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Learning about cause and effect is arguably the main goal in applied economet-
rics. In practice, the validity of these causal inferences is contingent on a number
of critical assumptions regarding the type of data that has been collected and the
substantive knowledge that is available about the phenomenon under investiga-
tion. For instance, unobserved confounding factors threaten the internal validity of
estimates, data availability is often limited to non-random, selection-biased sam-
ples, causal effects need to be learned from surrogate experiments with imperfect
compliance, and causal knowledge has to be extrapolated across structurally hetero-
geneous populations. A powerful causal inference framework is required in order to
tackle all of these challenges, which plague essentially any data analysis to varying
degrees. Building on the structural approach to causality introduced by Haavelmo
(1943) and the graph-theoretic framework proposed by Pearl (1995), the artificial
intelligence (AI) literature has developed a wide array of techniques for causal learn-
ing that allow to leverage information from various imperfect, heterogeneous, and
biased data sources (Bareinboim and Pearl, 2016). In this paper, we discuss recent
advances made in this literature that have the potential to contribute to econo-
metric methodology along three broad dimensions. First, they provide a unified
and comprehensive framework for causal inference, in which the above-mentioned
problems can be addressed in full generality. Second, due to their origin in AI, they
come together with sound, efficient, and complete (to be formally defined) algorith-
mic criteria for automatization of the corresponding identification task. And third,
because of the nonparametric description of structural models that graph-theoretic
approaches build on, they combine the strengths of both structural econometrics as
well as the potential outcomes framework, and thus offer a perfect middle ground
between these two competing literature streams.
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1. INTRODUCTION

Causal inference is arguably one of the most important goals in applied econo-

metric work. Policy-makers, legislators, and managers need to be able to forecast

the likely impact of their actions in order to make informed decisions. Construct-

ing causal knowledge by uncovering quantitative relationships in statistical data

is the goal of econometrics since the beginning of the discipline (Frisch, 1933).

After a steep decline of interest in the topic during the postwar period (Hoover,

2004), causal inference has recently been receiving growing attention again and

was brought back to the forefront of the methodological debate by the emergence

of the potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015; Im-

bens, 2019) and advances in structural econometrics (Heckman and Vytlacil, 2007;

Matzkin, 2013; Lewbel, 2019).

Woodward (2003) defines causal knowledge as “knowledge that is useful for

a very specific kind of prediction problem: the problem an actor faces when she

must predict what would happen if she or some other agent were to act in a certain

way [...]”.1 This association of causation with control in a stimulus-response-type

relationship is likewise foundational for econometric methodology. According to

Strotz and Wold (1960), “z is a cause of y if [...] it is or ’would be’ possible by

controlling z indirectly to control y, at least stochastically” (p. 418; emphasis in

original).

Although implicit in earlier treatments in the field (e.g., Haavelmo, 1943), Strotz

and Wold (1960) were the first to express actions and control of variables as “wip-

ing out” of structural equations in an economic system (Pearl, 2009, p. 32). To

illustrate this idea, consider the two-equation model

z = fz(w, uz), (1.1)

y = fy(z, w, uy), (1.2)

in which Y might represent earnings obtained in the labor market, Z the years

of education an individual received, W other relevant socio-economic variables,

1Woodward continues: “[...] on the basis of observations of situations in which she or the other
agent have not (yet) acted” (p. 32).
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and U unobserved background factors.2 Since W enters in both equations of the

system, it creates variation between Z and Y that is not due to a causal influence

of schooling on earnings. Therefore, in order to predict how Y reacts to induced

changes in Z, the causal mechanism that naturally determines schooling needs to

be replaced to avoid non-causal (spurious) sources of variation. In this particular

example, the values that Z attains must be uncoupled from W , so that Z can

freely influence Y . Symbolically, this is achieved by deleting fz(·) from the model

and fixing Z at a constant value z0. The modified system thus becomes:

z = z0 (1.1’)

y = fy(z0, w, uy). (1.2’)

Subsequently, the quantitative impact on Y of the intervention can be traced via

equation (1.2’) in order to pin down Z’s causal effect.

The notion of “wiping out” equations, as proposed by Strotz and Wold, eventu-

ally received central status and a formal treatment in a specific language with

the definition of the do-operator (Pearl, 1995). Consider the task of predict-

ing the post-intervention distribution of a random variable Y that is the re-

sult of a manipulation of X. In mathematical notation, this can be written as

Q = P (Y = y|do(X = x)), where do(X = x) denotes the replacements of what-

ever mechanisms were there for X, fx, with a constant x.

In practical applications, however, simulating interventions to such a degree of

granularity would either require knowledge about the precise form of the system’s

underlying causal mechanisms or the possibility to physically manipulate X in a

controlled experiment. Both are luxuries that policy forecasters very rarely have

available. In many economic settings, experiments can be difficult to implement.

Likewise, exactly knowing the structural mechanisms that truly govern the data

generating process is hard in the social sciences, where often only qualitative knowl-

edge about causal relationships is available.3 This means that the counterfactual

distribution P (y|do(x)) will be, in general, not immediately estimable. In practice,

2We follow the usual notation of denoting random variables by uppercase and their realized
values by lowercase letters.

3Quoting prominent physicist Murray Gell-Mann: “Imagine how hard physics would be if elec-
trons could think.” (cited in Page, 1999).
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Estimable	exp-
ression of	Q

Causal	Inference	Engine:
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Figure 1: Schematic illustration of the data fusion process. The causal inference engine
provided by do-calculus takes three inputs: (1) a causal effect query Q, (2) a
model G, and (3) the type of data, P (v|·), that is available. It is guaranteed to
return a transformation of Q, based on G, that is estimable with the available
data, whenever such a solution exists.

instead, Q will first need to be transformed into a standard probability object that

only comprises ex-post observable quantities before estimation can proceed. The

symbolic language that warrants such kinds of syntactic transformations is called

do-calculus (Pearl, 1995).

Do-calculus is a causal inference engine that takes three inputs:

1. A causal quantity Q, which is the query the researchers want to answer;

2. A model G that encodes the qualitative understanding about the structural

dependencies between the economic variables under study;

3. A collection of datasets P (v|·) that are available to the analyst, including

observational, experimental, from selection-biased samples, from different

populations, and so on.

Based on these inputs, do-calculus constitutes three inference rules for transform-

ing probabilistic sentences involving do-expressions into equivalent expressions.

The inferential goal is then to re-express the causal quantity (1 above) through

the repeated application of the rules of the calculus, licensed by the assumptions
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in G (2 above), into expressions that are estimable by the observable probability

distributions P (v|·) (3 above). Figure 1 provides a schematic illustration of this

process.

Do-calculus complements standard tools in econometrics in two important ways.

First, it builds on a mathematical formalism borrowed from graph theory, which

describes causal models as a set of nodes in a network, connected by directed

edges (so-called Directed Acyclic Graphs ; Pearl, 1995). An advantage of such a

description is that it does not rely on any functional-form restrictions imposed on

the relationships between economic variables. Therefore, the approach provides

a formal treatment of nonparametric causal inference in full generality. Second,

as a subfield of artificial intelligence, the literature on graph-theoretic treatments

of causality has developed algorithmic solutions for a wide variety of causal infer-

ence problems arising in applied work. These algorithms are able to carry out the

syntactic transformation described above – mapping a query to the available data

through the model’s assumptions – fully automatically. From do-calculus, the algo-

rithms furthermore inherit the property of soundness and completeness (Tian and

Pearl, 2002a; Shpitser and Pearl, 2006b; Huang and Valtorta, 2006; Bareinboim

and Pearl, 2012c; Lee et al., 2019). This means that the approach is guaranteed

to return a correct solution whenever one exists. Conversely, and remarkably, if

the algorithm fails to provide an answer to a causal query, it is assured that no

such answer will be obtainable unless the assumptions imposed on the model are

strengthened. In other words, for the class of models in which these algorithmic

conditions are applicable, the identification problem is fully solved (Pearl, 2013;

Bareinboim and Pearl, 2016).

The development of do-calculus gave the literature on causal inference within the

field of artificial intelligence a tremendous boost, and many significant advances

have been made since Pearl (2000) published his seminal contribution. The aim

of this paper is to discuss these more recent developments and show how do-

calculus can be utilized to solve many recurrent problems in applied econometric

work. The three main topics we cover are: dealing with confounding bias (Section

3), recovering from sample selection bias (Section 4), and extrapolation of causal

claims across heterogeneous settings (Section 5), which we describe in turn next.

Confounding bias (Section 3). In most applied settings, the post-interventional
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distribution of Y following a manipulation of X, P (y|do(x)), does not coincide

with the conditional distribution P (y|x) – a distinction that has been popularized

through the mantra “correlation does not imply causation” (List, 2011). This is due

to confounding influence factors, which can render two variables stochastically de-

pendent irrespective of any causal relationship between them. The inference rules

of do-calculus were developed precisely to neutralize confounding bias. Syntacti-

cally, this task amounts to transforming P (y|do(x)) into an equivalent expression,

generally different from P (y|x), that is nonetheless estimable from the available

data. If a reduction containing standard probability objects can be reached, the

confounding problem is solvable with the help of observational data alone. Ad-

ditionally, sometimes the analyst is able to experimentally manipulate a third

variable Z, which is itself causally related to the treatment of interest. In such

settings (one example is the classic encouragement design; Duflo et al., 2008), the

identification problem can be relaxed, since estimable syntactic transformations of

P (y|do(x)) reached by do-calculus can now also involve do(z)-distributions.

Sample selection bias (Section 4). A common threat to to the validity of in-

ferences in practice is sample selection bias, which occurs if the analyst is only

able to observe information for members of the population that possess specific

characteristics or fulfill certain requirements (e.g., market wages are only observ-

able if individuals are employed; Heckman, 1979). Selection-biased data aggravate

the identification problem, as P (y|do(x)) needs to be transformed into an expres-

sion solely comprised of probabilities from a non-random sample (inclusion in the

selected sample is usually denoted by an indicator S, which implies that only prob-

abilities conditional on S = 1 are observable). The inference rules of do-calculus

provide a principled and complete solution for carrying out this task.

Extrapolation of causal claims across settings (Section 5). While confounding

and selection biases threaten the internal validity of estimates, another important

topic in econometric practice is external validity, or generalizability of causal in-

ferences across settings and populations. Causal knowledge is usually acquired in

a specific population (e.g., for probands in a laboratory setting), but needs to be

brought to productive use in other domains in order to be most valuable. What

permits such a transportation of causal knowledge across settings, however, if the

underlying populations differ structurally in important ways? Do-calculus provides

6



an answer to this question. Its inference rules can be applied in order to transform

a causal query in a target population into an expression that is estimable with the

help of information stemming from a source population. In its more general form,

transportability theory encompasses the problem of combining causal knowledge

from several, possibly heterogeneous source domains (a strategy generically known

under the rubric of “meta-analysis”). Thereby, do-calculus opens up entirely new

possibilities for leveraging results from a whole body of empirical literature in order

to address policy questions arising in yet under-researched contexts.

These three thematic areas are indeed quite diverse and encompass several seem-

ingly unrelated empirical challenges, yet they share a common structure. Data,

which are created in various different ways – e.g., from observational or experimen-

tal studies, from non-random sampling, or from heterogeneous underlying popula-

tions – are combined in order to answer a causal query of interest. For this strategy

of “data fusion” (see Figure 1) to be viable, the analyst needs to be equipped with

a model of the underlying economic context under study and a powerful inference

framework that license this kind of information transfer (Bareinboim and Pearl,

2016). In the remainder of the paper, we will describe such a causal modeling and

inference framework in detail.

2. PRELIMINARIES: STRUCTURAL CAUSAL MODELS, CAUSAL

GRAPHS, AND INTERVENTIONS

This section introduces structural causal models (SCM) and directed acyclic graphs,

which form the basis for all the data fusion techniques discussed in this paper.4

We follow the standard notation in the literature, as summarized in Pearl (2009),

and define an SCM as:

Definition 2.1. (Structural causal model; Pearl, 2009) A structural causal model
is a 4-tuple M = 〈U, V, F, P (u)〉 where

4Structural causal models are nonparametric versions of structural equation models (SEM).
We purposefully will use the term SCM to avoid confusion with the vast literature on SEM
that traditionally assumes parametric or even linear functional forms, and many times has
confounded the inherent causal nature of structural models.
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1. U is a set of background variables (also called exogenous) that are determined
by factors outside the model.

2. V = {V1, . . . , Vn} is a set of endogenous variables that are determined by
variables in the model, viz. variables in U ∪ V .

3. F is a set of functions {f1, . . . , fn} such that each fi is a mapping from (the
respective domains of) Ui ∪ PAi to Vi, where Ui ⊆ U and PAi ⊆ V \ Vi and
the entire set of F forms a mapping from U to V . In other words, fi assigns
a value to the corresponding Vi ∈ V , vi ← fi(pai, ui), for i = 1, . . . , n.

4. P (u) is a probability function defined over the domain of U .

An SCM constitutes a set of (exogenous) background factors, U , which are deter-

mined outside of the model and taken as given. Their associated (joint) probability

distribution, P (u), creates variation in the endogenous variables, V , whose source

remains not further specified. Inside the model, the value of an endogenous variable

Vi is determined by a causal process, vi ← fi(pai, ui), that maps the background

factors Ui and a set of endogenous variables PAi (so-called parents) into Vi. These

causal processes – or mechanisms – are assumed to be invariant unless explicitly

intervened on (see Section 2.1). Together with the background factors, they repre-

sent the data generating process (DGP) according to which nature assigns values

to the (endogenous) variables under study.5

To emphasize the interpretation of fi’s as stimulus-response relationships, and in

contrast to the standard notation in econometrics, the computer science literature

uses assignment operators “←” instead of equality signs (similar to the syntax of

programming languages). Assignments change meaning under solution-preserving

algebraic operations; i.e., y ← ax 6= x ← y/a (Pearl, 2009, p. 27). This high-

lights the asymmetric nature of elementary causal mechanisms (Woodward, 2003;

Cartwright, 2007), in the sense that if x is a cause of y, it cannot be the case that

y is also a cause of x in the same instance of time.

In a fully specified SCM, 〈U, V, F, P (u)〉, any counterfactual quantity is well-

defined and immediately computable from the model. In many social science

5Background factors correspond to what is often referred to as “error terms” in classical econo-
metrics. However, we deliberately avoid this terminology to emphasize that the Ui’s in an
SCM have a causal interpretation, in contrast to the purely statistical notion of a prediction
error or deviation from the conditional mean.
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Figure 2: (a) Directed acyclic graph corresponding to SCM in equation (2.1) with
background variables Ui explicitly depicted. (b) Graphical illustration of d-
separation. D acts as a collider that opens up the path between A and C,
whereas B blocks it. (c) Post-intervention graph of (a) for do(X = x0).

contexts, however, precise knowledge of the functional relationships, fi, and the

distribution of the exogenous variables, P (u), governing the DGP, is not available.

In the following, we will thus advocate for an approach that fully embraces and

acknowledges the existence of the underlying causal mechanisms and exogenous

variations in the system (i.e., that nature follows a structural causal model), but

which will be much less committal regarding what the analyst needs to know

about this reality in order to be able to make causal inferences. In particular,

the inferences entailed by our analysis will rely on the graphical representation

of the underlying structural system, which is a parsimonious way of encoding a

minimalistic set of assumptions of the system necessary for identifiability.

Every SCM M defines a directed graph G(M) (or G, for simplicity). Nodes in

G correspond to endogenous variables in V , and directed edges point from the set

of parent nodes PAi towards Vi.
6 An example is given in Figure 2a, which refers

to the following SCM:

z ← fz(uz),
x← fx(z, ux),
y ← fy(x, z, uy).

(2.1)

Note that Z appears as an argument in the structural function of X, fx. Accord-

6As it is standard in the field, we will use the notation of kinship relations (parents, children,
ancestors, descendants, etc.) to describe the relative position of nodes in directed graphs.
For instance, for the graph in Figure 2b we can read that B is a parent of D, since B → D,
and A is an ancestor of E, since A→ D → E.
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ingly, Z is a parent of X and an arrow should be added pointing from node Z to

X. Similarly, X and Z appear in fy, which means that the causal graph contains

arrows from these variables to Y . For the sake of readability, we will usually not

depict the Ui’s explicitly, as in Figure 2a, but will omit them from the graph, when-

ever they affect only one endogenous variable. Background factors are by default

assumed to be independent, unless otherwise specified. The presence of common

unobserved parent nodes, which render two variables stochastically dependent, is

represented by dashed bidirected arcs in the graph (see, e.g., Figure 3a).7

The graph in Figure 2a contains no sequences of edges that point from a variable

back to itself (i.e., there are no feedback loops). This property is called acyclicity.

Throughout the paper, we restrict attention to structural causal models that can

be represented by directed acyclic graphs (DAG). This class of models, which

economists often refer to as recursive, is of central importance in causal inference,

because it describes economic systems in which individual causal mechanisms have

a direct and autonomous stimulus-response interpretation, in accordance with the

notion of causality put forward by Strotz and Wold (1960; see also Woodward,

2003; Cartwright, 2007; Pearl, 2009).8

Working with the graphical representation of M entails a deliberate choice by

the analyst to refrain from parametric and functional form assumptions, since the

shape of the fi’s and the distribution of background factors Ui remain unspecified

throughout the analysis. Another way of thinking about the causal graph is that it

represents the equivalence class of all structural functions sharing the same scope.

Consequently, graphical models are fully nonparametric in nature. This constitutes

an important distinction relative to the structural econometrics literature, which

often assumes specific parametric error distributions (such as the normal or logis-

tic distribution) or imposes shape restrictions on functions (such as separability,

monotonicity, or differentiability) in order to establish identification (Heckman and

7A dashed bidirected arc X L9999K Y serves as a shortcut notation for X L99 U 99K Y , if the
set of common causes U is unobservable to the analyst.

8It is important to note, however, that the axioms of structural counterfactuals in SCMs (Pearl,
2009, ch. 7) also hold in nonrecursive models, see Halpern (2000). For an introduction into
the literature on cyclic directed graphs, the interested reader is referred to Spirtes et al.
(2001, ch. 12) and Pearl (2009, ch. 3.6). Appendix A.1 provides a brief discussion of the
differences arising with respect to the conceptual interpretations of causality in recursive
versus nonrecursive economic systems.
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Vytlacil, 2007; Matzkin, 2007, 2013). In certain applications, these distributional

and functional-form assumptions might be licensed by economic theory (Matzkin,

2013). If they are not, however, we concur with Manski (2003) that it is a more

robust research approach to start with the most flexible model possible and only

resort to parametric and functional form assumptions once the explanatory power

of nonparametric approaches has been exhausted. In line with this philosophy, the

techniques we present in the following explore ways to identify causal effects from

data when only knowledge about the graph G is available.9

One key feature of DAGs is that they are falsifiable through testable implications

over the observed distributions, including conditional independence relationships

between variables in the model.10 We define below such notion.

Definition 2.2. (D-separation; Pearl, 1988) A set Z of nodes is said to block a
path p if either

1. p contains at least one arrow-emitting node that is in Z,

2. p contains at least one collision node that is outside Z and has no descendant
in Z.

If Z blocks all paths from set X to set Y , it is said to “d-separate X and Y ”,
and then it can be shown that variables X and Y are independent given Z, written
X ⊥⊥ Y |Z.11

Conditional independence licensed by d-separation (d stands for “directional”)

holds for any distribution P (v) over the variables in the model, which is compat-

ible with the causal assumptions encoded in the graph. Remarkably, this is true

9This is indeed the case unless otherwise specified, and should constitute the starting point of
any analysis. Whenever nonparametric identification is not entailed by the available knowl-
edge, the causal graph can still be used as a computation device to analyze identifiability
of entire classes of structural models. For instance, the most general identification results
of structural coefficients if the system is linear are within the graphical perspective. For a
survey and the latest results, please refer to Pearl (2009, Ch. 5) and Chen et al. (2017).

10Historically, DAGs were first introduced in the context of the AI literature in the early 1980’s
as efficient encoders of conditional independence constraints, and as a basis that avoided the
explicit enumeration of exponentially many of such constraints. This encoding lead to a huge
literature on efficient algorithms for computing and updating probabilistic relationships in
data-intensive applications (Pearl, 1988).

11See Verma and Pearl (1988). A path refers to any consecutive sequence of edges in a graph.
The orientation of edges plays no role. If the direction of edges is taken into account, one
speaks of a directed or causal path: A→ B → C.
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regardless of the parametrization of the arrows. An example is given in Figure

2b, where the path A → D ← B → C is blocked by Z = {B}, since B emits

arrows on that path. Consequently, we can infer the conditional independencies

A ⊥⊥ C|B and D ⊥⊥ C|B. In fact, A and C are independent conditional on the

empty set {∅} too. D acts as a so-called collider node, because of two arrows

pointing into it. Therefore, according to the second condition of Definition 2.2,

it blocks the path between A and C without any conditioning. Conversely, when

conditioned on, a collider would open up a path that has been previously blocked;

thus, A 6⊥⊥ C|D. The same holds for descendants of colliders such as E in Figure

2b, yielding A 6⊥⊥ C|E.

D-separation allows to systematically read off the conditional independencies

implied by the structural model from the graph. As mentioned earlier, this method

provides the analyst with a set of testable implications that can be benchmarked

with the available data. The full list of conditional independence relations (with

separator sets up to cardinality one) implied by the graph in Figure 2b is given

by:

A ⊥⊥ B; A ⊥⊥ C; A ⊥⊥ E|D; B ⊥⊥ E|D;
C ⊥⊥ D|B; C ⊥⊥ E|D; C ⊥⊥ E|B. (2.2)

These independence relations can easily be tested through statistical hypothesis

testing, and if rejected, the hypothesized model can be discarded too. An advan-

tage of such local tests, compared to global goodness-of-fit measures, for example,

is that they indicate exactly where the model is incompatible with the observed

data. Thus, the analyst can rely on concrete clues about where to improve the

model, which facilitates an iterative process of model building.

Conditional independence assumptions constitute a main building block of causal

inference – a theme that we will further pursue in Section 3. With the help of the

d-separation criterion, their validity can be determined simply based on the topol-

ogy of the graph. For this reason, DAGs constitute a valuable complement to the

treatment effects literature, in which independence assumptions for counterfac-

tuals, such as ignorability, are usually invoked without a reference to an explicit

model (Imbens and Rubin, 2015). A shortcoming of such an approach is that

the analyst has little to no guidance for scrutinizing the plausibility of crucial
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identifying assumptions on which the whole analysis hinges on. DAGs facilitate

this task significantly; in particular, because finding d-separation relations, even

in complex graphs, can easily be automatized (Textor and Lískiewicz, 2011; Tex-

tor et al., 2011). Moreover, using causal graphs increases the transparency of

research designs compared to purely verbal justifications of identification strate-

gies and thereby improves the communication between researchers and facilitates

cumulative research efforts, as exemplified in future sections.

2.1. Interventions in structural causal models

The aim of causal inference is to predict the effects of interventions, such as those

resulting from policy actions, social programs, and management initiatives (Wood-

ward, 2003). Based on early ideas from the econometrics literature (Haavelmo,

1943; Strotz and Wold, 1960; Pearl, 2015b), interventions in structural causal

models are carried out by deleting individual functions, fi, from the model and

fixing their left-hand side variables at a constant value.12 As alluded earlier, this

action is denoted by a mathematical operator called do(·). For example, in model

M of equation 2.1 (with the respective graph shown in Figure 2a), the action

do(X = x0) results in the post-intervention model Mx0 :

z ← fZ(uz),
x← x0,
y ← fY (x, z, uY ).

(2.3)

The diagram associated with Mx0 is depicted in Figure 2c, in which all incoming

arrows into X are deleted and replaced by x← x0. This captures the notion that

an intervention interrupts the original data generating process and eliminates all

naturally occurring causes of the manipulated variable. Because other causal paths

are effectively shut off in that way, any difference between the two probability

distributions associated with Mx0 and Mx1 captures the variations in outcome Y

that is the result of a causal impact of ∆x = x1 − x0. A randomized control

12The early literature on graphical models, including Bayesian networks and Markov random
fields, relied entirely on probabilistic models, which were unable to answer causal and coun-
terfactual queries (Pearl and Mackenzie, 2018, p. 284f.). A major intellectual breakthrough
was achieved in the early 1990s by switching focus to the quasi-deterministic functional rela-
tionships of the sort that are ubiquitous in econometrics (Pearl, 2009, p. 104f.).
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trial closely follows this idea. Experimentation ties the value of a variable to the

outcome of a coin flip, which thus induces variation in X that is uncorrelated to

any other factors or causal mechanisms.

The post-intervention distribution of Y can also be denoted in counterfactual

notation as

P (y|do(x)) , P (Yx = y), (2.4)

where Yx = y should be read as “Y would be equal to y, if X had been x”

(Pearl, 2009, def. 7.1.5). This definition illustrates the connection to the potential

outcomes framework (Neyman, 1923; Rubin, 1974; Imbens, 2004), where counter-

factuals such as Yx0 and Yx1 are taken as primitives. By contrast, in an SCM,

counterfactuals are constructs; i.e., derivable quantities from the underlying, more

fundamental causal mechanisms. Naturally, we can write explicitly,

Yx0 ← f(x0, z, uY ), (2.5)
Yx1 ← f(x1, z, uY ), (2.6)

which follow immediately from Mx0 and Mx1 , respectively. In other words, coun-

terfactuals are derived from first principles in SCMs, instead of taken as axiomatic

primitives.

Equipped with clear semantics for causal models in terms of the underlying

mechanisms, and causal effects in terms of interventions on the naturally occur-

ring structural processes in the system, we can now finally state the problem of

nonparametric identification.13

Definition 2.3. (Identifiability; Pearl, 2000) A causal query Q is identifiable (ID,
for short) from distribution P (v) compatible with a causal graph G, if for any two
(fully specified) models M1 and M2 that satisfy the assumptions in G, we have

P1(v) = P2(v)⇒ Q(M1) = Q(M2). (2.7)

13This definition of identification is not the same, but related to the one used in Matzkin (2007),.
More notedly, the shared feature assumed to be available across structural systems in Matzkin
are constraints in the form of (weak) functional assumptions such as monotonicity in some-
what more coarse models, with treatment, outcome, and covariates. Here, on the other hand,
we do not assume constraints over the form of the structural functions, but the corresponding
shared features are topological, that is, exclusion and independence restrictions are encoded
in the causal graph.
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This definition requires that for any two (unobserved) SCMs M1 and M2, if their

induced distributions P1(v) and P2(v) coincide, both models need to provide the

same answers to query Q. Identifiability entails that Q depends solely on P (v)

and the assumptions in G, and can therefore be uniquely expressed in terms of the

observed distribution. This holds true regardless of the underlying mechanisms fi

and randomness P (u), which, therefore, do not need to be known to the analyst.

This is a quite remarkable result, if achieved, since while embracing and acknowl-

edging the true, unobserved structural mechanisms, one can still make the causal

statement as if these mechanisms were fully known, such as they would be, e.g.,

in many settings in physics, chemistry, or biology.

Naturally, once the post-intervention distribution P (y|do(x)) for any value of x

is identified, the average causal effect (as well as any other quantity, such as risk

ratios, odds ratios, quantile effects, etc.) can be computed as14

E [Y |do(X = x1)]− E [Y |do(X = x0)] =
∑
y

y [P (y|do(x1))− P (y|do(x0))] . (2.8)

3. CONFOUNDING BIAS

One of the biggest threats to causal inference, and the one which usually receives

the greatest attention from methodologists, is confounding bias. The suspicion that

a correlation might not reflect a genuine causal link between two variables, but

is instead driven by a set of common causes, gives rise to the maxim “correlation

does not imply causation” (List, 2011). In the presence of confounding, the analyst

needs to find a (non-trivial) mapping from a causal query Q to observables P (v), in

order to achieve identification. In this section, we will introduce the inference rules

of do-calculus that allow a logical and systematic treatment of the identification

problem solely based on information encoded in a directed acyclic graph G.

Before we do so, however, we will discuss two special cases for dealing with con-

founding bias – the backdoor and frontdoor adjustments – that are instances of the

general treatment provided by do-calculus. Eventually, we will also discuss identi-

fication strategies for cases when confounding bias cannot be eliminated in purely

14For ease of exposition, we assume random variables to be discrete throughout the text. Sum-
mations should be replaced by integrals if variables with continuous support are considered.
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Figure 3: (a) College wage premium example of Section 3.1. Variables: college degree
(C), earnings (Y ), occupation (W ), work-related health (H), socio-economic
factors (E). (b) Graph GC obtained when all arrows emitted by C in the
graph of panel (a) are deleted.

observational data, but in which a surrogate experiment, akin to an instrumental

variable that creates exogenous variation in a treatment, is available.

3.1. Covariate selection and the backdoor criterion

Consider the well-known example from labor economics of estimating the college

wage premium (Angrist and Pischke, 2009, ch. 3.2.3). Let the causal relationships

in the problem be represented by the causal graph G in Figure 3a. C is a dummy

variable that is equal to one for individuals who obtained a college degree, and

the outcome of interest, Y , refers to annual earnings. W is a dummy indicating

whether an individual works in a “white-collar” or “blue-collar” job. W is causally

affected by C, since many white-collar jobs require a college degree. At the same

time, the effect ofW is partially mediated by an individual’s work-related healthH.

This assumption captures the idea that blue-collar jobs might be associated with

higher adverse health effects, which ultimately reduce life-time earnings. Finally,

E represents a set of socio-economic variables that influence both the probability

to graduate from college as well as individuals’ future earning potentials. Dashed

bidirected arrows depict unmeasured common causes that lead to a dependence

between the background characteristics U of the connected variables.

In order to estimate the causal effect of a college degree on earnings, the following

graphical criterion can be used to find admissible adjustment sets that eliminate
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any confounding influences between C and Y .

Definition 3.1. (Admissible sets – the backdoor criterion; Pearl, 1995) Given an
ordered pair of treatment and outcome variables (X, Y ) in a causal DAG G, a set
Z is backdoor admissible if it blocks every path between X and Y in the graph GX .

GX in definition 3.1 refers to the graph that is obtained when all edges emitted

by node X are deleted in G. Figure 3b depicts GC for the college wage premium

example, where C → H and C → W have been removed. The intuition behind

the backdoor criterion is simple. Unblocked paths between X and Y pointing

into X (i.e., “entering through the backdoor”) create an association between X

and Y that is not due to any causal influence exerted by X.15 By adjusting for

(or conditioning on) variables along these spurious paths, this association can be

canceled such that only the causal influence from X to Y remains.

In the particular example of Figure 3a, the set Z = {E} satisfies the backdoor

criterion and is thus an admissible adjustment set.16 W can be left unaccounted for

because it does not lie on a backdoor path between X and Y . In fact, the graph

illustrates why conditioning on occupation would produce, rather than reduce,

estimation bias. According to the d-separation criterion in Definition 2.2, W is

a collider node on C → W L9999K Y , and thus would open, or unblock, this

path when conditioned on. As a consequence, adjusting for W would inject bias,

creating a non-causal (spurious) correlation between C and Y , and would thus be

a serious mistake in this example.

Whenever a backdoor set exists, the causal effect of X on Y can be estimated

by adjustment, as shown next.

Theorem 3.2. (Backdoor Adjustment Criterion) If a set of variables satisfies the

backdoor criterion relative to (X, Y ), the causal effect of X on Y can be identified

from observational data by the adjustment formula

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z). (3.1)

15Genuine causal effects can only be transmitted “downstream” of X, via directed paths pointing
from X to its descendants and eventually to Y .

16Note that Z = {E} remains an admissible adjustment set even if edges pointing from E to W
and H are added to the graph in Figure 3a.
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Figure 4: (a) Application of the backdoor criterion in larger graphs. (b) The presence
of M on the directed path from X to Y allows for identification via the front-
door criterion.

Practically speaking, estimation can be carried out by propensity score matching

(Rosenbaum and Rubin, 1983; Heckman et al., 1998), inverse probability weighting

(Robins, 1999), or deep neural networks (Shi et al., 2019), among other efficient

estimation methods.

At this point, the similarity with the treatment effects literature is no coin-

cidence, as the backdoor criterion formally implies ignorability (Rosenbaum and

Rubin, 1983).

Theorem 3.3. (Counterfactual interpretation of backdoor; Pearl, 2009) If a set
Z of variables satisfies the backdoor condition relative to (X, Y ), then for all x,
the counterfactual Yx is conditionally independent of X given Z

Yx ⊥⊥ X|Z. (3.2)

In contrast to the potential outcomes framework, however, which provides the

analyst with little guidance to identify biasing paths, the search for appropriate

adjustment sets via the backdoor criterion can easily be automated (Textor and

Lískiewicz, 2011; Textor et al., 2011). This is particularly useful in larger graphs,

such as in Figure 4a. Here, the set of all admissible adjustment sets for identifying
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P (y|do(x)) is given by

Z ={{W2}, {W2,W3}, {W2,W4}, {W3,W4},
{W2,W3,W4}, {W2,W5}, {W2,W3,W5}, {W4,W5}, (3.3)
{W2,W4,W5}, {W3,W4,W5}, {W2,W3,W4,W5}}.

This list of suitable covariate adjustment sets illustrates that it is neither neces-

sary nor sufficient to adjust for all variables in a model. The analyst could, for

example, decide to save costs on data collection efforts for W4 and instead esti-

mate the effect of X by conditioning on {W2,W3}. At the same time, it would

be a serious mistake to condition on W1, since that would introduce collider bias

on the path X L9999K W1 L9999K Y . These intricacies of finding appropriate ad-

justment sets – in particular in more realistic models – cast serious doubts on the

possibility to judge the validity of conditional independence assumptions simply

based on introspection and verbal discussions. Causal diagrams, therefore, offer

an indispensable complement to any estimation approach that takes ignorability

(or conditional exogeneity) as a starting point.

3.2. Frontdoor adjustment in the presence of unmeasured confounders

Identification via backdoor adjustment requires that all backdoor paths can be

blocked by a set of observed nodes, which is not always feasible in many practical

settings. In situations where no set of observables is backdoor admissible, another

(admittedly less familiar to economists) identification strategy might be applicable.

Figure 4b presents an example in which adjusting for a set of observable variables

{W1} is not sufficient to close all backdoor paths between X and Y . The same

is true for the sets {W1,W2} as well as the set of all pretreatment covariates,

{W1,W2,W3}. For any possible adjustment set, there are unobserved confounders

remaining in the graph, represented by the bidirected arc X L9999K Y . At the

same time, the entire effect of X is assumed to be mediated by a another observed

variable M . This assumption is plausible, for example, if a policy intervention

in the educational sector affects the job market prospects of graduates solely by
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raising test scores.17

Still, and perhaps surprisingly, if the data allows to adjust for the confounders

at the mediator (since W2 and W3 in Figure 4b are assumed to be observed) the

effect of X on Y is identifiable with the help of the following criterion (inspired by

Pearl, 1995).

Definition 3.4. (Conditional frontdoor criterion) A set of variables Z is said to

satisfy the conditional frontdoor criterion (frontdoor, for short) relative to a triplet

(X, Y,W ) if

1. Z intercepts all directed paths from X to Y ,

2. there is no unblocked backdoor path from X to Z given W , and

3. all the backdoor paths from Z to Y are blocked by {X,W}.

Theorem 3.5. (Conditional frontdoor adjustment) If a set of variables satisfies

the conditional frontdoor criterion relative to (X, Y,W ), the causal effect of X on

Y can be identified from observational data by the frontdoor formula

P (Y = y|do(X = x)) =
∑
m,w

P (m|w,X = x)p(w)
∑
x′

P (Y = y|w,m,X = x′)P (X = x′|w)

(3.4)

Applying the frontdoor criterion to the graph in Figure 4b withW = {W1,W2,W3}
yields the following identification expression.

P (y|do(x)) =
∑
m,w

P (m|x,W = w)P (W = w)
∑
x′,w

P (y|x′,m,W = w)P (x′|W = w).

(3.5)

Frontdoor adjustment amounts to a sequential application of the backdoor crite-

rion. First, the effect of X on M can be identified by adjusting for W2. Second,

the backdoor path M ← X L9999K Y , which remains open after adjusting for W3,

can be blocked by conditioning on X. The frontdoor adjustment formula then

chains these individual causal effect estimates together to arrive at the overall ef-

fect of X on Y . Because the frontdoor criterion is applicable even in the presence

17Obviously, adjusting for the mediator M will not be a viable solution either, since this would
block, in the d-separation sense, part of the effect the researcher aims to estimate.
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of unobserved confounders (when ignorability does not hold), it is a good example

of how causal graphs can point to new identification strategies that go beyond the

standard tools currently applied in econometrics.18

3.3. Causal calculus and the algorithmization of identification strategies

The backdoor and frontdoor criteria offer simple graphical identification rules that

are easy to check. However, while definitely important, they only represent a lim-

ited subset of the overall identification results that are derivable in DAGs. In more

generality, identifiability of any query of the form P (y|do(x)) can be decided sys-

tematically by using a symbolic causal inference engine called do-calculus (Pearl,

1995). Do-calculus consists of three inference rules, which allow the analyst to

transform probabilistic sentences involving interventions and observations, when-

ever certain separation conditions hold in the causal graph G defined by model

M .

Let X, Y , Z, and W be arbitrary disjoint sets of nodes in G. The mutilated

graph that is obtained by removing all arrows pointing to nodes in X from G is

denoted by GX . Similarly, GX results from deleting all arrows that are emitted by

X in G. Finally, the removal of both arrows incoming in X and arrows outgoing

from Z is denoted by GXZ . Given this notation, the following three rules – valid

for every interventional distribution compatible with G – can be formulated.

Do-Calculus Rule 1. (Insertion/deletion of observations)

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
. (3.6)

Do-Calculus Rule 2. (Action/observation exchange)

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
. (3.7)

18Glynn and Kashin (2017) present an interesting application of the frontdoor criterion for eval-
uating the effect of the National Job Training Partnership Act program (JTPA; Heckman
et al., 1997) on earnings. In their setting, captured by a graph similar to Figure 4b, X
measures the (self-selected) sign-up for the program and M whether an individual actually
showed up for the training. The authors are able to relax the assumptions given in Definition
3.4 by complementing the frontdoor criterion with a difference-in-differences-type identifica-
tion approach that tackles potential bias stemming from unobserved confounders between M
and outcome Y .
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Do-Calculus Rule 3. (Insertion/deletion of actions)

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

, (3.8)

where Z(W ) is the set of Z-nodes that are not ancestors of any W-node in GX .

Rule 1 is a reaffirmation of the d-separation criterion for the X-manipulated

graph GX . Since Z is independent of Y , conditional on X and W , Z can be

freely inserted or deleted in the do-expression. Rule 2 states the condition for an

intervention do(Z = z) to have the same effect as a passive observation Z = z.

This condition is fulfilled if {X ∪ W} blocks all backdoor paths from Z to Y .

Note that in GXZ only such backdoor paths are remaining, since edges emitted

by Z are deleted from the graph. Rule 3, then indicates under which condition a

manipulation of Z does not affect the probability of Y . This is the case if in the

X- and Z-manipulated graph GXZ , Z is independent of Y conditional on X and

W .19

Identifiability of a causal query can be decided by repeatedly applying the rules

of do-calculus, until Q is transformed into a final expression that no longer contains

a do-operator. This renders Q consistently estimable from nonexperimental data.

In Appendix A.2.1 we demonstrate this process by showing a step-by-step do-

calculus derivation (with the corresponding subgraphs shown alongside) for the

college wage premium example from Figure 3a.

Do-calculus was proved sound and complete for general queries of the form

Q = P (y|do(x), z) (Pearl, 1995; Tian and Pearl, 2002b; Shpitser and Pearl, 2006a;

Huang and Valtorta, 2006; Bareinboim and Pearl, 2012a; Lee et al., 2019). Com-

pleteness refers to the property that do-calculus is guaranteed to return a solution

for the identification problem, whenever such a solution exists.20 It implies that

if no sequence of steps applying the rules of do-calculus can be found that allow

to transform Q into an expression which only contains ex-post observed probabil-

ities, the causal effect is known to be non-identifiable with observational data. If

that is the case, point identification will only be achievable by imposing stronger

functional-form restrictions (such as linearity, monotonicity, additivity, etc.), or by

19The reason for restricting the deletion to Z-nodes that are not ancestors of any W -node in
rule 3 of the do-calculus is discussed in Pearl (1995).

20Soundness means that if do-calculus returns an answer, this answer is assured to be correct.
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Figure 5: (a) P (y|do(x)) is not identifiable with observational data alone, but z-
identifiable if experimental variation in Z is available. (b) Graph GZ where
all arrows pointing into Z in (a) are deleted. (c) The canonical instrumental
variable setting. (d) Example of zID in the presence of unobserved con-
founders between X and Y and Z affecting X only indirectly.

making assumptions about the distribution of the background factors Ui. In fact,

this result can also be seen algorithmically which allows one to fully automatize

the often tedious task of transforming causal effect queries into do-free expressions.

That way, the identification of causal effects becomes a straightforward exercise,

which can be solved with the help of a computer (Tian and Pearl, 2002a).

3.4. Identification by surrogate experiments

In practice, identification of causal queries based on observational data alone often

remains an unattainable goal. At the same time, conducting a randomized control

trial (RCT) for the treatment of interest might likewise be infeasible due to cost,
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ethical, or technical considerations. In such cases, a frequently applied strategy is

to make use of experiments involving a third variable, which is only proximately

linked to the treatment but more easily manipulable. In development economics

and economic policy such an approach is known under the name of “encourage-

ment design” (Duflo et al., 2008). An instructive example is given by Duflo and

Saez (2003) who analyze the effect of financial knowledge on retirement planning

decisions. They conduct an RCT that randomly allocates monetary rewards for

attending an information session on tax deferred account (TDA) retirement plans

to university employees. In this surrogate experiment, experimental control of

a proxy variable (financial rewards) is supposed to create (or “encourage”) ex-

ogenous variation in the otherwise endogenous treatment of interest (knowledge

about TDA retirement plans). However, compliance remains imperfect, since not

all eligible test persons will take up treatment (i.e., show up for the information

session).

To make the idea of surrogate experiments even more concrete, Figure 5a presents

an example in which several paths passing through Z are confounding the rela-

tionship between X and Y . Backdoor adjustment is not a viable identification

strategy in this graph, since Z is a collider on X L9999K Z L9999K Y , and con-

ditioning on Z would thus open up the path. Furthermore, it can be shown that

any other attempt of identifying Q = P (y|do(x)) with purely observational data

is prone to fail as well in this example. By contrast, if it is possible to manipulate

Z in a randomized control trial, the causal effect of X on Y can be identified from

the interventional distribution P (v|do(z)) instead. Generalizing this idea leads to

a natural extension of the identification problem formulated earlier (see Definition

2.3).

Definition 3.6. (Z-identifiability; Bareinboim and Pearl, 2012a) Let X, Y, Z be
disjoint sets of variables, and let G be the causal diagram. The causal effect of
an action do(X = x) on a set of variables Y is said to be z-identifiable (zID, for
short) from P in G, if P (y|do(x)) is (uniquely) computable from P (V ) together
with the interventional distributions P (V \Z ′|do(Z ′)), for all Z ′ ⊆ Z, in any model
that induces G.

Bareinboim and Pearl (2012a) show that the z-identification task can be solved

in a similar fashion to the standard identification problem, by repeatedly applying
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the rules of do-calculus in order to transform a causal query Q into an expression

that only contains do(z).

Theorem 3.7. (Bareinboim and Pearl, 2012a) Let X, Y, Z be disjoint sets of vari-
ables, and let G be the causal diagram, and Q = P (y|do(x)). Q is zID from P in
G if the expression P (y|do(x)) is reducible, using the rules of do-calculus, to an
expression in which only elements of Z may appear as interventional variables.

It can further be proved that do-calculus is likewise complete for z-identification

(Bareinboim and Pearl, 2012a, Corrolary 3); i.e., it reaches a solution to the zID
problem whenever such a solution exists.

For the sake of concreteness, however, we discuss a weaker condition, which

is only sufficient but not necessary, in order to exemplify the mechanics of the

z-identification problem.

Theorem 3.8. (Sufficient condition – z-identification; Bareinboim and Pearl,
2012a) Let X, Y , Z be disjoint sets of variables and let G be the causal graph.
The causal effect Q = P (y|do(x)) is zID in G if one of the following conditions
hold:

(i) Q is identifiable in G; or.

(ii) There exists Z ′ ⊆ Z such that the following conditions hold,

a. X intercepts all directed paths from Z ′ to Y and

b. Q is identifiable in GZ′.

Condition (i) is the base case for when standard identifiability is reached. When-

ever this is not the case, if all directed paths from Z to Y are blocked by X, this

means that Z has no effect on Y , which by the do-calculus implies P (y|do(x)) =

P (y|do(x, z)); i.e., the effect of X on Y is the same as the effect of X,Z on Y . Con-

dition (ii:b) notes that manipulation of Z leads to the post-intervention graph GZ ,

in which all incoming arrows into Z are deleted. If the effect of X can then be iden-

tified in this graph, by the removal of do(x) in the expression, then z-identification

is ascertained.

For example, recall that in Figure 5a the effect of X on Y is not identifiable from

P (v). If experimental data over Z is available, i.e., P (v|do(z)), then Theorem 3.8
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can be applied. Note that all the directed paths from Z to Y are blocked by X,

which satisfies condition (i:a). It is also the case that in the graph GZ (see Figure

5b), the set {W1,W2} is backdoor admissible (by Theorem 3.1), which in turn

satisfies condition (ii:b). After all, the effect P (Y = y|do(X = x)) is identifiable

and given by the expression:

∑
w1,w2

P (Y = y|do(Z = z), X = x,w1, w2)P (w1, w2|do(Z = z)). (3.9)

As in the observational case, researchers are not required to engage in these deriva-

tions by hand, since fully automated algorithms exist for z-identification and its

generalizations (see Bareinboim and Pearl, 2012a; and Lee et al., 2019, for a survey

and the latest results).

Since z-identification exploits experimental variation in a surrogate variable,

which causally effects the treatment of interest, it bears close resemblance to in-

strumental variable (IV) estimation. But the two are not exactly the same. Take

the canonical IV setting (following Angrist, 1990) with an exogenous instrument

and unobserved confounders between treatment and outcome, depicted in Figure

5c. In this graph, P (y|do(x)) is not zID, because the bidirected arc between X

and Y violates condition (ii:b) of Theorem 3.8.21

The fact that P (y|do(x)) remains unidentifiable in Figure 5c is not very surpris-

ing, however. It is a well-known result that point identification of the canonical IV

estimator is not possible in the nonparametric case (Manski, 1990; Balke and Pearl,

1995). Introducing additional functional form restrictions, such as monotonicity or

linearity, would likewise only permit to identify a local average treatment effect for

the latent subgroup of compliers (Imbens and Angrist, 1994). Z-identification, by

contrast, leverages the fully nonparametric nature of the order relations expressed

in causal diagrams. If a query is zID, the entire post-interventional distribution,

including the average treatment effect, is computable from data. Moreover, z-

identification is applicable in more complicated settings than just the canonical

IV. An example is given in Figure 5d, where, in addition to an unobserved con-

21Theorem 3.8 is only sufficient, but not necessary. Nonetheless, z-identification can also be
proved impossible for the graph in Figure 5c, following the most general treatment in Lee
et al. (2019).
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founder between X and Y , Z exerts only an indirect effect on X.22 For these

reasons, we consider zID, including Theorem 3.8, an attractive generalization of

the IV strategy in fully nonparametric settings.

4. SAMPLE SELECTION BIAS

The previous section discussed strategies to control for confounding bias, which is

the result of nonrandom assignment into treatment and decision-making. Apart

from that, researchers often encounter another source of bias in applied empirical

work that stems from preferential selection of units into the data pool. Sample se-

lection poses a serious threat to both statistical as well as causal inference, because

it jeopardizes the representativeness of the data for the underlying population. A

seminal discussion of this problem in an economic context is given by Heckman

(1976, 1979). He estimates a model of female labor supply in a sample of 2,253

working women interviewed in 1967. The challenge to valid inference in this set-

ting arises due to the fact that market wages are only observable for women who

actually choose to work. His model is described as follows.

si ← 1[Z
′

iδ − ηi > 0] (4.1)

yi ←

xiβ + Z
′
iγ + εi if si = 1,

unobserved if si = 0.
(4.2)

Equation (4.1) characterizes the sampling mechanism. Wages yi for an individual

i are only observed if (Z
′
iδ − ηi) attains a value above zero, which is captured

by the selection indicator variable si. Economically, this expresses the idea that

individuals will choose to remain unemployed if the wage they are able to attain

on the market (determined by the vector of socio-economic characteristics Zi)

does not exceed their reservation level ηi. Systematic bias in the coefficient of

interest β for hours worked xi can then arise if reservation wages are correlated

22The causal effect of X on Y is zID in Figure 5d by:

P (y|do(x)) =
∑
w2

P (w2|x, do(z))
∑
x′

P (y|w2, X = x′, do(z))P (X = x′|do(z))
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Figure 6: (a) A model of female labor supply (Heckman, 1976, 1979). Variables: hours
worked (X), earnings (Y), socio-economic factors (Z), sampling mechanism
(S). (b) P (y|do(x)) is recoverable from selected data as P (y|x, S = 1). (c)
{W1,W3}, {W2,W3} and {Z} are all backdoor admissible, but the causal
effect is only recoverable with {Z}.

with unobservables in the market wage equation (4.2); that is, if Corr(ηi, εi) 6= 0.

Similar cases of sample selection are widespread in economics. Examples are

discussed by Levitt and Porter (2000), who estimate the effectiveness of seatbelts

and airbags in a sample of fatal crashes, and by Ihlanfeldt and Martinez-Vazquez

(1986), who note the difficulty of assessing the determinants of house prices when

using data on recently sold homes. Knox et al. (2019) point out another illustrative

case. They critique studies which attempt to estimate the extent of racial bias in

policing with the help of administrative data (Fryer, 2018). Problematic in this

context is that individuals only appear in such records if police officers decided

to stop and interrogate them in the first place. If this stopping decision is itself

causally affected by minority status, sample selection bias might arise, since the

data is not a representative sample of the overall population anymore.

In causal diagrams, cases of sample selection can be captured by explicitly mod-

eling the sampling selection mechanism. We will realize this goal by augmenting

the semantics of the causal diagram to account for the sampling mechanism, which

graphically will be achieved by adding a new special variable called S. This vari-

able S will take on two values: one, if a unit is part of the sample, and zero

otherwise. If endogenous variables in the analysis affect the sampling probabil-

ities, we will add an arrow from these variables to S, which will constitute the

specification of the selection mechanism.23 Figure 6a depicts a DAG for the fe-

23We will consider the case here where the sample selection nodes are only allowed to have
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male labor supply example that has been augmented by such a selection node;

the resulting graph is referred to as a selection diagram and denoted by GS. An

individual’s socio-economic characteristics Z determine inclusion in the sampling

pool and the bidirected dashed arc between S and Y indicates the presence of

unobserved confounders that are the source of the error correlation in the model.

Simultaneously controlling for confounding and selection biases introduces a new

challenge to the do-calculus. Not only is it necessary to transform interventional

distributions into do-free expressions, but the probabilities that make up these

expressions now also need to be conditional on S = 1, because that is all the

analyst is able to observe. This additional restriction explains why dealing with

selection bias is such a hard problem in practice. At the same time, the litera-

ture on recovering causal effects from selection-biased data (Bareinboim and Pearl,

2012b; Bareinboim et al., 2014; Bareinboim and Tian, 2015) aims at preserving

the fully nonparametric nature of causal graphs in this task. Consequently, the

proposed approaches refrain from making any functional form assumptions related

to the selection-propensity score P (si|pai) (such as monotonicity or joint normal-

ity), which are ubiquitous in the econometrics literature since early on (Angrist,

1997). Nevertheless, even with this limited set of assumptions as a starting point,

several positive results for the recoverability of causal effects from selection bias

can be derived.

As a first step, Bareinboim et al. (2014) provide a complete condition for recov-

ering conditional probabilities that do not yet contain a do-operator.

Theorem 4.1. (Bareinboim et al., 2014) The conditional distribution P (y|t) is
recoverable from GS (as P (y|t, S = 1)) if and only if (Y ⊥⊥ S|T ).

Sufficiency of this condition follows immediately. However, its necessity is less

obvious and implies that if Y is not d-separated from S in GS, its conditional distri-

bution will not be recoverable. Combining Theorem 4.1 with do-calculus suggests

a straightforward strategy for also recovering do-expressions from selection bias

(Bareinboim and Tian, 2015).

incoming arrows, but will not emit arrows themselves.
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Corollary 4.2. (Bareinboim and Tian, 2015) The causal effect Q = P (y|do(x))
is recoverable from selection-biased data (i.e., P (v|S = 1)) if using the rules of the
do-calculus, Q is reducible to an expression in which no do-operator appears, and
recoverability is determined by Theorem 4.1.

Take Figure 6b as an example. Here, the relationship between X and Y is

unconfounded and, therefore, P (y|do(x)) = P (y|x) holds. Moreover, since S and

Y are d-separated by X, we find the causal effect to be recoverable and given by

P (y|x, S = 1).

An immediate consequence of Theorem 4.1 is that causal effects will not be

recoverable if Y is directly connected to S via an edge in the graph. Thus, without

invoking stronger functional form assumptions, there is no possibility to control for

selection bias in the female labor supply model of Figure 6a. In general, selection-

biased data impair identification in observational studies since now the problem of

both confounding and selection needs to be addressed simultaneously. An example

is given by the graph in Figure 6c, which contains three backdoor admissible

adjustment sets, {W1,W3}, {W2,W3}, and {Z}, that are (minimally) sufficient for

controlling for confounding bias, following Theorem 3.1. However, in this case,

recoverability from selection bias can only be achieved with the set {Z}. That

is, because in the adjustment formula (equation 3.1), the prior distribution of the

adjustment set needs to be recovered as well, and {Z} is the only conditioning set

that is marginally d-separated from S. Thus, following the strategy dictated by

Corollary 4.2, the estimable backdoor adjustment expression in this case will be:

P (y|do(x)) =
∑
z

P (y|x, z, S = 1)P (z|S = 1). (4.3)

It is important to note, that although Theorem 4.1 provides a necessary condi-

tion for recovering conditional probabilities, the same does not hold for Corollary

4.2 with respect to do-expressions. This is exemplified by the graph in Figure

7a. Due to unobserved confounders between Z and Y , and the fact that Z is

a collider in the path X ← W → Z L9999K Y , identification via the backdoor

criterion would require to adjust for both Z and W in order to close all backdoor

paths. However, {Z,W} is not d-separable from S (W has a direct arrow to S),

and a attempt to apply Corollary 4.2 will thus fail. Nevertheless, P (y|do(x)) can
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Figure 7: (a) P (y|do(x)) is not recoverable from selection bias following the approach
laid out in Corollary 4.2. Nevertheless recovery can be achieved by applying
the rules of do-calculus. (b) Adaption of the sample selection model in Figure
6a, in which the set {Z,W} is s-backdoor admissible.

still be recovered in Figure 7a with the help of do-calculus using a slightly more

sophisticated approach.24 To witness, note that (S,W ⊥⊥ Y ) in GX , i.e., the re-

sulting graph when all incoming arrows in X are deleted (see Section 3.3). Then,

according to the first rule of do-calculus,

P (y|do(x)) = P (y|do(x), w, S = 1), (4.4)

=
∑
z

P (y|do(x), z, w, S = 1)P (z|do(x), w, S = 1), (4.5)

where the second line follows by conditioning on Z. Applying rule 2 of do-calculus,

since (Y ⊥⊥ X|W,Z, S) in GX , the do-operator can be removed in the first term of

Equation 4.5, which can be written as:

=
∑
z

P (y|x, z, w, S = 1)P (z|do(x), w, S = 1). (4.6)

Finally, since (Z ⊥⊥ X|W,S = 1) in GX(W ), rule 3 of the calculus allows us to

remove the do(x) from the second term, such that:

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|w, S = 1). (4.7)

Note that the quantities in the final expression of P (y|do(x)) do not involve any

do-operator, since the dataset is observational, and always contain S = 1, given

24The following do-calculus derivations are shown in more detail, with corresponding subgraphs
depicted alongside, in Appendix A.2.2.
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that the samples were selected preferentially. Taken together, this ensures recov-

erability.

Bareinboim and Tian (2015) provide algorithmic criteria for recovering interven-

tional distributions (i.e., containing do(x)-operators) in arbitrary causal graphs.

They permit full automatization of derivations such as the one just performed.

Recently, this algorithm was also proved complete for the recovery task by Correa

et al. (2019).

4.1. Combining biased and unbiased data

Another promising strategy for recovering causal quantities from sample selection

is when biased and unbiased data sources are combined. For example, the dis-

tributions of socio-economic factors such as age, sex, and education can often be

measured without bias from population-level statistics. To illustrate how this helps

for recoverability, we revisit the female labor supply example from above, but now

assume that the common parent of wages Y and the selection node S is observable

as W (see Figure 7b, which is the same as Figure 7a but for the replacement of

the bidirected arrow with the observed W ). If that is the case, conditioning on

the set {Z,W} closes all backdoor paths between X and Y and simultaneously

d-separates Y from S. From the backdoor adjustment formula discussed above

(Theorem 3.2), we can thus derive

P (y|do(x)) =
∑
z,w

P (y|x, z, w)P (z, w), (4.8)

=
∑
z,w

P (y|x, z, w, S = 1)P (z, w), (4.9)

where the second line follows from Theorem 4.1, since (Y ⊥⊥ S|Z,W ). As P (z, w)

cannot be recovered from selection bias, Corollary 4.2 is not applicable. However,

if in addition to the selected data, unbiased measurements of P (z, w) are available

(e.g., from census data), equation (4.9) becomes estimable.

Bareinboim et al. (2014) leverage this idea and present the following generaliza-

tion of the backdoor criterion, which can be invoked if a subset Z of the data is

measured without bias.
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Definition 4.3. (Selection backdoor criterion; Bareinboim et al., 2014) Let a set Z
of variables be partitioned into Z+∪Z− such that Z+ contains all non-descendants
of X and Z− the descendants of X, and let GS stand for the graph that includes
sampling mechanism S. Z is said to satisfy the selection backdoor criterion (s-
backdoor, for short) if it satisfies the following conditions:

(i) Z+ blocks all backdoor paths from X to Y in GS;

(ii) X and Z+ block all paths between Z− and Y in GS, namely, (Z− ⊥⊥ Y |X,Z+);

(iii) X and Z block all paths between S and Y in GS, namely, (Y ⊥⊥ S|X,Z);
and

(iv) Z and Z ∪ {X, Y } are measured in the unbiased and biased studies, respec-
tively.

The following theorem can then be proved.

Theorem 4.4. (Bareinboim et al., 2014) If Z is s-backdoor admissible, then causal
effects are identified by

P (y|do(x)) =
∑
z

P (y|x, z, S = 1)P (z). (4.10)

The s-backdoor criterion is a sufficient condition for generalized adjustment,

which is able to deal with confounding and selection bias simultaneously. Correa

et al. (2018) substantially extend this line of work by presenting conditions that

are both necessary and sufficient. Furthermore, Correa et al. (2019) provide a

sound algorithm for recovering causal effects from a mix of biased and unbiased

data in causal graphs that are arbitrary in size and shape.

5. TRANSPORTABILITY OF CAUSAL KNOWLEDGE

Extrapolating causal knowledge across settings is a fundamental problem in causal

inference. Experiments are usually conducted in different populations than they

are supposed to inform. Expecting experimental results to hold across populations

may be fallacious, however, if domains differ structurally in important ways. Duflo

et al. (2008) allude to this problem in a development economics context when
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asking: “If a program worked for poor rural women in Africa, will it work for

middle-income urban men in South Asia?”.

In this section, we discuss the conditions under which a transfer of causal knowl-

edge across structurally heterogeneous domains is valid. This issue is known under

the rubric of “transportability” in the computer science literature, while social sci-

entists usually refer to it as “external validity” (Pearl and Bareinboim, 2014).25

Nakamura and Steinsson (2018) discuss the challenge of external validity from a

macroeconomic perspective and come to the conclusion that “even very cleanly

identified monetary and fiscal natural experiments give us, at best, only a partial

assessment of how future monetary and fiscal policy actions—which may differ in

important ways from those in the past—will affect the economy.” Causal diagrams,

in conjunction with do-calculus, allow to formally address these kinds of concerns

in a principled, general, and efficient way, eliciting the assumptions needed to an-

alyze these settings and making precise how much can actually be learned from

experiments across different domains.

In practice, it is often implicitly assumed that an experimental result obtained

in population Π provides at least a good approximation for the impact of the

same intervention in other settings. This assumption is made for convenience,

because it allows to use results from Π for policy decisions in a different population

Π∗. However, such kind of direct transportability, which we formally define in the

following, is likely to be violated in many empirical settings.

Definition 5.1. (Direct Transportability; Pearl and Bareinboim, 2011) A causal
relation R is said to be directly transportable from Π to Π∗, if R(Π∗) = R(Π).

For an example, consider the study by Banerjee et al. (2007) that analyzes the

effects of a remedial education program in two major cities in Western India: Mum-

bai and Vadodara. The randomized intervention provided schools with an extra

teacher for tutoring children in the third and fourth grades, who had been lagging

behind their peers. The program showed substantial positive effects on children’s

25In econometrics, the term “external validity” is sometimes used in the narrower sense of
extrapolating local average treatment effect estimates to the group of always- and never-
takers within the same empirical domain (Kowalski, 2018). In the remainder of this section,
we will focus on the more challenging task of transporting causal knowledge across domains.
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Figure 8: (a) Z d-separates S and Y in DX . The causal effect of X on Y is thus
transportable. (b) If S-nodes are only pointing into X, the causal effect
P ∗(y|do(x)) is directly transportable. (c) Compared to (a), a single addi-
tional unobserved confounder between Z and Y prevents transportability.

academic achievements, at least in the short-run. Interestingly, however, while

treatment effects on math scores were similar in both cities, the effect on language

proficiency was weaker in Mumbai compared to Vadodara. The authors explain

this finding by higher baseline reading skills in Mumbai, where families were on

average wealthier and schools were better equipped. In math, by contrast, baseline

skill levels did not differ significantly. As a consequence, the remedial education

program, which targeted only the most basic competencies in the curriculum, was

equally effective.

The graph in Figure 8a provides a graphical representation of the setting in

Banerjee et al. (2007). Assume that we want to generalize experimental results

from a trial conducted in Vadodara (Π) to the population in Mumbai (Π∗). We are

aware, however, of the fact that income levels of families Z, which are an important

determinant of children’s academic achievements Y , are higher in Mumbai. In a

causal diagram, we can incorporate this knowledge by adding a set of selection

nodes S that indicate where both populations under study differ, either in the

distribution of background factors P (U) or due to divergent causal mechanisms

fi. These S-nodes thus locate the source of structural discrepancies that threaten

transportability. Switching between two populations Π and Π∗ is denoted by con-

ditioning on different values of S.26 Next, we define the joint graphical representa-

26For clarity, S nodes related to transportability are depicted by squares (�), in order to distin-
guish them from the selection bias case. Also note that now S is emitting arrows, whereas
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tion of the corresponding structural models in the source and target populations,

which is required to judge transportability.

Definition 5.2. (Selection Diagram; Pearl and Bareinboim, 2011) Let 〈M,M∗〉 be
a pair of structural causal models (see Definition 2.1) relative to domains 〈Π,Π∗〉,
sharing a causal diagram G. 〈M,M∗〉 is said to induce a selection diagram D if D
is constructed as follows:

(i) Every edge in G is also an edge in D.

(ii) D contains an extra edge Si → Vi whenever there might exist a discrepancy
fi 6= f ∗i or P (Ui) 6= P ∗(Ui) between M and M∗.

The absence of an S-node in the selection diagram represents the assumption

that the causal mechanism, which assigns values to the respective variable, is

the same in both populations. In the extreme case, one could add S-nodes to

all variables in the graph, to express the notion that the two populations are

maximally structurally heterogeneous (i.e., there is no knowledge whatsoever about

structural invariances). Obviously, this would undermine any hope for information

exchange across domains though.

Equipped with the definition of a selection diagram, we can state the following

theorem, which allows to transport experimental results obtained in a source Π to

another target domain Π∗, where only passive observations are possible.27

Theorem 5.3. (Pearl and Bareinboim, 2011) Let D be the selection diagram char-
acterizing two populations, Π and Π∗, and S the set of selection variables in D.
The strata-specific causal effect P ∗(y|do(x), z) is transportable from Π to Π∗ if
Z d-separates Y from S in the X-manipulated version of D, that is, Z satisfies
(Y ⊥⊥ S|Z,X)DX

.

selection nodes indicating preferential inclusion into the sample only receive incoming arrows.
27Note that, following Definition 5.2, both domains Π and Π∗ have to share the same causal dia-

gram G. Consequently, if a causal query Q is identifiable with observational data alone in the
source domain Π (i.e., no experimental knowledge is necessary), it will also be identifiable in
the target domain Π∗, and Q will thus be trivially transportable (Pearl and Bareinboim, 2011).
Pearl and Bareinboim (2011) discuss observational transportability of a statistical query of
the form P (y|x) (e.g., a classifier) from a source domain to a target domain, where only a
subset of the variables in the selection diagram are observed. Thus, statistical transportabil-
ity permits the analyst to save on data collection costs. Later on, Correa and Bareinboim
(2019) devised a complete algorithm for this task. We will not further pursue this topic in
what follows and refer the interested reader to the respective paper.
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Note that DX refers to the post-intervention graph, in which all incoming ar-

rows into X are deleted (see Section 3.3). D-separation between S-nodes and the

outcome variable Y can be achieved by adjusting for a conditioning set T , as the

following definition formalizes.

Definition 5.4. (S-admissibility; Pearl and Bareinboim, 2011) A set T of variables
satisfying (Y ⊥⊥ S|T ) in DX will be called s-admissible (with respect to the causal
effect of X on Y ).

The intuition behind this result is somewhat similar to the selection bias case

(see Theorem 4.1), where the selection indicator was likewise required to be d-

separated from Y by a set T (Pearl, 2015a). Looking at the selection diagram in

Figure 8a, we note that the set Z d-separates S and Y in DX (i.e., when X is

experimentally manipulated). It therefore satisfies s-admissibility.

By applying the rules of do-calculus, we can now show that s-admissibility im-

plies transportability across domains.

P ∗(y|do(x)) = P (y|do(x), s) (5.1)

=
∑
z

P (y|do(x), z, s)P (z|do(x), s) (5.2)

=
∑
z

P (y|do(x), z, s)P (z|s) (5.3)

=
∑
z

P (y|do(x), z)P ∗(z). (5.4)

The first equation follows from the definition that distributions in the target do-

main Π∗ are denoted by conditioning on S. The second line follows by conditioning.

The third line is derived by using the s-admissibility of Z and recognizing the fact

that X is a child of Z and, therefore, exerts no causal influence on Z (formally,

rule 3 of do-calculus can be applied). The last line is then just a restatement.

As long as Figure 8a provides an accurate model for the setting in Banerjee et al.

(2007), the causal effect of the remedial education program in Mumbai can thus

be computed by reweighting the stratum-specific causal effect (for every income

level of Z) obtained in Vadodara by the income distribution P ∗(z) in Mumbai.

No experimental data from Mumbai is required. This result is stated in its full
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generality in the following corollary.

Corollary 5.5. (Pearl and Bareinboim, 2011) The causal effect P ∗(y|do(x)) is
transportable from Π to Π∗ if there exists a set Z of observed pretreatment covari-
ates that is s-admissible. Moreover, the transport formula is given by the weighting

P ∗(y|do(x)) =
∑
z

P (y|do(x), z)P ∗(z). (5.5)

It is an immediate consequence of Theorem 5.3 that any S variable that points

into X can be ignored. The causal effect P (y|do(x)) is thus directly transportable

in Figure 8b. The same holds for S nodes that are d-separated by the empty set

in DX .

As a graphical criterion, s-admissibility is easy to check. Without a reference to a

causal diagram, however, the intricacies of transportability can be hard to discern.

Figure 8c provides a cautionary tale in that regard. Apart from the unobserved

confounder between Z and Y , it is identical to Figure 8a. Here, however, s-

admissibility is violated because conditioning on Z would open up the path S →
Z L9999K Y . In can further be shown that transporting causal effects is also

impossible in general in this selection diagram. Thus, the example illustrates that

the absence or presence of one single edge can determine whether transportability

is feasible. Recognizing such subtleties by pure introspection, without the reference

to an explicit model, would be an extremely difficult undertaking.

The transport formula presented in equation (5.5) has been acknowledged in

the econometrics literature (Hotz et al., 2005; Dehejia et al., 2015; Andrews and

Oster, 2018). Most commonly in this literature, this formula is expressed using

the potential outcomes framework, where s-admissibility is encoded through ig-

norability relations; i.e., domain heterogeneity S is assumed to be ignorable given

pretreatment covariates X. While it is hard to judge ignorability statements, we

note that this assumption is easily violated in practice; for example, by a single

unobserved confounder between Z and Y in Figure 8c. Causal graphs offer valu-

able guidance for judging the validity of ignorability assumptions, which is missing

in the potential outcomes framework. Furthermore, using the rules of do-calculus,

it becomes possible to establish transportability in more general cases that are not

covered by Corollary 5.5.
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Figure 9: (a) P ∗(y|do(x)) is transportable even though S points into a post-treatment
variable. (b) A more complex graph in which transportability can be decided
algorithmically by the criteria developed in Bareinboim and Pearl (2013b).

Theorem 5.6. (Pearl and Bareinboim, 2011) Let D be the selection diagram char-
acterizing two populations, Π and Π∗, and S as set of selection variables in D.
The relation R = P ∗(y|do(x)) is transportable from Π to Π∗ if the expression
P (y|do(x), s) is reducible, using the rules of do-calculus, to an expression in which
S appears only as a conditioning variable in do-free terms.

One such class of models is given when domains differ due to variables that are

themselves causally affected by the treatment, as in Figure 9a. Here, the effect

of X on Y is partly transmitted by Z, and domains differ either according to

the distribution of background factors UZ or the mechanism fZ that determines

Z. Such a situation can occur, for example, in development programs, where

the success of a policy is partly dependent on the level of care with which it is

implemented. Duflo et al. (2008) discuss the problem that pilot trials often employ

particularly highly qualified program officials, which is difficult to replicate once

the program is supposed to be scaled up and thus threatens the generalizability of

these pilot studies.

Gordon et al. (2018) provide a similar example from an entirely different context.

The effectiveness of advertising campaigns on social media platforms depends on

how frequently clients are exposed to the ads. Exposure thus acts as a mediator

for the effect of advertising on an outcome of interest, e.g., the click-through rate.

And since exposure is determined by user behavior, it is difficult to control for

the advertiser. If a social media company running advertising experiments wants
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to transport results obtained on a desktop version of the platform to users with

mobile devices, it will need to take into account that exposure might differ across

domains, e.g., due to differences in user demographics.

If post-treatment variables, such as in Figure 9a, are s-admissible, the causal

effect of X can be transported as

P ∗(y|do(x)) = P (y|do(x), s) (5.6)

=
∑
z

P (y|do(x), z, s)P (z|do(x), s) (5.7)

=
∑
z

P (y|do(x), z)P ∗(z|do(x)), (5.8)

where the last line follows from s-admissibility (Pearl and Bareinboim, 2014).

Given equation (5.8), we can see that transportability of P ∗(y|do(x)) then re-

quires to transform P ∗(z|do(x)) into a do-free expression, since by definition no

manipulation can be carried out in the target domain. Recognizing that X and

Z are unconfounded in Figure 9a, this can be achieved by P ∗(z|do(x)) = P ∗(z|x)

(formally, rule 2 of do-calculus applies).

The resulting transport formula, when domains differ according to post-treatment

variables, is different from the simple expression in equation (5.5). It prescribes

to reweight the z-specific effects by the conditional (instead of the uncoditional)

distribution of Z in the target population:

P ∗(y|do(x)) =
∑
z

P (y|do(x), z)P ∗(z|x). (5.9)

Theorem 5.6 was proven to be a necessary and sufficient criterion for trans-

porting causal effect estimates across domains by Bareinboim and Pearl (2012c).

However, it is only procedural in nature and, therefore, does not specify the se-

quence of do-calculus steps that need to be taken to arrive at the desired expression.

In order to fill this gap, Bareinboim and Pearl (2013b) develop a complete algo-

rithmic solution for carrying out the transformation. The benefits of solving the

transportability problem algorithmically become particularly apparent for more
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complex graphs, such as in Figure 9b, in which the correct transport formula is:

P ∗(y|do(x)) =
∑

z,w2,w3

P (y|do(x), z, w2, w3)P (z|do(x), w2, w3)P
∗(w2, w3). (5.10)

Note also that this expression does not contain W1. Applying the transportability

algorithm thus helps to decide which measurements are required for transportabil-

ity and thereby allows to economize on data collection efforts in the target domain.

5.1. Transportability with surrogate experiments

Bareinboim and Pearl (2013a) combine the idea of transportability with the pre-

viously introduced concept of z-identification, to develop a theory they call z-

transportability. Owing to this extension, it becomes possible to not only transfer

causal knowledge obtained from direct randomized control trials, but also from

the encouragement designs, discussed in Section 3.4, that rely on surrogate exper-

iments. Researchers are thus given the flexibility to learn from knowledge across

domains even in cases when direct manipulation of a treatment would be pro-

hibitively costly, both in the target and in the source domain.

Remarkably, z-transportability is a distinct problem and reduces neither to or-

dinary transportability nor to z-identifiabilitty. Bareinboim and Pearl (2013a)

demonstrate this fact by presenting examples of causal queries which are zID in

the source domain Π, but that may or may not be z-transportable. Analogous

to Theorem 5.6, the rules of do-calculus can be used to transfer causal knowledge

from surrogate experiments in the following way.

Theorem 5.7. (Bareinboim and Pearl, 2013a) Let D be the selection diagram
characterizing two populations, Π and Π∗, and S be the set of selection variables
in D. The relation R = P ∗(y|do(x)) is z-transportable from Π to Π∗ in D if the ex-
pression P (y|do(x), s) is reducible, using the rules of do-calculus, to an expression
in which all do-operators apply to subsets of Z, and the S-variables are separated
from these do-operators.

Again, Theorem 5.7 provides no indication of the sequence of do-calculus steps

that need to be taken in order to establish z-transportability. To this end, Barein-

boim and Pearl (2013a) develop a complete algorithm, which takes the selection
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Figure 10: Selection diagrams relative to two heterogeneous source domains πa and πb.
Square nodes indicate discrepancies between the source and target domains.
Meta-transportability entails to combine causal knowledge from both πa and
πb to arrive at an estimate for P ∗(y|do(x)) in the target domain.

diagram D, and information on the variable that has been intervened on in the

source domain as inputs, and then returns a transport formula expression whenever

such an expression exists.

5.2. Combining causal knowledge from several heterogeneous source

domains

Transportability techniques are particularly valuable in situations where it is pos-

sible to combine empirical knowledge from several source domains. Dehejia et al.

(2015) consider the case of a policy-maker who is faced with the decision to either

learn about a desired treatment effect from extrapolation of an existing experi-

mental evidence base, or to commission a costly new experiment. The challenge in

this situation is that previous experiments have possibly been conducted in very

different contexts than the one of interest, and underlying populations might be

quite heterogeneous. Naive pooling of results, for example, is thus likely to fail.

Based on the approaches presented in the previous sections, Bareinboim and Pearl

(2013c) introduce the concept of meta-transportability (or µ-transportability, for

short), which provides a principled solution to this problem.28

Let D = {D1, . . . , Dn} be a collection of selection diagrams relative to source

domains Π = {π1, . . . , πn}. An example is given by Figure 10, in which panel (a)

depicts the selection diagram that corresponds to source domain πa, while panel (b)

28Meta-transportability is related to the ideas concerning “data combination” presented in Rid-
der and Moffitt (2007). In this case, however, the goal is to combine causal knowledge from
several heterogeneous populations that share at least some causal mechanisms.
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refers to πb. Square nodes indicate where discrepancies between the target domain

π∗ and the source domains arise.29 In line with Definition 5.2, these discrepancies

can occur due to differences in causal mechanisms as well as background factors

related to the the variables that square nodes point into.

Figure 10 is a simple extension of a graph that was presented earlier (see Figure

9a). In contrast to before, the unobserved confounder between X and Z (denoted

by the dashed bidirected arc X L9999K Z), which was added to the diagram,

now renders individual transportability impossible.30 Interestingly, however, by

combining information from both source domains, µ-transportability is feasible.

To see this, note that the post-intervention distribution in the target domain π∗

can be written as:

P ∗(y|do(x)) =
∑
z

P ∗(y|do(x), z)P ∗(z|do(x)), (5.11)

=
∑
z

P ∗(y|do(x), do(z))P ∗(z|do(x)), (5.12)

where the second line follows from rule 2 of do-calculus, since (Z ⊥⊥ Y |X) in

DXZ .31 Using this representation, each component can be shown to be individually

transportable from one of the source domains. P ∗(z|do(x)) is directly transportable

from πa, because (S ⊥⊥ Z) in D
(a)

X
. And P ∗(y|do(x), do(z)) is directly transportable

from πb, since (S ⊥⊥ Y ) in D
(b)

X,Z
. The individual components of equation (5.12)

can therefore be written as P ∗(z|do(x)) = P (a)(z|do(x)) and P ∗(y|do(x), do(z)) =

P (b)(y|do(x), do(z)). This leads to the final transport formula:

P ∗(y|do(x)) =
∑
z

P (b)(y|do(x), do(z))P (a)(z|do(x)). (5.13)

29The causal diagram for the target domain is accordingly obtained by deleting all square nodes
from the selection diagrams.

30The algorithm by Bareinboim and Pearl (2013b) would exit without returning a transport
formula expression for both selection diagrams. Intuitively, in panel (a), transportability is
prohibited by the selection node pointing directly into Y . In (b), X L9999K Z prevents to
set P ∗(z|do(x)) = P ∗(z|x), which was instrumental for establishing transportability following
equation (5.8).

31These do-calculus derivations are shown in detail, with corresponding subgraphs depicted
alongside, in Appendix A.2.3
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In addition to demonstrating that multiple pairwise transportability is not a nec-

essary condition for µ-transportability, the example illustrates the superior infer-

ential power obtained by combining multiple datasets over each individual dataset

alone.

Bareinboim and Pearl (2013c) develop a complete algorithmic solution for de-

ciding about µ-transportability. The approach is further extended by Bareinboim

et al. (2013) who combine µ-transportability with z-transportability, to allow for

combining causal knowledge from multiple heterogeneous sources when only sur-

rogate experiments on a subset Z of variables in D are possible. This latter task is

called mz-transportability and can be automated by an algorithm that was proved

to be complete by Bareinboim and Pearl (2014).

In recent years, meta-analyses, which synthesize the results of several studies

on a specific subject, are becoming increasingly important. Examples from eco-

nomics can be found, inter alia, in Card et al. (2010), Dehejia et al. (2015), and

Meager (2019). A drawback of standard meta-analytical approaches is, however,

that they do not incorporate knowledge about domain heterogeneity in terms of

causal mechanisms and background factors. Instead, they attempt to “average

out” differences across populations.32 By contrast, the transportability techniques

we have presented make it transparent how discrepancies in study results arise

and how they can nonetheless be leveraged to identify a target query of interest in

a principled and efficient manner. Moreover, they discipline the analyst to think

carefully about the assumptions and shared mechanisms that allow extrapolation

across domains to actually take place.

Transportability theory thereby enables the research community to devise an

effective strategy for leveraging the entire evidence base that exists related to a

specific problem. Causal knowledge obtained by an individual experiment does

not need to, and should not, be regarded in isolation. Rather, it contributes to a

larger body of empirical work that can be recombined to tackle entirely new policy

problems, which were unimagined at the time of the original study. In combination

with undergoing efforts to make more data sets openly available, transportability

32To the extent that these studies consider domain heterogeneity, this is done in a purely statis-
tical fashion, without explicitly modeling structural differences across populations (Dehejia
et al., 2015; Meager, 2019). This leaves open the question whether domains are actually
structurally sufficiently similar such that transportability of study results can be ensured.
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techniques thus bear the potential to save on discipline-wide data collection costs

and to render causal inference a truly collective endeavor.33

6. CONCLUSION

From the end of the 1980s onwards, the artificial intelligence literature has devel-

oped an increased interest in causal inference (Pearl, 1988, 2009; Bareinboim and

Pearl, 2016; Pearl and Mackenzie, 2018). Causation is a fundamental concept in

human thinking and structures the way in which we interact with our environ-

ment (Woodward, 2003; Mumford and Anjum, 2013). A human-like AI, therefore,

needs to possess an internal representation of causality in order to mimic human

behavior and communicate with us in a meaningful way (Pearl and Mackenzie,

2018). Tremendous progress over the last three decades has led to the develop-

ment of a powerful causal inference engine, which puts an artificial learner into

the position to acquire and combine causal knowledge from many diverse sources

in its surroundings. In particular, several important contributions to the litera-

ture in recent years have made this engine more robust, general, and practical, by

expanding its applicability to the various different data collection and knowledge

contexts we have discussed in this paper.

We are convinced that these causal inference tools originating from AI have

also a great deal to offer to econometricians. Until today, the possibilities to com-

pletely automatize the identification task, which is a necessary ingredient for causal

machine learning, still remain largely unexplored in econometric practice. The ap-

plications of do-calculus we have discussed only require the analyst to provide a

model of the economic context under study and a description of the available data,

the rest can be handled automatically by an algorithm.34

33Other recent contributions to transportability theory have been made by Correa and Barein-
boim (2019), who develop adjustment criteria for generalizing experimental findings in the
presence of selection bias (see Section 4) and Lee et al. (2020), who present a general treat-
ment of transportability theory, which is able to unify several of the techniques that have
been discussed in this section.

34Up to a certain extent, directed acyclic graphs can also be learned from observational data.
Respective techniques rely on the testable implications of DAGs that were discussed in Section
2 in order to find an equivalence class of models that is compatible with the d-separation
relations in the data. The interested reader is referred to the literature on “causal structure
learning” and “causal discovery” in the artificial intelligence field (Spirtes et al., 2001; Pearl,
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Moreover, graphical representations of structural causal models do not require

the learner – whether artificial or human – to impose any distributional or functional-

form restrictions on the underlying causal mechanisms under study. The approach

remains fully nonparametric, a characteristic it shares with the potential outcomes

framework (Imbens and Rubin, 2015; Imbens, 2019). At the same time, however,

crucial identification assumptions, such as ignorability, are derived from the prop-

erties of the underlying structural model, rather than being assumed to hold in a

coarse, a priori way. Causal graphical models thus combine the accessibility and

flexibility of potential outcomes with the preciseness and analytical rigor of struc-

tural econometrics (Heckman and Vytlacil, 2007; Matzkin, 2013; Lewbel, 2019).

The balance graphical approaches strike between these two currently competing

econometric streams is of great value for applied empirical work. Economists

should therefore feel encouraged to engage in a productive exchange with AI re-

searchers in order to mutually benefit from the numerous useful tools for causal

inference developed in both disciplines.
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APPENDIX

A.1. Causality in recursive and interdependent systems

In this paper, attention is restricted to a class of models that can be described by

directed acyclic graphs, in which the rules of do-calculus apply. The requirement

of acyclicity gives rise to what economists commonly denote as recursive systems

(Wold, 1954; Pearl, 2009, p. 231). Yet, many standard models in economics,

such as the canonical supply and demand relationship, as well as game theoretic

models, are nonrecursive or interdependent. In the aftermath of Haavelmo’s cel-

ebrated paper on simultaneous equation models (Haavelmo, 1943), an intensive

discussion about the conceptual interpretation of recursive versus interdependent

models emerged in the econometrics literature (see Morgan, 1991, for an excellent

historical account). The debate was particularly motivated by practical concerns

of estimation, as Haavelmo demonstrated for the first time in full clarity that the

method of least squares does not lead to unbiased parameter estimates in interde-

pendent simultaneous equation models.35 However, it also touched on the causal

interpretation of interdependent models and the adequacy of cyclic causal rela-

tionships as a representation of economic processes. One central argument, most

notably formulated in Bentzel and Hansen (1954) and Strotz and Wold (1960),

was that individual equations in an interdependent model do not have a causal

interpretation “in the sense of a stimulus-response relationship” (Strotz and Wold,

1960, p. 417).36 Instead, interdependent systems with equilibrium conditions are

regarded as “shortcut” descriptions (Wold, 1960; Imbens, 2014) of the underlying

dynamic behavioral processes.37

In this context, Strotz and Wold (1960) discuss the example of the cobweb

35As a matter of fact, Haavelmo never made a distinction between recursive and interdependent
models in his 1943 paper. Starting from an interdependent simultaneous equation model, he
demonstrated that OLS is biased in this context. Later, Bentzel and Wold (1946; as cited
in Wold, 1981) were able to show that least squares estimation is indeed appropriate if the
system is recursive.

36More than two decades later, Maddala (1986, p. 111) presented a similar point of view in his
influential textbook.

37Herman Wold coined the term causal chain for the latter. Bentzel and Hansen (1954) point
out that interdependency can also be the result of an aggregation of variables measured at
an inappropriate frequency, even if the underlying data generating process is fully recursive.
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Figure 11: (a) Dynamic, recursive model of a market for crops. (b) Nonrecursive model
of the same market after imposing an equilibrium constraint.

model, a particular form of a dynamic supply and demand system, based on Jan

Tinbergen’s microeconometric work in the 1920s (see Morgan, 1991).

qh,t ← γ + δpt−1 + νz1,t + u1,t, (A.1)
pt ← α− βqh,t + εz2,t + u2,t. (A.2)

This model is recursive. The first equation determines the quantity of a particular

crop harvested at time t, based on the crop’s price pt−1 in the previous period. The

second equation describes crop demand and pins down prices in t, depending on

current supply. Moreover, the model incorporates exogenous supply and demand

shifters z1 and z2. By imposing an equilibrium assumption on the system, such

that prices are required to remain constant over time

pt−1 = pt, (A.3)

the model becomes interdependent, as price and quantity now affect each other

simultaneously in the same period.

qh,t ← γ + δpt + νz1,t + u1,t (A.4)
pt ← α− βqh,t + εz2,t + u2,t (A.5)

Figure 11 illustrates the step from the fully dynamic model to a nonrecursive

equilibrium model graphically. Note, however, that the equilibrium assumption
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(A.3) carries no behavioral interpretation and may or may not describe the data

adequately. Likewise, the individual equations of the interdependent system do not

represent autonomous causal relationships in the stimulus-response sense, since

the endogenous variables are determined jointly by all equations in the system

(Matzkin, 2013; Heckman and Pinto, 2013). Thus, it would not be possible, for

example, to directly use pt in equation (A.4) to bring about a desired change in

qh,t.

This discussion does not imply – as these authors have stated repeatedly – that

equilibrium models cannot be useful for learning about individual causal parame-

ters (Strotz and Wold, 1960, p. 426), nor that a causal interpretation cannot be

given to a nonrecursive model as a whole (Bentzel and Hansen, 1954; Basman,

1963; Zellner, 1979). However, if individual functions of an economic model are

supposed to be interpreted as stimulus-response relationships, cyclic patterns need

to be excluded. Otherwise, stimuli would be permitted to be causes of themselves,

which would violate the notion of asymmetry usually attached to them (Wood-

ward, 2003; Cartwright, 2007). Incidentally, the potential outcomes framework

in the econometric treatment effects literature also interprets the link between a

treatment and an outcome as a stimulus-response relationship and therefore im-

plicitly maintains the assumption of acyclicty (Heckman and Vytlacil, 2007).

A.2. Do-calculus derivations

In this section, we show step-by-step solutions for the do-calculus derivations dis-

cussed in the main text. For illustration purposes, subgraphs used in the respective

steps are placed alongside.
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A.2.1. College wage premium example (Section 3.1, Figure 3a)

G

C Y

W

H

E

GC

C Y

W

H

E

GC

C Y

W

H

E

Consider the causal effect of C on Y in graph G.

There are two backdoor paths in G, which can both

be blocked by E. Conditioning and summing over

all values of E yields:

P (y|do(c)) =
∑
e

P (y|do(c), e)P (e|do(c)).

By rule 2 of do-calculus, since (Y ⊥⊥ C|E) in

subgraph GC , it holds that:

P (y|do(c), e) = P (y|c, e).

In GC , E is d-separated from C, because Y is a

collider on every path connecting them. Thus,

(E ⊥⊥ C)GC
, and by rule 3 of do-calculus:

P (e|do(c)) = P (e).

Combining these two expressions yields:

P (y|do(c)) =
∑
e

P (y|c, e)P (e).

The right-hand-side expression is do-free and can

therefore be estimated from observational data.

58



A.2.2. Selection bias example (Section 4, Figure 7a)
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Consider the causal effect of X on Y in graph G. In

graph GX , Z is a collider on the path connecting S

and W with Y . Therefore, (S,W ⊥⊥ Y )GX
, and by

the first rule of do-calculus it holds that:

P (y|do(x)) = P (y|do(x), w, S = 1),

=
∑
z

P (y|do(x), z, w, S = 1)P (z|do(x), w, S = 1).

Moreover, because (Y ⊥⊥ X|W,Z, S) in GX , rule 2 of

do-calculus applies to the first factor, which leads to:

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|do(x), w, S = 1).

Finally, notice that W blocks any path between X

and Z conditional on S = 1 in GX(W ). Thus, since

(Z ⊥⊥ X|W )G
X(W )

, rule 3 of do-calculus applies to

the second term, such that:

P (y|do(x)) =
∑
z

P (y|x, z, w, S = 1)P (z|w, S = 1).
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A.2.3. M-Transportability example (Section 5.2, Figure 10)
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Consider the causal effect of X on Y in graph D, in

target domain π∗:

P ∗(y|do(x)).

Note that X d-separates Z and Y in DXZ . Thus,

since (Z ⊥⊥ Y |X)DXZ
, it follows from rule 2 of

do-calculus that:

P ∗(y|do(x)) =
∑
z

P ∗(y|do(x), z)P ∗(z|do(x)),

=
∑
z

P ∗(y|do(x), do(z))P ∗(z|do(x)).

Let the selection diagrams for the two source

domains πa and πb be given by Da and Db,

respectively.

Note that (S1, S2 ⊥⊥ Z) in D
(a)

X
, therefore,

P ∗(z|do(x)) is directly transportable from πa as:

P ∗(z|do(x)) = P (a)(z|do(x)).

Furthermore, since (S3, S4 ⊥⊥ Y ) in D
(b)

X,Z
,

P ∗(y|do(x), do(z)) is directly transportable from πb:

P ∗(y|do(x), do(z)) = P (b)(y|do(x), do(z)).

Combining the two expressions leads to the final

transport formula:

P ∗(y|do(x)) =
∑
z

P (b)(y|do(x), do(z))P (a)(z|do(x)).
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