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Abstract

A dynamic treatment regime (DTR) consists of a sequence of decision rules, one
per stage of intervention, that dictates how to determine the treatment assignment
to patients based on evolving treatments and covariates’ history. These regimes are
particularly effective for managing chronic disorders and is arguably one of the key
aspects towards more personalized decision-making. In this paper, we investigate
the online reinforcement learning (RL) problem for selecting optimal DTRs pro-
vided that observational data is available. We develop the first adaptive algorithm
that achieves near-optimal regret in DTRs in online settings, without any access to
historical data. We further derive informative bounds on the system dynamics of
the underlying DTR from confounded, observational data. Finally, we combine
these results and develop a novel RL algorithm that efficiently learns the optimal
DTR while leveraging the abundant, yet imperfect confounded observations.

1 Introduction

In medical practice, a patient typically has to be treated at multiple stages; a physician repeatedly
adapts each treatment, tailored to the patient’s time-varying, dynamic state (e.g., level of virus, results
of diagnostic tests). Dynamic treatment regimes (DTRs) [20] provide an attractive framework of
personalized treatments in longitudinal settings. Operationally, a DTR consists of decision rules that
dictate what treatment to provide at each stage, given the patient’s evolving conditions and history.
These decision rules are alternatively known as adaptive treatment strategies [14, 15, 21, 35, 36] or
treatment policies [18, 39, 40]. DTRs offer an effective vehicle for personalized management of
chronic conditions, including cancer, diabetes, and mental illnesses [38].

Consider the DTR instance regarding the treatment of alcohol dependence [21, 7], which is graphically
represented in Fig. 1a . Based on the condition of alcohol dependant patients (S1), the physician
may prescribe a medication or behavioral therapy (X1). Patients are classified as responders or
non-responders (S2) based on their level of heavy drinking within the next two months. The physician
then must decide whether to continue the initial treatment or switch to an augmented plan combining
both medication and behavioral therapy (X2). The unobserved covariate U summarizes all the
unknown factors about the patient. We are interested in the primary outcome Y that is the percentage
of abstinent days over a 12-month period. The treatment policy π in this set-up is a sequence of
decision rules x1 ← π1(s1), x2 ← π2(s1, s2, x1) selecting the values of X1, X2 based on the history.

Policy learning in a DTR setting is concerned with finding an optimal policy π that maximizes the
primary outcome Y . The main challenge is that since the parameters of the DTR are often unknown,
it’s not immediate how to directly compute the consequences of executing the policy do(π), i.e., the
expected value Eπ[Y ]. Most of the current work in the causal inference literature focus on trying to
identify this quantity, Eπ[Y ], from finite observational data and causal assumptions about the data-
generating mechanisms (commonly through causal graphs and potential outcomes). Several criteria
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Figure 1: Causal diagrams of (a) a DTR with K = 2 stages of intervention; and (b) a DTR in (a)
under sequential interventions do(X1 ∼ π1(X1|S1), X2 ∼ π2(X2|S1, S2, X1)).

and algorithms have been developed [25, 30, 5]. For instance, a criterion called sequential backdoor
[26] permits one to determine whether causal effects can be obtained by covariate adjustment. This
condition is also referred to as conditional ignorability or unconfoundedness [29, 20]: there exists
no unobserved confounders (UCs) that simultaneously affects the treatment at any stage and all the
subsequent outcomes given a set of observed covariates. Whenever ignorability holds, a number of
efficient estimation procedures exist, including popular methods based on the propensity score [28],
inverse probability of treatment weighting [23, 27], and Q-learning [33, 22].

In general, the combination of observational data and causal assumptions does not always lead
to point-identification [25, Ch. 3-4]. An alternative is to randomize patients’ treatments at each
stage based on the previous decisions and observed outcomes; for instance, one popular strategy
is known as the sequential multiple assignment randomized trail (SMART) [21]. By the virtue of
randomization, the sequential backdoor condition is entailed. However, in practice, performing a
randomized experiment in the actual environment can be extremely costly and undesirable (due to
unintended consequences), especially for domains where humans are the main research subjects
(e.g., medicine, epidemiology, and psychology). Reinforcement learning (RL) [33] provides a unique
opportunity to efficiently learning DTRs due to its nature of balancing exploration and exploitation. A
typical RL agent learns by conducting adaptive, sequential experimentation: it repeatedly adjusts the
policy that is currently deployed based on the past outcomes. The goal is to learn an optimal policy
while minimizing the experimental cost. Efficient RL algorithms have been successfully developed to
very general settings such as Markov decision processes (MDPs) [32, 13, 34], where a finite state is
statistically sufficient to summarize the treatments and covariates’ history. Variations of this setting
include multi-armed bandits [1], partially-observable MDP [11, 3], and factored MDPs [24].

Our focus here is on learning a policy for an unknown DTR while leveraging the observational data.
This is a challenging setting for both causal inference and RL. As an example, consider data collected
from an unknown behavior policy of the DTR in Fig. 1a (i..e, x1 ← f1(s1, u), x2 ← f2(s1, s2, x1, u),
where both U and {f1, f2} are unobserved), which is materialized in the form of the observational
distribution P (x1, x2, s1, s2, y) [25, pp. 205]. The existence of the unmeasured confounder U
leads to an immediate violation of the sequential backdoor criterion (e.g., due to the spurious path
X1 ← U → Y ), which implies that the effect of the policy Eπ[Y ] is not identifiable [25, Ch. 4.4].
On the other hand, existing RL algorithms are not applicable either, which can be seen by noting
that DTRs are inherently non-Markovian – in words, the initial treatment X1 directly affects the
outcome Y . Even though an heuristic approach may be pursued (e.g., Thompson Sampling [37]), and
could eventually converge, the same is still not optimal since it’s oblivious to all the observational
data. 1. Indeed, it is acknowledged in the literature [8, 9] that the “development of statistically sound
estimation and inference techniques” for online RL settings “seem to be another very important
research direction”, especially when the increasing use of mobiles devices allows for the possibility
of continuous monitoring and just-in-time intervention.

The goal of this paper is to overcome these challenges. We will introduce novel RL strategies capable
of optimizing an unknown DTR while efficiently leveraging the imperfect, but large amounts of
observational data. In particular, our contributions are as follows: (1) We introduce the first algorithm
(UC-DTR (Alg. 1)) that reaches the near-optimal regret bound in the pure DTR setting, without
observational data; (2) We derive novel bounds capable of exploiting observational data based on the

1Standard off-policy RL methods such as Q-Learning rely on the condition of sequential backdoor, thus not
applicable for the confounded observational data. For a more elaborate discussion, see [8, Ch. 3.5]

2



DTR structure (Thms. 5 and 6), which are provably tight; (3) We develop a novel algorithm (UCc-DTR
(Alg. 2)) that efficiently incorporates these bounds and accelerates learning in the online setting. Our
results are validated on randomly generated DTRs and multi-stage clinical trials on cancer treatment.

1.1 Preliminaries

In this section, we introduce the basic notation and definitions used throughout the paper. We use
capital letters to denote variables (X) and small letters for their values (x). Let X represent the
domain of X and |X | its dimension. We consistently use the abbreviation P (x) to represent the
probabilities P (X = x). X̄k stands for a sequence {X1, . . . , Xk} (∅ if k < 1), and X̄ k represents
its domain, i.e., X1 × · · · × Xk. Further, we denote by I{·} the indicator function.

The basic semantical framework of our analysis rests on structural causal models (SCM) [25, Ch. 7].
A SCM M is a tuple 〈U ,V ,F , P (u)〉 where U is a set of exogenous (unobserved) variables and V
is a set of endogenous (observed) variables. F is a set of structural functions where fi ∈ F decides
the values of Vi ∈ V taking as argument a combination of other endogenous and exogenous variables
(i.e., Vi ← fi(PAi,Ui),PAi ⊆ V ,Ui ⊆ U ). The values of U are drawn from the distribution
P (u), and induce an observational distribution P (v) [25, pp. 205]. Each SCM is associated with a
causal diagram in the form of a directed acyclic graphG, where nodes represent endogenous variables,
dashed nodes exogenous variables, and arrows stand for functional relations (e.g., see Fig. 1).

An intervention on a set of endogenous variablesX , denoted by do(x), is an operation where values
ofX are set to constants x, regardless of how they were ordinarily determined (through the functions
{fX : ∀X ∈ X}). For a SCM M , let Mx be a sub-model of M induced by intervention do(x).
The interventional distribution Px(y) induced by do(x) is the distribution over variables Y in the
sub-model Mx. For a more detailed discussion of SCMs, we refer readers to [25, Ch. 7].

2 Optimizing Dynamic Treatment Regimes

In this section, we will formalize the problem of online optimization in DTRs with confounded
observations and provide an efficient solution. We start by defining DTRs in the structural semantics.
Definition 1 (Dynamic Treatment Regime [20]). A dynamic treatment regime (DTR) is a SCM
〈U ,V ,F , P (u)〉where the endogenous variablesV = {X̄K , S̄K , Y };K ∈ N+ is the total stages of
interventions. For stage k = 1, . . . ,K: (1) Xk is a finite decision decided by a behavior policy xk ←
fk(s̄k, x̄k−1,u); (2) Sk is a finite state decided by a transition function sk ← τk(x̄k−1, s̄k−1,u). Y
is the primary outcome at the final state K, decided by a reward function y ← r(x̄K , s̄K ,u) bounded
in [0, 1]. Values of exogenous variables U are drawn from the distribution P (u).

A DTR M∗ induces an observational distribution P (x̄K , s̄K , y). Fig. 1a shows the causal diagram
of a DTR with K = 2 stages of interventions. A policy π for a DTR is a sequence of decision rules
π̄K , where each πk(xk|s̄k, x̄k−1) is a function mapping from the domain of histories S̄k, X̄k−1 up
to stage k to a distribution over decision Xk. A policy is called deterministic if the above mappings
are from histories S̄k, X̄k−1 to the domain of decision Xk, i.e., xk ← πk(s̄k, x̄k−1). The collection
of possible policies, depending on the domains of the history and decision, define a policy space Π.

A policy π defines a sequence of stochastic interventions do(X1 ∼ π1(X1|S̄1), . . . , XK ∼
πK(XK |S̄K , X̄K−1)), which induce an interventional distribution over variables X̄K , S̄K , Y , i.e.:

Pπ(x̄K , s̄K , y) = Px̄K
(y|s̄K)

K−1∏
k=0

Px̄k
(sk+1|s̄k)πk+1(xk+1|s̄k+1, x̄k), (1)

where Px̄k
(sk+1|s̄k) is the transition distribution at stage k and Px̄K

(y|s̄K) is the reward distribution
over the primary outcome. Fig. 1b describes a DTR under K = 2 stages of interventions do(X2 ∼
π1(X1|S1), X2 ∼ π2(X2|S1, S2, X1)). The expected cumulative reward of a policy π in a DTR
M∗ is given by Vπ(M∗) = Eπ[Y ]. We are searching for an optimal policy π∗ that maximizes the
cumulative reward, i.e., π∗ = arg maxπ∈Π Vπ(M∗). It is a well-known fact in decision theory
that no stochastic policy can improve on the utility of the best deterministic policy (see, e.g., [17,
Lem. 2.1]). Thus, in what follows, we will usually consider the policy space Π to be deterministic.

Our goal is to optimize an unknown DTR M∗ based solely on the domains S = S̄K , X = X̄K and
the observational distribution P (x̄K , s̄K , y) (i.e., both F , P (u) are unknown). The agent (e.g., a

3



Algorithm 1: UC-DTR
Input: failure tolerance δ ∈ (0, 1).

1: for all episodes t = 1, 2, . . . do
2: Define event counts N t(s̄k, x̄k) and N t(s̄k, x̄k−1) for horizon k = 1, . . . ,K prior to episode
t as, respectively,

∑t−1
i=1 IS̄i

k=s̄k,X̄
i
k=x̄k

and
∑t−1

i=1 IS̄i
k=s̄k,X̄

i
k−1=x̄k−1

. Further, define reward

counts Rt(s̄K , x̄K) prior to episode t as
∑t−1

i=1 Y
iIS̄i

K=s̄K ,X̄i
K=x̄K

.

3: Compute estimates P̂ t
x̄k

(sk+1|s̄k) and Êt
x̄K

[Y |s̄K ] as

P̂ t
x̄k

(sk+1|s̄k) =
N t(s̄k+1, x̄k)

max{1, N t(s̄k, x̄k)}
, Êt

x̄K
[Y |s̄K ] =

Rt(s̄K , x̄K)

max{1, N t(s̄k, x̄k)}
.

4: LetMt denote a set of DTRs such that for any M ∈Mt, its transition probabilities
Px̄k

(sk+1|s̄k) and reward Ex̄K
[Y |s̄K ] are close to estimates P̂ t

x̄k
(sk+1|s̄k), Êt

x̄K
[Y |s̄K ], i.e.,

∥∥∥Px̄k
(·|s̄k)− P̂ t

x̄k
(·|s̄k)

∥∥∥
1
≤

√
6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k

∣∣∣∣X̄ k

∣∣t/δ)
max{1, N t(s̄k, x̄k)}

, (2)

∣∣∣Ex̄K
[Y |s̄K ]− Êt

x̄K
[Y |s̄K ]

∣∣∣ ≤√ 2 log(2K|S||X |t/δ)
max{1, N t(s̄K , x̄K)}

. (3)

5: Find the optimal policy πt of an optimistic DTR Mt ∈Mt such that

Vπt
(Mt) = max

π∈Π,M∈Mt

Vπ(M) (4)

6: Execute policy πt for episode t and observe the samples S̄t
K , X̄

t
K , Y

t.
7: end for

physician) learns through repeated experiments of episodes t = 1, . . . , T . Each episode t contains a
complete DTR process: at stage k, the agent observes the state St

k, performs an intervention do(Xt
k)

and moves to the state St
k+1; the primary outcome Y t is received at the final stage K. The cumulative

regret up to episode T is defined as R(T ) =
∑T

t=1(Vπ∗(M∗)− Y t), i.e, the loss due to the fact that
the agent does not always pick the optimal policy π∗. We will assess and compare algorithms in
terms of their regret R(T ). A desirable asymptotic property is to have limT→∞E[R(T )]/T = 0,
meaning that the agent eventually converges and finds the optimal policy π∗.

2.1 The UC-DTR Algorithm

We now introduce a new RL algorithm for optimizing an unknown DTR, which we call UC-DTR. We
will later prove that UC-DTR achieves near-optimal bound on the total regret given only the knowledge
of the domains S and X . Like many other online RL algorithms [1, 13, 24], UC-DTR follows the
principle of optimism under uncertainty to balance exploration and exploitation. The algorithm
generally works in phases of model learning, optimistic planning, and strategy execution.

The details of UC-DTR procedure can be found in Alg. 1. The algorithm proceeds in episodes and
computes a new strategy πt from samples {S̄i

K , X̄
i
K , Y

i}t−1i=1 collected so far at the beginning of each
episode t. Specifically, UC-DTR computes in Steps 1-3, the empirical estimates Êt

x̄K
[Y |s̄K ] of the

expected reward Ex̄K
[Y |s̄K ], and P̂ t

x̄k
(sk+1|s̄k) of the transitional probabilities Px̄k

(sk+1|s̄k) from
experimental samples collected prior to episode t. In Step 4, a setMt of plausible DTRs is defined in
terms of confidence region around the the empirical estimates Êt

x̄K
[Y |s̄K ] and P̂ t

x̄k
(sk+1|s̄k). This

guarantees that the true DTR M∗ is in the setMt with high probability. In Step 5, UC-DTR computes
the optimal policy πt of the most optimistic instance Mt in the family of DTRsMt that induces the
maximal optimal expected reward. This policy πt is executed throughout episode t and new samples
S̄t
K , X̄

t
K , Y

t are collected (Step 6).
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Finding Optimistic DTRs The Step 5 of UC-DTR tries to find an optimal policy πt for an optimistic
DTR Mt. While the Bellman equation [6] allows one to optimize a fixed DTR, we need to find a
DTR Mt that gives the maximal optimal reward among all plausible DTRs inMt given by Eq. (3).

We now introduce a method that extends standard dynamic programming planners [6] to solve this
problem. We first combine all DTRs inMt to get an extended DTR M+. That is, we consider a DTR
M+ with continuous decision space X̄+

= X̄+
K , where for each horizon k, each action x̄k ∈ X̄ k,

each admissible transition probabilities Px̄k
(sk+1|s̄k) according to Eq. (2), there is an action in X̄+

k
inducing the same probabilities Px̄k

(sk+1|s̄k). Similar arguments also apply to the expected reward
Ex̄K

[Y |s̄K ]. Then, for each policy π+ on M+, there is an DTR Mt ∈ Mt and a policy πt ∈ Π
such that policies π+ and πt induces the same transition probabilities on the respective DTR, and
vice versa. Thus, solving the optimization problem in Eq. (4) is equivalent to finding an optimal
policy π∗+ on the extended DTR M+. Let V ∗(s̄k, x̄k−1) denote the optimal value Eπ∗

+
[Y |s̄k, x̄k−1]

in M+. The Bellman equation on M+ for k = 1, . . . ,K − 1 is defined as follows:

V ∗(s̄k, x̄k−1) = max
xk

{
max

Px̄k (·|s̄k)∈Pk

{∑
sk+1

V ∗(s̄k+1, x̄k)Px̄k
(sk+1|s̄k)

}}
,

and V ∗(s̄K , x̄K−1) = max
xK

max
Ex̄K [Y |s̄K ]∈R

Ex̄K
[Y |s̄K ],

(5)

where R and Pk are the convex polytope of parameters Ex̄K
[Y |s̄K ] and Px̄k

(sk+1|s̄k) defined in
Eqs. (2) and (3), respectively. The inner maximum in Eq. (5) is a linear program (LP) over the convex
polytope Pk (or R), which is solvable using standard LP algorithms.

2.2 Theoretical Analysis

We now analyze the asymptotic behavior of UC-DTR that will lead to a better understanding of its
theoretical guarantees. Given space constraints, all proofs are provided in Appendix I. The following
proposition shows that the cumulative regret of UC-DTR after T steps is at most Õ(K

√
|S||X |T )2.

Theorem 1. Fix a δ ∈ (0, 1). With probability (w.p.) of at least 1− δ, it holds for any T > 1, the
regret of UC-DTR with parameter δ is bounded by

R(T ) ≤ 12K
√
|S||X |T log(2K|S||X |T/δ) + 4K

√
T log(2T/δ). (6)

It is also possible to obtain the instance-dependent bound on the expected regret. Let Π− denote
a set of sub-optimal policies {π ∈ Π : Vπ(M∗) < Vπ∗(M∗)}. For any π ∈ Π−, let its gap in
expected reward between the optimal policy π∗ be ∆π = Vπ∗(M∗)− Vπ(M∗). We next derive the
gap-dependent logarithmic bound on the expected regret of UC-DTR after T steps.
Theorem 2. For any T ≥ 1, with parameter δ = 1

T , the expected regret of UC-DTR is bounded by

E[R(T )] ≤ max
π∈Π−

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1. (7)

Since Eq. (7) is a decreasing function relative to the gap ∆π , the maximum of the regret in Thm. 2
is achieved with the second best policy π− = arg minπ∈Π− ∆π . We also provide a corresponding
lower bound on the expected regret of any experimental algorithm.

Theorem 3. For any algorithm A, any natural numbers K ≥ 1, and
∣∣Sk

∣∣ ≥ 2,
∣∣X k

∣∣ ≥ 2 for any
k ∈ {1, . . . ,K}, there is a DTR M with horizon K, state domains S and action domains X , such
that the expected regret of A after T ≥ |S||X | episodes is as least

E[R(T )] ≥ 0.05
√
|S||X |T (8)

Thm. 3 implies that for any DTR instance, the cumulative regret of Ω(
√
|S||X |T ) is inevitable. The

regret upper bound Õ(K
√
|S||X |T ) in Thm. 1 is close to the lower bound Ω(

√
|S||X |T ) in Thm. 3,

which means that UC-DTR is near-optimal provided with only the domains of state S and actions X .

2Õ(·) is similar to O(·) but ignores log-terms, i.e., f = Õ(g) if and only if ∃k, f = O(g logk(g)).
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3 Learning from Confounded Observations

The results presented so far (Thms. 1 to 3) establish the dimension of the state-action domain |S||X |
as the an important parameter for the information complexity of online learning in DTRs. When
domains S × X are high-dimensional, the cumulative regret will be significant for any online
algorithm, no matter how sophisticated it might be. This observation suggests that we should explore
other reasonable assumptions to address the issues of high-dimensional domains.

A natural approach is to utilize the abundant observational data, which could be obtained by passively
observing other agents behaving in the environment. Despite all its power, the UC-DTR algorithm
does not make use of any knowledge in the the observational distribution P (s̄K , x̄K , y). For the
remainder of this paper, we will present and study an efficient procedure to incorporate observational
samples of P (s̄K , x̄K , y), so that the performance of online learners could be improved.

When states S̄K satisfy the sequential backdoor criterion [26] with respect to treatments X̄K and
the primary outcome Y , one could identify the transition probabilities Px̄k

(sk+1|s̄k) and expected
reward Ex̄K

[Y |s̄k] from P (s̄K , x̄K , y). The optimal policy is thus solvable using the standard
off-policy learning methods such as Q-learning [33, 22]. However, issues of non-identifiability arise
in the general settings where the sequential backdoor does not hold (e.g., see Fig. 1a).
Theorem 4. Given P (s̄K , x̄K , y) > 0, there exists DTRs M1,M2 such that PM1(s̄K , x̄K , y) =

PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1
x̄K

(s̄K , y) 6= PM2
x̄K

(s̄K , y).

Thm. 4 is stronger than the standard non-identifiability results (e.g., [16, Thm. 1]). It shows that
given any observational distribution P (s̄K , x̄K , y), one to construct two DTRs both compatible with
P (s̄K , x̄K , y), but disagrees in the interventional probabilities Px̄K

(s̄K , y).

3.1 Bounds and Partial Identification in DTRs

In this section, we consider a partial identification task in DTRs which bounds parameters of
Px̄k

(sk+1|s̄k) and Ex̄K
[Y |s̄k] from the observational distribution P (s̄K , x̄K , y). Our first result

shows that the gap between causal quantities Px̄k
(s̄k+1) and Px̄k

(s̄k) in a DTR is bounded by the
gap between the corresponding observational distributions P (s̄k+1, x̄k) and P (s̄k, x̄k).
Lemma 1. For a DTR, given P (s̄K , x̄K , y), for any k = 1, . . . ,K − 1,

Px̄k
(s̄k+1)− Px̄k

(s̄k) ≤ P (s̄k+1, x̄k)− P (s̄k, x̄k). (9)

Lem. 1 allows one to derive informative bounds of transition probabilities Px̄k
(sk+1|s̄k) in a DTR,

which are consistently estimable from the observational data P (s̄K , x̄K).
Theorem 5. For a DTR, given P (s̄K , x̄K , y) > 0, for any k = 1, . . . ,K − 1,

P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
≤ Px̄k

(sk+1|s̄k) ≤ Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
, (10)

where Γ(s̄k+1, x̄k) = P (s̄k+1, x̄k)− P (s̄k, x̄k) + Γ(s̄k, x̄k−1) and Γ(s1) = P (s1).

Bounds in Thm. 5 exploit the sequential functional relationships among states and treatments in
the underlying DTR, which improve over the best-known bounds reported in [19, 4, 41]. Let[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
denote the bound over Px̄k

(sk+1|s̄k) given by Eq. (10). We next show
that Px̄k

(sk+1|s̄k) ∈
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
is indeed optimal without additional assumption.

Theorem 6. Given P (s̄K , x̄K , y) > 0, for any k ∈ {1, . . . ,K− 1}, there exists DTRs M1,M2 such
that PM1(s̄K , x̄K , y) = PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1

x̄k
(sk+1|s̄k) = ax̄k,s̄k(sk+1),

PM2
x̄k

(sk+1|s̄k) = bx̄k,s̄k(sk+1).

Thm. 6 ensures the optimality of Thm. 5. Suppose there exists a bound [a′x̄k,s̄k
(sk+1), b′x̄k,s̄k

(sk+1)
]

strictly contained in
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
. By Thm. 6, we could always find DTRs M1,M2

that are compatible with the observational data P (s̄K , x̄K , y) while their transition probabilities
Px̄k

(sk+1|s̄k) lie outside of the bound [a′x̄k,s̄k
(sk+1), b′x̄k,s̄k

(sk+1)
]
, which is a contradiction.

As a corollary, one could apply methods of Lem. 1 and Thm. 5 to bound expected rewardsEx̄K
[Y |s̄k]

from P (s̄K , x̄K , y). The optimality of the derived bounds follows immediately after Thm. 6.
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Algorithm 2: Causal UC-DTR (UCc-DTR)
Input: failure tolerance δ ∈ (0, 1), causal bounds C.

1: LetMc denote a set of DTRs compatible with causal bounds C, i.e., for any M ∈Mc, its
causal quantities Px̄k

(sk+1|s̄k) and Ex̄K
[Y |s̄K ] satisfy Eq. (13) and Eq. (14) respectively.

2: for all episodes t = 1, 2, . . . do
3: Execute Steps 2-4 of UC-DTR (Alg. 1).
4: Find the optimal policy πt of an optimistic DTR Mt inMc

t =Mt ∩Mc such that

Vπt
(Mt) = max

π∈Π,M∈Mc
t

Vπ(M) (12)

5: Execute policy πt for episode t and observe the samples S̄t
K , X̄

t
K , Y

t.
6: end for

Corollary 1. For a DTR, given P (s̄K , x̄K , y) > 0,

E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
≤ Ex̄K

[Y |s̄k] ≤ 1− (1− E[Y |s̄K , x̄K ])P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
. (11)

Since E[Y |s̄K , x̄K ] ∈ [0, 1], the bounds in Eq. (11) are contained in [0, 1] and are thus informative.
The bounds developed so far are functions of the observational distribution P (s̄K , x̄K , y) which is
identifiable by the sampling process, and so generally can be estimated consistently. Specifically, we
estimate the bounds in Thm. 5 and Corol. 1 by the corresponding sample mean estimates. Standard
results of large-deviation theory are thus applicable to control the uncertainties due to finite samples.

3.2 The Causal UC-DTR Algorithm

Our goal in this section is to introduce a simple, yet principled approach for leveraging the new-found
bounds defined in Thm. 5 and Corol. 1, hopefully improving the performance of UC-DTR procedure.

For k = 1, . . . ,K − 1, let Ck denote a set of bounds over transition probabilities Px̄k
(sk+1|s̄k), i.e.,

Ck =
{
∀s̄k+1, x̄k : Px̄k

(sk+1|s̄k) ∈
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]}
. (13)

Similarly, let CK denote a set of bounds over the conditional expected reward Ex̄K
[Y |s̄K ], i.e.,

CK =
{
∀s̄K , x̄K : Ex̄K

[Y |s̄K ] ∈
[
ax̄K ,s̄K , bx̄K ,s̄K

]}
. (14)

We denote by C a set of bounds {C1, . . . ,CK} on the system dynamics of the DTR, called causal
bounds. Our procedure Causal UC-DTR (for short, UCc-DTR) is summarized in Alg. 2. UCc-DTR is
similar to the original UC-DTR but exploits causal bounds C. It maintains a set of possible DTRsMc

compatible with the causal bounds C (Step 1). Before each episode t, it computes the optimal policy
πt of an optimistic DTRs Mt in setMc

t = Mt ∩Mc (Step 3). Similar to UC-DTR, πt could be
obtained by solving LPs defined in Eq. (5) subject to additional causal constraints Eqs. (13) and (14).

We next analyze asymptotic properties of UCc-DTR, showing that it consistently outperforms UC-DTR.
Let
∥∥Ck

∥∥
1

denote the maximal L1 norm of any parameter in Ck, i.e., for any k = 1, . . . ,K − 1,∥∥Ck

∥∥
1

= max
x̄k,s̄k

∑
sk+1

∣∣ax̄k,s̄k(sk+1)− bx̄k,s̄k(sk+1)
∣∣, and

∥∥CK

∥∥
1

= max
x̄K ,s̄K

∣∣ax̄K ,s̄K − bx̄K ,s̄K

∣∣.
Further, let

∥∥C∥∥
1

=
∑K

k=1

∥∥Ck

∥∥
1
. The total regret of UCc-DTR after T steps is bounded as follows.

Theorem 7. Fix a δ ∈ (0, 1). With probability of at least 1− δ, it holds for any T > 1, the regret of
UCc-DTR with parameter δ and causal bounds C is bounded by

R(T ) ≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ). (15)

It is immediate from Thm. 7 that the regret bound in Eq. (15) is smaller than the bound given by
Eq. (6) if T < 122|S||X | log(2K|S||X |T/δ)/

∥∥C∥∥2
1
. This means that UCc-DTR has a head start over

UC-DTR when the causal bounds C are informative, i.e., the dimension
∥∥C∥∥

1
is small.
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(a) Random DTR (b) Random DTR (c) Cancer Treatment

Figure 2: Simulations comparing online learners that are randomized (rand), adaptive (uc-dtr) and
causally enhanced (ucc-dtr). Graphs are rendered in high resolution and can be zoomed in.

We could also witness the improvements of causal bounds on the total expected regret. Let Π−C be
the set of sub-optimal policies that their maximal expected rewards over instances inMc are no less
than the true optimal value Vπ∗(M∗), i.e., Π−C = {π ∈ Π− : maxM∈Mc Vπ(M) ≥ Vπ∗(M∗)}.
The following is the instance-dependent bound on the total regret of UCc-DTR after T steps.

Theorem 8. For any T ≥ 1, with parameter δ = 1
T and causal bounds C, the expected regret of

UCc-DTR is bounded by

E[R(T )] ≤ max
π∈Π−

C

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1. (16)

Since Π−C ⊆ Π−, it follows that the regret bound in Thm. 8 is small than or equal to Eq. (7), i.e.,
UCc-DTR consistently dominates UC-DTR in terms of the performance. For instance, in a multi-armed
bandit model (i.e., 1-stage DTR with S1 = ∅) with optimal reward µ∗, the regret of UCc-DTR is
O(|X | log(T )/∆x) where ∆x is the smallest gap among sub-optimal arms x satisfying bx ≥ µ∗.

4 Experiments

We demonstrate our algorithms on several dynamic treatment regimes, including randomly generated
DTRs, and the survival model in the context of multi-stage cancer treatment. We found that our
algorithms could efficiently found the optimal policy; the observational data typically improve the
convergence rate of online RL learners despite the confounding bias.

In all experiments, we test sequentially randomized trials (rand), UC-DTR algorithm (uc-dtr) and the
causal UC-DTR (ucc-dtr) with causal bounds derived from 1× 105 confounded observational samples.
Each experiment lasts for T = 1.1× 104 episodes. The parameter δ = 1

KT for uc-dtr and ucc-dtr
where K is the total stages of interventions. For all algorithms, we measure their cumulative regret
over 200 repetitions. We refer readers to Appendix II for the more details on the experimental set-up.

Random DTRs We generate 200 random instances and observational distributions of the DTR
described in Fig. 1. We assume treatments X1, X2, states S1, S2 and primary outcome Y are all
binary variables; values of each variable are decided by their corresponding unobserved counter-
facutals S2x1

, X2x1
, Yx̄2

following definitions in [4, 10]. The probabilities of the joint distribution
P (s1, x1, s2x1

, x2x1
, yx̄2

) are drawn randomly over [0, 1]. The cumulative regrets average among
all random DTRs are reported in Fig. 2a. We find that online methods (uc-dtr, ucc-dtr) dominate
randomized assignments (rand); RL learners that leverage causal bounds (ucc-dtr) consistently domi-
nates learners that do not (uc-dtr). Fig. 2b reports the relative improvement in total regrets of ucc-dtr
compared to uc-dtr among 200 instances: ucc-dtr outperforms uc-dtr in over 80% of generated DTRs.
This suggests that causal bounds derived from the observational data are beneficial in most instances.

Cancer Treatment We test the survival model of the two-stage clinical trial conducted by the
Cancer and Leukemia Group B [18, 39]. Protocol 8923 was a double-blind, placebo controlled
two-stage trial reported by [31] examining the effects of infusions of granulocyte-macrophage
colony-stimulating factor (GM-CSF) after initial chemotherapy in patients with acute myelogenous
leukemia (AML). Standard chemotherapy for AML could place patients at increased risk of death

8



due to infection or bleeding-related complications. GM-CSF administered after chemotherapy might
assist patient recovery, thus reducing the number of deaths due to such complications. Patients
were randomized initially to GM-CSF or placebo following standard chemotherapy. Later, patients
meeting the criteria of complete remission and consenting to further participation were offered a
second randomization to one of two intensification treatments.

Fig. 1a describes the DTR of this two-stage trail. X1 represents the initial GM-CSF administration
and X2 represents the intensification treatment; the initial state S1 = ∅ and S2 indicates the complete
remission after the first treatment; the primary outcome Y indicates the survival of patients at the time
of recording. We generate observational samples using age of patients as UCs U . The cumulative
regrets average among all random DTRs are reported in Fig. 2b. We find that rand performs worst
among all strategies; uc-dtr finds the optimal policy with sub-linear regrets. Interestingly, ucc-dtr
converges almost immediately, suggesting that causal bounds derived from confounded observations
could significantly improve the performance of online learners.

5 Conclusion

In this paper, we investigated the online reinforcement learning problem for selecting the optimal
DTR provided with abundant, yet imperfect observations made about the underlying environment.
We first presented an online RL algorithm with near-optimal regret bounds in DTRs solely based
on the knowledge about state-action domains. We further derived causal bounds about the system
dynamics in DTRs from the observational data. These bounds could be incorporated in a simple, yet
principled way to improve the performance of online RL learners. In today’s healthcare, for example,
the growing use of mobile devices opens new opportunities in continuous monitoring of patients’
conditions and just-in-time interventions. We believe that our results constitute a significant step
towards the development of a more principled and robust science of precision medicine.
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Supplemental Material

Appendix I. Proofs

In this section, we provide proofs for the theoretical results presented in the main text.

Proof of Theorems 1 to 3

We start by introducing necessary notations for the proof. We say an episode t is ε-bad if Vπ∗(M∗)−
Y t ≥ ε. Let Tε be the number of episodes taken by UC-DTR that are ε-bad. Let Lε denote the indices
of the ε-bad episodes up to episode T . The cumulative regret Rε(T ) in ε-bad episodes up to episode
T is defined as Rε(T ) =

∑
t∈Lε Vπ∗(M

∗) − Y t. For any k = 1, . . . ,K, we define event counts
N(s̄k, x̄k) in total episodes T as N(s̄k, x̄k) =

∑T
t=1 IS̄tk=s̄k,X̄t

k=x̄k
. Finally, we denote by Ht the

history up to episode t, i.e., Ht = {X̄1
K , S̄

1
K , Y

1, . . . , X̄t
K , S̄

t
K , Y

t}.
Lemma 2. Fix δ ∈ (0, 1), with probability at least 1− δ,∑

t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≤
√
Tε log(1/δ)

2
.

Proof. Let DT denote the sequence {X̄1
K , S̄

1
K , . . . , X̄

T
K , S̄

T
K}. Rewards Y t are independent vari-

ables by conditioning onDT = dT . Applying Hoeffding’s inequality gives:

P

(∑
t∈Lε

(
Ex̄tK [Y |s̄tK ]− Y t

)
≥
√
Tε log(1/δ)

2
| dT

)
≤ δ.

We thus have:

P

(∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≥
√
Tε log(1/δ)

2
| dT

)
≤ δ

∑
dT

P (dT ) = δ.

Lemma 3. Fix ε > 0, δ ∈ (0, 1). With probability (w.p.) of at least 1 − δ, it holds for any T > 1,
Rε(T ) of UC-DTR with parameter δ is bounded by

Rε(T ) ≤ 12K
√
|S||X |Tε log(2K|S||X |T/δ) + 4K

√
Tε log(2T/δ)

Proof. Let M∗ denote the underlying DTR. Recall thatMt is a set of DTR instances such that for
any M ∈Mt, its system dynamics satisfy∥∥∥PMx̄k (·|s̄k)− P̂ tx̄k(·|s̄k)

∥∥∥
1
≤

√
6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣t/δ)
max{1, N t(s̄k, x̄k)}

, (17)

∣∣∣EMx̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]
∣∣∣ ≤√ 2 log(2K|S||X |t/δ)

max{1, N t(s̄K , x̄K)}
. (18)
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By union bounds and Hoeffding’s inequality (following a similar argument in [4, C.1]),

P (M∗ 6∈ Mt) ≤
δ

4t2
.

Since
∑∞
t=1

1
4t2 ≤

π2

24 δ <
δ
2 , it follows that with probability at least 1− δ

2 ,M∗ ∈Mt for all episodes
t = 1, 2, . . . .

For the remainder of the proof, we will assume that M∗ ∈Mt for all t. Let EMt
x̄K [Y |s̄K ] denote the

conditional expected reward in the optimistic DTR Mt. We can write Rε(T ) as:

Rε(T ) =
∑
t∈Lε

(
Vπ∗(M

∗)− EMt

X̄t
K

[Y |S̄tK ]
)

(19)

+
∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

(20)

+
∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
. (21)

We will next derive bounds over Rε(T ) by bounding quantities in Eqs. (19) to (21) separately.

Bounding Eq. (19) For any DTR M and policy π, let Vπ(s̄k, x̄k−1;M) = EMπ [Y |s̄k, x̄k−1] and
Vπ(s̄k, x̄k;M) = EMπ [Y |s̄k, x̄k]. Since M∗ ∈ Mt, we must have Vπ∗(s1;M∗) ≤ Vπt(s1;Mt),
i.e., the maximal expected reward of the optimal reward in the optimistic Mt is no less than that in
the underlying DTR M∗ for any initial state s1. Further, since πt is deterministic, for any stage k
and DTR M ,

Vπt(S̄
t
k, X̄

t
k−1;M) = Vπt(S̄

t
k, X̄

t
k−1;M). (22)

We thus have

Vπ∗(M
∗)− EMt

X̄t
K

[Y |S̄tK ] ≤ Vπ∗(M∗)− Vπ∗(S̄t1;M∗) + Vπt(S̄
t
1, X̄

t
1;M∗)− EMt

X̄t
K

[Y |S̄tK ].

Let Mt(k) denote a combined DTR obtained from M∗ and Mt such that

• for i = 0, 1, . . . , k − 1, its transition probability PMt(k)
x̄i (si+1|s̄i) coincides with the transi-

tion probability Px̄i(si+1|s̄i) in the real DTR M∗;

• for i = k, . . . ,K−1, its transition probability PMt(k)
x̄i (si+1|s̄i) coincides with the transition

probability PMt
x̄i (si+1|s̄i) in the optimistic Mt

This is, for any π ∈ Π, the interventional distribution PMt(k)
π (x̄K , s̄K , y) factorizes as follows:

PMt(k)
π (x̄K , s̄K , y) = PMt

x̄K (y|s̄K)

k−1∏
i=0

Px̄i(si+1|s̄i)

·
K−1∏
j=k

PMt
x̄j (si+1|s̄j)

K−1∏
l=1

πl+1(xl+1|s̄l+1, x̄l).

(23)

Obviously, EMt

X̄t
K

[Y |S̄tK ] = Vπt(S̄
t
K , X̄

t
K ;M

(K)
t ) and Vπt(S̄

t
1, X̄

t
1;Mt) = Vπt(S

t
1, X

t
1;M

(1)
t ). We

thus have

Vπt(S̄
t
1, X̄

t
1;Mt)− EMt

X̄t
K

[Y |S̄tK ] = Vπt(S̄
t
1, X̄

t
1;M

(1)
t )− Vπt(S̄tK , X̄t

K ;M
(K)
t )

=

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(1)
t )− Vπt(S̄tk+1, X̄

t
k+1;M

(K)
t )

=

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(K)
t ).
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The last step is ensured by Eq. (22). We further have:

Vπt(S̄
t
1, X̄

t
1;Mt)− EMt

X̄t
K

[Y |S̄tK ] =

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

+

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k+1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(k+1)
t ).

Eq. (19) can thus be written as:

∑
t∈Lε

(
Vπt(Mt)− EMt

X̄t
K

[Y |S̄tK ]
)

=

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t ) +

∑
t∈Lε

Zt,

where Zt is defined as

Zt = Vπ∗(M
∗)− Vπ∗(S̄t1;M) +

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k+1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(k+1)
t )

By Eq. (23) and basic probabilistic operations,

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

=
∑
sk+1

(PMt(sk+1|S̄k, X̄k)− P (sk+1|S̄k, X̄k))Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤
∥∥∥PMt
x̄k (·|s̄k)− Px̄k(·|s̄k)

∥∥∥
1

max
sk+1

Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤ 2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)

The last step follows from Eq. (17). From results in [4, D], we have∑
t∈Lε

1√
max{1, N t(S̄tk, X̄

t
k)}
≤ (
√

2 + 1)
√
Tε|S̄k||X̄ k|.

This implies:

∑
t∈Lε

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
K−1∑
k=1

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ)
≤ 2(
√

2 + 1)(K − 1)
√

6Tε|S||X | log(2K|S||X |T/δ) (24)

Let Ht denote the history up to episode t, i.e., {X̄1
K , S̄

1
K , Y

1, . . . , X̄t
K , S̄

t
K , Y

t}. Since |Zt| ≤ K
and E[Zt+1|Ht] = 0, {Zt : t ∈ Lε} is a sequence of martingale differences. By Azuma-Hoeffding
inequality [3], we have, with probability at least 1− δ

8T 2 ,∑
t∈Lε

Zt ≤ K
√

6Tε log(2T/δ) (25)

Since
∑∞
T=1

1
8T 2 ≤ π2

48 δ <
δ
4 , the above inequality holds with probability 1 − δ

4 for all T > 1.
Eqs. (24) and (25) combined give∑

t∈Lε

(
Vπ∗(M

∗)− EMt

X̄t
K

[Y |S̄tK ]
)

≤ 2(
√

2 + 1)(K − 1)
√

6Tε|S||X | log(2K|S||X |T/δ) +K
√

6Tε log(2T/δ)

(26)

14



Bounding Eq. (20) Since both M∗,Mt are in the setMt,

EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ] ≤
∣∣∣EMt
x̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]

∣∣∣+
∣∣∣EX̄t

K
[Y |S̄tK ]− Êtx̄K [Y |s̄K ]

∣∣∣
≤ 2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

The last step follows from Eq. (18). From results in [4, D], we have∑
t∈Lε

1√
max{1, N t(S̄tK , X̄

t
K)}

≤ (
√

2 + 1)
√
Tε|S||X |.

This implies∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)
≤ 2(
√

2 + 1)
√

2Tε|S||X | log(2K|S||X |T/δ) (27)

Bounding Eq. (21) By Lem. 2, we have with probability at least 1− δ
8T 2 ,

∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≤
√

3Tε log(2T/δ)

2
(28)

Since
∑∞
T=1

1
8T 2 ≤ π2

48 δ <
δ
4 , the above equation holds with probability 1− δ

4 for any T .

Eqs. (26) to (28) together give that, with probability at least 1− δ
2 −

δ
4 −

δ
4 = 1− δ,

Rε(T ) ≤ (K − 1)2(
√

2 + 1)
√

6Tε|S||X | log(2K|S||X |T/δ) +K
√

6Tε log(2T/δ)

+ 2(
√

2 + 1)
√

2Tε|S||X | log(2K|S||X |T/δ) +

√
3Tε log(2T/δ)

2
.

A quick simplification gives:

Rε(T ) ≤ 12K
√
|S||X |Tε log(2K|S||X |T/δ) + 4K

√
Tε log(2T/δ).

Theorem 1. Fix a δ ∈ (0, 1). With probability (w.p.) of at least 1− δ, it holds for any T > 1, the
regret of UC-DTR with parameter δ is bounded by

R(T ) ≤ 12K
√
|S||X |T log(2K|S||X |T/δ) + 4K

√
T log(2T/δ).

Proof. Fix ε = 0. Naturally, Tε = T and Rε(T ) = R(T ). By Lem. 3,

R(T ) ≤ 12K
√
|S||X |T log(2K|S||X |T/δ) + 4K

√
T log(2T/δ).

Theorem 2. For any T ≥ 1, with parameter δ = 1
T , the expected regret of UC-DTR is bounded by

E[R(T )] ≤ max
π∈Π−

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1.

Proof. By Lem. 3 and a quick simplification, we have

Rε(T ) ≤ 23K
√
|S||X |Tε log(T/δ).

Since Rε(T ) ≥ εTε, εTε ≤ 23K
√
|S||X |Tε log(T/δ), which implies

Tε ≤
232K2|S||X | log(T/δ)

ε2
. (29)

This implies that, with probability at least 1− δ,

Rε(T ) ≤ 23K
√
|S||X |Tε log(T/δ) =

232K2|S||X | log(T/δ)

ε

15



Let ∆ = arg minπ∈Π− ∆π . Fix ε = ∆
2 , δ = 1

T , we have

E[R∆
2

(T )] ≤ 332K2|S||X | log(T )

∆
+ 1. (30)

We now only need to bound the regrets cumulated in the episodes that are not ε-bad, which we call
ε-good. Let R̃ε(T ) denote the regret in episodes that are ε-good. Let T̃ε denote the total number of
ε-good episodes and let L̃ε be indices of ε-good episodes. Fix ε = ∆

2 , for any ε-good episode t, we
have Vπt(M

∗)− Y t < ε. Fix event T̃∆
2

= t,

R̃ε(T ) =
∑
i∈L̃ε

Vπ∗(M
∗)− Y i ≤ t∆

2
.

The above inequality is equivalent to∑
i∈L̃∆

2

Vπ∗(M
∗)− Vπi(M∗)− Y i ≤ t

∆

2
−
∑
i∈L̃∆

2

Vπi(M
∗)

⇒
∑
i∈L̃∆

2

∆πi − Y i ≤ t
∆

2
−
∑
i∈L̃∆

2

Vπi(M
∗)

⇒
∑
i∈L̃∆

2

∆− Y i ≤ t∆
2
−
∑
i∈L̃∆

2

Vπi(M
∗)

Since |L̃ε| = T̃∆
2

, we have

T̃∆
2

= t⇒
∑
i∈L̃∆

2

Vπi(M
∗)− Y i ≤ −t∆

2
. (31)

We could thus bound E[R̃∆
2

(T )] as

E[R̃∆
2

(T )] ≤ ∆

2
E[T̃∆

2
(T )] ≤ ∆

2

T∑
t=1

tP (T̃∆
2

= t)

By Eq. (31), we further have

E[R̃∆
2

(T )] ≤ ∆

2

T∑
t=1

tP

( ∑
i∈L̃∆

2

Vπi(M
∗)− Y i ≤ −t∆

2

)

Let Ct = Vπt(M
∗) − Y t. Since |Ct| < 1 and E[Ct+1|Ht] = 0, {Ci : i ∈ L̃∆

2
} is a sequence of

martingale differences. Applying Azuma-Hoeffding lemma gives,

P

( ∑
i∈L̃∆

2

Ci ≤ −t
∆

2

)
≤ e−∆2t

8 .

Thus

E[R̃∆
2

(T )] ≤ ∆

2

T∑
t=1

te−
∆2t

8 ≤ ∆

2

64

∆4
(
∆2

8
+ 1)e−

∆2

8

which implies

E[R̃∆
2

(T )] ≤ 32

∆3
+

4

∆
. (32)

Eqs. (30) and (32) together give:

E[R(T )] = E[R∆
2

(T )] + E[R̃∆
2

(T )] ≤ 332K2|S||X | log(T )

∆
+

32

∆3
+

4

∆
+ 1

The right-hand side of the above inequality is a decreasing function regarding the gap ∆. By a quick
simplification, we prove the statement.
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Theorem 3. For any algorithm A, any natural numbers K ≥ 1, and
∣∣Sk∣∣ ≥ 2,

∣∣X k
∣∣ ≥ 2 for any

k ∈ {1, . . . ,K}, there is a DTR M with horizon K, state domains S and action domains X , such
that the expected regret of A after T ≥ |S||X | episodes is as least

E[R(T )] ≥ 0.05
√
|S||X |T .

Proof. The classic results in bandit literature [1, Thm. 5.1] shows that for each state sequence K ,
there exists a bandit instance such that for any the total regret of any algorithm is lower bound by

E[R(T )] ≥ 0.05
∑
s̄K

√
N(s̄K)|X |,

whereN(s̄K) is the event count S̄K = s̄K for all T episodes. The lower bound in Thm. 3 is achieved
when all states K are decided uniformly at random, i.e., N(s̄K) = T/|S̄K |.

Proofs of Theorems 4 to 6, Lemma 1, and Corollary 2

In this section, we provide proofs for the bounds on transition probabilities of DTRs. Our proofs
build on the notion of counterfactual variables [6, Ch. 7.1] and axioms of “composition, effectiveness
and reversibility” defined in [6, Ch. 7.3.1].

For a SCM M , arbitrary subsets of endogenous variables X,Y , the potential outcome of Y to
intervention do(x), denoted by Yx(u), is the solution for Y with U = u in the sub-model Mx. It
can be read as the counterfactual sentence “the value that Y would have obtained in situation U = u,
had X been x.” Statistically, averaging u over the distribution P (u) leads to the counterfactual
variables Yx. We denote P (Yx) a distribution over counterfactual variables Yx. We use P (yx) as a
shorthand for probabilities P (Yx = y) when the identify of the counterfactual variables is clear.

We now introduce a family of DTRs which represent the exogenous variables U using partitions
defined by the corresponding counterfactual variables. For any k = 1, . . . ,K − 1, let Sk+1X̄k

denote a set of counterfactual variables {Sk+1x̄k
: x̄k ∈ X̄ k}. Similarly, let YX̄K

denote a set
{Yx̄K : x̄K ∈ X̄K}. Further, we define S̄k+1X̄k

a set {S1, S2X̄1
, . . . , Sk+1X̄k

}.
Definition 1 (Counterfactual DTR). A counterfactual dynamic treatment regime is a DTR
〈U , {X̄K , S̄K , Y },F , P (u)〉 where for k = 2, . . . ,K,

• The exogenous variables U = {X̄K , S̄KX̄K−1
, YX̄K

};

• Values of S1, X̄K are drawn from P (X̄K , S̄KX̄K−1
, YX̄K

);

• Values of Sk are decided by a function Sk ← τk(SkX̄k−1
, X̄k−1) = SkX̄k−1

;

• Values of Y are decided by a function Y ← r(YX̄K
, X̄K) = YX̄K

.

Give observational distribution P (s̄K , x̄K , y) > 0, we next construct a family of counterfac-
tual DTRs MOBS that are compatible with the observational distribution, i.e., for any M ∈
MOBS, PM (s̄K , x̄K , y) = P (s̄K , x̄K , y). First, any M ∈ MOBS, its exogenous distribution
PM (X̄K , S̄KX̄K−1

, YX̄K
) must satisfy the following decomposition:

PM (X̄K , S̄KX̄K−1
, YX̄K

) = PM (s1)
∏

x̄yK∈X̄K

PM (Yx̄yK |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, X̄K−1)

·
K−1∏
k=1

∏
x̄k+1
k ∈X̄k

PM (Sk+1
X̄
k+1
k

|S̄kx̄k−1
, x̄k)PM (X̄k|S̄kx̄k−1

, X̄k−1).

Among quantities in the above equation, we define factors PM (s1) as the observational probabilities
P (s1), i.e, PM (s1) = P (s1). We further define conditional probabilities

PM (yx̄K |s̄Kx̄K−1
, x̄K) = P (y|s̄K , x̄K), PM (x̄K |s̄Kx̄K−1

, x̄K−1) = P (x̄K |s̄K , x̄K−1),

PM (sk+1x̄k
|s̄kx̄k−1

, x̄k) = P (sk+1|s̄k, x̄k), PM (x̄k|s̄kx̄k−1
, x̄k−1) = P (x̄k|s̄k, x̄k−1).
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Other factors can be arbitrary conditional probabilities. It is verifiable that for any M ∈ MOBS,
PM (s̄K , x̄K , y) = P (s̄K , x̄K , y). To witness,

PM (S̄K , X̄K , Y ) =

K−1∑
k=1

∑
{Yx̄

y
K

:x̄yK 6=x̄K}

∑
{Sk+1

x̄
k+1
k

:x̄k+1
k 6=x̄k}

PM (X̄K , S̄KX̄K−1
, YX̄K

)

= PM (s1)
∏

x̄yK∈X̄K

∑
{Yx̄

y
K

:x̄yK 6=x̄K}

PM (Yx̄yK |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, x̄K−1)

·
K−1∏
k=1

∏
x̄k+1
k ∈X̄k

∑
{Sk+1

x̄
k+1
k

:x̄k+1
k 6=x̄k}

PM (Sk+1
x̄
k+1
k

|S̄kx̄k−1
, X̄k)PM (X̄k|S̄kx̄k−1

, X̄k−1)

= PM (S1)PM (Yx̄K |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, X̄K−1)

·
K−1∏
k=1

PM (Sk+1x̄k
|S̄kx̄k−1

, x̄k)PM (X̄k|S̄kx̄k−1
, X̄k−1).

By definitions ofMOBS, we thus have that, for any s̄K , x̄K , y,

PM (s̄K , x̄K , y) = P (s1)P (y|s̄K , x̄K)P (x̄K |s̄K , x̄K−1)

K−1∏
k=1

P (sk+1|s̄k, x̄k)P (x̄k|s̄k, x̄k−1)

= P (s̄K , x̄K , y).

We will now use the constructions ofMOBS to prove the non-identifiability of Px̄K (s̄K , y) in DTRs.
Theorem 4. Given P (s̄K , x̄K , y) > 0, there exists DTRs M1,M2 such that PM1(s̄K , x̄K , y) =

PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1
x̄K (s̄K , y) 6= PM2

x̄K (s̄K , y).

Proof. We define two counterfactual DTRs M1,M2 ∈MOBS that are compatible with the observa-
tional distribution P (s̄K , x̄K , y). If K = 1, for any y, s1, x1 and any xy1 6= x1, we define

PM1(yxy1 |s1, x1) = 0, PM2(yxy1 |s1, x1) = 1

It is verifiable that

PM1
x1

(s1, y) = P (s1, x1, y), PM2
x1

(s1, y) = P (s1, x1, y) + (1− P (x1|s1))P (s1)

Since P (s̄K , x̄K , y) > 0, we have PM2
x1

(s1, y) 6= PM1
x1

(s1, y).

We now consider the case where K > 1. For any x̄K , s̄K , y, and any x̄yK 6= x̄K , we define

PM1(yx̄yK |s̄Kx̄K−1
, x̄K) = 0 (33)

By definitions, PM1
x̄K (s̄K , y) is equal to the counterfactual quantities PM1(s̄Kx̄K−1

, yx̄K ). Thus,

PM1
x̄K (s̄K , y) = PM1(s̄Kx̄K−1

, yx̄K , x̄K) +
∑

x̄′K 6=x̄K

PM1(s̄Kx̄K−1
, yx̄K , x̄

′
K)

= PM1(s̄Kx̄K−1
, yx̄K , x̄K) +

∑
x̄′K 6=x̄K

PM1(yx̄K |s̄Kx̄K−1
, x̄′K)PM1(s̄Kx̄K−1

, x̄′K)

By the composition axiom, S̄Kx̄K−1
= S̄K , Yx̄K = Y if X̄K = x̄K . Thus,

PM1(s̄Kx̄K−1
, yx̄K , x̄K) = PM1(s̄K , y, x̄K). Since M1 ∈ MOBS, PM1(s̄K , y, x̄K) =

P (s̄K , y, x̄K). Together with Eq. (33), we can obtain

PM1
x̄K (s̄K , y) = P (s̄K , x̄K , y).

As for M2, for any x̄KK−1 6= x̄k−1, we define its factor

PM2(sK
x̄KK−1

|s̄K−1x̄K−2
, x̄K−1) = 0
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The above equation implies that for any x̄′K−1 6= x̄K−1,

PM2(s̄Kx̄K−1
, yx̄K , x̄

′
K−1)

= PM2(yx̄K |s̄Kx̄K−1
, x̄′K−1)PM2(sKx̄K−1

|s̄K−1x̄K−2
, x̄′K−1)PM2(s̄K−1x̄K−2

, x̄′K−1)

= 0 (34)

For any x̄yK 6= x̄K , we define

PM2(yx̄yK |s̄Kx̄K−1
, x̄K) = 1 (35)

We will now show that the above equation implies that for any x′K 6= xK ,

PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) = P (s̄K , x̄K−1). (36)

We first write PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) as:

PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) = PM2(yx̄k |s̄Kx̄K−1

, x′k, x̄K−1)PM2(s̄Kx̄K−1
, x′k, x̄K−1)

It is immediate from Eq. (35) that

PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1) = PM2(s̄Kx̄K−1

, x̄K−1).

By the composition axiom, S̄Kx̄K−1
= S̄K if X̄K−1 = x̄k−1. Since M2 ∈MOBS, we thus have:

PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1) = PM2(s̄K , x̄K−1) = P (s̄K , x̄K−1).

We now turn our attention to the interventional distribution PM2
x̄K (s̄K , y). By expanding on X̄K ,

PM2
x̄K (s̄K , y) = PM2(s̄Kx̄K−1

, yx̄k , x̄K) + PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1)

+ PM2(s̄Kx̄K−1
, yx̄k , X̄K−1 6= x̄K−1)

The above equation, together with Eqs. (34) and (36), gives:

PM2
x̄K (s̄K , y) = PM2(s̄Kx̄K−1

, yx̄k , x̄K) + P (s̄K , x̄K−1).

Again, by the composition axiom and M2 ∈MOBS,

PM2
x̄K (s̄K , y) = PM2(s̄K , y, x̄K) + P (s̄K , x̄K−1) = P (s̄K , y, x̄K) + P (s̄K , x̄K−1).

Since P (s̄K , x̄K−1) > 0, we have PM1
x̄K (s̄K , y) 6= PM2

x̄K (s̄K , y), which proves the statement.

Lemma 1. For a DTR, given P (s̄K , x̄K , y), for any k = 1, . . . ,K − 1,
Px̄k(s̄k+1)− Px̄k(s̄k) ≤ P (s̄k+1, x̄k)− P (s̄k, x̄k).

Proof. Note that Px̄k(s̄k+1) can be written as the counterfactual quantity P (s̄k+1x̄k
). For any set of

variables V , let ¬v denote an event V 6= v. Px̄k(s̄k+1) could thus be written as:
Px̄k(s̄k+1) = P (s̄k+1x̄k

, x̄k) + P (s̄k+1x̄k
,¬xk, x̄k−1) + P (s̄k+1x̄k

,¬x̄k−1),

By the composition axiom, S̄k+1x̄k
= S̄k+1 if X̄k = x̄k. So,

Px̄k(s̄k+1) = P (s̄k+1, x̄k) + P (s̄k+1x̄k
,¬xk, x̄k−1) + P (s̄k+1x̄k

,¬x̄k−1)

≤ P (s̄k+1, x̄k) + P (s̄kx̄k ,¬xk, x̄k−1) + P (s̄kx̄k ,¬x̄k−1)

= P (s̄k+1, x̄k) + P (s̄kx̄k , x̄k−1)− P (s̄kx̄k , x̄k) + P (s̄kx̄k )− P (s̄kx̄k , x̄k−1)

= P (s̄kx̄k ) + P (s̄k+1, x̄k)− P (s̄kx̄k , x̄k).

Again, by the composition axiom, S̄kx̄k = S̄k if X̄k = x̄k. Since P (s̄kx̄k ) = Px̄k(s̄k),

Px̄k(s̄k+1) ≤ Px̄k(s̄k) + P (s̄k+1, x̄k)− P (s̄k, x̄k)

Rearranging the above equation proves the statement.

Lemma 4. For a DTR, given P (s̄K , x̄K , y), for any k = 0, . . . ,K − 1,
Px̄k(s̄k+1) ≤ Γ(s̄k+1, x̄k),

where Γ(s̄k+1, x̄k) = P (s̄k+1, x̄k)− P (s̄k, x̄k) + Γ(s̄k, x̄k−1) and Γ(s1) = P (s1).

Proof. We prove this statement by induction.
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Base Case: k = 0 By definition, Γ(s1) = P (s1). We thus have P (s1) ≤ Γ(s1).

Induction Step We assume that the statement holds for k, i.e., Px̄k(s̄k+1) ≤ Γ(s̄k+1, x̄k). We
will prove that the statement holds for k + 1, i.e., Px̄k+1

(s̄k+2) ≤ Γ(s̄k+2, x̄k+1). To begin with,

Px̄k+1
(s̄k+2) = Px̄k+1

(s̄k+2)− Px̄k+1
(s̄k+1) + Px̄k+1

(s̄k+1).

By Lem. 1,

Px̄k+1
(s̄k+2) ≤ P (s̄k+2, x̄k+1)− P (s̄k+1, x̄k+1) + Px̄k+1

(s̄k+1).

Since S̄k+1 are non-descendants of Xk+1, Px̄k+1
(s̄k+1) = Px̄k(s̄k+1). Since Px̄k(s̄k+1) ≤

Γ(s̄k+1, x̄k),

Px̄k+1
(s̄k+2) ≤ P (s̄k+2, x̄k+1)− P (s̄k+1, x̄k+1) + Γ(s̄k+1, x̄k) = Γ(s̄k+2, x̄k+1).

Theorem 5. For a DTR, given P (s̄K , x̄K , y) > 0, for any k = 1, . . . ,K − 1,

P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
≤ Px̄k(sk+1|s̄k) ≤ Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
,

Proof. By basic probabilistic operations,

Px̄k(sk+1|s̄k) =
Px̄k(s̄k+1)

Px̄k(s̄k)
.

By Lem. 1,

Px̄k(sk+1|s̄k) ≤ 1 +
P (s̄k+1, x̄k)− P (s̄k, x̄k)

Px̄k(s̄k)
.

Since P (s̄k+1, x̄k) ≤ P (s̄k, x̄k), Px̄k(sk+1|s̄k) is upper-bounded when Px̄k(s̄k) is the maximal.
Since S̄k are non-descendants of Xk, Px̄k(s̄k) = Px̄k−1

(s̄k). Together with Lem. 4, the above
equation can be further bounded as:

Px̄k(sk+1|s̄k) ≤ 1 +
P (s̄k+1, x̄k)− P (s̄k, x̄k)

Γ(s̄k, x̄k−1)
=

Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
.

By definition, Px̄k(s̄k+1) = P (s̄k+1x̄k
). By basic probabilistic operations,

Px̄k(sk+1|s̄k) =
P (s̄k+1x̄k

, x̄k) + P (s̄k+1x̄k
,¬x̄k)

Px̄k(s̄k)
≥
P (s̄k+1x̄k

, x̄k)

Px̄k(s̄k)
.

By the composition axiom, S̄k+1x̄k
= S̄k+1 if X̄k = x̄k. Applying Lem. 4 again gives

Px̄k(sk+1|s̄k) ≥ P (s̄k+1, x̄k)

Px̄k(s̄k)
=
P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
.

Theorem 6. Given P (s̄K , x̄K , y) > 0, for any k ∈ {1, . . . ,K − 1}, let Px̄k(sk+1|s̄k) ∈
[ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)] denote the bound given by Thm. 5. There exists DTRs M1,M2 such
that PM1(s̄K , x̄K , y) = PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1

x̄k (sk+1|s̄k) = ax̄k,s̄k(sk+1),
PM2
x̄k (sk+1|s̄k) = bx̄k,s̄k(sk+1).

Proof. Without loss of generality, we assume that K > 1. We consider two counterfactual DTRs
M1,M2 ∈MOBS compatible with the observational distribution P (s̄K , x̄K , y), which we define at
the beginning of this section. For all i = 1, . . . , k − 1, for any x̄i+1

i 6= x̄i, we define that for any
M ∈ {M1,M2}, its factors satisfy:

PM (si+1
x̄
i+1
i

|s̄ix̄i−1
, x̄i) = 1. (37)

Following a similar argument in Lem. 1, we will show that for any M ∈ {M1,M2}, for any
i = 1, . . . , k − 1,

PMx̄i (s̄i+1)− PMx̄i (s̄i) = P (s̄i+1, x̄i)− P (s̄i, x̄i). (38)
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By PMx̄i (s̄i+1) = PM (s̄i+1x̄i
) and basic probabilistic operations,

PMx̄i (s̄i+1) = PM (s̄i+1x̄i
, x̄i) + PM (s̄i+1x̄i

, Xi 6= xi, x̄i−1) + PM (s̄i+1x̄i
, X̄i−1 6= x̄i−1).

By the composition axiom, S̄i+1x̄i
= S̄i+1 if X̄i = x̄i. Since M ∈ MOBS, PM (s̄i+1, x̄i) =

P (s̄i+1, x̄i). Therefore,

PMx̄i (s̄i+1) = P (s̄i+1, x̄i) + PM (s̄i+1x̄i
, Xi 6= xi, x̄i−1) + PM (s̄i+1x̄i

, X̄i−1 6= x̄i−1),

= P (s̄i+1, x̄i) +
∑
x′i 6=xi

PM (si+1x̄i
|s̄ix̄i−1

, x′i, x̄i−1)P (s̄ix̄i−1
, x′i, x̄i−1)

+
∑

x̄′i−1 6=x̄i−1

PM (si+1x̄i
|s̄ix̄i−1

, xi, x̄
′
i−1)P (s̄ix̄i−1

, xi, x̄
′
i−1)

By Eq. (37), PM (si+1x̄i
|s̄ix̄i−1

, x′i, x̄i−1) = PM (si+1x̄i
|s̄ix̄i−1

, xi, x̄
′
i−1) = 1, which gives

PMx̄i (s̄i+1) = P (s̄i+1, x̄i) + PM (s̄ix̄i , Xi 6= xi, x̄i−1) + PM (s̄ix̄i , X̄i−1 6= x̄i−1)

= P (s̄i+1, x̄i) + PM (s̄ix̄i , x̄i−1)− PM (s̄ix̄i , x̄i) + PM (s̄ix̄i )− P
M (s̄ix̄i , x̄i−1)

= PM (s̄ix̄i ) + P (s̄i+1, x̄i)− PM (s̄ix̄i , x̄i)

Again, by the composition axiom and M ∈MOBS, PM (s̄ix̄i , x̄i) = P (s̄i, x̄i). Since PM (s̄ix̄i ) =

PMx̄i (s̄i), we have
PMx̄i (s̄i+1) = PMx̄i (s̄i) + P (s̄i+1, x̄i)− P (s̄i, x̄i).

Rearranging the above equation proves Eq. (37). Following a similar induction procedure in the proof
of Lem. 4, we have that for any M ∈ {M1,M2},

PMx̄k−1
(s̄k) = Γ(s̄k, x̄k−1). (39)

As for M1, for any x̄k+1
k 6= x̄k, we define

PM1(sk+1
x̄
k+1
k

|s̄kx̄k−1
, x̄k) = 0

This implies

PM1
x̄k (s̄k+1) = PM1(s̄k+1x̄k

, x̄k) +
∑
x̄′k 6=x̄k

PM1(sk+1x̄k
|s̄kx̄k−1

, x̄′k)PM1(s̄kx̄k−1
, x̄′k)

= PM1(s̄k+1x̄k
, x̄k).

By the composition axiom and M1 ∈MOBS, PM1(s̄k+1x̄k
, x̄k) = P (s̄k+1, x̄k), which gives

PM1
x̄k (s̄k+1) = P (s̄k+1, x̄k).

The above equation, together with Eq. (39), gives:

PM1
x̄k (sk+1|s̄k) =

PM1
x̄k (s̄k+1)

PMx̄k−1
(s̄k)

=
P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
= ax̄k,s̄k(sk+1).

As for M2, for any x̄k+1
k 6= x̄k, we define

PM2(sk+1
x̄
k+1
k

|s̄kx̄k−1
, x̄k) = 1.

Following a similar procedure for proving Eq. (39), we have

PMx̄k (s̄k+1) = Γ(s̄k+1, x̄k).

Thus,

PM2
x̄k (sk+1|s̄k) =

PM2
x̄k (s̄k+1)

PM2
x̄k−1

(s̄k)
=

Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
= bx̄k,s̄k(sk+1).
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Corollary 2. For a DTR, given P (s̄K , x̄K , y) > 0,

E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
≤ Ex̄K [Y |s̄k] ≤ 1− (1− E[Y |s̄K , x̄K ])P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
.

Proof. By basic probabilistic operations,

Ex̄K [Y |s̄k] =
Ex̄K [Y |s̄K ]Px̄K (s̄K)

Px̄K (s̄K)
.

Note the counterfactual Yx̄K ,s̄K (u) ∈ [0, 1]. Following a similar argument as Lem. 1,

Ex̄K [Y |s̄K ]Px̄K (s̄K)− Px̄K (s̄K) ≤ E[Y |s̄K , x̄K ]P (s̄K , x̄K)− P (s̄K , x̄K).

This implies

Ex̄K [Y |s̄k] ≤ 1 +
(E[Y |s̄K , x̄K ]− 1)P (s̄K , x̄K)

Px̄K (s̄K)

Since E[Y |s̄K , x̄K ] ≤ 1, Ex̄K [Y |s̄k] is upper-bounded when Px̄K (s̄K) is the maximal. Since S̄K
are non-descendants of XK , Px̄K (s̄K) = Px̄K−1

(s̄K). By Lem. 4,

Ex̄K [Y |s̄k] ≤ 1 +
(E[Y |s̄K , x̄K ]− 1)P (s̄K , x̄K)

Γ(s̄k, x̄k−1)
.

By definition, Px̄K (y, s̄K) = P (yx̄K , s̄Kx̄K−1
). By basic probabilistic operations,

Ex̄K [Y |s̄k] ≥
E[Yx̄K |s̄Kx̄K−1

, x̄K ]P (s̄Kx̄K−1
, x̄K)

Px̄K−1
(s̄K)

.

By the composition axiom, S̄Kx̄K−1
= S̄K−1, Yx̄K = Y if X̄K = x̄K . Applying Lem. 4 gives

Ex̄K [Y |s̄k] ≥ E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Px̄K (s̄K)
=
E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
.

Proof of Theorems 7 and 8

Lemma 5. Fix ε > 0, δ ∈ (0, 1). With probability (w.p.) of at least 1 − δ, it holds for any T > 1,
Rε(T ) of UC-DTR with parameter δ and causal bounds C is bounded by

Rε(T ) ≤ min
{

12K
√
|S||X |Tε log(2K|S||X |T/δ),

∥∥C∥∥
1
Tε

}
+ 4K

√
Tε log(2T/δ)

Proof. Note that causal bounds C is a set {C1, . . . ,CK} where for k = 1, . . . ,K − 1,

Ck =
{
∀s̄k+1, x̄k :

[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]}
,

and CK =
{
∀s̄K , x̄K :

[
ax̄K ,s̄K , bx̄K ,s̄K

]}
.

(40)

Mc is a set of DTRs such that for any M ∈Mc, its causal quantities Px̄k(sk+1|s̄k) and Ex̄K [Y |s̄K ]
satisfy the causal bounds C, i.e.,

Px̄k(sk+1|s̄k) ∈
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
, and Ex̄K [Y |s̄K ] ∈

[
ax̄K ,s̄K , bx̄K ,s̄K

]
. (41)

We assume that the causal bounds are always valid, i.e., P (M∗ ∈Mc) = 1. LetMc
t =Mt ∩Mc.

By union bounds and Hoeffding’s inequality (following a similar argument in [4, C.1]),

P (M∗ 6∈ Mc
t) ≤ P (M∗ 6∈ Mt) ≤

δ

4t2
. (42)

Since
∑∞
t=1

1
4t2 ≤

π2

24 δ <
δ
2 , it follows that with probability at least 1 − δ

2 , M∗ ∈ Mt
c for all

episodes t = 1, 2, . . . .
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Following the proof of Lem. 3, we have

Rε(T ) ≤ K
√

6Tε log(2T/δ) +

√
3Tε log(2T/δ)

2

+

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t ) (43)

+
∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)
. (44)

It thus suffices to bound quantities in Eqs. (43) and (44) separately.

Bounding Eq. (43) By Eq. (23) and basic probabilistic operations,

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

=
∑
sk+1

(PMt(sk+1|S̄k, X̄k)− P (sk+1|S̄k, X̄k))Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤
∥∥∥PMt
x̄k (·|s̄k)− Px̄k(·|s̄k)

∥∥∥
1

max
sk+1

Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤ min
{

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∥∥Ck∥∥1

}
The last step follows from Eqs. (17) and (41). We thus have∑

t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
∑
t∈Lε

min
{

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∥∥Ck∥∥1

}
≤ min

{ ∑
t∈Lε

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∑
t∈Lε

∥∥Ck∥∥1

}
≤ min

{
2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),∥∥Ck∥∥1
Tε

}
The last step follows from results in [4, D] and |Lε| = Tε. Eq. (43) could thus be written as:

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
K−1∑
k=1

min
{

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),∥∥Ck∥∥1
Tε

}
≤ min

{K−1∑
k=1

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
Thus,

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤ min
{

(K − 1)2(
√

2 + 1)
√

6Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
.

(45)

Bounding Eq. (44) Since both M∗,Mt are in the setMc
t ,

EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ] ≤
∣∣∣EMt
x̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]

∣∣∣+
∣∣∣EX̄t

K
[Y |S̄tK ]− Êtx̄K [Y |s̄K ]

∣∣∣
≤ min

{
2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∥∥CK∥∥1

}
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Eq. (44) can thus be written as:∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

≤
∑
t∈Lε

min
{

2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∥∥CK∥∥1

}
≤ min

{ ∑
t∈Lε

2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∑
t∈Lε

∥∥CK∥∥1

}
.

The last step follows from Eqs. (18) and (41). From results in [4, D], we have∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

≤ min
{

2(
√

2 + 1)
√

2Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),∥∥CK∥∥1
Tε

}
.

(46)

Eqs. (45) and (46) together give:

Rε(T ) ≤ K
√

6Tε log(2T/δ) +

√
3Tε log(2T/δ)

2

+ min
{

(K − 1)2(
√

2 + 1)
√

6Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
+ min

{
2(
√

2 + 1)
√

2Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),∥∥CK∥∥1
Tε

}
.

(47)

A quick simplification gives:

Rε(T ) ≤ min
{

12K
√
|S||X |Tε log(2K|S||X |T/δ),

∥∥C∥∥
1
Tε

}
+ 4K

√
Tε log(2T/δ).

Theorem 7. Fix a δ ∈ (0, 1). With probability of at least 1− δ, it holds for any T > 1, the regret of
UCc-DTR with parameter δ and causal bounds C is bounded by

R(T ) ≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ).

Proof. Fix ε = 0. Naturally, Tε = T and Rε(T ) = R(T ). By Lem. 5,

R(T ) ≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ).

Theorem 8. For any T ≥ 1, with parameter δ = 1
T and causal bounds C, the expected regret of

UCc-DTR is bounded by

E[R(T )] ≤ max
π∈Π−C

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1.

Proof. Let R̃ε(T ) denote the regret cumulated in ε-good episode up to T steps. By Eqs. (42) and (47),

E[R(T )] ≤ E[Rε(T )IM∗∈Mc
t
] + E[R̃ε(T )IM∗∈Mc

t
] +

T∑
t=1

P (M 6∈ Mc
t)

≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ)

+ E[R̃ε(T )IM∗∈Mc
t
] +

δ

T

≤ 23K
√
|S||X |Tε log(T/δ) + E[R̃ε(T )IM∗∈Mc

t
] +

δ

T
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Fix δ = 1
T , it is immediate from Eq. (29) that

E[R(T )] ≤ 232K2|S||X | log(T 2)

ε
+ E[R̃ε(T )IM∗∈Mc

t
] + 1. (48)

Note that when M∗ ∈Mc
t , the maximal expected reward of any πt over all instances in the family

of DTRsMc
t must be no less than the true optimal value Vπ∗(M∗). In words, Π−C is the effective

policy space of UCc-DTR procedure. Let ∆ = arg minπ∈Π−C
∆π . Fix ε = ∆

2 , Eq. (48) implies:

E[R(T )] ≤ 332K2|S||X | log(T )

∆
+ E[R̃∆

2
(T )IM∗∈Mc

t
] + 1.

Among quantities in the above equation, E[R̃∆
2

(T )IM∗∈Mc
t
] can be bounded following a similar

procedure in the proof of Thm. 2, which proves the statement.

Appendix II. Experimental Setup

In this section, we provide details about the setup of experiments in the main text. For all experiments,
we test sequentially randomized trials (rand), UC-DTR algorithm (uc-dtr) and the causal UC-DTR
(ucc-dtr) with causal bounds derived from 1 × 105 observational samples. Each experiment lasts
for T = 1.1× 104 episodes. The parameter δ = 1/KT for uc-dtr and ucc-dtr where K is the total
stages of interventions. For all algorithms, we measure their cumulative regret over 200 repetitions.

Cancer Treatment We test the survival model of the two-stage clinical trial conducted by the
Cancer and Leukemia Group B [5, 8]. Protocol 8923 was a double-blind, placebo controlled two-stage
trial reported by [7] examining the effects of infusions of granulocyte-macrophage colony-stimulating
factor (GM-CSF) after initial chemotherapy in patients with acute myelogenous leukemia (AML).
Standard chemotherapy for AML could place patients at increased risk of death due to infection
or bleeding-related complications. GM-CSF administered after chemotherapy might assist patient
recovery, thus reducing the number of deaths due to such complications. Patients were randomized
initially to GM-CSF or placebo following standard chemotherapy. Later, patients meeting the criteria
of complete remission and consenting to further participation were offered a second randomization to
one of two intensification treatments.

We will describe this treatment procedure using the DTR with K = 2. X1, X2 ∈ {0, 1} represent
treatments; S1 = ∅ and S2 indicates the observed remission after the first treatment (0 stands for no
remission and 1 for complete remission); Y indicates the survival of patients at the time of recording.
The exogenous variable U is the age of patients where U = 1 if the patient is old and U = 0
otherwise. Values of U are drawn from a distribution P (u) where P (U = 1) = 0.2358. Values of
S2 are drawn from a distribution Px1

(s2) described in Table 1.

X1 = 0 X1 = 1
U = 0 0.8101 0.0883
U = 1 0.7665 0.2899

Table 1: Probabilities of the distribution P (S2 = 1|u, x1).

Let T1, T2 denote the potential survival time induced by treatment X1, X2 respectively. Values of
T1, T2 are decided by functions defined as follows:

T1 ← min{(1− S2)T ∗1 + S2(T ∗2 + T ∗3 ), L}, T2 ← min{(1− S2)T ∗1 + S2(T ∗2 + T ∗4 ), L}

where L = 1.5. Let exp(β) denote an exponential distribution with mean 1/β. Values of T ∗1 , T
∗
2 , T

∗
3

are drawn from exponential distributions defined as follows:

T ∗1 ∼ exp(β1
u,x1

), T ∗2 ∼ exp(β2
u,x1

), T ∗3 ∼ exp(β3
u,x1

)

Given T ∗3 , values of T ∗4 are drawn from distribution

T ∗4 ∼ exp(β3
u,x1

+ β4
u,x1

T ∗3 ).
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The total survival time T of a patient is decided as follows:

T ← (1− S2)T1 + S2(1−X2)T1 + S2X2T2.

The parameters βu,x1
= (β1

u,x1
, β2
u,x1

, β3
u,x1

, β4
u,x1

) are described in Table 2.

β1
u,x1

β2
u,x1

β3
u,x1

β4
u,x1

U = 0
X1 = 0 4.3063 4.9607 0.8737 4.2538
X1 = 1 0.8286 8.2074 8.7975 7.6468

U = 1
X1 = 0 2.6989 0.0235 5.9835 6.8059
X1 = 1 3.6036 1.1007 9.4426 7.3960

Table 2: Parameters βu,x1 .

The primary outcome Y is the survival of the patient at the time of observation t = 1. Values of Y
are decided by the indicator function Y ← IT>1.

We generate the confounded observational data following a sequence of decision rules X1 ∼
π1(X1|U), X2 ∼ π2(X2|U,X1, S2). The policy π1(X1|U) is a conditional distribution mapping
from U to the domain of X1 where π1(X1 = 1|U = 0) = 0.5102 and π1(X1 = 1|U = 1) = 0.2433.
Similarly, π2(X2|U,X1, S2) is a conditional distribution mapping from U,X1, S2 to the domain of
X2; Table 3 describes its parametrization.

X1 = 0 X1 = 1
S2 = 0 S2 = 1 S2 = 0 S2 = 1

U = 0 0.2173 0.8696 0.6195 0.4641
U = 1 0.8869 0.0103 0.5314 0.4339
Table 3: Probabilities of π2(X2 = 1|U,X1, S2).
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