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Abstract
Causal effect identification is the task of determin-
ing whether a causal distribution is computable
from the combination of an observational distribu-
tion and substantive knowledge about the domain
under investigation. One of the most studied ver-
sions of this problem assumes that knowledge is
articulated in the form of a fully known causal
diagram, which is arguably a strong assumption
in many settings. In this paper, we relax this
requirement and consider that the knowledge is
articulated in the form of an equivalence class of
causal diagrams, in particular, a partial ancestral
graph (PAG). This is attractive because a PAG can
be learned directly from data, and the scientist
does not need to commit to a particular, unique
diagram. There are different sufficient conditions
for identification in PAGs, but none is complete.
We derive a complete algorithm for identifica-
tion given a PAG. This implies that whenever the
causal effect is identifiable, the algorithm returns
a valid identification expression; alternatively, it
will throw a failure condition, which means that
the effect is provably not identifiable. We fur-
ther provide a graphical characterization of non-
identifiability of causal effects in PAGs.

1. Introduction
One cognitive feature that arguably distinguishes humans
from other species is our ability to learn, process, and use
causal information. Pearl recently highlighted this point
eloquently: “Some tens of thousands of years ago, humans
began to realize that certain things cause other things and
that tinkering with the former can change the latter. . . From
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this discovery came organized societies, then towns and
cities, and eventually the science and technology-based civ-
ilization we enjoy today. All because we asked a simple
question: Why?” (Pearl & Mackenzie, 2018).

At the center of causal reasoning lies the idea of “tinker-
ing” – what would happen if reality were different – which
is formally materialized through cause and effect relations.
Fisher proposed a procedure to physically manipulate reality
such that an outcome variable can be evaluated under dif-
ferent conditions, which was called randomized controlled
experiments (Fisher, 1951). This method is indeed one of
the most pervasive techniques used throughout the sciences,
and it is often deemed the gold standard for causal inference.
For instance, the process of drug’s approval by the FDA is
conducted following Fisher’s method – one can discover, for
example, the effect of a drug (X) on survival (Y ), which is
written in causal language as the experimental distribution
P (y | do(x)), or Px(y) for short.

Causal Identification. The infeasibility of always physi-
cally manipulating reality to see “what would happen” leads
to one of the central challenges in causal inference, which
is known as the problem of identification of causal effects
(Pearl, 2000; Spirtes et al., 2001; Bareinboim & Pearl, 2016).
It’s well understood that no causal claim about Px(y) can
be made directly from the observational distribution P (V),
where V is the set of measured (observed) variables (Pearl,
2000, Ch. 3). The idea is then to combine a coarse descrip-
tion of the underlying system, usually specified as a causal
diagram (D), with the observational data (P (V)) in order
to infer the causal distribution Px(y).

A sample causal diagram is shown in Fig. 1a, where the
nodes represent random variables, directed edges represent
direct causal relations from tails to heads, and bi-directed
arcs represent the presence of unobserved (latent) variables
that generate spurious associations between the observed
variables, also known as confounding bias (Pearl, 1993).
One may seek to identify the effect of forcing variable X
to take the value x, i.e., do(X=x), on V4=v4, i.e., Px(v4),
given the causal diagram in Fig. 1a and data from the ob-
servational distribution P (X,V1, . . . , V4). In summary, the
causal identifiability problem asks whether the combination
of D and P (V) allows the identification of Px(y); as in any
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decision problem, the answer is sometimes negative, which
happens whenever the causal diagram does not warrant a
transformation of Px(y) into a functional of P (V).

Identification has been extensively studied in the literature,
and a number of criteria have been established (Pearl, 1993;
Galles & Pearl, 1995; Kuroki & Miyakawa, 1999; Tian
& Pearl, 2002; Huang & Valtorta, 2006; Shpitser & Pearl,
2006; Bareinboim & Pearl, 2012), including the celebrated
back-door criterion and the do-calculus (Pearl, 1995). De-
spite their power, these techniques require a single, fully
specified causal diagram, which is not always available in
practical settings. A sensible concern, therefore, is that forc-
ing a single diagram may lead to false modeling assumptions
and, consequently, misleading inferences.

Markov Equivalence. Another line of investigation fo-
cuses precisely on trying to learn a qualitative description of
the system, which in the ideal case could lead to the “true”
causal diagram – the blueprint underlying the phenomenon
being investigated. These efforts are usually deemed more
“data-driven”, and more aligned with the zeitgeist in ma-
chine learning. In practice, however, it is common that only
a Markov equivalence class including a collection of causal
diagrams can be consistently inferred from observational
data (Verma, 1993; Spirtes et al., 2001; Zhang, 2008b). A
distinguished characterization of the Markov equivalence
class uses partial ancestral graphs (PAGs). Fig. 1b shows
the PAG learnable from observational data that is consistent
with the true causal diagram (Fig. 1a). The directed edges in
a PAG represent ancestral relations (not necessarily direct)
and the circle marks stand for structural uncertainty.

Identification under Markov Equivalence. In this work,
we analyze the marriage of these two lines of investigation,
where the structural invariances in a Markov equivalence
class (learnable from observational data) will be used to
identify causal effects, whenever possible. However, iden-
tification from an equivalence class is considerably more
challenging than from a single diagram due to the structural
uncertainties. Given that fully specifying a causal diagram
is usually infeasible, there is a growing interest in identifi-
ability results under Markov Equivalence (Maathuis et al.,
2010). For instance, Zhang (2007) extended the do-calculus
to PAGs. In practice, however, it is computationally hard to
decide whether there exists (and, if so, to find) a sequence of
applications of the rules of the generalized calculus to iden-
tify the interventional distribution. Perković et al. (2015)
generalized the back-door criterion to PAGs, and provided
a sound and complete algorithm to find a back-door admis-
sible set, should such a set exist. However, the back-door
criterion is not as powerful as the do-calculus since no ad-
justment set exists for many identifiable causal effects. More
recent work generalized the c-component approach (Tian &
Pearl, 2002) to PAGs and devised an algorithm for identi-
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Figure 1: Causal diagram (left) and the inferred PAG (right).

fication under Markov equivalence (Jaber et al., 2018b;a).
The algorithm was shown to be strictly more powerful than
the generalized back-door criterion, but it is not complete,
as we show later.1

Our strategy here is to combine the state-of-the-art graphical
condition introduced in (Jaber et al., 2018a) with the classic
c-component decomposition developed in (Tian, 2002) to
obtain a PAG-specific decomposition, and use it to design a
complete algorithm for identification in PAGs. It is worth
noting that completeness is one of the most important guar-
antees a theory can offer – it provides a precise boundary
between what is identifiable and what is not in the given
setting. Specifically, our main contributions are as follows:

1. We introduce a novel graph-decomposition strategy
that breaks the targeted causal distribution into an
equivalent product of more amenable distributions.

2. We develop an algorithm to compute the effect of an ar-
bitrary set of intervention variables on an arbitrary out-
come set from a PAG and an observational distribution.
We show that this algorithm is sound and complete.

3. We characterize non-identifiability in a PAG based on
some forbidden graphical structures, which means that
whenever such a structure can be found as a subgraph
of the PAG, identification is provably impossible.

2. Preliminaries
In this section, we introduce the basic notation and machin-
ery used throughout the paper. Bold capital letters denote
sets of variables, while bold lowercase letters stand for par-
ticular assignments to those variables.

Structural Causal Models. We use the language of Struc-
tural Causal Models (SCMs) (Pearl, 2000, pp. 204-207) as
our basic semantical framework. Formally, an SCM M is
a 4-tuple 〈U,V,F, P (U)〉, where U is a set of exogenous
(latent) variables and V is a set of endogenous (measured)
variables. F represents a collection of functions F = {fi}
such that each endogenous variable Vi ∈ V is determined
by a function fi ∈ F, where fi is a mapping from the re-

1Another approach is based on SAT (Boolean constraint satis-
faction) solvers (Hyttinen et al., 2015). Given its somewhat distinct
nature, a closer comparison lies outside the scope of this paper.
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spective domain of Ui∪Pai to Vi, Ui ⊆ U, Pai ⊆ V\Vi.
The uncertainty is encoded through a probability distribu-
tion over the exogenous variables, P (U), and the marginal
distribution induced over the endogenous variables P (V)
is called observational. Every SCM is associated with one
causal diagram where every variable Vi ∈ V is a node, and
there exists a directed edge from every node in Pai to Vi.
Also, for every pair Vi, Vj ∈ V such that Ui ∩ Uj 6= ∅,
there exists a bi-directed edge between Vi and Vj . We re-
strict our study to recursive systems, which means that the
corresponding diagram will be acyclic.

Within the structural semantics, performing an action X=x
is represented through the do-operator, do(X =x), which
encodes the operation of replacing the original equation
for X by the constant x and induces a submodel Mx. The
resulting distribution is denoted by Px, which is the main
target for identification in this paper. For details on structural
models, we refer readers to (Pearl, 2000).

Ancestral Graphs. We now introduce a graphical rep-
resentation of equivalence classes of causal diagrams. A
mixed graph can contain directed and bi-directed edges. A
is an ancestor of B if they share a directed path out of A. A
is a spouse of B if A ↔ B is present. An almost directed
cycle happens when A is both a spouse and an ancestor of
B. An inducing path is a path on which every node (except
for the endpoints) is a collider on the path (i.e., both edges
incident to X are into X) and every collider is an ancestor
of an endpoint of the path. A mixed graph is ancestral if
it doesn’t contain a directed or almost directed cycle. It is
maximal if there is no inducing path (relative to the empty
set) between any two non-adjacent nodes. A Maximal An-
cestral Graph (MAG) is a graph that is both ancestral and
maximal (Richardson & Spirtes, 2002).

In general, a causal MAG represents a set of causal diagrams
with the same set of observed variables that entail the same
independence and ancestral relations among the observed
variables. Different MAGs may be Markov equivalent in
that they entail the exact same independence model. A
partial ancestral graph (PAG) represents an equivalence class
of MAGs [M], which shares the same adjacencies as every
MAG in [M] and displays all and only the invariant edge
marks (i.e., edge marks that are shared by all members of
[M]). A circle indicates a edge mark that is not invariant.

A PAG is learnable from the conditional independence and
dependence relations among the observed variables, and
the FCI algorithm is a standard method to learn such an
object (Zhang, 2008b). In short, a PAG represents a Markov
equivalence class of causal diagrams with the same observed
variables and independence model.

Graphical Notions. Given a causal diagram, MAG,
or PAG, a path between X and Y is potentially directed

(causal) from X to Y if there is no arrowhead on the path
pointing towards X . Y is called a possible descendant of X
and X a possible ancestor of Y , i.e., X ∈ An(Y ), if there
is a potentially directed path from X to Y . By stipulation,
X ∈ An(X). A set A is (descendant) ancestral if no node
outside A is a possible (descendant) ancestor of any node in
A. Y is called a possible child of X , i.e., Y ∈ Ch(X), and
X a possible parent of Y , i.e., X ∈ Pa(Y ), if they are adja-
cent and the edge is not into X . For a set of nodes X, we
have Pa(X) = ∪X∈XPa(X) and Ch(X) = ∪X∈XCh(X).
Given two sets of nodes X and Y, a path between them is
called proper if one of the endpoints is in X and the other is
in Y, and no other node on the path is in X or Y. For con-
venience, we use an asterisk (*) as a wildcard to denote any
possible mark of a PAG (◦, >,−) or a MAG (>,−). If the
edge marks on a path between X and Y are all circles, we
call the path a circle path. We refer to the closure of nodes
connected with circle paths as a bucket. Obviously, given a
PAG, nodes are partitioned into a unique set of buckets.

A directed edge X → Y in a MAG or PAG is visible if there
exists no causal diagram in the corresponding equivalence
class where there is an inducing path between X and Y that
is into X . This implies that a visible edge is not confounded
(X ←−→ Y doesn’t exist). Which edges are visible is
easily decidable by a graphical condition (Zhang, 2008a),
so we simply mark visible edges by v. For brevity, we refer
to any edge that is not a visible directed edge as invisible.

Identification in Causal Diagrams. Pearl (2000, pp. 70)
formalizes the notion of uniquely computing an effect from
data as follows.

Definition 1. The causal effect of X on a disjoint set Y is
said to be identifiable from a causal diagramD if Px(y) can
be computed uniquely from any positive probability of the
observed variables P (V) – that is, if PM1

x (y) = PM2
x (y)

for every pair of models M1 and M2 with PM1(V) =
PM2(V) > 0 and D(M1) = D(M2) = D.

Tian & Pearl (2002) presented an identification algorithm
based on a decomposition of the causal diagram into a set
of so-called c-components (confounded components).

Definition 2 (C-Component). In a causal diagram, two
observed variables are said to be in the same c-component
if and only if they are connected by a bi-directed path, i.e. a
path composed solely of bi-directed edges.

For any set C ⊆ V, the quantity Q[C] is defined to denote
the post-intervention distribution of C under an intervention
on V \C, i.e. Pv\c(c).

The significance of c-components and their decomposition
is evident from (Tian, 2002, Lemmas 10, 11), which are the
basis of the complete algorithm relative to Definition 1.

Identification in PAGs. The following definition formal-
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izes the notion of identification given a PAG, which general-
izes the diagram-specific notion in Definition 1.
Definition 3. Given a PAG P over V and a query Px(y)
where X,Y ⊂ V, Px(y) is identifiable given P if and
only if Px(y) is identifiable given every causal diagram D
(represented by a MAG) in the Markov equivalence class
represented by P , and with the same expression.

Jaber et al. (2018a) introduced the notion of pc-component
in MAGs and PAGs (and induced subgraphs thereof). This
graphical construction is a necessary condition for two
nodes to be in the same c-component in some causal di-
agram or an induced subgraph thereof. This observation is
formalized in the proposition below.
Definition 4 (PC-Component). In a MAG, a PAG, or any
induced subgraph thereof, two nodes are in the same possi-
ble c-component (pc-component) if there is a path between
them such that (1) all non-endpoint nodes along the path
are colliders, and (2) none of the edges is visible.
Proposition 1. Let P be a PAG over V, and D be any
diagram in the equivalence class represented by P . For any
X,Y ∈ A ⊆ V, if X and Y are in the same c-component
in DA, then X and Y are in the same pc-component in PA.

As a special case of Def. 4, we have the following notion,
which will prove useful later on. Unlike pc-component, the
relation of being in the same dc-component is transitive.
Definition 5 (DC-Component). In a MAG, a PAG, or any
induced subgraph thereof, two nodes are in the same definite
c-component (dc-component) if they are connected with a
bi-directed path, i.e. a path of bi-directed edges.

Jaber et al. (2018a) developed an identification criterion for
PAGs where the intervention is on a bucket and the input
distribution is possibly interventional. We introduce this
result below as it will be used in our algorithm. The derived
expression depends on a partial topological order (PTO)
which is, in short, a topological order over the buckets. A
detailed discussion can be found in (Jaber et al., 2018b).
Proposition 2. Let P denote a PAG over V, T be the union
of a subset of the buckets in P , and X ⊂ T be a bucket.
Given Pv\t (i.e., Q[T]), and a partial topological order
B1 < · · · < Bm with respect toPT, Q[T\X] is identifiable
if and only if, in PT, there does not exist Z ∈ X such that
Z has a possible child C /∈ X that is in the pc-component
of Z. If identifiable, then the expression is given by

Q[T \X] =
Pv\t∏

{i|Bi⊆SX} Pv\t(Bi|B(i−1))
× (1)∑

x

∏
{i|Bi⊆SX}

Pv\t(Bi|B(i−1)),

where SX =
⋃

Z∈X SZ , SZ being the dc-component of
Z in PT, and B(i−1) denoting the set of nodes preceding
bucket Bi in the partial order.

3. Query Decomposition
Given a causal diagram D, one of the cornerstone results
in (Tian, 2002) is Lemma 11, which allows one to decom-
pose a query distribution Q[H] into a product of sub-queries
over the c-components in DH. Hence, we get the following
decomposition, where Hi is a c-component in DH:

Q[H] =
∏
i

Q[Hi] (2)

For example, query Q[{Y1, Y2, Y3, Y4, Y5}], denoted Q[Y],
given the causal diagram in Fig. 2b can be decomposed as
follows:

Q[Y] = Q[{Y2, Y3}] . Q[{Y4, Y5}] . Q[{Y1}] (3)

We note that the decomposition relies heavily on the precise
delimitation of the c-components, where each query is asso-
ciated, respectively, with H1 = {Y2, Y3}, H2 = {Y4, Y5},
and H3 = {Y1}. Generalizing the decomposition to PAGs,
therefore, is challenging given the structural uncertainties;
most relevant the presence of latent confounders. A decom-
position has to be valid in every causal diagram in the equiv-
alence class. For instance, given the query Q[Y] over the
PAG in Fig. 2a, the sequence of nodes 〈Y2, Y3, Y4, Y5, Y1〉
is connected with invisible edges, which are possibly con-
founded. Hence, any naive decomposition of Q[Y] into a
product of sub-queries over subsets of Y is invalid since
we can construct a diagram in the equivalence class which
violates this decomposition. For instance, the decomposi-
tion in Eq. 3 is valid for the diagram in Fig. 2b but not for
the one in Fig. 2c. Yet, we can still decompose the query
using some invariances such as the fact that Y2 and Y1 are
not in the same pc-component in PY, hence they are not in
the same c-component in the Y-induced subgraph of any
causal diagram in the equivalence class by Prop. 1.

To develop an invariantly valid decomposition, we start by
introducing the notion of a region. In short, a region is the
pc-component of a set A appended with the corresponding
buckets of the nodes. The pc-component of a set A includes
all the nodes which could, in some causal diagram, be in
the c-component of some node in A (Prop. 1). We append
the pc-component set with the corresponding buckets of the
nodes to avoid non-identifiability of the sub-queries since
no sufficient causal information is present within a bucket.

Definition 6 (RegionRC
A). Given a PAG or a MAG G over

V, and A ⊆ C ⊆ V. Let the region of A with respect to C,
denotedRC

A, be the union of the buckets that contain nodes
in the pc-component of A in the induced subgraph GC.

Consider the PAG in Figure 2a, and let C = Y and
A = {Y3}. Then, RC

A = {Y3, Y2, Y4, Y5} since Y2 and
Y4 are in the pc-component of Y3 and Y5 is in the same
bucket as Y4. Alternately, if A = {Y4, Y5}, thenRC

A = Y,
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Figure 2: Sample PAG with two causal diagrams in the equivalence class.

since Y2 and Y3 are in the pc-component of Y4 and Y1 is in
the pc-component of Y5. For simplicity, we often drop C,
i.e. RA, whenever it is clear from the context. Using this
construction, we derive a useful decomposition as follows.

Theorem 1. Given a PAG P over V and set C ⊆ V, Q[C]
can be decomposed as follows.

Q[C] =
Q[A] . Q[RC\A]

Q[A ∩RC\A]
(4)

where A ⊂ C andR(.) = RC
(.).

Proof. LetD be any causal diagram in the equivalence class
of P . We show that Eq. 4 is valid for D. Let DC be the C-
induced subgraph of D. Let S1 and S2 partition A∩RC\A
in DC where S1 contains nodes that are in the c-component
of some node in A \ RC\A, and S2 contains the rest.

By construction of S1 and S2, no node in S1 is in the same
c-component as any node in S2 in DA∩RC\A , so Q[A ∩
RC\A] = Q[S1]×Q[S2]. Moreover, Q[A] = Q[A\S2]×
Q[S2] since none of the nodes in S2 is in the c-component of
A \S2 in DC, and consequently in DA since A ⊂ C. Also,
we claim that Q[RC\A] = Q[RC\A\S1]×Q[S1]. Suppose
for contradiction that the claim is not true, then some node
S ∈ S1 is in the c-component of X ∈ RC\A \ S1 =
(C \ A) ∪ S2 in DRC\A . But, X 6∈ S2 since S1 and S2

are in different c-component in DC, and consequently in
DRC\A . So X ∈ C \A. But then we have the following
in DC: X is in the c-component of S, and S is in the c-
component of some node Y ∈ A \ RC\A by definition
of S ∈ S1. This is a contradiction since Y would then
be in the pc-component of X in the induced sub-PAG PC

(Prop. 1), and consequently part of RC\A. Therefore, the
claimed decomposition of Q[RC\A] is also valid in D. By
the previous observations in D, we can simplify the right-
hand side of Eq. 4 as follows:

Q[A].Q[RC\A]

Q[A ∩RC\A]
=

Q[A \ S2].Q[S2].Q[RC\A \ S1].Q[S1]

Q[S1].Q[S2]

= Q[A \ S2].Q[RC\A \ S1] (5)

Note that Eq. 5 is equivalent to Q[A \S2].Q[(C \A)∪S2].
By the previous derivation, it is easy to verify that no node

in A \ S2 is in the same c-component as any node in (C \
A) ∪ S2. Hence, the decomposition in Eq. 4 is valid for D
as the right-hand side can be simplified to be consistent with
Eq. 2. This concludes the proof.

Back to the query Q[Y] over the PAG in Fig. 2a, we can de-
compose the query accordingly with A = {Y2, Y3, Y4, Y5}:

Q[Y] =
Q[A].Q[RY

Y\A]

Q[A ∩RY
Y\A]

=
Q[Y \ {Y1}].Q[{Y1, Y4, Y5}]

Q[{Y4, Y5}]
(6)

Alternately, we get this decomposition for A = {Y1}:

Q[Y] =
Q[{Y1}] . Q[{Y1, Y2, Y3, Y4, Y5}]

Q[{Y1}]
= Q[Y] (7)

The above two examples show that the decomposition is sen-
sitive to the choice of A, and consequently raises a couple
of interesting issues about Theorem 1:

1. Some decompositions are useless, e.g. Eq. 7.

2. Some queries in the decomposition are not identifiable
solely due to the choice of A, e.g. Q[{Y1}] in Eq. 7
will turn out to be not identifiable due to the invisible
edge Y5◦→ Y1.

The following decomposition is a special case of Thm. 1 and
allows us to overcome these weaknesses. Note that Eq. 6
follows from this corollary with A = {Y3}.

Corollary 1. Given a PAG P over V and set C ⊆ V, Q[C]
can be decomposed as follows.

Q[C] =
Q[RA].Q[RC\RA

]

Q[RA ∩RC\RA
]

where A ⊂ C andR(.) = RC
(.).

Proof. It follows from Thm. 1 with A replaced byRC
A.
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4. A Complete Identification Algorithm
Using the identification criterion in Prop. 2 and the decom-
position in Corol. 1, we formulate the procedure we call
IDP, which is shown in Alg. 1. The main idea of IDP goes
as follows. After receiving the sets X, Y, and a PAG P , the
algorithm pre-processes the query by computing D, the set
of possible ancestors of Y in PV\X. Then, the procedure
calls the subroutine Identify over D to compute Q[D]
from the observational distribution P (V). The recursive
routine basically tests for one of two conditions. First, it
checks for the presence of a bucket B in PT that is a subset
of the intervention nodes, i.e. B ⊆ T \C, and satisfies the
conditions of Prop. 2. If found, it computes Q[T \B] using
Eq. 1, and proceeds with a recursive call. Alternatively, if
such a bucket does not exist in PT, then IDP checks for a
bucket B in PC such that the region of B with respect to C,
i.e. RC

B, does not span C. If such a bucket exists, then IDP
decomposes the query Q[C] according to Corol. 1. Finally,
if both tests fail, then IDP throws a failure condition.

Theorem 2. IDP (Alg. 1) terminates and is sound.

Proof. Starting with termination, every recursive call of
Identify strictly decreases the size of the input sets C
and T. This is evident in the call at line (8). We are left with
the three recursive calls at line (10) due to the decomposi-
tion (Corol. 1). RB is a strict subset of C by construction.
Then, RC\RB

is a strict subset of C as well since the pc-
component property is symmetric. Finally, it follows easily
thatRB ∩RC\RB

is a strict subset of C.

Given that IDP terminates, we now move to soundness.
Let G be any causal diagram in the equivalence class of
PAG P over V, and let V′ = V \X. We have

Px(y) =
∑
v′\y

Px(v
′) =

∑
v′\y

Q[V′] =
∑
v′\d

∑
d\y

Q[V′]

By definition, D is an ancestral set in PV′ , and hence it is
ancestral in GV′ by (Jaber et al., 2018a, Prop. 1). So, we
have the following by (Tian, 2002, Lem. 10):

Px(y) =
∑
d\y

∑
v′\d

Q[V′] =
∑
d\y

Q[D] (8)

Eq. 8 is equivalent to the expression in line (2) of Alg. 1.
Finally, the correctness of the recursive routine Identify
follows from that of Proposition 2 and Corollary 1.

4.1. Illustrative example

Consider the query Px(y) given PAG P in Fig. 2a, where
X = {X1, X2} and Y = {Y1, Y2, Y3, Y4, Y5}. We have
D = Y, and the problem reduces to computing Q[D] using

Algorithm 1 IDP(x,y) given PAG P
input two disjoint sets X,Y ⊂ V
output Expression for Px(y) or FAIL

1: Let D = An(Y)PV\X

2: Px(y) =
∑

d\y Identify(D,V, P )

3: function Identify (C, T, Q = Q[T])
4: if C = ∅ then return 1
5: if C = T then return Q

/* In PT, let B denote a bucket, and let CB denote
the pc-component of B */

6: if ∃B ⊂ T \C such that CB ∩ Ch(B) ⊆ B then
7: Compute Q[T \B] from Q (via Prop. 2)
8: return Identify(C,T \B, Q[T \B])

9: else if ∃B ⊂ C such thatRB 6= C then

10: return Identify(RB,T,Q) . Identify(RC\RB
,T,Q)

Identify(RB∩RC\RB
,T,Q)

11: else
12: throw FAIL
13: end if
14: end function

the call Identify(D,V, P ). None of the buckets X1

and X2 satisfy the condition at line (6) of Alg. 1, hence
IDP tries to decompose the query. Bucket Y3 satisfies the
condition at line (9) as RY

Y3
= {Y2, Y3, Y4, Y5} ⊂ Y, and

we have the decomposition derived earlier in Eq. 6.

First, with the call Identify({Y2, Y3, Y4, Y5},V, P ),
node Y1 satisfies the test at line (6) as it has no children.
Hence, we compute Q[V \ {Y1}] using Proposition 2.

Q[V \ {Y1}] =
P (v)

P (y1, y2, y3, x1, x2|y4, y5)
×∑

y1

P (y1, y2, y3, x1, x2|y4, y5)

= P (y2, y3, y4, y5, x1, x2) (9)

In the next recursive call, let T1 = V \ {Y1} and Py1

corresponds to Eq. 9. Now, X1 satisfies the condition at line
(6), and we can compute Q[T1 \ {X1}] from Py1 = Q[T1],

Q[T1 \ {X1}] =
Py1

Py1(y2, y3, x1, x2|y4, y5)
×∑

x1

Py1
(y2, y3, x1, x2|y4, y5)

= P (y2, y3, y4, y5, x2) (10)

Let T2 = T1 \ {X1}. Now, X2 satisfies the identification



Causal Identification under Markov Equivalence: Completeness Results

criterion and we can compute Q[T2 \ {X2}] from Eq. 10,

Q[T2 \ {X2}] =
Px1,y1

Px1,y1(x2)
×
∑
x2

Px1,y1
(x2)

= P (y2, y3, y4, y5|x2) (11)

Similarly, we get the following expressions for
Q[{Y1, Y4, Y5}] and Q[{Y4, Y5}], respectively.

Q[{Y1, Y4, Y5}] = P (y1, y4, y5|x1) (12)

and,

Q[{Y4, Y5}] = P (y4, y5) (13)

Hence, the final expression for Px(y) is a result of Eqs. 11,
12, and 13 as follows.

Px(y) =
P (y2, y3, y4, y5|x2) . P (y1, y4, y5|x1)

P (y4, y5)
(14)

We can simplify Eq. 14 using independence relations to,

Px(y) = P (y3|x2, y2, y4)P (y2|x2)P (y1|x1, y5)P (y4, y5)

Note that the adjustment criterion in (Perković et al., 2015)
and the algorithm in (Jaber et al., 2018a) fail to compute the
above causal effect, and hence are not complete.

4.2. Completeness

After introducing the identification algorithm and proving
its soundness, we turn to the completeness of the proce-
dure. According to Def. 3, whenever IDP fails, we need
to establish one of two conditions for completeness. Either
there exist two causal diagrams in the equivalence class with
different identifications, or the effect is not identifiable in
some causal diagram, where a hedge for Px(y) exists (Sh-
pitser & Pearl, 2006, Def. 7). In this section, we establish
completeness by proving that the latter is always the case.

The blueprint for the proof goes as follows. First, we show
that the recursive routine Identify fails only if an inter-
vention node from X remains in T. Then, we construct a
MAG in the equivalence class of PAG P , and we prove that
an induced subgraph of it has some special properties (to
be defined). Finally, we use the latter MAG to construct a
causal diagram in the corresponding equivalence class with
a hedge for Px(y). This concludes the proof.

Lemma 1. Whenever IDP fails, there exist at least one
node X ∈ X such that X ∈ T in the failing instance of
Identify(C,T, Q).2

2See (Jaber et al., 2019) for all the proofs.

We first consider an easy case of non-identifiable causal
effects in the following theorem.

Theorem 3. Given PAG P over V and query Px(y) where
X,Y ⊂ V, if there exist a proper possibly directed path
from X to Y that starts with an invisible edge (i.e. ∗→, ◦−◦),
then Px(y) is not identifiable.

Proof. By (Perković et al., 2015, Lem. 5.5), we construct
MAG M in the equivalence class of P with a proper di-
rected path from X to Y that starts with invisible X → R.
Then, we construct a causal diagram in the equivalence class
ofM retaining the directed path and where X → R is con-
founded (Zhang, 2008a, Lem. 10). F = {X,R}, F′ = {R}
form a hedge for Px(y) (Shpitser & Pearl, 2006, Th. 4).

In what follows, we assume the following condition holds,
otherwise the case is covered by Thm. 3.

Condition 1. Assume IDP(x,y) fails, then every proper
possibly directed path from X to Y in PAG P starts with a
visible edge.

This implies that every bucket in PAG P is a subset of set
D in line (1) of IDP or V \D. Since Prop. 2 and Corol. 1
don’t split any bucket, then every bucket in PT, local to
the failing call of Identify(C,T, Q), is a subset of C
or T \ C. With these observations, we construct a MAG
M in the equivalence class of the input PAG P using the
procedure in Lemma 2.

Lemma 2. Under the failing conditions of IDP(x,y), i.e.
a recursive Identify(C,T, Q) fails, we can construct a
MAGM in the equivalence class of PAG P resulting from
the following procedure applied to P:

1. orient the circles on ◦→ edges in P as tails;

2. For bucket B ⊂ PV\T, orient into a DAG with no
unshielded colliders;

3. For bucket B ⊂ PT\C, orient all edges out of some
node B ∈ B such that B is in the same pc-component
with a possible child W 6∈ B in PT; and

4. For buckets in PC, let B1 < · · · < Bm be PTO over
PC:

(a) In Bm, orient all edges out of any node B∗ ∈
Bm.

(b) For every Bi, 1 ≤ i < m, orient all edges out
of some node B ∈ Bi such that B is in the same
pc-component with B∗ in PC.

In the construction of Lem. 2, the intent behind the choice
of the nodes and the edge orientations is to maintain the
failing conditions of the induced subgraph PT in an induced
subgraph ofM. Those properties are established in Lem. 3.
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Figure 3: Sample PAGs where Px(y) is not identifiable.

Lemma 3. LetM denote the MAG constructed in Lem. 2.
Then, there is a corresponding induced subgraphMT′ , with
C′ ⊂ T′ ⊂ V, that maintains the following properties:

1. C′ ⊆ An(Y)MV\X ;

2. C′ is a single dc-component inMC′ ;

3. T′ \C′ contains at least one intervention X ∈ X; and

4. every node in T′ \C′ is in the dc-component with a
child.

With the previous observations under Condition 1, we estab-
lish the following non-identifiability result which is comple-
mentary to Th. 3.

Theorem 4. Assume IDP fails to identify Px(y) in PAG P ,
then there exist a causal diagram in the equivalence class
of P such that Px(y) is not identifiable.

Proof. Lem. 2 constructs a MAG M in the equivalence
class of P . According to Lem. 3, an induced subgraph of
M over T′ maintains the given properties. We construct a
causal diagram D fromM by simply keeping all directed
and bi-directed edges intact. The diagram is trivially in
the equivalence class of M. In DT′ , DC′ is a single c-
component, and every node in T′ \C′ is in the c-component
with a child. It follows that T′ = An(C′) and T′ is a
single c-component, otherwise some node in T′ \C′ is not
in the c-component with a child. Let R be the root set of
C′, then R is a root set of T′ as well. We can remove
directed edges from DT′ so that C′ and T′ form R-rooted
C-forests (Shpitser & Pearl, 2006, Def. 6). Finally, T′ \C′
contains at least one intervention X ∈ X and R ⊆ C′ ⊆
An(Y)DV\X . Hence, T′, C′ construct a hedge for Px(y) in
D and the effect is not identifiable.

Corollary 2. IDP (Alg. 1) is complete.

Proof. This follows from Theorems 3 and 4.

5. Non-Identifiable Causal Effects
In this section, we aim to derive a graphical characterization
for non-identifiable causal effects in PAGs building on obser-
vations from the completeness proof. The characterization

is akin to the ones introduced in (Shpitser & Pearl, 2006;
Bareinboim & Pearl, 2012) for a given causal diagram. We
start by introducing the following construction, where R is
a root set of P over V iff V = An(R)P and it is maximal
if no subset satisfies the property.
Definition 7 (DC-forest). Let P denote any subgraph of
a PAG, where Y is the maximal root set. Then P is a
Y-rooted DC-forest if P is a dc-component and all nodes
have at most one possible child through a directed (→) or
partially directed (◦→) edge.

For instance, the PAG in Fig. 3c constructs a Y-rooted
dc-forest where Y = {Y1, . . . , Y4}. Using the above, we
define the notion of a P-Hedge as follows.
Definition 8 (P-Hedge). Let X, Y disjoint sets of nodes
in PAG P . Let F, F′ be R-rooted DC-forests such that
F∩X 6= ∅, F′ ∩X = ∅, F′ ⊂ F, R ⊆ An(Y)PV\X . Then
F and F′ form a P-hedge for Px(Y) in P .

Fig. 3 contains samples of PAGs with non-identifiable effect
Px(y). The simplest example is shown in Fig. 3a in which
a proper possibly directed path from X to Y is composed of
an invisible edge. Fig. 3c is more complex and contains a P-
hedge with F = V, i.e. all nodes, and F′ = {Y1 . . . , Y4}.
Theorem 5 (Non-Identifiability Criterion). Given a PAG P ,
Px(y) is non-identifiable in P if and only if there exist:

1. proper possibly directed path from X to Y that starts
with an invisible edge; or

2. dc-forests F, F′ forming a P-hedge for Px(y).

6. Conclusion
We tackled the problem of causal identification in a Markov
equivalence class represented by a PAG. First, we introduced
a novel decomposition strategy for a given causal query. We
then used the decomposition to develop an algorithm for
causal identification, and showed it to be complete. A sig-
nificant implication is that whenever an effect is identifiable
in every causal diagram compatible with a PAG, the result
is the same for all. We also introduced a graphical char-
acterization for non-identifiable causal effects. As the full
causal structure is not learnable in many practical settings,
we believe these results will be useful for data-intensive
sciences where identifying causal effects is important.
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“Causal Identification under Markov Equivalence:
Completeness Results”
Supplemental Material

In this document, we present the full proofs for the com-
pleteness result. We define the following construct from
(Zhang, 2008b) as it is used throughout the proof.
Definition 9 (discriminating path). In a MAG or a PAG, a
path p = 〈X, . . . ,W, V, Y 〉 is discriminating for V if:

1. p includes at least three edges;

2. V is a non-endpoint node on p, and is adjacent to Y
on p; and

3. X is not adjacent to Y , and every node between X and
V is a collider on p and is a parent of Y .

We start by proving an important property of a region. Ba-
sically, Lemma 4 states that there is no node in C which is
outsideRC

A with an invisible edge into the region. It follows
that this property holds for the regions in the decomposition
queries of IDP-line (10). It also holds for RB ∩ RC\RB

in the denominator query as the set is an intersection of two
regions, so a violation of the property implies the violation
for one of the regions.
Lemma 4. Given a PAG P over V, A ⊂ C ⊆ V, there
doesn’t exist a node Z ∈ C such that Z 6∈ RC

A ∧ Y ∈
RC

A ∧ invisible Z∗→ Y .

Proof. We prove this property for C = V, then we general-
ize it to the case where C is a subset of V.

Suppose for contradiction that such a node Z does exist.
Note that there is an invisible edge from Z into every node
in the bucket of Y (Zhang, 2008b, Lemma A.1). By con-
struction ofRC

A, Y must be in a bucket containing at least
one node that is in the same pc-component with a node
X ∈ A. Let Y denote one such node, hence we have
X∗→← − →W ←∗Y ←∗Z.

The edge between W and Y can’t be bi-directed as this
contradicts the condition that Z 6∈ RC

A. Z and W are ad-
jacent and the edge is into W since the edge between W
and Y is either invisible W ← Y (Zhang, 2006, FCI:R2)
or W ←◦Y (Zhang, 2008b, Lemma A.1). Also, the edge
between W and Z is out of Z and visible, else Z is in
the same pc-component with X and we violate the con-
dition Z 6∈ RC

A. The latter implies that there is a col-
lider path V1 ← − → Vn−1 ← ∗Vn into Z consistent
with the graphical condition for visibility of W ← Z in
P . Note here that the edge between Z and Y can’t be bi-
directed as this would create a discriminating path for Y

due to 〈W,Y,Z, V1, . . . , Vn〉 and we get W ↔ Y or visi-
ble W ← Y both of which lead to contradictions (Zhang,
2008b, FCI:R4).

Let Vi be the first node along 〈V1, . . . , Vn〉 that is not ad-
jacent to Y . If Vi is not defined, then Y is adjacent to
all the nodes along 〈V1, . . . , Vn〉. We show, by induction,
that all the edges between Y and Vj , 1 ≤ j < i, are into
Y . In the base case, the edge between Y and V1 is into Y
by (Zhang, 2006, FCI:R2) if Y ← Z and (Zhang, 2008b,
Lemma A.1) if Y ←◦Z. In the induction step, suppose the
property holds for up to Vj , we prove it for Vj+1. If the edge
between Y and Vj is bi-directed, then we have a discrim-
inating path for Y due to 〈W,Y, Vj , . . . , Vn〉 and we get
W ↔ Y or visible W ← Y both leading to a contradiction.
It follows that we have Y ←∗Vj+1, else we violate an in-
variant in P (Maathuis & Colombo, 2015, Lemma 7.5) due
to Vj ←∗Vj+1 and a possibly directed path 〈Vj , Y, Vj+1〉.

If Vi is not defined, i.e. Vn is adjacent to Y , then we have
W ↔ Y or visible W ← Y (Zhang, 2006, FCI:R0-R1)
since W and Vn are not adjacent. Both options lead to a
contradiction and hence are not possible. Alternatively, Vi

is defined and we have Y ←∗Vj for all 1 ≤ j < i as shown
earlier. If any of the edges is Y ↔ Vj , then we have a
discriminating path for Y due to 〈W,Y, Vj , . . . , Vn〉 and we
get W ↔ Y or visible W ← Y both leading to a contradic-
tion. Finally, we have Y ←∗Z ← − → Vi−1 ←∗Vi and
all the edges Y ←∗Vj for 1 ≤ j < j are not bi-directed. It
is easy to show, by induction, that the edge is out of Vj for
1 ≤ j < i (Y ← Vj) (Zhang, 2006, FCI:R1,R4). Hence,
we have a discriminating path for Z due to 〈Y,Z, . . . , Vi〉
and we get Y ↔ Z or visible Y ← Z both leading to a
contradiction.

Consequently, the initial assumption that Z exists is not
possible, which proves the claim for C = V. For C ⊂ V,
the result follows by the above argument and (Jaber et al.,
2018a, Lemmas 4, 5).

Proof of Lemma 1. Suppose for contradiction that the claim
doesn’t hold – there is no node X ∈ T in a failing in-
stance of Identify(C,T, Q). Then, T doesn’t include
any node from V \ D since all the possible children of
V \ {D∪X} are in V \D by construction of set D in IDP.
So, if all X are gone, then the buckets in V \ {D∪X} will
satisfy the intervention criterion (IDP; Line 6) by reverse
order of any PTO. Therefore, we have T ⊂ D and the split
of T into C and T \C is due to decomposition (Corol. 1).
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Note here that every bucket in T is either in C or in T \C
by construction of Region (Def. 6).

Let B1 < · · · < Bm be a partial order over PT\C. IDP
can’t intervene on Bm and the condition at line 6 fails, hence
some node B ∈ Bm is in the same pc-component with a
possible child B∗→ Z. Node Z ∈ C by the choice of
Bm, then B∗→ Z must be directed and visible (Lemma 4).
Hence, B and Z are in the same pc-component through a
collider path consistent with Def. 4. Let W be the node
closest Z along the latter path. Now, if W ∈ C, then all
the nodes along the collider path up to and including B will
be in C else we violate Lemma 4. The latter leads to a
contradiction since B ∈ T \C, so W 6∈ C. Similarly, the
invisible edge Z∗→ W can’t be bi-directed. If we have
Z◦→ W , then B and W are adjacent and the edge is into
W and not into B by (Zhang, 2008b, Lemma A.1). Also,
if the edge is out of Z, then B and W are adjacent since
Z → W is invisible and we have B → W due to (Zhang,
2008b, FCI:R2,R8). Either case leads to a contradiction
since W /∈ C is a possible child of B ∈ Bm violating
the choice of Bm in the partial order. Hence the initial
assumption fails and this concludes the proof.

Proof of Lemma 2. The construction follows that in (Zhang,
2008b, Theorem 2), and every bucket can be oriented inde-
pendently. Also, by IDP steps and Condition 1, PT\C and
PC are induced subgraphs over subsets of the buckets in P .
The failing condition of Identify(C,T, Q) (IDP - line
6) ensures that every bucket in PT\C contains at least one
node that satisfies the condition of node B in Step 3 of the
current theorem. Orienting all edges in the corresponding
bucket out of B is possible by (Maathuis & Colombo, 2015,
Lemma 7.6). Last, by failing the condition at line 9 of IDP,
we haveRBm

= C. But Bm only has arrowheads incident
on it in PC, thenRB∗ = C by (Jaber et al., 2018a, Lem. 5).
It follows that B∗ is in the same pc-component with at least
one node in every bucket in PC. Hence, the condition in
Step 4b is satisfied in every bucket in PC. This concludes
the proof.

Proof of Lemma 3. This follows from Lemmas 5 and 8.

Lemma 5. LetM be the MAG constructed from PAG P
according to Lemma 2. Also, let T′ and C′ denote the set
of nodes that are chosen in the orientation of the buckets of
PT and PC, respectively. Then, the induced subgraph over
T′, denotedMC′

T′ , maintains the following properties:

1. every node in T′ \C′ has a child such that the edge
in between is invisible or the two nodes share a bi-
directed path;

2. RC′

N = C′ for every N ∈ C′; and

3. T′ \C′ contains at least one intervention X ∈ X.

4. C′ ⊆ An(Y)MV\X .

Proof. Let B be the node chosen for orientation in any
bucket in PT\C. By the condition in Lemma 2- Step 3, B
is in the same pc-component with a possible child and both
nodes are in different buckets. If B has a possible child
C where B∗→ C is invisible, then every node in the cor-
responding bucket of C is a possible child of B by (Jaber
et al., 2018a, Lem. 5) and all those edges are not visible
since B∗→ C is not visible. It follows that B is in the same
pc-component with its possible child C∗, the chosen node
for orientation in the corresponding bucket of C. The edge
between B and C∗ remains invisible inMT′ by (Perković
et al., 2018, Lemma B.1). Otherwise, we have a visible edge
B → C and B and C share a collider path in PT consis-
tent with Def. 4, i.e. B ↔ T1 ← − → Tn ←∗C. Note
that B and Tn are adjacent if Tn ←∗C is not bi-directed
since the latter is invisible, the edge is into Tn (Zhang,
2008b, FCI:R2), and the edge is not into B by (Maathuis
& Colombo, 2015, Lemma 7.5). It follows that B is in the
same dc-component with a possible child in PT. By (Zhang,
2006, Lemma 3.3.2), there is a bi-directed edge between ev-
ery pair of nodes from two buckets if there is one bi-directed
edge between them. Hence, B is in the same dc-component
with a child inMT′ .This concludes the proof of Property 1

For Property 2, note that N is in the same pc-component
with B∗ in PC by construction in Lemma 2 - Step 4b.
Hence, N is in the same pc-component with B∗ inMC′

by (Perković et al., 2018, Lemma B.1). But, B∗ only has
arrowheads incident on it inMC′ since B∗ ∈ Bm in the
PTO overPC, so the collider path between N and B∗ is into
B∗. Also, every node in C′ is in the same pc-component
with B∗ in PC by construction, and consequently inMC′ .
Hence,RC′

N = C′.

Next, we prove Property 3. By Lemma 1, PT contains at
least one bucket B such that B contains an intervention
X ∈ X, and this bucket is in V \D by Conditon 1. Hence,
at least one node from B is inMT′ . Let B1 < · · · < Bm

be a topological order over the induced subgraph ofM over
T′ ∩ (V \D). Node Bm is in T′ \C′ by construction and
it is in the same pc-component with a child by Step 1. The
child is in D due to the topological order and the choice of
Bm, hence Bm ∈ X.

Finally, note that C′ ⊆ D = An(Y)PV\X by construction
in line (1) of IDP, and no pair of nodes in C′ belong to the
same bucket in P by the construction ofM in Lem. 2. Then,
for any C ∈ C′, there is an uncovered potentially directed
path from C to Y denoted p (Zhang, 2008b, Lemma B.1).
Since we orient all edges out of C inM (Lem. 2-step 4),
then the path corresponding to p inM is a directed path out
of C. Therefore, C′ ⊆ An(Y)MV\X .
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Lemma 6. In MA, where M is a MAG over V and
A ⊆ V, the following property holds:

For any three vertices A, B, C, if A∗→ B → C and both
edges are invisible, then we have A∗→ C and the edge is
invisible.

Proof. First, we prove this property when A = V. Edge
B → C is invisible, then A and C must be adjacent. Also,
the edge must be into C, otherwise the MAG is not ances-
tral. If the edge between A and C is bi-directed or directed
and invisible, then we are done. Otherwise, suppose for
contradiction that A→ C is visible. The edge between A
and B is out of A, otherwise B → C is visible due to the
visibility of A→ C and we reach a contradiction. Consider
the collider path between some node F and A that is into
A and is indicating the visibility of A→ C (Zhang, 2008a,
Def. 8). If any of the nodes along the collider path including
F is adjacent to B with a bi-directed edge, then B → C is
visible which is a contradiction. Alternately, it is easy to
show by induction that every node along the collider path is
a parent of B including F , otherwise A→ B is visible and
we have a contradiction. Now, we have F → B → C and
F and C are not adjacent. Hence, B → C is visible and we
reach a contradiction. So, the assumption that A → C is
visible doesn’t hold which concludes the proof. Since the
property holds for a full MAG, then it trivially holds in a
corresponding induced subgraph.

Lemma 7. LetMC
T denote the induced sub-MAG consid-

ered in Lemma 5, where T = T′ and C = C′, and let N be
any node in T. Then, the pc-component of N inMC

T is T.

Proof. Let C∗ be a node inMC with only arrowheads in-
cident on it. Such a node exists since MAGs don’t have
cycles. We show that every node inMC

T is in the same pc-
component with C∗ through a collider path into C∗. This
implies the claim of the lemma.

Let W be any node in T other than C∗. If W ∈ C, then W
is in the same pc-component with C∗ by the second condi-
tion of Lemma 5. Otherwise, W shares a directed path with
some node Z ∈ C along which every pair of consecutive
nodes either share a directed invisible edge or a bi-directed
path (condition 1 of Lem. 5). In what follows, we show by
induction on the length of the directed path that W is in the
same pc-component with every node along the path includ-
ing Z and the collider path is into the descendant node. The
base case is trivial as either the edge between W and its
child is invisible or both nodes share a bi-directed path. In
the induction step, suppose that the assumption holds until
node Tm along the path where W = T1 and we prove it for
Tm+1. By the induction step, we have that W and Tm are in
the same pc-component and the collider path is into Tm. If

any of the nodes along the collider path including W is con-
nected to Tm+1 with a bi-directed edge, or Tm and Tm+1

share a bi-directed path, then we are done. Alternatively,
note that we have Tm → Tm+1 and the edge is invisible.
Hence, every node along the collider path including W is a
parent of Tm+1, else Tm → Tm+1 is visible and we have a
contradiction. If W → Tm+1 is invisible then we are done.
Otherwise, assume that W → Tm+1 is visible. Then, we
have W∗→ A → Tm+1 and W → Tm+1 with the latter
visible and A denoting the first node along the collider path
after W . If A→ Tm+1 is visible, then Tm → Tm+1 is visi-
ble which is not true. Also, W∗→ A is invisible by Def. 4.
This leads to a contradiction (Lemma 6) and W → Tm+1

can’t be visible. This concludes the induction proof.

By the above induction, we have that W is in the same pc-
component with Z and the collider path is into Z. If Z is in
the dc-component of C∗, then we are done. Otherwise, Z is
in the pc-component with C∗ and the collider path is into
C∗, i.e. the first edge along the collider path is out of Z, due
to the choice of C∗. An argument by induction similar to
the one earlier proves that W is in the pc-component of the
child of Z and the collider path is into the child. Hence, W
is in the pc-component of C∗ and the path is into C∗. This
concludes the proof.

Lemma 8. LetMC
T denote the induced sub-MAG consid-

ered in Lemma 5. Then, there is a corresponding induced
subgraphMC′

T′ , where C′ ⊆ C and T′ ⊆ T, that maintains
the following properties:

1. every node in T′ \C′ is in the same dc-component with
a child;

2. C′ is a single dc-component inMC′ ; and

3. T′ \C′ contains at least one intervention X ∈ X.

4. C′ ⊆ An(Y)MV\X .

Proof. We start with the second property of the lemma. Let
C∗ be a node in MC with only arrowheads incident on
it. Such a node exists since MAGs don’t have cycles. By
condition 2 of Lemma 5, every node inMC is in the pc-
component of C∗. InMC, let J be any node that is in the
pc-component of C∗ but not in its dc-component and let K
be the child of J along the collider path. If any other node
in MC is in the pc-component of C∗ through J , then J
is in the dc-component of C∗ and we have a contradiction.
Hence, dropping J doesn’t affect condition 2 of Lemma 5.
It remains to show that dropping J doesn’t affect condition
1 of Lemma 5. Suppose for contradiction that some node
Z ∈ T \C is not in the same pc-component with a child in
the induced subgraph ofMC

T over T \ J .
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First case is that J is a child of Z through an invisible edge.
We have Z → J → K and both edges are invisible. Hence,
we have invisible edge Z → K by Lemma 6. This violates
the choice of Z since it is in the pc-component with a child
without J and we have a contradiction.

The other option is that Z is in the dc-component with a
child W through a bi-directed path that goes through J .
Consider the collider path between Z and J and recall that
J → K is invisible. If none of the nodes along the collider
path is adjacent to K with a bi-directed edge, then each
node along the path including Z is a parent of K, otherwise
J → K would be visible. Also, Z → K is invisible since
J → K is invisible, and we go back to the first case which
leads to contradictions. Hence, some node along the collider
path between Z and J is adjacent to K with a bi-directed
edge and K is in the dc-component of Z. Now, consider
the collider path between W and J . If some node along the
path is adjacent to K with a bi-directed edge, then Z is in
the dc-component with its child W without going through
J . This contradicts our assumption that Z fails condition
1 of Lemma 5. Otherwise, every node along the collider
path including W is a parent of K and W → K is invisible
since J → K is invisible. We have Z → K due to Z →W
and invisible W → K. Hence, Z is in the dc-component
with its child K and the path doesn’t go through J which is
a contradiction.

This concludes the proof that dropping J doesn’t affect
condition 1 of Lemma 5. This argument can be applied
recursively until all the nodes in C′ ⊆ C are in the dc-
component of C∗ inMC′ .

Next, we prove the first property. Note that X in condition 3
of Lem. 5, by construction, doesn’t have any invisible edges
out of it inMT, else we violate Cond. 1. Also, every node
inMT is in the pc-component X by Lem. 7. Hence, every
node inMT is in the pc-component of X through a collider
path into X . With this property, let J be any node in T \C
that is in the pc-component of X but not its dc-component
and let K be the child of J along the collider path. Suppose
for contradiction that some node Z ∈ T \C violates condi-
tion 1 of Lem. 5 in the induced subgraph ofMC

T over T\J .
This case was handled earlier and we reach a contradiction.
Hence, we can drop J from the induced subgraph without
violating condition 1 of Lem. 5.

Moreover, if any other node is in the pc-component of X
through J , then J would be in the dc-component of X and
we have a contradiction. Hence, dropping J from the in-
duced subgraph doesn’t violate Lemma 7. It follows that we
can apply the previous argument recursively and drop nodes
until every node in T′ \ C′ is in the dc-component of X .
Hence, every node in T′ \C′ is in the dc-component with a
child through X . The third property is trivially satisfied by
our choice of X above. Also, the fourth property is trivially
satisfied since C′ ⊆ C inM.

Proof of Theorem 5. (if) Case 1 implies non-identifiability
by Th. 3. As for case 2, let R′ ⊆ R such that no pair of
nodes in R′ belong to the same bucket in the full PAG P .
The latter is needed to ensure later that R′ ⊆ An(Y)MV\X

in some MAG M in the equivalence class of P . Let F
and F ′ denote the corresponding induced subgraphs of P
over the nodes in F and F′, respectively, excluding R \R′.
By (Jaber et al., 2018a, Lem. 5), both F and F ′ preserve
the properties of a P-Hedge except for the one where each
node has at most single child. Let M denote the MAG
constructed from P by (1) orienting partially directed edges
A◦→ B out of A and (2) orient each bucket into a DAG
with no unshielded colliders.M is in the equivalence class
of P since the construction is a special case of Lemma 2.
Next, we construct a causal diagram D fromM by keep-
ing directed and bi-directed edges intact. The diagram is
trivially in the equivalence class ofM. Finally, the induced
subgraphs of D corresponding to F and F ′ preserve the
properties of a hedge ((Shpitser & Pearl, 2006, Def. 7))
except for each node having at most single child. We can
remove directed edges to establish the latter property, hence
the effect is not identifiable in D and consequently in P .

(only if) If the effect is non-identifiable, then IDP fails.
The first case of the current theorem follows if Cond. 1 in
the completeness proof doesn’t hold. Otherwise, we can
construct a MAG in the equivalence class with the prop-
erties in Lem. 3. But the MAG construction procedure in
Lemma 2 does not introduce any bi-directed edges other
than the ones already present in the PAG. Also, every node
inMT′ (Lem. 3) is from a bucket in P so all the directed
edges between T′ correspond to directed or partially di-
rected edges in P . Hence, T′,C′ in Lem. 3 construct a
P-hedge for Px(y) in P after dropping some (partially)
directed edges.
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