TECHNICAL REPORT

Characterization and Learning of Causal Graphs
with Latent Variables from Soft Interventions

Murat Kocaoglu* Amin Jaber*
MIT-IBM Watson Al Lab Department of Computer Science
IBM Research MA, USA Purdue University, USA
murat@ibm.com jaber®@purdue.edu
Karthikeyan Shanmugam* Elias Bareinboim
MIT-IBM Watson Al Lab Department of Computer Science
IBM Research NY, USA Columbia University, USA
karthikeyan.shanmugam2@ibm. com eb@cs.columbia.edu
Abstract

The challenge of learning the causal structure underlying a certain phenomenon is
undertaken by connecting the set of conditional independences (CIs) readable from
the observational data, on the one side, with the set of corresponding constraints
implied over the graphical structure, on the other, which are tied through a graphical
criterion known as d-separation (Pearl, 1988). In this paper, we investigate the more
general setting where multiple observational and experimental distributions are
available. We start with the simple observation that the invariances given by Cls/d-
separation are just one special type of a broader set of constraints, which follow
from the careful comparison of the different distributions available. Remarkably,
these new constraints are intrinsically connected with do-calculus (Pearl, 1995) in
the context of soft-interventions. We then introduce a novel notion of interventional
equivalence class of causal graphs with latent variables based on these invariances,
which associates each graphical structure with a set of interventional distributions
that respect the do-calculus rules. Given a collection of distributions, two causal
graphs are called interventionally equivalent if they are associated with the same
family of interventional distributions, where the elements of the family are indistin-
guishable using the invariances obtained from a direct application of the calculus
rules. We introduce a graphical representation that can be used to determine if
two causal graphs are interventionally equivalent. We provide a formal graphical
characterization of this equivalence. Finally, we extend the FCI algorithm, which
was originally designed to operate based on ClIs, to combine observational and
interventional datasets, including new orientation rules particular to this setting.

1 Introduction

Explaining a complex system through their cause and effect relations is one of the fundamental chal-
lenges in science. Data is collected and experiments are performed with the intent of understanding
how a certain phenomenon comes about, or how the underlying system works, which could be social,
biological, artificial, among others. The study of causal relations can be seen through the lens of
learning and inference [15, 20]. The learning component is concerned with discovering the causal
structure, which is the very subject of interest in many domains, since they can provide insight about
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(a) Causal Diagram D. (b) Aug(D) for P and P,. (c) Aug(D) for P, P,, and P, .

Figure 1: (a) Causal graph where the bidirected edge represents a latent confounder. (b) Given P,, P,
we can use F, to capture information such as “there is a backdoor path from X to Y in terms of
m-separation F, L Y |X. (c) Given P, P,, P, ., under controlled experiment assumption, we can add
F, although P, is not available. This allows us to discover that Z is a cause of Y and there is no
confounder between them. Without adding F, this relation cannot be identified.

how a complex system works and lead to better understanding about the phenomenon under investi-
gation. The latter, inference, attempts to leverage the causal structure to compute quantitative claims
about the effect of interventions and retrospective counterfactuals, which are critical to assign credit,
understand blame and responsibility, and perform judgement about fairness in decision-making.

One of the most popular languages used to encode the invariances needed to reason about causal
relations, for both learning and inference, is based on graphical models, and appears under the rubric
of causal graphs [15, 20, 2]. A causal graph is a directed acyclic graph (DAG) with latent variables,
where each edge encodes a causal relationship between its endpoints — X is said to (directly) cause Y,
i.e., X — Y, if forcing X to take a specific value affects the realization of Y, where X, Y are random
variables representing some relevant features of the system.

The task of learning the causal structure entails a search over the space of causal graphs that are
compatible with the observed data; the collection of these graphs forms what is called an equivalence
class. The most popular mark imprinted on the data by the underlying causal structure that is used
to delineate an equivalence class are conditional independence (CI) relations. These relations are
the most basic type of probabilistic invariance used in the field and have been studied at large in
the context of graphical models since, at least, [14] (see also [4]). While CIs are powerful and have
been the driving force behind some of the most prominent structural learning algorithms in the field
[15, 20], including the PC, GES, FCI, these are constraints specific for one distribution.

In this paper, we start by noting something very simple that happens when a combination of observa-
tional and experimental distributions are available, namely, there are constraints over the graphical
structure that emerge by comparing these different distributions, and which are not of CI-type?.
Remarkably, and unknown until our work, the converse of the causal calculus developed by Pearl [17]
offers a systematic way of reading these constraints and tying them back to the underlying graphical
structure. For concreteness, consider the graph in Fig. 1(a), where the dashed-bidirected arrows
represent hidden variables that generate variations of the two observed variables, X, Y in this case.
Suppose the observational distribution and an interventional distribution on X are available, which
are written as P(y|x), P(y|do(x)), respectively. Suppose we contrast these two distributions and the
test evaluating the expression P(y|do(x)) = P(y|x) comes out as false. This is called a do-see test
since the experimental (or “do”) and observational (“see”) distributions are contrasted. Based on the
second rule of do-calculus, one can infer that there is an open backdoor path from X to Y, where
the edge adjacent to X on this path has an arrowhead into X. In our setting, we do not have access
to the true graph, but we leverage this type of constraint to reverse engineer the process and try to
learn the structure. Broadly speaking, these types of constraints entailed by the do-calculus (or a
generalization, as discussed later) will play a critical role for learning, in the same way Cl/d-separation
plays in learning when only observational data is available. To the best of our knowledge, this type of
constraints appeared first at the very definition of causal Bayesian networks (CBNs) in [1] and then
were leveraged to design efficient experiments to learn the causal graph in [11].

We assume throughout this work that interventions are soft. A soft intervention affects the mechanism
that generates the variable, while keeping the causal connections intact. Soft-interventions are widely
employed in biology and medicine, where it is hard to change the underlying system, but possibly
easier to just perturb it. For our characterization, we utilize an extension of the causal calculus to soft

ZRecall that a CI represents a constraint readable from one specific distribution saying that the value of Z is
irrelevant for computing the likelihood of Y once we know the value of X, i.e., P(Y|X,Z) = P(Y|X),VX,Y, Z.



interventions. Under soft-interventions, the do-see test can be written as checking if P,(y|x) = P(y|x),
where P, is the distribution obtained after a soft intervention on X.

The second observation leveraged here follows from a realization by Pearl that interventions can be
represented explicitly in the graphical model [16]. He introduced what were called F-nodes, which
graphically encode the changes due to an intervention and corresponding parametrization (see also
[15, Sec. 3.2.2]). This is important in our context since the do-calculus tests will be visible more
explicitly in the graph. The model obtained by adding the F-nodes is called the augmented graph.
The same construct was then used more prominently in [5] to further discuss identification issues.
Going back to Fig. 1b, the existence of the backdoor path from X to Y, as detected by rule 2 of the
calculus, can be captured by the statement Fy is not d-separated from Y given X. In the context of
structure learning, similar constructions have been leveraged in the literature [12, 22].

We further make a specific assumption throughout the paper about the soft-interventions. We call
it the controlled experiment setting, where each variable is intervened with the same mechanism
change across different interventions. For example, in Fig. 1c, suppose we are given distributions
from two controlled experiments P,, P, along with observational data. We can then use F; to
capture the invariances between P, , and P,. For example, if P, .(y) # P(y), for some y, we can
read that Fz L. Y |F x> Fxz. Accordingly, given a set of interventional distributions, we construct an
augmented graph by introducing an F-node for every unique set difference between pairs of controlled
intervention sets (more on that later on). Without the controlled experiment assumption, we can still
use our machinery if we know which mechanism changes are identical by constructing F-nodes to
reflect and capture the mechanism difference across two interventions. However, for simplicity we do
not pursue this and restrict ourselves to the controlled experiment setting.

In order to encapsulate the distributional invariants directly induced by the causal calculus rules®, we
call a set of interventional distributions 7-Markov to a graph, if these distributions respect the causal
calculus rules relative to that graph. For this, we first extend the causal calculus rules to operate
between arbitrary sets of interventions. We call two causal graphs D, D, J-Markov equivalent if
the set of distributions that are 7-Markov to D, and D, are the same. Using the augmented graph,
we identify a graphical condition that is necessary and sufficient for two CBNs with latents to be
J-Markov equivalent. Finally, we propose a sound algorithm for learning the augmented graph from
interventional data. Our contributions can be summarized as follows:

e We propose a characterization of 7-Markov equivalence between two causal graphs with
latent variables for a given intervention set Z that is based on a generalization of do-calculus
rules to arbitrary subsets of interventions.

e We show a graphical characterization of 7-Markov equivalence of causal graphs with latents.

e We introduce a learning algorithm for inferring the graphical structure following from a
combination of observational and interventional data and the corresponding new constraints.
This procedure comes with a new set of orientation rules. We formally show its soundness.

2 Background and Related Work

In this section, we introduce necessary concepts that we use throughout the paper. Upper case letters
denote variables and lower case letters denote an assignment. Also, bold letters denote sets.

Causal Bayesian Network (CBN): Let P(v) be a probability distribution over a set of variables V,
and let Py(v) denote the distribution resulting from the hard intervention do(X = x), which sets
X C V to constants x. Let P* denote the set of all interventional distributions Px(v), forall X C V,
including P(V). A directed acyclic graph (DAG) over V is said to be a causal Bayesian network
compatible with P* if and only if, for all X C V, Px(v) = [Tv.ex) P(vilpa,), for all v consistent with
x, and where Pa; is the set of parents of V; [15, 1, pp. 24]. If so, we refer to the DAG as causal.

Given that a subset of the variables are unmeasured or latent, D(V UL, E) represents the causal graph
where V and L denote the measured and latent variables, respectively, and E denotes the edges. A
dashed bi-directed edge is used instead of « L —, where L € L, whenever L is a root node with

3There may be constraints that can be obtained by applying the rules multiple times we do not consider here.



exactly two children. The observed distribution P(v) is obtained by marginalizing L out.

Pw=>" [] Paipay

L (iT;€VUL}

Clearly, the joint distribution over V does not factorize relative to D in a typical fashion, since
Markovianity is no longer valid, but it does relative to both V and L. Still, CI relations can be read
from the graph using a graphical criterion known as d-separation. Also, two causal graphs are called
Markov equivalent whenever they share the same set of conditional independences over V.

Soft Interventions: Another common type of intervention is soft, where the original conditional
distributions of the intervened variables X are replaced with new ones, without completely eliminating
the causal effect of the parents. Accordingly, the interventional distribution Px(v) becomes as follows,
where P'(X;|Pa;) #+ P(X;|Pa;) is the new conditional distribution set by the intervention:

Pw=> [] Pipay [] Pujipay

L {iX;eX} UIT X}

In this work, we assume that all the soft interventions are controlled. This means that for any two
interventions I, J C V where X; € INJ, we have Py(X;|Pa;) = Py(X;|Pa;).

Ancestral graphs: We now introduce a graphical representation of equivalence classes of causal
graphs with latent nodes. A mixed graph can contain directed and bi-directed edges. A is an ancestor
of B if there is a directed path from A to B. A is a spouse of B if A < B is present. If A is both a
spouse and an ancestor of B, this creates an almost directed cycle. An inducing path relative to L is
a path on which every non-endpoint node X ¢ L is a collider on the path (i.e., both edges incident
to the node are into it) and every collider is an ancestor of an endpoint of the path. A mixed graph
is ancestral if it does not contain a directed or almost directed cycle. It is maximal if there is no
inducing path (relative to the empty set) between any two non-adjacent nodes. A Maximal Ancestral
Graph (MAG) is a graph that is both ancestral and maximal [18]. Given a causal graph D(V, L), a
MAG My over V can be constructed such that both the independence and the ancestral relations
among variables in V are retained, see, for example, [25, p. 6].

A triple (X, Y, Z) is an unshielded triple if X and Y are adjacent, Y and Z are adjacent, and X and Z
are not adjancent. If both edges are into Y, then the triple is referred to as unshielded collider. A path
between X and Y, p = (X,..., W, Z,Y), is a discriminating path for Z if (1) p includes at least three
edges; (2) Z is a non-endpoint node on p, and is adjacent to Y on p; and (3) X is not adjacent to Y, and
every node between X and Z is a collider on p and is a parent of Y. Two MAGs are Markov equivalent
if and only if (1) they have the same adjacencies; (2) they have the same unshielded colliders; and (3)
if a path p is a discriminating path for a vertex Z in both graphs, then Z is a collider on the path in
one graph if and only if it is a collider on the path in the other. A PAG, which represents a Markov
equivalence class of a MAG, is learnable from the independence model over the observed variables,
and the FCI algorithm is a standard sound and complete method to learn such an object [26].

Related Work: Learning causal graphs from a combination of observational and interventional data
has been studied in the literature [10, 6, 19, 7, 11]. For causally sufficient systems, the notion and
characterization of interventional Markov equivalence has been introduced in [8, 9]. More recently,
[22] showed that the same characterization can be used for both hard and soft interventions. For
causally insufficient systems, [21] uses SAT solvers to learn a summary graph over the observed
variables given data from different experimental conditions. [12] introduces an algorithm to pool
experimental datasets together and runs a modification of FCI to learn an augmented graph; however,
they do not consider characterizing an equivalence class.

Notations: For random variables X, Y, Z, the CI relation X is independent of Y conditioned on Z is
shown by X 1 Y |Z. The d-separation statement node X is d-separated from Y given Z in graph D
is shown by (X 1L Y |Z)p. Z C 2V is reserved for a set of interventions, where 2V is the power set
of V. We show the symmetric difference by IAJ := (I'\ J) U (J \ I). Dx denotes the graph obtained
from D where all the incoming edges to the set of nodes in X are removed. Similarly, Dx denotes
the removal of outgoing edges. We assume that there is no selection bias. A star on an endpoint of an
edge = is used as a wildcard to denote circle, arrowhead, or tail.



3 Do-Constraints — Combining Observational and Experimental
Distributions

One of the most celebrated results in causal inference comes under the rubric of do-calculus (or
causal calculus) [17, 15]. The calculus consists of a set of inference rules that allows one to create a
map between distributions generated by a causal graph when certain graphical conditions hold in the
graph. The calculus was developed in the context of hard interventions, and recent work presented a
generalization of this result for soft interventions [3], which we state next:

Theorem 1 (Special case of Thm. 1 in [3]). Let D = (V U L,E) be a causal graph. Then, the
following holds for any strictly positive distribution consistent with D.

Rule 1 (see-see): For any X C 'V and disjoint Y,Z,W C V
P.(ylw,z) = Px(ylw) ifY L Z|WinD.
Rule 2 (do-see): For any disjoint X,Y,Z C Vand W c V\(ZUY)
Py (lz,w) = Px(ylz, w) ifY 1L Z|W in Dy.
Rule 3 (do-do): For any disjoint X,Y,Z CVand W c V\(ZUY)
Py :(ylw) = Px(ylw) Y L ZIW in Dz,

where Z(W) C Z are non-ancestors of W in D.

The first rule of the calculus is a d-separation type of statement relative to a specific interventional
distribution P,, which says that Y 1L Z|W in D implies the corresponding conditional independence
P,(ylw,z) = P,(ylw). Note that the converse of this rule is the work horse underlying most of the
structure learning algorithms found in practice, which says that if some independence hold in P, this
would imply a corresponding graphical separation (under faithfulness). In the case just mentioned,
this would imply that Y and Z should be separated in D, meaning, they have neither a directed nor a
bidirected arrow connecting them.

From this understanding, we make a very simple, albeit powerful observation — i.e., the converse of
the other two rules should offer insights about the underlying graphical structure as well. To witness,
consider the causal graph D = {X — Y, X «---> Y}, and suppose we have the observational and
interventional distributions P(Y, X) and Px(Y, X), respectively. Using the CI tests P(Y, X) # P(Y)-P(X)
and Px(Y, X) # Px(Y) - Px(X), we infer that the two variables are dependent (or not independent) and
consequently d-connected in the graph, while no claim can be made about the causal relation between
them. Given the inequality Px(Y) # P(Y), we infer that the condition for rule 3 does not hold and
Y Y X in Dy. Hence, X must be a cause of ¥ — changing the value of X has a downstream effect on
Y. Similarly, given the inequality Px(Y|X) # P(Y|X), the condition related to rule 2 does not hold,
and Y Y X in Dy. The implication in this case is that there is an unblockable backdoor path between
X and Y that is into X, i.e., a latent variable. Alternatively, if D = {X — Y}, then Px(Y]|X) = P(Y|X),
under faithfulness, implies the absence of a latent variable by the converse of rule 2.

Broadly speaking, rule 3 allows one to infer causal relations between variables, and consequently
directed edges in the causal graph. Since the compared interventional distributions differ by a subset
of interventions (Z), we call this the do-do test. On the other hand, rule 2 allows one to infer spurious
relations between variables, and consequently latent variables in the causal graph*. The do-see
naming of the test stems from the fact that we compare a distribution with an intervention on a subset
Z (do) versus another which only conditions on Z (see). Naturally, rule 1 is the usual conditional
independence test that allows one to detect that neither directed nor bidirected arrow exists.

Putting together these rules, we show in Corollary 1 a generalization of rules 2 and 3 . Note that rule
2 appears when J c Tand I\ J C W, similarly, rule 3 can be seen when J c Iand (I\ J)N'W = 0.

Corollary 1 (mixed do-do/do-see). Let D = (V UL, E) be a causal graph. Under the controlled
intervention assumption, for any 1,J € V and disjoint Y,W C 'V, we have the following:

Pi(ylw) = Py(ylw) Y L KW\ Wy in Dy, qwy

where K :=1A]J, Wy = WN K, R = K\Wy, and R(W) C R are non-ancestors of W in D.

“More precisely, rule 2 allows us to detect inducing paths that are into both variables.
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Figure 2: Augmented graphs with respect to Z = {0, {X}} and the corresponding augmented MAGs.

In general, the proposed rule is a mixture of rules 2 and 3 as we could be conditioning in W on a subset
of the symmetrical difference set IAJ. For instance, consider the causal graph D = {C ¢<----» A —
B, C «---> B} and suppose we have the interventional distributions P4 g and Pcp. Since B 1L {A, C}
in D e then P4 p(BJA) = Ppc(B|A). This generalization will soon play a significant role in the
characterization and learning of the interventional equivalence class.

4 Interventional Markov Equivalence under Do-constraints

In this section, the new do-constraints will be used to define the notion of interventional Markov
equivalence. Then, we will characterize when two causal graphs are equivalent in accordance to the
proposed definition. We start by defining the notion of interventional Markov as shown below.

Definition 1. Consider the tuples of absolutely continuous probability distributions (Py)iez over a set
of variables V. A tuple (Py)1ez satisfies the I-Markov property with respect to a graph D = (VUL, E)
if the following holds for disjoint Y,Z,W C V:

(1) ForleI:  Piylw,z) = Pi(ylw) ifY 1L Z|W in D.

(2) For LY e Z: Pi(ylw) = Py(ylw) ifY L KW\ Wy in Dy, gewy

where K :=1AJ, Wk == WN K, R = K\W, and R(W) C R are non-ancestors of W in D.
The set of all tuples that satisfy the I-Markov property with respect to D are denoted by Pr(D, V).

The two conditions used in the definition correspond to rule 1 of Theorem 1 and that of Corollary 1.
Notice that the traditional Markov definition only considers the first condition over the observational
distribution P(V); a case included in the 7-Markov whenever @ € Z. Accordingly, two causal graphs
are said to be 7-Markov equivalent if they license the same set of distribution tuples. This notion is
formalized in the following definition.

Definition 2. Given two causal graphs D = (VUL{, E) and D, = (VUL,, E,), and an intervention
set T C 2V, D, and D, are called IT-Markov equivalent if Pr(D1, V) = Pz(D,, V).

One challenge with Definition 1 is that testing for the d-separation statement in condition (2) requires
a mutilated graph where we cut some of the edges in 9. This makes it harder to represent all the
constraints imposed by a causal graph compactly. Accordingly, we use the notion of an augmented
graph that is introduced below (Definition 3). In words, the construction of the augmented graph goes
as follows. First, initialize the augmented graph to the input causal graph. Then, for every distinct
symmetric set difference between I, J € Z, denoted by S;, introduce a new node F; and make it a
parent to each node in S;, i.e., F; — S € S;. Note that this type of construction has been used in
the literature to model interventions [16, 5]. For example, for Z = {0, {X}}, Figure 2a presents the
augmented graph corresponding to the causal graph, which is the induced subgraph over {X, W, Z, Y}.
Node F is added in accordance with the symmetrical difference set (0 \ {X}) U ({X} \ 0) = {X}.

Definition 3 (Augmented graph). Consider a causal graph D = (V UL, E) and an intervention set
Tc2V. Let S ={S1,Ss,...,8: ={S : ALY € Ts.t. InJ =S). The augmented graph of D with
respect to L, denoted as Augz(D), is the graph constructed as follows: Augz(D)=(VUF,EUE)
where = {Fi}iciig and & = {(Fy, )}ietk, jes;-

The significance of the augmented graph construction is illustrated by Proposition 1, which provides
criteria to test the d-separation statements in Definition 1 equivalently from the corresponding
augmented graph of a causal graph. Back to the example in Figure 2a, the statement Y 1. X |Z in



D can be equivalently tested by the statement ¥ 1L F,|Z in the corresponding augmented graph.
Similarly, ¥ 1L X in Dy can be equivalently tested by ¥ 1L F,|X in Augz(D).

Proposition 1. Consider a causal graph D = (V UL, E) and the corresponding augmented graph
Augz(D) = (VUL UF,E U E) with respect to an intervention set L, where ¥ = {Fi}ici). Let S; be
the set of nodes adjacent to F;, Vi € [k]. We have the following equivalence relations.

For disjoint Y,Z,W C V:
Y ULZW)p = YLZ lW Frg)aug) (D
For disjoint Y, W C V, where W; = WNS;,R:=8§;\ W;:
(Y L S;W\Wi)p o &= (Y 1L Fi [W, Fgyi) Jaugo) 2)

In order to characterize causal graphs that are 7-Markov equivalent, we draw some insight from the
Markov equivalence of causal graphs with latents. Ancestral graphs, and more specifically MAGs,
were proposed as a representation to encode the d-separation statements of a causal graph among
the measured variables while not explicitly encoding the latent nodes. The definition below (Def. 4)
introduces the augmented MAG that is constructed over an augmented graph. Since all the constraints
in the J-Markov definition can be tested by d-separation statements in the augmented graph, then an
augmented MAG preserves all those constraints. For example, Figs. 2c and 2d present the augmented
MAGs corresponding to the augmented graphs in Figs. 2a and 2b, respectively. Notice that F, and Y
are adjacent in both MAGs since they are not separable by any set in the augmented graphs.

Definition 4 (Augmented MAG). Given a causal graph D = (V U L, E) and an intervention set I,
the augmented MAG is the MAG constructed over V from Augz(D), i.e., MAG(Augz(D)).

Below, we derive a characterization for two causal graphs to be 7-Markov equivalent — two causal
graphs are J-Markov equivalent if their corresponding augmented MAGs satisfy the three conditions
given in Theorem 2. For example, the two augmented MAGs in Figures 2c and 2d satisfy the three
conditions, hence the original causal graphs are in the same 7-Markov equivalence class.

Theorem 2. Two causal graphs Dy = (V U L{,Ey) and D, = (V U L,,Ey) are I-Markov
equivalent for a set of controlled experiments L if and only if for M; = MAG(Augz (D)) and
My = MAG(Augz(D»)):

1. My and M, have the same skeleton;
2. My and M, have the same unshielded colliders;

3. If a path p is a discriminating path for a node Y in both My and Mo, then Y is a collider on
the path in one graph if and only if it is a collider on the path in the other.

S Learning by Combining Observations and Experiments

In this section, we develop an algorithm to learn the augmented graph from a combination of
observational and interventional data, which consequently recovers the causal graph. However,
similar to the observational case, it is typically impossible to completely determine the causal graph
from the available measured data, especially when latents are present. Then, the objective is to learn
a class of augmented MAGs consistent with data. For this, we define an augmented PAG as follows.

Definition 5. Given a causal graph D and an intervention set L, let M = MAG(Augz (D)) and
let [M] be the set of augmented MAGs corresponding to all the causal graphs that are I-Markov
equivalent to D. An Augmented PAG for D, denoted G = PAG(Augz (D)), is a graph such that:

1. G has the same adjacencies as M, and any member of [ M] does; and
2. every non-circle mark in G is an invariant mark in [M].

As with any learning algorithm, some faithfulness assumption is needed to infer graphical properties
from the corresponding distributional constraints. Hence, we assume that the given interventional
distributions are c-faithful to the causal graph D as defined below.



Algorithm 1 Algorithm for Learning Augmented PAG

1: function LEARNAUGPAG(Z, (Py)iez, V)

2: (7,8, 0) « CrREaTEAUGMENTEDNODES(Z, V)

3 V~VUF

4: Phase I: Learn Adjacencies and Seperating Sets

5: Form the complete graph G on V where between every pair of nodes there is an edge o—o.
6 for Every pair X, Y € V do

7 if XeF AY € F then

8: SepSet(X,Y) « 0,SepFlag(X,Y) = True

9: else
10: (SepSet(X,Y),SepFlag) < Do-CoNSTRAINTS((PDiez, X, Y, V, T, 0)
11: if SepFlag = True then
12: Remove the edge between X, Y in G.

13: Phase II: Learn Unshielded Colliders

14: For every unshielded triple (X, Z,Y) in G, orient it as X*— Z «=Y iff Z ¢ SepSet(X,Y)
15: Phase III: Apply Orientation Rules

16: Apply 7 FCI rules in [26] together with the following 2 additional rules until none applies.
17: Rule 8: For any F, € 7, orient adjacent edges out of Fy.

18: Rule 9: For any F; € ¥ that is adjacent to anode Y ¢ Sy

19: If S¢| = 1, orient X = Y as X — Y for X € S;.

Algorithm 2 Creating F-nodes.

1: function CREATEAUGMENTEDNODES(Z, V)

2: F=0,8S=0,k=0,0:N -2V x2V

3: for all pairs LJ € Z, if IAJ ¢ S do

4: Setk «— k+1,setS; =1aJ,add Fy to F, add Sy to S, set o(k) = (I, J).
return ¥, S, o

Definition 6. Consider a causal graph D = (V UL, E). A tuple of distributions (Py)iez € P(D, V)
is called c-faithful to graph D if the converse for each of the conditions given in Definition 1 holds.

Algorithm 1 presents a modification of the FCI algorithm to learn augmented PAGs. To explain the
algorithm, we first describe FCI which, given an independence model over the measured variables,
proceeds in three phases [23]: In phase I, the algorithm initializes a complete graph with circle edges
(c-0), then it removes the edge between any pair of nodes if a separating set between the pair exists and
records the set. In phase II, the algorithm identifies unshielded triples (A, B, C) and orients the edges
into B if B is not in the separating set of A and C. Finally, in phase III, FCI applies the orientation
rules. Only one of the rules uses separating sets while the rest use MAG properties, and soundness
and completeness of the previous phases — the skeleton is correct and all the unshielded colliders are
discovered. We note that FCI looks for any separating sets, and not necessarily the minimal ones. We
also observe that if two nodes X, Y are separated given Z in Augz (D), they are also separated given
Z U ¥ since ¥ are root nodes by construction, i.e., all the edges incident on F-nodes are out of them.

Algorithm 1 follows a similar flow to that of the FCI. In phase I, it learns the skeleton of the augmented
PAG. Function CREATEAUGMENTEDNODES(+) in Alg. 2 creates the F-nodes by computing the set S of
unique symmetric difference sets from all pairs of interventions in Z. Sigma (o) maps every F-node
to a source pair of interventions, which is used later on to perform the do-tests. The algorithm starts
by creating a complete graph of circle edges between V U ¥ . Then, it removes the edge between any
two nodes X and Y if a separating set exists. If the two nodes are F-nodes, then they are separated by
the empty set by construction. Otherwise, it calls the function Do-CoNsTRAINTS(-) in Alg. 3 to search
for a separating set using the corresponding do-constraints. The function routine works as follows: If
the two nodes are random variables (and not F-nodes), then an arbitrary distribution is chosen and we
find a subset W that establishes conditional independence between X and Y (rule 1 of Thm. 1). Else,
one of the two nodes is an F-node; without loss of generality, we choose it to be X. The algorithm
then looks for a subset W that satisfies the invariance of Corollary 1, i.e., P1(y|w) = Py(y|w).

Phase II of Alg. 1 is similar to the FCI counterpart. For the edge orientation phase, note that the
augmented MAG is a MAG indeed, hence all the FCI orientation rules still apply. Therefore, phase III



Algorithm 3 Find m-separation sets via Calculus Tests.

1: function Do-CoNSTRAINTS(Z, (Ppiez, X, Y, V., F,0)
2 SepSet =0,SepFlag = False

3 ifX¢F AY ¢ F then

4 Pick I € Z arbitrarily.

5: for WC V\¥F do

6: if Py(y|w, x) = Py(y|w) then SepSet = WU F,SepFlag = True
7

8

9

0

1

else
Suppose X € F,Y ¢ ¥ and X = F; without loss of generality.
L J) = o)
for WcCc VA (FuUY)do
if Py(ylw) = Py(y|lw) then SepSet = W, F \ {F;},SepFlag = True

return (SepSet,SepFlag)

10:
11:

Fy Fy Fy Fy
I VRN VRN I—\ TA I—A
w w w w
(a) Causal Graph D (b) MAG(Aug(D)) (c) Before rule 9. (d) After rule 9.

Figure 3: An example of learning the augmented PAG from the distributions P, P, consistent with the
given causal graph. Rule 9 allows orienting the tail at Xo— Y.

uses the FCI orientation rules along with the following two new ones. The algorithm keeps applying
the rules until none applies anymore.

Rule 8 (F-node Edges): For any edge adjacent to an F node, orient the edge out of the F node.

Rule 9 (Inducing Paths): If F; € ¥ is adjacent to anode Y ¢ S; and [S¢| = 1, e.g., Sx = {X}, then
orient X *— Y out of X, i.e., X — Y. The intuition for this rule is as follows: If F} is adjacent to
anode Y ¢ Sy in G, then there is an inducing path p between F; and Y in Augz(D), where D is
any causal graph in the equivalence class. Since Fy is a root node and by the properties of inducing
paths, the subpath of p from X to Y is an inducing path as well and X is an ancestor of Y in Augz(D).
Hence, the edge between X and Y is out of X and into ¥ in MAG(Augz (D)) and consequently in G.

We give an example to illustrate the steps of the algorithm in Figure 3, where Z = {0, {X}}. Figure 3a
shows the augmented causal graph, i.e., Augz (D), and Figure 3b shows the corresponding augmented
MAG, i.e., MAG(Augz(D)). Nodes F, and Z are separable in Augz (D) given the empty set and this
can be tested by the do-constraint P(Z) = Px(Z). Similarly, we can infer the separation of F, and W
by the test P(W|X) = Px(W|X). Figure 3c shows the graph obtained after applying the seven rules of
the FCI together with Rule 8. Finally, by applying Rule 9, we infer that the edge between X and Y
has a tail at X and we obtain the graph in Figure 3d. The soudness of the algorithm is shown next.

Theorem 3. Consider a set of interventional distributions (Py)iez c-faithful to a causal graph
D = (VUL), where L is a set of controlled experiments. Algorithm I is sound, i.e., every adjacency
and orientation is common for all MAG(Aug(D’)) where D' is IT-Markov equivalent to D.

6 Conclusions

We investigate the problem of learning the causal structure underlying a phenomenon of interest
from a combination of observational and experimental data. We pursue this endeavor by noting
that a generalization of the converse of Pearl’s do-calculus (Thm. 1) leads to new tests that can be
evaluated against data. These tests, in turn, translate into constraints over the structure itself. We then
define an interventional equivalence class based on such criteria (Def. 1), and then derive a graphical
characterization for the equivalence of two causal graphs (Thm. 2). Finally, we develop an algorithm
to learn an interventional equivalence class from data, which includes new orientation rules.
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7 Appendix

7.1 Do-calculus rules for soft interventions

A recent work developed an extension of the do-calculus rules to soft interventions in structural
causal models (SCMs) [3]. We reproduce a variation of this result for CBNs for completeness.

Proof of Theorem 1. Note that a soft-intervention does not change the underlying causal graph. Since
interventional distribution factorizes with respect to the original graph, any m-separation statement in
graph D implies conditional independence. Under the strict positivity, conditional independence is
equivalent to the invariance given in the rule, which concludes the proof.

For the proof of next two rules, similar to [17], we introduce F-nodes as random variables. Notice
that this is different than the augmented graph construction we have in the main text, where we treat
F-nodes as parameters. This is allowed as only a single F-node is introduced to show the result here,
which is explained next.

Construct the probability distribution p* on V U {F} as follows: p*(V|F = 0) = p,.(V), p*(VIF =
1) = p(V), where p, is the interventional distribution after a soft intervention on the set X U Z
and p, is the interventional distribution after a soft intervention on the set X is performed. Marginal
distribution of p*(F) can be picked arbitrarily from the set of strictly positive distribuitons for our
purposes. Assume that interventions are controlled, i.e., p..(x|pay) = pi(x|pa,), where pa, is the set
of parents of node X.

The desired equality in Rule 2 can be rewritten as p*(y|lz, w, F = 0) = p*(y|z,w, F = 1). Under the
assumption of strictly positive distributions, this invariance is implied by the conditional independence
statements (Y 1L Z |W),.. Therefore, we need to show that the graph separation statement given in
the rule implies the desired conditional independence statement.

For this, observe that p* can be factorized as follows:

p'(V.F) = p"(F)p"(VIF) = p"(F)p"(elpa;, F) 1—[ plulpay). 3)

u#z

where pa, are the parents of x in D. Note that in G the set of parents of Z is pay U F. Therefore,
p* factorizes according to the graph G. This implies that any d-separation statement on G implies
conditional independence [15][Theorem 1.2.4]. Therefore, we only need to show that the separation
statement given in the rule on mutilated graph implies d-separation statement between F, and Y given
Z,W.

If Y 1L Z|W in Dy, this means there is no backdoor path from Z to Y that is active conditioned on W.
Since F, only has an edge into Z, conditioned on W, Z any d-connecting path to ¥ must go through a
backdoor from Z. However the statement Y 1L Z|W in Dz implies this cannot happen, implying that
F., 1 Y|Z, W in G, completing the proof. a

For the proof of rule 3, we use a similar argument under strict positivity. Consider the same p*
construction. Similarly, this distribution factorizes with respect to graph G which means and d-
separation statement implies conditional independence. Therefore we only need to show that the
given separation statement in the mutilated graph implies the desired d-separation statement in G.
Suppose Y UL Z|W in Dy This implies that given W, there is no active path from the nodes
in Z — Z(W) to Y. Moreover there is no front-door path from the elements of Z(W) to Y given W.
Suppose for the sake of contradiction that Fz L Y |W in G. Since Fz only has edges into Z, any
active path must go through an element in Z. Suppose it goes through an element in Z(W). Since no
descendant of Z(W) is conditioned on, the active path must go through a backdoor in Z(W). However
this would imply Y 4 Z|W  in Dz, which leads to contradiction. Now suppose active path goes
through an element in Z — Z(W). However, these nodes are not mutilated in G, hence the same active
path would persist in D as well, contradicting with the statement ¥ 1L Z|W in D Therefore we
have Fz 1L Y |W in G which concludes the proof. m}
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7.2 Generalized Do-calculus Rules

In this section, we extend the do-calculus rules to be able to apply them across two arbitrary
interventions. This is essential for the characterizing of our equivalence class, when arbitrary sets of
interventional distributions are available.

Proposition 2 (Generalized do-calculus for soft interventions). Let (D = (VU L, E), p) be a CBN
with latents. Then for any set of strictly positive soft-interventional distributions {p;}jez, L C 2V the
following holds.

Rule 1 (conditional independence): For any I C V and disjoint Y,Z,W C V
piOw,2) = pyw) if Y WL Z|W in D. “4)

Rule 2 (do-see): Forany I,J C 'V and disjoint Y, W C V\K, where K = IAJ
piOw, k) = p;yiw, k) if Y L K|W in Dg. &)

Rule 3 (do-do): For any I,J C V and disjoint Y, W C V\K, where K = IAJ
PIOIW) = psOIW) iFY L KW in Dy (6)

Rule 4 (mixed do-do/do-see): For any I,J C V and disjoint Y, W C V, where K = IAJ
PrOW) = psOIW) if Y 1L KW\ Wi in Dy, g (7)
where W, =: W N K and R := K\W,.

Note that Rule 2 and Rule 3 are special cases of Rule 4. We present all three to make the connection
to standard causal calculus rules more explicit.

Proof. LetK; =I\J,K; =J\I,T =1NJ.
Rule 1: The result follows from the rule 1 of Theorem 1.
Rule 2: We have the following lemma:

Lemma 1. IfY 4 K|\W inGKthenYJ.LKﬂW,KJ mG&andYJ.LKﬂW,K[ ll’lG&

Proof. Suppose for the sake of contradiction that ¥ 1. K;|W, K; in Gk, does not hold, then there
exist a corresponding active path, denoted p. If every collider along p is active due to a node in W
and not K, then p is active in G as well which contradicts the input. Otherwise, let K € K; be
the node activating the last collider S along p (where possibly K; = §) starting from K;. The path
p’ composed of the directed path from S to K7 concatenated with the subpath of p from § to Y is
active in Gx which contradicts the input. Hence, Y 1L K;|W, K; in Gg,. Similarly, we can show that
Y U K;|W,K; in Gg,. o ]

Therefore we can apply rule 2 of Theorem 1 to obtain p;(ylw, k) = pr(ylw, k). Furthermore, we can
apply rule 2 of Theorem 1 once more to obtain pr(y|w, k) = p;(ylw, k), which concludes the proof.

Rule 3: We have the following lemma:

Lemma 2. IfYJ.LK|W ZRGW, thenY 1L K;|W m%andYJ.L K, |W IHGW

Proof: If Y 1L K|W in Gy, then clearly Y 1L K; W in Gy Suppose for the sake of contra-
diction, we have Y . K;|W in % Notice that the only difference between GW and GW
are the incoming edges into K;(W). Therefore, the active path p between K; and Y in G, must
include a vertex S € K;(W) and also must pass through an edge that is into §. Otherwise, p would be
active in the graph Ggnpy which contradicts the input.Since no descendant of K;(W) is conditioned
on by definition, no descendant of S is conditioned on. Also, since p is active, then S cannot be
a collider on p. This implies that the other edge that is adjacent to S must be out of it. Moreover,
along the subpath of p that is out of S, denoted p’, none of the nodes is a collider. Suppose otherwise
for the sake of contradiction and let X be the first collider. since p is active, then we condition on a
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descendant of X. Since the path from S to X is a directed path out of S, this contradicts the condition
that S is not an ancestor of a node in W. Therefore, p’ is a directed path out of K, and can be either
into Kj orinto Y. If p” is into A € Kj, then it must be that A ¢ K;(W).So, § is an ancestor of A and A
is an ancestor of some node in W which contradicts the condition S € K;(W). Hence, p’ must be
a directed path out of S and into Y. This path is active in Gz 5y and consequently in Gy which
contradicts the separation statement in the assumption. Hence, ¥ 1L K; |W in G . Similarly, we
can show that Y 1L K; |W in % O

Since, Y 1L K;|W in GW’ then we have p;(ylw) = pr(ylw) by rule 3 of Theorem 1. Similarly,
since Y 1L K;|W in (W we have pr(ylw) = p;(ylw). This concludes the proof.

Rule 4: In addition to the notation defined inrule 4, let W, = W, NI, W, = W, NJ,R; = RN,
R; = RN J. The following venn diagram summarizes those relations.

1 J

R] W[ T Wj RJ

First, we establish the following. Note that R; U R; = Rand W; U W, = W,.
Lemma3. IfY L K|W\ W, in Dy, zewy thenY 1L R|W in Drawy and Y 1L Wi |W\ Wy in Dy,.

Proof. If Y 1L K|W\ W, in DWk,W’ then Y 1L R|W \ W; in DWk,W since R ¢ K. Suppose for
the sake of contradiction that ¥ 4. R|W in Dry and let p be one active path between Y and R. The
difference between Dy, zawy and Dy is cutting the edges out of W. Hence, p is discontinued or
blocked in DWk,W conditioned on W\ W, due to one of two conditions: (1) p includes a non-collider
node in W;, or (2) p has a collider S that is active because it has a descendant in Wy (possibly S € W;).
Case (1) is not possible because W, ¢ W and p would be blocked in DW which contradicts the
assumption that p is active. Consider the collider along p closest to Y that is consistent with case (2).
The directed path from S to the node in W; concatenated with the subpath of p from § to Y is active
given W \ W in Dy, zon which contradicts the input condition. Thus, Y 1L R|W in Doy and this
concludes the proof of first part.

IfY L KW\ W in DWk,W’ then Y 1L W |[W \ W, in DWk,W since W;, ¢ K. Suppose for the sake
of contradiction that Y JL W; |W \ W, in Dy, and let p denote any active path. The only difference
between the two graphs is the set of incoming edges to R(W). Therefore, p contains an edge into
anode § € R(W) so that p is active in Dy, and blocked in Dy, zaw- Since R(W) are by definition
non-ancestors of W, S cannot be a collider in Dy, otherwise it would be blocked. Since S is a

non-collider, the other edge adjacent to S must be out of S. Moreover, along the subpath of p that is
out of §, denoted p’, none of the nodes is a collider. Suppose otherwise for the sake of contradiction
and let X be the first collider. since p is active, then we condition on a descendant of X. Since the
path from S to X is a directed path out of S, this contradicts the condition that S is not an ancestor
of anode in W (S € R(W)). Therefore, p’ is a directed path out of S and can be either into Y or
into a node in W;. It p’ is into Wy, then S is an ancestor of a node in W which is a contradiction
since § € R(W). If p” is into ¥ then p” is active in Dy, 5 which contradicts the input condition that

Y 1L K |W \ Wy. This concludes the proof of the second claim. ]

We establish the following equivalences which prove rule 4. Note that the first and the last equivalences
follows by definition.

piOW) = pruw,ur YIw) = pruw,urYIw) = pr,uw,urIw) = ps;(yIw)
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The second equality is an application of rule 3 since Y UL R|W in Dy and the third equality is an
application of rule 2 since Y 1. W [W \ W, in D& . This concludes the proof. ]

Proof of Corollary 1. The correctness follows by Rule 4 of Proposition 2. m}

We have the following lemma which plays an important role in the proof of our graphical characteri-
zation of the equivalence class. The proof can be found within the proof of Theorem 2.

Lemma 4. Consider a causal graph with latent variables where either of the graphical conditions in
Rules 1,2,3,4 does not hold. Then there exists a tuple of interventional distributions (pr)ier that is
I-Markov to D and the corresponding invariance relation does not hold.

In other words, the lemma above shows that the causal calculus rules are tight: For graphs where
the graph separation statement does not hold, one can obtain interventional distributions where the
corresponding invariance fails.

7.3 Generalized do-calculus Graph Mutilations and F-node Equivalence

We show graphical conditions on the augmented graph that are equivalent to those given in the
generalized causal calculus rules.

Proposition 3. Consider a CBN (D = (V U L, E), p) with latent variables L and its augmented graph
Augz(D) = (VULUF,E U E) with respect to an intervention set L, where ¥ = {Fi}ici). Let S; be
the set of nodes adjacent to F;,Yi € [k]. We have the following equivalence relations:

Suppose Y, Z, W are disjoint subsets of V. We have
(YW ZIW)p & (¥ 1L Z|W, Fi)aug) (8)

For each S i, suppose Y, W are disjoint subsets of V \ S,;. We have

Y L SiW)p;, & (Y LF |W, S i Fi\(iy ) Aug(D) )
(Y L SiWp_ &= (¥ 1L F; [W, Frani)augeo) (10)

Foreach S; letY CVand W CV. Let W; . =WnNS;,R =8, \ W.. Then we have
Y L S;IW\W)p

wam — ¥ AL Fi W, Frian i )augo) (In
Proof. Conditioning on a source node is equivalent to removing it from the graph in terms of the
graph separation statements. Hence, conditioning on F\(;; in the right-hand side eliminates them.
Therefore, equations (8), (9), and (10) follow from [17, Proof of Th. 4.1] by Pearl. In what follows,
we prove (11).

We first consider the case when Y N S; # 0. Then the relation is trivially true since it implies that for
some U € §;, U and F; are adjacent in Aug(D) and Y is dependent with U since U C Y.

In the rest of the proof, suppose Y € V' \ S,.

Suppose (Y 4L S;|W\ W; )Dw. L and let p denote any active path from A € §; to Y. Note that the

same path is active in Aug(D) given W, Fy;y. If p is into A, then either (1) A € W; or (2) A ¢ R(W).
Hence, the concatenation of p with F; — A is active in Aug(D) given W, Fyi)\(;; since A € W for case
(1) and A has a descendant in W for case(2). Hence, (Y UL F; |W, Friavi) )Aug(D)-

Next, suppose (Y L F; lW, Fraviy )augpy and let p denote any active path. Also, let A be the closest
node to Y along p such that A is active due to anode in S;,i.e., A € S;is along por A ¢ S, is an
active collider due to a descendant in W; C §;. If A is a non-collider along p, then A € R C §;
else p is blocked. If the subpath from A to Y is out of A, then this subpath is active in Dy, x5

given W\ W;and (Y )L S; W\ W;)p . Otherwise, the subpath between A and F; is out of A.
In this case, we argue that A ¢ R(W), hence the subpath from A to Y along p is active in Dy, zowy
given W\ W; and (Y 4L S;|W\ Wi)Dw,.W'
there exist at least one collider between A and F; along p. Let X denote such a collider closest to

W, ROW)

Since all the edges incident on F; are out of it, then
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A. Since X is active, then X has a descendant in W, thus A has a descendant in W through X and
A ¢ R(W). Alternatively, A is an active collider along p. If A € W; or A ¢ R(W), then the path from
AtoYisactiveand (Y UL S;|W\ W, )DW-W' Not that A can’t be in R(W), else A would be blocked

along p. Finally, A ¢ S; and it has a descendant in W;. In this case, the directed path from A to the
node in W; concatenated with the subpath of p from A to Y is active in Dy, %5 given W\ W; and

YL S WA\ Widp, -

This concludes the proof. o

Proof of Proposition 1. This follows from Proposition 3. O

7.4 Proof of Theorem 2

Suppose that MAG(Augz(D)) and MAG(Augz(D,)) satisfy the three conditions. Then, they induce
the same m-separation statements and vice-versa [24, Prop. 1 & Def. 5]. It follows by Proposition 1
that O, and D, impose the same constraints over the distribution tuples in Definition 1. Therefore,
Pz(D1,V) =Pz(D,, V).

For the other direction, suppose MAG(Augz(D;)) and MAG(Augz(D,)) do not satisfy the three
conditions. Then, they must induce at least one different m-separation statement. Therefore, we
need to establish that if the two graphs induce different m-separation statements, then they are not
Z-Markov equivalent.

Before we show the other direction, we need to introduce some definitions and establish some results.
Define the following collections of m-separation statements on the Aug(D):
U=AXLY|Z Flawp): X, YeVUF, ZCV-{X)Y}, FCF —-{X,Y} (12)
O={XLY|ZFlawgp): X, YeVUF, ZCV-{X,Y}, F=F - {X,Y} (13)
T=AX L Y|Z Flaugp): X€V, YeVUF, ZCV-{X)Y}, F=F —{X,Y}} (14)

3
J

U are the set of m-separation statements between any two nodes given a strict subset of all the
remaining F nodes. O are the set of m-separation statements between any two nodes given all the
remaining F nodes. 7~ are the set of m-separation statements between an observable node and any
other node given all the remaining F nodes. Note that U, O are disjoint, whereas 7~ is a subset of O.
From Prop. 1 and Def. 1, we see that an m-separation statement is in 7" if and only if it appears as a
graphical condition in the definition of 7-Markov equivalence class of distributions for D. Also, if an
m-separation between arbitrary subsets of nodes holds in D; but not in D,, then there is at least one
pair of singletons for which the corresponding m-separation holds in D, but not in D,. Therefore it is
sufficient to consider m-separation statements between singletons which are included in 4/ UO U T

Lemma 5. Suppose (A 1L B|C)augp,), (AL B|C)augp,), where A, B, C are arbitrary disjoint subsets
of VU {F ). Then at least one of the following is true:

(a) AX,Y,Z C V such that (X 1L Y |Z,F ) augip,) AND (X L Y |Z, F ) aug(dy) (15)
(b) AT,W C V,F; € F such that (F; 1L T |W,¥ — {Fi})Aug(Dl) AND (F; L. T |W,F — {Fi})Aug(Dz)
(16)

Proof Sketch. The statement of the lemma can be rephrased as follows: Any difference in the truth
value of any m-separation statement from the set 4 U O U T between Aug(D;) and Aug(D,) implies
a difference between truth value of some m-separation statement in 7~ between Aug(D;) and Aug(D,).
We show this in two steps:

1. For any Aug(D), any m-separation statement in 2/ can be written as a deterministic function
of the m-separation statements in O. Further, this deterministic function does not depend on
the structure of D. Therefore, any difference in the truth value of any m-separation statement
from the set ”/ U O U T between Aug(D;) and Aug(D,) implies a difference between the
truth values of some m-separation statement in O between Aug(D;) and Aug(D,).

2. If there is any difference in truth value of any m-separation statement in O between Aug(D1)
and Aug(D;), then this implies a difference in the truth value of some m-separation statement
in 7 between the augmented graphs.
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Detailed Proof of Lemma 5. We show proof of both the steps outlined in the proof sketch of the
Lemma.

Proof of Step 1:

The main result in this step is given by Corollary 2. We have the following Lemma that relates
m-separation statements from U to other m-separation statements that are ‘closer’ to O. Recursively
applying this lemma proves the result in this step.

Lemma 6. Let Aug(D) be the augmented graph (augmented with variables in F ) with respect to a
CBN with latents (D, p). Consider an m-separation statement with respect to Aug(D) of the form
(X WL YI|Z, Fs)augw) where X,Y € VUF and Z € V —{X,Y} and Fs ¢ ¥ —{X,Y}. For any
F;e F —(Fs U{X}U{Y}), the following statements are equivalent

(a) (X WL Y|Z, Fs)aug) (17)
(b) X WL Y|Z, Fs U{F})aug)yAND[(F; 1L Y |Z, F's ) pug(p)OR(F; AL X |Z, F's ) pug(p)] (18)

Proof. From the hypothesis in the lemma, X, Y # F; and F; ¢ Fs. Suppose there is a m-connecting
path between X and Y given Z, Fs. Then either it does not pass through F;, which implies (X 4.
Y|Z, Fs U {F;})augp) or it can be decomposed into two paths, one m-connecting F; and Y given Z, Fg
and another m-connecting F; and X given Z, F's. Note that this is because all arrows are out of F; by
construction of Aug(D) and F; is not part of the conditioning set. On the other hand, if there is no
m-connecting path between X and Y given Z, F all the aforementioned paths has to be m-separating
which gives the equivalence. O

Remark: Please note that Lemma 6 does not depend on the structure of D. Accordingly, we have the
following corollary:

Corollary 2. Any m-separation statement X 1 Y|Z,Fs € U can be written as a deterministic
function of the m-separation statements in O. This function is independent of the structure of D.

Proof. We keep repeatedly applying (18) until all the formulas begin to lie in O. In each of the
expansions using (18), either an unconditioned F; is added to the conditioning set or it appears as
a new conditional independence statement between F; and X and Y given the current conditioning
set. O

Proof of Step 2: We only need to focus on the m-separation statements in O that are not in 7.
Those are precisely the m-separation statements between two F-nodes given a subset of the observed
variables and all the other F-nodes. Suppose in Aug(D;), F; 1L F;|W,¥ —{i, j} and in Aug(D,)
Fi L F;|W,F —{i, j} for some W C V. Since F-nodes are source nodes, the active path between F;
and F; must contain at least one collider. Consider the shortest path that is active in Aug(D,) but
not in Aug(D1). Suppose the active path between F; and F; contains a single collider. This can only
happen if in Aug(D,), It € W s.t. t € De(F;) N De(F ), otherwise no descendant of any collider on
the path would be conditioned on, and in Aug(D;) At € W s.t. t € De(F;) N De(F ;). This means in
Aug(Dy), t is either not a descendant of F; or it is not a descendant of F;. Suppose without loss of
generality, 7 is not a descendant of F; in Aug(D;) but it is in Aug(D;). This implies that in Aug(D,),
F; U t|F —{i} and in Aug(D;), F; U t|F — {i}. This shows that some m-separation statement
belonging to 7 is different in the two graphs.

Now suppose that the active path between F;, F'; contain at least two colliders. Consider the collider
on the path that is closest to F;, and call this node T;. Similarly, let us call the collider closest to F'; on
the active path as T';. T; and T; must have descendants that are in W since the path is active. Consider
the subpath between F; and T'; and call this p;. Consider the subpath between 7T; and F; and call this
path p,. Note that in Aug(D,), the union p; U p» is active and p, p, are overlapping since colliders
are distinct. Since p is active, the subpaths p;, p, should also be active in Aug(D,). Now note that this
path is not active in Aug(D;). This means that either p; or p; is not active because otherwise, since
p1 and p; are overlapping, if they were active, their union would be active as well. Therefore either
p1 or py create different m-separation statements in Aug(D;) compared to Aug(D;). Suppose without

17



loss of generality that py is active in Aug(D;) but not in Aug(D;). Therefore (F; L T;|F — Fi)aug(ny)
and (F; 1L T;|1F — F;)aug(p,) both of which are testable statements. This concludes the proof.

We can finally prove Lemma 5. Suppose (A 1L B|C)augn,), (A I B|C)augp,)- Any m-separation
statement belongs to one of O, U, 7 . Note also that vertex set of a graph determines which set it
belongs to. Therefore the same m-separation statement for Aug(D;), Aug(D;) belong to the same set
since both have the same vertex set.

(a) If it belongs to 7, we are done.

(b) If it belongs to O, then by Step 2, any m-separation statement with different truth values imply
that an m-separation statement has different truth values in 7~ and result follows from (a).

(c) If it belongs to U, then by Step 1, the m-separation statement is a deterministic function of
m-separation statements of O. Since m-separation statements in U have different truth values, at least
one of the m-separation statements in O that determines the original m-separation statement in U via
this function must be different. The result follows from (b). O

We showed that if MAG(Aug(D)) and MAG(Aug(D,)) are not Markov equivalent, then there is an
m-separation statement that appears as a condition in the definition of 7-Markov equivalence that
is different in the two graphs: There is an m-separating path in Aug(D;) that is m-connecting in
Aug(D). In order to complete the proof, we need to show that $r(D;) contains tuples of distributions
that are not in Pr(Dy). This is shown in the following Lemma, which concludes the proof.

Proof of Lemma 4:

For this, we leverage a key result of Meek which he used to show that the set of unfaithful distributions
has Lebesgue measure zero, combining it with a jointly Gaussian structural causal model construction
including the latent variables. We first state Meek’s result as a standalone lemma:

Lemma 7 (Meek). Consider a causal DAG D = (V, E), where (AL B|C)p. Let Dy = (V, Ey) be the
subgraph that contains all the nodes in the m-connecting path that induce (A L B|C)p. Then any
distribution p over V; where every adjacent pair of variables are dependent satisfies (A )L B|C),.

Proof. Proof uses weak transitivity and an inductive argument and can be found in [13]. O

Suppose that X, Y,Z C V such that (X 1L Y |Z, F )augp,) AND (X U Y|Z, F ) augp,)- Suppose that
both X, Y are observed variables. In this case, any tuple of interventional distribution obtained from
an observational distribution that is faithful to the causal graph with latent variables constitute a valid
example.

Suppose X = F; for some i € [k] and Y € V. Therefore, an F-node is m-connected to an observed
node in Aug(D;) but not in Aug(D).

Consider the causal graph D, = (V U L, E) with latents. Focus on the subgraph of D, that includes
all the variables that contribute to the m-connecting path of (X L Y |Z,  )augp,)- An example is in
[13]. Let us call this subgraph D, = (Vpam, Epan)- Consider a jointly Gaussian distribution on
Vpath that is faithful to D,qy,. One exists by construction of Meek (Theorem 7 of [13]). Let us call
this distribution pp.;. We will only focus on this distribution only to finally expand it by adding
the remaining variables in Dy, s as jointly independent and independent from the variables in D .
Consider two interventions /, J on the causal Bayesian network (D pan, Ppan), Where InJ = S, i.e.,
the distributions py, p, are responsible for the graphical separation of F;. Different from the rest of
the paper, for this proof we will treat F; as a regime variable that indicates when we switch to p; and
when we switch to p;. Note that we can do this since we only add this single F node and no others.
Consider the distribution p* defined as follows: p*(.|F; = 0) = p;(.), p*(.|F; = 1) = p;. Also pick
the uniform distribution for F;. We need to show that the invariances that are implied by the graph
separation in question in the generalized causal calculus rules fails for p;, p;. This is equivalent to
showing that the variable F; is dependent with Y given Z on the distribution p*. We construct the
interventional distributions through an SCM which implies the CBN in question. This is done by the
simply adding extra noise terms to the structural equations describing the CBN.

Let x be a vector representing all the variables in the graph including the latents. Consider the
following structural equation model: Let x = Ax + e, where A is the lower triangular matrix that
captures the graph structure and parental relations in D, and e is the exogenous noise vector. Let
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p; be the distribution obtained by adding the noise vector e; to the system. ey is non-zero in the rows
i if x; € I. Therefore p; is a valid soft interventional distribution. Similarly, let e; be the noise vector
added for intervention on J. Next, we show that in the combined distribution ¢ using these py, p;
every adjacent variable are dependent. Clearly, when e and e, are different, F-variable is dependent
with the variables in K = IAJ, since p(K|F = 0) # p(K|F = 1), which implies (K L F[|0),-.
Therefore, we focus on establishing that every pair of variables that are adjacent are correlated except
for the F variable. The correlation of the variables in D, matrix can be calculated as follows:

x=Ax+e+e, > I-A)x=e =2x=1I-A)""e (19)
x=Ax+e+e, =2 (I-Ax=e,=x=1-A)""e, (20)

where e; = e +e; and e, = e + e;. The correlation matrix between the observed variables with respect
to p*(.) can be calculated as follows (since the binary regime variable will be marginalized out):

E[xx"] = 0.5 - A)'E[e;e/ A - A)™" +0.501 - A)'E[e,e] JM - A)" 1)
=0.50I-A)"'(D; + Dy)I-A)", (22)

where D; = E [elelT] and D, = F [egeg] are diagonal covariance matrices of the noise added via soft
interventions. Consider two adjacent variables x;, x; in D,q;,. We have a few observations: I — A'is a
full rank matrix since A is a strictly lower triangular matrix, hence it’s inverse exists and is unique. We
treat Dy and D, as variables in this system: When we perform the soft intervention, we get to choose
the variance of each added noise term. We want to show that there always exist soft interventions,
i.e., D;,D; such that x;, x; are dependent. Since x;, x; are jointly Gaussian, they are dependent if and
only if they are correlated. Hence, we only need to show that E[x;x;] # 0 for any adjacent pair x;, x;.
Notice that this condition is equivalent to a linear equation being zero. Therefore, E[x;x;] = O for
all Dy, D, or it is non-zero except for a particular value of D, D;,. If we set D; = D, = 0, we get
back the observational system. By assumption any pair of adjacent variables are dependent since
the original distribution is chosen to be faithful to the graph D,;,. Therefore, this system of linear
equations is not identically zero. Hence, if we randomly pick the variances of the added noise terms,
with probability 1, any adjacent pair of variables will be dependent (after a union bound).

Therefore, we have established that in the graph D, plus the F-variable, every pair of adjacent
variables are dependent. Now, we can use Meek’s lemma, which gives us that (F; ). Y'|Z), (Since
we did not add the other F variables as regime variables, we do not need to condition on them.).
Now, we can augment this distribution to cover the variables outside D,qy;: Simply pick all the
remaining variables jointly independent and independent from the variables in D ;. Construct the
interventional distributions by similar soft intervention of adding extra noise terms to the intervened
variables. The corresponding tuple of interventional distributions belong to Pz(D,, V) but not to
Pr(Dy, V) since m-separation should have implied invariance between the interventional distributions
whereas we constructed the interventional distributions such that this is not true. m]

7.5 Proof of Theorem 3

The main idea of the algorithm is to infer the separating sets between pairs of nodes using the
invariance tests. Using c-faithfulness assumption, it is easy to see that the invariances that are checked
imply m-separation statements between the nodes of the augmented graph. However, the separating
sets that are found always include all the F-nodes. There are few questions we need to address to
prove soundness of the algorithm:

(1) Are all pairs of separable nodes in Aug(D) correctly identified by the algorithm?
(2) Does the choice of separating set affect the application of FCI rules.
(3) Are the orientation rules sound?

We first address (/): Note that all pairs of F-nodes are separable with the empty set by construction of
Aug(D). This is captured in Line 8 of the algorithm by setting SepS et(F;, F;) = 0 for all pairs of
F-nodes. This assures that after Phase I, they become non-adjacent.

Next consider all pairs X, Y where at least one is not an F-node. Suppose two nodes are separable
in Aug(D). Then there is a set W that makes them separable. There is no restriction on W: It may
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or may not have some of the F-nodes. However, since F-nodes of Aug(D) are always source nodes,
adding the remaining F-nodes cannot open new paths. Therefore, the set W U ¥ is also a separating
set. Formally, we have the following lemma:

Lemma 8. Forany pair X,Y € VUF, if (X 1L Y [W)augp), then (X 1L Y W U (F — X U Y))augn)-

Proof. Proof follows from the fact that F-nodes are source nodes in Aug(D) and the rules of m-
separation. O

Therefore, any separable pair imply a testable separation statement by Theorem 1 and it will be
identified by the algorithm. This addresses (/). We next address (2).

We make use of the following simple observation: Although there may be more than one separating
set for a pair of variables in the graph, FCI algorithm is sound and complete irrespective of which
separating set is chosen. From the phrasing of the algorithm and its soundness, this is obvious since
which separating set should be used is not specified. Here, we verify this by checking how the rules
that require use of separating sets are affected by our choice of separating set:

Orienting unshielded colliders: Suppose we consider an ordered triple (X, ¥,Z) where X, Z are
non-adjacent. An F-node can never be a collider. Then the only case where the application of the rule
may be affected by which separating system is used is when X, Z € V, Y € #. Since by construction
of SepSet, Y € SepSet(X, Z) algorithm does not orient it as a collider, which is correct. No collider
will be missed by the algorithm due to the choice of SepS et.

Discriminating paths: By definition of discriminating path [26] and construction of augmented
graph, there cannot be discriminating paths between pairs of F-nodes. We can have discriminating
paths between an F-node and an observed node as (X, ..., W, U, Y), where X € ¥ and Y € V. First, no
F-node can be between X and U since by definition of discriminating path, they should be colliders.
If U is not an F-node, then the change in separating system, i.e., adding extra F-nodes does not affect
how the rule is applied. Suppose U is an F-node. Then by construction of the separating set, it has to
be in the separating set. Then the rule is applied to orient U — Y, which is consistent with Rule 8
and the augmented graph construction.

Finally, we address the soundness of orientation rules to address (3). The rules of FCI are sound
as shown by [25]. This is applicable in our setting, as one can see the augmented graph as a CBN
with latents, ignoring how F-nodes are constructed, since m-separation statements implied by this
CBN, which are purely graph theoretic criteria, are identical to those implied by the augmented
graph. Moreover, previous phases of our algorithm are shown to be sound and complete, which
is required for the soundness of this step: Skeleton is correctly identified. Moreover, if there is an
unshielded collider, previous phases will correctly identify it. This is necessary for the correctness of
the orientation rules of FCI. Therefore, we only need to check the soundness of the additional rules
Rule 8,9. Soundness of Rule 8 is trivial since in any augmented graph Aug(D), F-nodes are source
nodes.

Soundness of Rule 9: Consider a pair F;, Y where F; € 7,Y € V that are adjacent and Y > nS;. This
means there is no separating set for F;, Y in Aug(D), although by construction, they are not adjacent.
This can only happen if there is an inducing path between F; and Y relative to the latent variables L.
An inducing path relative to latents L is defined as follows [26]: A path [ in Aug(D) is an inducing
path if i) every non-endpoint that is not in L is a collider and ii) every collider is an ancestor of either
endpoints. Since F-nodes by construction do not have ancestors, every collider on the inducing path
between F;, Y must be an ancestor of Y. Therefore in MAG(Aug(D)), the observed node must be an
ancestor of Y. If |S¢| = 1, then any inducing path must go through the node in S, since in Aug(D), F;
is only adjacent to the node in §;. Since this node is on an inducing path, it must be an ancestor of Y.
Therefore MAG(Aug(D)) contains an edge from this node to Y. This concludes the proof. m]
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