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Abstract

We study the problem of causal identification
from an arbitrary collection of observational
and experimental distributions, and substantive
knowledge about the phenomenon under in-
vestigation, which usually comes in the form
of a causal graph. We call this problem g-
identifiability, or gID for short. The gID set-
ting encompasses two well-known problems in
causal inference, namely, identifiability [Pearl,
1995] and z-identifiability [Bareinboim and
Pearl, 2012] — the former assumes that an ob-
servational distribution is necessarily available,
and no experiments can be performed, condi-
tions that are both relaxed in the gID setting; the
latter assumes that all combinations of exper-
iments are available, i.e., the power set of the
experimental set Z, which gID does not require
a priori. In this paper, we introduce a general
strategy to prove non-gID based on hedgelets
and thickets, which leads to a necessary and suf-
ficient graphical condition for the correspond-
ing decision problem. We further develop a pro-
cedure for systematically computing the target
effect, and prove that it is sound and complete
for gID instances. In other words, failure of the
algorithm in returning an expression implies
that the target effect is not computable from the
available distributions. Finally, as a corollary
of these results, we show that do-calculus is
complete for the task of g-identifiability.
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1 INTRODUCTION

One of the main tasks in the empirical sciences and data-
driven disciplines is to infer cause and effect relationships

∗This work was done while the authors were at Purdue Uni-
versity. Corresponding author’s email: sl4712@columbia.edu.

from a combination of observations, experiments, and
substantive knowledge about the phenomenon under in-
vestigation. Causal relations are deemed desirable and
valuable for constructing explanations and for contem-
plating novel interventions that were never experienced
before [Pearl, 2000, Spirtes et al., 2001, Bareinboim and
Pearl, 2016, Pearl and Mackenzie, 2018].

In one line of investigation, this task is formalized through
the question of whether the effect that an intervention on
a set of variables X will have on another set of outcome
variables Y (denoted Px(y)) can be uniquely computed
from the probability distribution P over the observed vari-
ables V and a causal diagram G. This is known as the
problem of identification [Pearl, 1995, 2000, Bareinboim
and Pearl, 2016], and has received great attention in the
literature, starting with a number of sufficient conditions
[Spirtes et al., 2001, Galles and Pearl, 1995, Pearl and
Robins, 1995], and culminating in a complete graphical
and algorithmic characterization [Tian and Pearl, 2002,
Shpitser and Pearl, 2006, Huang and Valtorta, 2006]. De-
spite the generality of such results, it’s the case that in
some real-world applications the quantity Px(y) is not
identifiable (i.e., not uniquely computable) from the ob-
servational data and the causal diagram.

On an alternative thread in the literature, causal effects
(Px(y)) are obtained directly through controlled exper-
imentation [Fisher, 1951]. In the biomedical sciences,
for instance, considerable resources are spent every year
by the FDA, the NIH, and others, in supporting large-
scale, systematic, and controlled experimentation, which
comes under the rubric of Randomized Controlled Trials
(RCTs). The same method is also leveraged in the con-
text of reinforcement learning (RL), for example, when
an autonomous agent is deployed in an environment and
is given the capability of performing interventions and
observing how they unfold in time. Through this process,
experimental data is gathered, and used in the construc-
tion of a strategy, also known as policy, with the goal of
optimizing the agent’s cumulative reward (e.g., survival,



profitability, happiness). Despite all the inferential power
entailed by this approach, there are real-world settings
where controlling the variables in X is not feasible, possi-
bly due to economical, technical, or ethical constraints.

In this paper, we note that these two approaches can be
seen as extremes in a spectrum of possible research de-
signs, which can be combined to solve very natural, albeit
non-trivial, causal inference problems. In fact, this gener-
alized setting has been investigated in the literature under
the rubric of z-identifiability (zID, for short) [Bareinboim
and Pearl, 2012].1 Formally, zID asks whether Px(y)
can be uniquely computed from the combination of the
observational distribution P (V) and the experimental dis-
tributions Pz′(V), for all Z′⊆Z, for some Z ⊆ V. We
highlight two critical assumptions underlying this setting.
First, note that it may be challenging to intervene on some
of the subsets of the variables, which means that the orig-
inal zID assumption that experiments over all subsets
of Z are available may not be attainable in some real-
world applications; e.g., for Z={Z1, Z2}, zID assumes
that experimental data over {{}, {Z1}, {Z2}, {Z1, Z2}}
are available. Second, zID assumes that the observational
distribution (null intervention) is always available, which,
while attainable in many settings, may be hard to mea-
sure in others. For instance, when a RL agent has to act
in an environment where no behavior policy exists. For
concreteness, we discuss below two applications where
these assumptions are shown to be too stringent.

Example 1. (Drug-drug interactions) Consider the
causal graphs in Fig. 1, where Y represents cardiovascu-
lar disease, W blood pressure, X1 taking an antihyperten-
sive drug, and X2 the use of an anti-diabetic drug. While
it’s currently understood that diabetes and hypertension
do not affect each other (no direct link between them), it’s
common for patients with type 2 diabetes to be suscepti-
ble to hypertension, since both conditions share important
confounding factors (graphically encoded through the
bidirected arrows) [Ferrannini and Cushman, 2012]. The
goal of the analysis is to assess the effect of prescribing
a treatment for both conditions on the risk of developing
cardiovascular diseases, Px1,x2(y). There are two RCTs
that separately control for X1 and X2, which means that
Px1

(V) and Px2
(V) are available. These distributions do

not satisfy the requirements of zID, which expects all com-
binations of experiments, including Px1,x2

(V) itself, the
very target of the analysis. It turns out that for the models
in Figs. 1a- b, Px1,x2(y) =

∑
w Px2(y|w)Px1(w), which

means that the experimental studies suffice to identify the

1This problem can be seen as closely related to the non-
parametric version of instrumental variables (IVs), but for when
the combination of both observational and experimental data is
available. By and large, but not exclusively, the literature on IVs
is mostly focused on some parametric settings.
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Figure 1: Px1,x2
(y) can be identified from Px1

(V) and
Px2

(V) in (a) and (b), but not in (c) and (d). Differences
among the causal diagrams are highlighted in red.

joint effect. The same effect is not identifiable in Figs. 1c-
d (for further details, see Appendix A.1). �

Example 2. (Multivariate testing (MVT)) The causal
graphs in Fig. 2 represent simplified models of a large-
scale experimentation platform of a hypothetical Internet
company. There, X1, X2 represent a set of features, and
Y1, Y2 different outcome variables (e.g., click-through
rates, users’ happiness). The various teams perform online
experiments varying a diverse set of features at the same
time, and then track the changes in the different outcome
variables. This procedure is known as multivariate testing
(MVT), which generalizes A/B testing. In practice, MVT
allows the company to estimate the joint experimental dis-
tribution Px1,x2

(V). The goal is to identify the impact of
changes in individual features, say Px1

(y1) and Px2
(y2),

so that the teams can be rewarded based on their specific
contributions. In Fig. 2a, given experiments performed
simultaneously, Px1,x2(y), each of the team’s announced
outcomes can be obtained as Px1

(y1) = Px1,x2
(y1) and

Px2
(y2) = Px1,x2

(y2). On the other hand, the individual
effects are not identifiable from Px1,x2

(y) in Fig. 2b and
c (for more details, see Appendix A.1). �

Our goal in this paper is to explicate the conditions under
which inferences as the ones discussed above are licensed
from first principles. More broadly, we investigate the
problem of general identification of causal effects from an
arbitrary combination of observational and experimental
distributions, and substantive knowledge specified in the
form of a causal graph, which we call g-identification
(for short, gID). Specifically, our contributions are as fol-
lows: 1. We prove a necessary and sufficient graphical
condition for gID, which follows from two new graphical
constructions called hedgelets and thickets. These struc-
tures constitute flexible and general building blocks that
are helpful to understand and characterize general iden-
tification problems (Sec. 3); 2. Leveraging these results,
we develop a sound and complete algorithm that returns
any expression derivable from an arbitrary collection of
observations and experiments. As a corollary, we prove
that do-calculus is complete for g-identification (Sec. 4).



2 PRELIMINARIES

We denote variables by capital letters, X , and values by
small letters, x. Bold letters, X or x, represent sets of
variables or values. The domain of a variable X is denoted
by XX . Two values x and z are said to be consistent if
they share the common values for X ∩Z. We also denote
by x \Z the value of X \Z consistent with x. We assume
that domain of every variable is finite.

Our analysis heavily relies on causal graphs, which we
often assign a calligraphic letter, e.g., G, F , or H. We
denote by V(H) the set of vertices (i.e., variables) in a
graphH. A vertex-induced subgraph is denoted by brack-
ets, e.g., G[W], which includes W and the edges among
its elements. We define G \X as G[V(G) \X]. A root set
of a graph is a set of variables that does not have outgoing
edges. We use kinship notation for graphical relationships
such as parents, children, descendants, and ancestors of a
set of variables. For example, the set of parents of X in G
is denoted by pa(X)G :=

⋃
X∈X pa(X)G . Similarly, we

define ch, de, and an. Written as Pa, Ch, De, and An
(i.e., capitalized), the argument is included as well, e.g.,
De(X)G := de(X)G ∪X. We denote by π a topological
ordering of vertices in G, and V

(i−1)
π to be the set of ob-

servable variables preceding Vi in π. A path consisting of
only bidirected edges is called a bidirected path.

We use Structural Causal Models (SCMs) [Pearl, 2000]
as our basic semantical framework. An SCMM is a 4-
tuple 〈U,V,F, P (U)〉, where U is a set of exogenous
variables; V is a set of endogenous variables; F is a
set of functions {fV }V ∈V, which determines the value
of a variable, e.g., v ← fV (paV ,u

V ) is a function with
PAV ⊆ V\{V } and UV ⊆ U; and P (U) is a joint prob-
ability distribution over U. A SCMM induces a causal
graph G (also called a semi-Markovian graph) where V
is a set of vertices, directed edges are formed satisfying
PAV = pa(V )G , and each bidirected edge corresponds
to an unobserved confounder between two variables, that
is, Vi ↔ Vj if Ui ∩Uj 6= ∅. Interventions are defined
through an operator called do(X = x), which sets the
intervened variables X to specific values x ∈ XX. Given
a modelM, an intervention do(X = x) induces a sub-
modelMx, where fX of F is replaced by fX = x for
every X ∈ X where x is consistent with x. This sub-
modelMx induces a causal graph GX, which reads as G
with edges onto any of X removed.

We now revisit some key notions for deciding identifiabil-
ity developed in the context of non-experimental settings.
First, we define a special type of cluster of variables called
confounded components [Tian and Pearl, 2002].

Definition 1 (C-component). Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
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Figure 2: Given experiments available on {X1, X2}, both
causal distributions Px1

(y1) and Px2
(y2) are identifiable

in (a), but Px2
(y2) is not identifiable in (b) and (c). In all

cases, Px1
(y2) and Px2

(y1) are not identifiable.

ning tree over all vertices in G. Then G is a c-component.

Given a semi-Markovian graph G over a set of variables
V, there exists a unique partition such that each subgraph
is a maximal c-component. We denote by C(G) the set
of c-components that partitions the vertices in G, so that
C(G) = {Wi}ki=1 implies that G[Wi] is a c-component,
for each Wi ⊆ V, and there is no bidirected edge be-
tween Wi and Wj in G for i 6= j. Armed with this
definition, we build towards the hedge with the following
notion adapted from [Shpitser and Pearl, 2006].

Definition 2 (C-forest). A semi-Markovian graph G with
root set R is said to be an R-rooted c-forest if G is a
c-component with a minimal number of edges.

The minimality with respect to the number of edges guar-
antees that every vertex not in the root set of a c-forest has
one child and its bidirected edges form exactly a spanning
tree. We are now ready to define a hedge as follows.

Definition 3 (Hedge). A hedge is a pair of R-rooted c-
forests 〈F ,F ′〉 such that F ′ ⊆ F .

To realize the connection between definitions, note that
given disjoint sets X,Y ⊂ V, if R ⊆ An(Y)GX , F ∩
X 6= ∅, and F ′ ∩X = ∅, Def. 3 reduces to the original
definition. The existence of such structure precludes the
identifiability of Px(y) from P (V) [Shpitser and Pearl,
2006]. Moreover, as it will become evident throughout
this paper, tying a hedge to a particular effect constrains
its use in tasks other than classic identification. In the new
treatment pursued in this paper, we separate a hedge as a
graphical structure itself from its use as a witness of the
non-identifiability of a specific causal distribution. We say
that the new hedge structure 〈F ,F ′〉 is formed for Px(y)
in G (i.e., G has the hedge structure as a subgraph relative
to X and Y) whenever referring to the original semantics,
i.e., regarding the non-identifiability of Px(y).

Further, we’ll distinguish two parts of a hedge 〈F ,F ′〉:
the ‘top’ part, denoted by F ′′ = F \ V(F ′), and the
‘bottom’ part, which is F ′. When the top is empty (i.e.,
F = F ′), we will call this hedge degenerate.



3 G-IDENTIFIABILITY

We first introduce a new task that formalizes and gener-
alizes the identifiability and z-identifiability settings by
allowing a more flexible input consisting of any combina-
tion of observational and experimental distributions.

Definition 4 (g-Identifiability). Let X, Y be disjoint sets
of variables, Z = {Zi}mi=1 be a collection of sets of vari-
ables, and let G be a causal diagram. Px(y) is said to
be g-identifiable from Z in G, if Px(y) is uniquely com-
putable from distributions {P (V | do(z))}Z∈Z,z∈XZ

in
any causal model which induces G.

A traditional and pervasive assumption made throughout
the identification literature is that a probability distribu-
tion describing the natural state of the system is available,
that is, P (V). In the setting defined above, such distri-
bution is not a priori required unless the empty set is
explicitly included in Z. The following statement can be
shown based on the definition of g-identifiability:

Lemma 1. Let X, Y be disjoint sets of variables, Z =
{Zi}mi=1 be a collection of sets of variables, and let G be
a causal diagram. Px(y) is not g-identifiable from Z in G
if there exist two causal modelsM1 andM2 compatible
with G such that P 1

z (v) = P 2
z (v) for all Z ∈ Z, z ∈ XZ,

but P 1
x(y) 6= P 2

x(y).

Proof. The inequality eliminates the possibility of the
existence of a function from available experimental distri-
butions to Px(y) given G.

Even though this statement formally characterizes non-
g-identifiability of a certain data collection, it does not
provide any insight on how to determine if such pair of
models exists, or how to construct them when a given
instance is not g-identifiable. If not ambiguous, we omit
the prefix g- and use the term identifiability to convey its
non-technical generic meaning.

HEDGELETS AND THICKETS

When considering multiple experimental distributions as
inputs, a graphical structure that might be able to witness
the non-g-identifiability has to account for all available
experiments. To deal with the complexity added by a
broader input, we introduce hedgelets, a unique decompo-
sition of a hedge. Based on this decomposition, we will
demonstrate a new way of proving non-identifiability, in
the context of the more general task of g-identifiability.
We define how to obtain the set of hedgelets associated
with any given hedge 〈F ,F ′〉.
Definition 5 (hedgelet decomposition). The hedgelet
decomposition of a hedge 〈F ,F ′〉 is the collection of
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Figure 3: Hedgelet decomposition of hedges and a thicket
(color coded in blue and red with purple for shared ele-
ments). Each of (a) and (b) is a hedge formed for Pr(x) or
a thicket with respect to Z = {{X1}, {X2}} while (c) is
not a hedge but a thicket. The hedge 〈F ,F ′〉 in (d) is de-
composed into (e) F({T2, T3, T5, T6}) (f) F({T1, T4}).

hedgelets {F(W)}W∈C(F ′′) where each hedgelet F(W)
is a subgraph of F made of (i) F [V(F ′) ∪W] and (ii)
F [De(W)F ] without bidirected edges.

Analogous to a hedge, a hedgeletH has a top sectionH′′
and a bottom section H′. The UCs between the top and
bottom parts are called ‘crossing UCs’, and are denote by
U×H. And the variables transmitting their values through
the crossing directed edges, will be called ‘frontiers’ and
denoted by V↓H.

Let HF = {F(W)}W∈C(F ′′) be the set of hedgelets of
〈F ,F ′〉. For a degenerate hedge, HF contains a single
hedgelet F(∅) = F , which we call a degenerate hedgelet.
Given a non-degenerate hedge, for every hedgelet H in
it, there exists at least one directed edge, and exactly one
bidirected edge (i.e., a crossing UC) betweenH′ andH′′
by definition.2 We denote by U×H , the only crossing UC
of a non-degenerate hedgeletH, i.e., U×H = {U×H}.

For a simple example, see Fig. 3a, a hedge 〈F ,F ′〉 for
Px(r). This hedge can be decomposed into two hedgelets
F({X1}) in blue (i.e., G[{X1, R}]) and F({X2}) in red
(i.e., G[{X2, R}]). Fig. 3b is a hedge 〈F ,F ′〉 for Px(r),
which can be similarly decomposed into two hedgelets
F({X1}) and F({X2}). For another example, consider

2Since directed edges of F form a forest with all its roots
in F ′, there must exists a directed edge between them. If there
exists no bidirected edge (or more than one bidirected edge)
between them, it contradicts the fact that F is a c-component
(or F ′ is a c-component and F is a c-component with minimal
edges due to Defs 2 and 3).



a hedge 〈F ,F ′〉 in Fig. 3d. The top F ′′ = T decom-
poses into W1 = {T2, T3, T5, T6} and W2 = {T1, T4}.
For H1 = F(W1), shown in Fig. 3e, we first take
F [W1 ∪R], which is equivalent toH1 \ {T1, T4}. Then,
F [De(W1)F ] without bidirected edges is added, which is
responsible for T2 → T1 → R1, so that W1 ⊆ an(R)H1

.
The same procedure is applied to obtain H2 = F(W2),
shown in Fig. 3f. In this example, both hedgelets share
common frontiers (i.e., V↓H1

= V↓H2
= {T1, T6}).

Now, we will describe a graphical structure relative to the
available input distributions entailed by Z, that precludes
the g-identifiability of a causal effect Px(y) in G. That
is, whenever G contains such structure, Px(y) is not g-
identifiable from {Pz(V)}Z∈Z,z∈XZ

in G.

Definition 6 (Thicket). Let R be a non-empty set of
variables and Z be a collection of sets of variables in G.
A thicket J ⊆ G is an R-rooted c-component consisting
of a minimal c-component over R and hedges

FJ = {〈FZ,J [R]〉 | FZ ⊆ G \ Z,Z ∩R = ∅}Z∈Z.

Let X, Y be disjoint sets of variables in G. A thicket
J is said to be formed for Px(y) in G with respect to
Z if R ⊆ An(Y)GX and every hedgelet of each hedge
〈FZ,J [R]〉 intersects with X.

If Z∩R = ∅ for some Z ∈ Z, a thicket can be viewed as
a superimposition of hedges where each of them comes
from a subgraph of the thicket obtained by excluding an
available experiment that was not performed on any of R.
Otherwise if Z ∩R 6= ∅ for every Z ∈ Z, that is, every
experiment disrupts R, J will simply be a spanning tree
over R with bidirected arcs. Whenever this is the case, we
call this thicket degenerate, which consists of a degenerate
hedge with a single degenerate hedgelet.

To illustrate see Figs. 3a to 3c. Each causal diagram is a
thicket for Px(r) with respect to Z = {{X1}, {X2}}with
two hedges in red and blue where each hedge itself is a
hedgelet. Fig. 4 illustrates a more involved thicket, which
can be viewed as formed for some combination of the fol-
lowing queries and experimental specifications — Pb(r),
Pa,d(r), Pe,f,g(r), or Pc,f (r), and {{A,E}, {D,F,G}}
or {{A}, {D}}.

Thicket, hedge, and hedgelet form a hierarchical struc-
ture where the former can be decomposed into the latter.
These structures will be instrumental to our analysis of
g-identifiability in the next sections.

3.1 NON-IDENTIFIABILITY WITH HEDGELET
DECOMPOSITION

In this section, we focus on constructing two models
demonstrating non-identifiability of a query using a

thicketJ whose root set is denoted by R and top variables
by T (i.e., T = V(J ) \R). Moreover, we allow a query
Px(r) to have X = ∅, corresponding to an observational
quantity, which is trivially identifiable in previous identifi-
ability problems where an observational distribution P (v)
was always considered as one of available distributions,
but this is not obvious if only non-observational data is
available.

Let H =
⋃
〈F,F ′〉∈FJ

HF , that is, the aggregation of all
hedgelets induced by the hedges of J .3 Let H(V ) be the
subset of H where V ∈ V appears. For a set of variables
V′, let H(V′) =

⋃
V ∈V′ H(V ).

Non-identifiability of a Causal Effect for a Non-
degenerate Thicket We consider constructing two
modelsM1 andM2 agreeing in the available distribu-
tions but yielding a different result for the causal effect.
This section only considers non-degenerate thickets, and,
hence, non-degenerate hedgelets.

We denote by U′ and U′′ the UCs among J [R] and
J \R, respectively. Let U ∈ U′ be a binary variable with
XU = {0, 1}, and P (u′) = 2−|U

′|. Let every U ∈ U\U′
be a k-bit variable where k is the number of hedgelets
wherein U appears, and P (u) = 2−k. For both models,
every T ∈ T is a `-bit integer where ` = |H(T )|, so that
each bit is responsible for its corresponding hedgelet in
H(T ). We use ∧,

⊕
, and v to denote and, exclusive-or,

and bitwise-complement operation, respectively.

For each hedgeletH ∈ H(T ), define

tH ←
⊕

V ∈pa(T )H
vH ⊕

⊕
U∈UT

H
uH (1)

where UT
H is the set of UCs pointing towards T inH, and

vH (or uH) is the bit of v (or u) corresponding toH. Then
t is defined as an integer made of bits 〈tH〉H∈H(T ).4

Consider R ∈ R, then let U′R be the UCs connected to
R in J [R], and let UR be those connected to R in H.
Next, pick an arbitrary R∗ ∈ R and define a function for
R ∈ R in both models, except for R∗ inM2 as follows.5

r ←

 ∧
T∈pa(R)F

1t=0 ∧
∧

U∈UR\U′R

1ū=0

 ∧⊕
u′R. (2)

As for R = R∗ forM2 define:

r ←

 ∧
T∈pa(R)F

1t=0 ∧
∧

U∈UR\U′R

1ū=0

 ∧⊕
u′R, (3)

3There may be identical hedgelets coming from different
hedges.

4The order of the bits does not matter.
5The

∧
operator works as a universal quantifier and outputs

1 if its argument is empty, e.g., pa(R)F = ∅ or UR \U′R = ∅.
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Figure 4: (a) Thicket with two hedges in red and blue with the shared parts in purple, and (b, c, d), their three hedgelets.

where 1ū=0 is 1 if every bit of u is 1, and 0 otherwise.

Now, we characterize this parametrization with respect to
the distributions these two models generate.

Lemma 2. LetH be a hedgelet in H and U be U×H , then
the above parametrization satisfies

⊕
T∈V↓

H
tH = uH.

Proof. Let 〈F ,F ′〉 be the hedge associated withH, and
let W∈C(F ′′) such thatH=F(W).H′′ is a V↓H-rooted
forest where each T ∈ V↓H is a root of a tree in the forest.
By the parametrization, bits of W with respect toH carry
the bit-parity of preceding UCs inH. Due to the forestness
of the directed edges in H′′, taking the XOR of all V↓H
is equivalent to computing the XOR of all unobservable
parents of variables in W. Since each one of such UCs is
a parent of two variables in W, except for U×H , all but U×H
are counted twice. Due to the nature of XOR, repeated
values cancel out and all that is left is U×H .

Lemma 3. Let T′ ( T such that there exists a hedgelet
H ∈ H \ H(T′). Then, under the intervention do(t′),
there exists R ∈ R, for any instantiation of U, such that
r = 0 in both models.

Proof. Let W = V↓H and U = U×H be the frontiers and
the crossing UC of H, respectively. If uH = 0, then the
R ∈ R pointed by U in J , will be 0 since U ∈ UR\U′R.
Otherwise uH = 1, and by Lemma 2 we have

⊕
wH = 1.

Therefore, there must be at least one W where wH = 1.
As a consequence, wH = 0 ensures that r = 0 for R ∈ R
pointed by W .

Lemma 4. Both models agree on Pt′(v) if there exists a
hedgeletH ∈ H \H(T′).

Proof. Let us denote by superscript 1 and 2 for values
forM1 andM2. First, given u1 \U′ = u2 \U′, both
models yield the same outcome for T, i.e., t1 = t2. With
at least one hedgelet intact, there must exist R ∈ R whose
value must be 0 in both models regardless of the value
of U′ (Lemma 3). For readability, let us call such R as
‘blacked-out’ since its value is suppressed to 0 regardless
of U′R. Then, the value of each non-blacked-out R ∈ R
will be determined by U′R.

Now, we will prove that there exists an injective func-
tion from u′1 to u′2, which guarantees v1 = v2. Since
J [R] forms a spanning tree, there exists a bidirected path
(including zero (edge) length) between any two vertices
in R. Consider a bidirected path p from the smallest (as
defined by a topological ordering π) blacked-out vertex to
R∗.6 If u2 is equivalent to u1 with the UCs in p negated,
then, r1 = r2 since (see Fig. 5 for an example) 1. Each
non-end vertex in the path is connected to exactly two
negated UCs ensuring the bit-parity of the vertex is not
changed; and 2. The value of U at the end (other than
R∗) does not affect the value of the blacked-out node.
Given the fact that P (u′) is a uniform distribution for
both models, they agree on Pt′(v).

The proof for Lemma 4 can be directly applied to a more
general case.

Corollary 1. Both models agree on Pv′(v) for V′ ( V
if there exists a hedgeletH ∈ H \H(V′ ∩T).

Proof. A bidirected path to negate U′ can be found be-
tween R∗ to either a blacked-out vertex or an intervened
variable in R.

The agreement of the two models on the available distri-
butions is the first piece to prove non-identifiability of the
causal effect. Now, we examine conditions under which
the two constructed models disagree on a causal effect.

Lemma 5. For a nonempty set T′ ⊆ T such that H =
H(T′), the two models disagree on Pt′=0(r = 0).

Proof. By the condition, every hedgelet is intervened. We
first show that there exists a non-zero probability for every
R ∈ R being not blacked-out. In words, there exists an
instantiation of u such that the term in parentheses of
Eq. (2) is 1, ∀R ∈ R. Let u× = 〈uH | U = U×H〉H∈H,
that is, the concatenation of all bits from the crossing UCs
of the hedgelets in H. Let u× = 1 (i.e., every bit is 1) and
u′′ = 0. Let W be the frontiers of the hedge.

6The only required condition is to be consistent about the
choice of a path given a set of blacked-out nodes.



If w = 0, then, together with u× = 1 and u′′ = 0,
all switches will be turned on. Otherwise, there exists
W ∈W such that w 6= 0. In other words, there exists a
hedgeletH such that wH = 1. Since u′′ = 0 and t′ = 0,
the value wH being 1 is due to u×H = 1. Let S be the vari-
able inH′′ pointed with the bidirected edge corresponding
to U×H , the only element in U×H. Find a bidirected path in
H from S to An(T′ ∩ H)H (those variables that, under
the intervention T′, cannot influence frontiers ofH when
UCs connecting to them are changed). It must exist other-
wise it conflicts the definition of hedgelet, which consists
of a c-component and its descendants. Negating the UCs
in the path only affectsH-specific bits of variables, and
yields wH = 0. Since UCs on the top are partitioned by
hedgelets, we can independently apply the above proce-
dure for every W ∈W such that w 6= 0 so as to obtain
u′′ that leads to P (w = 0,u× = 1) > 0 for both models.

In such an event where there is no blacked-out node,M1

andM2 yield r1 and r2 such that
⊕

r1 = 0 and
⊕

r2 =
1. Combined with the fact that two models yield the same
probability distributions when there exists a blacked-out
node (partly from Lemma 4), two models disagree on
Pt′(r) resulting P 1

t′=0(r = 0) > P 2
t′=0(r = 0).

For example, consider Fig. 3d, which is also a thicket.
Among T, a pair of variables T1 and T6 are shared across
hedgelets, while T \ {T1, T6} appear in only one of
them. This implies that under the proposed parametriza-
tion, the two constructed models agree on, for example,
Pt2(v), Pt3,t5(v), Pt2,t3,r2(v), or Pt4(v). However, they
will disagree on, distributions such as Pt1(v), Pt6(v), or
Pt2,t4(v). More formally, they agree on Pv′(v) where7

V′ ∈ 2{T2,T3,T5}∪R ∪ 2{T4}∪R and they disagree on
Pt′(r) for T′ ⊂ 2T, except for the aforementioned sets.

Non-identifiability of an Observational Probability
for a Degenerate Thicket In g-identifiability, we also
seek whether an observational probability, which was triv-
ially identifiable in previous literature, can be uniquely
determined by available experimental data. In this section,
our focus is a degenerate thicket J , which itself is a de-
generate hedgeletH, that is, J = J [R] = H. Consider
identifying P (r) given such J .

We construct two models where P (r) is not identifiable
given experiments on every non-empty subset of J . As in
the previous section, R∗ is an arbitrary variable in R. For
R ∈ R forM1 andM2, except R∗ inM2, r ←

⊕
u′R.

For R = R∗ inM2, r ←
⊕

u′R. You may notice that
this is exactly the same as Eqs. (2) and (3) in the previous
section with the terms in parentheses explicitly removed

72X represents a power set of X, i.e., all subsets of X in-
cluding an empty set.

R∗ u1

u2

u3

u4

u5

(a) u′1 = {u1, u2, u3, u4, u5} forM1

R∗ u1

u2

u3

u4

u5

(b) u′2 = {u1, u2, u3, u4, u5} forM2

Figure 5: The bottom of a thicket is shown for two models
where ‘blacked-out’ vertices are colored in gray. Instances
u′1 and u′2 yield the same r given u1 \U′ = u2 \U′.

— there is no input from the top.

Lemma 6. Two models agree on Pr′(r) for ∅ 6= R′ ⊆ R.

Proof. As in Lemma 4, we will show the existence of an
injective function between u1 and u2 (note that U = U′

for a degenerate thicket). Find a bidirected path from one
end at R∗ and the other end at the smallest intervened
variable. By using different values for the UCs in the path
for u1 and u2, they will agree on Pr′(r).

Lemma 7. Two models disagree on P (r).

Proof.
⊕

r1 = 0 while
⊕

r2 = 1 under observation.

We investigated the non-identifiability of an arbitrary
query Px(r) given arbitrary experiments Z in an arbi-
trary thicket structure J rooted on R, based on its unique
hedgelet decomposition and the relationships among the
hedgelets, query, and available experiments with a novel
parametrization. Next section extends this result to a gen-
eral characterization of non-g-identifiability.

3.2 A GRAPHICAL CONDITION FOR
NON-G-IDENTIFIABILITY

The following result ties the presence of a thicket to the
non-g-identifiability of a causal effect.

Theorem 1. If there exists a thicket J for Px(y) in G
with respect to Z, then, Px(y) is not g-identifiable in G.

Proof. Let R be the root set of J . We construct two
models for J demonstrating non-g-identifiability.

(Case: non-degenerateJ ) Let X′ = X∩J . Each hedgelet
in J intersects with X ensuring that every hedgelet
is intervened on, given do(x). Hence, Px′(r) is not g-
identifiable following Corollary 1 and Lemma 5. We can
map to Px′(y′) where Y′ ⊆ Y∩De(R)GX (see Lemma 9
in Appendix A.2).



(Case: degenerate J ) By the definition, X∩J = ∅, P (r)
is not g-identifiable following Lemmas 6 and 7. In the
same way as the above, we map the result to P (y′).

Armed with a characterization of when the identification
of a causal effect is not possible from the given input, in
the next section, we provide a procedure that yields an
expression for the target effect in terms of the input in all
cases where there exists such mapping.

4 A COMPLETE ALGORITHM FOR
G-IDENTIFIABILITY

Building on the graphical characterization of non-gID, in
this section, we develop an algorithm for g-identifiability
called GID (Alg. 1). For a given causal query, GID deter-
mines whether it’s g-identifiable, and if so, it outputs a
formula expressing the target effect in terms of the avail-
able distributions. The design of GID shares the same
principles established by previous identifiability algo-
rithms (e.g., IDENTIFY [Tian, 2002], ID [Shpitser and
Pearl, 2006], ZID [Bareinboim and Pearl, 2012]). Still, in
our case, the identification process is decomposed into
two parts: pre- and post-activation of an available distri-
bution, where SUB-ID takes care of a (classic) identifica-
tion task for each factored query with a fixed distribution
treated as observational, relative to the call-specific graph.

The algorithm takes a query Px(y), the causal graph G,
and available experiments Z as inputs. During the process,
the query and the causal graph may be transformed when
necessary, and broken down into smaller sub-problems.
Accordingly, the parameters y, x, and G are local to each
call, while Z is preserved throughout recursive calls.

The given G is modified only through Line 3, since ex-
periments on variables that are not ancestors of Y have
no effect on it, we only need to pay attention to experi-
ments on ancestors of Y. Line 2 utilizes any matching
experiment whenever possible. As mentioned above, Z
outside the current scope can be of any value. Lines 4 and
6 modify and factorize the given query, respectively. At
Line 7, given a factorized query, the algorithm examines
whether an available distribution might be useful to esti-
mate it, and delegates the identification to a subroutine,
SUB-ID, which works as ID except that it uses one of the
available distributions not necessarily P (v).

The algorithm runs in O(mn4) where m = |Z| and n =
|V|. GID can be called subsequently O(n) times due to the
factorization at Line 6 where each GID may call SUB-ID
up to m times, thus, totaling O(nm) SUB-ID invocations,
which may trigger, recursively, n times. Given that set or
graphical operations take O(n2), it runs in O(mn4).

As for a running example, we revisit Fig. 1a where the
query is Px(y) and Z = {{X1}, {X2}}. All variables
are ancestors of Y , and no variable needs to be added
as an intervention (Lines 3 and 4). Since W and Y are
not confounded in G \ X, the query is factorized into
Px,w(y) and Px,y(w) (Line 6). The first query Px,w(y)
will pass through all conditions and SUB-ID will be called
for experiments on both {X1} and {X2}. Focusing on
the latter, with Q = Px2

in G \ {X2}, Qx1,w(y) will
be identified as Q(y|x1, w) = Px2

(y|x1, w), which can
be simplified into Px2

(y|w). GID will try both experi-
ments for the second query Px,y(w). With experiment
on {X1}, Q = Px1 , Px,y(w) = Qx2,y(w) will be re-
fined to Q(w) (Line 12), and will be trivially identified as
Q(w) = Px1

(w) (Line 11). Therefore, the final formula
becomes Px(y) =

∑
w Px2

(y|w)Px1
(w).

Lemma 8. Whenever SUB-ID returns an expression for
Qx(y), it is correct.

Proof. SUB-ID performs classic identifiability of Qx(y)
with Q. The SUB-ID is an excerpt of ID algorithm where
unnecessary statements (related to Lines 4 and 6) are
removed because its parameters y, x, and G throughout
its procedure satisfy i) (V \X) \An(Y)GX = ∅, and ii)
G \X forms a c-component.

Theorem 2 (Soundness). Whenever GID returns an ex-
pression for Px(y), it is correct.

Proof. Let x and y be local to the arguments of GID. GID
correctly transforms the given query Px(y) together with
G, which is proved by [Shpitser and Pearl, 2006, Lemma
4–6]. The difference of GID compared to ID is i) returning
an expression at Line 2, and ii) delegating identification
with an available experiment at Line 7.

(i) Each experiment Z ∈ Z outside the scope of An(Y)G
can be ignored by Rule 3 of do-calculus (Line 3). Then,
X = Z ∩ V implies that Px(y) = Px,z\V(y) =
Pz∩V,z\V(y) = Pz(y) with z consistent with x.

(ii) First, the use of Pz is valid when Z ∩V ⊆ X since
Px(y) = Pz,x\Z(y) where z is consistent with x. Then,
this is identifying Qx\Z(y) with Q = Pz, which is a
classic identifiability instance assignable to SUB-ID.

Combined with Lemma 8, GID is sound.

Theorem 3 (Completeness). GID is complete.

Proof. We show that there exists a thicket for Px(y) in
G with respect to Z whenever GID fails (Line 8). Let the
arguments of GID be y′, x′, G′, and Z when it failed.

We first consider a case where Z∩V′ 6⊆ X′ for every Z ∈
Z. We construct a degenerate thicket J as an R-rooted



Algorithm 1 GID: a complete identification algorithm for g-identifiability
1: function GID(y,x,G,Z)

Input: y, x: value assignments, G: causal diagram, Z: a collection of available experiments
Output: an estimand computing Px(y) with {Pz}Z∈Z,z∈XZ .

2: if ∃Z∈ZX = Z ∩V then return Pz\V,x(y)

3: if V 6= An(Y)G then return GID(y,x ∩An(Y)G ,G[An(Y)G ],Z)
4: if (W← (V \X) \An(Y)G

X
) 6= ∅ then return GID(y,x ∪w,G,Z)

5: S← C(G \X)
6: if |S| > 1 then return

∑
v\(y∪x)

∏
S∈S GID(s,v \ s,G,Z)

7: for Z ∈ Z such that Z ∩V ⊆ X do return SUB-ID(y,x \ Z, P(z\V),x∩Z,G \ (Z ∩X)) if not NONE
8: throw FAIL

9: function SUB-ID(y, x, Q, G)
10: {S} ← C(G \X)
11: if X = ∅ then return

∑
v\y Q(v)

12: if V 6= An(Y)G then return SUB-ID(y,x ∩An(Y)G ,
∑

v\An(Y)G
Q,G[An(Y)G ])

13: if C(G) = V then return NONE
14: if S ∈ C(G) then return

∑
s\y

∏
Vi∈Y Q(vi|v(i−1)

π ).

15: if S ( S′ ∈ C(G) then, return SUB-ID(y,x ∩ S′,
∏
Vi∈S′ Q(Vi|V(i−1)

π ∩ S′,v
(i−1)
π \ S′),S′)

minimal c-component in G′[R] where R = V′ \X′. J
is a valid thicket for Px(y) in G given Z because: (i)
R ⊆ An(Y)GX (Lines 3–6); (ii) G′[R] is a c-component
(Lines 5, 6); and Z ∩R 6= ∅ for every Z ∈ Z.

We now construct a non-degenerate thicket with hedges
associated with the failed queries via SUB-ID. Consider a
hedge for Px′\Z(y

′) in G′ \ Z for some Z ∈ Z such that
Z ∩ V′ ⊆ X′. Replacing its bottom with R forming a
minimal c-component, which is the same as the degener-
ate thicket above, results in a valid hedge for Px′\Z(y

′)
in G′ \Z since R = An(Y′)G′

X′
. Hence, a thicket formed

by the union of the modified hedges will satisfy the char-
acteristics of its root set as described in Def. 6.

We then show that each hedgelet of the hedges composing
the thicket intersects with X. We start by decomposing
X′ into three parts: X′1 = X′ ∩X; X′2 = X′ ∩W; and
X′3 = X′\(X∪W) where W is the set of variables which
was combined with X at Line 4, which occurs at most
once. Then, there exists no directed edge from X′1 to X′3
(Line 4), and no bidirected edge between X′3 and R.8 For
the sake of contradiction assume that X′1 = ∅. The cross
UC of the hedgelet should point towards X′2, which can
only be connected to R via directed paths only through
X′1 (Line 3). This contradicts the definition of hedgelet,
which must be a forest. Consequently, the superimposition
of the modified hedges is a thicket formed for Px(y).

Whenever GID fails, there exists a thicket for Px(y) with
respect to Z. Hence, the result follows from Thm. 1.

8Consider the first encounter with Line 5. If |S|=1, then
X′3=∅. Otherwise if |S|>1, X′3 corresponds to those variables
in “G \X” (that is, G[An(Y)G ] \ ((X∩An(Y)G)∪W) after
Lines 3 and 4) but not connected to Y′=R via bidirected edges.

Corollary 2 (Do-calculus Completeness). The rules of
do-calculus together with standard probability manipula-
tions are complete for determining g-identifiability of all
causal effects of the form Px(y).

Proof. GID and SUB-ID reuse steps employed in ID ex-
cept for Lines 2 and 7, which correspond to the Rule 3 of
do-calculus. Since all steps in ID can be mapped to appli-
cations of do-calculus and probability axioms ([Shpitser
and Pearl, 2006, Thm. 7]), the result follows.

5 CONCLUSIONS

We studied the identification of causal effects from ar-
bitrary combinations of observational and experimental
distributions, which generalizes two canonical settings in
which no interventions [Pearl, 1995] and all interventions
over a set of variables [Bareinboim and Pearl, 2012] are
available. This problem has been called g-identifiability,
or gID for short. We developed a general algorithm for
solving gID and proved its completeness. We introduced
new machinery to better understand and more precisely
characterize non-trivial forbidden structures that preclude
gID, which can be seen as instances of hedgelets and thick-
ets. Finally, as a corollary of these results, we proved that
do-calculus is complete for the task of g-identifiability.
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A Appendix

A.1 DERIVATION

We derive an expression for Fig. 1a as follows

Px1,x2
(y) =

∑
w

Px1,x2
(y, w)

=
∑
w

Pw,x1,x2
(y)Py,x1,x2

(w)

=
∑
w

Px2,w,x1(y)Px1(w)

=
∑
w

Px2,w(y)Px1
(w)

=
∑
w

Px2
(y|w)Px1

(w)

The query Px1,x2
(y) is rewritten as

∑
w Px1,x2

(w, y)
and factorized

∑
w Pw,x1,x2(y)Py,x1,x2(w) based on c-

component form. For the first term, by Rule 3 and 2 of
do-calculus, Px2,w,x1

(y) = Px2,w(y) = Px2
(y|w). For

the second term, Py,x1,x2
(w) = Px1

(w) by Rule 3 of
do-calculus. Hence, Px1,x2

(y) =
∑

w Px2
(y|w)Px1

(w).

For Fig. 2a, it only requires a single application of Rule 3
of do-calculus. Simply put, intervened variables outside
the ancestors of an outcome variable have no effect on
the outcome variable. Hence, Px1,x2

(y1) = Px1
(y1) and

Px1,x2(y2) = Px2(y2).

A.2 NON-IDENTIFIABILITY MAPPING

Lemma 9. Let X, Y be disjoint sets of variables in G. Let
J be a nonempty subgraph of G with root set R, where
R ⊆ An(Y)GX . LetM1 andM2, which are compatible
with J , satisfy∑

r|
⊕

r=1

P 1
x∩J (r) 6=

∑
r|
⊕

r=1

P 2
x∩J (r)

for some x where all variables in R are binary. Then,
there are two models M′1 and M′2 compatible with G
such that P ′1x (y) 6= P ′2x (y) for some y.

Proof. Similar results appear in identifiability literature,
e.g., [Shpitser and Pearl, 2006, Thm. 4]. We first employ
their strategies in the proof, and discuss about some theo-
retical oversight. By the condition An(Y)GX , there exist
directed downward paths from R to Y where no X ap-
pear in-between and each node has at most one child. That
is, one can parametrize each node (which is binary) in the
paths as an exclusive-or of its observable parents. Then,
the discrepancy in bit-parity for R inM1 andM2 will
also be happened at Y inM′1 andM′2 under do(x) (n.b.
values of x outside J are irrelevant to Y).

A X

D

C Y

B

Figure 6: A causal graph G with a hedge 〈F ,F ′〉 for
Px(y) where F = G \ {B} with F ′ shown in red and
variables in F ′′ shown in green. Bit-parity of D and Y
should be mapped to Y through B and C where C is in
the top of the hedge.

A possible oversight is that the downward paths might
cross J without passing X (see Fig. 6 for an example).
The remedy is simple. For nodes appearing in the directed
downward paths from R to Y, we can assign an additional
bit to pass bit parity information from R to Y. Further,
given a probability distribution Pw(z) on whichM1 and
M2 agree (W,Z ⊆ V(J )),M′1 andM′2 will also agree
on Pw∪b(z) for any b ∈ XB where B ⊆ V(G) \V(J )
for two reasons: Variables outside the paths from R to
Y and J are ignored. Both modelsM′1 andM′2 behave
exactly the same for nodes between R to Y.
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