (X) and Yi =
Y ∩

(
De (Xi) \De

(
X≥i+1

))
for i = 1, 2, · · · , n. Let

ND
(
X≥i

)
be the set of nondescendants of X≥i. Then

the sequence of variables Z = (Z1,Z2, · · · ,Zn) are said
to be mSBD admissible relative to (X,Y) if it holds that
Zi ⊆ ND

(
X≥i

)
, and(

Y≥i ⊥⊥ Xi|Y(i−1),Z(i),X(i−1)
)
G

XiX
≥i+1

.

Roughly speaking, Def. 3 requires that the past observa-
tions

(
X(i−1),Y(i−1),Z(i)

)
satisfy the BD criterion relative

to each (Xi,Y
≥i) pair as covariates. The mSBD criterion

reduces to the original SBD (Pearl and Robins 1995) when-
ever Y is a singleton. When the mSBD criterion holds in a
causal graph, the causal effect is identifiable as follows:
Theorem 1 (mSBD adjustment). If Z is mSBD admissible
relative to (X,Y), then Px (y) is identifiable and given by3

Px (y) =
∑
z

n∏
k=0

P
(
yk|x(k), z(k),y(k−1)

)
×

n∏
j=1

P
(
zj |x(j−1), z(j−1),y(j−1)

)
. (4)

2Note that treating Y in SBD criterion as a set would NOT get
the mSBD criterion.

3We note that the expressions in the form of Eq. (4) or similar
are often called the g-formula (Robins, Greenland, and Hu 1999).
The mSBD criterion provides a graphical condition under which
the causal effect is identifiable as the g-formula.



For example, the causal graph in Fig. 2a represents a
time-series setting with a sequence of treatments X1, X2,
longitudinal outcomes Y1, Y2, and corresponding covari-
ates Z1, Z2. The BD criterion is not applicable for iden-
tifying Px1,x2

(y1, y2). However, (Z1, Z2) satisfies the
mSBD criterion relative to ((X1, X2), (Y1, Y2)). By Thm. 1
Px1,x2(y1, y2) is identifiable and the expected causal effect
of {X1, X2} on Y2 is given by

EPx1,x2
(y2) [Y2] =

∑
z1,z2,y1

E [Y2|x1, x2, z1, z2, y1]P (y1|x1, z1)

× P (z1)P (z2|x1, z1, y1) (5)

Whenever the mSBD admissible Z is high-dimensional,
evaluating the causal effect is non-trivial in terms of com-
putation and sample efficiency. We address this challenge
by leveraging the weighting technique, as shown next.
Theorem 2. If Z is mSBD admissible relative to (X,Y),
then

EPx(y) [h (Y)] = B [h (Y) | x;W] , where (6)

W =WmSBD(x,y, z) ≡
P (x)∏n

k=1 P (xk|x(k−1),y(k−1), z(k))
.

(7)

For example, in Fig. 2a, the expected causal effect of
{X1, X2} on Y2 can be written, and evaluated, as

EPx1,x2
(y2) [Y2] = B [Y2 | {x1, x2};W] , (8)

where W =
P (x1, x2)

P (x1|z1)P (x2|x1, y1, z1, z2)
.

By Thm. 2, once a set Z is mSBD-admissible, the expected
causal effect can be estimated using the empirical weighting
operator described in Sec. 5.

3.3 Surrogate Criterion and Weighting
We present another setting where the causal estimand can
be expressed as a weighting operator and can therefore be
estimated from finite samples using weighting techniques.
Definition 4 (Surrogate criterion). (R,Z) is said to
be surrogate admissible relative to (X,Y) if (1)
(Y ⊥⊥ R|X)GXR

; (2) (Y ⊥⊥ X|R)GXR
; and (3) Z is

mSBD admissible relative to (R, (X,Y)).
Theorem 3. If (R,Z) is surrogate admissible relative to
(X,Y), then4

EPx(y) [h (Y)] = B [h (Y) | x ∪ r;WmSBD(r,x ∪ y, z)] .

To demonstrate the application of the surrogate criterion,
we consider Example 1 with its corresponding causal graph
given in Fig. 1a, where we are interested in estimating the
causal effect of the surrogate endpoint X on the clinical
endpoint Y with W1 being a set of confounders. It can be
derived (e.g. by do-calculus) that the causal effect Px (y) is
identifiable and given by

Px (y) =

∑
w1
P (y, x|w1, w2)P (w2)∑

w1
P (x|w1, w2)P (w2)

. (9)

4Note the weight functionWmSBD is defined in Eq. (7).

X1 Y1

Z1

X2 Y2

Z2

(a) mSBD

X Z Y

(b) Front-door

Figure 2: Example graphs

At the first glance, estimating such quotient estimand looks
daunting since the variance can be arbitrarily large. To the
best of our knowledge, no statistical estimator has been es-
tablished for the type of estimands like Eq. (9). Thm. 3 pro-
vides a solution. By Def. 4, (W2,W1) is surrogate admissi-
ble relative to (X,Y ), and by Thm. 3 we have

EPx(y) [Y ] = B
[
Y

∣∣∣∣ {w2, x};W =
P (w2)

P (w2|w1)

]
. (10)

The surrogate criterion allows one to express a complex quo-
tient estimand in the form of a weighting operator, which al-
lows one to estimate through the method discussed in Sec. 5.

4 Causal Effects Estimation by the
Composition of Weighting Operators

So far, we have defined a weighting operator as a causal
estimand that could be estimated using existing statistical
techniques and presented graphical conditions (mSBD and
Surrogate criteria) under which a causal estimand can be ex-
pressed as a weighting operator. In this section, we introduce
novel machinery for causal effect estimation by formulating
the front-door estimand as a composition of BD weighting
operators. We then extend this idea to develop graphical con-
ditions under which causal effects can be estimated by the
composition of weighting operators.

4.1 Estimation of Front-door as a Composition of
BD Weighting Operators

A well-known setting where causal effects are identifiable
are characterized by what is known as the front-door crite-
rion (Pearl 1995), which states that if Z satisfies the front-
door criterion relative to (X,Y), then the causal effect of X
on Y is identifiable and is given by the formula

Px(y) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′). (11)

As an example, consider the causal graph in Fig. 2b, where
X represents the level of body mass index (BMI), Z the level
of multiple, possibly high-dimensional, metabolites, and Y
the occurrence of breast cancer (Derkach et al. 2019). The
goal is to assess the effect of the level of BMI (X) on the
breast cancer (Y ) in the presence of Z, often called causal
mediators. We have that Z satisfies the front-door criterion
relative to (X,Y ), and the expected causal effect is given by

EPx(y) [Y ] =
∑
z

P (z|x)
∑
x′

E[Y |x′, z]P (x′). (12)



Computing Eq. (12) is non-trivial in terms of computation
and sample efficiency when Z is high-dimensional. In this
paper, we propose a novel method for estimating the front-
door estimand. We note something simple albeit powerful:
the front-door can be seen as a composition of BD adjust-
ments. To witness, note that:

Px(y) =
∑
z

Px (z)︸ ︷︷ ︸
BD=∅

Pz(y)︸ ︷︷ ︸
BD={X}

, and (13)

EPx(y) [Y] = EPx(z)

[
EPz(y) [Y]

]
, (14)

where BD represents a BD admissible set, that is, both effects
in Eq. (13) can be identified by BD adjustments. In practice,
EPx(y) [Y] can be estimated by first estimating EPz(y) [Y],
and then estimating the expectation of the resultant quantity
over Px (z), both times using the BD weighting operator.
Therefore, we can compute Eq. (12) as a composition of BD
weighting operators. Using this example, we formally define
a composition of weighting operators as follows:

Definition 5 (Composition of weighting operators). Given
two weighting operators B1(x) ≡ B [hz (Z) | x;W1] and
B2(z) ≡ B [hy (Y) | z;W2], the composition of B1 and B2
is defined by

(B1 ◦ B2) (x) ≡ B [B2(z) | x;W1] . (15)

The front-door estimand (Eq. (12)) can be computed in
terms of the composition operation as follows.

Proposition 2. If Z satisfies the front-door criterion relative
to (X,Y), then

EPx(y) [Y] = (B1 ◦ B2) (x), (16)

where B1(x) = B [h (Z) | x;W1], B2(z) = B [Y | z;W2],
W1 = 1, andW2 = P (z)

P (z|x) .

More generally, we propose using the composition of
weighting operators as a novel machinery to construct and
estimate complex causal estimands. The corresponding em-
pirical estimator of the composition of B operators will be
discussed in Sec. 5.

4.2 Causal Effect Estimation by Composition of
Weighting Operators

In this section, we study the conditions under which causal
effects may be identified by a composition of weighting op-
erators, in which the front-door is just a special case.

Definition 6 (Decomposability criterion). A set of variables
Z satisfies the decomposability criterion relative to (X,Y)
if (1) (Y ⊥⊥ X|Z)GXZ

; and (2) (Y ⊥⊥ Z|X)GXZ
.

Theorem 4. If Z satisfies the decomposability criterion,
then

Px (y) =
∑
z

Px (z)Pz (y) , and

EPx(y) [h (Y)] = EPx(z)

[
EPz(y) [h (Y)]

]
. (17)

The importance of this theorem lies in that if both causal
effects Px (z) and Pz (y) can be computed using the weight-
ing operators, then Px (y) can be computed by the compo-
sition of weighting operators. In particular, we present a cri-
terion that delineates under what conditions a causal effect
can be pieced together through the composition of mSBD
weighting operators.
Definition 7 (mSBD composition criterion). Sets of vari-
ables (Z,W1,W2) are said to satisfy the mSBD composi-
tion criterion relative to (X, Y) if: (1) Z satisfies the decom-
posability criterion relative to (X,Y); and (2) W1 is mSBD
admissible relative to (X,Z), and W2 is mSBD admissible
relative to (Z,Y).
Theorem 5 (mSBD composition). If (Z,W1,W2) satisfy
the mSBD composition criterion relative to (X, Y), then:

EPx(y) [Y] = (B1 ◦ B2) (x), (18)

where B1(x) ≡ B [h (Z) | x;WmSBD(x, z,w1)] and
B2(z) ≡ B [Y | z;WmSBD(z,y,w2)].

To demonstrate the application of the mSBD composi-
tion criterion, consider the causal mediator scenario (Exam-
ple 2) with its corresponding causal graph given in Fig. 1b.
The set Z = (Z1, Z2, Z3, Z4) satisfies the decomposabil-
ity condition relative to (X,Y ), and (Z, ∅, X) satisfy the
mSBD composition criterion relative to (X,Y ). Therefore,
the causal effect Px (y) can be expressed as Px (y) =∑

z Px (z)Pz (y). We have that ∅ satisfies the SBD condi-
tions relative to (X, (Z1, Z2, Z3, Z4)), which yields

Px(z) = P (z1, z2, z3)P (z4|z1, z2, z3, x), (19)
EPx(z) [hz (Z)] = B [hz (Z) | x;W1] ≡ B1(x), (20)

where W1 = P (x)
P (x|z1,z2,z3) . Further note that {X}

(i.e. (∅, ∅, ∅, X)) is SBD admissible relative to
((Z1, Z2, Z3, Z4), Y ), which yields

EPz(y) [Y ] = B [Y | z;Wy] ≡ B2(z), (21)

where

Wy =
P (z1, z2, z3, z4)

P (z1, z2, z3)P (z4|z1, z2, z3, x)
=

P (z4|z1, z2, z3)
P (z4|z1, z2, z3, x)

Finally, we obtain that the expected causal effect
EPx(y) [Y ] = EPx(z)

[
EPz(y) [Y ]

]
is given by (B1 ◦ B2) (x).

5 Weighting-based Empirical Estimators
We have introduced the weighting operator as a building
block estimand and their composition as a new tool for es-
timating causal effects. In this section, we present how to
estimate the weighting operator and their composition em-
pirically from finite samples. In other words, instead of hav-
ing access to the true distribution P (v), we only have an
i.i.d. data set Dobs = {V(i)}Ni=1 drawn from P (v).

5.1 Empirical Weighting Operators
We extend the weighting-based statistical estimation proce-
dures developed for the BD adjustment to the weighting op-
erator defined in Def. 2. One of the widely used methods
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for estimating the conditional expectation on the weighted
samples is the following weighted regression (also known
as weighted least square) estimator (Robins, Hernan, and
Brumback 2000):

Definition 8 (Empirical weighting operator B̂). Given
Dobs = {V(i)}Ni=1 ∼ P (v), the empirical weighting op-
erator B̂ [h (Y) | x;W] (x) ≡ g∗(x) is estimated by the
weighted regression as follows:

g∗ = argmin
ĝ∈R

N∑
i=1

Ŵ
(
V(i)

) (
h
(
Y(i)

)
− ĝ

(
X(i)

))2
, (22)

where Ŵ (v) is the empirically estimatedW (v), and R is
a class of regression functions (e.g., linear regressions).

For example, for the BD adjustment, we have Ŵ(V(i)) =

P̂
(
x(i)

)
/P̂
(
x(i) | z(i)

)
. When estimating the weight Ŵ

from data, in practice, some parametric model will be as-
sumed for P (x|z), and parameters of the model will be
learned from data. When X = (X1, · · · , Xn), one can first
use the chain rule of the probability and then model each in-
dividual component of P (x|z) =

∏n
d=1 P

(
xd|z,x(d−1)).

For example, when X is a singleton binary variable,
P (X = 1|z) is typically assumed to be a logistic regression
function as (1 + exp (α0 + αz1z1 + · · ·+ αzkzk))

−1, and
the parameters α are learned from data. Then the trained
model is used to estimate the probability. More expressive
function classes than logistic regression can be applied to es-
timate the weights more accurately (Lee, Lessler, and Stuart
2010; Gruber et al. 2015), which may be appealing depend-
ing on the particular setting.

Equipped with the estimated weight, one can then esti-
mate the weighting operator by the weighted regression. One
can go beyond the standard linear regression class and em-
ploy flexible regression functions (Hill 2011; Wen, Hassan-
pour, and Greiner 2018). We note that B̂ provides a consis-
tent estimator of B if the models for Ŵ and R are correctly
specified, following the same argument as in (Robins, Her-
nan, and Brumback 2000).

Another commonly used method in back-door settings
is the Horvitz-Thompson (H-T) estimator (Horvitz and
Thompson 1952) as an IPW estimator. We use the weighted
regression estimator as the empirical estimator for weighting

operators because it has been shown that the H-T estimator
may have a higher variance than the weighted regression es-
timator (Robins, Hernan, and Brumback 2000).

5.2 Estimating Composition of Weighting
Operators

Given the empirical weighting operator defined in Def. 8,
we simply define the empirical composition of weight-
ing operators as a chain of regressions. Given B̂1 (x) ≡
B̂ [hz (Z) | x;W1] and B̂2 (z) ≡ B̂ [hy (Y) | z;W2], we de-

fine ̂(B1 ◦ B2)(x) ≡
(
B̂1 ◦ B̂2

)
(x), which is implemented

as B̂
[
B̂2(z)

∣∣∣ x;W1

]
, the weighted regression for function

B̂2(z) onto X with weight Ŵ1. Formally,

Definition 9 (Empirical composition of B). Let B̂1 (x) ≡
B̂ [hz (Z) | x;W1] and B̂2 (z) ≡ B̂ [hy (Y) | z;W2]. The
empirical composition ̂(B1 ◦ B2)(x) is defined by

̂(B1 ◦ B2)(x) ≡
(
B̂1 ◦ B̂2

)
(x) ≡ B̂

[
B̂2(z)

∣∣∣ x;W1

]
. (23)

One question that naturally arises is about the consistency
of the empirical composition of weighting operators, which
is addressed by the following theorem.

Theorem 6 (Consistency of the composition). Let B̂1(x)
and B̂2(z) be consistent estimators of B1(x) and B2(z).
Let the function class R1 of B̂1 be a compact space. Then,(
B̂1 ◦ B̂2

)
(x) is a consistent estimator of (B1 ◦ B2) (x).

6 Simulation Studies
6.1 Simulation Setup
Given a causal graph, we will specify a SCMM from which
a dataset Dobs will be generated. To compute the target
µ(x) ≡ EPx(y) [Y ], we generate Nint = 107 number of
samples Dint from Mx, the model from do(X = x). We es-
timate µ(x) by computing the mean of Y in Dint, which is
treated as the ground truth.

Because there exists no general method in the literature
for estimating arbitrary identifiable causal effects that are not
in the form of BD-like adjustment, we compare the proposed
estimators with a naive procedure, as discussed next:
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Figure 4: MAAE plots for (a) mSBD, (b) Surrogate endpoints, and (c) Causal mediators. Plots are best viewed in color.

Naive procedure As an example, assume we want
to evaluate the expression in Eq. (5). We compute
each conditional probability such as P (z2|x1, z1, y1) as
Nz2,x1,z1,y1

/Nx1,z1,y1
whereNw is the number of examples

in which W = w. If Nx1,z1,y1
= 0 then P (z2|x1, z1, y1) is

set to zero. E [Y |x1, x2, z1, z2, y1] is computed as the mean
of Y in examples with values (x1, x2, z1, z2, y1), and is set
to zero if no example has these values. The expected causal
effect is computed by summing over all the possible values
of Z1, Y1, Z2.
Proposed procedure (named CWO - Composition of
Weighting Operators) We use the empirical estimators
described in Sec. 5. The conditional probabilities in the
weights are estimated by the logistic regression model (bi-
nary variables are used in the simulation studies).
Accuracy Measure Given a data setDobs withN examples,
let µcwo(x) and µnai(x) be the estimated EPx(y) [Y ] using
the CWO and naive procedure respectively. We compute the
average absolute error AAE as |µ(x) − µcwo(x)| averaged
over x and |µ(x) − µnai(x)| averaged over x respectively.
For each sample size N , we generate 100 data sets. We call
the median of the 100 AAEs the median average absolute
error or MAAE. A plot of MAAE vs. the sample size N will
be called a MAAE plot.

6.2 Simulation Results
We test the proposed CWO against the naive approach in
several scenarios (we only compare with the naive method
due to the nonexistence of other general purpose methods
applicable in these cases). The detailed descriptions of the
corresponding SCMs are provided in Appendix E.
Front-door (Fig. 2b) We first test on the front-door graph
for estimating EPx(y) [Y ] in Eq. (12). We set X to be binary,
Y continuous within [0, 1], and Z = (Z1, . . . , ZD) with Zi

all binary. Fig. 3a shows MAAE of CWO vs. naive for D ∈
{6, 7, 8, 9}, and Fig. 3b the plots for D ∈ {10, 12, 15, 20}.
We observe that the naive approach works well when Z is
low dimensional (up to D = 8) and given many examples.
CWO may have bias due to the use of logistic regression
models. When Z is high-dimensional, CWO significantly
outperforms the naive approach. To get a better understand-
ing of the sample efficiency, for each given D, we gradu-
ally increase the sample size N = 500, 1000, 1500, . . ., and
find the corresponding MAAE, and stop to record the sample

size ND when the MAAE is within a predetermined thresh-
old. The threshold was set to 0.025 in these experiments.
Roughly, ND represents how many samples are needed for
the estimator to reach a predetermined accuracy. Fig. 3c
shows the curves of D vs. ND. We note that the number
of samples needed to reach a predetermined accuracy in-
creases very rapidly (exponentially in D) for the naive ap-
proach while CWO scales very well.
mSBD: (Fig. 2a) We test on estimating EPx1,x2

(y2) [Y2]
given in Eq. (5). We set X1, X2, Y1 to be binary, Y2 con-
tinuous within [0, 1], and Zi = (Zi1, . . . , ZiD) for i = 1, 2,
where all Zij are binary. Fig. 4a presents the MAAE plots
for D ∈ {3, 4, 5, 6, 7}. We note that CWO provides more
robust estimates and significantly outperforms the naive pro-
cedure in high-dimensional settings.
Surrogate endpoints (Fig. 1a) We test on estimating
EPx(y) [Y ] (where the causal effect Px (y) is given in
Eq. (9)). The MAAE plots for D ∈ {4, 5, 10, 15, 20} are
given in Fig. 4b. We observe that the CWO method signifi-
cantly outperforms the naive approach.
Causal mediators (Fig. 1b) We test on estimating
EPx(y) [Y ]. Fig. 4c presents the MAAE plots for D ∈
{4, 5, 10, 15, 20}. Again, we note CWO significantly outper-
forms the naive procedure in high-dimensional settings.

These experimental results show that CWO significantly
outperforms its naive counterpart. In Appendix B, we pro-
vide a discussion on why CWO outperforms the naive pro-
cedure. To better understand to what extent the performance
gains over the naive procedure should be attributed to the
use of parametric assumptions, we also performed simula-
tions comparing CWO against the parametric plug-in esti-
mator given in Appendix C. Finally, we performed simula-
tions comparing CWO with the H-T estimator given in Ap-
pendix G.

7 Conclusions
The problem of determining whether a causal effect is iden-
tifiable from observational data given a causal graph is well-
understood, while there’s virtually no work on how, in gen-
eral, one can efficiently estimate, from finite samples, an
identifiable causal effect beyond BD-like settings. This pa-
per takes the first step in filling in the gap between identifi-
cation and estimation by developing novel machinery for es-
timating causal effects through the weighting operators and



their composition. We introduced graphical criteria for de-
termining when the new estimation methods are applicable.
These results offer new tools for data scientists to be able to
estimate effects that the usual methods (including Propensity
score, IPW, BART) are not applicable given that the causal
estimand is not BD-like. This work opens new research di-
rections. On the one hand, many techniques have been devel-
oped for and besides weighted regression for BD estimation;
can those techniques be applied and leveraged to the compo-
sition of weighting operators? How model misspecification,
which is well-studied through double robust methods in the
BD-case, should be addressed in this more general setting?
On the other hand, can weighting operators be further com-
posed to identify effects beyond the decomposability crite-
rion? Also, can the weighting operator be combined in alter-
native ways to identify new effects?
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Appendix
Estimating Causal Effects Using Weighting-Based Estimators

A More Examples on Applications of Weighting Operators and Their Composition
Surrogate-endpoints with mSBD adjustment Fig. 1a (Tian 2002) in Appendix provides more complicated example where
there is an ordered set of surrogate experiments (W2,W4) on the endpoints (X,Y ) and an ordered covariates (W1,W3) satisfies
the mSBD criterion relative to ((W2,W4), (X,Y )). As a ground truth, we note that the causal effect Px(y) is given by

Px (y) =

∑
w1,w3

P (y, x|w4, w3, w2, w1)P (w3|w2, w1)P (w1)∑
w1,w3

P (x|w4, w3, w2, w1)P (w3|w2, w1)P (w1)
(1)

Since ((W2,W4), (W1,W3)) is surrogate admissible relative to (X,Y ), the weighting operator encodes the causal effect as
follow:

EPx(y) [Y ] = B
[
Y

∣∣∣∣ (x,w2, w4) ;W =
P (w2, w4)

P (w2|w1)P (w4|w3)

]
This exemplifies that complex causal estimands in the surrogate endpoints setting such as Example 1 could be encoded using

the surrogate adjustment.

Combination of Surrogates and Mediators We now exemplify the capability of the composition of weighting operators
in encoding more complicated causal effects. To do so, we explore the scenario combining Example 1 and 2 by permitting
existence of the surrogates and mediators. Consider Fig. 1b in Appendix, where X represents a surrogate endpoint (e.g., CD4
cell counts), Y a clinical endpoint (e.g., survival from HIV), and Z a mediator between (X,Y ) (e.g., a progression of HIV).
W1 and W2 is set identical to Example 1.

To identify the causal effect Px(y), we first note thatZ satisfies the decomposability criteria (Def. 6). This leads to decompose
the causal effect as Px(y) =

∑
z Px(z)Pz(y). As alluded earlier, EPx(z) [hz (Z)] can be identifiable by surrogate adjustment

and given by Eq. (10).
To identify Pz(y), defined by the effect of the mediator Z on the clinical endpoint Y , we first witness that Z is a mediator

of (X,Y ) where the spurious effect of Z on Y are blocked by X on the surrogate experiments on W2; i.e., X satisfies BD
criterion relative to (Z, Y ) on the surrogate experimental distribution Pw2(y, x, z, w1) and corresponding graph GW2

. This
leads that Pz(y) coincides with the weighted distribution PW2

w2
(y|z) where PW2

w2
(v) is a distribution weighting Pw2(y, x, z, w1)

by W2 = Pw2(z)/Pw2(z|x). Notice that the surrogate experimental distribution Pw2(y, x, z, w1) again coincides with the
weighted distribution PW1(y, x, z, w1|w2) weighting P (v) byW1 = P (w2)/P (w2|w1). This yields that the conditional dis-
tribution of Y given {W2, Z} weighted byW =W1 ×W2 coincides with the Pz(y):

EPz(y) [Y ] = B [Y | {w2, z} ;W =W1 ×W2] . (2)

This leads to decompose the causal effect as EPx(y) [Y ] = (B1 ◦ B2) (x) where B1 (x) and B2 (z) are given by the surrogate
adjustment in Eq. (10) and B2 (z) = B [Y | {w2, z} ;W =W1 ×W2], respectively

A caveat is that the values of Eq. (10,2) are independent to the value of W2 by the testable implication of the causal diagram
(Tian and Pearl 2002). This permits to write a causal effect as EPx(y) [Y ] = (B1 ◦ B2) (x) where EPx(z) [hz (Z)] = B1 (x) as
in Eq. (10) and EPz(y) [Y ] = B2 (z) as in Eq. (2) in Appendix.

Copyright c© 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
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Figure 1: An example graph (a) the surrogate criterion where ((W2,W4), (W1,W3)) is surrogate admissible relative to (X,Y )
; and (b) Z satisfies a decomposability criteria and Px(z) is identifiable through the surrogate adjustment.

B Discussion of Sample Complexity of the CWO
Here we provide some intuitions why the CWO approach outperforms the naive one in the high-dimensional settings. Reliably
computing conditional probabilities per stratum through the naive procedure is challenging since too few samples are usually
available per stratum in high dimensional settings. In particular, Hoeffding’s inequality says that for a binary random variable
X , the minimum number of samples to acquire (1− α)-confidence interval

(
1
N

∑N
i=1X(i)

)
± t is log(2/α)

2t2 . For example, one
might need approximately 185 samples drawn from P (x|z) to obtain a reliable interval ranging ±0.1 with 95% confidence
given individual stratum z = (z1, · · · , zd). This observation suggests that O

(
2d
)

samples (e.g., 106 samples if d = 10) are
needed to reliably estimate P (x|z). Note that given the sample size N , the computational complexity of estimating conditional
probabilities is given as O

(
N2d

)
.

In contrast to the naive procedure, the proposed CWO estimator achieves more amenable complexities through the modeling-
based approach and weighting techniques. This requires a correctly specified model class for P (x|z) (i.e., the modelled P̂ (x|z)
is a consistent estimator of P (x|z)); then much fewer samples are needed to reliable estimate the corresponding parameters.
For example, a line of research (Peduzzi et al. 1996; Vittinghoff and McCulloch 2007; Austin and Steyerberg 2017) states that
the reliable logistic parameters are derivable even when the number of samples per each variable zi ∈ z (called the effects per
variable, EPV) is 20-30 (i.e., 20 × 10 samples when d = 10). Since a wide class of regression methods take time polynomial
in the sample size N , computationally, this method will be more efficient than its corresponding naive estimator. Obviously,
selecting a sensible parameterization still represents a non-trivial challenge.

C Comparison with the Parametric Plug-in Estimator
In this section, we test the proposed method against the parametric plug-in estimator.

C.1 Simulation Setup
We estimate µ(x) by computing the mean of Y in Dint(v), which is treated as the ground truth. We compare the proposed
estimators with a parametric plug-in procedure, as discussed next:
Parametric plug-in (shortly, PPI) Estimators As an example, assume we want to evaluate the causal estimand of the front-
door adjustment. We estimate each conditional probabilities E [Y |x, z], P (z|x) and P (x′) by imposing a parametric assumption
(e.g., a logistic or linear regression). The expected causal effect is then computed by explicitly computing the estimand given
estimated conditional probabilities; i.e., EPx(y) [Y ] =

∑
z P (z|x)

∑
x′ E [Y |x′, z]P (x′). Notice that the PPI procedure is the

only available parametric counterpart for comparison since no estimators have been developed for non-BDs estimands.

C.2 Simulation Results
We test the proposed CWO against the PPI procedure in aforementioned scenarios. Detailed descriptions of the corresponding
SCMs are provided in Appendix E.
mSBD: (Fig. 2a) We test on estimating EPx1,x2

(y2) [Y2], for which CWO and PPI procedures use results from Prop. 1 and
Thm. 2 respectively. We set X1, X2, Y1 to be binary, Y2 continuous within [0, 1], and Zi = (Zi1, . . . , ZiD) for i = 1, 2, where
all Zij are binary. Figure 2a presents the MAAE plots for D = 3, 4, 5, 6, 7. We note that CWO provides more reliable estimates
compared to the PPI estimates.
Surrogate endpoints (Fig. 1a) We test on estimating EPx(y) [Y ] (where Px(y) given in Eq. (9)), which illustrates Example 1.
We set W2, X are binary and Y ∈ [0, 1] and W1 = (W11, · · ·W1D) a set of D-dimensional binary variables. The MAAE plots
for D ∈ {8, 10, 12, 16, 20} are given in Fig. 2b. The CWO provides outperforms the PPI estimates.



0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 2500 5000 7500 10000
N

M
AA

E
Weight (D=3)
Weight (D=4)
Weight (D=5)
Weight (D=6)
Weight (D=7)
Naive (D=3)
Naive (D=4)
Naive (D=5)
Naive (D=6)
Naive (D=7)

D=7
D=6
D=5
D=4

CWO
PPI

D=3

(a) mSBD (Fig. 2a)

0.000

0.002

0.004

0.006

0 2500 5000 7500 10000
N

M
AA

E

Weight (D=8)
Weight (D=10)
Weight (D=12)
Weight (D=16)
Weight (D=20)
Naive (D=8)
Naive (D=10)
Naive (D=12)
Naive (D=16)
Naive (D=20)

D=20
D=16
D=12
D=10

CWO
PPI

D=8

(b) Surrogate endpoints (Fig. 1a)

0.000

0.005

0.010

0.015

0.020

0 2500 5000 7500 10000
N

M
AA

E

Weight (D=4)
Weight (D=6)
Weight (D=8)
Weight (D=10)
Weight (D=12)
Naive (D=4)
Naive (D=6)
Naive (D=8)
Naive (D=10)
Naive (D=12)

D=12
D=10
D=8
D=6

CWO
PPI

D=4

(c) Surrogate endpoints (Fig. 1a in Appendix)
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(d) Front-door (Fig. 2b)
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(e) Causal mediators (Fig. 1b)
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(f) Surrogates & mediators (Fig. 1b in Ap-
pendix)

Figure 2: MAAE plots comparing the proposed method with the parametric plug-in (PPI) procedure for (a) mSBD (Fig. 2a),
(b) Surrogate endpoints (Fig. 1a), (c) Surrogate endpoints (Fig. 1a), (d) Causal mediators (Front-door, Fig. 2b), (e) Causal
mediators with confounders (Fig. 1b), and (f) Combinations of surrogates and mediators (Fig. 1b). Plots are rendered in high
resolution and can be zoomed in. Best viewed in color.

Surrogates endpoints with mSBD adjustment (Fig. 1a in Appendix) We test on estimating EPx(y) [Y ] (where Px (y) is
given in Eq. (1)). W1,W3 are set to be D-dimensional binary variables and Y ∈ [0, 1]. Other variables are set to be binary. The
MAAE plots for D ∈ {4, 6, 8, 10, 12} are given in Fig. 2c. We observe that the result of the CWO is compatible with the PPI
procedure.
Front-door (Fig. 2b) We test on the front-door graph. To explore beyond Example 2, we set Z aD-dimensional binary variable.
X is set to be binary, and Y continuous within [0, 1]. The MAAE plots for D ∈ {8, 10, 12, 14, 16} are provided in Fig. 2d. We
observe that the result of the CWO estimator is more reliable compared to that of the PPI procedure.
Causal mediators (Fig. 1b) We ran a test on estimating EPx(y) [Y ] where Px(y) is given in Eq. 18. We set X,Z1, Z2, Z3

to be binary, Y within [0, 1], Z4 = (Z4,1, . . . , Z4,D) a set of D-dimensional binary variable. The MAAE plots for D ∈
{8, 10, 12, 14, 18} are provided in Fig. 2e. The plots imply that the CWO estimator provides compatible estimator to the PPI.

Combinations of surrogates and mediators (Fig. 1b in Appendix) We simulated on estimating EPx(y) [Y ], where the esti-
mand is provided in Appendix A. We setW2 andX as binary,W1 and Z asD-dimensional binaries, and Y ∈ [0, 1]. The MAAE
plots for D ∈ {3, 4, 5, 6, 7} are provided in Fig. 2f. The plots imply that the results of the CWO estimator are compatible with
those of the PPI procedure.

Overall, the CWO performs at least on par with the PPI, the only available counterparts for comparison on non-BDs esti-
mands. The significance of the proposed estimator stems from that it provides a natural extension of well-known weighting
based estimators (MSMs) to more general causal estimands. This extension provides a clue to generalize existing knowledge
on BDs, such as the efficiency theory (Robins 1997), to non-BDs estimands. See Appendix C.3 for a detailed discussion on the
competitive advantages of the CWO over the PPI.

C.3 Competitive Advantages of the CWO over the PPI estimator
This paper provides an approach of estimating a series of non-BDs estimands through a serial application of weighting based
estimators (i.e., marginal structural models, MSMs (Robins et al. 2000)). A natural question that arises here is about competitive
advantages of the proposed estimator compared to the parametric plug-in estimator procedure (PPI).

The fact that complicated causal estimands could be encoded through weighting operators is significant in many aspects.
First, the approach of using MSMs to estimate non-BDs causal estimands is in principle applicable to binary, categorical, and
continuous variables (VanderWeele 2009). For example, consider the case where the estimand of interest is given by the front-
door adjustment . The proposed approach provides identical/unified procedures in estimating the estimand regardless of the
mediators Z being discrete or continuous; the estimands are estimated through a chain of applications of MSMs. Whereas, the
PPI procedure is not equipped with such computational convenience since one should employ heuristic integration technique



to compute the marginalizing operator if Z is high-dimensional continuous variables.

Another advantage of the proposed method is that scientists are permitted to employ flexible and state-of-the-art machine
learning methods developed for MSMs in estimating the causal estimands. For example, Gaussian Processes, well-known non-
parametric regression techniques for arbitrary functions, are recently proposed as good candidate function classes in estimating
the weighting operator (Wen et al. 2018). As another example, the modern deep learning algorithm has been developed for
estimating the MSMs (Lim et al. 2018). Since our work provides a unified view of encoding complicated causal estimands us-
ing MSMs, the machine-learning-based MSMs estimators could be naturally extended toward estimators of more complicated
causal instances.

Also, the proposed method bridges a well-known causal instance (BD/SBD) to the non-BD instances through novel machin-
ery (i.e., the composition of weighting operators). The importance stems from that it paves the way toward a unified framework
to construct estimators general identifiable causal instances. Notice that constructing estimators for every identifiable causal in-
stance would be infeasible without the knowledge of the relationship between BD and non-BD. For example, we acknowledge a
recent work (Fulcher et al. 2019) which constructs an efficient influence function and corresponding doubly-robust estimator for
the causal instances satisfying front-door criteria. However, its relationship with the well-known instance (BD/SBD) is hardly
appreciated in work, leading that generalization of the work challenging. Given that one can derive the influence function for
the front-door adjustment by using simply summing two BD influence functions (due to Decomposability criteria in Def. 6),
our work opens new research directions that the proposed machinery helps to transfer existing knowledge on BD to the non-BD
settings.

Lastly, our method provides a semiparametric estimator for the causal estimand beyond BDs, which is agnostic in choosing
the outcome model when the model is saturated (Robins 2000; Hernan and Robins 2019). Not only that, the proposed machinery
(i.e., composition) in our work permits to extend the knowledge about the semiparametric efficiency bound on BDs toward non-
BDs estimands.

D Proofs

Proof of Prop. 1 We first prove for BD adjustment. Note P (x,y, z) = P (y|x, z)P (x|z)P (z) by the chain rule of the
probability. Given W ≡ P (x)

P (x|z) . Since
∑

x,y,zWP (x,y, z) = 1, PW (x,y, z) = WP (x,y, z) = P (y|x, z)P (x)P (z).
Also, note that PW (x) = P (x), since PW (x) =

∑
y,z P

W (x,y, z) = P (x). Therefore,

Px (y) =
∑
z

P (y|x, z)P (z)

=
∑
z

P (y|x, z) P (x)

P (x)
P (z)

=
1

P (x)

∑
z

P (y|x, z)P (x)P (z)

=
1

P (x)

∑
z

PW (x,y, z)

=
1

P (x)
PW (x,y)

=
1

PW (x)
PW (x,y)

= PW (y|x) .

We omit the proof for the SBD adjustment since it is implied by the proof of Thm. 2. By the definition of the expectation
operator E, it is obvious that EPx(y) [Y] = EPW(y|x) [Y|X = x].



Proof of Thm. 1 Throughout the proof, we are marking do(x) as x̂. Also, note X(i) = ∅ if i ≤ 0. Suppose Z satisfies the
mSBD conditions. Then the following holds:

P (y|x̂)

=
∑
z1

P (y|x̂, z1)P (z1) since Z1 ⊆ ND
(
X≥1

)
=
∑
z1

P
(
y|x̂≥2, x1, z1

)
P (z1) since (Y ⊥⊥ X1|Z1)X1X≥2 (3)

=
∑
z1

P
(
y≥2|y1, z1, x1, x̂≥2

)
P (y1|z1, x1)P (z1) where Y≥2 = Y ∩De

(
X≥2

)
(4)

Note Eq. (3) holds by Rule 2 of do-calculus. Please refer (Pearl 2000, Eq. (4.5)). Suppose the following holds for i ≥ 2:

P (y|x̂)

=
∑
z(i−1)

P
(
y≥i|y(i−1), z(i−1),x(i−1), x̂≥i

) i−1∏
k=1

P
(
yk|z(k),x(k),y(k−1)

) i−1∏
j=1

P
(
zj |y(j−1),x(j−1), z(j−1)

)
. (5)

Note that we already checked it Eq. (5) holds for i = 2. From the inductive hypothesis, the following holds:

P (y|x̂)

=
∑
z(i−1)

P
(
y≥i|y(i−1), z(i−1),x(i−1), x̂≥i

) i−1∏
k=1

P
(
yk|z(k),x(k),y(k−1)

) i−1∏
j=1

P
(
zj |y(j−1),x(j−1), z(j−1)

)

=
∑

z(i−1),zi

P
(
y≥i|y(i−1), z(i),x(i−1), x̂≥i

) i−1∏
k=1

P
(
yk|z(k),x(k),y(k−1)

) i−1∏
j=1

P
(
zj |y(j−1),x(j−1), z(j−1)

)
× P

(
zi|y(i−1), z(i−1),x(i−1)

)
by Zi ⊆ ND

(
x≥i
)

=
∑
z(i)

P
(
y≥i|y(i−1), z(i),x(i), x̂≥i+1

) i−1∏
k=1

P
(
yk|z(k),x(k),y(k−1)

) i∏
j=1

P
(
zj |y(j−1),x(j−1), z(j−1)

)
(6)

=
∑
z(i)

P
(
y≥i+1|y(i), z(i),x(i), x̂≥i+1

) i∏
k=1

P
(
yk|z(k),x(k),y(k−1)

) i∏
j=1

P
(
zj |y(j−1),x(j−1), z(j−1)

)
, (7)

where Eq. (6) holds by the condition
(
Y≥i ⊥⊥ Xi|Y(i−1),Z(i),X(i)

)
XiX≥i+1 , and Eq. (7) holds by Yi ⊆ ND

(
X≥i+1

)
. This

shows that the inductive hypothesis holds for all i.

Note that we can consider when Y0 = Y \ De (X) without loss of generality since the proof holds by starting with
P (y|x̂) = P (y0)P (y1|y0, x̂). This completes the proof.

Proof of Thm. 2 We define some useful quantities as follow:

q
(
xk|z(k),y(k−1)

)
≡ P

(
xk|x(k−1), z(k),y(k−1)

)
q
(
yk|x(k), z(k)

)
≡ P

(
yk|y(k−1),x(k), z(k)

)
q
(
zk|x(k−1),y(k−1)

)
≡ P

(
zk|z(k−1),x(k−1),y(k−1)

)



and

q(x|y, z) ≡
n∏
k=1

q
(
xk|z(k),y(k−1)

)
=

n∏
k=1

P
(
xk|x(k−1), z(k),y(k−1)

)
q (y|x, z) ≡

n∏
k=1

q
(
yk|x(k), z(k)

)
=

n∏
k=1

P
(
yk|y(k−1),x(k), z(k)

)
q (z|x,y) ≡

n∏
k=1

q
(
zk|x(k−1),y(k−1)

)
=

n∏
k=1

P
(
zk|z(k−1),x(k),y(k)

)
.

First, it is immediate to witness that P (x,y, z) = q(x|y, z)q(y|x, z)q(z|y, z), since P (x,y, z) =
P (z1)P (x1|z1)P (y1|x1, z1)P (z2|x1, z1, y1) · · ·P

(
yn|x(n),y(n−1), z(n)

)
. Also, we can rewrite the weight as

W = W(x,y, z) = P (x)
q(x|y,z) , which leads that PW (x,y, z) = WP (x,y, z) = q (y|x, z) q (z|x,y)P (x). Also,

PW (x) =
∑

y,z P
W (x,y, z) =

∑
y,z q (y|x, z) q (z|x,y)P (x) = P (x). Finally, Px (y) =

∑
z q (y|x, z)q(z|y, z).

Then the causal effect can be rewritten as follow:
Px (y) =

∑
z

q(y|x, z)q(z|y,x)

=
∑
z

q(y|x, z)q(z|y,x)q(x|y, z)
q(x|y, z)

=
∑
z

P (x,y, z)
1

q (x|y, z)

=
∑
z

P (x,y, z)
1

q (x|y, z)
P (x)

P (x)

=
∑
z

1

P (x)
P (x,y, z)

P (x)

q(x|y, z)

=
1

P (x)

∑
z

WP (x,y, z)

=
1

P (x)

∑
z

PW (x,y, z)

=
1

P (x)
PW (x,y)

=
1

PW (x)
PW (x,y) = PW (y|x) ,

which completes the proof that Px (y) = PW (y|x) given W . By definition of the expectation operator, this completes the
proof.

Proof of Thm. 3 Suppose (R,Z) is surrogate admissible relative to (X,Y). Then the causal effect Px (y) is given as follow:
Px (y) = Px,r (y) By Rule 3 of do-calculus from (Y ⊥⊥ R|X)GXR

= Pr (y|x) By Rule 2 of do-calculus from (Y ⊥⊥ X|R)GXR

=
Pr (y,x)

Pr (x)
. (8)



Since Z is mSBD admissible relative to (R, (X,Y)), the weights is given by W ≡ WmSBD (r,x ∪ y, z) by Thm. 2, and
PW (x,y|r) = Pr (x,y). Also, PW (x|r) = Pr (x) by Z surrogate-admissibility. Therefore, Eq. (8) can be rewritten as
follow:

Px (y) =
Pr (y,x)

Pr (x)
=
PW (x,y|r)
PW (x|r)

= PW (y|x, r) .

Then the causal effect EPx(y) [h (Y)] is given as follow:

EPx(y) [h (Y)] =
∑
y

h (y)Px (y)

=
∑
y

h (y)PW (y|x, r)

= B [h (Y) | x ∪ r;W =WmSBD (r,x ∪ y, z)] ,

which completes the proof.

Proof of Prop. 2 By recalling the definition of the composition of weighting operators B1 and B2, (B1 ◦ B2) (x), the compo-
sition is given by

(B1 ◦ B2) (x) = B [B2 (z) | x;W1]

=
∑
z

B2 (z)PW1 (z|x)

=
∑
z

B2 (z)P (z|x)

=
∑
z

B [Y | z;W2]P (z|x)

=
∑
z

(∑
y

yPW2 (y|z)

)
P (z|x)

=
∑
z

(∑
y

y
∑
x′

P (y|x′, z)P (x′)

)
P (z|x) (9)

=
∑
z

P (z|x)
∑
x′

E [Y|x′, z]P (x′) . (10)

Since Eq. (10) coincides with the the front-door adjustment (Pearl 2000), this completes the proof.
To witness Eq. (9), consider the following weighted distribution:

PW2 (x,y, z) =
W2P (x,y, z)∑

x,y,zW2P (x,y, z)

=W2P (x,y, z)

=
P (z)

P (z|x)
P (y|x, z)P (z|x)P (x)

= P (y|x, z)P (x)P (z) ,

which leads the following:

PW2 (y|z) =
∑
x′

P (y|x,′ z)P (x′) .

Proof of Thm. 4 Let Z hold the decomposability criterion (x,y). Then

Px (y) =
∑
z

Px (y|z)Px (z) Marginalizing over Z

=
∑
z

Px,z (y)Px (z) By (Y ⊥⊥ Z|X)GXZ
, Rule 2 of do-calculus

=
∑
z

Pz (y)Px (z) By (Y ⊥⊥ X|Z)GXZ
, Rule 3 of do-calculus .



Then

EPx(y) [h (Y)] =
∑
y

h (y)Px (y)

=
∑
y

h (y)
∑
z

Pz (y)Px (z)

=
∑
z

Px (z)
∑
y

h (y)Pz (y)

=
∑
z

EPz(y) [h (Y)]

EPx(z)

[
EPz(y) [h (Y)]

]
,

which completes the proof.

Proof of Thm. 5 Suppose (Z,W1,W2) holds the SBD composition criterion. By Z satisfying the decomposability relative
to (x,y),

EPx(y) [h (Y)] =
∑
y

h (y)Px (y)

=
∑
y

h (y)
∑
z

Pz (y)Px (z)

=
∑
y,z

h (y)Pz (y)Px (z)

= EPx(z)

[∑
y

h (Y)Pz (y)

]
= EPx(z)

[
EPz(y) [h (Y)]

]
.

Since W1 is mSBD admissible relative to (X,Z), the causal effect EPx(z) [hz (Z)] is given by

EPx(z) [hz (Z)] = B1 (x) ≡ B [hz (Z) | x;W1] ,

whereW1 ≡ WmSBD (x, z,w1).
In similar, W2 is mSBD admissible relative to (Z,Y), leading that the causal effect EPz(y) [hy (Y)] is given by

EPz(y) [hy (Y)] = B2 (z) ≡ B [hy (Y) | z;W2] ,

whereW2 ≡ WmSBD (z,y,w2).
Since B2 (z) is a function of z, the composition of two operators B1 (x) and B2 (z), (B1 ◦ B2) (x), is well-defined and given

as

EPx(y) [h (Y)] = EPx(z)

[
EPz(y) [h (Y)]

]
= EPx(z) [B2 (z)]
= B [B2 (z) | x;W1]

= (B1 ◦ B2) (x) ,

by the definition of weighting operators and the composition operators of weighting operators. This completes the proof.

Proof of Thm. 6 Throughout the proof, we denote Ŵ ≡ Ŵ (v) and Ŵ(i) ≡ Ŵ
(
v(i)

)
. Given estimated weights Ŵ1, let

B̂1,N1
(x, hz (z)) ≡ B̂ [hz (Z) | x;W1] denote the consistent estimate of B1 (x, hz (z)) ≡ B [hz (Z) | x;W1] estimated from

N1 finite samples. In other words.

B̂1,N1
(x, hz (z)) ≡ arg min

g1∈R

N1∑
i=1

Ŵ1,(i)

(
hz
(
Z(i)

)
− ĝ1

(
X(i)

))2
. (11)



In similar, given estimated Ŵ2, let B̂2,N2
(z, hy (y)) ≡ B̂ [hy (Y) | z;W2] denote the consistent estimate of B2 (z, hy (y)) ≡

B [hy (Y) | z;W2] estimated from N2 finite samples. In other words.

B̂1,N2 (z, hy (y)) ≡ arg min
g2∈R

N2∑
i=1

Ŵ2,(i)

(
hy
(
Y(i)

)
− ĝ2

(
Z(i)

))2
. (12)

By the definition of the consistent estimator, whenever N1 → ∞, the function B̂1,N1
(x, hz (z))

P→ B1 (x, hz (z)). Also,

whenever N2 → ∞, B̂2,N2
(z, hy (y))

P→ B2 (z, hy (y)). That is, for any positive ε1, ε2 and δ1, δ2, for all N1 > N ′1 and
N2 > N ′2 for some fixed N ′1, N

′
2, we have

P
( ∣∣∣ B̂1,N1

(x, hz (z))− B1 (x, hz (z))
∣∣∣ > ε1

)
< δ1

P
( ∣∣∣ B̂2,N2

(z, hy (y))− B2 (y, hy (y))
∣∣∣ > ε2

)
< δ2,

by the definition of convergence in probability.
Using such notations, the composition of B̂1,N1 (x, hz (z)) and B̂2,N2 (z, hy (y)) can be written as follow:(

B̂1,N1
◦ B̂2,N2

)
(x) = B̂1,N1

(
x, B̂2,N2

(z, hy (y))
)

(13)

Now, we are going to show the consistency of the composition estimator by proving the following:(
B̂1,N1

◦ B̂2,N2

)
(x)

P→
(
B1 ◦ B̂2

)
(x) = B1 (x,B2 (z, hy (y))) .

For convenience, we define the following quantities:

A ≡ B̂1,N1

(
x, B̂2,N2

(z, hy (y))
)

B ≡ B̂1,N1
(x,B2 (z, hy (y)))

C ≡ B1
(
x, B̂2,N2

(z, hy (y))
)

D ≡ B1 (x,B2 (z, hy (y)))

Our goal is then to show A
P→ D. Equivalently, we need to show that for any positive ε and δ, for all N1 > N ′1 and N2 > N ′2

for some fixed N ′1, N
′
2, P (|A−D| > ε) < δ holds. To show, consider the following:

P (|A−D| > ε) = P (|A−B +B −D| > ε)

≤ P (|A−B|+ |B −D| > ε)

≤
(∫ ε

0

P (|A−B| = t, |B −D| > ε− t) dt
)
+ P (|A−B| > ε)

≤
(∫ ε

0

P (|A−B| = t∗, |B −D| > ε− t∗) dt
)
+ P (|A−B| > ε)

= εP (|A−B| = t∗, |B −D| > ε− t∗) + P (|A−B| > ε)

≤ εP (|B −D| > ε− t∗) + P (|A−B| > ε) (14)

where t∗ ≡ argmaxt∈[0,ε) P (|A−B| = t, |B −D| > ε− t).
Note that εP (|B −D| > ε− t∗) in Eq. (14) converges to 0 whenever N1 →∞ since we assumed B P→ D. Therefore, it is

sufficient to show that for any ε and δ there exists N ′1, N
′
2 such that P (|A−B| > ε) < δ for all N1, N2.

We remind the definition of A and B. A precise definition of A is following:

A ≡ B̂1,N1

(
x, B̂2,N2

(z, hy (y))
)

= arg min
g1∈R

N1∑
i=1

Ŵ1,(i)

(
B̂2,N2 (z, hy (y))− ĝ1

(
X(i)

))2
= arg min

g1∈R

N1∑
i=1

Ŵ1,(i)

((
B̂2,N2

(z, hy (y))
)2
− 2

(
B̂2,N2

(z, hy (y))
) (
ĝ1
(
X(i)

))
+
(
ĝ1
(
X(i)

))2)
.



In similar, the precise definition of B is following:

B ≡ B̂1,N1
(x,B2 (z, hy (y)))

= arg min
g1∈R

N1∑
i=1

Ŵ1,(i)

(
B2 (z, hy (y))− ĝ1

(
X(i)

))2
= arg min

g1∈R

N1∑
i=1

Ŵ1,(i)

(
(B2 (z, hy (y)))2 − 2 (B2 (z, hy (y)))

(
ĝ1
(
X(i)

))
+
(
ĝ1
(
X(i)

))2)
.

Note that A is dependent on the samples sizes N1 and N2 meanwhile B is only dependent on the sample size N1 since B is
already equipped with the B2 (z, hy (y)).

Now, we define two quantities as follow:

FN2 (g1) ≡
N1∑
i=1

Ŵ1,(i)

(
B̂2,N2 (z, hy (y))− ĝ1

(
X(i)

))2
F (g1) ≡

N1∑
i=1

Ŵ1,(i)

(
B2 (z, hy (y))− ĝ1

(
X(i)

))2
.

Using such definition, A = argming1∈R FN2(g1) and B = argming1∈R F (g1). Clearly, FN2(g1)
P→ F (g1) since

B̂2,N2 (z, hy (y))
P→ B2 (z, hy (y)). In particular, FN2(g1)

P→ F (g1) is guaranteed by the continuous mapping theorem (Mann

and Wald 1943); if B̂2,N2 (z, hy (y))
P→ B2 (z, hy (y)), then the continuous function of B̂2,N2 (z, hy (y)) also converges.

Given FN2(g1)
P→ F (g1), we now need to show that the extremum of the quantity (i.e., A = argming1∈R FN2(g1) and

B = argming1∈R F (g1)) also converges. Such extremum estimators are called M -estimator (Amemiya 1985).

It is well known that A P→ B (i.e, A is consistent estimator of B) whenever
1. R, the parameter space for FN2 , is a compact set;

2. supg∈R |FM (g)− F (g)| P→ 0; and

3. F (B) < F (g) for any g ∈ R such that g 6= B,
by the M -estimator consistency (Amemiya 1985). Since we assumed that the function class R is compact, we only need to
check the second and third conditions.

Consider |FM (g)− F (g)|, which is given by

|FM (g)− F (g)|

= |
N1∑
i=1

Ŵ1,(i)

(
B̂2,N2

(z, hy (y))− ĝ1
(
X(i)

))2
−

N1∑
i=1

Ŵ1,(i)

(
B2 (z, hy (y))− ĝ1

(
X(i)

))2|
= |

N1∑
i=1

Ŵ1,(i)

(
(r̂ − gi)2 − (r − gi)2

)
|

= |
N1∑
i=1

Ŵ1,(i)

(
r̂2 − r2 + 2 (r − r̂) gi

)
|,

where r = B2 (z, hy (y)); r̂ = B̂2,N2
(z, hy (y)); gi = ĝ1

(
X(i)

)
. Note r̂ converges to r for any g by the assumption that r̂ is

a consistent estimator of r. This leads that r̂2 P→ r2 too by the continuous mapping theorem. Therefore, we can witness that
supg∈R |FM (g)− F (g)| P→ 0 holds.

Note that the third condition holds by the definition of the quantity B. Therefore, A P→ B, which leads that the composition
operators are consistent given assumptions. .

E Details of Simulations in the Main Paper
Note that N (µ, σ) represents the Normal distribution with its mean µ and standard deviation σ. Also B (p) denote the Binomial
distribution with the mean p. For a general variable W , W = B (p) represents that W is generated from B (p). Also, Sigm (·)
denotes the sigmoid function mapping values to [0, 1]. Given two vectors a = {a1, · · · , aD} and b = {b1, · · · , bD}, aᵀb ≡∑
i aibi. Finally, [D] ≡ {1, 2, · · · , D}.



E.1 SCM for Frontdoor (Fig. 2b)
We setX to be binary, Y a continuous variable in [0, 1], and Z = (Z1, . . . , ZD) consisting ofD binary variablesZi. A structural
causal model is given as follows:

UX,Y ∼ N (−2, 1)
fX (UX,Y ) = B (Sigm (UX,Y + εx))

fZi
(X) = B (Sigm (c1,i + c2,iX + εz,i)) for all i ∈ [D]

fY (UX,Y ,Z) = Sigm (2Zᵀcy + UX,Y + εy)

where εx ∼ N (0, 0.5), εy ∼ N (0, 1) and εzi ∼ N (−1, 1) for all i ∈ [D]. Also, the parameters c1 = {c1,i}Di=1 and c2 =

{c2,i}Di=1 are given by
c1 ∼ N (−2, 1)
c2 ∼ N (−2, 1)
cy ∼ N (1, 1) .

E.2 SCM for mSBD (Fig. 2a)
We set X1, X2, Y1 to be singleton binary variables; Y2 a continuous variable in [0, 1]; Zi = (Zi1, . . . , ZiD) for i = 1, 2, where
Zij are binary. A structural causal model is given as follows:

fZ1,i
(·) = B (Sigm (ca1,i + ca2,iεz + εz1)) for all i ∈ [D]

fX1 (Z1) = B (Sigm (0.2Z1
ᵀcx1 + εx1))

fY1 (Z1, X1) = B (Sigm (Z1
ᵀcy1 − (2X1 − 1)− εy1 − 2))

fZ2,i
(Z1, X1, Y1) = B (Sigm (Z1,icb1,i + (2X1 − 1) + εz2 + Y1 − cb2,i)) for all i ∈ [D]

fX2 (Z1, X1, Y1,Z2) = B (Sigm (−Z1
ᵀcxb1 + Z2

ᵀcxb2 + 2X1 − 1 + Y1 + 2X2 − 1 + εx2))

fY2 (Z1, X1, Y1,Z2, X2) = Sigm (−0.5 (Z1
ᵀcyb1 + Z2

ᵀcyb2 + εy2 − 1) + 2X1 + 2X2 − 2− εy2 + Y1 − εy2) .
where εz1 ∼ N (1, 0.5), εx1

∼ N (0, 1), εy1 ∼ N (0, 1), εz2 ∼ N (0, 0.5) , εx2
∼ N (0, 1) and εy2 ∼ N (0, 0.5); and the

parameters are generated as follow:
ca1 ∼ N (2, 1) , ca2 ∼ N (−2, 1) , cx1 ∼ N (−1, 0.5)
cy1 ∼ N (1, 0.8) , cb1 ∼ N (1, 0.5) , cb2 ∼ N (−1, 1)

cxb1 ∼ N (0.3, 1) , cxb2 ∼ N (0.2, 1) , cyb1 ∼ N (0.3, 1) , cyb2 ∼ N (−0.5, 1) ;

E.3 SCM for Surrogate endpoints (Fig. 1a)
We set W2, X to be binary, W1 = {W1,1, · · · ,W1,D} where each W1,i is binary, and Y ∈ [0, 1]. The SCM is given as follows:

U1 ∼ N (0, 1)

U2 ∼ N (0, 1)

fW1,i (U1, U2) = B (Sigm (c1,i + U1 + c2,i + U2 + εw1))

fW2 (W1) = B (Sigm (− (2W1 − 1)
ᵀ
cw2 + εw2))

fX (U1,W2) = B (Sigm (U1 − 4W2 + 2 + εx))

fY (U2, X) = Sigm (0.5U2 − 2X + 1 + εy) .

where (εw1 , εw2 , εx, εy) ∼ N (0, 0.5); c1 ∼ N (−2, 1) , c2 ∼ N (2, 1); and cw2 ∼ N (1, 1).

E.4 SCM for Causal mediators (Fig. 1b)
We set X to be binary; Y a continuous variable in [0, 1]; Z4 = (Z4,1, . . . , Z4,D) where Z4,j are binary; and Z1, Z2, Z3 to be
singleton binary variables. A structural causal model is given as follow:

UX,Y ∼ N (0, 2)

fZ1
(·) = B (Sigm (εz1))

fZ2 (Z1) = B (Sigm (−0.5 (2Z1 − 1) + εz2))

fZ3
(Z1) = B (Sigm (2Z1 − 1) + εz3)

fX (Z1, Z2, UX,Y ) = B (Sigm ((2Z1 − 1)UX,Y − (2Z2 − 1)UX,Y + εx))

fZ4,i (Z2, Z3, X) = B (Sigm (c1,iZ2X − c2,iZ3X + εZ4)) for all i ∈ [D]

fY (Z1, Z3, Z4, UX,Y ) = B (Sigm (−0.5(2Z4 − 1)
ᵀ
cy + 2Z1 + 2Z3 − 2 + 1.5UX,Y + εy))



where εz1 ∼ N (0, 1), εz2 ∼ N (0, 1) , εz3 ∼ N (0, 1) , εz4 ∼ N (0, 1) , εx ∼ N (0, 1) , εy ∼ N (0, 1) and

c1 ∼ N (−0.8, 2) , c2 ∼ N (1.2, 1) , c3 ∼ N (1, 2) .

F Details of Simulations in Appendix C.2
F.1 SCM for mSBD (Fig. 2a)
We set X1, X2, Y1 to be singleton binary variables; Y2 a continuous variable in [0, 1]; Zi = (Zi1, . . . , ZiD) for i = 1, 2, where
Zij are binary. A structural causal model is given as follows:

fZ1,i (·) = B (Sigm (ca1,i + ca2,iεz + εz1)) for all i ∈ [D]

fX1
(Z1) = B (Sigm (0.2Z1

ᵀcx1εx1
+ εx1

))

fY1
(Z1, X1) = B (Sigm ((2Z1 − 1)ᵀ(2cy1 − 1)− (2X1 − 1)− εy1 − 2))

fZ2,i (Z1, X1, Y1) = B (Sigm (Z1,icb1,i + (2X1 − 1) + εz2 + Y1 − cb2,i)) for all i ∈ [D]

fX2
(Z1, X1, Y1,Z2) = B (Sigm ((−(2Z1 − 1)ᵀ(2cxb1 − 1) + (2Z2 − 1)ᵀ(−2cxb2 + 1))εx2

+ 2X1εx2
− 1 + Y1 + 2X2 − 1 + εx2

))

fY2
(Z1, X1, Y1,Z2, X2) = Sigm (−0.5 (Z1

ᵀcyb1 + Z2
ᵀcyb2 + εy2 − 1) + 2X1 + 2X2 − 2− εy2 + Y1 − εy2) .

where εz1 ∼ N (1, 0.5), εx1
∼ N (0, 1), εy1 ∼ N (0, 1), εz2 ∼ N (0, 0.5) , εx2

∼ N (0, 1) and εy2 ∼ N (0, 0.5); and the
parameters are generated as follow:

ca1 ∼ N (2, 1) , ca2 ∼ N (−2, 1) , cx1 ∼ N (−1, 0.5)
cy1 ∼ N (1, 0.8) , cb1 ∼ N (1, 0.5) , cb2 ∼ N (−1, 1)

cxb1 ∼ N (0.3, 1) , cxb2 ∼ N (0.2, 1) , cyb1 ∼ N (0.3, 1) , cyb2 ∼ N (−0.5, 1) ;

F.2 SCM for Surrogate endpoints (Fig. 1a)
We set W2, X to be binary, W1 = {W1,1, · · · ,W1,D} where each W1,i is binary, and Y ∈ [0, 1]. The SCM is given as follows:

U1 ∼ N (0, 1)

U2 ∼ N (0, 1)

fW1,i
(U1, U2) = B (Sigm (c1,i + U1 + c2,i + U2 + εw1

))

fW2
(W1) = B (Sigm (− (2W1 − 1)

ᵀ
cw2

+ εw2
))

fX (U1,W2) = B (Sigm (U1 − 4W2 + 2 + εx))

fY (U2, X) = Sigm (0.5U2 − 2X + 1 + εy) .

where (εw1 , εw2 , εx, εy) ∼ N (0, 0.5); c1 ∼ N (−2, 1) , c2 ∼ N (2, 1); and cw2 ∼ N (1, 1).

F.3 SCM for Surrogate endpoints with mSBD adjustment (Fig. 1a in Appendix)
A structural causal model is constructed over (W1,W2,W3,W4,W5, X, Y ), where W2,W3,W4,W5, X are all binary vari-
ables; Let W1 = {W1,1, · · · ,W1,D} where each W1,i for i ∈ [D] is binary, and Y ∈ [0, 1]. In particular, the SCM is given as
follows:

UW1X ∼ N (0, 3)

UW1Y ∼ N (0, 3)

UW1W3
∼ N (0, 3)

UW3W2
∼ N (0, 3)

UW3W5 ∼ N (0, 3)

UW5W4
∼ N (0, 3)

fW1,i
(UW1X , UW1W3

, UW1Y ) = B (Sigm (a1,iUW1X + a2,iUW1W3
+ a3,iUW1Y + εa))

fW3 (UW1W3 , UW3W5 , UW3W2) = B (Sigm (b1UW1W3 + b2UW3W5 + b3UW3W2 + εb))

fW2
(W1, UW3W2

) = B (Sigm (−0.5(2W1 − 1)
ᵀ
craUW3W2

+ UW3W2
+ εr))

fW4
(W3, UW5W4

) = B (Sigm (−0.5 (2W3 − 1)
ᵀ
czbUW5W4

+ UW5W4
+ εz))

fW5
(UW3W5

, UW5W4
) = B (Sigm (UW3W5

+ UW5W4
− 1))

fX (UW1X ,W2,W4) = B (Normal (Cos(UW1X(2W2 − 1)) + log (|UW1X(2W4 − 1) + 1|)UW1X + εX))

fY (X,UW1Y ) = Sigm (UW1Y + (2X − 1)− εy − 1)



where Normalize (x·) for x ∈ x is a mapping (x−min (x)) / (max (x)−min (x)) the value in [0, 1]. Parameters are generated
by the following procedure:

εw1
, εw3

, εw4
, εx, εy ∼ N (0, 0.5)

εw2 ∼ N (−1, 1)
a1 ∼ N (1, 0.5)

a2 ∼ N (−1, 0.5)
a3 ∼ N (0.5, 0.5)

b1 ∼ N (−1, 0.5)
b2 ∼ N (0.5, 0.5)

b3 ∼ N (15, 0.5)

cra ∼ N (2, 0.5)

czb ∼ N (−2, 0.5) .

F.4 SCM for Front-door (Fig. 2b)

We setX to be binary, Y a continuous variable in [0, 1], and Z = (Z1, . . . , ZD) consisting ofD binary variablesZi. A structural
causal model is given as follows:

UX,Y ∼ N (0, 2)

fX (UX,Y ) = B (Sigm (2UX,Y + εx − 3))

fZi
(X) = B (Sigm (c1,i(2X − 1) + c2,i(2X − 1) + εz,i)) for all i ∈ [D]

Y1 = Sigm (−(2Z− 1)ᵀcy)

Y2 = Sigm (sin ((2Z− 1)UX,Y ) + cos ((2Z− 1)UX,Y ))

fY (UX,Y ,Z) = Sigm (−Y1UX,Y + U log (|Zᵀ1+ Y1|)Y2 + 3 cos (Y2Y1))

where εx ∼ N (0, 0.5), εy ∼ N (0, 1) and εzi ∼ N (−1, 1) for all i ∈ [D]. Also, the parameters c1 = {c1,i}Di=1 and c2 =

{c2,i}Di=1 are given by

c1 ∼ N (−0.8, 2)
c2 ∼ N (1.2, 1)

cy ∼ N (1, 2) .

F.5 SCM for Causal mediators (Fig. 1b)

We set X to be binary; Y a continuous variable in [0, 1]; Z4 = (Z4,1, . . . , Z4,D) where Z4,j are binary; and Z1, Z2, Z3 to be
singleton binary variables. A structural causal model is given as follow:

UX,Y ∼ N (0, 2)

fZ1
(·) = B (Sigm (εz1))

fZ2 (Z1) = B (Sigm (−0.5 (2Z1 − 1) + εz2))

fZ3
(Z1) = B (Sigm (2Z1 − 1) + εz3)

fX (Z1, Z2, UX,Y ) = B (Sigm ((2Z1 − 1)UX,Y − (2Z2 − 1)UX,Y + εx))

fZ4,i (Z2, Z3, X) = B (Sigm (c1,iZ2X − c2,iZ3X + εZ4)) for all i ∈ [D]

fY (Z1, Z3, Z4, UX,Y ) = B (Sigm (−0.5(2Z4 − 1)
ᵀ
cy + 2Z1 + 2Z3 − 2 + 1.5UX,Y + εy))

where εz1 ∼ N (0, 1), εz2 ∼ N (0, 1) , εz3 ∼ N (0, 1) , εz4 ∼ N (0, 1) , εx ∼ N (0, 1) , εy ∼ N (0, 1) and

c1 ∼ N (−0.8, 2) , c2 ∼ N (1.2, 1) , c3 ∼ N (1, 2) .
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Figure 3: (a) MAAE plots (and the 90% confidence interval) comparing the proposed method with the Horvitz-Thompson
estimator (HT) for mSBD (Fig. 2a). Confidence intervals for the CWO and HT are shaded in blue and orage, respectivelly.
An overlapped area is shaded in pink. (b,c) Comparison of variances of weights (when N = 10000) estimated through the
proposed (CWO) and the H-T method. A diamond dot in (c) denotes the mean estimates of the weights. Plots are rendered in
high resolution and can be zoomed in. Best viewed in color.

F.6 SCM for Combinations of Surrogates and Mediators (Fig. 1b in Appendix)
We set W2, X to be binary, W1 = {W1,1, · · · ,W1,D} where each W1,i is binary, and Y ∈ [0, 1]. The SCM is given as follows:

U1 ∼ N (−1.5, 2)
U2 ∼ N (1, 1.5)

U3 ∼ N (1, 1.2)

fW1,i
(U1, U2) = B (Sigm (c1,iU1 + c2,iU2 + εw1

))

fW2
(W1) = B (Sigm (−0.5 (W1εw2)

ᵀ
cw2

+ εw2
))

fX (U1, U3,W2) = B (Sigm (−0.5U1 − 0.5W2 + U3 + εx))

fZi (X,U2) = B (Sigm (c3,i + c4,i + (2X − 1)− U2 + εz))

fY (U3, Z) = Sigm (Zᵀcy + U3) .

where (εw1
, εw2

, εx, εy) ∼ N (0, 0.5); c1 ∼ N (−2, 1) , c2 ∼ N (2, 1); and cw2
∼ N (1, 1).

G Comparison with the Horvitz-Thompson Estimator
In this section, we test the proposed method against the Horvitz-Thomson (H-T) estimator. Since the H-T estimators are devel-
oped for estimating the causal effect on the BD/SBD settings, the proposed estimator is compared with the H-T estimator only
on the mSBD estimands.

G.1 Simulation Setup
We estimate µ(x) by computing the mean of Y in Dint(v), which is treated as the ground truth. We compare the proposed
estimators with a parametric plug-in procedure, as discussed next:
Horvitz-Thomson Estimator Another commonly used method in back-door settings is the Horvitz-Thompson (H-T) estimator
(Horvitz and Thompson 1952) as an IPW estimator. Given that the causal effect EPx(y) [h (Y)] on the mSBD setting could be
written as

EPx(y) [h (Y)] = E [h (Y)WHT Ix] (15)

where WHT ≡ 1∏
i P(Xi|X(i−1),Y(i−1),Z(i))

. It is obvious that the estimator for the weight WHT has higher variance than the

weightW ≡ P (x)∏
i P(Xi|X(i−1),Y(i−1),Z(i))

used in the proposed method. For robustly estimating the estimand, using the stabilized

weightsW has been recommended in literature (Hernán et al. 2002; Karim et al. 2017).
Simulated Instances We set X1, X2, Y1 to be singleton binary variables; Y2 a continuous variable in [0, 1]; Zi =
(Zi1, . . . , ZiD) for i = 1, 2, where Zij are binary. A structural causal model is designed in a way that∏
i P
(
Xi|X(i−1),Y(i−1),Z(i)

)
has a small value to explicitly show the robustness of the proposed method compared with

the H-T estimator. A causal model is given as follow:



fZ1,i (·) = B (Sigm (ca1,i + ca2,iεz + εz1)) for all i ∈ [D]

fX1 (Z1) = B (Sigm (2Z1
ᵀcx1εx1 + εx1 + 3))

fY1 (Z1, X1) = B (Sigm ((2Z1 − 1)ᵀ(2cy1 − 1)− (2X1 − 1)− εy1 − 2))

fZ2,i (Z1, X1, Y1) = B (Sigm (Z1,icb1,i + (2X1 − 1) + εz2 + Y1 − cb2,i)) for all i ∈ [D]

fX2 (Z1, X1, Y1,Z2) = B (Sigm (Sigm ((−(2Z1 − 1)ᵀ(2cxb1 − 1) + (2Z2 − 1)ᵀ(−2cxb2 + 1))) εx2 + 2X1(3εx2 + 1) + Y1 − 9 + εx2))

fY2 (Z1, X1, Y1,Z2, X2) = Sigm (−0.5 (Z1
ᵀcyb1 + Z2

ᵀcyb2 + εy2 − 1) + 2X1 + 2X2 − 2− εy2 + Y1 − εy2) .

where εz1 ∼ N (1, 0.5), εx1 ∼ N (0, 1), εy1 ∼ N (0, 1), εz2 ∼ N (0, 0.5) , εx2 ∼ N (0, 1) and εy2 ∼ N (0, 0.5); and the
parameters are generated as follow:

ca1 ∼ N (2, 1) , ca2 ∼ N (−2, 1) , cx1 ∼ N (−1, 0.5)
cy1 ∼ N (1, 0.8) , cb1 ∼ N (1, 0.5) , cb2 ∼ N (−1, 1)

cxb1 ∼ N (0.3, 1) , cxb2 ∼ N (0.2, 1) , cyb1 ∼ N (0.3, 1) , cyb2 ∼ N (−0.5, 1) ;

G.2 Simulation Results
We test the proposed estimator (CWO) against the H-T estimator on the mSBD estimand. A description about the simulation
instance is given in Appendix F.

We test on estimating EPx1,x2 (y2)
[Y2], for which the CWO and H-T estimators use results from Prop. 1 and Thm. 2 respec-

tively. We set X1, X2, Y1 to be binary, Y2 continuous within [0, 1], and Zi = (Zi1, . . . , ZiD) for i = 1, 2, where all Zij are
binary. Figure 3a presents the MAAE plots for D = 5, 7, 10, 15, 20. To explicitly represent the uncertainty of the estimator, we
represent the 90% confidence intervals by shading the area between 5th percentiles and 95th percentiles of the MAAE curve
with D = 20 in blue (CWO) and red (H-T). The overlapped area is shaded in pink. For visual clarity, we only include the
confidence interval forD = 20 in Fig. 3a. The MAAE plot shows that the CWO performs at least on par with the H-T estimator
in average. As one could see, however, the resultant estimates of the H-T estimator is less reliable due to its high variances, as
illustrated using the confidence intervals.

As expected, the proposed estimator provides more robust estimates compared to the H-T estimator. Specifically, Fig. 3a
shows that the resultant estimates of the proposed method has smaller variances than the results of the H-T estimator. We
observe that the estimates weights of the proposed method (W) is more robust compared to the weight (WHT ). Fig. 3(b,c)
shows that the estimates of the weights of the proposed method has smaller variances, concentrated on the mean estimates.
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