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Summary Learning about cause and effect is arguably the main goal in applied
econometrics. In practice, the validity of these causal inferences is contingent on a
number of critical assumptions regarding the type of data that has been collected and
the substantive knowledge that is available about the phenomenon under investiga-
tion. For instance, unobserved confounding factors threaten the internal validity of
estimates; data availability is often limited to non-random, selection-biased samples;
causal effects need to be learned from surrogate experiments with imperfect compli-
ance; and causal knowledge has to be extrapolated across structurally heterogeneous
populations. A powerful and flexible causal inference framework is required in order
to tackle all of these challenges, which plague essentially any data analysis to varying
degrees. Building on the structural perspective on causality introduced by Haavelmo
(1943) and the graph-theoretic approach proposed by Pearl (1995), the artificial intelli-
gence (AI) literature has developed a wide array of techniques for causal inference that
allow to leverage information from various imperfect, heterogeneous, and biased data
sources (Bareinboim and Pearl, 2016). In this paper, we review recent advances made in
this literature that have the potential to contribute to econometric methodology along
three broad dimensions. First, they provide a unified and comprehensive framework for
causal learning, in which the above-mentioned problems can be addressed in generality.
Second, due to their origin in AI, they come together with sound, efficient, and com-
plete (to be formally defined) algorithmic criteria for automation of the corresponding
identification task. And third, because of the nonparametric description of structural
models that graph-theoretic approaches build on, they combine the analytical rigor of
structural econometrics with the flexibility of the potential outcomes framework, and
thus offer a valuable complement to these two literature streams.
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1. INTRODUCTION

Obtaining causal knowledge by uncovering quantitative relationships in statistical data
is arguably one of the most important goals of econometrics since the beginning of the
discipline. Policy-makers, legislators, and managers need to be able to forecast the likely
impact of their actions in order to make informed decisions. Phillip G. Wright’s (1928)
seminal contribution on instrumental variable estimation, using the theory of path coef-
ficients developed by his son Sewall Wright (1921, 1923), for example, was motivated by
the desire to understand the effect of tariffs on the production and import of agricultural
products. In the postwar period, interest in the topic of causal inference initially experi-
enced a decline in attention (Hoover, 2004), but was brought back to the forefront of the
methodological debate by the emergence of the potential outcomes framework (Rubin,
1974; Imbens and Rubin, 2015; Imbens, 2020) and advances in structural econometrics
(Heckman and Vytlacil, 2007; Matzkin, 2013; Lewbel, 2019).
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Woodward (2003) defines causal knowledge as “knowledge that is useful for a very
specific kind of prediction problem: the problem an actor faces when she must predict
what would happen if she or some other agent were to act in a certain way [...]”.1 This
association of causation with control in a stimulus-response-type relationship is likewise
foundational for econometric methodology. Following Strotz and Wold (1960), “z is a
cause of y if [...] it is or ’would be’ possible by controlling z indirectly to control y, at
least stochastically” (p. 418; emphasis in original).
Although implicit in earlier treatments in the field (e.g., Haavelmo, 1943), Strotz and

Wold (1960) were the first to express actions and control of variables as “wiping out” of
structural equations in an economic system (Pearl, 2009, p. 32). To illustrate this idea,
consider the two-equation model

Z = fz(W,Uz), (1.1)

Y = fy(Z,W,Uy), (1.2)

in which Y represents the outcome of interest, Z a treatment under study, W other
socioeconomic variables, and U unobserved exogenous background factors.2 Since W
enters in both equations of the system, it creates a correlation between Z and Y that is
not the result of a causal impact. Therefore, to predict how Y reacts to induced changes
in Z, the causal mechanism that naturally determines Z needs to be replaced to avoid
non-causal (spurious) sources of variation. In this particular example, the values that Z
attains must be decoupled from W , so that Z can freely influence Y . Symbolically, this
is achieved by deleting fz(·) from the model and fixing Z at a constant value z0. The
modified system thus becomes

Z = z0, (1.1’)

Y = fy(z0,W,Uy). (1.2’)

Subsequently, the quantitative impact of the intervention can be traced via equation
(1.2’) to pin down Z’s causal effect on Y .
The notion of wiping out equations, as proposed by Strotz and Wold, eventually re-

ceived central status and a formal treatment in a specific language with the definition of
the do-operator (Pearl, 1995). Consider the task of predicting the post-intervention dis-
tribution of a random variable Y that is the result of a manipulation of another variable
X. In mathematical notation, this can be written as Q = P (Y = y|do(X = x)), where
do(X = x) denotes the replacement of whatever mechanisms were there for X, say fx,
by a constant x.
In practical applications, however, simulating interventions to such a degree of granu-

larity would either require knowledge about the precise form of the system’s underlying
causal mechanisms or the possibility to physically manipulate X in a controlled exper-
iment. Both are luxuries that policy forecasters often do not have available. In many
economic settings, experiments can be difficult to implement, due to cost, technical, or
ethical considerations. Likewise, exactly knowing the structural mechanisms that truly
govern the data generating process is hard in the social sciences, where often only qual-

1Woodward continues: “[...] on the basis of observations of situations in which she or the other agent
have not (yet) acted” (p. 32).
2We follow the usual notation of denoting random variables by uppercase and their realized values by
lowercase letters.
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Figure 1: Schematic illustration of the data fusion process.

itative knowledge about causal relationships is available.3 This means that the counter-
factual distribution Q = P (y|do(x)) will, in general, not be immediately estimable. In
practice, instead, Q will first need to be transformed into a standard probability ob-
ject that only comprises ex-post observable quantities before estimation can proceed.
The symbolic machinery that warrants such kinds of syntactic transformations is called
do-calculus (Pearl, 1995).
Do-calculus can be seen as a causal inference engine that takes three inputs:

1. A causal quantity Q, which is the query the researcher wants to answer;

2. A model G that encodes the qualitative understanding about the structural depen-
dencies between the economic variables under study; and

3. A collection of datasets P (v|·) that are available to the analyst, including obser-
vational, experimental, selection-biased samples, from different populations, and so
on.

Building on these inputs, do-calculus consists of three inference rules for transforming
probabilistic sentences involving do-expressions into equivalent expressions. The infer-
ential goal is then to re-express the causal quantity Q (1. above) through the repeated
application of the rules of the calculus, licensed by the assumptions in G (2. above), into
expressions that are estimable from the observable probability distributions P (v|·) (3.
above). Figure 1 provides a schematic illustration of this process.
Do-calculus complements standard tools in econometrics in two important ways. First,

it builds on a mathematical formalism borrowed from graph theory, which describes
causal models as a set of nodes in a network, connected by directed edges (so-called
directed acyclic graphs; Pearl, 1995). An advantage of such a description is that it does
not rely on any functional-form restrictions imposed on the relationships between eco-
nomic variables. Therefore, the approach provides a fully general, formal treatment of

3Quoting prominent physicist Murray Gell-Mann: “Imagine how hard physics would be if electrons
could think.” (cited in Page, 1999).
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nonparametric causal inference (i.e., relying solely on exclusion and independence re-
strictions encoded in the graph) in recursive models. Second, as a subfield of artificial
intelligence, the literature on graph-theoretic treatments of causality has developed algo-
rithmic solutions for a wide variety of causal inference problems arising in applied work.
These algorithms are able to carry out the syntactic transformation described above –
mapping a query to the available data through the model’s assumptions – fully automat-
ically. From do-calculus, the algorithms furthermore inherit the property of soundness
and completeness (Tian and Pearl, 2002a; Shpitser and Pearl, 2006; Huang and Valtorta,
2006; Bareinboim and Pearl, 2012c; Lee et al., 2019; Correa and Bareinboim, 2020b;
Correa et al., 2021). This means that the approach is guaranteed to return a correct so-
lution whenever one exists. Conversely, and remarkably, if the algorithm fails to provide
an answer to a causal query, it is assured that no such answer will be obtainable unless
the assumptions imposed on the model are strengthened. In other words, for the class of
models in which these algorithmic conditions are applicable, the identification problem
is fully solved (Pearl, 2013; Bareinboim and Pearl, 2016).4

The development of do-calculus gave the literature on causal inference within the field
of artificial intelligence a tremendous boost, and many significant advances have been
made since Pearl (2000) published his seminal contribution. The aim of this paper is to
discuss these more recent developments and show how do-calculus can be utilized to solve
many recurrent problems in applied econometric work.5 The three main topics we cover
are: dealing with confounding bias (Section 3), recovering from sample selection bias
(Section 4), and extrapolation of causal claims across heterogeneous settings (Section 5),
which we describe in turn next.
Confounding bias (Section 3). In most applied settings, the post-interventional dis-

tribution of Y following a manipulation of X, P (y|do(x)), does not coincide with the
conditional, observational distribution P (y|x) – a distinction that has been popularized
through the mantra “correlation does not imply causation”. This is due to confounding
influence factors, which can render two variables stochastically dependent irrespective of
any causal relationship between them. The inference rules of do-calculus were developed
precisely to neutralize confounding bias. Syntactically, this task amounts to transforming
P (y|do(x)) into an equivalent expression, generally different from P (y|x), that is nonethe-
less estimable from the available data. If a reduction containing standard probability ob-
jects can be reached, the confounding problem is solvable with the help of observational
data alone. Additionally, sometimes the analyst is able to experimentally manipulate a
third variable Z, which is itself causally related to the treatment of interest. In such set-
tings, the identification problem can be relaxed, since estimable syntactic transformations
of P (y|do(x)) reached by do-calculus can now also involve do(z)-distributions.

Sample selection bias (Section 4). A common threat to the validity of inferences in
practice is sample selection bias, which occurs if the analyst is only able to observe
information for members of the population that possess specific characteristics or fulfil
certain requirements (e.g., market wages are only observable if individuals are employed;
Heckman, 1979). Selection-biased data aggravate the identification problem as P (y|do(x))

4These tools are implemented in the free software www.causalfusion.net and available to researchers.
5There is a growing interest in the graph-theoretic approach to causal inference in economics. Early
examples constitute Adams et al. (2003), Neuberg (2003), White and Chalak (2006), and Frölich (2008),
and more recent ones include Heckman and Pinto (2015) (examined in detail in Pearl, 2013) and Imbens
(2020). However, these papers do not cover the newer advances that were made in the causal AI literature
in the last decade, which is the primary focus of this paper.
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needs to be transformed into an expression solely comprised of probabilities from a non-
random sample of the population (inclusion in the selected sample is usually denoted by
an indicator S, which implies that only probabilities conditional on S = 1 are observable).
The inference rules of do-calculus provide a principled and complete solution for carrying
out this task.
Extrapolation of causal claims across settings (Section 5). While confounding and se-

lection biases threaten the internal validity of estimates, another important topic in
econometric practice is external validity, or generalizability of causal inferences across
settings and populations. Causal knowledge is usually acquired in a specific population
(e.g., for subjects in a laboratory setting), but needs to be brought to productive use
in other domains to be most valuable. What permits such a transportation of causal
knowledge across settings, however, if the underlying populations differ structurally in
important ways? Do-calculus provides an answer to this question. Its inference rules
can be applied to transform a causal query in a target population into an expression
that is estimable with the help of information stemming from a source population. In its
more general form, transportability theory encompasses the problem of combining causal
knowledge from several, possibly heterogeneous source domains (a strategy generically
known under the rubric of “meta-analysis”). Thereby, do-calculus opens up entirely new
possibilities for leveraging results from a whole body of empirical literature to address
policy questions arising in yet under-researched contexts.
These three thematic areas are indeed quite diverse and encompass several seemingly

unrelated empirical challenges; yet, they share a common structure. Data, which are
created in various different ways – e.g., from observational or experimental studies, from
non-random sampling, or from heterogeneous underlying populations – are combined
in order to answer a causal query of interest. For this strategy of “data fusion” (see
Figure 1) to be viable, the analyst needs to be equipped with a model of the underlying
economic context under study and a powerful inference framework that licenses this kind
of information transfer and reconciliation (Bareinboim and Pearl, 2016). In the remainder
of the paper, we will describe such a causal modelling and inference framework in detail.

2. PRELIMINARIES: STRUCTURAL CAUSAL MODELS, CAUSAL GRAPHS, AND
INTERVENTIONS

This section introduces structural causal models (SCM) and directed acyclic graphs,
which form the basis for all the data fusion techniques discussed in this paper.6 We
follow the standard notation in the literature, as summarized in Pearl (2009), and define
an SCM as

Definition 2.1. (Structural causal model; Pearl, 2009) A structural causal model is a
4-tuple M = ⟨U, V, F, P (u)⟩ where

1. U is a set of background variables (also called exogenous) that are determined by
factors outside the model.

6Structural causal models are nonparametric versions of structural equation models (SEM). We pur-
posefully will use the term SCM to avoid confusion with the vast literature on SEM that traditionally
assumes parametric or even linear functional forms, and many times has confounded the inherent causal
nature of structural models.



6 P. Hünermund and B. Bareinboim

2. V = {V1, . . . , Vn} is a set of endogenous variables that are determined by variables
in the model, viz. variables in U ∪ V .

3. F is a set of functions {f1, . . . , fn} such that each fi is a mapping from (the
respective domains of) Ui ∪ PAi to Vi, where Ui ⊆ U and PAi ⊆ V \ Vi and the
entire set of F forms a mapping from U to V . In other words, fi assigns a value
to the corresponding Vi ∈ V , vi ← fi(pai, ui), for i = 1, . . . , n.

4. P (u) is a probability function defined over the domain of U .

An SCM constitutes a set of (exogenous) background factors, U , which are determined
outside of the model. Their associated (joint) probability distribution, P (u), creates
variation in the endogenous variables, V , whose source remains not further specified.
Inside the model, the value of an endogenous variable Vi is determined by a causal
process, vi ← fi(pai, ui), that maps the background factors Ui and a set of endogenous
variables PAi (so-called parents) into Vi. These causal processes – or mechanisms – are
assumed to be invariant unless explicitly intervened on (see Section 2.1). Together with
the background factors, they represent the data generating process (DGP) according to
which nature assigns values to the (endogenous) variables under study.7

To emphasize the interpretation of fi’s as stimulus-response relationships, and in con-
trast to the standard notation in econometrics, the artificial intelligence literature uses
assignment operators “←” instead of equality signs (similar to the syntax of programming
languages). Assignments change meaning under solution-preserving algebraic operations;
i.e., y ← ax ̸= x ← y/a (Pearl, 2009, p. 27). This highlights the asymmetric nature of
elementary causal mechanisms (Woodward, 2003; Cartwright, 2007), in the sense that if
X is a cause of Y , it cannot be the case that Y is also a cause of X at the same instance
of time.
In a fully specified SCM, ⟨U, V, F, P (u)⟩, any counterfactual quantity is well-defined

and immediately computable from the model. In many social science contexts, however,
precise knowledge of the functional relationships, fi, and the distribution of the back-
ground factors, P (u), governing the DGP, is not available. In the following, we will thus
advocate for an approach that fully embraces and acknowledges the existence of the un-
derlying causal mechanisms and exogenous variations in the system (i.e., nature follows
a structural causal model), but which will be much less committal regarding what the
analyst needs to know about this reality in order to be able to make causal inferences.
In particular, the inferences entailed by our analysis will rely on the graphical represen-
tation of the underlying structural system, which is a way of encoding a parsimonious
set of assumptions of the system sufficient for identifiability.
Every SCM M defines a directed graph G(M) (or G, for simplicity). Nodes in G

correspond to endogenous variables in V , and directed edges point from the set of parent
nodes PAi towards Vi.

8 An example is given in Figure 2a, which refers to the following

7Background factors correspond to what is often referred to as “error terms” in classical econometrics.
However, we deliberately avoid this terminology to emphasize that the Ui’s in an SCM have a causal
interpretation, in contrast to the purely statistical notion of a prediction error or deviation from a
conditional mean function.
8As it is common in graph theory, we will use the notation of kinship relations (parents, children,
ancestors, descendants, etc.) to describe the relative position of nodes in directed graphs. For instance,
for the graph in Figure 2b we can read that B is a parent of D, since B → D, A is an ancestor of E,
since A → D → E, and E is a child of D, since D → E.
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Figure 2: Examples of directed acyclic graphs representing structural causal models.

underlying structural causal model

Z ← fz(Uz),

X ← fx(Z,Ux),

Y ← fy(X,Z,Uy).

(2.1)

Note that Z appears as an argument in the structural function of X, fx. Accordingly, Z is
a parent of X and an arrow should be added pointing from node Z to X. Similarly, X and
Z appear in fy, which means that the causal graph contains arrows from these variables
to Y . For the sake of readability, we will usually not depict the Ui’s explicitly, as in Figure
2a, but will omit them from the graph whenever they affect only one endogenous variable
at a time. The presence of common unobserved parent nodes, which render two variables
stochastically dependent, is represented by dashed bidirected arcs in the graph (see, e.g.,
Figure 3a). I.e., the arc X L9999K Y serves as a shortcut notation for X ← U → Y ,
where the set of common causes U is unobservable to the analyst.
The graph in Figure 2a contains no sequences of edges that point from a variable back

to itself (i.e., there are no feedback loops). This property is called acyclicity. Throughout
the paper, we restrict attention to structural causal models that can be represented
by directed acyclic graphs (DAG). This class of models, which economists refer to as
recursive, is of central importance in causal inference, because they describe economic
systems in which individual causal mechanisms have a direct and autonomous stimulus-
response interpretation, in accordance with the notion of causality put forward by Strotz
and Wold (1960; see also Woodward, 2003; Cartwright, 2007).9 It is important to note,
however, that the axioms of structural counterfactuals in SCMs (Pearl, 2009, ch. 7) also
hold in nonrecursive models, as discussed in Halpern (2000). Graphical causal model with
directed cycles, which can incorporate feedback loops and equilibrium behavior, are an
active area of research. The interested reader is referred to Spirtes et al. (2001, ch. 12),
Pearl (2009, ch. 3.6), and Bongers et al. (2021).
Working with the graphical representation of an SCM entails a deliberate choice by the

analyst to refrain from distributional and functional form assumptions, since the shape

9Incidentally, the potential outcomes framework in the econometric treatment effects literature also
interprets the link between treatment and outcome as a stimulus-response relationship and therefore
implicitly maintains the assumption of acyclicty (Heckman and Vytlacil, 2007). To witness the discussion
about the causal interpretation of individual functional relationships in recursive versus nonrecursive
models in the early econometrics literature, see Haavelmo (1943), Bentzel and Wold (1946; as cited in
Wold, 1981), Bentzel and Hansen (1954), Strotz and Wold (1960), Wold (1960), and Basman (1963).
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of the fi’s and the distribution of background factors Ui remain unspecified through-
out the analysis. Another way of thinking about the causal graph is that it represents
the equivalence class of all structural functions sharing the same scope. Consequently,
graphical models are fully nonparametric in nature.10 Shape restrictions on functions
(such as separability, monotonicity, or differentiability) and distributional assumptions
might sometimes be licensed by economic theory (Heckman and Vytlacil, 2007; Matzkin,
2007, 2013). In case they are not, however, we concur with Manski (2003) that it is a
more robust research approach to start with the most flexible model possible and only
resort to distributional and functional form assumptions once the explanatory power of
nonparametric identification approaches has been exhausted. In line with this philosophy,
the techniques we present in the following explore ways to identify causal effects from
data when only knowledge about the graph G is available.11

One key property of DAGs is that they are falsifiable through testable implications
over the observed distributions, including conditional independence relationships between
variables in the model.12 We define below such notion.

Definition 2.2. (D-separation; Pearl, 1988) A set Z of nodes is said to block a path p
if either: (a) p contains at least one arrow-emitting node that is in Z, or (b) p contains
at least one collision node that is outside Z and has no descendant in Z. If Z blocks all
paths from set X to set Y , it is said to “d-separate X and Y ”, and then it can be shown
that variables X and Y are independent given Z, written as X ⊥⊥ Y |Z.13

Conditional independence licensed by d-separation (d stands for “directional”) holds
for any distribution P (v) over the variables in the model that is compatible with the
causal assumptions encoded in the graph. Remarkably, this is true regardless of the
parametrization of the arrows. An example is given in Figure 2b, where the path A →
D ← B → C is blocked by Z = {B}, since B emits arrows on that path. Consequently,
we can infer the conditional independencies A ⊥⊥ C|B and D ⊥⊥ C|B. In fact, A and C
are independent conditional on the empty set {∅} as well. D acts as a so-called collider
node in this path, because of two arrows pointing into it. Therefore, according to the
second condition of Definition 2.2, the path between A and C is blocked without any
conditioning. Conversely, when conditioned on, a collider would open up a path that has

10Note that “nonparametric” in the artificial intelligence literature refers to the absence of assumptions
involving error distributions as well as constraints over the form of the structural functions in the SCM.
Instead, the shared features assumed to be available across structural systems are topological, that is,
exclusion and independence restrictions are encoded in the causal graph. This difference in terminology
should be kept in mind for what follows.
11This is indeed the case unless otherwise specified, and should constitute the starting point of any
analysis. Whenever nonparametric identification is not entailed by the available knowledge, the causal
graph can still be used as a computation device to analyze identifiability of entire classes of structural
models. For instance, the most general identification results of structural coefficients if the system is
linear are within the graphical perspective. For a survey and the latest results, please refer to Pearl
(2009, ch. 5) and Kumor et al. (2020).
12Historically, DAGs were first introduced to the AI literature in the early 1980s as efficient encoders
of conditional independence constraints, and as a basis that avoided the explicit enumeration of expo-
nentially many of such constraints. This encoding lead to a huge literature on efficient algorithms for
computing and updating probabilistic relationships in data-intensive applications (Pearl, 1988).
13See Verma and Pearl (1988). A path refers to any consecutive sequence of edges in a graph. The
orientation of edges plays no role. If the direction of edges is taken into account, one speaks of a directed
or causal path: A → B → C.
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been previously blocked; thus, A ⊥̸⊥ C|D. The same holds for descendants of colliders
such as E in Figure 2b, yielding A⊥̸⊥ C|E.

D-separation allows to systematically read off the conditional independencies implied
by the structural model from the graph.14 As mentioned earlier, this method provides
the analyst with a set of testable implications that can be benchmarked with the avail-
able data. The full list of conditional independence relations (with separator sets up to
cardinality one) implied by the graph in Figure 2b is given by

A ⊥⊥ B; A ⊥⊥ C; A ⊥⊥ E|D; B ⊥⊥ E|D;

C ⊥⊥ D|B; C ⊥⊥ E|D; C ⊥⊥ E|B.
(2.2)

These independence relations can be checked using statistical hypothesis testing, and if
rejected, the hypothesized model could be refuted and/or revised. An advantage of such
local tests, compared to global goodness-of-fit measures, for example, is that they indicate
exactly where the model is incompatible with the observed data. Thus, the analyst can
rely on concrete clues about where to improve the model, which facilitates an iterative
process of model building and criticism.
Conditional independence assumptions are one of the main building blocks of causal

inference – a theme that we will further pursue in Section 3. With the help of the d-
separation criterion, their validity can be determined simply based on the topology of
the graph. For this reason, DAGs constitute a valuable complement to the treatment
effects literature, in which independence assumptions for counterfactuals, such as ignor-
ability, are usually invoked without a reference to an explicit model (Imbens and Rubin,
2015). A shortcoming of such an approach is that the analyst has little to no guidance
for scrutinizing the plausibility of crucial identifying assumptions on which the whole
analysis hinges on. DAGs facilitate this task significantly; in particular, because find-
ing d-separation relations, even in complex graphs, can be easily automated (Textor
and Lískiewicz, 2011; Textor et al., 2011). Moreover, using causal graphs increases the
transparency of research designs compared to purely verbal justifications of identification
strategies and thereby improves the communication between researchers and facilitates
cumulative research efforts, as exemplified in future sections.

2.1. Interventions in structural causal models

The aim of causal inference is to predict the effects of interventions, such as those resulting
from policy actions, social programs, and management initiatives (Woodward, 2003).
Based on early ideas from the econometrics literature (Haavelmo, 1943; Strotz and Wold,
1960; Pearl, 2015b), interventions in structural causal models are carried out by deleting
individual functions, fi, from the model and fixing their left-hand side variables at a
constant value.15 As alluded to earlier, this action is denoted by a mathematical operator

14Anand et al. (2023) prove d-separation as well as further identification results for so-called cluster
causal diagrams (C-DAGs), which allow for the partial specification of relationships among variables
based on limited prior knowledge.
15The early literature on graphical models, including Bayesian networks and Markov random fields,
relied entirely on probabilistic models, which were unable to answer causal and counterfactual queries
(Pearl and Mackenzie, 2018, p. 284f.). A major intellectual breakthrough was achieved in the early 1990s
by switching focus to the quasi-deterministic functional relationships of the sort that are ubiquitous in
econometrics (Pearl, 2009, p. 104f.). For a more technical discussion on the semantics and inevitability
of the assumptions encoded in such models, please refer to (Bareinboim et al., 2022).
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called do(·). For example, in model M of equation 2.1 (with the respective graph shown
in Figure 2a), the action do(X = x0) results in the post-intervention model Mx0

Z ← fz(Uz),

X ← x0,

Y ← fy(X,Z,Uy).

(2.3)

The diagram associated withMx0
is depicted in Figure 2c, in which all incoming arrows

intoX are deleted and replaced byX ← x0. This captures the notion that an intervention
interrupts the original data generating process and eliminates all naturally occurring
causes of the manipulated variable. Because other causal paths are effectively shut off
in that way, any difference between two probability distributions associated with Mx0

and Mx1
(i.e., the system under the intervention do(X = x1)) captures the variations

in outcome Y that is the result of a causal impact of ∆x = x1 − x0. A randomized
control trial closely follows this idea. Experimentation ties the value of a variable to the
outcome of a coin flip (or randomization device), which thus induces variation in X that
is uncorrelated to any other factors or causal mechanisms.
The post-intervention distribution of Y can also be denoted in counterfactual notation

as

P (y|do(x)) ≜ P (Yx = y), (2.4)

where Yx = y should be read as “Y would be equal to y, if X had been x” (Pearl,
2009, Definition 7.1.5). This definition illustrates the connection to the potential out-
comes framework (Neyman, 1923; Rubin, 1974; Imbens, 2004), where counterfactuals
such as Yx0 and Yx1 are taken as primitives. By contrast, in an SCM, counterfactuals
are constructs; i.e., derivable quantities from the underlying, more fundamental causal
mechanisms. Naturally, we can write explicitly

Yx0
← f(x0, Z, Uy), (2.5)

Yx1
← f(x1, Z, Uy), (2.6)

which immediately follow from Mx0
and Mx1

, respectively. In other words, counterfactu-
als are derived from first principles in SCMs and the corresponding causal mechanisms,
instead of taken as axiomatic primitives.
Equipped with clear semantics for causal models in terms of the underlying mecha-

nisms, and causal effects in terms of interventions on the naturally occurring structural
processes in the system, we can now finally state the problem of nonparametric identifi-
cation.16

Definition 2.3. (Observational identifiability; Pearl, 2000) Let Q(M) be any computable
quantity of a model M . Q is identifiable (ID, for short) from distribution P (v) compatible
with a causal graph G, if for any two (fully specified) models M1 and M2 that satisfy the
assumptions encoded in G, we have

P1(v) = P2(v)⇒ Q(M1) = Q(M2). (2.7)

This definition requires that for any two (unobserved) SCMs M1 and M2, if their induced

16See Matzkin (2007) and Lewbel (2019) for related definitions of identifiability used in econometrics;
see also footnote 10.
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distributions P1(v) and P2(v) coincide, both models need to provide the same answers to
query Q. Identifiability entails that Q depends solely on P (v) and the assumptions in G,
and can therefore be uniquely expressed in terms of the observed distribution. This holds
true regardless of the underlying mechanisms fi and randomness P (u), which, therefore,
do not need to be known to the analyst. This is a quite remarkable result, if achieved,
since while embracing and acknowledging the true, unobserved structural mechanisms,
one can still make the causal statement as if these mechanisms were fully known, such
as they would be, e.g., in many settings in physics, chemistry, or biology.
Naturally, once the post-intervention distribution P (y|do(x)) for any value of x is

identified, the average causal effect (as well as any other quantity derived from it, such
as risk ratios, odds ratios, quantile effects, etc.) can be computed as17

E[Y |do(X = x1)]− E[Y |do(X = x0)] =
∑
y

y[P (y|do(x1))− P (y|do(x0))]. (2.8)

3. CONFOUNDING BIAS

One of the biggest threats to causal inference, and the one which usually receives the
greatest attention from methodologists, is confounding bias. The suspicion that a correla-
tion might not reflect a genuine causal link between two variables, but is instead driven by
a set of common causes, gives rise to the maxim “correlation does not imply causation”.
In the presence of confounding, the analyst needs to find a (non-trivial) mapping from
a causal query Q to observables P (v), in order to achieve identification. In this section,
we will introduce the inference rules of do-calculus that allow a logical and systematic
treatment of the identification problem solely based on information encoded in a directed
acyclic graph G.

Before we do so, however, we will discuss two special cases for dealing with confounding
bias – backdoor and frontdoor adjustment – that are instances of the general treatment
provided by do-calculus. Eventually, we will also discuss identification strategies for cases
when confounding bias cannot be eliminated in purely observational data, but in which a
surrogate experiment (akin to an instrumental variable that creates exogenous variation
in a treatment) is available.

3.1. Covariate selection and the backdoor criterion

Consider the well-known example from labour economics of estimating the college wage
premium (Angrist and Pischke, 2009, ch. 3.2.3). Let the causal relationships in the prob-
lem be represented by the causal graph G in Figure 3a. C is a dummy variable that is
equal to one for individuals who obtained a college degree, and the outcome of interest,
Y , refers to annual earnings. W is a dummy indicating whether an individual works in a
“white-collar” or “blue-collar” job. W is causally affected by C, since many white-collar
jobs require a college degree. At the same time, the effect of W is partially mediated by
an individual’s work-related health H. This assumption captures the idea that blue-collar
jobs might be associated with relatively higher adverse health effects, which ultimately
reduce life-time earnings. Finally, E represents a set of socioeconomic variables that influ-
ence both the probability to graduate from college as well as individuals’ future earning

17For ease of exposition, we assume random variables to be discrete throughout the text. Summations
should be replaced by integrals if variables with continuous support are considered.
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Figure 3: A graphical causal model G for estimating the college wage premium (together
with the mutilated graphs GC (b) and GC (c) used in the do-calculus derivations in
Section 3.3).

potentials. Dashed bidirected arrows depict unmeasured common causes that lead to a
dependence between the background factors U associated with the connected variables.

In order to estimate the causal effect of a college degree on earnings, the following
graphical criterion can be used to find admissible adjustment sets that eliminate any
confounding influences between C and Y .

Definition 3.1. (Admissible sets – the backdoor criterion; Pearl, 1995) Given an or-
dered pair of treatment and outcome variables (X,Y ) in a directed acyclic graph G, a set
Z is backdoor-admissible if it blocks every path between X and Y in the graph GX .

GX in Definition 3.1 refers to the graph that is obtained when all edges emitted by
node X are deleted in G. Figure 3b depicts the modified graph GC for the college wage
premium example, where the edges C → Y and C →W have been removed. The intuition
behind the backdoor criterion is simple. Unblocked paths between X and Y pointing into
X (i.e., they “enter through the backdoor”) create an association between X and Y that
is not due to any causal influence exerted by X.18 By adjusting for variables along these
paths, this spurious association can be eliminated such that only the causal effect of X
on Y remains.

In the particular example of Figure 3a, the set Z = {E} satisfies the backdoor criterion

18Genuine causal effects can only be transmitted “downstream” of X, via directed paths pointing from
X to its descendants and eventually to Y .
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and is thus an admissible adjustment set.19 W can be left unaccounted for because
it does not lie on a backdoor path between X and Y . In fact, the graph illustrates
why conditioning on occupation would produce, rather than reduce, estimation bias.
According to the d-separation criterion in Definition 2.2, W is a collider node on C →
W L9999K Y , and thus would open, or unblock, this path when conditioned on. As a
consequence, adjusting for W would inject bias in this example, creating a non-causal
(spurious) correlation between C and Y , and would therefore be a serious mistake.

Whenever a backdoor-admissible set exists, the causal effect ofX on Y can, in principle,
be estimated by adjustment, as shown next.

Theorem 3.1. (Backdoor adjustment criterion) If a set of variables Z satisfies the back-
door criterion relative to (X,Y ), the causal effect of X on Y can be identified from
observational data by the adjustment formula

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z). (3.1)

Practically speaking, estimation can be carried out by propensity score matching (Rosen-
baum and Rubin, 1983; Heckman et al., 1998), inverse probability weighting (Horvitz and
Thompson, 1952; Robins, 1999), deep neural networks (Shi et al., 2019), or weighted em-
pirical risk minimization (Jung et al., 2020), among other efficient estimation methods. If
the cardinality of Z is high, regularization techniques such as the double machine learning
framework by Chernozhukov et al. (2018) can be applied, including for arbitrary graph
structures (Jung et al., 2021).
At this point, the similarity with the treatment effects literature is no coincidence, as

the backdoor criterion formally implies ignorability (Rosenbaum and Rubin, 1983), as
shown next.

Theorem 3.2. (Counterfactual interpretation of backdoor; Pearl, 2009) If a set of vari-
ables Z satisfies the backdoor criterion relative to (X,Y ), then for all x, the counterfactual
Yx is conditionally independent of X given Z:

Yx ⊥⊥ X|Z. (3.2)

In contrast to the potential outcomes framework, however, which provides the analyst
with little guidance on identifying biasing paths and admissible sets (Definition 3.1), the
search for appropriate adjustment sets via the backdoor criterion can easily be auto-
mated (Textor and Lískiewicz, 2011; Textor et al., 2011). This is particularly useful in
larger graphs such as in Figure 4, which presents a model of input additionality of R&D
subsidies. The model stipulates that research grants (RDSUB) are assigned based on the
quality of projects with which firms apply (PQUAL). In addition, young (AGE) as well
as small and medium-sized enterprises (defined as having fewer than 250 employees in
the EU, EMP ) often receive preferential treatment under many policy regimes (Howell,
2017; Hünermund and Czarnitzki, 2019). Other important covariates in this context are
whether firms are exporters (EXP , Peters et al., 2022), the degree to which they are

19Note that Z = {E} remains an admissible adjustment set even if edges pointing from E to W and H
are added to the graph in Figure 3a.
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RDSUB RDINT
AC

FCONS

PQUAL

EMP AGE

EXP

IND

Figure 4: A graphical model of R&D subsidy additionality. AC: absorptive capacity,
AGE: firm age, EMP : number of employees, EXP : exporter, FCONS: financial con-
straints, IND: industry, PQUAL: project quality, RDINT : R&D intensity, RDSUB:
R&D subsidy.

financially constrained (FCONS, Hottenrott and Peters, 2012), their level of absorp-
tive capacity (AC, Cohen and Levinthal, 1989), and the industry they are operating in
(IND). The outcome of interest is whether R&D subsidies are able to raise firms’ R&D
intensity (RDINT ), measured as R&D expenditures in percentage of sales.
The two smallest (minimum) admissible adjustment sets for identifying the effect of

RDSUB on RDINT in Figure 4 are given by

{EXP,FCONS,PQUAL} and {AGE,EMP,PQUAL}. (3.3)

This example illustrates that it is neither necessary nor sufficient to adjust for all covari-
ates in a model. The analyst could, for example, decide that financial constraints at the
firm-level are too difficult to measure and instead proceed with the second admissible
adjustment set.
At the same time, it would be a mistake to condition on the node AC. Absorptive

capacity is the result of firms’ R&D investments (Cohen and Levinthal, 1990, p. 141).
Furthermore, there is evidence that R&D subsidies are able to increase absorptive capac-
ity through a process that is commonly referred to as behavioral additionality (Clarysse
et al., 2009). Taken together, these two assumptions turn AC into a collider, which,
according to the d-separation criterion (Definition 2.2), would open up the path be-
tween RDSUB and RDINT and lead to bias if conditioned on. The largest admissible
adjustment set is thus given by {AGE,EMP,EXP,FCONS, IND,PQUAL}, which
could be preferred over a smaller set for reasons of estimation efficiency (White and Lu,
2011; Cinelli et al., 2022). These intricacies are hard to spot without the use of a causal
diagram. We therefore regard DAGs as a useful complement to reduced-form approaches
that mainly rely on verbal theorizing. More formalized approaches can likewise bene-
fit from the visualization and automation properties of causal diagrams, which we will
further describe below.
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3.2. Frontdoor adjustment in the presence of unmeasured confounders

X YM

(a)

X Y
M

W2

W1

W3

(b)

Figure 5: The frontdoor criterion.

Identification via backdoor adjustment requires that all backdoor paths can be blocked
by a set of observed nodes, which might not always be feasible. In situations where no
set of observables is backdoor-admissible, another (somewhat less familiar to economists)
identification strategy might be applicable. Figure 5a presents an example in which ad-
justing for a set of observable variables is not sufficient to close all backdoor paths between
X and Y . For any possible adjustment set, there are unobserved confounders remaining
in the graph, represented by the bidirected arc X L9999K Y . At the same time, the entire
effect of X is assumed to be mediated by another observed variable M and there are
no unobserved confounders connecting M with X and Y . These assumptions may be
plausible in settings in which a test result M provides a noisy signal for the presence of a
characteristic X. For example, congenital anomalies are routinely tested via ultrasound
screenings during pregnancy. However, these screenings exhibit a positive type-1 and
type-2 error rate (Debost-Legrand et al., 2014). If diagnostic missclassifications occur
randomly, or are related to observables such as maternal BMI, confounding at the medi-
ator can be controlled for. Full mediation in this case implies that congenital anomalies
will only affect the likelihood of an outcome Y , such as the decision to terminate the
pregnancy, if they are detected during an ultrasound screening.20

In this setting, the causal effect P (y|do(x)) is identifiable with the help of the following
criterion (generalizing Theorem 2 in Pearl, 1995).

Definition 3.2. (Conditional frontdoor criterion) A set of variables M is said to satisfy
the conditional frontdoor criterion (frontdoor, for short) relative to a triplet (X,Y,W )
if: (a) M intercepts all directed paths from X to Y , (b) there is no unblocked backdoor
path from X to M given W , and (c) all the backdoor paths from M to Y are blocked by
{X,W}.

Theorem 3.3. (Conditional frontdoor adjustment) If a set of variables M satisfies the

20In case other prenatal testing methods than ultrasound are applied that could lead to the detection of
congenital anomalies, they should be included as additional mediators in the model. By contrast, if con-
genital anomalies affect other unobservable markers that lead to pregnancy termination, the assumption
of full mediation would be violated due to a direct (from the perspective of the analyst) effect X → Y .
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conditional frontdoor criterion relative to (X,Y,W ), the causal effect of X on Y can be
identified from observational data by the frontdoor formula

P (Y = y|do(X = x)) =
∑
m,w

P (m|w,X = x)p(w)
∑
x′

P (Y = y|w,m,X = x′)P (X = x′|w).

(3.4)

Frontdoor adjustment amounts to a sequential application of the backdoor criterion.
In Figure 5b, first, the effect of X on M can be identified by adjusting for W2. Second,
the backdoor path M ← X L9999K Y , which remains open after adjusting for W1 and
W3, can be blocked by conditioning on X, to identify the effect of M on Y . The frontdoor
adjustment formula then chains these individual causal effect estimates together to arrive
at the overall effect of X on Y . Because the frontdoor criterion is applicable in the pres-
ence of direct unobserved confounding between treatment and outcome (i.e., ignorability
does not hold), it is a good example of how causal graphs can point to new identification
strategies that go beyond the standard tools currently applied in econometrics.21

3.3. Causal calculus and the algorithmatization of identification strategies

The backdoor and frontdoor criteria offer simple graphical identification rules that are
easy to check in the causal diagram. However, while definitely important, they only repre-
sent a very limited subset of the overall identification results that are derivable in DAGs.
In more generality, identifiability of any query of the form P (y|do(x)) can be decided sys-
tematically by using a symbolic causal inference engine called do-calculus (Pearl, 1995).
Do-calculus consists of three inference rules that allow the analyst to transform proba-
bilistic sentences involving interventions and observations, whenever certain separation
conditions hold in the causal graph G defined by model M .

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in G. The mutilated graph that
is obtained by removing all arrows pointing to nodes in X from G is denoted by GX .
Similarly, GX results from deleting all arrows that are emitted by X in G. Finally, the
removal of both arrows incoming in X and arrows outgoing from Z is denoted by GXZ .
Given this notation, the following three rules – valid for every interventional distribution
compatible with G – can be formulated.

Rule 1. (Insertion/deletion of observations)

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
. (3.5)

Rule 2. (Action/observation exchange)

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
. (3.6)

Rule 3. (Insertion/deletion of actions)

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

, (3.7)

21Glynn and Kashin (2017) present an interesting application of the frontdoor criterion (FDC) for
evaluating the effect of the National Job Training Partnership Act program (Heckman et al., 1997) on
earnings by complementing the FDC with a difference-in-differences-type identification approach that
tackles potential bias stemming from unobserved confounders between M and Y . Bellemare et al. (2022)
apply the FDC to study how ride sharing affects tipping behavior on popular ride-hailing apps such as
Uber and Lyft.
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where Z(W ) is the set of Z-nodes that are not ancestors of any W-node in GX .

Rule 1 is a reaffirmation of the d-separation criterion for theX-manipulated graph GX ,
i.e., for any interventional distribution do(X). Since Z is independent of Y , conditional
on X and W , Z can be freely inserted or deleted in the do-expression. Rule 2 states the
condition for an intervention do(Z = z) to have the same effect as a passively observed
Z = z. This condition is fulfilled if {X ∪W} blocks all backdoor paths from Z to Y .
Note that in GXZ only such backdoor paths are remaining, since edges emitted by Z are
deleted from the graph. Rule 3, then indicates under which conditions a manipulation
of Z does not affect the probability of Y . Roughly speaking, this is the case if in the X-
and Z-manipulated graph GXZ , Z is independent of Y conditional on X and W .22

Identifiability of a causal query can be decided by repeatedly applying the rules of
do-calculus, until Q is transformed into a final expression that no longer contains a do-
operator. This provides the basis for consistent estimation of Q from nonexperimental
data. In the following, we demonstrate this process by showing a step-by-step do-calculus
derivation for the causal effect of C on Y in the college wage premium example in Figure
3a. Notice that there are two backdoor paths in Figure 3a, which can both be blocked
by E. By the law of total probability, P (y|do(c)) can be written as

P (y|do(c)) =
∑
e

P (y|do(c), e)P (e|do(c)). (3.8)

By rule 2 of do-calculus, since (Y ⊥⊥ C|E) in subgraph GC , it holds that

P (y|do(c), e) = P (y|c, e). (3.9)

In GC , E is d-separated from C, because Y is a collider on every path connecting them.
Thus, (E ⊥⊥ C)GC

, and by rule 3 of do-calculus

P (e|do(c)) = P (e). (3.10)

Combining these two expressions yields

P (y|do(c)) =
∑
e

P (y|c, e)P (e).

The right-hand-side expression is do-free and can therefore – in principle – be estimated
from nonexperimental data.
Do-calculus was proved sound and complete for general queries of the form Q =

P (y|do(x), z) (Pearl, 1995; Tian and Pearl, 2002b; Shpitser and Pearl, 2006; Huang and
Valtorta, 2006; Bareinboim and Pearl, 2012a; Lee et al., 2019) from a combination of
observational and experimental data. Soundness assures that an answer returned by
do-calculus is correct. Completeness means that do-calculus is guaranteed to return a so-
lution for the identification problem, whenever such a solution exists. It implies that if no
sequence of steps applying the rules of do-calculus can be found that allow to transform
Q into an expression only consisting of ex-post observed probabilities, the causal effect
is known to be non-identifiable with observational data. If that is the case, point iden-
tification will only be achievable by imposing stronger functional form restrictions (such
as linearity, monotonicity, additivity, etc.) or by making assumptions about the distri-
bution of the background factors U . In fact, this result can also be seen algorithmically,

22The reason for restricting the deletion to Z-nodes that are not ancestors of any W -node in rule 3 of
the do-calculus is provided with the proofs in Pearl (1995).
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which allows one to fully automate the often tedious task of transforming causal effect
queries into do-free expressions. This way, the identification of causal effects becomes a
straightforward exercise that can be solved with the help of a computer (Tian and Pearl,
2002a).23

3.4. Identification by surrogate experiments
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Figure 6: Identification problems involving surrogate experiments.

In practice, identification of causal queries based on observational data alone often
remains an unattainable goal. At the same time, conducting a randomized control trial
(RCT) for the treatment of interest might likewise be infeasible due to cost, ethical, or
technical considerations. In such cases, a frequently applied strategy is to make use of
experiments involving a third variable, which is only proximately linked to the treatment
but more easily manipulable. Such surrogate experiments are sometimes referred to as
“encouragement designs” in economics (Duflo et al., 2008).
Consider the situation in Figure 6a, in which X represents participation in a financial

support program that allows job seekers to reimburse private expenses incurred for travel
and materials during the application process. Y measures the employment status of an
individual six months after the finish of the program. Finally, Z is an indicator for

23More recently, for effects that are provably not point identifiable, very general machinery for par-
tial identification has been developed that can be applied from any causal diagram and any arbitrary
combination of observational and experimental distributions (Zhang et al., 2022).
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whether an individual is aware of the existence of the program. For simplicity, we assume
that the financial incentives provided by the program are sufficiently attractive, such
that awareness is the only parent node of X in the diagram (but the relationship is
not deterministic). However, awareness is itself influenced by unobservables that create
an unblocked backdoor path X ← Z L9999K Y . Unfortunately, adjusting for Z is not
sufficient, as this would open up the path X L9999K Z L9999K Y on which Z is a collider.
Thus, P (y|do(x)) is not identifiable via backdoor adjustment in this example. Program
participation cannot be forced, which rules out a direct manipulation ofX. Nonetheless, if
the analyst is able to manipulate awareness Z instead, e.g., by sending information about
the program only to a randomly selected group of individuals, identification becomes
possible.24 We will illustrate such a strategy involving auxiliary experiments on ancestor
nodes of a treatment X in the following.

To make the theory of surrogate experiments in causal diagrams more concrete, Figure
6b presents an example in which several paths passing through Z are confounding the
relationship betweenX and Y . Backdoor adjustment is not a viable identification strategy
in this graph, since Z is a collider on X L9999K Z L9999K Y , and conditioning on Z
would thus open up the path. Furthermore, it can be shown that any other attempt of
identifying Q = P (y|do(x)) with purely observational data is prone to fail as well in this
example. By contrast, if it is possible to manipulate Z in a randomized control trial, the
causal effect of X on Y can be identified from the interventional distribution P (v|do(z))
instead. Generalizing this idea leads to a natural refinement of the identification problem
formulated earlier (see Definition 2.3).

Definition 3.3. (Z-identifiability; Bareinboim and Pearl, 2012a) Let X,Y, Z be dis-
joint sets of variables, and let G be the causal diagram. The causal effect of an action
do(X = x) on a set of variables Y is said to be z-identifiable (zID, for short) from P
in G, if P (y|do(x)) is (uniquely) computable from P (V ) together with the interventional
distributions P (V \ Z ′|do(Z ′)), for all Z ′ ⊆ Z, in any model that induces G.

Bareinboim and Pearl (2012a) show that the z-identification task can be solved in a
similar fashion to the standard identification problem, by repeatedly applying the rules of
do-calculus in order to transform a causal query Q into an expression that only contains
do(z).

Theorem 3.4. (Bareinboim and Pearl, 2012a) Let X,Y, Z be disjoint sets of variables,
and let G be the causal diagram, and Q = P (y|do(x)). Q is zID from P in G if the
expression P (y|do(x)) is reducible, using the rules of do-calculus, to an expression in
which only elements of Z may appear as interventional variables.

It can further be proved that do-calculus is likewise complete for z-identification (Barein-
boim and Pearl, 2012a, Corrolary 3; Lee et al., 2019, Theorem 3); i.e., it reaches a solution
to the zID problem whenever such a solution exists.
For the sake of concreteness, however, we discuss a weaker condition, which is only

sufficient but not necessary, in order to exemplify the mechanics of the z-identification
problem.

24Perfect manipulation of Z implies that individuals cannot learn about the existence of the program
via different channels and that there is no communication between individuals, which may or may not
be plausible given the context.
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Theorem 3.5. (Sufficient condition – z-identification; Bareinboim and Pearl, 2012a)
Let X, Y , Z be disjoint sets of variables and let G be the causal graph. The causal effect
Q = P (y|do(x)) is zID in G if one of the following conditions hold:

(a) Q is identifiable in G; or

(b) There exists Z ′ ⊆ Z such that the following conditions hold,

(i) X intercepts all directed paths from Z ′ to Y , and
(ii) Q is identifiable in GZ′ .

Condition (a) is the base case for when standard identifiability is reached. Whenever
this is not the case, condition (b:i) requires that all directed paths from Z to Y are
blocked by X. This means that Z has no direct effect on Y , which by the do-calculus
implies P (y|do(x)) = P (y|do(x, z)); i.e., the effect of X on Y is the same as the effect of
X,Z on Y . Condition (b:ii) notes that manipulation of Z leads to the post-intervention
graph GZ , in which all incoming arrows into Z are deleted. If the effect of X can then be
identified in this graph, by the removal of do(x) in the expression, then z-identification
is ascertained.
For example, recall that in Figure 6b the effect of X on Y is not identifiable from

P (v). If experimental data over Z is available, i.e., P (v|do(z)), then Theorem 3.5 can be
applied. Note that all the directed paths from Z to Y are blocked by X, which satisfies
condition (b:i). It is also the case that in the graph GZ (see Figure 6c), the set {W1,W2}
is backdoor admissible (by Theorem 3.1), which in turn satisfies condition (b:ii). After
all, the effect P (Y = y|do(X = x)) is identifiable and given by the expression∑

w1,w2

P (Y = y|do(Z = z), X = x,w1, w2)P (w1, w2|do(Z = z)). (3.11)

As in the observational case, researchers are not required to engage in these derivations by
hand, since fully automated algorithms exist for z-identification and its generalizations
(see Bareinboim and Pearl, 2012a; and Lee et al., 2019, for a survey of the latest results).

Z-identification exploits experimental variation in a surrogate variable that causally
affects the treatment of interest. It thus bears close resemblance to instrumental variable
(IV) estimation (Wright, 1928). The two are not equivalent though. Take the canonical
IV setting with an exogenous instrument depicted in Figure 6d. In contrast to Figure
6a, there is an unobserved confounder directly connecting treatment and outcome. As a
result, P (y|do(x)) is not zID in this graph, because the bidirected arc between X and Y
violates condition (b:ii) of Theorem 3.5.25

The fact that P (y|do(x)) remains unidentifiable in Figure 6d is not very surprising,
however. It is a well-known result that point identification of the canonical IV estimator is
not possible in the nonparametric case (Manski, 1990; Balke and Pearl, 1997). Introducing
additional functional form restrictions, such as monotonicity or linearity, would allow one
to identify a local average treatment effect for the latent subgroup of compliers (Imbens
and Angrist, 1994). Z-identification, by contrast, leverages the fully nonparametric nature
of the order relations expressed in causal diagrams. If a query is zID, the entire post-
interventional distribution, including the average treatment effect, is computable from

25Theorem 3.5 is only sufficient, but not necessary. Nonetheless, z-identification can be proved to be
impossible for the graph in Figure 6d, following the general treatment developed in Lee et al. (2019).
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data. Moreover, the solution concepts provided by Theorems 3.4 and 3.5 are applicable for
arbitrary graphs, beyond specific settings such as Figure 6d.26 Therefore, we consider z-
identification to be an attractive generalization of the IV strategy in fully nonparametric
settings.

4. SAMPLE SELECTION BIAS

The previous section discussed strategies to control for confounding bias, which is the
result of nonrandom assignment into treatment. Beyond that, researchers often encounter
another source of bias in applied empirical work that stems from preferential selection
of units into the data pool. Sample selection poses a serious threat to both statistical
as well as causal inference, because it jeopardizes the representativeness of the data for
the underlying population. A seminal discussion of this problem in an economic context
is given by Heckman (1976, 1979). He estimates a model of female labor supply in a
sample of 2,253 working women interviewed in 1967. The challenge to valid inference in
this setting arises due to the fact that market wages are only observable for women who
choose to work. His model is described as follows

si ← 1[Z
′

iδ − ηi > 0], (4.1)

yi ←

{
xiβ + Z

′

iγ + εi if si = 1,

unobserved if si = 0.
(4.2)

Equation (4.1) characterizes the sampling mechanism. Wages yi for an individual i are
only observed if (Z

′

iδ − ηi) attains a value larger than zero, which is captured by the
selection indicator si. Economically, this expresses the idea that individuals will choose
to remain unemployed if the market wage they are able to attain (determined by the
vector of socioeconomic characteristics Zi) does not exceed their reservation level ηi.
Systematic bias in the coefficient of interest β for hours worked xi can then arise if
reservation wages are correlated with unobservables in the market wage equation (4.2);
that is, if Corr(ηi, εi) ̸= 0.
Similar cases of sample selection are widespread in economics. Examples are discussed

by Levitt and Porter (2000), who estimate the effectiveness of seatbelts and airbags in
a sample of fatal crashes, and by Ihlanfeldt and Martinez-Vazquez (1986), who note the
difficulty of assessing the determinants of house prices when using data on recently sold
homes. Knox et al. (2020) point out another illustrative case.27 They critique studies
which attempt to estimate the extent of racial bias in policing using administrative data
(Fryer, 2019). Problematic in this context is that individuals only appear in such records
if police officers decide to stop and interrogate them in the first place. If this stopping
decision is itself causally affected by minority status, sample selection bias might arise,
since the data is not a representative sample of the overall population anymore.
In causal diagrams, cases of sample selection can be captured by explicitly accounting

for the sampling selection mechanism. We will realize this goal by adding a new special
variable called S to the graph. This variable will take on two values: one, if a unit is part of
the sample, and zero otherwise. If endogenous variables in the analysis affect the sampling

26There exist more refined strategies to identify effects beyond this graph and IVs, including Brito and
Pearl (2002); Chen et al. (2016, 2017); Kumor et al. (2019, 2020).
27See Durlauf and Heckman (2020) for a similar argument.
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Figure 7: Examples of selection diagrams.

probabilities, we will add an arrow from these variables to S, which will constitute the
specification of the selection mechanism (Bareinboim and Pearl, 2012b).28 Figure 7a
depicts a DAG for the female labor supply example that has been augmented by such
a selection node; the resulting graph is denoted by GS . An individual’s socioeconomic
characteristics Z determine inclusion in the sampling pool and the bidirected dashed arc
between S and Y indicates the presence of unobserved confounders that are the source
of the error correlation in the model.
Simultaneously controlling for confounding and selection biases introduces a new chal-

lenge to the do-calculus. Not only is it necessary to transform interventional distributions
into do-free expressions, but the probabilities that make up these expressions now also
need to be conditional on S = 1, because that is all the analyst is able to observe. This
additional restriction explains why dealing with selection bias is such a hard problem
in practice. At the same time, the literature on recovering causal effects from selection-
biased data (Bareinboim and Pearl, 2012b; Bareinboim et al., 2014; Bareinboim and
Tian, 2015) aims to preserve the fully nonparametric nature of causal graphs also in this
task. It refrains from introducing functional form assumptions (such as monotonicity or
joint normality) related to the selection-propensity score P (si|pai), as well as a priori
assuming ignorability of the selection mechanism, which are the approaches most com-
monly taken in econometrics (Angrist, 1997.) Nevertheless, even with such a limited set
of assumptions as a starting point, several positive results for the recoverability of causal
effects from selection bias can be derived.

4.1. Recoverability of conditional distributions

As a first step to make progress, Bareinboim et al. (2014) provide a complete condition
for recovering conditional probabilities that do not yet contain a do-operator.

Theorem 4.1. (Bareinboim et al., 2014) The conditional distribution P (y|t) is recover-
able from GS (as P (y|t, S = 1)) if and only if (Y ⊥⊥ S|T ).

Sufficiency of this condition follows immediately. However, its necessity is less obvious
and implies that if Y is not d-separated from S in GS , its conditional distribution will
not be recoverable. Combining Theorem 4.1 with do-calculus suggests a straightforward

28We will consider the case here where the sample selection nodes are only allowed to have incoming
arrows, but will not emit arrows themselves.
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strategy for also recovering do-expressions from selection bias (Bareinboim and Tian,
2015).

Corollary 4.1. (Bareinboim and Tian, 2015) The causal effect Q = P (y|do(x)) is re-
coverable from selection-biased data (i.e., P (v|S = 1)) if using the rules of the do-calculus,
Q is reducible to an expression in which no do-operator appears, and recoverability is de-
termined by Theorem 4.1.

Take Figure 7b as an example. Here, the relationship betweenX and Y is unconfounded
and, therefore, P (y|do(x)) = P (y|x) holds. Moreover, since S and Y are d-separated by
X, we find the causal effect to be recoverable and given by P (y|x, S = 1). An immediate
consequence of Theorem 4.1 is that a causal effect will not be recoverable if Y is directly
connected to S via an edge in the graph. Thus, without invoking stronger functional
form assumptions there is no possibility to control for selection bias in the female labour
supply model of Figure 7a.
Selection-biased data complicate identification in observational studies because con-

founding and selection need to be addressed simultaneously. An example is given by the
graph in Figure 8a. Consider the case of a group of entrepreneurs who are looking to
crowdfund their business ideas. A researcher is interested in the effect of campaign success
X on venture growth Y . Idea quality is captured by Q, which affects the quality of the
crowdfunding campaign, C (possibly multivalued), that is presented to potential investors
on a digital platform. To increase their chances of getting funded, some entrepreneurs
take part in a training workshop. This decision, W , is not necessarily random, which is
reflected by the bidirected dashed arc between X and W in the graph. In this example,
a problem of selection arises, because the sample that is available to the researcher con-
tains disporportionally many workshop participants, for whom contact addresses were
most easily obtainable (W → S). Finally, Z denotes a set of other confounders that the
researcher wishes to control for.29

Without selection bias, the researcher would have the choice between two backdoor
admissible adjustment sets: {Z,W,C} and {Z,Q}. However, with preferential selection
into the sample, recoverability can only be obtained with the latter. That is, because
in the adjustment formula (Equation 3.1), the prior distribution of the adjustment set
needs to be recovered as well, and {Z,Q} is the only conditioning set that is marginally d-
separated from S (readers are encouraged to check). Thus, following the strategy dictated
by Corollary 4.1, the estimable backdoor adjustment expression in this example is

P (y|do(x)) =
∑
z,q

P (y|x, z, q, S = 1)P (z, q|S = 1). (4.3)

4.2. A general solution for recovering from selection bias

It is important to note that although Theorem 4.1 provides a necessary condition for
recovering conditional probabilities, the same does not hold for Corollary 4.1 with respect

29Figure 8a encodes the assumption that the effect of campaign quality on venture growth is negligi-
ble, e.g., because the research question concerns equity crowdfunding in a business-to-business market.
Entrepreneurs might additionally use crowdfunding campaigns as an advertising opportunity for their
products. Insofar as this gives rise to a direct effect C → Y , recoverability should be determined with
this added assumption.
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Figure 8: More challenging examples for recovering from selection bias.

to do-expressions. This is exemplified by the graph in Figure 8b. Due to unobserved
confounders between Z and Y , and the fact that Z is a collider on the path X ←W →
Z L9999K Y , identification via the backdoor criterion would require to adjust for both
Z and W , which will close all the backdoor paths. However, {Z,W} is not d-separable
from S (W has a direct arrow to S), and an attempt to apply Corollary 4.1 will thus fail.
Nevertheless, and perhaps surprisingly, P (y|do(x)) can still be recovered in Figure 8b
with the help of do-calculus using a slightly more sophisticated approach.30 To witness,
note that (S,W ⊥⊥ Y ) in GX , i.e., the resulting graph when all incoming arrows in X are
deleted (see Section 3.3). Then, according to the first rule of do-calculus

P (y|do(x)) = P (y|do(x), w, S = 1), (4.4)

=
∑
z

P (y|do(x), z, w, S = 1)P (z|do(x), w, S = 1), (4.5)

where the second line follows by conditioning on Z. Applying rule 2 of do-calculus, since
(Y ⊥⊥ X|W,Z, S) in GX , the do-operator can be removed in the first term of equation
4.5

=
∑
z

P (y|x, z, w, S = 1)P (z|do(x), w, S = 1). (4.6)

Finally, since (Z ⊥⊥ X|W,S) in G
X(W )

, rule 3 of the calculus allows us to remove the

do(x) from the second term, such that

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|w, S = 1). (4.7)

Note that the quantities in the final expression of P (y|do(x)) do not involve any do-
operator, since the data are observational and always contain S = 1, given that the
samples were selected preferentially. Taken together, this ensures recoverability of the
target interventional distribution.
Bareinboim and Tian (2015) provide algorithmic criteria for recovering interventional

distributions (i.e., containing do(x)-operators) in arbitrary causal graphs. They permit
full automation of derivations such as the one just performed. Recently, this algorithm
was also proved complete for the recovery task by Correa et al. (2019b).

30The following do-calculus derivations are shown in more detail, with corresponding subgraphs depicted
alongside, in Appendix A.1.
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4.3. Combining biased and unbiased data

Another promising strategy for recovering causal quantities from sample selection is when
biased and unbiased data sources are combined. For example, the distributions of impor-
tant socioeconomic variables can often be measured without bias, e.g., from population-
level statistics. Interestingly, this is the case in the original Heckman selection model,
where number of children, household assets, husband’s wage, labour market experience,
and education are observed both for working and non-working women (Heckman, 1976).
To illustrate how this can facilitate recoverability, we revisit the example from Figure 7a,
but now assume that the common parent node of wages Y and the selection node S is
observable as W (see Figure 7c, which is the same as Figure 7a but for the replacement
of the bidirected arrow with the observed W ). If that is the case, conditioning on the set
{Z,W} closes all backdoor paths between X and Y and simultaneously d-separates Y
from S. From the backdoor adjustment formula discussed above (Theorem 3.1), we can
thus derive

P (y|do(x)) =
∑
z,w

P (y|x, z, w)P (z, w), (4.8)

=
∑
z,w

P (y|x, z, w, S = 1)P (z, w), (4.9)

where the second line follows from Theorem 4.1, since (Y ⊥⊥ S|Z,W ). As P (z, w) cannot
be recovered from selection bias, Corollary 4.1 is not applicable. However, if in addition
to the selection-biased data, unbiased measurements of P (z, w) are available (e.g., from
census data), equation (4.9) becomes estimable.
Bareinboim et al. (2014) leverage this idea and present the following generalization

of the backdoor criterion, which can be invoked if a subset Z of the data is measured
without bias.

Definition 4.1. (Selection backdoor criterion; Bareinboim et al., 2014) Let a set Z of
variables be partitioned into Z+ ∪ Z− such that Z+ contains all non-descendants of X
and Z− the descendants of X, and let GS stand for the graph that includes sampling
mechanism S. Z is said to satisfy the selection backdoor criterion (s-backdoor, for short)
if it satisfies the following conditions:

1. Z+ blocks all backdoor paths from X to Y in GS;
2. X and Z+ block all paths between Z− and Y in GS, namely, (Z− ⊥⊥ Y |X,Z+);
3. X and Z block all paths between S and Y in GS, namely, (Y ⊥⊥ S|X,Z); and
4. Z and Z ∪ {X,Y } are measured in the unbiased and biased studies, respectively.

The following theorem can then be proved.

Theorem 4.2. (Bareinboim et al., 2014) If Z is s-backdoor admissible, then causal ef-
fects are identified by

P (y|do(x)) =
∑
z

P (y|x, z, S = 1)P (z). (4.10)

The s-backdoor criterion is a sufficient condition for generalized adjustment, which
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is able to deal with confounding and selection bias simultaneously. Correa et al. (2018)
substantially extend this line of work by presenting conditions that are both necessary and
sufficient. Furthermore, Correa et al. (2019b) provide a sound algorithm for recovering
causal effects from a mix of biased and unbiased data in causal graphs that are arbitrary
in size and shape.

5. TRANSPORTABILITY OF CAUSAL KNOWLEDGE

Extrapolating causal knowledge across domains is a fundamental problem in causal in-
ference. Experiments are usually conducted in different contexts than those in which the
lessons drawn from them are supposed to be applied. Expecting experimental results
to hold across populations may be fallacious, however, if domains differ structurally in
important ways. Duflo et al. (2008) allude to this problem in a development economics
context when asking: “If a program worked for poor rural women in Africa, will it work
for middle-income urban men in South Asia?”. In this section, we discuss the conditions
under which a transfer of causal knowledge across structurally heterogeneous domains is
valid. This issue is known under the rubric of “transportability” in the artificial intelli-
gence literature, while social scientists usually refer to it as “external validity” (Shadish
et al., 2002; Bareinboim and Pearl, 2013b; Pearl and Bareinboim, 2014). Nakamura and
Steinsson (2018) discuss the challenge of external validity from a macroeconomic perspec-
tive and come to the conclusion that “even very cleanly identified monetary and fiscal
natural experiments give us, at best, only a partial assessment of how future monetary
and fiscal policy actions—which may differ in important ways from those in the past—will
affect the economy.” Causal diagrams, in conjunction with do-calculus, allow to formally
address these kinds of concerns in a principled, general, and efficient way, eliciting the
assumptions needed to analyze these settings and making precise how much can actually
be learned from experiments across different domains.
In practice, it is often implicitly assumed that an experimental result obtained in a

population Π provides at least a good approximation for the impact of the same inter-
vention in other settings. This assumption is made for convenience, because it allows to
use results from Π for policy decisions in a different population Π∗. However, such kind
of direct transportability, which we formally define in the following, is likely to be violated
in many empirical settings.

Definition 5.1. (Direct Transportability; Pearl and Bareinboim, 2011) A causal rela-
tion R is said to be directly transportable from Π to Π∗, if R(Π∗) = R(Π).

For an example, consider the study by Banerjee et al. (2007) that analyzes the effects
of a remedial education program in two major cities in Western India: Mumbai and Vado-
dara. The randomized intervention provided schools with an extra teacher for tutoring
children in the third and fourth grades, who had been lagging behind their peers. The
program showed substantial positive effects on children’s academic achievements, at least
in the short-run. Interestingly, however, while treatment effects on mathematics scores
were similar in both cities, the effect on language proficiency was weaker in Mumbai
compared to Vadodara. The authors explain this finding by higher baseline reading skills
in Mumbai, where families were on average wealthier and schools were better equipped.
By contrast, baseline skill levels in mathematics did not differ significantly. The remedial
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education program, which targeted only the most basic competencies in the curriculum,
was therefore equally effective for mathematics skills.
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Figure 9: Examples of selection diagrams for the transportability task.

The graph in Figure 9a provides a graphical representation of the setting in Banerjee
et al. (2007). Assume that we want to generalize experimental results from a trial con-
ducted in Vadodara (Π) to the population in Mumbai (Π∗). However, we are aware of the
fact that income levels of families Z, which are an important determinant of children’s
academic achievements Y , are higher in Mumbai. In a causal diagram, we can incorporate
this domain knowledge ex-ante by adding a set of selection nodes S that indicate where
both populations under study differ, either in the distribution of background factors P (u)
or due to divergent causal mechanisms fi. These S-nodes thus locate the sources of struc-
tural discrepancies across domains that threaten transportability. Switching between two
populations Π and Π∗ is then captured by conditioning on different values of S.31 Next,
we define the joint graphical representation of the corresponding structural models in the
source and target populations, which is required to establish transportability.

Definition 5.2. (Selection Diagram; Pearl and Bareinboim, 2011) Let ⟨M,M∗⟩ be a
pair of structural causal models (see Definition 2.1) relative to domains ⟨Π,Π∗⟩, sharing
a causal diagram G. ⟨M,M∗⟩ is said to induce a selection diagram D if D is constructed
as follows: (a) every edge in G is also an edge in D; and (b) D contains an extra edge
Si → Vi whenever there might exist a discrepancy fi ̸= f∗

i or P (Ui) ̸= P ∗(Ui) between
M and M∗.

The absence of an S-node in the selection diagram represents the assumption that the
causal mechanism, which assigns values to the respective variable, is the same in both
populations. In the extreme case, one could add S-nodes to all nodes in the graph, to
express the notion that the two populations are maximally structurally heterogeneous
(i.e., there are no structural invariances). Obviously, this would undermine any hope for
information exchange across domains though.
Equipped with the definition of a selection diagram, we can state the following theorem,

31For clarity, S-nodes invoked for transportability are depicted by squares (■), in order to distinguish
them from the selection bias case. Also note that now S is emitting arrows, whereas selection nodes
indicating preferential inclusion into the sample only receive arrows.
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which allows to transport experimental results obtained in a source Π to another target
domain Π∗, where only passive observation is possible.32

Theorem 5.1. (Pearl and Bareinboim, 2011) Let D be the selection diagram character-
izing two populations, Π and Π∗, and S the set of selection variables in D. The strata-
specific causal effect P ∗(y|do(x), z) is transportable from Π to Π∗ if Z d-separates Y from
S in the X-manipulated version of D, that is, Z satisfies (Y ⊥⊥ S|Z,X)DX

.

Note that DX refers to the post-intervention graph, in which all incoming arrows into
X are deleted (see Section 3.3). D-separation between S-nodes and the outcome variable
Y can be achieved by adjusting for a conditioning set T , as the following definition
formalizes.

Definition 5.3. (S-admissibility; Pearl and Bareinboim, 2011) A set T of variables
satisfying (Y ⊥⊥ S|T ) in DX will be called s-admissible (with respect to the causal effect
of X on Y ).

Syntactically, this result is somewhat similar to the selection bias case (see Theorem
4.1), where the selection indicator was likewise required to be d-separated from Y by
a set T (Pearl, 2015a). Semantically, this separation of an S-node indicates that the
target distribution is insensitive to the structural disparities represented in the selection
diagram, and, therefore, the effects are invariant across populations. Looking at the
selection diagram in Figure 9a, we note that the set {Z} d-separates S and Y in DX

(i.e., when X is experimentally manipulated). It therefore satisfies s-admissibility.
By applying the rules of do-calculus, we can now show that s-admissibility implies

transportability across domains.

P ∗(y|do(x)) = P (y|do(x), s), (5.1)

=
∑
z

P (y|do(x), z, s)P (z|do(x), s), (5.2)

=
∑
z

P (y|do(x), z)P (z|s), (5.3)

=
∑
z

P (y|do(x), z)P ∗(z). (5.4)

The first equation follows from the definition that distributions in the target domain Π∗

are denoted by conditioning on S. The second line follows from conditioning and summing
over Z. The third line is derived by using the s-admissibility of Z and recognizing the

32Following Definition 5.2, both domains Π and Π∗ share the same causal diagram G. Consequently, if a
causal query Q is identifiable with observational data alone in the source domain Π (i.e., no experimental
knowledge is necessary), it will also be identifiable in the target domain Π∗, and Q will thus be trivially
transportable (Pearl and Bareinboim, 2011). Pearl and Bareinboim (2011) discuss observational trans-
portability of a statistical query of the form P (y|x) (e.g., a classifier) from a source domain to a target
domain, where only a subset of the variables in the selection diagram are observed. Thus, statistical
transportability permits the analyst to save on data collection costs. Later on, Correa and Bareinboim
(2019) developed a complete algorithm for this task. We will not further pursue this topic in what follows
and refer the interested reader to the respective papers.
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fact that X is a child of Z and, therefore, exerts no causal influence on Z (formally, rule
3 of do-calculus applies). The last line is then just a restatement.
As long as Figure 9a provides an accurate model for the setting in Banerjee et al.

(2007), the causal effect of the remedial education program in Mumbai can thus be
computed by reweighting the stratum-specific causal effect (for every income level of Z)
obtained in Vadodara by the income distribution P ∗(z) in Mumbai. No experimental
data for Mumbai is required. This result is stated in its full generality in the following
corollary.

Corollary 5.1. (Pearl and Bareinboim, 2011) The causal effect P ∗(y|do(x)) is trans-
portable from Π to Π∗ if there exists a set Z of observed pretreatment covariates that is
s-admissible. Moreover, the transport formula is given by the weighting

P ∗(y|do(x)) =
∑
z

P (y|do(x), z)P ∗(z). (5.5)

It is an immediate consequence of Theorem 5.1 that any S variable that points into X
can be ignored. The causal effect P (y|do(x)) is thus directly transportable in Figure 9b.
The same holds for S nodes that are d-separated by the empty set in DX .

As a graphical criterion, s-admissibility is easy to check. Without a reference to a causal
diagram, however, the intricacies of transportability can be hard to discern. Figure 9c
provides a cautionary tale in that regard. Apart from the unobserved confounder between
Z and Y , it is identical to Figure 9a. Here, however, s-admissibility is violated because
conditioning on Z would open up the path S → Z L9999K Y . It can be shown that trans-
porting P (y|do(x)) is impossible in this selection diagram. The example thus illustrates
how the absence or presence of one single edge can determine whether transportability is
feasible. Recognizing such subtleties by pure introspection, without the reference to an
explicit model, would be an extremely difficult undertaking.
The transport formula presented in equation (5.5) is well known in the economet-

rics literature (Hotz et al., 2005; Dehejia et al., 2021; Andrews and Oster, 2019). Most
commonly, approaches in this area build on the potential outcomes framework, where
s-admissibility is encoded through ignorability relations; i.e., domain heterogeneity S
is assumed to be ignorable given pretreatment covariates X. While it is hard to judge
ignorability statements, we note that this assumption is easily violated in practice, as
the example in Figure 9c demonstrates. Causal graphs offer valuable guidance for judg-
ing the validity of ignorability assumptions, which is missing in the potential outcomes
framework. Furthermore, using the rules of do-calculus, it becomes possible to establish
transportability in more general cases that are not covered by Corollary 5.1.

Theorem 5.2. (Pearl and Bareinboim, 2011) Let D be the selection diagram character-
izing two populations, Π and Π∗, and S as set of selection variables in D. The relation
R = P ∗(y|do(x)) is transportable from Π to Π∗ if the expression P (y|do(x), s) is re-
ducible, using the rules of do-calculus, to an expression in which S appears only as a
conditioning variable in do-free terms.

One such class of models is given when domains differ due to variables that are them-
selves causally affected by the treatment, as in Figure 10a. Here, the effect of X on Y
is partly transmitted by Z, and domains differ either according to the distribution of
background factors UZ or the mechanism fZ that determines Z. Such a situation can
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Figure 10: Examples of more challenging transportability tasks, including S-nodes on
post-treatment variables.

occur for RCTs in development economics, where the success of a policy is partly de-
pendent on the level of care with which a program is implemented. Duflo et al. (2008)
discuss the problem that pilot trials often employ particularly highly qualified program
officials. This is difficult to replicate once the program is supposed to be scaled up, which
threatens the generalizability of these pilot studies.33

Gordon et al. (2019) provide a similar example from an entirely different context.
The effectiveness of advertising campaigns on social media platforms depends on how
frequently clients are exposed to the ads. Exposure thus acts as a mediator for the effect
of advertising on an outcome of interest, e.g., the click-through rate. And since exposure
is determined by user behavior, it cannot easily be controlled by the advertiser. If a social
media company running advertising experiments wants to transport results obtained on
a desktop version of the platform to users with mobile devices, it will need to take
into account that exposure might differ across domains, e.g., due to differences in user
demographics.
If post-treatment variables, such as in Figure 10a, are s-admissible, the causal effect of

X can be transported as

P ∗(y|do(x)) = P (y|do(x), s), (5.6)

=
∑
z

P (y|do(x), z, s)P (z|do(x), s), (5.7)

=
∑
z

P (y|do(x), z)P ∗(z|do(x)), (5.8)

where the last line follows from s-admissibility (Pearl and Bareinboim, 2014). Given
equation (5.8), we can see that transportability of P ∗(y|do(x)) then requires to transform

33Similarly, Banerjee et al. (2017) discuss how market equilibrium effects can be an obstacle for the
generalizability of pilot studies. A large, nationwide experiment may have an effect on wages and prices
of nontradable goods such as land, which is likely to be negligible in smaller RCTs. These intermediate
variables might be important for the overall outcome of a program and could thus lead to different
expected results in a small versus a larger study population.



Causal Inference and Data Fusion in Econometrics 31

P ∗(z|do(x)) into a do-free expression, since by definition no manipulation can be carried
out in the target domain. Recognizing that X and Z are unconfounded in Figure 10a,
this can be achieved by setting P ∗(z|do(x)) = P ∗(z|x) (formally, rule 2 of do-calculus
applies).
The resulting transport formula, when domains differ according to post-treatment vari-

ables, is different from the simple expression in equation (5.5). It prescribes to reweight
the z-specific effects by the conditional (instead of the uncoditional) distribution of Z in
the target population

P ∗(y|do(x)) =
∑
z

P (y|do(x), z)P ∗(z|x). (5.9)

Theorem 5.2 was proven to be a necessary and sufficient criterion for transporting
causal effect estimates across domains by Bareinboim and Pearl (2012c). However, it is
only procedural in nature and, therefore, does not specify the sequence of do-calculus
steps that need to be taken to arrive at the desired expression. In order to fill this gap,
Bareinboim and Pearl (2013b) develop a complete algorithmic solution for carrying out
the transformation. The benefits of solving the transportability problem algorithmically
become particularly apparent for more complex graphs, such as in Figure 10b, in which
the correct transport formula is given by

P ∗(y|do(x)) =
∑

z,w2,w3

P (y|do(x), z, w2, w3)P (z|do(x), w2, w3)P
∗(w2, w3). (5.10)

Note also that this expression does not contain W1. Applying the transportability al-
gorithm thus helps to decide which measurements are required for transportability and
thereby allows to economize on data collection efforts in the target domain.

5.1. Transportability with surrogate experiments

Bareinboim and Pearl (2013a) combine the idea of transportability with the previously
introduced concept of z-identification, to develop a theory they call z-transportability.
Owing to this extension, it becomes possible to not only transfer causal knowledge ob-
tained from direct randomized control trials, but also from the encouragement designs,
discussed in Section 3.4, that rely on surrogate experiments. Researchers are thus given
the flexibility to learn from knowledge across domains even in cases when direct manip-
ulation of a treatment would be prohibitively costly, both in the target and in the source
domain.
Remarkably, z-transportability is a distinct problem and reduces neither to ordinary

transportability nor to z-identifiability. Bareinboim and Pearl (2013a) demonstrate this
fact by presenting examples of causal queries which are zID in the source domain Π,
but that may or may not be z-transportable. Analogous to Theorem 5.2, the rules of
do-calculus can be used to transfer causal knowledge from surrogate experiments in the
following way.

Theorem 5.3. (Bareinboim and Pearl, 2013a, 2014) Let D be the selection diagram
characterizing two populations, Π and Π∗, and S be the set of selection variables in D.
The relation R = P ∗(y|do(x)) is z-transportable from Π to Π∗ in D if and only if the
expression P (y|do(x), s) is reducible, using the rules of do-calculus, to an expression in
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which all do-operators apply to subsets of Z, and the S-variables are separated from these
do-operators.

Again, Theorem 5.3 provides no indication of the sequence of do-calculus steps that
need to be taken in order to establish z-transportability. To this end, Bareinboim and
Pearl (2013a) develop a complete algorithm, which takes the selection diagram D and a
list of variables that were manipulated in the source domain as inputs and then returns
a transport formula expression whenever such an expression exists.

5.2. Combining causal knowledge from several heterogeneous source domains

Transportability techniques are particularly valuable in situations that allow to combine
empirical knowledge from several source domains. Dehejia et al. (2021) consider the case
of a policy-maker who is faced with the decision to either learn about a desired treatment
effect from extrapolation of an existing experimental evidence base, or to commission
a costly new experiment. The challenge in this situation is that previous experiments
have possibly been conducted in very different contexts than the one of interest, and
underlying populations might be quite heterogeneous. Näıve pooling of results is thus
likely to fail. Based on the approaches presented in the previous sections, Bareinboim
and Pearl (2013c) introduce the concept of meta-transportability (or µ-transportability,
for short), which provides a principled solution to this problem.34

X YZ

(a)

X YZ

(b)

Figure 11: Selection diagrams representing two heterogeneous source domains.

Let D = {D1, . . . , Dn} be a collection of selection diagrams relative to source domains
Π = {π1, . . . , πn}. An example is given by Figure 11, in which panel (a) depicts the selec-
tion diagram that corresponds to source domain πa, while panel (b) refers to πb. Square
nodes indicate where discrepancies between the target domain π∗ and the source domains
arise.35 In line with Definition 5.2, these discrepancies can occur due to differences in
causal mechanisms as well as background factors related to the the variables that square
nodes point into.
Figure 11 is a simple extension of a graph that was presented earlier (see Figure 10a). In

contrast to before, the unobserved confounder between X and Z (denoted by the dashed

34Meta-transportability is related to the idea of “data combination” presented e.g. in Ridder and Mof-
fitt (2007). In this case, however, the goal is to combine causal knowledge from several heterogeneous
populations that share at least some causal mechanisms.
35The causal diagram for the target domain is accordingly obtained by deleting all square nodes from
the selection diagrams.
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bidirected arc X L9999K Z), which was added to the diagram, now renders individual
transportability impossible.36 Interestingly though, µ-transportability is feasible by com-
bining information from both source domains. To see this, note that the post-intervention
distribution in the target domain π∗ can be written as

P ∗(y|do(x)) =
∑
z

P ∗(y|do(x), z)P ∗(z|do(x)), (5.11)

=
∑
z

P ∗(y|do(x), do(z))P ∗(z|do(x)), (5.12)

where the second line follows from rule 2 of do-calculus, since (Z ⊥⊥ Y |X) in DXZ .
37

Using this representation, each component can be shown to be individually transportable
from one of the source domains. P ∗(z|do(x)) is directly transportable from πa, because

(S ⊥⊥ Z) in D
(a)

X
. And P ∗(y|do(x), do(z)) is directly transportable from πb, since (S ⊥⊥

Y ) in D
(b)

X,Z
. The individual components of equation (5.12) can therefore be written as

P ∗(z|do(x)) = P (a)(z|do(x)) and P ∗(y|do(x), do(z)) = P (b)(y|do(x), do(z)). This leads to
the final transport formula

P ∗(y|do(x)) =
∑
z

P (b)(y|do(x), do(z))P (a)(z|do(x)). (5.13)

In addition to demonstrating that multiple pairwise transportability is not a necessary
condition for µ-transportability, the example illustrates the superior inferential power
obtained by combining multiple datasets over each individual dataset alone.
Bareinboim and Pearl (2013c) develop a complete algorithmic solution for deciding

about µ-transportability. The approach is further extended by Bareinboim et al. (2013)
who combine µ-transportability with z-transportability, to allow for combining causal
knowledge from multiple heterogeneous sources when only surrogate experiments on a
subset Z of variables in D are possible. This latter task is called mz-transportability and
can be automated by an algorithm that was proved to be complete by Bareinboim and
Pearl (2014).
In recent years, meta-analyses, which synthesize the results of several studies on a

specific subject, are becoming increasingly important. Examples from economics can be
found in Card et al. (2010), Dehejia et al. (2021), and Meager (2019). A drawback of
standard meta-analytical approaches is, however, that they do not incorporate knowl-
edge about domain heterogeneities related to causal mechanisms and background factors.
Instead, they attempt to “average out” differences across populations.38 By contrast, the
transportability techniques we have presented make it transparent how discrepancies
between study results arise and how they can nonetheless be leveraged to identify a

36The algorithm by Bareinboim and Pearl (2013b) would exit without returning a transport formula
expression for both selection diagrams. Intuitively, in panel (a), transportability is prohibited by the
selection node pointing directly into Y . In (b), X L9999K Z prevents to set P ∗(z|do(x)) = P ∗(z|x), which
was instrumental for establishing transportability following equation (5.8).
37These do-calculus derivations are shown in detail, with corresponding subgraphs depicted next to it,
in Appendix A.2.
38To the extent that these studies consider domain heterogeneity, this is done in a purely statistical fash-
ion, without explicitly modelling structural differences across populations (Dehejia et al., 2021; Meager,
2019). This leaves open the question whether domains are actually structurally sufficiently similar for
transportability to be feasible.
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target query of interest in a principled and efficient manner. Moreover, they discipline
the analyst to think carefully about the assumptions and shared mechanisms that allow
extrapolation across domains to actually take place.
Transportability theory thereby enables the research community to devise an effective

strategy for leveraging the entire evidence base that exists related to a specific problem.
Causal knowledge obtained by an individual experiment does not need to, and should
not, be regarded in isolation. Rather, it contributes to a larger body of empirical work
that can be recombined to tackle entirely new policy problems, which were unimagined
at the time of the original study. In combination with undergoing efforts to make more
data sets openly available, transportability techniques thus bear the potential to save
on discipline-wide data collection costs and to render causal inference a truly collective
endeavor.39

6. CONCLUSION

From the end of the 1980s onwards, the artificial intelligence field has developed an in-
creased interest in causal inference (Pearl, 1988, 2009; Bareinboim and Pearl, 2016; Pearl
and Mackenzie, 2018). Causation is a fundamental concept in human thinking and struc-
tures the way in which we interact with our environment (Sloman, 2005). A human-like
AI, therefore, needs to possess an internal representation of causality in order to mimic
human behaviour and communicate with us in a meaningful way (Pearl and Mackenzie,
2018; Bareinboim et al., 2022). Tremendous progress over the last three decades has led
to the development of a powerful causal inference engine, which puts an artificial learner
into the position to acquire and combine causal knowledge from many diverse sources
in its surroundings. In particular, several important contributions to the literature in
recent years have made this engine more robust, general, and practical, by expanding
its applicability to various different data collection and knowledge contexts (Bareinboim
and Pearl, 2016; Bareinboim et al., 2022).
We are convinced that the causal inference and data fusion techniques we have dis-

cussed in this paper also have a lot to offer to econometricians. Until today, the possibil-
ities to completely automate the identification task, which is a necessary ingredient for
causal machine learning, remain largely unexplored in econometrics. The applications of
do-calculus we have discussed only require the analyst to provide a model of the economic
context under study and a description of the available data, the rest can be handled au-
tomatically by an algorithm.40 Moreover, graphical representations of structural causal
models do not require the learner – whether artificial or human – to impose any dis-

39Other contributions to transportability theory have been made by Correa et al. (2019a), who develop
adjustment criteria for generalizing experimental findings in the presence of selection bias (see Section 4),
and Lee et al. (2020), who present a general treatment of transportability theory, unifying several of the
techniques discussed in this section. Furthermore, these results have been extended to cover stochastic
interventions, where the sigma calculus, a generalization of the do-calculus, has been introduced (Correa
and Bareinboim, 2020a), and used to solve stochastic-transportability (Correa and Bareinboim, 2020b).
More recently, these results were generalized for the case of transporting nested counterfactual from an
arbitrary combination of observational and experimental distributions (Correa et al., 2022).
40Up to a certain extent, directed acyclic graphs can also be learned from observational data. Respective
techniques rely on the testable implications of DAGs that were discussed in Section 2 to find an equiva-
lence class of models that is compatible with the d-separation relations in the data. The interested reader
is referred to the literature on “causal structure learning” and “causal discovery” in the AI field (Spirtes
et al., 2001; Pearl, 2009; Peters et al., 2017). Automation of the identification task in these settings has
also gained traction recently (Zhang, 2006; Perkovic et al., 2017; Jaber et al., 2018b,a, 2019, 2022).
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tributional or functional form restrictions on the underlying causal mechanisms under
study. The approach remains fully nonparametric and thus naturally incorporates, e.g.,
treatment effect heterogeneity. At the same time, crucial identification conditions, such
as conditional independence, are derived from the properties of the underlying structural
model, rather than being assumed to hold a priori. Causal graphical models thus com-
bine the flexibility and accessibility of potential outcomes with the analytical rigor of
structural econometrics (Rust, 1987; Keane and Wolpin, 1997; Heckman and Vytlacil,
2007). These properties are of great value for applied empirical work. Economists should
therefore feel encouraged to engage in a productive exchange with AI researchers for
mutual benefit from the numerous useful tools for causal inference developed in both
disciplines.
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APPENDIX

This appendix shows step-by-step solutions for the do-calculus derivations discussed in
the main text. For illustration purposes, subgraphs used in the respective steps are placed
alongside.

A.1. Selection bias example (Section 4, Figure 8b)

G

Z

W

X
Y
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Z

W

X
Y

S

GX

Z

W

X
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X(W )

Z

W

X
Y

S

Consider the causal effect of X on Y in graph G. In graph GX , Z is a collider on the
path connecting S and W with Y . Therefore, (S,W ⊥⊥ Y )GX

, and by the first rule of
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do-calculus it holds that

P (y|do(x)) = P (y|do(x), w, S = 1),

=
∑
z

P (y|do(x), z, w, S = 1)P (z|do(x), w, S = 1).

Moreover, because (Y ⊥⊥ X|W,Z, S) in GX , rule 2 of do-calculus applies to the first
factor, which leads to

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|do(x), w, S = 1).

Finally, notice that there are no open paths between X and Z in G
X(W )

(which is

equivalent to GX , as X is not an ancestor of W ). Thus, since (Z ⊥⊥ X|W,S)G
X(W )

(this

independence holds both conditional and unconditional), rule 3 of do-calculus can be
applied to the second term, such that

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|w, S = 1).

□

A.2. M-Transportability example (Section 5.2, Figure 11)
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Consider the causal effect of X on Y in graph D, in target domain π∗:

P ∗(y|do(x)).

Note that X d-separates Z and Y in DXZ . Thus, since (Z ⊥⊥ Y |X)DXZ
, it follows from
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rule 2 of do-calculus that

P ∗(y|do(x)) =
∑
z

P ∗(y|do(x), z)P ∗(z|do(x)),

=
∑
z

P ∗(y|do(x), do(z))P ∗(z|do(x)).

Let the selection diagrams for the two source domains πa and πb be given by D(a) and

D(b), respectively. Note that (S1, S2 ⊥⊥ Z) in D
(a)

X
, therefore, P ∗(z|do(x)) is directly

transportable from πa as

P ∗(z|do(x)) = P (a)(z|do(x)).
Furthermore, since (S3, S4 ⊥⊥ Y ) in D

(b)

X,Z
, P ∗(y|do(x), do(z)) is directly transportable

from πb

P ∗(y|do(x), do(z)) = P (b)(y|do(x), do(z)).
Combining the two expressions leads to the final transport formula

P ∗(y|do(x)) =
∑
z

P (b)(y|do(x), do(z))P (a)(z|do(x)).

□


