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Abstract ple, consider thestandard fairness modelescribed in
Fig. 1(a) that is concerned with the relation between a
One of the fundamental tasks in causal infer- hiring decision ') and an applicantOs religious beliefs

ence is to decompose the observed association ~ (X), which aremediated bythe location W), andcon-

between a decisioX and an outcom® into founded bythe education background ) of the appli-
its most basic structural mechanisms. In this cant. ! Directed edges represent functional relations

paper, we introduce counterfactual measures ~ Petween variables. The relationship betweerand Y

for effects along with a specibPc mechanism, is materlahzed_ through four different pathvv_ayg in the
represented as a path froq to Y in an ar- system D thalirect pathl; : X | Y, th_e indirect
bitrary structural causal model. We derive a pathl, = X ! W I Y, and thespuriouspaths
novel non-parametric decomposition formula lg:X " 21 Yandly: X" 2! W1 Y.

that expresses the covarianceXfandY as Assuming, for simplicityOs sake, that the functional re-
a sum over unblocked paths fronto 'Y con- lationships are linear antly, is an independent Oer-
tained in an arbitrary causal model. This for- rorO associated with each variable(called the linear-
mula allows a Pne-grained path analysis with-  standard model), Fig. 1(a) shows the structural coefp-
out requiring a commitment to any particular cients corresponding to each edge P i.e., the value of the
parametric form, and can be seen as a gen-  variableY is decided by the structural functiori "
eralization of WrightOs decomposition method LysX + 1 yzZ+ 1 ywW + Uy. The celebrated result known
in linear systems (1923,1932) and PearlOs non- a5 Wright®s method of path coefbcients [Wright, 1923,
parametric mediation formula (2001). 1934], also known as WrightOs rule, allows one to ex-
press the covariance ¥f andY , denoted byCov(X,Y ),
1 INTRODUCTION as the sum of the products of the structural coefbcients

along the paths fronX to Y in the underlying causal
Analyzing the relative strength of different pathways be-model.? In particular,Cov(X, Y ) is equal to:
tween a decisiorX and an outcomé&’ is a topic that I PRI I T R IR B
has interested both scientists and practitioners across dis- " #6 = [Z% 18 7 121§ T 1 XZ W V-
T . . Xty X! wlh'y X" zby X"z W'Y
ciplines for many decades. Specibcally, path analysis
allows scientists to explain how NatureOs Oblack-boXdsing the observational covariance matrix, the decom-
works, and practically, it enables decision analysts tgoosition above allows one to answer some compelling
predict how an environment will change under a varietyquestions about the relationship betweemndY in the
of policies and interventional conditions [Wright, 1923; underlying model. For instance, the produgix! vw ex-
Baron and Kenny, 1986; Bollen, 1989; Pearl, 2001]. plains how much the indirect discrimination through the
location (the path,) accounts for the observed dispari-

More recently, understan_dl_ng using causal mferencqies in the religion composition among hired employees.
tools how a black-box decision-making system operates

has been a target of growing interest in the Artibcial In-The path analysis method gained momentum in the so-
telligence community, most prominently in the context IThis specibc setting has been callsgindard fairness

of Explainability, Transparency, and Fairness [LU Zhang,modelgiven its generality to representing a variety of decision-
2017; Kusnert al, 2017; Zafaret al, 2017; Kilbertus  making scenarios [Zhang and Bareinboim, 2018a].

et al, 2017; Zhang and Bareinboim, 2018a]. For exam-  2For a survey on linear methods, see [Pearl, 2000, Ch. 5].
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cial sciences during 19600s, becoming extremely popular

in the form of themediation formulan which the total Vi Z, ! 2 W

effect of X on Y is decomposed into direct and indi- X ‘l/ ‘ WZ\: Y X /%_,\ Y
rect components [Baron and Kenny, 1986; Bollen, 1989; m i \/\(\N' W el
Duncan, 1975; Fox, 1980f. The bulk of this literature, x woot W,
however, required a commitment to a particular paramet- (@) (b)

ric form, thus falling short of providing a general method

for analyzing natural and social phenomena with nonlin-gigure 1: Causal diagrams for (a) the standard fairness
earities and interactions [MacKinnon, 2008]. model whereX stands for the protected attributé, for

It took a few decades until this problem could be tack-the outcomeW the mediators, and the confounders;
led in higher generality. In particular, the advent of non- (P) the two-mediators setting where causal paths from
parametric structural causal models (SCMs) allowed thid0 Y are mediated by, Wo.

leap, and a more bne-grained path-analysis with a much

broader scope, including models with nonlinearities and . .
arbitrarily complex interactions [Pearl, 2000, Ch. 7]. In are collapsed and considered blog leading to a coarse

particular, Pearl introduced tlvausal mediation formula d:COTg%ﬁgf){} of tthel reC:?tlogs\?lp dbet)/vveefn E;ré)dlz'T h
for arbitrary non-parametric models, which decomposeé earl, , vansteelandt and vandereeie, » 1N

the total effeclEy, x, () = E[ Y, J# E[Yx, ], the differ- etge.n and Shplts.er, 2012; Vander_WegkeaI., 2014t,
ence between the causal effect of the intervendia(x ;) Danielet a.l" 2015.’ Zhang and Bareinboim, 2018a; (3)
anddo(xo) 4, into what is now known as the natural di- Pa_th-specnac estimands are well-debned [Pearl, 2001;
rect NDE) and indirect NIE) effects [Pearl, 2001] (see A_vm et al, 2005], but not in a wgy_that they sum up to
also [Imaiet al, 2010, 2011; VanderWeele, 2015]). In either the tqtal effect (.TE) or variation (TV), precluding
the case of the specibc linear-standard causal model, the comparison of their relative strengths.

This paper aims to circumvent these problems. In partic-
ular, we decompose the covariance of a treatixeand

an outcomeY over effects along different mechanisms
for xo = 0 andx; = 1 levels. Remarkably, when betweenX andY. We debne a set of novel counter-

compared with Eq. INDE andNIE capture the effects factual estimands for measuring the relative strength of a
along with the direct and indirect paths, but omits theSPeCiPC mechanism represented as a pathXamY in
spurious (non-causal) paths betweénand Y (in this ~ @n arbitrary causal model. These estimands lead to a non-
case,ls, 14). The mediation formula was recently gen- parametric decomposition formula, which expresses the
eralized to account for these spurious paths (more akifovarianceCov(X,Y ) as a sum of the unblocked paths
to WrightOs rules), which appears under the rubric offom X toY in the causal graph. This formula allows
the causal explanation formulizhang and Bareinboim, & more Pne-grained analysis of the total observeq vari-
2018a]. This formula decomposes the total variation@tions ofY due toX (both through causal and spurious
TV, (Y) = E[ Y|x1] # E[Y |xo] (difference in condi- mechanisms) when compared to the state-of-art methods.
tional distributions) into counterfactual measures of theMore specibcally, our contributions are: (1) counterfac-
direct (Ctf-DE), indirect Ctf-IE), and spuriousGti-SB  tual covariance measures for a specibc pathway om

effects. In the linear-standard model, for= 0,x, =1, t0Y (causal and spurious) in an arbitrary causal model
(Defs. 8, 11-12); (2) non-parametric decomposition for-

TVou(Y) = fyg + | g vt | x2! vzt Lxz! w2l e mulae of the covarianc€ov(X, Y ) over paths fromX
Ctf-DE CHf-IE Ctf-SE toY inthe causal model (Thm. 5); (3) identiPcation con-
ditions for estimating the proposed path-specibc decom-

Despite the generality of such results, there are still outposition from the passively-collected data in the standard
standing challenges when performing path analysis inyodel (Thms. 6-7).

non-parametric models, i.e.: (1) Estimands are debned

relative to specibc values assigned to the treatrent

and its baselin&o, which may be difbcult to selectin 2 PRELIMINARIES

some non-linear settings; (2) Mediators and confounders

W an idea of this popularity, Baron and Kennyéln this section, we introduc_:e notations used throughout
' the paper. We will use capital letters to denote variables

original paper counts more than 70,000 citations. .
“By convention [Pearl, 2000], the post-interventional (€.9.,X), and small letters for their values) The ab-

distribution is represented interchangeably Byyx) and  breviationP (x) represents the probabiliti€s(X = Xx).
P (y|do(x)) . General notation is discussed in the next section. For arbitrary seté andB, letA # B denote their differ-

TE0.1(Y) = foyg | wad v

NDE NIE




ence, and lefA| be the dimension of s&t. V;;; j stands  Depnition 1 (Potential Response)Let M be a SCM,
for a set{Vi,...,V;} ($if i > j ). We use graphical X,Y sets of arbitrary variables i, andU; a set of ar-
family abbreviationsAn(X ), De(X ), Non-D&X )g,  bitrary variables irJ. LetUs; = U # U;. The potential
Pa(X )s, Ch(X)g, which stand for the set of ancestors, response o¥ to the interventiordo(x*, u¥) in the situ-
descendants, non-descendants, parents and childxen ofationU = u, denoted byYx- ,-(u), is the solution for
in G. We omit the subscrips when obvious. Y with Ug; = ugi,U; = u¥ in the modiPed submodel
M+ where functiond x are replaced by constant func-

The basic semantical framework of our analysis reSt%iOI’lSX = x* e Yy (U) Yu . (U ug ) 8

on structural causal modeléSCM) [Pearl, 2000, Ch. 7;
Bareinboim and Pearl, 2016]. A SCM consists of a set
of endogenous variablas (often observed) and exoge-
nous variabled) (often unobserved). The values of each ug i, had the treatmerX beenx* and the situationJ;
Vi %V are determined by a structural functibntaking  pyaenu* O Averaging! over the distributiorP (u), we
as argument a combination of the other endogenous a”(%tainla counterfactual random variabfg. ,-. If the

exogenous variables (1.6 " fi(PAi,Ui).PAi &  yayesofk*, u? follow random variableX #, Uf, we de-
V,U & U)). Values ofU are drawn from a distribu- e the resulting counterfactugy - y .

tion P(u). A SCM M is called Markovian when the

exogenous are mutually independent and é4ctU is
associated with only one endogendtis% V. If U; is 3 A COARSE COVARIANCE

associated with two or more endogenous variatiess DECOMPOSITION
calledsemi-Markovian

Yx+ur(u) can be read as the counterfactual sentence Othe
value thatY would have obtained in situatiods; =

In this section, we introduce counterfactual measures that
will allow us to non-parametrically decompose the co-
varianceCov(X, Y ) in terms of direct, indirect and spu-
ges : i
“fious pathways fronX to Y. Given space constraints,
all proofs are included in Appendix 1.

Each recursive SCM has an associated causal diagram
in the form of a directed acyclic graph (DA®, where
nodes represent endogenous variables and directed ed
represent functional relations (e.g., Figs. 1-2). By con
vention, the exogenous are not explicitly shown in the
graph; a dashed-bidirected arrow betwgeandV; indi- If there exists no spurious path froxh to Y, then treat-
cates the presence of an unobserved confounder(lJJC) mentX is independent of the counterfactugl-, i.e.,
affecting bothV; andV, (e.g., the path; " U ! V). (X' Yy+) [Pearl, 2000, Ch. 11.3.2]. Thepurious co-

A path fromX to Y is a sequence of edaes which dOesvariancecan then be debned as the correlation between
P q 9 the factual variableX and counterfactuafy .

not include a particular node more than once. It may go - _ _ _
either along or against the direction of the edges. PathBePnition 2 (Spurious Covariance)The spurious co-
of the formX ! 444! Y arecausal(from X toY). variance between treatmexit= x* and outcome is:
We'use d—separatign a}nd blocking interchangeably, fol- Covs.(X,Y ) = Cov( X, Yy-). )
lowing the convention in [Pearl, 2000]. Any unblocked

path that is not causal is callspurious The direct link ~ Property 1. |! 3(X,Y )| =0 ( Covg-(X,Y)=0.

X ! Y is thedirect path and all the other causal paths )
from X to Y are calledindirect The set of unblocked The causal covarianceean naturally be dePned as the

paths fromX to Y given a se in a causal diagrar difference between the total and spurious covariance.
is denoted byl( X,Y |Z)g; causal, indirect, and spuri- Depnition 3(Causal Covariance)rhe causal covariance
ous paths are denoted by¥(X,Y |Z)g,! '(X,Y |Z)G, of the treatmenkX = x* and the outcom¥ is:

and! 5(X,Y |Z)s (G will be omitted when obvious). _

For a causal patly including nodesvy, V,, we denote Covi- (X, Y ) = Cov(X, Y # Yr). ©)
g(V1, V2) a subpath of from V1 to V.° Prop. 2 establishes the correspondence between the
An intervention on a set Of endogenous Variab{eand Causal pathS a.nd the Causal COVariance b |f there iS no
exogenous variablds; , denoted bylo(x*, uf), is an op- causal path from( to Y in the underlying model, the
eration where values of, U; are set tac*, u?, respec- causal covariance equates to zero.

tively, without regard to how they were ordinarily deter- Property 2. |! ¢(X,Y )| =0 ( Covi.(X,Y)=0.

mined X throughf x andU; throughP (U;)). Formally,

we can rewrite the dePnition of potential response [Pearl\We consider more detailed measures corresponding to
2000, Ch. 7.1] to account for operation 9n, namely: the different causal pathways, and prst, the direct path:

*Mediators (relative t&X andY ) are a set of variables/ ! 5An alternative way to see the replacement operation rela-
De(X )" Non-D€Y) suchthaf! '(X,Y |W)| =0. tive to U; is to envision a system whet# is observed.



Debnition 4 (Direct Covariance) Given a semi- ; w AN ,”’*W *\\
Markovian modelM , let the setW be the mediators X — \‘Y # X - x* > v
betweenX andY. The pure Cov‘X’E(X,Y)) and to- -7 P -7
tal (Cov¥ (X,Y)) direct covariance of the treatment @Y (b) Y- w

X = x" onthe outcom& are dePned respectively as  rjgyre 2: The graphical representation of measuring the

Cov¥? (X, Y )= Cov(X,Y # Yyow), (4)  pure direct covarianc€ovi® (X, Y ).

Covl (X,Y)=Cov(X,Yw,. # Yx:).  (5)
Theorem 1. Cov(X,Y), Cov;.(X,Y) and
By the composition axiom [Pearl, 2000, Ch. 7.3], Egs. 4CovS.(X,Y) obey the following non-parametric
and 5 can be explicitly written as follows relationship:

Cov(X,Y # Yx=w)=Cov(X,Yxw # Yxrw), Cov(X,Y)=Cov.(X,Y)+Cov;.(X,Y), (8)
Cov(X,Yw.. # Yy+)=Cov(X,Y CHE Yeowon). .
(X Y. # o) (XY # Ymaw,) whereCove. (X, Y ) = Cov ¥ (X, Y )+Cov . (X,Y) =
dt i
The counterfactual pure direct covariance (Eqg. 4) isCOVx-(X,Y )+ Cov (X, Y).
shown graphically in Fig. 2, where (a) corresponds to

the Y -side, and (b) to thé/y- w -side. Note that from o S - . -
. LN . be partitioned into its corresponding direct, indirect, and
the mediatoW perspectiveX remains at the level that : . .
spurious components. In particular, Thm. 1 coincides

it would naturally have attained, while the OdirectO in-" : X
! . . with Eqg. 1 in the linear-standard model.
put from X to Y varies from its natural level (Fig. 2a) .
; L ; d
sures the effect of the direct path. A similar analysis alsdY X*, Covz-(X,Y), CoviZ(X,Y), Covi(X,Y),

In other words, the covariance betwe¥nandY can

applies to the total direct covariance (Eq. 5). Covy. (X, \S( ) andCovy..(X, Y') are equal to:
=1 | | | |

Property 3. Cov®(X,Y ) = Cova(X,Y) =0 if X is Cov- (X, Y) = Lt vz+ 1! wa vw

not a parent ofY (i.e.,X )%Pa(Y)). Cov®(X,Y)=Covi (X, Y) = ! vx

ip = it = 1yl
We can turn around the debnitions of direct covariance Covic- (X, ¥) = Covo (X, Y) = v ywe

and provide operational estimands for indirect paths.  Corol. 1 says that the proposed decomposition (Thm. 1)
Debnition 5 (Indirect Covariance) Given a semi- does not depend on the value dxb(x_#) in the linear
Markovian modelM , let the setW be the mediators model of Fig. 1(a), which is not achievable in previous
betweenX andY. The pure Covif*(X,Y )) and to- value-specibc decompositions [Pearl, 2001; Zhang and

tal (Cov!'.(X, Y )) indirect covariance of the treatment Bareinboim, 20184f.
X = x# on the outcom& are debned respectively as:

CovP.(X,Y ) =Cov(X,Y # Yw,.), (6)
Covi. (X,Y ) =Cov(X,Yy-w # Yy=).  (7)

4 DECOMPOSING CAUSAL
RELATIONS

Eqgs. 6 and 7 correspond to the indirect paths, since the\gNe n(I)W foc_us on tthe challelnge Otf decomposmgt; tr\'/\e/
capture the covariance of andY, but only via paths ausal covariance into more elementary components. We
use the two-mediators setting (Fig. 1(b)) as example,

mediated byn. The prst argument of is the same in hereX andY are connected through four causal paths:
both halves of the contrast, but this value can either bé[{;grough bothNy, W, (g - X | Wy ! Wa! Y),only '

2 .
x* (Eq. 7) or at the level thaX would naturally attain throughWy (g - X | W, ! Y), only throughW,

W|thout|nterveht|on (Eq. 6). ) G X 1 W,! Y) anddirectly@s:X | Y) Our
Property 4. "' Y) = 0 ( Cove(X,Y) = goal is to decompose th8ovS.(X,Y ) over the paths
Covy-(X,Y)=0. g4 Our analysis applies to semi-Markovian models,

_ . without loss of generality, and the Markovian example
Putting these dePnitions together, we can prove a genera{-ig_ 1(b)) is used for simplicity of the exposition.
non-parametric decomposition 6bv(X, Y ): -

8For the nonlinear models, the decomposing terms (e.g.,

"Consider Eq. 4 as an example. For aby = u, Covy«(X,Y)) are still sensitive to the target levet(x*). To
Yx wyw @)(U) = Yeew (U) if X(u) = x*,W(u) = w. circumvent the challenges of picking a specibc decision value,
By the composition axiomX (u) = x*,W(u) = w im- one could assign a randomized treatmdaofx™ # P (X)),
pliesY (u) = Yx=w (u), whichin turn givesYx (w u)(u) = whereP (X)) is the distribution over the treatmeKt induced

Y (u). Averagingu overP (u), we obtainYxw = Y. by the underlying causal model.



For a nodeS; % Pa(Y) and a set of causal paths the X - - Y X - _*
edgeS; ! Y dePnes a funnel operators,; v, which g1{z*w / _ a* Wy /
maps from!' to the set of paths ;1 v (") obtained from Wy — W

" by replacing all paths of the forx ! 4aa! S! Y
with X 1'adéa! S, and removing all the other paths.

@Y
As an example, fot' = {01, %,0}, " ! v(") = X; \4/; Y X; — Y
{g1(X, W3), g3(X, W)}, whereg; (X, W) is the sub-  9[2.31< = NV: / — 7 \ - W / 911,4]
pathX | W; ! W, andgs(X, W) is the subpath Wy > W, W W
X 1 W,. We next formalize the notion of path-specibc ©. @Y.
interventions, which isolates the inRuence of the inter- 91x7] 91,1 <]
vention do(x*¥) passing through a subsgt of causal X Y X =Y
paths fromX, denoted bydo(" [x*]) (a similar notion 949 *" W / — T Wi /
has been introduced by [Pearl, 2001], and then [Aatin W, > W, W, > W,

al., 2005; Shpitser and Tchetgen, 2016]). €)Yy, -]
(1,3~

Debnition 6 (Path-Specibc Potential Responsepr a
SCMM and an arbitrary variabl¥ %V, let" be aset Figure 3: Graphical representations of the causal covari-
of causal paths. LeX be the source variables of paths ance specibc tg; (a-b), g, (c-d) andg, (e-f).
in". Further, letX,, v = {X; : *X; %X, Xi! Y %
"} andS = (Pa(Y)g + V) # X, y. The" -specibc
potential response of to the interventiordo(" [x*]) in In the previous example, more explicitly, the puge
the situationJ Tl denoted byY, +j(u), is debned as: specibc causal covariance is equal to (Fig.l3(a-b)):
Y k= (U) = Yxi v S gy T7F S

Y (u) otherwise Covg, g (X, Y ) = Cov. X, Y # Yoy, (10)

ForU = u, the counterfactuaYy,-;(u) stands for the
values ofY when all causal paths are under the natural
regime. Eqg. 9 can then be rewritten as:

whereS ., (1 x+(u) is a set of" -specibc potential
responsgS;, " e (U) 0 Si %S} 9

Despite the non-trivial notation, tHe-specibc counter- .
factual Y, x+] is simply assigning the treatmedo(x*) Covgpe (X, Y) = Cov( X, Yogxey # Ygix-1)-
exclusively to the causal paths in while allowing all
the other causal paths to behave naturally. This con
trasts with the counterfactudl -, which can be seen as
assigning the treatmenlo(x*) to all causal paths from
X to Y. For instance, repeatedly applying Def. 6 to
g X! W ! W,! Y (see Appendix 2.1), we
obtain theg; -specibPc potential respon¥g, -] as

The pure path-specibc causal covariancegaran be
seen as a function of the difference between two path-
specibc potential respon¥g,-; andY, ¢~} such that
g)%oand'; = "o,{ g} (i.e., the difference betweén
and" o is g). The differenceY, x-; # Y\ [x+], therefore,
measures precisely the effectsda{x*) along the target
causal patlg. Def. 7 can be generalized to account for
Yo.x+] = Yxw TWay = YWZWlx* . the path-specibc covariance in terms of path-differences.

Debpnition 8 (Path-Specibc Causal Covarianc&pr a
The interventiordo(g; [x*]) can be visualized more im-  semi-Markovian mode\l and an arbitrary causal pagh
mediately through its graphical representation (Fig. 3(b)}rom X , let" be a function mapping to a set of causal
b the treatmerdo(x*) is assigned throughowgk while paths" (g) from X such thaty )%' (g). Theg-specibc
all the other paths are kept at the level that it would havecgusal covariance of the treatmeat= x* on the out-
attained OnaturallyO following. The difference of the comeY is debned as:
outcomeY (induced bydo(g; [x*])) and the unintervened
Y (Fig. 3(a)) measures the relative strengtigpitself, ~ COVg1(X, Y )1 = CoV(X, Y1 (gyx-1 # Y1 (g)af g} [x~1)-
which leads to the following depPnition.
Debnition 7 (Pure Path-Specibc Causal Covariance) The following property estaplishes the gorrespondence
For a semi-Markovian modéll and an arbitrary causal between a causal path and its path-specibc estimand.

pathg from X , the pureg-specibc causal covariance of Property 5. g)% °(X,Y) ( Covgy-(X,Y ) =0.

the treatmenkX = x* on the outcome is debned as: . .
Prop. 5 follows immediately as a corollary of Lem. 1,

Covgyx+)(X, Y ) =Cov(X,Y # Ygi-1).  (9)  which implies that the counterfactuald (gx-; and

°For a single causal pat let Ygu(u) = Ygyp(u). Y1 (g)&4 g} [x-] dePne the same variable overif g is not
Averagingu overP (u), we obtain a random variab¥ ;. a causal path fronX to Y.



Lemma 1. g )% ! “X,Y) (  Yiguq(u) = Zy<----U Zy<----Up----2Z1,.

Y1 (g g x+1 (W) n ' v
Considering again the model in Fig. 1(b), Igt; ; = Loz Zyz----Up---= 2.
{a}i | ($ifi>] ). Recallthag, = {X ! Y},and ' / Y*
note that theg,-specibc causal covariance can be com- X ) Y X (\g) X

puted usind' (1) = 91,35, yielding:
. Figure 4. Causal diagrams for (a) the one-confounder
Covg, 1 (X, Y )1 = Cov(X,Yg, i1 # Yo 4ix<1)

galx* setting whereX andY are confounded by the variable
=Cov(X,Yw, .w, . # Yyx), (11)  Z», of whichZ, is a parent node; (b) the twin network

#
which coincides with the direct effect (Eq. 5 with = for the model of (a) undedo(x").

{W3, W,}). Fig. 3(e-f) shows a graphical representation

of this procedure.

. . . . tral role in the analysis of the spurious relations relative
The path-specibc quantity given in Def. 8 has a5 the pairX,Y . The spurious covariance measures the

othe::r desirable property, namely, the causal COVaNance  relation between the observatioXaknd the counter-
Covy (X,Y ) can be decomposed as a summation ove

. ?actuaIYX* (Def. 2). We will employ in our analysis the
causal patchs fronx tOCY ; To Wl’tn,e,s S, Prst let an or- twin network [Balke and Pearl, 1994; Pearl, 2000, Sec.
der over! ¢(X,Y ) belL®: g < 4a& g,. For a path

g %! S(X,Y ), the orde ¢ debnes a function$ which 7.1.4], whichis a graphlcal method to analyzing thg rela-
c ; ; tion between observational and counterfactual variables.
maps fromg; to a set of path& 7 (g;) that precedey in

c Cl ) — _ O
L% 1e,LE(g) = guisy. We derive in the sequel a o iio the causal modkt in Fig. 4(a), for example,
path-specibc decomposition formula for the causal co- X
variance relative to an ordér where the exogenous variablgd;, U,} are shown ex-
) T licitly. Its twin network is the union of the modél
c plicitly.
Theorem 2. For a semi-Markovian modéVl, letL® be  (tacqyal) and the submodély. (counterfactual) under

an order overt °(X,Y ). For anyx, the following non- interventiondo(x*), which is shown in Fig. 4(b). The

parametric relationship(hold: factual M) and counterfactuaM - ) worlds share only
CoOvE(X,Y) = CovEpy (O, Y )is . the exogenous variables (in this cas,, U,), which
X o1 (XY ) 9kl ! constitute the invariances shared across worlds. In this

twin network, the observationa{ and the counterfac-

Thm. 2 can be demonstrated in the model of Fig. 1(a)tual Yx- are connected through two paths: one through
Let an orderL® over gy 4 beg < gj if i < j . U; and the other througbl,. These paths correspond to
First note that the path-specibc causal covarianag of W0 pathways fromX to Y in the original causal dia-
(COVE, (X, Y )Lp) and gs (Covl, (X, Y )ig) are  gram:i# : X " Zp " Z; " Ul Za b Zp 1 Y,

g2 [x gs[x Sy "
equalzto, respectively, ’ and# X " Zp;" Ul Zp! Y.
& ' o . .
Note that when considering the corresponding paths in
X, Y # Y 12 - -
COV& nWew Wow, Wi (12) the original graph (Fig. 4(a)), these patls, ¢) are not

(13) necessarily simple, i.e., they may contain a particular
node more than once. Furthermore, each path can be

The causal covarianc€ovS(X,Y ) can then be de- partitioned into a pair of causal paths (sgy,g,) from.
composed as the sum of Egs. 10-13, respectively? cCOmmon source); % U (e.g.,# consists of a pair
01,04, %, Gs. Fig. 3 describes this decomposition pro- (9. 9,), whereg, : Uy ! Z; ! Z, I X, and
cedure: we measures the difference of the outcomé& :Ui! Zi1! Zp! Y). Indeed, these non-simple
Y as the interventiomlo(x*) propagates through paths paths are referred to aeksin the causal inference lit-
01, G2, O3, Ga. The sum of these differences thus equateerature, which usually has been studied in the context of
to the total inBuence of the interventiay(x*) to the  linear models [Spirtest al, 2001; Sullivanet al, 2010].
outcomey,, i.e., the causal covarian@ovs. (X, Y ).

Cov X, Yw,, — wi. # Yw,  w, .
.

Debnition 9 (Trek). A trek # in G (from X to Y) is
an ordered pair of causal patfg, g-) with a common
5 DECOMPOSING SPURIOUS exogenous sourdd; %U such thag, %! °(U;, X) and
RELATIONS o %! ¢(U;,Y). The common sourcH; is called the
top of the trek, denotetbp(g, g; ). A trek is spurious if
We introduce in the sequel a new strategy to decomposg, %! °(U;, Y |X), i.e.,g; is a causal path frord; to Y
the spurious covariance (Def. 2), which will play a cen- that is not intercepted bX .



We denote the set of treks frold to Y in G by U U U -
T(X,Y)e and spurious treks b S(X,Y )g (G will Tl{X 27 T Y | X2 Y

be omitted when obvious). We introduce next an esti- U, U,

mand for a specibc spurious trek. For a spurious trek (@) X, Yy (b) Xu1, Y ug -

# = (0,9 ) with U = top(#), brst letX denote the ! (1,21
path-specibc potential response 1, whereU; is an . Uy U . up U

i.i.d. draw from the distributiorP (U;). Similarly, let Tz{X <. o Y I X . Y

Y g = Yyeg ur'% whereUf - P(U;). Pure trek- U UL Uj

specibc covariance can then bnally be debned. (©) Xy1. Yy us (d) Xy

Debpnition 10(Pure Trek-Specibc Spurious Covariance)
For a semi-Markovian modeM and a spurious trek
#=(9g,0) with Ui = top(g, o), the pure#-specibc
spurious covariance of the treatmeat= x* on the out-
comeyY is debned as:

Covify (X, Y ) = Cov( X # Xg, Yar # Yo g, ).

}/X 1

| r
n.2’ Vi g

Figure 5. The decomposition procedure of the spurious
covariance over the spurious treks# (Thm. 3).

Debnition 11(Trek-Specibc Spurious Covariancéjor
a semi-Markovian modeM , let # be a spurious trek
In words, the differenceX # X andYy- # Yy- g, are (9, 9) and” is a function mapping to a pair” (#) =

simply measuring the effects of the causal pahand  ("1,"r) where"; and", are sets of causal paths frdth
g (Lem. 1), while theCov(§ operator is in charge of such thaig )%'| andg: )%',. The#-speciPc spurious
compounding them. (In the extreme case wheor g covariance of the treatmeMt = x* on the outcome,

are disconnected, the putespecibc spurious covariance denoted byCoviS, . (X, Y ), , is dePned as
will equate to zero.) For example, the putespecibc

spurious covarianc€ov:® ,.(X, Y ) in Fig. 4(a) is Cov(Xy, # Xy grgy: Yx= 1 # Yen 8{g})-

Cov(X # Xg_, Yxx # Yy= g, ). (14) The next proposition establi_shes the_ relationship petween
! ! Def. 11 and the corresponding spurious treks. This prop-
Note that the counterfactuaks, andYy- g, assignthe erty canbe seen as a necessary condition for any measure

randomized interventiondo(U}), do(U]) to the paths of strength for spurious relations.
o,, 9, respectively. By Def. 6, Eq. 14 is equal to: Property 6. #)% PF(X,Y) ( Cov.t.s[x*](X, Y) =0.

Cov(X # Xy, Y- # Y- ). As an example of Def. 11, the trék in Fig. 4(a) consists

This quantity can be more easily seen through its graph©f Pathsgi, Uz ! Zp ! X andg, 1 U ! Zo ! Y.
ical representation in Fig. 5 (top). The main idea is to!fwe set” (#) = ({g,}.{g.}), th(?#g-spembc spurious
decompos#J; into two independent componentg, U] covariance can be measured®gv-’,, . (X, Y ), , i.e.,
(Fig. 5b), which is then contrasted with the world in

which Uy is kept intact (a}! 12 We note that by Def. 6, Cov(Xg, # Xg ,» Yxrgr, # Yerg, ) (15)
X = X%andYx* = Y- 0 The puret; -specibc spurious = Cov( Xy # Xyt Yeeur # Yeour ). (16)
covariance can be written as: 1 pa’ XU Y.z

Covts (6 Y) = Cov( Xoght Xg, Yo o6 Yoeg.. ). Eq.16is graphical_ly represented in Fig. 5(c-d),_vvhere the

! " ' ! effect of the treké is measured. In words, the difference
More generally, the pure trek-specibc spurious covaribetween Fig. 5(c) and (d) is the effect of the causal paths
ance for# = (g,0:) measures the covariance of vari- g, andg,, whenU; is kept intact versus when divided
ablesX,, # X, &{q) andYx-, # Yy« &g}, Where into two independent components}( Uj).

", (") is an arbitrary set of causal paths frahthat does . . . .
) y b Armed with the depPnition of trek-specibc spurious co-

not containg, (g;). This observation will be useful later . bnallv studv the d bility of
on, which leads to the trek-specibc spurious covariance’arnance, we can bnally study the decomposanility o

the spurious covariandgov; . (X, Y ) (Def. 2). First, let
%Y+ g, (ur] is the g -specibc potential response ¥fto ~ US & U denote the maximal set of exogenous variables
do(gr [U]) in the submodeM 4 «. that simultaneously affect variableé and Yy (com-

!IThis operation can be seen as the parallel to the pure pathmon exogenous ancestors), and let an order bebe
specibc covariance (Def. 7), with the distinct requirement thatLﬁ : Uy < 4a& U,. For eachU; % US, letL$
the replacement operator, used to generate the differences, |S i L. i c i
not relative to the observex, but the corresponding; . be an ordej, < aa& g over the set °(U;, X).

12T avoid clutter, Fig. 5 is a projected version of the original Similarly, we debne.p for ! ¢(U;, Y|X). The tuple
twin network focused on the relevant quantities (w.l.g.). LS = L5, {(L},L?)}1 iy us/ thus dePnes an order



for the spurious trek3 3(X,Y ). We denotd_} afunc- Lemma 2. For a semi-Markovian mode\l, for each

tion which maps from a tre# to sets of pathk ¥ (#) cov-  spurious trek# % T°(X,Y ), there always exists a

ered by the spurious treks preceditign LS. Formally,  unique most distant recurring nodg.

given a spurious tre = (g| , ¢, ), LT (#) is equal to . .
. A For a spurious path let TS(l) = f *1(l) denote its cor-

(" “(Ypis 1. X), g{m ! “(Unis 1. YIX), glru.k _y)- responding treks. Specibcally, lif)%! (X,Y ), then

. - for each# % T3(1), we must havet )% TF(X,Y ). For
We are now ready to derive the decomposition formulaInstance if the spurioukin Fig. 4(a) is disconnected
for the spurious covariand@ov;. (X, Y ). ' P g f

i ) < e.g..Z2 )! X, trekst,# are both disconnected as well.
Theorem 3. For a semi-Markovian modeé¥l, letL® = From this observation, we could naturally debne the spu-

L3 (L7, L7 )} iy us)/ be an order over spurious rigys covariance of a pathas a sum over treks ifis(1).
treks TS(X,Y). For any x*, the following non-

parametric relationshipzwold: Debnition 12 (Path-Specibc Spurious Covarianc€pr

a semi-Markovian moddWl with an associated causal

Covg-(X,Y) = Coviy (X, Y )i diagramG, let| be an arbitrary spurious path @&. Let
(T S(XY) " be a function that maps a trék= (g, g:) % T°(l) to

For example, in the model of Fig. 4(&)$ = {Uy,U,}.  apair" (#) =("1,"r), where", and" are arbitrary sets

# (#) is the only spurious trek associated with (U,).  of causal paths fron such thatg )%, andg: )%'.

If we consider the ordet S such thatL$ : U; < Uj, Thel-specibc spurious covariance of the treatmént

Thm. 3 dictates thaCov:.(X,Y ) should be decom- X" onthe outcome is deI:(>ned as

posed as the sum of Egs. 14 and 15. Fig. 5 shows

the graphical representation of this decomposition proce- Covipy (X, Y )r = Cov.t.s[x*](x, Y

dure: we measure the change of the covariance between TTEm

X and Yy« as we .disconnect the relations gc_)ing throughproperty 7.1)% S(X,Y) ( Covf[x*](X,Y ) =0.

# (assocaited withJ;) and# (U), sequentially. The

sum of these changes thus equates to the correlations Fhe surjectivity of the functiorf assures that the set

X andY along the spurious pathways, i.e., the spurious{T (N} s(xy ) forms a partition over the spurious

covarianceCovyy-(X,Y ). (See Appendix 2 for more treks TS(X,Y ). From Thm. 3, it follows immedi-

examples.) ately that the path-specibc spurious covariance (Def. 12)
has the property that expresses the spurious covariance
6 NON-PARAMETRIC PATH Covg-(X,Y ) as asumover (X, Y ).
ANALYSIS Theorem 4. For a semi-Markovian modéM! , letLs =

.Lﬁ,{(L,Si,Lf‘ )}1 i us)/ be an order over spurious
In this section, we put the results of the previous sectiongreks T(X,Y ). For any x*, the following non-
together and derive a general path-speciPc decompogparametric relationship hold:
tion for the covariance of the treatmeXt and the out-
comeY without assuming any specibc parametric form. Covg-(X,Y) = Covi1(X, Y )i

(! s(XY
We start by noting that each spurious path fr&nto Y ()

corresponds to a unique set of spurious treks that stais gn example, the path: X " Z, ! Y in Fig. 4(a)

on X and end inY. Recall that a spurious pathcan corresponds ta 3(1) = {#,#}. For an arbitrary or-
be seen as a pair of causal paths g ), where the only  der LS, Thm. 4 is applicable and immediately yields
node shared amorgy andg; is the common source. For Covi.(X,Y) = Cov f[x*](xyy )Ls » Which means that
example, the spurious patht X " Z, ! Y isapair the path accounts for all the spurious relations between
(9,9)suchthat : Z, ! X andg, :Z,! Y.Wecan X andY. Inother words, the spurious joint variability of
thus dePne a rule which maps a trei % T5(X,Y ) to X andY is fully explained by the variance &, which

a spurious path%! °(X,Y). For# = (g, o), letVi be s a function of the exogenous variablgs (through#)
the most distant recurring node frdop(g, g-) suchthat  andu, (through#).

V, is the only node shared among subpajif¥;, X ) and )

o (Vi, Y); the pair(gi (Vi, X ), & (i, Y)) corresponds to Thms. 1-2 and 4 together lead to a general path-specibc
a pathl in ! 5(X,Y). As an example, the tref in decomposition formula, which allows one to non-
Fig. 4(a) hasV, = Z,, which corresponds to the spu- parametrically decompose the covarianCev(X,Y )
riouspath : X " Z,! Y, and similarlyf (#) = | as over all open paths fro toY in the underlying model.
well asf (#) = |. Lem. 2 shows that the rufeforms a  Theorem 5(Path-Specibc Decompositionfor a semi-
valid surjective function. Markovian modeM , letL ¢ be an order ovet ¢(X,Y)



andL® = .L§,{(L},L? )} iy us)/ be an order over P(x,yx*ywx*yz%) can be estimated, respectively, from
TS(X,Y). For anyx*, the following non-parametric re-  the observational distributioR (x, y, z, w) as follows:

lationship hold: P(X,Yx+)= Z P(yIx*,w,z)P(w|x*,z)P(x,2)
Cov(X,Y) = CoViix (X, Y )is zw
I e(X,Y ) (17) P(X,yx*w)= ZP(VIX*,LW)P(X,Z’W)
+ oVl (X, Y )i - . b o
ey ) | P Yxew, 2y )= D PUYIX",Z,W)P(WIX",2)P(x,2')P(2)

z,z'w

We illustrate the use of Thm. 5 using the model discussed'Ct€ that all the quantities listed in Thm. 6 are ex-

in Sec. 1 (Fig. 1(a)). Recall that andY are connected pressible in terms of conditional distributions and do not
through the causal pathsg, |, and spurious pathlg, 4. involve any counterfactual (simple nor nested), which

Note thatUs = {U;} spuriously affects the treatmext '€ readily estimable from the ob;ervational distripu—
throughthe patly = U; ! Z ! X, and the outcom¥ tion. Asc an example,_ thé,-specibc causal' covari-
through the pathg,, = Uz! Z! Y andg, = Uy ! ance Covj, (X, Y )¢ in Eq. 18 can pe written as
Z! W! Y.LetorderL®bel; <I,andL$ beg,, < Cov(X,Yx~w) # Cov(X,Y>_<*),_ WhICh is computed
o,. For any levelx*, Thm. 5 equates the covariance from the counterfactual distribution® (x,yx+) and

Cov(X, Y ) to the sym o COVﬁ 1 (X, Y)is ., ,and E(x, Yx+w ), respectively. .These.dis_tribgtions can be es-
Cove %y hich be w 'tt_ ' timated from the observational distributi®(x, y, z, w)

OVii (X, Y )Ls 5 4» Which can be written as following Thm. 6. Indeed, the path-specibc decompo-

Cov(X, Y, # Yxrw 3:+ ?OV(X-ij#W # YX% sition formula (Thm. 5) is identiPable in the model of

Fig. 1(a) regardless of the ordef andL*®. (For identi-

Xty Xt WY pcations of other decompositions, see Appendix 1.)
+COV(X #XU£’YX*#YX*,W><*ZUI’)
! "# $ (18)  We further considered the identipability conditions for
ERANE the path-specibc decomposition formula when the more
+ ?OV( X # Xyl Yxl*'#vx*,Z% # Yx*,ugzk, stringent assumption that the underlying structural func-

tions are linear is imposed.

. Theorem 7. Under the assumption of linearity and the
which are all We”'depned, Computable from the StrUC'aSSumption of F|g 1(a), for any arbitrary ordet§ and

lg: X" 2! W'Y

tural causal model [Def. 1; Pearl, 2000, Sec. 7.1]. Ls, for anyx*, the path-specibc covariance laf |, I3
andl, are equal to:
7 IDENTIFYING PATH-SPECIFIC CovE, pry (6 Y )zp = Lywe COVE, pery O Y Dzp = L wd v
DECOMPOSITION C0V|S3[x*](X,Y Yeg = ! xz! vz, COVEA[X*](X,Y Yes = ! xzh wz! vw

The parameters can be estimated from the correspond-

By and large, identipability is one of the most studiedi,q partial) regression coefbcients [Pearl, 2000, Ch. 5].

topics in causal inference. It is acknowledged in the lit- . ]
erature that obtaining identibability may be non-trivial Clearly, after applying Thm. 7 to Eq. 18, the resulting
even in the context of less granular measures of caus&€cOmposition coincides with WrightOs method of path
effects, including quantities without nested counterfac-coefPcients in the linear-standard model (Eq. 1).

tual and following the do-calculus analysis. 8 CONCLUSIONS

In this section, we start the study of identibability condi-\yg jntroduced novel covariance-based counterfactual
tions for when the path-specibc decomposition formulgye a5 res to account for effects along with a specibc path
(Thm. 5) can be estimated from data, when the SCM i m a treatmenX to an outcomeY (Defs. 8, 11-12).

not fully known. WeOll analyze the causal model disyyg developed machinery to allow, for the Prst time, the
cussed in Fig. 1(a) given its generality and potential topon_narametric decomposition of the covarianceXof
encode more complex models. The main assumption engqy a5 a summation over the different pathways in the
coded m_thls mode_l is Markovianity, i.e., that all €X0g€- nderlying causal model (Thm. 5). We further provided
nous variables are independent. We show next that ideNgentibcation conditions under which the decomposition
tibability can be obtained under these assumptions.  ¢5rmula can be estimated from data (Thm. 6-7).
Theorem 6. The path-specibc decomposition of Eq. 18

is identipable if the distributiorB (x, yx-), P(x,yx-w) Acknowledgments

and P (X, yx-w,-.z,,) are identibable. Specibcally, Bareinboim and Zhang are supported in parts by grants
in the model of Fig. 1(a)P (X,yx+), P(X,yx=w), and  from NSF IIS-1704352 and 11S-1750807 (CAREER).
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Non-Parametric Path Analysis in Structural Causal Models
Supplemental Material

1 PROOFS

Proofs build on the exclusion and independence restric-
tions rules of SCMs [Pearl, 2000, pp. 232], and three ax-
ioms of structural counterfactuals: composition, effec-
tiveness, and reversibility [Pearl, 2000, Ch.7.3.1].

Proof of Property 1.If X has no spurious path connect-
ing Y in G, the independence relation Yy~ 1L X must
hold for any a' [Pearl, 2000, Ch. 11.3.2], which gives:

Cov;.(X,Y)=Cov( X,Yx)=0. O

Proof of Property 2.If X has no causal path connecting
Y in G, then for any 2", Yy« = Y. This implies:

Cov.(X,Y)=Cov(X,Y —Y)=0 O

Proof of Property 3.We first consider the total direct co-
variance. To prove COVSE (X,Y) =0, it suffices to show
that for any z, 2" , v,

P(xayx*,W) = P(x7y) (1)

Let PA = Pa(Y’). Conditioned on PA, W, P(x, yx+~w )
can be written as:
!
Pz, yx+w) = P(x, yx« w |[pa, w) P(pa, w)

w.pa

= P(x, yx+ w [paw, w) P(pa, w).

w,pa

The last step holds by the composition axiom: for any w,
if W(u) = w, then PA(u) = PAw(u). We will next
show that for any u, w, ' ,

PAw(u) = PAx-w(u). (2)

We will prove this statement by contradictions. If Eq. 2
does not hold, there must exist a unblocked causal path
from X to a node in PA given W [Galles and Pearl,

1997]. Since P A are the parents of Y and X ¢ Pa(Y),
we can find a indirect path from X to Y given W, which
contradicts the definition of mediators. Eq. 2 implies
that:
!
P(LE, Yx*w |paW1 w)P(pa, ’ZU)

- P($7yX*,W |an*,W7w)P(pa7w)

P(xvyx*,pa,w |pax*,w,w)P(pa,w)

w.pa

P(:177 Ypa,w |pax*,w , w)P(pa, w)

w,pa

The last steps hold by the assumption that X 4 Y': since
all parents of Y are fixed, the exclusion restrictions rule
gives Y« paw (1) = Ypaw (u) for any u,z', pa, w. Ap-
plying Eq. 2 and the composition axiom again gives:

P(Z'ny*,w)

P(xv Ypa,w ‘pax*,w ) w)P(pa, w)

w.pa

P(xaypa,w \pa,w)P(pa,w)

w.pa

P(z,y|pa, w) P(pa,w) = P(x,y),

w,pa

which gives Eq. 1. To prove the pure direct covari-

ance Covg'i (X,Y) = 0, it suffices to show that for any
]

x? € k) y’

P(z,yx-) = P(z,yw,.)- 3)

By expanding on Wy, PAw, ., P(yw,.) is equal to:
!
P($, yWL*) =

o2

= P($7ypa,w |paW7wX*)P(paWan*)'

w,pa

Pz, yw |paw»wx*)P(pQWawx*)



The last step holds by the composition axiomPIf.,, =
pa, thenY,, = Y,q,. SinceX !" Y in G, we have
Yoaw = Yz' paw, Which gives:

Z P(:Z:, ypa,wlpawa Wyt )P(paw, Wyt )

w,pa
= Z P(2,Ys' pa,wlpuw, we ) P(paw, wy ).

w,pa

Applying Eq. 2 gives:

Z P(SE, Yz' pa,w Ipawa Wyt )P(pauu Wy )

w,pa

= Z P(fﬁ,yz! ,pa,wlpaz! wy We! )P(pax! wy We! )

w,pa

= Z P(m7ya:! ,pa,wlpaxywa:! )P(paa:; Wyt )
w,pa

The last step holds by the composition axiom:
Wy (u) = w, PAy w(u) = PAg(u). Apply the com-
position axiom orY,: ,,.,(u) again gives:

Pz, yw, )
= Z P(2, 92 pa,wlpaa, we ) P(pag, wy )

w,pa

= Z P(xvywlpawvww! )P(pawvww! ) = P(ﬂﬁ,yx! )7

w,pa
which proves Eg. 3. O

Proof of Property 4.Without loss of generality, we sup-
pose the mediatoﬂsW| > 0. To prove the pure indirect

covarlanCECov (X,Y) =0, it sufbces to show that for
anyz',u,

We will brst show that if IT*(X, Y)| = 0, then for any
x',u, w, one of the following equation must hold

=Y (u).

Yo (u) =Y (u),
Wyt (u) = W(u).

()
(6)

Suppose that Eg. 5 and 6 both fail, there must exist Lov;: (X,Y) =

unblocked causal path frolX to W and a unblocked

causal path fromi to Y. We then bnd an indirect path
from X to Y, which is a contradiction. Either Eq. 5 or 6

imply Eq. 4.

To prove the total indirect covarian€av’; (X,Y) = 0,

it sufbces to show that for any , u,
Yo (u)

=Y ww(u). (7)

Similarly, We will show that if|TI*(X,Y)| = 0, then
foranyz', u, w, Eq. 6 and the following equation cannot
both be false:

Yo w(u) =Yy (u), (8)
Suppose Eg. 6 and 8 both fail, there must exist a un-
blocked causal path frodd to W and a unblocked causal
path fromW to Y given X. Since removing condition-
ing nodes only opens up more causal path, we then bnd
a indirect path fromX to Y, which is a contradiction.
Either Eq. 6 or 8 imply Eq. 7. O

Proof of Theorem 1By basic mathematical operations,
Cov(X,Y') can be written as:

Cov(X,Y) = Cov(X,Y # Yy ) + Cov(X, Yy )
= Covi (X,Y) + Coviy (X,Y).

if Cov:, (X,Y) can be further decomposed as:

Covl (X,Y) =Cov(X,Y)# Cov(X, Yy )
— Cov(X,Y) # Cov(X, Yy 1)
+ Cov(X, Yy w)# Cov(X,Yy )

= Cov(X,Y) + Covih (X,Y).

By replacing the ternov(X, Y, w) in the above equa-
tion with Cov (X, Y, ), we have:

Covi (X,Y) =Cov(X,Y)# Cov(X,Y,)
= Cov(X,Y)# Cov(X,Yw, )
+ Cov(X,Yw, ) # Cov(X,Yy)

= Cov’? (X,Y) + Cov¥ (X,Y). O

Proof of Corollary 1. In the linear-standard model, val-
ues of XY, Z, W are decided by the following func-
tions:

Z=1Uz, T =0xzZ+uUx, W= awxr + awzz + uw,

Y = Qyx® + ayzz + ayww + uy.
ComputingCov;: (X,Y) gives:

Cov(X,Yy )
= Cov(X, ayxz' + avzZ + aywWy + Uy)
= ayzZCov(X, Z) + aywCov (X, W, )
= ayCov(X, Z) + aywCov(X, awx + awzZ + Uw)
= (ayz+ aywawz)Cov(X, Z)
= (ayz + aywoawz)Cov(axzZ + Ux, Z)
= (ayz+ aywawz)axzCov(Z, Z)
= (ayz + aywawz)axz



The last step holds sin€éov(Z,Z) = Var(Z) = 1. We  and the length of all paths ifi; is no greater than

can comput&ov® (X, Y ) as: N, [TIX,Y )romy| = 0 implies that Y, (u) =
it Yo (U). We use this assumption to prove that for

Covyr (X, Y ) = Cov(X,Yw, —Ya) ", with the length of paths no greater thah + 1, if

= Cov(X,! vyX +!vzZ +! ywWy + Uy) [TI°(X,Y )mo.mi | = 0, then for anyx*, u, Eq. 9 holds.
— Cov(X,! vsX* + 1 yzZ + ! yaWy + Uy) We will prove its contra-positive statement: if Eq. 9 does

not hold for somex*, u, then we can bnd a causal path
gfrom X toY whereg is contained irf' ; but notin" g,
i.e, [II°(X, Y )rg,m | > 0.

If Eq. 9 does not hold for some*, u, then one of the

=1 YxCOV(X,X ) =1 YX-

Similarly, Cov? (X, Y ) is equal to:

Covil (X,Y ) = Cov(X,Y — Yo w) following cases must hold:

= COV(X,! Yxx +| YZZ +| wa + Uy)

— Cov(X,! vyX* +1vzZ + ! ywW + Uy) 1. There exists a variable), € U such thatU; €
=1 yxCov(X,X ) =1 yx X oy, Ui € X,y and its treatment assignment

u? is different from its natural value,.
Finally, Cov®i (X,Y ) andCov’ (X,Y ) can be written

as: 2. There exists avariabl; € X, v, X; € X oy

. andxj # X, P y<no>[1!1<u)'

Cov’ (X, Y ) = Cov(X, Yz w — Ya )

= Cov(X,! vxX* + ! yzZ + ! ywW + Uy) 3. Therrletr?xgtsavarlabl& € (Pa(SY)GmV)—Xm—w
— Cov(X,! vyxX™ + 1 vzZ + ! ywW, + Uy) suchinab, ;. 5w {(u) #S, ER y(nl)[z!J(u)'

=1 X, W — W, ,
ywCov( ) We will next show that for each of the above cases,

= ! ywCov(X, b wiX + ! wzZ + Uw) one can bnd a causal paghe II°(X,Y ), »,. As for
= ywCov(X, T wyx™ + ! wzZ + Uw) Case. 1 and 2, it immediately follows that the direct
=1y wxCov(X,X) links U; — Y andX; — Y construct a causal paths
=1 vl wx g€ II°(X,Y )y x, respectively.

Cov'? (X,Y ) = Cov(X,Y — Yy, ) As for Case. 3, by the assumptic®, _. ., (U) 7#

= Cov(X,! vxX + ! y2Z + ! ywW + Uy) S, o vl ,(u) implies that there exists a path €

— Cov(X,! yxX +1vzZ + 1 ywWy + Uy) (X, Si)1 5 y(mo)! s, v(m)- We can then construct

. X W — W a casual pattg from X to Y by appending the edge
=L ywCov(X, W =Wy ) S; — Y to gs. By the debnition of the funnel opera-
= vw wx- O tor! g,y (), we must haveg € TI*(X, Y )y .1, -

To prove Lem. 1, lety, = "(9),"1 = "(9) U {g}. If
g ¢ II°(X,Y ), then|II*(X, Y )ry,x | = 0. This implies
that Eq. 9 holds, i.e.,

Proof of Lemma 1We will prove this lemma by show-
ing a more general case. L&}," be arbitrary sets of
causal paths fronX suchthat ¢ C " ;. LetII®(X,Y ),

denote the set of open causal path$jrwhich connects

Y from X, i.e., TI°(X, Y ) N o, S0 doedI*(X, Y ), = V) 1(U) = Yro)utoyiat 1 (U)- =
IIe(X,Y )N ";. LetII*(X,Y )r,~, denote the differ-
ence of setdI°(X,Y ), —II°(X,Y ).,. We would like ~ Proof of Property 5.Lem. 1 implies that for anx*, u,
to show that if II°(X, Y ), =, | = 0, then for any*, u, .
9 (X, Y ) = Ya(g) 1 (U) = Ya(g)ugeyat 1 (U)-
Y.,FU[,C! ](U) = Ym[m! ](U) (9) . )
This gives
We will prove this statement by induction on the length
N of the longest causal pathin. Coviyp 1 (XY )x
Base Caself N = 0, the means tha‘to =" = 0. By = COV(X, Yﬂ(g)[x!] — Yﬂ.(g)u{g}[ac! ]) =0. O
debnition,Yﬂo[m! ](U) = Yﬂl[m! ](U) = Y(u),ie., Eg.9
holds. Proof of Theorem 2By debnition,

Inductive Case: Assume that for an arbitrary variable
Y € V and sets of causal pathg," ; where", C " Yoz 1(U) =Y (u)



Following the orderL®, let g1 n; denote! °(X,Y ). In
the model associated with tigg »1-specibc counterfac-
tuaIY

the mterventlorX = x' , e,

Yoo xt 1(U) = Yxr (U)

Thus, the causal covarian@vs (X, Y ) is equal to:
CovS(X,Y)=Cov(X, Y ! Yy)
= Cov(X, Yrpe 1! Yo, ')
=Cov(X, Yoy ! Yoty
+Cov(X, Y 1! Yoo 1)
= Cov(X, Yee (g 1! Vi (ans i)
+Cov(X, Y 1! Yoo 1)
—Covgl[X 1Y )e
+Cov(X, Yy 1! Vi)

! n
= CoV¢
i=1

atx 16 Y g -

Reorganizing the above equation gives
!
COVg(X,Y)z COVS[X!](X,Y)LF O
g$! ¢(X)Y)

Proof of Property 6. Let U; = top(!) and ("},";) =

"(1). ! =(g,0) "# T(X,Y) implies one the fol-
lowing conditions:
g "# (Ui, X), (10)
o "# (Ui, Y[X). (11)

By Lem. 1, Eq. 10 implies that for any , u, u!:

X (W) = Xy s gy un (W)

Eqg. 11 implies that in the submod#®l,: with an asso-

ciated causal diagra®,: where all incoming edges of
X are removedg, "#! °(U;,Y)g,, . By the debpnition

of the submodeM
factualYy: is the outcomé in the submodeM y:
Lem. 1, we then have, for any , u, u',

. By

Yan (W) = Yo s gy purp(U).
The! -specibc spurious covariance thus equates to:

Cov < 1(X,Y)

:COV(X] | X!#{g|}1YX!,!r! YX!,!r#{gr}):O'D

To prove Thm. 3, we brst introduce two lemmas.

[Pearl, 2000, Ch. 7.1], the counter- Eq. 13|mpl|es thaXU|

Lemma 3. For a semi-Markovian model M , let an or-

2 xtp(u), all varlables are under the inRuence of Cov.: (X, Y ) can be expressed as:

der over US be LS : Uy < da& Up. For any X',
!n

COV(Xul - ' Xul YX Ur N l YX!,Ur. )_

" [Li" 1] [Lilyg”™ L1 ilge

denoted by Cov 5y (X,Y )u;

Proof. Following the ordet 3, letUp; 5 denoteUs. We
will use | {4} to represent an indicator function. Since

the exogenous variabldd, U[I » Uy n; explain all the

uncertainties ofvariable)su{1 an Yy! Ul We must

have: ’

P(XU' ayx U’ln])

= Xy, ()= xH{ Yo, (W)= v}
u y! u’[l’n] b

[tn]

apP(u)p (Ul[l,n])P(Ufl,n])-

Let Uy denote the set of exogenous variables which affect
X other tharlU®. Similarly, we debnéJy for Yy: . Since
Us is the maximal set of exogenous variables that affects
bothX andY,: , we must havé&Jy $ Uy = % The above
equation can thus be written as:

P(Xu' ln])

= {X (Upy py, Ux) = X}
|
[1.n]

81{ Y (Ufy 3, Ur) = YIP ()P (Ufy 0))P (Ufy )
= I{X(ul[lyn],ux) = X}P(UX)P(Ul[l,n])

! ux!u'[lvn]

a I{YX! (U[lyn],Uy):

Uy u

1yX T

r
u y u[l,n]

Y}P (uy)P (ujs ny)
o)

= P (X (Ui np) = X)P (U np)

l“hn]

& P(Ye (Ulpn) = Y)P(U] ) (12)
Uling
= P(xyy,, )P0k up,, )- (13)
&. Yy ’Url‘n], i.e.,
Cov(XU| ], )=0.

ln]

SinceUy, o) = % the spurious covarlandéoﬁxg (X,Y)
can be written as

Cov;: (X,Y ) =Cov(X,Yx)

= COV(XUE YX Ur1 ) | COV(Xul Yx! ’Urln ])
=Cov(XU| Yx Ul )! Cov(XU| Yx Ul 1])
+ Cov( XUE | YX Ur ) | COV(Xul YX- rU[rl,n ])



"L3,{(L}, L7 )}1 i us# be an order over spurious
treks TS(X,Y). For any x*, the following non-

_ In Cov(x Yoo ) parametric relationships hold:
- U['l gt X Ui g [
o s ts
Covy- (X, Y )y, = Covie (X, Y s
b Cov(Xyy Y up,) ST S(X.Y Uj)
We will next show that Proof. Let(!,,!,) denote the pair

COV(XU[E.' : s Yy UL 1])! Cov(XUgl“],YX" 'U['u]) (" *(Upin 1, X), ! (Upin 13, YIX)).
—COV(XU['l - ! Xu['m YUy b Y, ). Following the orderLs, let g{{ln] = I ¢, X) and

(14) g‘r[m] =1 ¢(U;,Y|X). Since the interventiodo(U})
(do(U!)) assigns a randomized treatméHt(Uf") to all

By the basic mathematical operations of covariance, I ,
causal paths |g|'[1 0 (g'ru,m ))- The termCov;- (X, Y )y,

Cov(XU[|1 - Yo 1]) I Cov(X U['l,‘]'YX” ’U[’l,i]) can thus be written as:

—COV(XU[|l - ! XU[|1|] Youg,, b Youg,) COV(XU['l..! | ! XU[|1 | Newn g b e,

+CoV(Xyy Vv, b Yeug) =COV(Xe ! Koo Yo b Yo ).

+ Cov(X Viir o X Uiy’ Yo Vi 1)' The above equation can be decomposed over causal paths
It sufbces to prove that for anyy, in gllu L

" I "0l o I "o
P(xuy ¥ ug,, )= POy oY wg,))  (15) Cov(X-, I X ‘/Ogluvn],vx o Yy ,/ug,[lvm])

P(xuy oY% ug, ) = POuy wyxeug ). (16) =C°V(X"|%g.i[1v0] P X oY Ve gy )
"ol I "ol "o l o
Let us brst consider Eq. 15. From Eqg. 12, the distribu- T €OV(X LT X '/“glu,n]’YX st e r/‘g’[l‘m])
t|0|"5P(Xu[' XU 1]) andP(xU; oYX Uu,]) can = Cov( X g 1 Xugg Y 1 Yy u"r%g;[lm])
be written as: e -y '
+ COV( X |%g|i[1 Y ! X"|%g|i[1 ) Yy w . P Yy '%g;[l i ])
P(x JYx' U ' '
( !U[Il,i ]! Yx 'l';[l.l ! 1]) + Cov(X. %] 1 X"|%9|' Y b Y e %g) )
= | _ [1,2] [1,n] [i.m]
= P(X (U[l,i]-u[i+1 1) = X)
U 1up Vi
z _ | In
AP (Y (Ufwir 232U 1) = YIP (U ) = COVKe g ! Ko
- g [
aP(U[li! 1])P(Ui)P(U[i+1 n): j=1 i mil
P(XLfll 'yx Uun]) Ve b Y ’"’%g;u,m)'
= P(X (Ul[l,i],u[m n]) = X) The summation term can be further decomposed over
Upist ngufy ) Uiy paths ing'rllm]:
2 " . ¢ = L
aP (Yx (U[]_’,], U[|+l ,n]) y)P(U[lJ]) COV(X . %g|‘ I X. |°/cg|i ' Yx" . I YX" " ot )
. v - r 1,m
aP(u[lyi! 1])P(Uir)P(U[i+1 n)- — Cov( X. ! | X [“]» e
, . o ov( Gl g T
SinceU andU" are i.i.d. draws from the exogenous dis- |
tribution P (u), we have foru; = uf, P(u;j) = P(uj). Y ARRL Yx ,”r"/@iu,l])
Replacingui with u; in the above equations gives Eq. 15. + COV( X o D X o
Similarly, we can prove Eq. 16. Eqs. 15-16 together g IPS
"o oqi ! T i
prove Eq. 14. O Yy . Yy, f/‘gr[l,m])
Lemma 4. For a semi-Markovian modelM, let = Cov( X+ oqi I X. i,
[jr1 1] ]

TS(X,Y ;U;) denote the set of spurious treks from
X to Y with a common sourcdJ;. Let LS = Yy L. P ¥ v"r"/(g:u,l])



+ Cov( X i I X P,
( MGy MG g,
Yr 1 o,y P Y n g',[m])
) | )
+Cov( X, I Xy o,
Yx" gl g;[le] ! Yx" g g',[l‘m ])
!m
= Cov(X i I X P,
- ( MGy P,
" i | " i .
Yx ’!’!gfu,k! 1 Yx ’!’!gf[l,k])
Together, we can obtain
In Im
Covi- (X,Y )y, = COV.F?k 1 O6G Y )Ls
j=1 k=1 '
v_vher(?!jfk = (g,‘j .0, ). Reorganizing the above equa-
tion gives:

!
Covg- (X, Y )y, = CoviS, (X, Y )5 . O
T S(XY W)

We are now ready to prove Thm. 3

Proof of Theorem 3By Lem. 3 and 4, we have:

[
Covi (X, Y) =
=L "T S(XY Ui

CoviSy 1 (X, Y s -

Reorganizing the above equation gives:
!
Covi-1(X,Y) = Covi%e (X, Y )s. O
"MTOS(XY))

Proof of Lemma 2 Existence. We will prove the exis-

tence ofV; by proving a stronger statement: in a semi-

Markovian modelM , for any non-simple path of the
form (g, g) whereg,,g- share a common sourcé
and have sinkK andY respectively, there always ex-
ists a most distant recurring nodle such thatv; is the
only shared common node among subpaif{%;, X)
andg; (Vt,Y). We will prove this statement by induc-
tion on the number of recurring nod¢ shared among

g| ] gl’ .
¥ Base CaseforN =1, then the common sourdég
is the most distant recurring nodie.

¥ Induction Case: Assume that for all non-simple

path of the form(g, g;) with N recurring nodes

V; such thatV; is the only shared common node
among subpathg; (V, X) and g (V,Y). We
will use this assumption to prove that for all non-
simple path of the form(g,g:) with N + 1 re-
curring nodes, the most distant recurring node
V; also exists. For a non-simple pafl,g ),
we bnd the next recurring nod¥* of g,g
other than the common sourc¢. The sub-
paths (g (Vi X), g (V* Y)) forms a non-simple
path withN recurring nodes. By the assumption,
for the non-simple path(g (V% X), o (V% Y)),
there exists a most distant recurring nddesuch
that V; is the only node shared among subpaths
g Vi, X), o (i, Y).

We will show that the most distant recurring node
Vi of (9(V¥#X),a (V%Y)) is also satisbed for
(9,9). SupposeV; is not a most distant recur-
ring node of(g, g ), this means that the subpaths
a(Vi, X),a (M, Y) share another common node
other tharv;, which contradicts our assumption.

Uniqueness. We will prove this lemma by contradic-
tions. Suppose there are two distinct no&gs V! for a
trek! = (g,g) such that foi = 0,1, V; is the only
node shared among subpathgV,', X ) andg; (V,', Y).
V.2, V;! must satisfy one of the following cases.

1. There exists a causal path fro4? to Vi in g, de-
noted by(V° " V{!)g , and a causal path from°
to Vil in g, denoted by(\V\° " V1), .

2. (V" VO)g and(VE " VO, .
3.(V2" Vg and(VE" V), .
4. (VA" V9g and(VO" V1) .

For Case. 1, we must have thét is also a com-
mon node shared among the subpagh®/’, X) and
g (V2,Y), which contradicts our assumptions. Simi-
larly, Case. 2 lead to an contradiction, 48 is also a
common node shared among the subpgfig?, X ) and

o (VHY).

For Case. 3, if exists a causal path froffi to V! and a
causal path fronv,* to V,?, the causal diagrai@ of the
semi-Markovian mode\l is not a DAG, which is a con-
tradiction. Similarly, Case. 4 contradicts the assumption
thatG is a DAG. Since Cases. 1-4 all lead to contradic-
tions, the most distant recurring nodg is unique for
eachtrekd #T3(X,Y). O

Proof of Property 7.For a spurious path = (g,0)

, there always exists a most distant recurring nodewith the common sourc¥,, if | $# S(X,Y ), then one



of the following conditions must hold:

o " eVL X)), g (VL YIX).

For eachl " T S(I), g,g are both its subpaths. This
implies that from the above conditions, we must have

I I"TS(X,Y). By Prop. 6, we have
!
Covipe 1 (X, Y )i = CoviSi (X, Y )y =0.0
"IT s(1)

Proof of Theorem 4Thm. 3 implies
1
Covgi (X,Y) = CoviSy 1(X, Y ) -
"IT S(X,Y )

17

Since the mapping : TS(X,Y ) # ! S(X,Y ) isasur-
jective function{T S(I) = f" *(I)}11 1 s(xv ) is a parti-
tion over the seT 5(X, Y ). Eq. 17 could be written as:
!
Covs: (X,Y) = Covi (X, Y )i

SURICO DI
= . . COV-t-S[X! ](X, Y )!
SO0y )T ()

Covjix: 1 (X, Y )1 O
1 s(X,Y)

Proof of Theorem 5By Thm. 1, we have
Cov(X,Y)=Cov; (X,Y)+Cov; (X,Y).

Applying Thm. 2 and 5 to the above equation gives
!
Cov(X,Y) =
I !|°(X,Y )
+ . COV?[X!](X,Y)L!S. O
rsxy)

C0V|C[X! ](X, Y )L?

We will next prove Thm. 6. Recall in the standard model
of Fig. 1(a),X andY are connected with causal paths
i : X # Y, : X # W # Y and spurious paths

I3 : X $ Z# Yandly : X $ Z # W # Y.
us =
pathg = Uz # Z # X and the outcom& through
causal pathgy, = Uz # Z # Y andg,, = Uz #

Z # W # Y. To prove Thm. 7, we will introduce

following lemmas.

Lemma 5. In the standard model (Fig. 1(a)), for an or-
der L® : I; < |5, the path-specibc decomposition of
the causal covarianc€ovy,: (X,Y ) (Thm. 2) are iden-
tibable if P(x,yx w) and P(X,yx:) are identibable.

Specibcally, distribution® (x,yx: w) and P(X,yx')

{Uz} affects the treatmerX through a causal

can be estimated from the observational distribution
P(x,y,z,w) as following:
]
P(X,yx' )= P (y|x*, z, w)P (w|x*, 2)P (x, 2),

zZ,W
|

PO, Yt w)=

zZ,W

P(y|x*,z, WP (x,z,w).

Proof. By Thm. 2, the causal covarian@ovg: (X,Y )
equates to

Covg: (X,Y) = Cov e 16 Y )Ls + Covi, o (XY )ig

We will show that each quantity on the right-hand side
of the above equation is identibable frahix, y, z, w).
For the ordet_© : 11 <15,

CoVf, i g(X, Y )Le, = CoviP(X,Y)  (18)
=Cov(X,Y %Yy w)
=Cov(X,Y)%Cov(X,Yx w),
Covf, e 1(X, Y s, =Covio (X,Y)  (19)

=Cov( X, Yy w %Yyx)
=Cov(X,Yx w) %Cov(X, Yy ).
It sufbces to show that distributior®(x, yx: w) and

P(x,yx' ) are identipable. By expanding oy Wy: ,
P (X, yx! ) can be written as:

P(>|(y)’x!)
= P (yx! |X,Z, Wy )P (wy: |X,Z2)P(X,2)

zZ,W
I

= P(yx! zw Xz, Z, Wyt z)P(Wx! 2]Xz,Z)P (X, 2).
zZw

The last step holds due to the following reasons: (1)
by the exclusion restrictions rule, singehas no parent
node in the model of Fig. 1(aX, = Z,: for anyx¥; (2)

by the composition axiom, we have:

Z=2z& X = Xg,
ZX! = Z& Wx! = WX!,Za
Zy =zZ,Wy = W& Yyt = Yyt 7w
By the independence exclusions rule, for afiyx, z, w,

(20)
(21)

Wx!,z”

"
Yx’ Z,W

XZ1Z|
Xz,Zny,z .

We thus have:
!
P(Yx! zw Xz, Z, Wy 2)P (Wx! 2|Xz,2)P (X, 2)

z,wW
!

= P(yx' zw )P (Wx: 2)P (X, 2)

zZ,W



Since the standard model is Markovian, Proof. By Thm. 5, the spurious covariance
Cov;: (X,Y ) equates to

P(wy: ;)= P(w|x',2), (22)
P(yx!,z,w): P(yIXI .Z;W)- (23) COV)S<! (X,Y)ZCOVE[X!](X,Y)L!S +COVF4[X1](X,Y)|_!C.
Thus, | We will next show that each quantity on the right-
P(X, Yy )= ' P(ylx',z, W)P(w|x',z)P(x,z). hand side of the above equation is identiPable from
7w P(x,y,z,w). In the standard model, Considering the

. . orderLs whereL? : < ,
By expanding orZ, W, P (X, yx: w ) can be written as: r-Gn <0

P XYt w) Cov e (X, Y )iz, = Cov(X # Xg., Y # Yur g,.)
_ ! P (Y wlX. 2, W)P (X, 2, W) =Cov(X # Xy, Yy # YX!va!vZUE)

g =Cov(X, Yy # Y w, ,Zug) (24)
= Plyx wiX zxt w, Wyz )P (X, 2, W) = Cov(X, Y1) # COV(X, Yt w,i 2,,)-

zZ,W

The last step holds due to following reasons: (1) By theThe last step holds sincé, is an independent counter-
composition axiomW = W, if X = x,Z = z;(2) factual variable: the variabD¢ is function overUy, UJ;
By the exclusion restrictions ruleg, = Zy: \ if Z has  the exogenous variablék, U} are independent of all the
no parent node. Applying the composition axiom againother variables in the domain. Similarly,

gives:

CoVf, 1 (X, Y )iz, = COV(X # X, Yt g, # Y g, )

= COV(X # XU'ZfYX! W ’ZU£ # YX! ,Ué)
= COV(X,YX! W Zys # Yy UE) (25)

ZX! W =27 ! YX! W = YX! ZW
We thlilS have:

P(yx: wliX Zxt w,Wxz )P(X,2,W)

zw, = Cov( X, Yy Wt ’ZUE)'

= P(Yx! zw X Zxt w,Wxz )P (X, Z,W)
zW

The last two steps holds sin&g,, andYy: y; are inde-
pendent counterfactual variables. It will sufbce to show
The independence relation 21 gives: that the distribution® (x,yx' ), P (X, yx' w . ,Zué) are

! identiPable. P (x,yx: ) can be identibed using Lem. 5.

P(X,yxt w) = P(yx! zw X, Zxt w,Wxz )P (X, Z,W) By conditioning onUz, P (X, yx' w,: ,z,: ) can be writ-
o) ten as: ‘
= P(yx!,z,w)P(XvZ:W) 1
v P, yx' w,: ,ZUE) = P yx w,: ,zurZ|Urz)P(Urz)
= Py, z,wP(x z,w). uz

2w With U} bxed, variableX and Yy w,, z,. are func-

The last step holds by Eq. 23. O tions of the exogenous variable, which is independent
Lemma 6. In the standard model (Fig. 1(a)), of U . We thus have the following independence relation

for a order LS where LY : g, < g,, the
path-specibc decomposition of the spurious co-
variance Covy, (X,Y) (Thm. 5) is identipable if
P(X, yx ), P(X, Yx' w,: vZUQ) are identibable. Specif-

U£ $ XiYX! ,WX! ,Zurzi

which gives:

ically, distributions P (X,yx'),P(X,yx' w, z,:) are W 7)) = Vel W 7 r
identipable can be estimated from the observational POy 20y) u POCY w2, )P (U2
distributionP(lx,y, z,w) as following: (26)
| "
P(yx)= P(yIx", z, WP (wix", 2)P(x, 2), By expanding orZ, Zy:, Wyt , P(X,Yx' w,: z,:) can
o ! . be written as: ’
P(Ya Wy 2,,) = POYX,w,2)PWiX,2) | ,,
zz"'\w P (X, yx: W ,Zurz) = P(X, yx! wz,Wx' ,2Z 'Zu’Z)

aP(x,z2")P(2) 22" w



Since the functiory; takes onlyUz as an argument, the This decomposition is induced by the ordétr: I; < I

variablesZ,; are deterministic, i.e., andL® whereL? : g, < gr,. Thm. 6 immediately
. follows from Lems. 5 and 6. O
P(z, yx-w,z awx*az'yzu’z)
= P(2,yx+wz Wy, 2 ) { Zuy, = 2} We next consider the identibcation of other decomposi-
whereI{a} is an indicator function. The above equation, tions of Cov(X,Y) in the model of Fig. 1(a). Indeed,
together with Eq. 26, gives: one could show that the decomposition @bv(X,Y)

(Thm. 5) are always identibable in the standard model

P(£FI» yx*,wx*,zui) regardless of the ordér® andLs.

|
= Pz, yx w2 ,wx*7z!). H{ Zy, = 2} P(uy) Lemma 7. In the standard model (Fig. 1(a)), for an or-
2w up derL® : I, < I, the p%th-specibc decomposition of
_ | the causal covarianc€ov;.(X,Y) (Thm. 2) are iden-
= PEyews,we, 2)P(). @7 ipable if P(x,yx-) and Pz, yw..) are identipable.
22w Specibcally, distributionsP(z, yx-) and P(z, yw..)
By the composition axiom and the exclusion restrictionscan be estimated from the observational distribution
rule [Pearl, 2000, Ch. 7.3], in the model of Fig. 1(a), for p(x, y, z, w) as following:

anyz,x I
Z=z! X= XZ7 P(Jf,yx*) = P(yl'r ,z,w)P(w|x #,Z)P(CC,Z),

zZ,wW

Z = Zy~, (28) 1 )
Iyx = zV Wy = Wx*,Z7 P(xﬂny*) = P(ylxasz)P(wlx ,Z)P(QZ,Z)

z,wW
The above relations imply that:
Proof. Consider the ordet® : I, < [;. The path-

specibc causal covariancelgfi, are equal to:
The independence restrictions rule [Pearl, 2000, Ch. 7.3]

implies that in the model of Fig. 1(a), counterfactuals Covfl[x*](X, Y)ig = CovSi(X, Y) (31)
XZ,,YX*,W_,Z , W= 2+, Z are mutually independent. We = Cov( X, Yiy.. " Yi)
thus obtain x

=Cov( X, Yw,.)" Cov(X,Yy-),
Covf (X, Y =CovP(X,Y)  (32)
=Cov(X,Y" Yw,.)
=Cov(X,Y)" Cov(X,Yw,.).

P(x, yx=w,z an*7z!) = Pz, Yx= w2 7wX*,Z’aZ!)

P(z7, yx= w2 7U/x*,z’azl)
= P(zz/) P(yx+w.z )P(wx*,z’)P(z!) (29)

Since the standard model is Markovian,

P(xy) = P(x|2'),

P(yx-wz) = Plylz",w, 2), (30) It sufpces to .shovy that distributionB(x,yW_x*) a_md

P(wg. ) = Plwlz’ . 2) P(_x,yx*) are |dent|babI§.P(x,yx*) can be identibed
' e using Lem. 5. By expanding afi, Wy, P(x, yw,.) can

Egs. 27, 29 and 30 together give be written as:
Pl zu) Pl )
= P(al) P(yle,w, 2) P(wlz", 2') P() P(2) = Plywle, 7wy ) Plwse|o, 2) P(x, )
2z’ W
! " 1 1 !Z’W
= P(ylz, w, z2) P(wl|z , 2" ) P(x, 2') P(). O = P(ywlzw, 2w, wx =) P(wx«|x, 25+ ) P(x, 2).
z,z' W z,W
We are now ready to prove Thm. 6. In the last step, sinc& is a non-descendant node of

X, W and X is a non-descendant node W@f, we have
Proof of Theorem 6Recall the target path-specibc de- 7 = Z,. = Z, andX = X,. By the composition
composition ofCov(X,Y) is: axiom,
Cov(X,Y " Yyew)+Cov( X, Yiew " Yi)
+COV(X " Xyp, Yoo " Yo, 2,;)

Z=2z! X=X,
Zy» = 21 Wy = Wy 7,
+COV(X" XU‘Z’Y;(*’Wx*,ZUQ ! Y;(*UQ) Xow=x,2y =2 Yy = Yizw -



which gives: The last step holds SII’]OéU| andYy: y; are indepen-
! dent counterfactual variablés. It will sufbce to show that
P (Yw [Xw, Zw, Wy )P (Wyt [X, 21 )P (X, 2) the distributions® (x, yx' ), P (X, yx: w1 ,, ) are identi-
! pable. By conditioning ob);,
P (Yxzw [Xw, Zw, Wyt )P (Wyr 2]X, zxt )P (X, 2) 1

zZ,W

IZ,W P(vax!,Wx!vui): P(X!yx!,Wx!,uleurZ)P(urZ)
= P(zw X2, We )P (W 2[X,2)P (%, 2) v
i With U} bxed, variableX andYy: w., o are functions
= P(Yxzw Xz, Z, Wyt )P (Wx: 2[Xz,2)P (X, 2Z) of the exogenous variabld, which is independent of
Fw U;. We thus have the independence relation
= N P (Yxzw [Xz,Z, Wyt )P (Wx 2|Xz,2Z)P(X,2) U $ X, Y w., "
The last step holds sincé = Z,: andZy: = z ! which gives:
Wy = Wy . Applying Egs. 20 and 21 gives: I
! P(X,yx!,szvué): P(vax!,Wx!,urZ)P(urZ) (35)
P(X,yw,: )= P (Yxzw )P (Wyr 2)P(X,2) uf

Z,W
|

= Pylxz,w)PWX',2)P(x,2).

zZ,W

By expanding orz, Z 5, , Wy us,,
!

P(XYx' W, ) = P (X, Yxt Wy ut,Z 5 Zur)
The last step holds by Egs. 22 and 23. O 2,2"w

Lemma 8. In the standard model (Fig. 1(a)), By the composition axiom and the exclusion restrictions

for a order L® where L} : g, < gr,, the ryle[Pearl, 2000, Ch 7.3] (treatingdy as an endogenous
path-specibc decomposmon of the spurious covariable), for anyz, x' , w, uz,

variance Covy, (X,Y) (Thm. 5) is identipable if

P(x,yx'),P(X, yx ,szyui) are identipable. Specif- Zy,= Zx' uy,

|Ca”y, dIStI’IbUtIOI’]S P(X,yxl ), P(X,yxl W Ui) are ZX! uz =27 I Wx! Uz = le Z,Uz = Wx! Z
identipable can be estimated from the observational 7z =z . |

distributionP (x,y, z, w) as following:
(I y ) 9 Zy: w = z! Yy w = Yy! W,z -

(36)

Pxyx)=  P(yIx',z,w)P(w|x",z)P(x 2), Egs. 28 and 36 imply
z,W |
P Yx! Wy y5) = P(ylx',w,z)P(wlx',2) P (X Yxt wy Wyt g, 2, Zur)
2z’ w = P(Xz", Yx! w,z"y Wx! 7, Z"! Zu’Z)

aP(x,z )P (2).
Since the functiorf ; takes onlyUz as an argument. The

Proof. Considering the order® whereL? : g, < gr,, variablesZ,;, are thus deterministic, i.e.,
COVIS3[x! (XY )Li! = Cov(X # Xg, Yy g, # Yx '9’[1,21) P(Xz', Yx! w,z "y Wy ,z:Z",ZuTZ)

=Cov(X # XU' Yt W, vt # Yy ,UQ) = P(Xz") Yx! w,z " Wy ,Z7Z'I)| {Zu'z = z}.

= Cov(X, Yt w,o oy # Y ug) (33)  The above equation, together with Eq.35, gives
=Cov( X, Yy L)

( X,Wx.,uz) P(ny Wlur) I

Similarly, = P(Xz", Yx' wz"s Wy! Zaz) |{Zu’z = z}P(u3)
COV} i 1(X, Y )Lz = Cov(X # Xg, Yo # Yyr g,,) 22" w ug

=Cov(X # XU'Z-YX’ # Yy val,ui) = P (X2 Yx! w2z Wyt 2,2)P(2)

z,z2" W
=Cov(X, Y # Vi w1 1) (34)

The independence restrictions rule [Pearl, 2000, Ch. 7.3]

= Cov(X, Yar ) # COVX, Yot w1 ) implies that in the model of Fig. 1(a), counterfactuals



X2, Yy w2zt Wy z,Z are mutually independent. To-
gether with Eq. 30, the above equation is equal to:

PO Yx wyeyr)
Z P(Xz )P (yx" wz1)P(Wx z)P (z)P(2)

= Y P(XIZ)P(yIX", w,z)P(w|x",2)P(z')P(2)
= > Py, wz)PWIX',2)P(x,z)P(z). O

Since Lems. 5-8 cover all possible ordéfs L3, the de-

compositions Thm. 5 are always identibable in the stan-

dard fairness model.

Proof of Theorem 7. By EQs. 18, 19, 31 and 32, we have

fororderL§ : I3 <l,andL§: 1, <Iq,

Covf e 1(X, Y )L, = CoviP(X,Y),
Covf, e 1(X, Y g, = Covit (X, Y),
Covfy ey (X, Y g, = Covie (X, Y),
Covfz[xvv](X,Y)Lgl =CovP (X,Y).

Applying Thm. 1 to the above equations implies that for

an arbitrary ordeL © overly; 7,

COVFl[X"](X,Y)L!c =1 yx, COVFZ[X"](X,Y)L!C = ux! yw.

Similarly,

Covp,ix 1 (X, Y )is,

= Cov(X, Y w,r zys ! Vi uy)
L ywCov(X, Wy ) + 1 yzCov(X, Wy us)
L wz! yw(Cov(X,Z ) + Cov( X, Z yy))

=1 xz! wz! yw.

(41)

We will next consider the ordér® whereL? : g, <0y, .
By Eqgs. 33-34,

COV?B[X](X,Y )Li!
:COV(X,YX" va",Ug Yy ,U;)
! yzCOV(X,Z ) + ! y2COV(X,Zué)

=1 xlyz (42)
and
Covp, e 1 (X, Y )i,
=Cov(X, Yy ! Yxw,- ,ug)
= ywCov(X, W)+ ! yzCov(X, Wy ,u;)
= xzb wz! yw (43)
Egs. 40 - 43 combined imply that for an arbitrary order

LS,
Covi,pe 1O Y )y = ! xz! vz

Covi, e 1O Y ) = U xz! wz! vw

We will next consider the path-specibc spurious covari-

ance ofls,l4. As for L® wherel?
Egs. 24-25,

. gr1 < gl‘ga by

COV|S3[X"](X,Y )|_:5ll
= COV( X, Yy b Yy W, ’Zué)
=1 yzCOV(X,Z ) + | yzCOV(X, Z UE) (37)

Since the domain is normalizedCov(Z,Z) =
Var(Z) =1, Cov(X,Z) is equal to

Cov(X,Z)=Cov(! xzZ + Uy, Z)

= !sza.r(Z) = !XZ (38)
Cov(X, Z y;) equates to:
Cov(X,Z u;) = Cov(! x,Z + Uy, Zus)
= COV( ! XZUZ + Ux, Ué)
=1 szOV(Uz, UZr) + COV( Uy, UZr) =0. (39)

The last step holds sinddy, Uy andU), are mutually in-
dependent. Egs. 37-39 together give:

COV|S3[X"](X’Y )'-i = xz! vz (40)

Specibcally, Parametérscan be estimated from the par-
tial regression coefbcients [Pearl, 2000, Ch. 5] as follow-

ing:

P}
Vyx = "vxzw, !

]
vz = "yvzxw, !

yw = "ywxz

Ywx="wxz, 'wz="wzx» 'xz2=!xz. O
2 EXAMPLES

In this section, we will illustrate the results presented in
this paper with more detailed examples.

2.1 PATH-SPECIFIC POTENTIAL RESPONSE

Consider the standard model of Fig. 1(a). Recall the
pathg; : X " W; " W, " Y. We next show,
step by step, the derivation of tlgg-specibc potential
responsery, ;. Since the edgX " Y #$ fu}, the
setX; 4 vy = % We thus haves = (Pa(Y)g & V) !
Xigy = {X,Wl,Wz}. By Def. 6,

You1x']
= Yx,

U xo# v(gl)[X“]'le W2|

Wy @D 2wy (a)x T



Since the edgeX ! Y andW; !

of g1,

Y are not subpaths

Pxr v (@) ="' wyp v(g)=".
By Def. 6, the above equation implies

X1 v(eix 1= X Wa, = W;.

Wyt y(g)la"]

Yg.1x*] €an thus be written as:

Yo=Y e
01[x"] XW 1,Wa2, Wy y(gnle']

Since! w,1 v (g1) returns the subpatfo (X, W)},

Yg1[X"] = YX’W 1'W291(X-,W2)[r"]’ (44)

is the path-specibc potential re-

Y #3$ §1(X, W)}, the setS
is {X,W 1}. Applying Def. 6 again,

where W291<x,w2.>[ o
sponse ofV,. SinceX !
for W291(X,W2 Nz"]
291 (X, Wp)l "]

= W2 . .
Xxr wy (o (X W)l e 1YL Wyt Wy (91(X, W)l 2" ]

Since

Pxrow, (X, W2) =",
Pwoow, (00X, W2)) = {a1(X, W)},

W> can be written as:

91 (X, W3)

2 e = W2 45
g1(X, W)= ] X’ngl(x,wl)[m"] ’ ( )

where Wi, xowpes is the path-specibc potential re-
sponse ofV;. Since the edgX ! Wi = g1 (X, W),
the setX W, = {X} andS = (Pa(W]_)G %V) &

Xyy w, = ". By Def. 6,
Wi, w1 = Wi (46)
EQs. 44-46 together give:
Youpc1 = Yxw 1Wex w, = YW2W1 -

2.2 DECOMPOSING CAUSAL RELATIONS

We will consider the model in Fig. 6 where causal ef-
fects fromX andY are mediated by, W», W3, and

all directed edges are confounded. There are eight causal ¢y

paths fromX toY:

g:X!1Y,

g X! WY,

g3 X! W! Y,

X! Wil Y,

g5: X Wil Wy! Y,

Os: X! Wil W3l Y,

g7 X! Wo! W3l Y,

gg: X! Wil Wy! Wzl Y.

X > Y
M
\Wz/

Figure 6: Causal diagram for the three-mediators set-
ting where causal paths frod andY are mediated by
Wy, Wo, W3,

Letan ordel € beg; < g; if i <j . Thm. 2 is applicable
and express the causal covaria@m®/s- (X,Y ) as:
| 8
Covg- (X,Y) =
i=1

C

Covg,x')

(X, Y )|_ sr .
covariance

The pathsgpecibc causal

Covg, (X, Y)Le ., gareequalto:

.....

C

gl[X”](X' Y )L?r =Cov(X,Y & Ygl[xu])
=Cov(X,Y & Yy wiwows),s

Covg, 1 (X, Y g = Cov(X, Yo,y & Yoy 51x1)

= COV( X,Yx" W1, W2 W3 & YX" Wy 'WZ'W3)’
Covga[x"](xy Y)ie =Cov(X, Yy 5x1& Yoy 41x71)

= Cov(X, Yo wy . wows & Y wy 2w

xz ,Wp

Covga[xn ](X’ Y )Lfr = Cov(X, Yg[1‘3] [x"] & Yg[1 alx ])
= COV( X, Yy Wi o Wo .

x

Cov.

Ws)s

W1 Ws

& Yy Wi o Wa o W3

z" Wy, Wy )’

Covg, 1 (X, Y )Le =Cov(X, Yg, ,ix'1& Yoo g1x'1)
= Cov(X, V' Wi - s

W1

W3

Wy 3wy Wy

),

& Yy Wi o Wz o« W3 .

2" Wy, Wa

COVSG[X" ](X’ Y )L ¢ = COV( X, Y9[1,5] x"] & Yg[l X" ])
= COV( X1 YX" ’Wlm" ,Wz{ﬂn ’WBm" W1 Wy
& Yy Wi Wa o Wa v s ),

COV37[X" ](X’ Y )L?r = Cov(X, Yg[l‘G] [x"] & Yg[1 alx ])

(X, Yx Wi« Wz o W3«

W1 o« W,
11’2

)

& Y Wi o Wy o W
x x x

W1 e Wa s

< Wy
COVSS[X" ](X’ Y )'-fr = Cov(X, Yg[1,7] [x"] & Yg[l X’ ])
& Yx" ).

= COV( Xv YX" ,leu ,szu ’W3z"
> Wy

Wi v Wa o

2.3 DECOMPOSING SPURIOUS RELATIONS

We will consider the generalized two-confounders set-
ting described in Fig. 7(a) wher¥ andY are con-
founded byZ,,Z,. The exogenous variabldd;, U,



associated wittZ 1, Z, are represented explicitly in the
causal diagram. In the model of Fig. 7(d)®> =
{U1,U,} which affects the observationa{ and the
counterfactualsYy: through causal paths shown in
Fig. 7(b). There are thus bve spurious treks:

li=(gt.g), '2=(g..9,), 's=(g..9)

=(g%.9,), !'s=(g.9).

The treatmentX and the outcomeéY are connected
through four spurious paths:

|1:X!
|3:X!

Zy"
Zj_ "

Yu
ZZ n

|2:X!
|4:X!

Zy"
Zy!

Yy

Y, Z;" Y.
Letan ordelj beU; < U,. Letan ordel? beg‘rJ <
g, if j <k . The order, is similarly depned. Thm. 3
decomposes the spurious covaria@m/;: (X,Y ) over

the spurious pathls, ..., l4:

4
Covyi (X,Y) = > Covp (X, Y )i

i=1

The path-specibc
{Covf oy (X, Y s }

spurious

iy 4 areequalto:

Covi, et 1(X, Y Js = Covis e (X, Y )i
:COV(X # Xgll LY # Yy 'grll)
1
:COV(X # leul ,szYX! # Yy 'Zlui YZZ),
1

COV|SZ[X! ](X, Y )LIS
= Cov e 1 (X, Y s +Covis 1 (X, Y s

= COV(Xgll1 # Xg'1[1.2] » Yy g, # Yyq )

+ COV(Xgl I glz1 y Yy 'gfl[l,z] # Yy ’9’1[1,2]! grzl)

'1,2°

1
97 .2

= COV(leu.lez # Xyr, Yo 2y 22 # Yx ur)
+Cov( Xy, # XU[|1’2],YX! up # Yy ,U['M]),
Coviy e 1 (X, Y )ip = Covigpe (X, Y )

= Cov(X # Xgu Yoo g # Yer g2 )

= COV(X # Xz, 20, Ya 23, 22 # Yo 1),
Cov}, e 1(X, Y )Ls = Cov il e (X, Y )Ls
=Cov(Xgy # X Y # Yo 1)

:COV(leul Za # XU'l!YX! # Yy YZIU{’ZZ).
1

covariance

/Zl<Ul
X\ l /Y
Z, % U,
a
gt @ 9,
4, A
g PO 9,
XHZZkzl ZI%ZZHY
9 o,
X %ZZ <1———U2———> Z2%Y
(b)

Figure 7: (a) Causal diagram for the two-confounders
setting whereX to Y are confounded by,,Z,; (b)
Causal paths through which the exogenous variables
U, U, affectX andYy: in the two-confounders setting.

2.4 PATH-SPECIFIC DECOMPOSITION

Considering the model of Fig. 8, the treatm&nand the
outcomeY are connected by the causal paths:

1 : X", X" Wi" Y,
l3:X " Wo" Y, lg:X™ Wi" Wo" Y,
and the spurious paths:

ls: X1 Z;" Y,

le : X! Z;" Wp" Y,

l7: X1 Z" W" Y,

lg: X1 Zy" Wp" W" Y,

lg : X1 Z1" Z" Y,

lio: X1 Z3" Z;" Wip" Y,

12 : X1 Z3" Zp" Wo" Y,

lip: XU Z3" Zp" Wp" Wo" Y,

li3: X1 Z,! Zy" Y,

14 : XV ZpV Z3" Wp" Y,

15 : X 1 Zpt Z3" Wo" Y,

lig: X 1 Zo! Z1" Wip" Wy" Y,

17 : X1 Z," Y,

lig : X 1 Zp" Wi" Y,

g : X1 Zp" W" Y,

oo : X 1 Zo"™ Wi" Wp" Y.

Let Uy, U, denote the independent errors associated with
the confoundersZ;, Z, respectively. In this model,
Us = {Uy, Uy} where the causal paths®(U;, X) and



2y ——> 75

=
/
W

e
Ny

Wi

Figure 8: Causal diagram for the two-mediators-two-
confounders setting wheré to Y are confounded by
Z1,Z, and mediated by;, W5.

I (U, X |Y) are:

g Ul Zi! X,
g, iUl Zi! Zp! X,
g tUl! Zgt oy,
o, (Ul Zi! wity,
o, iUl Zyl Wl Y,
o, (Ul Zi! Wil Wp! Y,
oL Uil Zyt Zpt oy,
o, Ul Zi! Zo! Wyl Y,
o, cUl Zal Za! Wol Y,
oh, cUr! Zg!l Zo! Wil Wo !y,

and the causal paths®(U,, X ) and! ¢(U,, X |Y) are:

g’ Ul Zp! X,

o, ULl Zp! Y,

o, ULl Zp!t Wyl

o7, tUll Zo! Wo! Y,

o, ULl Zp! Wil Wp! Y.

There are thus twenty spurious treks frofmo Y :

ls=(g,.9,)
s = (g, 9%),
!9:(9|1219r11),
12 =(g%. 97,
lis = (g, 9r,),
lig = (), &),

2 =(g|1179r12),
's = (g),.95).
l's :(gﬁ,grla),
1 =(g%.9%),
4 = (9. 9,
17 =(g|2119r21),
120 :(glzl'gr24)-

!1:(g|11’gr11)1
la=(9,.97),
-'7:(9|1119rl7),
1o =(9%.9,),
13 =(95.9),
16 =(9|12'gr18).
l1o = (90,0,

The sef{T 5(li)}i=s ... 20 is a partition over the spurious

treks! [1,20]-

T(ls) = {1}, T2(le) = {!2},
T(l7) = {!3}, T3(lg) = {!a},
T3(lg) = {!s}, T3(l10) = {6},
T5(l1) = {!}, T(l12) = {'s},
T3(l13) = {!0}, T°(l14) = {'10},

T3(l1s) = {'ua},
T3(li7) = {'13,117},  T°(lig) = {'1a, '8},
T°(lo) = {'15,'10},  T3(l20) = {'16,!20}-
Let an orderL¢ bel; < |, < I3 < |4, and an order
L3 beU; < U,. Letan ordel, (L?) follow the rule
gl'j <gj, (g;i <g;,)if j <k .Thm.5is applicable and
decomposes the covarianCev(X, Y ) over paths; g

T°(l16) = {!12},

!4
Cov(X,Y) = Covy (106 Y )is
i=1
120
+ COVﬁ[X!](X,Y)L!s.
i=5
The path-specibc causal covariance
Covi o (X, Y s o, . 4 are equal to:
COV|C1[X! ](X, Y )|_!c = COV(X, Y " Y|1[X! ])
= COV( Xl Y " YX! ,Wl,Wz)!
COV|CZ[Xz ](X, Y )L!C = COV(X, Y|1[x! ] " Y|[112] Ix! ])
= Cov(X, Yxr wyw, * Yxtwy, w2),
COV?:3[X! ](X, Y )L!C = Cov( X, Y|[1,2] x'] " Y|[1,3] [x! ])
= Cov(X, Y i, we ™ Y Way Wy )
COV|C3[X! ](X, Y )|_!c = COV( X, Y|[1‘3] [x'] " Y|[1‘4] [x! ])
:COV(XIYX!,Wlx! 'sz!,w " Yxl).
The path-spegibPc spurious covariance

Covi ] Y )is s 5, are equal to:

Coviy e (X, Y )Ls = Cov i ey (X, Y )i
= Cov(X " Xg1 Yo " Y 1)

= COV(X " leu| ,ZZ’YX! " YX! ywlx! YWZX! ,Zlur vZZ)’
1 1

Covlse[x! ](X1 Y )L,S = COV}SZ[X! ](X, Y )|_|s
= COV(X " Xglll,YX! gt " Yy ’g’lll,z])

=Cov(X " Xgz, | Z2o
vi
YX! ‘Wlx! ’sz! ,Zlui Z2

_—
Wi, g, Way 21, Z2),



COV|S7[><*](X’Y)|-!S =C0V}ss[x*](X'Y)L!S
= Cov(X _Xglll,YX*'grl[llz] _

Y * gl
X ,gr[ml)

:COV(X _leu| Zas
1

Yy +
X Wiy 2vW2x*,21U£,Zz

1,r 2
1

_YX*’WIX*, Zz)l

ZluivZZ’WZX**WlX**ZIU{*22'21U£’
Covi, g (X, Y )us = Cov s g (X, Y )i
:COV(X 7Xg|1 , Yy
1

* ql 7Y* 1
9y g X ’g'[1,41)

=Cov(X —leul Za
1

YX*,W1 Z,

W Z1
x*,zlui,zzv X*vwlx*v21U£~22’ ul

_YX*Wl W Z1 22)1

COV?Q[X*](X’Y)L!S :COV}i[x*](X1Y)Lf
= Cov(X —Xgll » Yy
1

« gl Yy * g1
9y g X ’g’[1,51)

=Cov(X fleul Zas
1

Yrw, W Z1.¢.22
' X"leuixzz' X*,Zlui,zz‘ vl

),

_YX*W]- W Zy Zs
) x*,zluivzzr x*’ZIU{’sz ul 42y

COVFlO[X*](XlY)L!S :COV}SG[)(*](X,Y)L!S
:COV(X _XgllllYX*'glél[l,s] — X*’gfl[l,e])

= COV(X _leul rZZ'
1

YX*W]- W, Z Zy
' X*-Zlui-zz' x*‘21U{‘Zz’ ul “2ur

—YX**Wlx*,u{'WZ ),

Coviy, (-1 (X, Y )Ls = Covis g (X, Y )Lt
=Cov(X — Xgi ,Yyegr  — Y,
1 P11, 6]

* gl
X ,9,[1.7])

Zy,,r .22
x*.zlui.zz' ul “2ug

:COV(X _X21UI ,Zzl
1

Yx*le P Z1 .22,
x*U rZ2 ul ul

_Y -

X VW1X*'Uer2x*_W1 Z1 .75 Ziyr L2y ),
1 Z1,r 22 Ul ul 1 1
1

= Cov(X —X@,Ill,YX _YX*'grlu,s])

* 1
9 g

=Cov(X fleul Zas
1

YX*!Wlx*_U{ W2

xTw lzlur .ZZ’Z 1U{ z ZU{ ’ZlUZrl 'ZZU:rl
1
- YX*,U{)!
S - ts
C0V|13 [X*](Xv Y )L,s - COV!Q[X*](X, Y )Lus

= CovlXg = Xg, Ve~ Vg

:COV(X21 |22 _Xul,YX* _YX*,Wl W . Za erz)v
Uy 1 X X uf

COV;SM [X*](x! Y )L,s = COV}Sm [X*](X, Y )|_§
= CovlXay =Xt Yot Yooy )

= COV(XZlLJI Zs 7XU{!
1

Yx*,W1 W Zlui,Zz _Yx*’Wl 2,WZ Zlui’zz)’

X * ! X * 0 X*’Z]'U{'Z MR

CoVio -1 (X, Y )Ls = Cov S g (X, Y )i

!11[X
=Cov(Xg —Xg
1

Yy
Sipg' %0

Yy« g1
g, )
= C()V(leuI Z, — XU{’
1
Yx*,WlX*vzlur ,zz'szwzluinz
1

— Yy«
X ’Wlx*,Zl Lz
Vi

COV|S16 [X*](X’ Y )Lgs = COV}SH [x
= Cov(Xgll - X
1

,Wo zz'zlug'zz)’

XFW g s Z 1y
1

40 Y s

1 , Yyx gt Yy« o1
S’ X%y X ’gf[1,41)

= COV(XZlul Z5 —Xui,
1

YX*Wl W2 Z1 Zy
’ x*,Zlui,er X*’Wlx*'zlui’zzy Uiy

_YX*yWIX*‘ ZZ)’

Zlu{ ‘Zz'sz*.Z 1ys .Zz’zlu{'
S
Covi, =1 (X, Y )Ls
— ts ts
= COV!13 [X*](X,Y )LIS + C:OV!17 [X*
Yx

=Cov(Xg — X
1

](X!Y )L,S
*'9’1[1,4] B YX*’g’I[l,sl )

Yx

1
Sig.a"

+Cov(Xg - Xg 2, Txx* gl Yy« g1 | g2
( 9,2 g'[1‘21! gi O g X500y g gu)

= COV(XZlul Zs —Xui,
1

YX*Wl W2 Zq Zy
, x*'zlui'ZZ’ CEPI PEETE

)

_YX*Wl W2 Z1 Zy
' X*‘Zlu{‘zz' X*.21U£.Zz’ uj“2ur

+Cov(Xy; =Xy, Ve ug

_ YX*VU{»W&*,UE W,y '22”[321 )
Covi, x-1 (X, Y s
= Cov S, (x](X, Y )Lg +Covis, e (X, Y )L
= COV(Xglll — Xg|1[1v2] 'YX*‘gflu,s] — YX*’gfl[l,e])
+ COV(Xgll[LZ] - xg|1[1v2]! g‘zl’YX*’g’lu.s]! 9@, ~ YX*'gfl[l.a]! gfz[l,z]
= COV(XZ1UI1 Z, — XU{’
Yx*vwlx*,zlui,zz’wzx*,z ” 2, %101 Zayg

_YX*W W 7 7 )
! 1x*,U:’l' Zx*,zlur,zz' 1U]r_v ZU:rL

1
+ Cov( X1 — Xy
(Xu; Y.z’
Yy *
XTULWa e Waeyy Zayg
_YX* urw W z )
’ WL« WV 2 L2 ’
! X 'U[r1,2] x=ug U[rl,z]



COV|519[X!](X,Y )L!s

= COV}S15 [x! ](X, Y )L!S + COV}S19 [x! ](X, Y )L!S

= Cov(Xgi ! X !
1

[1.6]

1 Yy g1 Yy gt
g'[l,z]’ X097 X ’gr[1,7])
+ Cov (X 41 P Xt a2, Y gl 1 g2 D Yer g1 1 g2

( Giy Oig g 91" X9 g7 Oy g X0 g g’[1,3])
= COV(XZlu| Zy ! XU{1

1
!
YX"Wlx!,U{’sz!‘zlui‘zz'zlui'Zzu{

bYW, Wy Zayy Zay; )

W g Z1,,c 22,y
Zlui'ZZ IV

+ COV(X ul I Xy

1
[1.2]
Y! r
XU W, - Wa ol ’Zzu[rl,z]
Yx! urw w z
1 1x!’U[r1,Z]’ le'u[rl,z] 'Wlx!.Ui’ ZU[rl,Z] )1

COVFZO[X!](X,Y )L!S
= COV}S16 [x! ](X, Y )L!S + COV}S20 [x! ](X, Y )L!S

=Cov(Xg ! X Yy g1 I Yy g2
( 9, g'[1,2]’ X ’g’[1,7] X ’gr[l,S])
+ Cov(X 41 I X1 1 a2, Yy! gt | g2 | I g1 | g2
( g'[1.2] g'[1.2]' 9 X 'g’[l,s]' g’[1,3] 'gf[i,s]' g’[1,4])
= COV(X21U| Zs ! XU{*
1
Y w w Zi 22 bV Yeur)
Wy Wa Ly L2 : xt,U
xtul xl'wlhuinz'ZlU{'ZZU{ ul ul 1
Cov(X i ! X
+ Cov(Xy; Ul o
Yy! I Yy .
x! ’U{'Wlx! u ['1‘2] Wa, U [r1.2] W Ui 'ZZU['LZ] x! ’U[rl,Z])
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