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Abstract

One of the fundamental tasks in causal infer-
ence is to decompose the observed association
between a decisionX and an outcomeY into
its most basic structural mechanisms. In this
paper, we introduce counterfactual measures
for effects along with a speciÞc mechanism,
represented as a path fromX to Y in an ar-
bitrary structural causal model. We derive a
novel non-parametric decomposition formula
that expresses the covariance ofX and Y as
a sum over unblocked paths fromX to Y con-
tained in an arbitrary causal model. This for-
mula allows a Þne-grained path analysis with-
out requiring a commitment to any particular
parametric form, and can be seen as a gen-
eralization of WrightÕs decomposition method
in linear systems (1923,1932) and PearlÕs non-
parametric mediation formula (2001).

1 INTRODUCTION

Analyzing the relative strength of different pathways be-
tween a decisionX and an outcomeY is a topic that
has interested both scientists and practitioners across dis-
ciplines for many decades. SpeciÞcally, path analysis
allows scientists to explain how NatureÕs Òblack-boxÓ
works, and practically, it enables decision analysts to
predict how an environment will change under a variety
of policies and interventional conditions [Wright, 1923;
Baron and Kenny, 1986; Bollen, 1989; Pearl, 2001].

More recently, understanding using causal inference
tools how a black-box decision-making system operates
has been a target of growing interest in the ArtiÞcial In-
telligence community, most prominently in the context
of Explainability, Transparency, and Fairness [Lu Zhang,
2017; Kusneret al., 2017; Zafaret al., 2017; Kilbertus
et al., 2017; Zhang and Bareinboim, 2018a]. For exam-

ple, consider thestandard fairness modeldescribed in
Fig. 1(a) that is concerned with the relation between a
hiring decision (Y ) and an applicantÕs religious beliefs
(X ), which aremediated bythe location (W ), andcon-
founded bythe education background (Z ) of the appli-
cant. 1 Directed edges represent functional relations
between variables. The relationship betweenX andY
is materialized through four different pathways in the
system Ð thedirect path l1 : X ! Y , the indirect
path l2 : X ! W ! Y , and thespurious paths
l3 : X " Z ! Y andl4 : X " Z ! W ! Y .

Assuming, for simplicityÕs sake, that the functional re-
lationships are linear andUVi is an independent Òer-
rorÓ associated with each variableVi (called the linear-
standard model), Fig. 1(a) shows the structural coefÞ-
cients corresponding to each edge Ð i.e., the value of the
variableY is decided by the structural functionY "
! YXX + ! YZZ + ! YWW + UY. The celebrated result known
as WrightÕs method of path coefÞcients [Wright, 1923,
1934], also known as WrightÕs rule, allows one to ex-
press the covariance ofX andY , denoted byCov(X, Y ),
as the sum of the products of the structural coefÞcients
along the paths fromX to Y in the underlying causal
model.2 In particular,Cov(X, Y ) is equal to:

! YX!"#$
X ! Y

+ ! WX! YW! "# $
X ! W ! Y

+ ! XZ! YZ! "# $
X " Z ! Y

+ ! XZ! WZ! YW! "# $
X " Z ! W ! Y

. (1)

Using the observational covariance matrix, the decom-
position above allows one to answer some compelling
questions about the relationship betweenX andY in the
underlying model. For instance, the product! WX! YW ex-
plains how much the indirect discrimination through the
location (the pathl2) accounts for the observed dispari-
ties in the religion composition among hired employees.

The path analysis method gained momentum in the so-

1This speciÞc setting has been calledstandard fairness
modelgiven its generality to representing a variety of decision-
making scenarios [Zhang and Bareinboim, 2018a].

2For a survey on linear methods, see [Pearl, 2000, Ch. 5].

TECHNICAL REPORT
R-34-L
July 2018



cial sciences during 1960Õs, becoming extremely popular
in the form of themediation formulain which the total
effect of X on Y is decomposed into direct and indi-
rect components [Baron and Kenny, 1986; Bollen, 1989;
Duncan, 1975; Fox, 1980].3 The bulk of this literature,
however, required a commitment to a particular paramet-
ric form, thus falling short of providing a general method
for analyzing natural and social phenomena with nonlin-
earities and interactions [MacKinnon, 2008].

It took a few decades until this problem could be tack-
led in higher generality. In particular, the advent of non-
parametric structural causal models (SCMs) allowed this
leap, and a more Þne-grained path-analysis with a much
broader scope, including models with nonlinearities and
arbitrarily complex interactions [Pearl, 2000, Ch. 7]. In
particular, Pearl introduced thecausal mediation formula
for arbitrary non-parametric models, which decomposes
the total effectTEx 0 ,x 1 (Y ) = E[ Yx 1 ]# E[Yx 0 ], the differ-
ence between the causal effect of the interventiondo(x1)
anddo(x0) 4, into what is now known as the natural di-
rect (NDE) and indirect (NIE) effects [Pearl, 2001] (see
also [Imaiet al., 2010, 2011; VanderWeele, 2015]). In
the case of the speciÞc linear-standard causal model,

TE0,1(Y ) = ! YX!"#$
NDE

+ ! WX! YW! "# $
NIE

for x0 = 0 and x1 = 1 levels. Remarkably, when
compared with Eq. 1,NDE andNIE capture the effects
along with the direct and indirect paths, but omits the
spurious (non-causal) paths betweenX and Y (in this
case,l3, l4). The mediation formula was recently gen-
eralized to account for these spurious paths (more akin
to WrightÕs rules), which appears under the rubric of
thecausal explanation formula[Zhang and Bareinboim,
2018a]. This formula decomposes the total variation
T Vx 0 ,x 1 (Y ) = E[ Y |x1] # E[Y |x0] (difference in condi-
tional distributions) into counterfactual measures of the
direct (Ctf-DE), indirect (Ctf-IE), and spurious (Ctf-SE)
effects. In the linear-standard model, forx0 = 0 , x1 = 1 ,

T V0,1(Y ) = ! YX!"#$
Ctf-DE

+ ! WX! YW! "# $
Ctf-IE

+ ! XZ! YZ + ! XZ! WZ! YW! "# $
Ctf-SE

Despite the generality of such results, there are still out-
standing challenges when performing path analysis in
non-parametric models, i.e.: (1) Estimands are deÞned
relative to speciÞc values assigned to the treatmentx1

and its baselinex0, which may be difÞcult to select in
some non-linear settings; (2) Mediators and confounders

3Just to give an idea of this popularity, Baron and KennyÕs
original paper counts more than 70,000 citations.

4By convention [Pearl, 2000], the post-interventional
distribution is represented interchangeably byP(yx ) and
P(y|do(x)) . General notation is discussed in the next section.
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Figure 1: Causal diagrams for (a) the standard fairness
model whereX stands for the protected attribute,Y for
the outcome,W the mediators, andZ the confounders;
(b) the two-mediators setting where causal paths fromX
to Y are mediated byW1, W2.

are collapsed and considereden bloc, leading to a coarse
decomposition of the relationship betweenX and Y
[Pearl, 2001; Vansteelandt and VanderWeele, 2012; Tch-
etgen and Shpitser, 2012; VanderWeeleet al., 2014;
Danielet al., 2015; Zhang and Bareinboim, 2018a]; (3)
Path-speciÞc estimands are well-deÞned [Pearl, 2001;
Avin et al., 2005], but not in a way that they sum up to
either the total effect (TE) or variation (TV), precluding
the comparison of their relative strengths.

This paper aims to circumvent these problems. In partic-
ular, we decompose the covariance of a treatmentX and
an outcomeY over effects along different mechanisms
betweenX and Y . We deÞne a set of novel counter-
factual estimands for measuring the relative strength of a
speciÞc mechanism represented as a path fromX to Y in
an arbitrary causal model. These estimands lead to a non-
parametric decomposition formula, which expresses the
covarianceCov(X, Y ) as a sum of the unblocked paths
from X to Y in the causal graph. This formula allows
a more Þne-grained analysis of the total observed vari-
ations ofY due toX (both through causal and spurious
mechanisms) when compared to the state-of-art methods.
More speciÞcally, our contributions are: (1) counterfac-
tual covariance measures for a speciÞc pathway fromX
to Y (causal and spurious) in an arbitrary causal model
(Defs. 8, 11-12); (2) non-parametric decomposition for-
mulae of the covarianceCov(X, Y ) over paths fromX
to Y in the causal model (Thm. 5); (3) identiÞcation con-
ditions for estimating the proposed path-speciÞc decom-
position from the passively-collected data in the standard
model (Thms. 6-7).

2 PRELIMINARIES

In this section, we introduce notations used throughout
the paper. We will use capital letters to denote variables
(e.g.,X ), and small letters for their values (x). The ab-
breviationP(x) represents the probabilitiesP(X = x).
For arbitrary setsA andB , let A # B denote their differ-



ence, and let|A| be the dimension of setA. V[i,j ] stands
for a set{ Vi , . . . , Vj } ($ if i > j ). We use graphical
family abbreviations:An(X )G , De(X )G , Non-De(X )G ,
Pa(X )G , Ch(X )G , which stand for the set of ancestors,
descendants, non-descendants, parents and children ofX
in G. We omit the subscriptG when obvious.

The basic semantical framework of our analysis rests
on structural causal models(SCM) [Pearl, 2000, Ch. 7;
Bareinboim and Pearl, 2016]. A SCMM consists of a set
of endogenous variablesV (often observed) and exoge-
nous variablesU (often unobserved). The values of each
Vi %V are determined by a structural functionf i taking
as argument a combination of the other endogenous and
exogenous variables (i.e.,Vi " f i (P Ai , Ui ), PAi &
V, Ui & U)). Values ofU are drawn from a distribu-
tion P(u). A SCM M is calledMarkovian when the
exogenous are mutually independent and eachUi %U is
associated with only one endogenousVi % V. If Ui is
associated with two or more endogenous variables,M is
calledsemi-Markovian.

Each recursive SCMM has an associated causal diagram
in the form of a directed acyclic graph (DAG)G, where
nodes represent endogenous variables and directed edges
represent functional relations (e.g., Figs. 1-2). By con-
vention, the exogenousU are not explicitly shown in the
graph; a dashed-bidirected arrow betweenVi andVj indi-
cates the presence of an unobserved confounder (UC)Uk

affecting bothVi andVj (e.g., the pathVi " Uk ! Vj ).

A path fromX to Y is a sequence of edges which does
not include a particular node more than once. It may go
either along or against the direction of the edges. Paths
of the formX ! á á á ! Y arecausal(from X to Y).
We use d-separation and blocking interchangeably, fol-
lowing the convention in [Pearl, 2000]. Any unblocked
path that is not causal is calledspurious. The direct link
X ! Y is thedirect path and all the other causal paths
from X to Y are calledindirect. The set of unblocked
paths fromX to Y given a setZ in a causal diagramG
is denoted by!( X, Y |Z )G ; causal, indirect, and spuri-
ous paths are denoted by! c(X, Y |Z )G , ! i (X, Y |Z )G ,
and ! s(X, Y |Z )G (G will be omitted when obvious).
For a causal pathg including nodesV1, V2, we denote
g(V1, V2) a subpath ofg from V1 to V2.5

An intervention on a set of endogenous variablesX and
exogenous variablesUi , denoted bydo(x#, u#

i ), is an op-
eration where values ofX, U i are set tox#, u#

i , respec-
tively, without regard to how they were ordinarily deter-
mined (X throughf X andUi throughP(Ui )). Formally,
we can rewrite the deÞnition of potential response [Pearl,
2000, Ch. 7.1] to account for operation onUi , namely:

5Mediators (relative toX andY ) are a set of variablesW !
De(X ) " Non-De(Y ) such that|! i (X, Y |W )| = 0 .

DeÞnition 1 (Potential Response). Let M be a SCM,
X, Y sets of arbitrary variables inV , andUi a set of ar-
bitrary variables inU. Let U$ i = U # Ui . The potential
response ofY to the interventiondo(x#, u#

i ) in the situ-
ation U = u, denoted byYx⇤,u ⇤

i
(u), is the solution for

Y with U$ i = u$ i , Ui = u#
i in the modiÞed submodel

M x⇤ where functionsf X are replaced by constant func-
tionsX = x# , i.e.,Yx⇤,u ⇤

i
(u) ! YM x ⇤ (u#

i , u$ i ).6

Yx⇤,u ⇤
i
(u) can be read as the counterfactual sentence Òthe

value thatY would have obtained in situationU$ i =
u$ i , had the treatmentX beenx# and the situationUi

beenu#
i .Ó Averagingu over the distributionP(u), we

obtain a counterfactual random variableYx⇤,u ⇤
i
. If the

values ofx#, u#
i follow random variablesX #, U#

i , we de-
note the resulting counterfactualYX ⇤,U ⇤

i
.

3 A COARSE COVARIANCE
DECOMPOSITION

In this section, we introduce counterfactual measures that
will allow us to non-parametrically decompose the co-
varianceCov(X, Y ) in terms of direct, indirect and spu-
rious pathways fromX to Y . Given space constraints,
all proofs are included in Appendix 1.

If there exists no spurious path fromX to Y , then treat-
ment X is independent of the counterfactualYx⇤ , i.e.,
(X '' Yx⇤ ) [Pearl, 2000, Ch. 11.3.2]. Thespurious co-
variancecan then be deÞned as the correlation between
the factual variableX and counterfactualYx⇤ .

DeÞnition 2 (Spurious Covariance). The spurious co-
variance between treatmentX = x# and outcomeY is:

Covs
x⇤ (X, Y ) = Cov( X, Yx⇤ ). (2)

Property 1. |! s(X, Y )| = 0 ( Covs
x⇤ (X, Y ) = 0 .

The causal covariancecan naturally be deÞned as the
difference between the total and spurious covariance.

DeÞnition 3(Causal Covariance). The causal covariance
of the treatmentX = x# and the outcomeY is:

Covc
x⇤ (X, Y ) = Cov( X, Y # Yx⇤ ). (3)

Prop. 2 establishes the correspondence between the
causal paths and the causal covariance Ð if there is no
causal path fromX to Y in the underlying model, the
causal covariance equates to zero.

Property 2. |! c(X, Y )| = 0 ( Covc
x⇤ (X, Y ) = 0 .

We consider more detailed measures corresponding to
the different causal pathways, and Þrst, the direct path:

6An alternative way to see the replacement operation rela-
tive toUi is to envision a system whereUi is observed.



DeÞnition 4 (Direct Covariance). Given a semi-
Markovian modelM , let the setW be the mediators
betweenX and Y . The pure (Covdp

x⇤ (X, Y )) and to-
tal (Covdt

x⇤ (X, Y )) direct covariance of the treatment
X = x# on the outcomeY are deÞned respectively as

Covdp
x⇤ (X, Y ) = Cov( X, Y # Yx⇤,W ), (4)

Covdt
x⇤ (X, Y ) = Cov( X, YW x ⇤ # Yx⇤ ). (5)

By the composition axiom [Pearl, 2000, Ch. 7.3], Eqs. 4
and 5 can be explicitly written as follows7:

Cov(X, Y # Yx⇤,W ) = Cov( X, YX,W # Yx⇤,W ),

Cov(X, YW x ⇤ # Yx⇤ ) = Cov( X, YX,W x ⇤ # Yx⇤,W x ⇤ ).

The counterfactual pure direct covariance (Eq. 4) is
shown graphically in Fig. 2, where (a) corresponds to
the Y-side, and (b) to theYx⇤,W -side. Note that from
the mediatorW perspective,X remains at the level that
it would naturally have attained, while the ÒdirectÓ in-
put from X to Y varies from its natural level (Fig. 2a)
to do(x#) (b). The change of the outcomeY thus mea-
sures the effect of the direct path. A similar analysis also
applies to the total direct covariance (Eq. 5).

Property 3. Covdp
x⇤ (X, Y ) = Cov dt

x⇤ (X, Y ) = 0 if X is
not a parent ofY (i.e.,X )%Pa(Y )).

We can turn around the deÞnitions of direct covariance
and provide operational estimands for indirect paths.

DeÞnition 5 (Indirect Covariance). Given a semi-
Markovian modelM , let the setW be the mediators
betweenX and Y . The pure (Covip

x⇤ (X, Y )) and to-
tal (Covit

x⇤ (X, Y )) indirect covariance of the treatment
X = x# on the outcomeY are deÞned respectively as:

Covip
x⇤ (X, Y ) = Cov( X, Y # YW x ⇤ ), (6)

Covit
x⇤ (X, Y ) = Cov( X, Yx⇤,W # Yx⇤ ). (7)

Eqs. 6 and 7 correspond to the indirect paths, since they
capture the covariance ofX andY , but only via paths
mediated byW . The Þrst argument ofY is the same in
both halves of the contrast, but this value can either be
x# (Eq. 7) or at the level thatX would naturally attain
without intervention (Eq. 6).

Property 4. |! i (X, Y )| = 0 ( Covip
x⇤ (X, Y ) =

Covit
x⇤ (X, Y ) = 0 .

Putting these deÞnitions together, we can prove a general
non-parametric decomposition ofCov(X, Y ):

7Consider Eq. 4 as an example. For anyU = u,
YX (u ),W (u )(u) = Yx ⇤ ,w (u) if X (u) = x⇤, W (u) = w.
By the composition axiom,X (u) = x⇤, W (u) = w im-
pliesY (u) = Yx ⇤ ,w (u), which in turn givesYX (u ),W (u )(u) =
Y (u). Averagingu overP(u), we obtainYX,W = Y .

(a)Y

W

X Y #
(b) Yx⇤,W

W
X x# Y

Figure 2: The graphical representation of measuring the
pure direct covarianceCovdp

x⇤ (X, Y ).

Theorem 1. Cov(X, Y ), Covs
x⇤ (X, Y ) and

Covc
x⇤ (X, Y ) obey the following non-parametric

relationship:

Cov(X, Y ) = Cov c
x⇤ (X, Y ) + Cov s

x⇤ (X, Y ), (8)

whereCovc
x⇤ (X, Y ) = Cov dp

x⇤ (X, Y )+Cov it
x⇤ (X, Y ) =

Covdt
x⇤ (X, Y ) + Cov ip

x⇤ (X, Y ).

In other words, the covariance betweenX and Y can
be partitioned into its corresponding direct, indirect, and
spurious components. In particular, Thm. 1 coincides
with Eq. 1 in the linear-standard model.

Corollary 1. In the linear-standard model, for
any x#, Covs

x⇤ (X, Y ), Covdp
x⇤ (X, Y ), Covdt

x⇤ (X, Y ),
Covip

x⇤ (X, Y ) andCovit
x⇤ (X, Y ) are equal to:

Covs
x⇤ (X, Y ) = ! XZ! YZ + ! XZ! WZ! YW,

Covdp
x⇤ (X, Y ) = Cov dt

x⇤ (X, Y ) = ! YX,

Covip
x⇤ (X, Y ) = Cov it

x⇤ (X, Y ) = ! WX! YW.

Corol. 1 says that the proposed decomposition (Thm. 1)
does not depend on the value ofdo(x#) in the linear
model of Fig. 1(a), which is not achievable in previous
value-speciÞc decompositions [Pearl, 2001; Zhang and
Bareinboim, 2018a].8

4 DECOMPOSING CAUSAL
RELATIONS

We now focus on the challenge of decomposing the
causal covariance into more elementary components. We
use the two-mediators setting (Fig. 1(b)) as example,
whereX andY are connected through four causal paths:
through bothW1, W2 (g1 : X ! W1 ! W2 ! Y ), only
throughW1 (g2 : X ! W1 ! Y ), only throughW2

(g3 : X ! W2 ! Y ), and directly (g4 : X ! Y ). Our
goal is to decompose theCovc

x⇤ (X, Y ) over the paths
g[1,4] . Our analysis applies to semi-Markovian models,
without loss of generality, and the Markovian example
(Fig. 1(b)) is used for simplicity of the exposition.

8For the nonlinear models, the decomposing terms (e.g.,
Covs

x ⇤ (X, Y )) are still sensitive to the target leveldo(x⇤). To
circumvent the challenges of picking a speciÞc decision value,
one could assign a randomized treatmentdo(x⇤ # P(X )) ,
whereP(X ) is the distribution over the treatmentX induced
by the underlying causal model.



For a nodeSi % Pa(Y ) and a set of causal paths" , the
edgeSi ! Y deÞnes a funnel operator" Si ! Y , which
maps from" to the set of paths" Si ! Y (" ) obtained from
" by replacing all paths of the formX ! á á á ! Si ! Y
with X ! á á á ! Si , and removing all the other paths.
As an example, for" = { g1, g2, g3} , " W 2 ! Y (" ) =
{ g1(X, W 2), g3(X, W 2)} , whereg1(X, W 2) is the sub-
path X ! W1 ! W2 and g3(X, W 2) is the subpath
X ! W2. We next formalize the notion of path-speciÞc
interventions, which isolates the inßuence of the inter-
vention do(x#) passing through a subset" of causal
paths fromX , denoted bydo(" [x#]) (a similar notion
has been introduced by [Pearl, 2001], and then [Avinet
al., 2005; Shpitser and Tchetgen, 2016]).

DeÞnition 6 (Path-SpeciÞc Potential Response). For a
SCM M and an arbitrary variableY %V, let " be a set
of causal paths. LetX be the source variables of paths
in " . Further, letX ! ! Y = { X i : * X i %X, X i ! Y %
" } andS = ( Pa(Y )G + V) # X ! ! Y . The " -speciÞc
potential response ofY to the interventiondo(" [x#]) in
the situationU = u, denoted byY! [x⇤] (u), is deÞned as:

Y! [x⇤] (u) =

%
Yx⇤

! !Y ,S! S !Y ( ! )[ x ⇤ ] (u ) if " )= $

Y(u) otherwise

whereSCS !Y ( ! )[ x⇤] (u) is a set of" -speciÞc potential
response{ Si ! S i !Y ( ! )[ x ⇤ ] (u) : Si %S} .9

Despite the non-trivial notation, the" -speciÞc counter-
factualY! [x⇤] is simply assigning the treatmentdo(x#)
exclusively to the causal paths in" , while allowing all
the other causal paths to behave naturally. This con-
trasts with the counterfactualYx⇤ , which can be seen as
assigning the treatmentdo(x#) to all causal paths from
X to Y . For instance, repeatedly applying Def. 6 to
g1 : X ! W1 ! W2 ! Y (see Appendix 2.1), we
obtain theg1-speciÞc potential responseYg1 [x⇤] as

Yg1 [x⇤] = YX,W 1 ,W 2X,W 1x ⇤
= YW 2W 1x ⇤

.

The interventiondo(g1[x#]) can be visualized more im-
mediately through its graphical representation (Fig. 3(b))
Ð the treatmentdo(x#) is assigned throughoutg1 while
all the other paths are kept at the level that it would have
attained ÒnaturallyÓ followingX . The difference of the
outcomeY (induced bydo(g1[x#])) and the unintervened
Y (Fig. 3(a)) measures the relative strength ofg1 itself,
which leads to the following deÞnition.

DeÞnition 7 (Pure Path-SpeciÞc Causal Covariance).
For a semi-Markovian modelM and an arbitrary causal
pathg from X , the pureg-speciÞc causal covariance of
the treatmentX = x# on the outcomeY is deÞned as:

Covc
g[x⇤] (X, Y ) = Cov( X, Y # Yg[x⇤] ). (9)

9For a single causal pathg, let Yg[x ⇤](u) = Y{g}[x ⇤](u).
Averagingu overP(u), we obtain a random variableY! [x ⇤].

g[1,4]

g1
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⇤
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W1

X

x

⇤
Y

W1 W2
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W1

X

x

⇤
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�
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⇤
Y

W1 W2

Figure 3: Graphical representations of the causal covari-
ance speciÞc tog1 (a-b),g[2,3] (c-d) andg4 (e-f).

In the previous example, more explicitly, the pureg1-
speciÞc causal covariance is equal to (Fig. 3(a-b)):

Covc
g1 [x⇤] (X, Y ) = Cov

&
X, Y # YW 2W 1x ⇤

'
. (10)

For U = u, the counterfactualY%[x⇤] (u) stands for the
values ofY when all causal paths are under the natural
regime. Eq. 9 can then be rewritten as:

Covc
g[x⇤] (X, Y ) = Cov( X, Y%[x⇤] # Yg[x⇤] ).

The pure path-speciÞc causal covariance forg can be
seen as a function of the difference between two path-
speciÞc potential responseY! 0 [x⇤] andY! 1 [x⇤] such that
g )%" 0 and" 1 = " 0,{ g} (i.e., the difference between" 1

and" 0 is g). The differenceY! 1 [x⇤] # Y! 0 [x⇤] , therefore,
measures precisely the effects ofdo(x#) along the target
causal pathg. Def. 7 can be generalized to account for
the path-speciÞc covariance in terms of path-differences.

DeÞnition 8 (Path-SpeciÞc Causal Covariance). For a
semi-Markovian modelM and an arbitrary causal pathg
from X , let " be a function mappingg to a set of causal
paths" (g) from X such thatg )%" (g). Theg-speciÞc
causal covariance of the treatmentX = x# on the out-
comeY is deÞned as:

Covc
g[x⇤] (X, Y )! = Cov( X, Y! (g)[ x⇤] # Y! (g)&{ g} [x⇤] ).

The following property establishes the correspondence
between a causal path and its path-speciÞc estimand.

Property 5. g )%! c(X, Y ) ( Covc
g[x⇤] (X, Y )! = 0 .

Prop. 5 follows immediately as a corollary of Lem. 1,
which implies that the counterfactualsY! (g)[ x⇤] and
Y! (g)&{ g} [x⇤] deÞne the same variable overU if g is not
a causal path fromX to Y .



Lemma 1. g )% ! c(X, Y ) ( Y! (g)[ x⇤] (u) =
Y! (g)&{ g} [x⇤] (u).

Considering again the model in Fig. 1(b), letg[i,j ] =
{ gk } i ' k ' j ($ if i > j ). Recall thatg4 = { X ! Y } , and
note that theg4-speciÞc causal covariance can be com-
puted using" (g4) = g[1,3] , yielding:

Covc
g4 [x⇤] (X, Y )! = Cov( X, Yg[1 , 3] [x⇤] # Yg[1 , 4] [x⇤] )

= Cov( X, YW 1x ⇤ ,W 2x ⇤ # Yx⇤ ), (11)

which coincides with the direct effect (Eq. 5 withW =
{ W1, W2} ). Fig. 3(e-f) shows a graphical representation
of this procedure.

The path-speciÞc quantity given in Def. 8 has an-
other desirable property, namely, the causal covariance
Covc

x (X, Y ) can be decomposed as a summation over
causal paths fromX to Y . To witness, Þrst let an or-
der over! c(X, Y ) be L c : g1 < á á á< gn . For a path
gi %! c(X, Y ), the orderL c deÞnes a functionL c

! which
maps fromgi to a set of pathsL c

! (gi ) that precedegi in
L c, i.e., L c

! (gi ) = g[1,i $ 1] . We derive in the sequel a
path-speciÞc decomposition formula for the causal co-
variance relative to an orderL c.
Theorem 2. For a semi-Markovian modelM , let L c be
an order over! c(X, Y ). For anyx#, the following non-
parametric relationship hold:

Covc
x (X, Y ) =

(

g( ! c (X,Y )

Covc
g[x⇤] (X, Y )L c

!
.

Thm. 2 can be demonstrated in the model of Fig. 1(a).
Let an orderL c over g[1,4] be gi < g j if i < j .
First note that the path-speciÞc causal covariance ofg2

(Covc
g2 [x⇤] (X, Y )L c

!
) and g3 (Covc

g3 [x⇤] (X, Y )L c
!
) are

equal to, respectively,

Cov
&

X, YW 2W 1x ⇤
# YW 2W 1x ⇤

,W 1x ⇤

'
(12)

Cov
&

X, YW 2W 1x ⇤
,W 1x ⇤ # YW 1x ⇤ ,W 2x ⇤

'
(13)

The causal covarianceCovc
x (X, Y ) can then be de-

composed as the sum of Eqs. 10-13, respectively,
g1, g4, g2, g3. Fig. 3 describes this decomposition pro-
cedure: we measures the difference of the outcome
Y as the interventiondo(x#) propagates through paths
g1, g2, g3, g4. The sum of these differences thus equate
to the total inßuence of the interventiondo(x#) to the
outcomeY, i.e., the causal covarianceCovc

x⇤ (X, Y ).

5 DECOMPOSING SPURIOUS
RELATIONS

We introduce in the sequel a new strategy to decompose
the spurious covariance (Def. 2), which will play a cen-

(a)

Z1 U1

Z2 U2

X Y
(b)

Z1 U1

Z2 U2

X Y

Z1x ⇤

Z2x ⇤

Yx⇤

Figure 4: Causal diagrams for (a) the one-confounder
setting whereX andY are confounded by the variable
Z2, of which Z1 is a parent node; (b) the twin network
for the model of (a) underdo(x#).

tral role in the analysis of the spurious relations relative
to the pairX, Y . The spurious covariance measures the
correlation between the observationalX and the counter-
factualYx⇤ (Def. 2). We will employ in our analysis the
twin network [Balke and Pearl, 1994; Pearl, 2000, Sec.
7.1.4], which is a graphical method to analyzing the rela-
tion between observational and counterfactual variables.

Consider the causal modelM in Fig. 4(a), for example,
where the exogenous variables{ U1, U2} are shown ex-
plicitly. Its twin network is the union of the modelM
(factual) and the submodelM x⇤ (counterfactual) under
interventiondo(x#), which is shown in Fig. 4(b). The
factual (M ) and counterfactual (M x⇤ ) worlds share only
the exogenous variables (in this case,U1, U2), which
constitute the invariances shared across worlds. In this
twin network, the observationalX and the counterfac-
tual Yx⇤ are connected through two paths: one through
U1 and the other throughU2. These paths correspond to
two pathways fromX to Y in the original causal dia-
gram: #1 : X " Z2 " Z1 " U1 ! Z1 ! Z2 ! Y ,
and#2 : X " Z2 " U2 ! Z2 ! Y .

Note that when considering the corresponding paths in
the original graph (Fig. 4(a)), these paths (#1, #2) are not
necessarily simple, i.e., they may contain a particular
node more than once. Furthermore, each path can be
partitioned into a pair of causal paths (say,gl , gr ) from
a common sourceUi % U (e.g., #1 consists of a pair
(gl 1 , gr 1 ), wheregl 1 : U1 ! Z1 ! Z2 ! X , and
gr 1 : U1 ! Z1 ! Z2 ! Y ). Indeed, these non-simple
paths are referred to astreksin the causal inference lit-
erature, which usually has been studied in the context of
linear models [Spirteset al., 2001; Sullivantet al., 2010].

DeÞnition 9 (Trek). A trek # in G (from X to Y) is
an ordered pair of causal paths(gl , gr ) with a common
exogenous sourceUi %U such thatgl %! c(Ui , X ) and
gr % ! c(Ui , Y ). The common sourceUi is called the
top of the trek, denotedtop(gl , gr ). A trek is spurious if
gr %! c(Ui , Y |X ), i.e.,gr is a causal path fromUi to Y
that is not intercepted byX .



We denote the set of treks fromX to Y in G by
T (X, Y )G and spurious treks byT s(X, Y )G (G will
be omitted when obvious). We introduce next an esti-
mand for a speciÞc spurious trek. For a spurious trek
# = ( gl , gr ) with Ui = top(#), Þrst letX gl denote the
path-speciÞc potential responseX gl [U l

i ] , whereUl
i is an

i.i.d. draw from the distributionP(Ui ). Similarly, let
Yx⇤,gr = Yx⇤,gr [U r

i ]
10, whereUr

i - P(Ui ). Pure trek-
speciÞc covariance can then Þnally be deÞned.

DeÞnition 10(Pure Trek-SpeciÞc Spurious Covariance).
For a semi-Markovian modelM and a spurious trek
# = ( gl , gr ) with Ui = top(gl , gr ), the pure#-speciÞc
spurious covariance of the treatmentX = x# on the out-
comeY is deÞned as:

Covts
" [x⇤] (X, Y ) = Cov( X # X gl , Yx⇤ # Yx⇤,gr ).

In words, the differencesX # X gl andYx⇤ # Yx⇤,gr are
simply measuring the effects of the causal pathsgl and
gr (Lem. 1), while theCov(á) operator is in charge of
compounding them. (In the extreme case whengl or gr

are disconnected, the pure#-speciÞc spurious covariance
will equate to zero.) For example, the pure#1-speciÞc
spurious covarianceCovts

" 1 [x⇤] (X, Y ) in Fig. 4(a) is

Cov(X # X gl 1
, Yx⇤ # Yx⇤,gr 1

). (14)

Note that the counterfactualsX gl 1
andYx⇤,gr 1

assign the
randomized interventionsdo(Ul

1), do(Ur
1 ) to the paths

gl 1 , gr 1 , respectively. By Def. 6, Eq. 14 is equal to:

Cov(X # X U l
1
, Yx⇤ # Yx⇤,U r

1
).

This quantity can be more easily seen through its graph-
ical representation in Fig. 5 (top). The main idea is to
decomposeU1 into two independent componentsUl

1, Ur
1

(Fig. 5b), which is then contrasted with the world in
which U1 is kept intact (a).11 12 We note that by Def. 6,
X = X %andYx⇤ = Yx⇤,%. The pure#1-speciÞc spurious
covariance can be written as:

Covts
" 1 [x⇤] (X, Y ) = Cov( X %# X gl 1

, Yx⇤,%# Yx⇤,gr 1
).

More generally, the pure trek-speciÞc spurious covari-
ance for# = ( gl , gr ) measures the covariance of vari-
ablesX ! l # X ! l &{ gl } andYx⇤,! r # Yx⇤,! r &{ gr } , where
" l (" r ) is an arbitrary set of causal paths fromU that does
not containgl (gr ). This observation will be useful later
on, which leads to the trek-speciÞc spurious covariance.

10Yx ⇤ ,g r [U r
i ] is the gr -speciÞc potential response ofY to

do(gr [Ur
i ]) in the submodelM x ⇤ .

11This operation can be seen as the parallel to the pure path-
speciÞc covariance (Def. 7), with the distinct requirement that
the replacement operator, used to generate the differences, is
not relative to the observedX , but the correspondingUi .

12To avoid clutter, Fig. 5 is a projected version of the original
twin network focused on the relevant quantities (w.l.g.).
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Figure 5: The decomposition procedure of the spurious
covariance over the spurious treks#1, #2 (Thm. 3).

DeÞnition 11(Trek-SpeciÞc Spurious Covariance). For
a semi-Markovian modelM , let # be a spurious trek
(gl , gr ) and" is a function mapping# to a pair" (#) =
(" l , " r ) where" l and" r are sets of causal paths fromU
such thatgl )%" l andgr )%" r . The#-speciÞc spurious
covariance of the treatmentX = x# on the outcomeY,
denoted byCovts

" [x⇤] (X, Y )! , is deÞned as

Cov(X ! l # X ! l &{ gl } , Yx⇤,! r # Yx⇤,! r &{ gr } ).

The next proposition establishes the relationship between
Def. 11 and the corresponding spurious treks. This prop-
erty can be seen as a necessary condition for any measure
of strength for spurious relations.

Property 6. # )% Ts(X, Y ) ( Covts
" [x⇤] (X, Y )! = 0 .

As an example of Def. 11, the trek#2 in Fig. 4(a) consists
of pathsgl 2 : U2 ! Z2 ! X andgr 2 : U2 ! Z2 ! Y .
If we set" (#2) = ( { gl 1 } , { gr 1 } ), the#2-speciÞc spurious
covariance can be measured byCovts

" 2 [x⇤] (X, Y )! , i.e.,

Cov(X gl 1
# X gl [1 , 2]

, Yx⇤,gr 1
# Yx⇤,gr [1 , 2]

) (15)

= Cov( X U l
1

# X U l
[1 , 2]

, Yx⇤,U r
1

# Yx⇤,U r
[1 , 2]

). (16)

Eq. 16 is graphically represented in Fig. 5(c-d), where the
effect of the trek#2 is measured. In words, the difference
between Fig. 5(c) and (d) is the effect of the causal paths
gl 2 andgr 2 whenU2 is kept intact versus when divided
into two independent components (Ul

2, Ur
2 ).

Armed with the deÞnition of trek-speciÞc spurious co-
variance, we can Þnally study the decomposability of
the spurious covarianceCovs

x⇤ (X, Y ) (Def. 2). First, let
Us & U denote the maximal set of exogenous variables
that simultaneously affect variablesX and Yx⇤ (com-
mon exogenous ancestors), and let an order overUs be
L s

u : U1 < á á á< U n . For eachUi % Us, let L s
l i

be an ordergi
l 1

< á á á< g i
l n

over the set! c(Ui , X ).
Similarly, we deÞneL s

r i
for ! c(Ui , Y |X ). The tuple

L s = .L s
u , { (L s

l i
, L s

r i
)} 1' i '| U s | / thus deÞnes an order



for the spurious treksT s(X, Y ). We denoteL s
! a func-

tion which maps from a trek# to sets of pathsL s
! (#) cov-

ered by the spurious treks preceding# in L s. Formally,
given a spurious trek# = ( gi

l j
, gi

r k
), L s

! (#) is equal to

(! c(U[1,i $ 1] , X ) , gi
l [1 ,j �1]

, ! c(U[1,i $ 1] , Y |X ) , gi
r [1 ,k �1]

).

We are now ready to derive the decomposition formula
for the spurious covarianceCovs

x⇤ (X, Y ).

Theorem 3. For a semi-Markovian modelM , let L s =
.L s

u , { (L s
l i

, L s
r i

)} 1' i '| U s | / be an order over spurious
treks T s(X, Y ). For any x#, the following non-
parametric relationship hold:

Covs
x⇤ (X, Y ) =

(

" (T s (X,Y )

Covts
" [x⇤] (X, Y )L s

!

For example, in the model of Fig. 4(a),Us = { U1, U2} .
#1 (#2) is the only spurious trek associated withU1 (U2).
If we consider the orderL s such thatL s

u : U1 < U 2,
Thm. 3 dictates thatCovs

x⇤ (X, Y ) should be decom-
posed as the sum of Eqs. 14 and 15. Fig. 5 shows
the graphical representation of this decomposition proce-
dure: we measure the change of the covariance between
X andYx⇤ as we disconnect the relations going through
#1 (assocaited withU1) and#2 (U2), sequentially. The
sum of these changes thus equates to the correlations of
X andY along the spurious pathways, i.e., the spurious
covarianceCovs

[x⇤] (X, Y ). (See Appendix 2 for more
examples.)

6 NON-PARAMETRIC PATH
ANALYSIS

In this section, we put the results of the previous sections
together and derive a general path-speciÞc decomposi-
tion for the covariance of the treatmentX and the out-
comeY without assuming any speciÞc parametric form.

We start by noting that each spurious path fromX to Y
corresponds to a unique set of spurious treks that start
on X and end inY . Recall that a spurious pathl can
be seen as a pair of causal paths(gl , gr ), where the only
node shared amonggl andgr is the common source. For
example, the spurious pathl : X " Z2 ! Y is a pair
(gl , gr ) such thatgl : Z2 ! X andgr : Z2 ! Y . We can
thus deÞne a rulef which maps a trek# % Ts(X, Y ) to
a spurious pathl %! s(X, Y ). For# = ( gl , gr ), let Vt be
the most distant recurring node fromtop(gl , gr ) such that
Vt is the only node shared among subpathsgl (Vt , X ) and
gr (Vt , Y ); the pair(gl (Vt , X ), gr (Vt , Y )) corresponds to
a pathl in ! s(X, Y ). As an example, the trek#1 in
Fig. 4(a) hasVt = Z2, which corresponds to the spu-
rious pathl : X " Z2 ! Y , and similarly,f (#1) = l as
well asf (#2) = l . Lem. 2 shows that the rulef forms a
valid surjective function.

Lemma 2. For a semi-Markovian modelM , for each
spurious trek# % Ts(X, Y ), there always exists a
unique most distant recurring nodeVt .

For a spurious pathl , let T s(l ) = f $ 1(l ) denote its cor-
responding treks. SpeciÞcally, ifl )%! s(X, Y ), then
for each# % Ts(l), we must have# )% Ts(X, Y ). For
instance, if the spuriousl in Fig. 4(a) is disconnected,
e.g.,Z2 )! X , treks#1, #2 are both disconnected as well.
From this observation, we could naturally deÞne the spu-
rious covariance of a pathl as a sum over treks inT s(l ).

DeÞnition 12(Path-SpeciÞc Spurious Covariance). For
a semi-Markovian modelM with an associated causal
diagramG, let l be an arbitrary spurious path inG. Let
" be a function that maps a trek# = ( gl , gr ) % Ts(l) to
a pair" (#) = ( " l , " r ), where" l and" r are arbitrary sets
of causal paths fromU such thatgl )%" l andgr )%" r .
Thel-speciÞc spurious covariance of the treatmentX =
x# on the outcomeY is deÞned as

Covs
l [x⇤] (X, Y )! =

(

" (T s ( l )

Covts
" [x⇤] (X, Y )!

Property 7. l )%! s(X, Y ) ( Covs
l [x⇤] (X, Y )! = 0 .

The surjectivity of the functionf assures that the set
{T s(l )} l ( ! s (X,Y ) forms a partition over the spurious
treks T s(X, Y ). From Thm. 3, it follows immedi-
ately that the path-speciÞc spurious covariance (Def. 12)
has the property that expresses the spurious covariance
Covs

x⇤ (X, Y ) as a sum over! s(X, Y ).

Theorem 4. For a semi-Markovian modelM , let L s =
.L s

u , { (L s
l i

, L s
r i

)} 1' i '| U s | / be an order over spurious
treks T s(X, Y ). For any x#, the following non-
parametric relationship hold:

Covs
x⇤ (X, Y ) =

(

l ( ! s (X,Y )

Covs
l [x⇤] (X, Y )L s

!

As an example, the pathl : X " Z2 ! Y in Fig. 4(a)
corresponds toT s(l ) = { #1, #2} . For an arbitrary or-
der L s, Thm. 4 is applicable and immediately yields
Covs

x⇤ (X, Y ) = Cov s
l [x⇤] (X, Y )L s

!
, which means that

the pathl accounts for all the spurious relations between
X andY . In other words, the spurious joint variability of
X andY is fully explained by the variance ofZ2, which
is a function of the exogenous variablesU1 (through#1)
andU2 (through#2).

Thms. 1-2 and 4 together lead to a general path-speciÞc
decomposition formula, which allows one to non-
parametrically decompose the covarianceCov(X, Y )
over all open paths fromX to Y in the underlying model.

Theorem 5(Path-SpeciÞc Decomposition). For a semi-
Markovian modelM , let L c be an order over! c(X, Y )



and L s = .L s
u , { (L s

l i
, L s

r i
)} 1' i '| U s | / be an order over

T s(X, Y ). For anyx#, the following non-parametric re-
lationship hold:

Cov(X, Y ) =
(

l ( ! c (X,Y )

Covc
l [x⇤] (X, Y )L c

!

+
(

l ( ! s (X,Y )

Covs
l [x⇤] (X, Y )L s

!
.

(17)

We illustrate the use of Thm. 5 using the model discussed
in Sec. 1 (Fig. 1(a)). Recall thatX andY are connected
through the causal pathsl1, l2 and spurious pathsl3, l4.
Note thatUs = { UZ} spuriously affects the treatmentX
through the pathgl = UZ ! Z ! X , and the outcomeY
through the pathsgr 1 = UZ ! Z ! Y andgr 2 = UZ !
Z ! W ! Y . Let orderL c bel1 < l 2 andL s

r begr 1 <
gr 2 . For any levelx#, Thm. 5 equates the covariance
Cov(X, Y ) to the sum of

)
Covc

l i [x⇤] (X, Y )L c
!

*
i =1 ,2 and

)
Covs

l i [x⇤] (X, Y )L s
!

*
i =3 ,4, which can be written as

Cov(X, Y # Yx⇤,W )
! "# $

l 1 :X ! Y

+ Cov( X, Yx⇤,W # Yx⇤ )
! "# $

l 2 :X ! W ! Y

+ Cov( X # X U l
Z
, Yx⇤ # Yx⇤,W x ⇤Z U r

Z
)

! "# $
l 3 :X " Z ! Y

+ Cov( X # X U l
Z
, Yx⇤,W x ⇤ ,Z U r

Z
# Yx⇤,U r

Z
)

! "# $
l 4 :X " Z ! W ! Y

,

(18)

which are all well-deÞned, computable from the struc-
tural causal model [Def. 1; Pearl, 2000, Sec. 7.1].

7 IDENTIFYING PATH-SPECIFIC
DECOMPOSITION

By and large, identiÞability is one of the most studied
topics in causal inference. It is acknowledged in the lit-
erature that obtaining identiÞability may be non-trivial
even in the context of less granular measures of causal
effects, including quantities without nested counterfac-
tual and following the do-calculus analysis.

In this section, we start the study of identiÞability condi-
tions for when the path-speciÞc decomposition formula
(Thm. 5) can be estimated from data, when the SCM is
not fully known. WeÕll analyze the causal model dis-
cussed in Fig. 1(a) given its generality and potential to
encode more complex models. The main assumption en-
coded in this model is Markovianity, i.e., that all exoge-
nous variables are independent. We show next that iden-
tiÞability can be obtained under these assumptions.

Theorem 6. The path-speciÞc decomposition of Eq. 18
is identiÞable if the distributionsP(x, yx⇤ ), P(x, yx⇤,W )
and P(x, yx⇤,W x ⇤ ,Z U r

Z
) are identiÞable. SpeciÞcally,

in the model of Fig. 1(a),P(x, yx⇤ ), P(x, yx⇤,W ), and

P(x, yx⇤,W x ⇤ ,Z U r
Z

) can be estimated, respectively, from
the observational distributionP(x, y, z, w) as follows:
P(x, yx ⇤ ) =

X

z,w

P (y|x⇤, w, z)P (w|x⇤, z)P (x, z)

P (x, yx ⇤ ,W ) =
X

z,w

P (y|x⇤, z, w)P(x, z, w)

P(x, yx ⇤ ,W x ⇤ ,Z U r
Z

) =
X

z,z 0 ,w

P (y|x⇤, z, w)P(w|x⇤, z0)P (x, z 0)P (z)

Note that all the quantities listed in Thm. 6 are ex-
pressible in terms of conditional distributions and do not
involve any counterfactual (simple nor nested), which
are readily estimable from the observational distribu-
tion. As an example, thel2-speciÞc causal covari-
ance Covc

l 2 [x⇤] (X, Y )L c
!

in Eq. 18 can be written as
Cov(X, Yx⇤,W ) # Cov(X, Yx⇤ ), which is computed
from the counterfactual distributionsP(x, yx⇤ ) and
P(x, yx⇤,W ), respectively. These distributions can be es-
timated from the observational distributionP(x, y, z, w)
following Thm. 6. Indeed, the path-speciÞc decompo-
sition formula (Thm. 5) is identiÞable in the model of
Fig. 1(a) regardless of the orderL c andL s. (For identi-
Þcations of other decompositions, see Appendix 1.)

We further considered the identiÞability conditions for
the path-speciÞc decomposition formula when the more
stringent assumption that the underlying structural func-
tions are linear is imposed.
Theorem 7. Under the assumption of linearity and the
assumption of Fig. 1(a), for any arbitrary ordersL c and
L s, for anyx#, the path-speciÞc covariance ofl1, l2, l3
andl4 are equal to:
Covc

l 1 [x ⇤](X, Y )Lc
!

= ! YX, Covc
l 2 [x ⇤](X, Y )Lc

!
= ! WX! YW

Covs
l 3 [x ⇤](X, Y )Ls

!
= ! XZ! YZ, Covs

l 4 [x ⇤](X, Y )Ls
!

= ! XZ! WZ! YW

The parameters! can be estimated from the correspond-
ing (partial) regression coefÞcients [Pearl, 2000, Ch. 5].

Clearly, after applying Thm. 7 to Eq. 18, the resulting
decomposition coincides with WrightÕs method of path
coefÞcients in the linear-standard model (Eq. 1).

8 CONCLUSIONS
We introduced novel covariance-based counterfactual
measures to account for effects along with a speciÞc path
from a treatmentX to an outcomeY (Defs. 8, 11-12).
We developed machinery to allow, for the Þrst time, the
non-parametric decomposition of the covariance ofX
andY as a summation over the different pathways in the
underlying causal model (Thm. 5). We further provided
identiÞcation conditions under which the decomposition
formula can be estimated from data (Thm. 6-7).
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1 PROOFS

Proofs build on the exclusion and independence restric-

tions rules of SCMs [Pearl, 2000, pp. 232], and three ax-

ioms of structural counterfactuals: composition, effec-

tiveness, and reversibility [Pearl, 2000, Ch.7.3.1].

Proof of Property 1.If X has no spurious path connect-

ing Y in G, the independence relation Yx⇤ ?? X must

hold for any x

!
[Pearl, 2000, Ch. 11.3.2], which gives:

Covs
x⇤ (X,Y ) = Cov( X,Yx⇤ ) = 0 .

Proof of Property 2.If X has no causal path connecting

Y in G, then for any x

!
, Yx⇤ = Y . This implies:

Covc
x⇤ (X,Y ) = Cov( X,Y � Y ) = 0

Proof of Property 3.We first consider the total direct co-

variance. To prove Covdt
x⇤ (X,Y ) = 0 , it suffices to show

that for any x, x

!
, y,

P (x, yx⇤,W ) = P (x, y). (1)

Let PA = Pa(Y ). Conditioned on PA,W , P (x, yx⇤,W )
can be written as:

P (x, yx⇤,W ) =
!

w,pa

P (x, yx⇤,w |pa, w)P (pa, w)

=
!

w,pa

P (x, yx⇤,w |paw , w)P (pa, w).

The last step holds by the composition axiom: for any u,

if W (u) = w, then PA(u) = PAw (u). We will next

show that for any u,w, x

!
,

PAw (u) = PAx⇤,w (u). (2)

We will prove this statement by contradictions. If Eq. 2

does not hold, there must exist a unblocked causal path

from X to a node in PA given W [Galles and Pearl,

1997]. Since PA are the parents of Y and X 62 Pa(Y ),

we can find a indirect path from X to Y given W , which

contradicts the definition of mediators. Eq. 2 implies

that:

!

w,pa

P (x, yx⇤,w |paw , w)P (pa, w)

=
!

w,pa

P (x, yx⇤,w |pax⇤,w , w)P (pa, w)

=
!

w,pa

P (x, yx⇤,pa,w |pax⇤,w , w)P (pa, w)

=
!

w,pa

P (x, ypa,w |pax⇤,w , w)P (pa, w)

The last steps hold by the assumption that X 6! Y : since

all parents of Y are fixed, the exclusion restrictions rule

gives Yx⇤,pa,w (u) = Ypa,w (u) for any u, x

!
, pa, w. Ap-

plying Eq. 2 and the composition axiom again gives:

P (x, yx⇤,W )

=
!

w,pa

P (x, ypa,w |pax⇤,w , w)P (pa, w)

=
!

w,pa

P (x, ypa,w |pa, w)P (pa, w)

=
!

w,pa

P (x, y|pa, w)P (pa, w) = P (x, y),

which gives Eq. 1. To prove the pure direct covari-

ance Covdp
x⇤ (X,Y ) = 0 , it suffices to show that for any

x, x

!
, y,

P (x, yx⇤ ) = P (x, yW
x

⇤ ). (3)

By expanding on Wx⇤
, PAW

x

⇤ , P (yW
x

⇤ ) is equal to:

P (x, yW
x

⇤ ) =
!

w,pa

P (x, yw |paw , wx⇤ )P (paw , wx⇤ )

=
!

w,pa

P (x, ypa,w |paw , wx⇤ )P (paw , wx⇤ ).



The last step holds by the composition axiom: IfPA

w

=

pa, thenY
w

= Y

pa,w

. SinceX !" Y in G, we have
Y

pa,w

= Y

x

!
,pa,w

, which gives:

X

w,pa

P (x, y

pa,w

|pa
w

, w

x

!
)P (pa

w

, w

x

!
)

=

X

w,pa

P (x, y

x

!
,pa,w

|pa
w

, w

x

!
)P (pa

w

, w

x

!
).

Applying Eq. 2 gives:

X

w,pa

P (x, y

x

!
,pa,w

|pa
w

, w

x

!
)P (pa

w

, w

x

!
)

=

X

w,pa

P (x, y

x

!
,pa,w

|pa
x

!
,w

, w

x

!
)P (pa

x

!
,w

, w

x

!
)

=

X

w,pa

P (x, y

x

!
,pa,w

|pa
x

, w

x

!
)P (pa

x

, w

x

!
).

The last step holds by the composition axiom: if
W

x

!
(u) = w, PA

x

!
,w

(u) = PA

x

(u). Apply the com-
position axiom onY

x

!
,pa,w

(u) again gives:

P (x, y

W

x

! )

=

X

w,pa

P (x, y

x

!
,pa,w

|pa
x

, w

x

!
)P (pa

x

, w

x

!
)

=

X

w,pa

P (x, y

x

|pa
x

, w

x

!
)P (pa

x

, w

x

!
) = P (x, y

x

!
),

which proves Eq. 3.

Proof of Property 4.Without loss of generality, we sup-
pose the mediators|W | > 0. To prove the pure indirect
covarianceCovip

x

! (X,Y ) = 0, it sufÞces to show that for
anyx!

, u,

Y

W

x

! (u) (u) = Y (u). (4)

We will Þrst show that if|⇧i

(X,Y )| = 0, then for any
x

!
, u, w, one of the following equation must hold

Y

w

(u) = Y (u), (5)

W

x

!
(u) = W (u). (6)

Suppose that Eq. 5 and 6 both fail, there must exist a
unblocked causal path fromX to W and a unblocked
causal path fromW to Y . We then Þnd an indirect path
from X to Y , which is a contradiction. Either Eq. 5 or 6
imply Eq. 4.

To prove the total indirect covarianceCovit
x

! (X,Y ) = 0,
it sufÞces to show that for anyx!

, u,

Y

x

!
(u) = Y

x

!
,W (u) (u). (7)

Similarly, We will show that if|⇧i

(X,Y )| = 0, then
for anyx!

, u, w, Eq. 6 and the following equation cannot
both be false:

Y

x

!
,w

(u) = Y

x

!
(u), (8)

Suppose Eq. 6 and 8 both fail, there must exist a un-
blocked causal path fromX toW and a unblocked causal
path fromW to Y givenX. Since removing condition-
ing nodes only opens up more causal path, we then Þnd
a indirect path fromX to Y , which is a contradiction.
Either Eq. 6 or 8 imply Eq. 7.

Proof of Theorem 1.By basic mathematical operations,
Cov(X,Y ) can be written as:

Cov(X,Y ) = Cov(X,Y # Y

x

!
) + Cov(X,Y

x

!
)

= Cov

c

x

! (X,Y ) + Cov

s

x

! (X,Y ).

Cov

c

x

! (X,Y ) can be further decomposed as:

Cov

c

x

! (X,Y ) = Cov(X,Y ) # Cov(X,Y

x

!
)

= Cov(X,Y ) # Cov(X,Y

x

!
,W

)

+ Cov(X,Y

x

!
,W

) # Cov(X,Y

x

!
)

= Cov

dp

x

! (X,Y ) + Cov

it

x

! (X,Y ).

By replacing the termCov(X,Y

x

!
,W

) in the above equa-
tion withCov(X,Y

W

x

! ), we have:

Cov

c

x

! (X,Y ) = Cov(X,Y ) # Cov(X,Y

x

!
)

= Cov(X,Y ) # Cov(X,Y

W

x

! )

+ Cov(X,Y

W

x

! ) # Cov(X,Y

x

!
)

= Cov

ip

x

! (X,Y ) + Cov

dt

x

! (X,Y ).

Proof of Corollary 1. In the linear-standard model, val-
ues ofX,Y, Z,W are decided by the following func-
tions:

z = uZ, x = ↵XZz + uX, w = ↵WXx+ ↵WZz + uW,

y = ↵YXx+ ↵YZz + ↵YWw + uY.

ComputingCovs
x

! (X,Y ) gives:

Cov

s

x

! (X,Y ) = Cov(X,Y

x

!
)

= Cov(X,↵YXx
!
+ ↵YZZ + ↵YWWx

!
+ UY)

= ↵YZCov(X,Z) + ↵YWCov(X,W

x

!
)

= ↵YZCov(X,Z) + ↵YWCov(X,↵WXx
!
+ ↵WZZ + UW)

= (↵YZ+ ↵YW↵WZ)Cov(X,Z)

= (↵YZ+ ↵YW↵WZ)Cov(↵XZZ + UX, Z)

= (↵YZ+ ↵YW↵WZ)↵XZCov(Z,Z)

= (↵YZ+ ↵YW↵WZ)↵XZ



The last step holds sinceCov(Z, Z ) = Var(Z ) = 1. We
can computeCovdt

x

! (X, Y ) as:

Cov

dt

x

! (X, Y ) = Cov(X, Y
W

x

! � Y
x

!
)

= Cov(X, ! YXX + ! YZZ + ! YWW
x

!
+ UY)

� Cov(X, ! YXx⇤
+ ! YZZ + ! YWW

x

!
+ UY)

= ! YXCov(X, X ) = ! YX.

Similarly,Covdp
x

! (X, Y ) is equal to:

Cov

dp

x

! (X, Y ) = Cov(X, Y � Y
x

!
,W

)

= Cov(X, ! YXX + ! YZZ + ! YWW + UY)

� Cov(X, ! YXx⇤
+ ! YZZ + ! YWW + UY)

= ! YXCov(X, X ) = ! YX.

Finally, Covit
x

! (X, Y ) andCovip
x

! (X, Y ) can be written
as:

Cov

it

x

! (X, Y ) = Cov(X, Y
x

!
,W

� Y
x

!
)

= Cov(X, ! YXx⇤
+ ! YZZ + ! YWW + UY)

� Cov(X, ! YXx⇤
+ ! YZZ + ! YWW

x

!
+ UY)

= ! YWCov(X, W � W
x

!
)

= ! YWCov(X, ! WXX + ! WZZ + UW)

� ! YWCov(X, ! WXx⇤
+ ! WZZ + UW)

= ! YW! WXCov(X, X )

= ! YW! WX.

Cov

ip

x

! (X, Y ) = Cov(X, Y � Y
W

x

! )

= Cov(X, ! YXX + ! YZZ + ! YWW + UY)

� Cov(X, ! YXX + ! YZZ + ! YWW
x

!
+ UY)

= ! YWCov(X, W � W
x

!
)

= ! YW! WX.

Proof of Lemma 1.We will prove this lemma by show-
ing a more general case. Let"

0

, "
1

be arbitrary sets of
causal paths fromX such that"

0

✓ "
1

. Let⇧c

(X, Y )

⇡0

denote the set of open causal paths in"
0

which connects
Y from X , i.e.,⇧c

(X, Y ) \ "
0

, so does⇧c

(X, Y )

⇡1 =

⇧

c

(X, Y ) \ "
1

. Let ⇧c

(X, Y )

⇡0,⇡1 denote the differ-
ence of sets⇧c

(X, Y )

⇡1 � ⇧

c

(X, Y )

⇡0 . We would like
to show that if|⇧c

(X, Y )

⇡0,⇡1 | = 0, then for anyx⇤, u,

Y
⇡0[x

!
]

(u) = Y
⇡1[x

!
]

(u). (9)

We will prove this statement by induction on the length
N of the longest causal path in"

1

.

Base Case:If N = 0, the means that"
0

= "
1

= ;. By
deÞnition,Y

⇡0[x
!
]

(u) = Y
⇡1[x

!
]

(u) = Y (u), i.e., Eq. 9
holds.

Inductive Case: Assume that for an arbitrary variable
Y 2 V and sets of causal paths"

0

, "
1

where"
0

✓ "
1

and the length of all paths in"
1

is no greater than
N , |⇧c

(X, Y )

⇡0,⇡1 | = 0 implies that Y
⇡0[x

!
]

(u) =

Y
⇡1[x

!
]

(u). We use this assumption to prove that for
"
1

with the length of paths no greater thanN + 1, if
|⇧c

(X, Y )

⇡0,⇡1 | = 0, then for anyx⇤, u, Eq. 9 holds.
We will prove its contra-positive statement: if Eq. 9 does
not hold for somex⇤, u, then we can Þnd a causal path
g from X to Y whereg is contained in"

1

but not in"
0

,
i.e., |⇧c

(X, Y )

⇡0,⇡1 | > 0.

If Eq. 9 does not hold for somex⇤, u, then one of the
following cases must hold:

1. There exists a variableU
i

2 U such thatU
i

2
X

⇡1!Y

, U
i

62 X
⇡0!Y

and its treatment assignment
u⇤
i

is different from its natural valueu
i

.

2. There exists a variableX
i

2 X
⇡1!Y

, X
i

62 X
⇡0!Y

andx⇤
i

6= X
i!

X

i

" Y

(⇡0)[x! ]
(u).

3. There exists a variableS
i

2 (Pa(Y )

G

\V )�X
⇡

i

!Y

such thatS
i!

S

i

" Y

(⇡0)[x! ]
(u) 6= S

i!
S

i

" Y

(⇡1)[x! ]
(u).

We will next show that for each of the above cases,
one can Þnd a causal pathg 2 ⇧

c

(X, Y )

⇡0,⇡1 . As for
Case. 1 and 2, it immediately follows that the direct
links U

i

! Y and X
i

! Y construct a causal paths
g 2 ⇧

c

(X, Y )

⇡0,⇡1 respectively.

As for Case. 3, by the assumption,S
i!

S

i

" Y

(⇡0)[x! ]
(u) 6=

S
i!

S

i

" Y

(⇡1)[x! ]
(u) implies that there exists a pathg

s

2
⇧

c

(X, S
i

)!
S

i

" Y

(⇡0),! S

i

" Y

(⇡1)
. We can then construct

a casual pathg from X to Y by appending the edge
S
i

! Y to g
s

. By the deÞnition of the funnel opera-
tor !

S

i

!Y

(·), we must haveg 2 ⇧

c

(X, Y )

⇡0,⇡1 .

To prove Lem. 1, let"
0

= " (g), "
1

= " (g) [ {g}. If
g 62 ⇧

c

(X, Y ), then|⇧c

(X, Y )

⇡0,⇡1 | = 0. This implies
that Eq. 9 holds, i.e.,

Y
⇡(g)[x

!
]

(u) = Y
⇡(g)[{g}[x!

]

(u).

Proof of Property 5.Lem. 1 implies that for anyx⇤, u,

g 62 ⇧

c

(X, Y ) ) Y
⇡(g)[x

!
]

(u) = Y
⇡(g)[{g}[x!

]

(u).

This gives

Cov

c

g[x

!
]

(X, Y )

⇡

= Cov(X, Y
⇡(g)[x

!
]

� Y
⇡(g)[{g}[x!

]

) = 0.

Proof of Theorem 2.By deÞnition,

Y;[x!
]

(u) = Y (u)



Following the orderL c, let g[1,n ] denote! c(X, Y ). In
the model associated with theg[1,n ]-speciÞc counterfac-
tualYg[1,n ][x ! ] (u), all variables are under the inßuence of
the interventionX = x! , i.e.,

Yg[1,n ][x ! ] (u) = Yx ! (u)

Thus, the causal covarianceCovc
x (X, Y ) is equal to:

Covc
x (X, Y ) = Cov( X, Y ! Yx ! )

= Cov( X, Y" [x ! ] ! Yg[1,n ][x ! ] )

= Cov( X, Y" [x ! ] ! Yg1[x ! ] )

+ Cov( X, Yg1[x ! ] ! Yg[1,n ][x ! ] )

= Cov( X, YL c
! (g1)[ x ! ] ! YL c

! (g1)#{ g1} [x ! ] )

+ Cov( X, Yg1[x ! ] ! Yg[1,n ][x ! ] )

= Cov c
g1[x ! ] (X, Y )L c

!

+ Cov( X, Y! 1[x ! ] ! Y! n [x ! ] )

...

=
n!

i =1

Covc
gi [x ! ] (X, Y )L c

!
.

Reorganizing the above equation gives

Covc
x (X, Y ) =

!

g$ ! c (X,Y )

Covc
g[x ! ](X, Y )L c

!

Proof of Property 6. Let Ui = top(! ) and (" l , " r ) =
" (! ). ! = ( gl , gr ) "# Ts(X, Y ) implies one the fol-
lowing conditions:

gl "#! c(Ui , X ), (10)

gr "#! c(Ui , Y |X ). (11)

By Lem. 1, Eq. 10 implies that for anyx! , u, ul
i :

X ! l [u l
i ] (u) = X ! l #{ gl } [u l

i ] (u).

Eq. 11 implies that in the submodelM x ! with an asso-
ciated causal diagramGx ! where all incoming edges of
X are removed,gr "# ! c(Ui , Y )Gx ! . By the deÞnition
of the submodelM x ! [Pearl, 2000, Ch. 7.1], the counter-
factualYx ! is the outcomeY in the submodelM x ! . By
Lem. 1, we then have, for anyx! , u, ur

i ,

Yx ! ,! r [u r
i ] (u) = Yx ! ,! r #{ gr } [u r

i ] (u).

The! -speciÞc spurious covariance thus equates to:

Covts
" [x ! ] (X, Y )

= Cov( X ! ! X ! #{ gl } , Yx ! ,! r ! Yx ! ,! r #{ gr } ) = 0 .

To prove Thm. 3, we Þrst introduce two lemmas.

Lemma 3. For a semi-Markovian model M , let an or-

der over Us
be L s

u : U1 < á á á< U n . For any x!
,

Covs
x ! (X, Y ) can be expressed as:

n!

i =1

Cov(X U l
[1,i " 1]

! X U l
[1,i ]

, Yx ! ,U r
[1,i " 1]

! Yx ! ,U r
[1,i ]

)
" #$ %

denoted by Cov s
x ! (X,Y )U i

.

Proof. Following the orderL s
u , let U[1,n ] denoteUs. We

will use I {á} to represent an indicator function. Since
the exogenous variablesU, Ul

[1,n ] , Ur
[1,n ] explain all the

uncertainties of variablesX U l
[1,n ]

andYx ! ,U r
[1,n ]

, we must
have:

P(xU l
[1,n ]

, yx ! ,U r
[1,n ]

)

=
!

u

!

u l
[1,n ]

!

u r
[1,n ]

I { X u l
[1,n ]

(u) = x} I { Yx ! ,u r
[1,n ]

(u) = y}

áP(u)P(ul
[1,n ])P(ur

[1,n ]).

LetU
X

denote the set of exogenous variables which affect
X other thanUc. Similarly, we deÞneU

Y

for Yx ! . Since
Us is the maximal set of exogenous variables that affects
bothX andYx ! , we must haveU

X

$ U
Y

= %. The above
equation can thus be written as:

P(xU l
[1,n ]

, yx ! ,U r
[1,n ]

)

=
!

u

!

u l
[1,n ]

!

u r
[1,n ]

I { X (ul
[1,n ] , u

X

) = x}

áI { Yx ! (ur
[1,n ] , u

Y

) = y} P(u)P(ul
[1,n ])P(ur

[1,n ])

=
!

u
X

!

u l
[1,n ]

I { X (ul
[1,n ] , u

X

) = x} P(u
X

)P(ul
[1,n ])

á
!

u
Y

!

u r
[1,n ]

I { Yx ! (ur
[1,n ] , u

Y

) = y} P(u
Y

)P(ur
[1,n ])

=
!

u r
[1,n ]

P(X (ul
[1,n ]) = x)P(ul

[1,n ])

á
!

u r
[1,n ]

P(Yx ! (ur
[1,n ]) = y)P(ur

[1,n ]) (12)

= P(xU l
[1,n ]

)P(yx ! ,U r
[1,n ]

). (13)

Eq. 13 implies thatX U l
[1,n ]

&& Yx ! ,U r
[1,n ]

, i.e.,

Cov(X U l
[1,n ]

, Yx ! ,U r
[1,n ]

) = 0 .

SinceU[1,0] = %, the spurious covarianceCovs
x ! (X, Y )

can be written as

Covs
x ! (X, Y ) = Cov( X, Yx ! )

= Cov( X U l
[1,0]

, Yx ! ,U r
[1,0]

) ! Cov(X U l
[1,n ]

, Yx ! ,U r
[1,n ]

)

= Cov( X U l
[1,0]

, Yx ! ,U r
[1,0]

) ! Cov(X U l
[1,1]

, Yx ! ,U r
[1,1]

)

+ Cov( X U l
[1,1]

, Yx ! ,U r
[1,1]

) ! Cov(X U l
[1,n ]

, Yx ! ,U r
[1,n ]

)



...

=
n!

i =1

Cov(X U l
[1 ,i ! 1]

, Yx " ,U r
[1 ,i ! 1]

)

! Cov(X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ]

)

We will next show that

Cov(X U l
[1 ,i ! 1]

, Yx " ,U r
[1 ,i ! 1]

) ! Cov(X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ]

)

= Cov( X U l
[1 ,i ! 1]

! X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ! 1]

! Yx " ,U r
[1 ,i ]

).

(14)

By the basic mathematical operations of covariance,

Cov(X U l
[1 ,i ! 1]

, Yx " ,U r
[1 ,i ! 1]

) ! Cov(X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ]

)

= Cov( X U l
[1 ,i ! 1]

! X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ! 1]

! Yx " ,U r
[1 ,i ]

)

+ Cov( X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ! 1]

! Yx " ,U r
[1 ,i ]

)

+ Cov( X U r
[1 ,i ! 1]

! X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ]

).

It sufÞces to prove that for anyx, y,

P(xU l
[1 ,i ]

, yx " ,U r
[1 ,i ! 1]

) = P(xU l
[1 ,i ]

, yx " ,U r
[1 ,i ]

) (15)

P(xU l
[1 ,i ! 1]

, yx " ,U r
[1 ,i ]

) = P(xU l
[1 ,i ]

, yx " ,U r
[1 ,i ]

). (16)

Let us Þrst consider Eq. 15. From Eq. 12, the distribu-
tionsP(xU l

[1 ,i ]
, yx " ,U r

[1 ,i ! 1]
) andP(xU l

[1 ,i ]
, yx " ,U r

[1 ,i ]
) can

be written as:

P(xU l
[1 ,i ]

, yx " ,U r
[1 ,i ! 1]

)

=
!

u [ i,n ]

!

u l
[1 ,i ]

!

u r
[1 ,i ! 1]

P (X (ul
[1,i ] , u[i +1 ,n ]) = x)

áP(Yx " (ur
[1,i ! 1] , u[i,n ]) = y)P(ul

[1,i ] )

áP(ur
[1,i ! 1] )P(ui )P(u[i +1 ,n ]),

P(xU l
[1 ,i ]

, yx " ,U r
[1 ,i ]

)

=
!

u [ i +1 ,n ]

!

u l
[1 ,i ]

!

u r
[1 ,i ]

P (X (ul
[1,i ] , u[i +1 ,n ]) = x)

áP(Yx " (ur
[1,i ] , u[i +1 ,n ]) = y)P(ul

[1,i ] )

áP(ur
[1,i ! 1] )P(ur

i )P(u[i +1 ,n ]).

SinceU andUr are i.i.d. draws from the exogenous dis-
tribution P(u), we have forui = ur

i , P(ui ) = P(ur
i ).

Replacingur
i with ui in the above equations gives Eq. 15.

Similarly, we can prove Eq. 16. Eqs. 15-16 together
prove Eq. 14.

Lemma 4. For a semi-Markovian modelM , let
T s(X, Y ; Ui ) denote the set of spurious treks from
X to Y with a common sourceUi . Let L s =

"L s
u , { (L s

l i
, L s

r i
)} 1" i "| U s |# be an order over spurious

treks T s(X, Y ). For any x#, the following non-
parametric relationships hold:

Covs
x " (X, Y )Ui =

!

! $T s (X,Y ;Ui )

Covts
! [x " ](X, Y )L s

!

Proof. Let (! l , ! r ) denote the pair

(! c(U[1,i ! 1] , X ), ! c(U[1,i ! 1] , Y |X )) .

Following the orderL s, let gi
l [1 ,n ]

= ! c(Ui , X ) and

gi
r [1 ,m ]

= ! c(Ui , Y |X ). Since the interventiondo(Ul
i )

(do(Ur
i )) assigns a randomized treatmentUl

i (Ur
i ) to all

causal paths ingi
l [1 ,n ]

(gi
r [1 ,m ]

). The termCovs
x " (X, Y )Ui

can thus be written as:

Cov(X U l
[1 ,i ! 1]

! X U l
[1 ,i ]

, Yx " ,U r
[1 ,i ! 1]

! Yx " ,U r
[1 ,i ]

)

= Cov( X " l ! X " l %gi
l [1 ,n ]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

).

The above equation can be decomposed over causal paths
in gi

l [1 ,n ]
:

Cov(X " l ! X " l %gi
l [1 ,n ]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

= Cov( X " l %gi
l [1 , 0]

! X " l %gi
l [1 , 1]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

+ Cov( X " l %gi
l [1 , 1]

! X " l %gi
l [1 ,n ]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

= Cov( X " l %gi
l [1 , 0]

! X " l %gi
l [1 , 1]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

+ Cov( X " l %gi
l [1 , 1]

! X " l %gi
l [1 , 2]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

+ Cov( X " l %gi
l [1 , 2]

! X " l %gi
l [1 ,n ]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

...

=
n!

j =1

Cov(X " l %gi
l [1 ,j ! 1]

! X " l %gi
l [1 ,j ]

,

Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

).

The summation term can be further decomposed over
paths ingi

r [1 ,m ]
:

Cov(X " l %gi
l [1 ,j ! 1]

! X " l %gi
l [1 ,j ]

, Yx " ," r ! Yx " ," r %gi
r [1 ,m ]

)

= Cov( X " l %gi
l [1 ,j ! 1]

! X " l %gi
l [1 ,j ]

,

Yx " ," r %gi
r [1 , 0]

! Yx " ," r %gi
r [1 , 1]

)

+ Cov( X " l %gi
l [1 ,j ! 1]

! X " l %gi
l [1 ,j ]

,

Yx " ," r %gi
r [1 , 1]

! Yx " ," r %gi
r [1 ,m ]

)

= Cov( X " l %gi
l [1 ,j ! 1]

! X " l %gi
l [1 ,j ]

,

Yx " ," r %gi
r [1 , 0]

! Yx " ," r %gi
r [1 , 1]

)



+ Cov( X ! l ! gi
l [1 ,j ! 1]

! X ! l ! gi
l [1 ,j ]

,

Yx " ,! r ! gi
r [1 , 1]

! Yx " ,! r ! gi
r [1 , 2]

)

+ Cov( X ! l ! gi
l [1 ,j ! 1]

! X ! l ! gi
l [1 ,j ]

,

Yx " ,! r ! gi
r [1 , 2]

! Yx " ,! r ! gi
r [1 ,m ]

)

...

=
m!

k=1

Cov(X ! l ! gi
l [1 ,j ! 1]

! X ! l ! gi
l [1 ,j ]

,

Yx " ,! r ! gi
r [1 ,k ! 1]

! Yx " ,! r ! gi
r [1 ,k ]

).

Together, we can obtain

Covs
x " (X, Y )Ui =

n!

j =1

m!

k=1

Covts
" i

j,k [x " ] (X, Y )L s
!

where! i
j,k = ( gi

l j
, gi

r k
). Reorganizing the above equa-

tion gives:

Covs
x " (X, Y )Ui =

!

" "T s (X,Y ;Ui )

Covts
" [x " ](X, Y )L s

!
.

We are now ready to prove Thm. 3

Proof of Theorem 3.By Lem. 3 and 4, we have:

Covs
[x " ](X, Y ) =

|U s |!

i =1

!

" "T s (X,Y ;Ui )

Covts
" [x " ](X, Y )L s

!
.

Reorganizing the above equation gives:

Covs
[x " ](X, Y ) =

!

" "T s (X,Y )

Covts
" [x " ](X, Y )L s

!
.

Proof of Lemma 2.Existence. We will prove the exis-
tence ofVt by proving a stronger statement: in a semi-
Markovian modelM , for any non-simple path of the
form (gl , gr ) where gl , gr share a common sourceVi

and have sinkX and Y respectively, there always ex-
ists a most distant recurring nodeVt such thatVt is the
only shared common node among subpathsgl (Vt , X )
andgr (Vt , Y ). We will prove this statement by induc-
tion on the number of recurring nodeN shared among
gl , gr .

¥ Base Case:ForN = 1 , then the common sourceVi

is the most distant recurring nodeVt .

¥ Induction Case: Assume that for all non-simple
path of the form(gl , gr ) with N recurring nodes
, there always exists a most distant recurring node

Vt such thatVt is the only shared common node
among subpathsgl (Vt , X ) and gr (Vt , Y ). We
will use this assumption to prove that for all non-
simple path of the form(gl , gr ) with N + 1 re-
curring nodes, the most distant recurring node
Vt also exists. For a non-simple path(gl , gr ),
we Þnd the next recurring nodeV #

i of gl , gr

other than the common sourceVi . The sub-
paths (gl (V #

i , X ), gr (V #
i , Y )) forms a non-simple

path withN recurring nodes. By the assumption,
for the non-simple path(gl (V #

i , X ), gr (V #
i , Y )) ,

there exists a most distant recurring nodeVt such
that Vt is the only node shared among subpaths
gl (Vt , X ), gr (Vt , Y ).

We will show that the most distant recurring node
Vt of (gl (V #

i , X ), gr (V #
i , Y )) is also satisÞed for

(gl , gr ). SupposeVt is not a most distant recur-
ring node of(gl , gr ), this means that the subpaths
gl (Vt , X ), gr (Vt , Y ) share another common node
other thanVt , which contradicts our assumption.

Uniqueness. We will prove this lemma by contradic-
tions. Suppose there are two distinct nodesV 0

t , V 1
t for a

trek ! = ( gl , gr ) such that fori = 0 , 1, V i
t is the only

node shared among subpathsgl (V i
t , X ) andgr (V i

t , Y ).
V 0

t , V 1
t must satisfy one of the following cases.

1. There exists a causal path fromV 0
t to V 1

t in gl , de-
noted by(V 0

t " V 1
t )gl , and a causal path fromV 0

t
to V 1

t in gr , denoted by(V 0
t " V 1

t )gr .

2. (V 1
t " V 0

t )gl and(V 1
t " V 0

t )gr .

3. (V 0
t " V 1

t )gl and(V 1
t " V 0

t )gr .

4. (V 1
t " V 0

t )gl and(V 0
t " V 1

t )gr .

For Case. 1, we must have thatV 1
t is also a com-

mon node shared among the subpathsgl (V 0
t , X ) and

gr (V 0
t , Y ), which contradicts our assumptions. Simi-

larly, Case. 2 lead to an contradiction, asV 0
t is also a

common node shared among the subpathsgl (V 1
t , X ) and

gr (V 1
t , Y ).

For Case. 3, if exists a causal path fromV 0
t to V 1

t and a
causal path fromV 1

t to V 0
t , the causal diagramG of the

semi-Markovian modelM is not a DAG, which is a con-
tradiction. Similarly, Case. 4 contradicts the assumption
thatG is a DAG. Since Cases. 1-4 all lead to contradic-
tions, the most distant recurring nodeVt is unique for
each trek! # T s(X, Y ).

Proof of Property 7.For a spurious pathl = ( gl , gr )
with the common sourceVt , if l $#! s(X, Y ), then one



of the following conditions must hold:

gl !" ! c(Vt , X ), gr !" ! c(Vt , Y |X ).

For each! " T s(l ), gl , gr are both its subpaths. This
implies that from the above conditions, we must have
! !" T s(X, Y ). By Prop. 6, we have

Covs
l [x ! ] (X, Y )! =

!

" !T s ( l )

Covts
" [x ! ] (X, Y )! = 0 .

Proof of Theorem 4.Thm. 3 implies

Covs
x ! (X, Y ) =

!

" !T s (X,Y )

Covts
" [x ! ] (X, Y )L s

!
. (17)

Since the mappingf : T s(X, Y ) # ! s(X, Y ) is a sur-
jective function,{T s(l ) = f " 1(l )} l ! ! s (X,Y ) is a parti-
tion over the setT s(X, Y ). Eq. 17 could be written as:

Covs
x ! (X, Y ) =

!

" !T s (X,Y )

Covts
" [x ! ] (X, Y )L s

!

=
!

l ! ! s (X,Y )

!

" !T s ( l )

Covts
" [x ! ] (X, Y )!

=
!

l ! ! s (X,Y )

Covs
l [x ! ] (X, Y )! .

Proof of Theorem 5.By Thm. 1, we have

Cov(X, Y ) = Cov c
x ! (X, Y ) + Cov s

x ! (X, Y ).

Applying Thm. 2 and 5 to the above equation gives

Cov(X, Y ) =
!

l ! ! c (X,Y )

Covc
l [x ! ] (X, Y )L c

!

+
!

l ! ! s (X,Y )

Covs
l [x ! ] (X, Y )L s

!
.

We will next prove Thm. 6. Recall in the standard model
of Fig. 1(a),X andY are connected with causal paths
l1 : X # Y , l2 : X # W # Y and spurious paths
l3 : X $ Z # Y and l4 : X $ Z # W # Y.
Us = { UZ} affects the treatmentX through a causal
pathgl = UZ # Z # X and the outcomeY through
causal pathsgr 1 = UZ # Z # Y andgr 2 = UZ #
Z # W # Y. To prove Thm. 7, we will introduce
following lemmas.

Lemma 5. In the standard model (Fig. 1(a)), for an or-
der L c : l1 < l 2, the path-speciÞc decomposition of
the causal covarianceCovc

x ! (X, Y ) (Thm. 2) are iden-
tiÞable if P(x, yx ! ,W ) and P(x, yx ! ) are identiÞable.
SpeciÞcally, distributionsP(x, yx ! ,W ) and P(x, yx ! )

can be estimated from the observational distribution
P(x, y, z, w) as following:

P(x, yx ! ) =
!

z,w

P(y|x#, z, w)P(w|x#, z)P(x, z),

P(x, yx ! ,W ) =
!

z,w

P(y|x#, z, w)P(x, z, w).

Proof. By Thm. 2, the causal covarianceCovc
x ! (X, Y )

equates to

Covc
x ! (X, Y ) = Cov c

l 1 [x ! ] (X, Y )L c
!

+ Cov c
l 2 [x ! ] (X, Y )L c

!
.

We will show that each quantity on the right-hand side
of the above equation is identiÞable fromP(x, y, z, w).
For the orderL c : l1 < l 2,

Covc
l 1 [x ! ] (X, Y )L c

1!
= Cov dp

x ! (X, Y ) (18)

= Cov( X, Y %Yx ! ,W )

= Cov( X, Y ) %Cov(X, Yx ! ,W ),

Covc
l 2 [x ! ] (X, Y )L c

1!
= Cov it

x ! (X, Y ) (19)

= Cov( X, Yx ! ,W %Yx ! )

= Cov( X, Yx ! ,W ) %Cov(X, Yx ! ).

It sufÞces to show that distributionsP(x, yx ! ,W ) and
P(x, yx ! ) are identiÞable. By expanding onZ, Wx ! ,
P(x, yx ! ) can be written as:

P(x, yx ! )

=
!

z,w

P(yx ! |x, z, wx ! )P(wx ! |x, z)P(x, z)

=
!

z,w

P(yx ! ,z,w |xz , z, wx ! ,z )P(wx ! ,z |xz , z)P(x, z).

The last step holds due to the following reasons: (1)
by the exclusion restrictions rule, sinceZ has no parent
node in the model of Fig. 1(a),Z = Zx ! for anyx#; (2)
by the composition axiom, we have:

Z = z & X = X z,

Zx ! = z & Wx ! = Wx ! ,z ,

Zx ! = z, Wx ! = w & Yx ! = Yx ! ,z,w .

By the independence exclusions rule, for anyx#, x, z, w,

Wx ! ,z '' X z , Z, (20)

Yx ! ,z,w '' X z , Z, Wx,z . (21)

We thus have:
!

z,w

P(yx ! ,z,w |xz , z, wx ! ,z )P(wx ! ,z |xz , z)P(x, z)

=
!

z,w

P(yx ! ,z,w )P(wx ! ,z )P(x, z)



Since the standard model is Markovian,

P(wx ! ,z ) = P(w|x! , z), (22)

P(yx ! ,z,w ) = P(y|x! , z, w). (23)

Thus,

P(x, yx ! ) =
!

z,w

P(y|x! , z, w)P(w|x! , z)P(x, z).

By expanding onZ, W , P(x, yx ! ,W ) can be written as:

P(x, yx ! ,W )

=
!

z,w

P(yx ! ,w |x, z, w)P(x, z, w)

=
!

z,w

P(yx ! ,w |x, zx ! ,w , wx,z )P(x, z, w)

The last step holds due to following reasons: (1) By the
composition axiom,W = Wx,z if X = x, Z = z; (2)
By the exclusion restrictions rules,Z = Zx ! ,w if Z has
no parent node. Applying the composition axiom again
gives:

Zx ! ,w = z ! Yx ! ,w = Yx ! ,z,w .

We thus have:
!

z,w

P(yx ! ,w |x, zx ! ,w , wx,z )P(x, z, w)

=
!

z,w

P(yx ! ,z,w |x, zx ! ,w , wx,z )P(x, z, w)

The independence relation 21 gives:

P(x, yx ! ,W ) =
!

z,w

P(yx ! ,z,w |x, zx ! ,w , wx,z )P(x, z, w)

=
!

z,w

P(yx ! ,z,w )P(x, z, w)

=
!

z,w

P(y|x! , z, w)P(x, z, w).

The last step holds by Eq. 23.

Lemma 6. In the standard model (Fig. 1(a)),
for a order L s where L s

r : gr 1 < g r 2 , the
path-speciÞc decomposition of the spurious co-
variance Covs

x ! (X, Y ) (Thm. 5) is identiÞable if
P(x, yx ! ), P(x, yx ! ,W x ! ,Z U r

Z
) are identiÞable. Specif-

ically, distributions P(x, yx ! ), P(x, yx ! ,W x ! ,Z U r
Z

) are
identiÞable can be estimated from the observational
distributionP(x, y, z, w) as following:

P(x, yx ! ) =
!

z,w

P(y|x! , z, w)P(w|x" , z)P(x, z),

P(x, yx ! ,W x ! ,Z U r
Z

) =
!

z,z " ,w

P(y|x! , w, z)P(w|x! , z")

áP(x, z")P(z)

Proof. By Thm. 5, the spurious covariance
Covs

x ! (X, Y ) equates to

Covs
x ! (X, Y ) = Cov s

l 3 [x ! ] (X, Y )L s
!

+ Cov s
l 4 [x ! ] (X, Y )L c

!
.

We will next show that each quantity on the right-
hand side of the above equation is identiÞable from
P(x, y, z, w). In the standard model, Considering the
orderL s whereL s

r : gr 1 < g r 2 ,

Covs
l 3 [x ! ] (X, Y )L s

1!
= Cov( X # X gl , Yx ! # Yx ! ,gr 1

)

= Cov( X # X U l
Z
, Yx ! # Yx ! ,W x ! ,Z U r

Z
)

= Cov( X, Yx ! # Yx ! ,W x ! ,Z U r
Z

) (24)

= Cov( X, Yx ! ) # Cov(X, Yx ! ,W x ! ,Z U r
Z

).

The last step holds sinceX U l
Z

is an independent counter-
factual variable: the variableX is function overUX, Ul

Z;
the exogenous variablesUX, Ul

Z are independent of all the
other variables in the domain. Similarly,

Covs
l 4 [x ! ] (X, Y )L s

1!
= Cov( X # X gl , Yx ! ,gr 1

# Yx ! ,gr [1 , 2]
)

= Cov( X # X U l
Z
, Yx ! ,W x ! ,Z U r

Z
# Yx ! ,U r

Z
)

= Cov( X, Yx ! ,W x ! ,Z U r
Z

# Yx ! ,U r
Z
) (25)

= Cov( X, Yx ! ,W x ! ,Z U r
Z

).

The last two steps holds sinceX U l
Z

andYx ! ,U r
Z

are inde-
pendent counterfactual variables. It will sufÞce to show
that the distributionsP(x, yx ! ), P(x, yx ! ,W x ! ,Z U r

Z
) are

identiÞable. P(x, yx ! ) can be identiÞed using Lem. 5.
By conditioning onUr

Z , P(x, yx ! ,W x ! ,Z U r
Z

) can be writ-
ten as:

P(x, yx ! ,W x ! ,Z U r
Z

) =
!

u r
Z

P(x, yx ! ,W x ! ,Z u r
Z
|ur

Z)P(ur
Z)

With Ur
Z Þxed, variablesX andYx ! ,W x ! ,Z u r

Z
are func-

tions of the exogenous variableU, which is independent
of Ur

Z . We thus have the following independence relation

Ur
Z $$ X, Yx ! ,W x ! ,Z u r

Z
,

which gives:

P(x, yx ! ,W x ! ,Z U r
Z

) =
!

u r
Z

P(x, yx ! ,W x ! ,Z u r
Z
)P(ur

Z)

(26)

By expanding onZ, Z U r
Z
, Wx ! , P(x, yx ! ,W x ! ,Z u r

Z
) can

be written as:

P(x, yx ! ,W x ! ,Z u r
Z
) =

!

z,z " ,w

P(x, yx ! ,w,z , wx ! , z", zu r
Z
)



Since the functionfZ takes onlyUZ as an argument, the
variablesZu r

Z
are deterministic, i.e.,

P (x, yx⇤,w,z , wx⇤
, z

!
, zu r

Z
)

= P (x, yx⇤,w,z , wx⇤
, z

! )I{Zu r
Z

= z}

whereI{á} is an indicator function. The above equation,
together with Eq. 26, gives:

P (x, yx⇤,W x ⇤ ,Z U r
Z

)

=
!

z,z 0,w

P (x, yx⇤,w,z , wx⇤
, z

! )
!

u r
Z

I{Zu r
Z

= z}P (ur
Z)

=
!

z,z 0,w

P (x, yx⇤,w,z , wx⇤
, z

! )P (z). (27)

By the composition axiom and the exclusion restrictions
rule [Pearl, 2000, Ch. 7.3], in the model of Fig. 1(a), for
anyz, x" ,

Z = z ! X = Xz ,

Z = Zx⇤
,

Zx⇤ = z ! Wx⇤ = Wx⇤,z ,

(28)

The above relations imply that:

P (x, yx⇤,w,z , wx⇤
, z

! ) = P (xz0
, yx⇤,w,z , wx⇤,z 0

, z

! )

The independence restrictions rule [Pearl, 2000, Ch. 7.3]
implies that in the model of Fig. 1(a), counterfactuals
Xz0

, Yx⇤,w,z ,Wx⇤,z 0
, Z are mutually independent. We

thus obtain

P (xz0
, yx⇤,w,z , wx⇤,z 0

, z

! )

= P (xz0 )P (yx⇤,w,z )P (wx⇤,z 0 )P (z! ) (29)

Since the standard model is Markovian,

P (xz0 ) = P (x|z! ),

P (yx⇤,w,z ) = P (y|x"
, w, z),

P (wx⇤,z 0 ) = P (w|x"
, z

! ).

(30)

Eqs. 27, 29 and 30 together give

P (x, yx⇤,W x ⇤ ,Z U r
Z

)

=
!

z,z 0,w

P (x|z! )P (y|x,w, z)P (w|x"
, z

! )P (z! )P (z)

=
!

z,z 0,w

P (y|x,w, z)P (w|x"
, z

! )P (x, z! )P (z).

We are now ready to prove Thm. 6.

Proof of Theorem 6.Recall the target path-speciÞc de-
composition ofCov(X,Y ) is:

Cov(X,Y " Yx⇤,W ) + Cov( X,Yx⇤,W " Yx⇤ )

+ Cov( X " XU l
Z
, Yx⇤ " Yx⇤,W x ⇤Z U r

Z
)

+ Cov( X " XU l
Z
, Yx⇤,W x ⇤ ,Z U r

Z
" Yx⇤,U r

Z
).

This decomposition is induced by the orderL c : l1 < l2

and L s whereL s
r : gr 1 < gr 2 . Thm. 6 immediately

follows from Lems. 5 and 6.

We next consider the identiÞcation of other decomposi-
tions of Cov(X,Y ) in the model of Fig. 1(a). Indeed,
one could show that the decomposition ofCov(X,Y )
(Thm. 5) are always identiÞable in the standard model
regardless of the orderL c andL s.

Lemma 7. In the standard model (Fig. 1(a)), for an or-
der L c : l2 < l1, the path-speciÞc decomposition of
the causal covarianceCovc

x⇤ (X,Y ) (Thm. 2) are iden-
tiÞable if P (x, yx⇤ ) and P (x, yW x ⇤ ) are identiÞable.
SpeciÞcally, distributionsP (x, yx⇤ ) and P (x, yW x ⇤ )
can be estimated from the observational distribution
P (x, y, z, w) as following:

P (x, yx⇤ ) =
!

z,w

P (y|x"
, z, w)P (w|x" #, z)P (x, z),

P (x, yW x ⇤ ) =
!

z,w

P (y|x, z, w)P (w|x"
, z)P (x, z).

Proof. Consider the orderL c : l2 < l1. The path-
speciÞc causal covariance ofl1, l2 are equal to:

Covc
l 1 [x⇤] (X,Y )L c

2!
= Cov dt

x⇤ (X,Y ) (31)

= Cov( X,YW x ⇤ " Yx⇤ )

= Cov( X,YW x ⇤ ) " Cov(X,Yx⇤ ),

Covc
l 2 [x⇤] (X,Y )L c

2!
= Cov ip

x⇤ (X,Y ) (32)

= Cov( X,Y " YW x ⇤ )

= Cov( X,Y ) " Cov(X,YW x ⇤ ).

It sufÞces to show that distributionsP (x, yW x ⇤ ) and
P (x, yx⇤ ) are identiÞable.P (x, yx⇤ ) can be identiÞed
using Lem. 5. By expanding onZ,Wx⇤ , P (x, yW x ⇤ ) can
be written as:

P (x, yW x ⇤ )

=
!

z,w

P (yw |x, z, wx⇤ )P (wx⇤ |x, z)P (x, z)

=
!

z,w

P (yw |xw , zw , wx⇤ )P (wx⇤ |x, zx⇤ )P (x, z).

In the last step, sinceZ is a non-descendant node of
X,W andX is a non-descendant node ofW , we have
Z = Zx⇤ = Zw andX = Xw . By the composition
axiom,

Z = z ! X = Xz ,

Zx⇤ = z ! Wx⇤ = Wx⇤,z ,

Xw = x, Zw = z ! Yw = Yx,z,w .



which gives:
!

z,w

P(yw |xw , zw , wx ! )P(wx ! |x, zx ! )P(x, z)

=
!

z,w

P(yx,z,w |xw , zw , wx ! )P(wx ! ,z |x, zx ! )P(x, z)

=
!

z,w

P(yx,z,w |x, z, wx ! )P(wx ! ,z |x, z)P(x, z)

=
!

z,w

P(yx,z,w |xz , z, wx ! )P(wx ! ,z |xz , z)P(x, z)

=
!

z,w

P(yx,z,w |xz , z, wx ! ,z )P(wx ! ,z |xz , z)P(x, z)

The last step holds sinceZ = Zx ! and Zx ! = z !
Wx ! = Wx ! ,z . Applying Eqs. 20 and 21 gives:

P(x, yW x ! ) =
!

z,w

P(yx,z,w )P(wx ! ,z )P(x, z)

=
!

z,w

P(y|x, z, w)P(w|x! , z)P(x, z).

The last step holds by Eqs. 22 and 23.

Lemma 8. In the standard model (Fig. 1(a)),
for a order L s where L s

r : gr 2 < g r 1 , the
path-speciÞc decomposition of the spurious co-
variance Covs

x ! (X, Y ) (Thm. 5) is identiÞable if
P(x, yx ! ), P(x, yx ! ,W x ! ,U r

Z
) are identiÞable. Specif-

ically, distributions P(x, yx ! ), P(x, yx ! ,W x ! ,U r
Z

) are
identiÞable can be estimated from the observational
distributionP(x, y, z, w) as following:

P(x, yx ! ) =
!

z,w

P(y|x! , z, w)P(w|x" , z)P(x, z),

P(x, yx ! ,W x ! ,U r
Z

) =
!

z,z " ,w

P(y|x! , w, z")P(w|x! , z)

áP(x, z")P(z).

Proof. Considering the orderL s whereL s
r : gr 2 < g r 1 ,

Covs
l 3 [x ! ] (X, Y )L s

1!
= Cov( X # X gl , Yx ! ,gr 2

# Yx ! ,gr [1 , 2]
)

= Cov( X # X U l
Z
, Yx ! ,W x ! ,U r

Z
# Yx ! ,U r

Z
)

= Cov( X, Yx ! ,W x ! ,U r
Z

# Yx ! ,U r
Z
) (33)

= Cov( X, Yx ! ,W x ! ,U r
Z

).

Similarly,

Covs
l 4 [x ! ] (X, Y )L s

1!
= Cov( X # X gl , Yx ! # Yx ! ,gr 2

)

= Cov( X # X U l
Z
, Yx ! # Yx ! ,W x ! ,U r

Z
)

= Cov( X, Yx ! # Yx ! ,W x ! ,U r
Z

) (34)

= Cov( X, Yx ! ) # Cov(X, Yx ! ,W x ! ,U r
Z

).

The last step holds sinceX U l
Z

andYx ! ,U r
Z

are indepen-
dent counterfactual variables. It will sufÞce to show that
the distributionsP(x, yx ! ), P(x, yx ! ,W x ! ,U r

Z
) are identi-

Þable. By conditioning onUr
Z ,

P(x, yx ! ,W x ! ,U r
Z

) =
!

u r
Z

P(x, yx ! ,W x ! ,u r
Z
|ur

Z)P(ur
Z)

With Ur
Z Þxed, variablesX andYx ! ,W x ! ,u r

Z
are functions

of the exogenous variableU, which is independent of
Ur

Z . We thus have the independence relation

Ur
Z $$ X, Yx ! ,W x ! ,u r

Z
,

which gives:

P(x, yx ! ,W x ! ,U r
Z

) =
!

u r
Z

P(x, yx ! ,W x ! ,u r
Z
)P(ur

Z) (35)

By expanding onZ, Z u r
Z
, Wx ! ,u r

Z
,

P(x, yx ! ,W x ! ,u r
Z
) =

!

z,z " ,w

P(x, yx ! ,w , wx ! ,u r
Z
, z", zu r

Z
)

By the composition axiom and the exclusion restrictions
rule [Pearl, 2000, Ch. 7.3] (treatingUZ as an endogenous
variable), for anyz, x! , w, uZ,

Zu Z = Zx ! ,u Z,

Zx ! ,u Z = z ! Wx ! ,u Z = Wx ! ,z,u Z = Wx ! ,z ,

Z = Zx ! ,w ,

Zx ! ,w = z ! Yx ! ,w = Yx ! ,w,z .

(36)

Eqs. 28 and 36 imply

P(x, yx ! ,w , wx ! ,u r
Z
, z", zu r

Z
)

= P(xz" , yx ! ,w,z " , wx ! ,z , z", zu r
Z
)

Since the functionf Z takes onlyUZ as an argument. The
variablesZu r

Z
are thus deterministic, i.e.,

P(xz" , yx ! ,w,z " , wx ! ,z , z", zu r
Z
)

= P(xz" , yx ! ,w,z " , wx ! ,z , z")I { Zu r
Z

= z} .

The above equation, together with Eq.35, gives

P(x, yx ! ,W x ! ,U r
Z

)

=
!

z,z " ,w

P(xz" , yx ! ,w,z " , wx ! ,z , z")
!

u r
Z

I { Zu r
Z

= z} P(ur
Z)

=
!

z,z " ,w

P(xz" , yx ! ,w,z " , wx ! ,z , z")P(z)

The independence restrictions rule [Pearl, 2000, Ch. 7.3]
implies that in the model of Fig. 1(a), counterfactuals



X z! , Yx " ,w,z ! , Wx " ,z , Z are mutually independent. To-
gether with Eq. 30, the above equation is equal to:

P(x, yx " ,W x " ,U r
Z

)

=
X

z,z ! ,w

P(xz! )P(yx " ,w,z ! )P(wx " ,z )P(z!)P(z)

=
X

z,z ! ,w

P(x|z!)P(y|x" , w, z!)P(w|x" , z)P(z!)P(z)

=
X

z,z ! ,w

P(y|x" , w, z!)P(w|x" , z)P(x, z!)P(z).

Since Lems. 5-8 cover all possible ordersL c, L s, the de-
compositions Thm. 5 are always identiÞable in the stan-
dard fairness model.

Proof of Theorem 7. By Eqs. 18, 19, 31 and 32, we have
for orderL c

1 : l1 < l 2 andL c
2 : l2 < l 1,

Covc
l 1 [x " ](X, Y )L c

1!
= Cov dp

x " (X, Y ),

Covc
l 1 [x " ](X, Y )L c

2!
= Cov dt

x " (X, Y ),

Covc
l 2 [x " ](X, Y )L c

1!
= Cov it

x " (X, Y ),

Covc
l 2 [x " ](X, Y )L c

2!
= Cov ip

x " (X, Y ).

Applying Thm. 1 to the above equations implies that for
an arbitrary orderL c overl[1,2] ,

Covc
l 1 [x " ](X, Y )L c

!
= !

YX

, Covc
l 2 [x " ](X, Y )L c

!
= !

WX

!
YW

.

We will next consider the path-speciÞc spurious covari-
ance ofl3, l4. As for L s whereL s

r : gr 1 < g r 2 , by
Eqs. 24-25,

Covs
l 3 [x " ](X, Y )L s

1!

= Cov( X, Yx " ! Yx " ,W x " ,Z U r
Z

)

= !
YZ

Cov(X, Z ) + !
YZ

Cov(X, Z U r
Z

) (37)

Since the domain is normalized,Cov(Z, Z ) =
Var( Z ) = 1 , Cov(X, Z ) is equal to

Cov(X, Z ) = Cov( !
XZ

Z + U
X

, Z )

= !
XZ

Var( Z ) = !
XZ

(38)

Cov(X, Z U r
Z

) equates to:

Cov(X, Z U r
Z

) = Cov( !
XZ

Z + U
X

, ZU r
Z

)

= Cov( !
XZ

U
Z

+ U
X

, Ur
Z

)

= !
XZ

Cov(U
Z

, Ur
Z

) + Cov( U
X

, Ur
Z

) = 0 . (39)

The last step holds sinceU
Z

, U
X

andUr
Z

are mutually in-
dependent. Eqs. 37-39 together give:

Covs
l 3 [x " ](X, Y )L s

1!
= !

XZ

!
YZ

. (40)

Similarly,

Covs
l 4 [x " ](X, Y )L s

1!

= Cov( X, Yx " ,W x " ,Z U r
Z

! Yx " ,U r
Z

)

= !
YW

Cov(X, W x " ) + !
YZ

Cov(X, W x " ,U r
Z

)

= !
WZ

!
YW

(Cov(X, Z ) + Cov( X, Z U r
Z

))

= !
XZ

!
WZ

!
YW

. (41)

We will next consider the orderL s whereL s
r : gr 2 < g r 1 .

By Eqs. 33-34,

Covs
l 3 [x " ](X, Y )L s

1!

= Cov( X, Yx " ,W x " ,U r
Z

! Yx " ,U r
Z

)

= !
YZ

Cov(X, Z ) + !
YZ

Cov(X, Z U r
Z

)

= !
XZ

!
YZ

(42)

and

Covs
l 4 [x " ](X, Y )L s

1!

= Cov( X, Yx " ! Yx " ,W x " ,U r
Z

)

= !
YW

Cov(X, W x " ) + !
YZ

Cov(X, W x " ,U r
Z

)

= !
XZ

!
WZ

!
YW

(43)

Eqs. 40 - 43 combined imply that for an arbitrary order
L s,

Covs
l 3 [x " ](X, Y )L s

!
= !

XZ

!
YZ

,

Covs
l 4 [x " ](X, Y )L s

!
= !

XZ

!
WZ

!
YW

.

SpeciÞcally, Parameters! can be estimated from the par-
tial regression coefÞcients [Pearl, 2000, Ch. 5] as follow-
ing:

!
YX

= "
YX.ZW

, !
YZ

= "
YZ.XW

, !
YW

= "
YW.XZ

,

!
WX

= "
WX.Z

, !
WZ

= "
WZ.X

, !
XZ

= !
XZ

.

2 EXAMPLES

In this section, we will illustrate the results presented in
this paper with more detailed examples.

2.1 PATH-SPECIFIC POTENTIAL RESPONSE

Consider the standard model of Fig. 1(a). Recall the
path g1 : X " W1 " W2 " Y . We next show,
step by step, the derivation of theg1-speciÞc potential
responseYg1 [x " ] . Since the edgeX " Y #$ {g1} , the
setX ! # Y = %. We thus haveS = ( Pa(Y )G & V) !
X ! # Y = { X, W 1, W2} . By Def. 6,

Yg1 [x " ]

= YX ! X # Y ( g 1 )[ x " ] ,W 1! W 1 # Y ( g 1 )[ x " ]
,W 2! W 2 # Y ( g 1 )[ x " ]

.



Since the edgesX ! Y andW1 ! Y are not subpaths
of g1,

! X ! Y (g1) = ! W 1 ! Y (g1) = " .

By Def. 6, the above equation implies

X !
X! Y

(g1 )[ x " ] = X, W 1!
W1 ! Y

( g1 )[ x" ] = W1.

Yg1 [x " ] can thus be written as:

Yg1 [x " ] = YX,W 1 ,W 2!
W2 ! Y

( g1 )[ x" ]
.

Since! W 2 ! Y (g1) returns the subpath{ g1(X, W 2)} ,

Yg1 [x " ] = YX,W 1 ,W 2
g1 ( X,W2 )[ x" ]

, (44)

where W2
g1 ( X,W2 )[ x" ] is the path-speciÞc potential re-

sponse ofW2. SinceX ! Y #$ {g1(X, W 2)} , the setS
for W2

g1 ( X,W2 )[ x" ] is { X, W 1} . Applying Def. 6 again,

W2
g1 ( X,W2 )[ x" ]

= W2
X!

X! W2
( g1 ( X,W2 ))[ x

" ] ,W1!
W1 ! W2

( g1 ( X,W2 ))[ x

" ]
.

Since

! X ! W 2 (g1(X, W 2)) = " ,

! W 1 ! W 2 (g1(X, W 2)) = { g1(X, W 1)} ,

W2
g1 ( X,W2 ) can be written as:

W2
g1 ( X,W2 )[ x" ] = W2

X,W1
g1 ( X,W1 )[ x" ]

, (45)

where W1
g1 ( X,W1 )[ x" ] is the path-speciÞc potential re-

sponse ofW1. Since the edgeX ! W1 = g1(X, W 1),
the setX ! ! W 1 = { X } and S = ( Pa(W1)G %V) &
X ! ! W 1 = " . By Def. 6,

W1
g1 ( X,W1 )[ x" ] = W1

x

" . (46)

Eqs. 44-46 together give:

Yg1 [x " ] = YX,W 1 ,W 2
X,W1

x

"
= YW 2

W1
x

"
.

2.2 DECOMPOSING CAUSAL RELATIONS

We will consider the model in Fig. 6 where causal ef-
fects fromX andY are mediated byW1, W2, W3, and
all directed edges are confounded. There are eight causal
paths fromX to Y :

g1 : X ! Y,

g2 : X ! W1 ! Y,

g3 : X ! W2 ! Y,

g4 : X ! W3 ! Y,

g5 : X ! W1 ! W2 ! Y,

g6 : X ! W1 ! W3 ! Y,

g7 : X ! W2 ! W3 ! Y,

g8 : X ! W1 ! W2 ! W3 ! Y.

W1
W2

W3

X Y

Figure 6: Causal diagram for the three-mediators set-
ting where causal paths fromX andY are mediated by
W1, W2, W3.

Let an orderL c begi < g j if i < j . Thm. 2 is applicable
and express the causal covarianceCovc

x " (X, Y ) as:

Covc
x " (X, Y ) =

8!

i =1

Covc
g
i

[x " ] (X, Y )L c

⇡

.

The path-speciÞc causal covariance"
Covc

g
i

[x " ] (X, Y )L c

⇡

#
i =1 ,..., 8 are equal to:

Covc
g1 [x " ](X, Y )L c

⇡

= Cov( X, Y & Yg1 [x " ])

= Cov( X, Y & Yx " ,W 1 ,W 2 ,W 3 ),

Covc
g2 [x " ](X, Y )L c

⇡

= Cov( X, Yg1 [x " ] & Yg[1 ,2] [x " ] )

= Cov( X, Yx " ,W 1 ,W 2 ,W 3 & Yx " ,W 1
x

" ,W 2 ,W 3 ),

Covc
g3 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,2] [x " ] & Yg[1 ,3] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2 ,W 3 & Yx " ,W 1
x

" ,W 2
x

"
,W1

,W 3 ),

Covc
g4 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,3] [x " ] & Yg[1 ,4] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2
x

"
,W1

,W 3

& Yx " ,W 1
x

" ,W 2
x

"
,W1

,W 3
x

"
,W1 ,W2

),

Covc
g5 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,4] [x " ] & Yg[1 ,5] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2
x

"
,W1

,W 3
x

"
,W1 ,W2

& Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1 ,W2

),

Covc
g6 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,5] [x " ] & Yg[1 ,6] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1 ,W2

& Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1

x

" ,W2
),

Covc
g7 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,6] [x " ] & Yg[1 ,7] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1

x

" ,W2

& Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1

x

" ,W2
x

"
,W1

),

Covc
g8 [x " ](X, Y )L c

⇡

= Cov( X, Yg[1 ,7] [x " ] & Yg[1 ,8] [x " ] )

= Cov( X, Yx " ,W 1
x

" ,W 2
x

" ,W 3
x

"
,W1

x

" ,W2
x

"
,W1

& Yx " ).

2.3 DECOMPOSING SPURIOUS RELATIONS

We will consider the generalized two-confounders set-
ting described in Fig. 7(a) whereX and Y are con-
founded byZ1, Z2. The exogenous variablesU1, U2



associated withZ1, Z2 are represented explicitly in the
causal diagram. In the model of Fig. 7(a),Us =
{ U1, U2} which affects the observationalX and the
counterfactualsYx ! through causal paths shown in
Fig. 7(b). There are thus Þve spurious treks:

! 1 = ( g1
l 1

, g1
r 1

), ! 2 = ( g1
l 1

, g1
r 2

), ! 3 = ( g1
l 2

, g1
r 1

)

! 4 = ( g1
l 2

, g1
r 2

), ! 5 = ( g2
l 1

, g2
r 1

).

The treatmentX and the outcomeY are connected
through four spurious paths:

l1 : X ! Z1 " Y, l2 : X ! Z2 " Y,

l3 : X ! Z1 " Z2 " Y, l4 : X ! Z2 ! Z1 " Y.

Let an orderL s
u beU1 < U 2. Let an orderL s

r i
begi

r j
<

gi
r k

if j < k . The orderL l i is similarly deÞned. Thm. 3
decomposes the spurious covarianceCovs

x ! (X, Y ) over
the spurious pathsl1, . . . , l4:

Covs
x ! (X, Y ) =

4X

i =1

Covs
l i [x ! ] (X, Y )L s

!
.

The path-speciÞc spurious covariance�
Covs

l i [x ! ] (X, Y )L s
!

 
i =1 ,..., 4 are equal to:

Covs
l 1 [x ! ] (X, Y )L s

!
= Cov ts

! 1 [x ! ] (X, Y )L s
!

= Cov( X # X g1
l 1

, Yx ! # Yx ! ,g1
r 1

)

= Cov( X # X Z 1
U l

1
,Z 2 , Yx ! # Yx ! ,Z 1U r

1
,Z 2 ),

Covs
l 2 [x ! ] (X, Y )L s

!

= Cov ts
! 4 [x ! ] (X, Y )L s

!
+ Cov ts

! 5 [x ! ] (X, Y )L s
!

= Cov( X g1
l 1

# X g1
l [1 , 2]

, Yx ! ,g1
r 1

# Yx ! ,g1
r [1 , 2]

)

+ Cov( X g1
l [1 , 2]

! g2
l 1

, Yx ! ,g1
r [1 , 2]

# Yx ! ,g1
r [1 , 2]

! g2
r 1

)

= Cov( X Z 1
U l

1
,Z 2 # X U l

1
, Yx ! ,Z 1U r

1
,Z 2 # Yx ! ,U r

1
)

+ Cov( X U l
1

# X U l
[1 , 2]

, Yx ! ,U r
1

# Yx ! ,U r
[1 , 2]

),

Covs
l 3 [x ! ] (X, Y )L s

!
= Cov ts

! 2 [x ! ] (X, Y )L s
!

= Cov( X # X g1
l 1

, Yx ! ,g1
r 1

# Yx ! ,g1
r [1 , 2]

)

= Cov( X # X Z 1
U l

1
,Z 2 , Yx ! ,Z 1U r

1
,Z 2 # Yx ! ,U r

1
),

Covs
l 4 [x ! ] (X, Y )L s

!
= Cov ts

! 3 [x ! ] (X, Y )L s
!

= Cov( X g1
l 1

# X g1
l [1 , 2]

, Yx ! # Yx ! ,g1
r 1

)

= Cov( X Z 1
U l

1
,Z 2 # X U l

1
, Yx ! # Yx ! ,Z 1U r

1
,Z 2 ).
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Figure 7: (a) Causal diagram for the two-confounders
setting whereX to Y are confounded byZ1, Z2; (b)
Causal paths through which the exogenous variables
U1, U2 affectX andYx ! in the two-confounders setting.

2.4 PATH-SPECIFIC DECOMPOSITION

Considering the model of Fig. 8, the treatmentX and the
outcomeY are connected by the causal paths:

l1 : X " Y, l2 : X " W1 " Y,

l3 : X " W2 " Y, l4 : X " W1 " W2 " Y,

and the spurious paths:

l5 : X ! Z1 " Y,

l6 : X ! Z1 " W1 " Y,

l7 : X ! Z1 " W2 " Y,

l8 : X ! Z1 " W1 " W2 " Y,

l9 : X ! Z1 " Z2 " Y,

l10 : X ! Z1 " Z2 " W1 " Y,

l11 : X ! Z1 " Z2 " W2 " Y,

l12 : X ! Z1 " Z2 " W1 " W2 " Y,

l13 : X ! Z2 ! Z1 " Y,

l14 : X ! Z2 ! Z1 " W1 " Y,

l15 : X ! Z2 ! Z1 " W2 " Y,

l16 : X ! Z2 ! Z1 " W1 " W2 " Y,

l17 : X ! Z2 " Y,

l18 : X ! Z2 " W1 " Y,

l19 : X ! Z2 " W2 " Y,

l20 : X ! Z2 " W1 " W2 " Y.

Let U1, U2 denote the independent errors associated with
the confoundersZ1, Z2 respectively. In this model,
Us = { U1, U2} where the causal paths! c(U1, X ) and



Z1 Z2

X Y

W1 W2

Figure 8: Causal diagram for the two-mediators-two-
confounders setting whereX to Y are confounded by
Z1, Z2 and mediated byW1, W2.

! c(U1, X |Y ) are:

g1
l 1

: U1 ! Z1 ! X,

g1
l 2

: U1 ! Z1 ! Z2 ! X,

g1
r 1

: U1 ! Z1 ! Y,

g1
r 2

: U1 ! Z1 ! W1 ! Y,

g1
r 3

: U1 ! Z1 ! W2 ! Y,

g1
r 4

: U1 ! Z1 ! W1 ! W2 ! Y,

g1
r 5

: U1 ! Z1 ! Z2 ! Y,

g1
r 6

: U1 ! Z1 ! Z2 ! W1 ! Y,

g1
r 7

: U1 ! Z1 ! Z2 ! W2 ! Y,

g1
r 8

: U1 ! Z1 ! Z2 ! W1 ! W2 ! Y,

and the causal paths! c(U2, X ) and! c(U2, X |Y ) are:

g2
l 1

: U2 ! Z2 ! X,

g2
r 1

: U1 ! Z2 ! Y,

g2
r 2

: U1 ! Z2 ! W1 ! Y,

g2
r 3

: U1 ! Z2 ! W2 ! Y,

g2
r 4

: U1 ! Z2 ! W1 ! W2 ! Y.

There are thus twenty spurious treks fromX to Y :

! 1 = ( g1
l 1

, g1
r 1

), ! 2 = ( g1
l 1

, g1
r 2

), ! 3 = ( g1
l 1

, g1
r 3

),

! 4 = ( g1
l 1

, g1
r 4

), ! 5 = ( g1
l 1

, g1
r 5

), ! 6 = ( g1
l 1

, g1
r 6

),

! 7 = ( g1
l 1

, g1
r 7

), ! 8 = ( g1
l 1

, g1
r 8

), ! 9 = ( g1
l 2

, g1
r 1

),

! 10 = ( g1
l 2

, g1
r 2

), ! 11 = ( g1
l 2

, g1
r 3

), ! 12 = ( g1
l 2

, g1
r 4

),

! 13 = ( g1
l 2

, g1
r 5

), ! 14 = ( g1
l 2

, g1
r 6

), ! 15 = ( g1
l 2

, g1
r 7

),

! 16 = ( g1
l 2

, g1
r 8

), ! 17 = ( g2
l 1

, g2
r 1

), ! 18 = ( g2
l 1

, g2
r 2

),

! 19 = ( g2
l 1

, g2
r 3

), ! 20 = ( g2
l 1

, g2
r 4

).

The set{T s(l i )} i =5 ,..., 20 is a partition over the spurious

treks! [1,20] :

T s(l5) = { ! 1} , T s(l6) = { ! 2} ,

T s(l7) = { ! 3} , T s(l8) = { ! 4} ,

T s(l9) = { ! 5} , T s(l10) = { ! 6} ,

T s(l11) = { ! 7} , T s(l12) = { ! 8} ,

T s(l13) = { ! 9} , T s(l14) = { ! 10} ,

T s(l15) = { ! 11} , T s(l16) = { ! 12} ,

T s(l17) = { ! 13, ! 17} , T s(l18) = { ! 14, ! 18} ,

T s(l19) = { ! 15, ! 19} , T s(l20) = { ! 16, ! 20} .

Let an orderL c be l1 < l 2 < l 3 < l 4, and an order
L s

u beU1 < U 2. Let an orderL l i (L s
r i

) follow the rule
gi

l j
< g i

l k
(gi

r j
< g i

r k
) if j < k . Thm. 5 is applicable and

decomposes the covarianceCov(X, Y ) over pathsl[1,20] :

Cov(X, Y ) =
4!

i =1

Covc
l i [x ! ] (X, Y )L c

!

+
20!

i =5

Covs
l i [x ! ] (X, Y )L s

!
.

The path-speciÞc causal covariance"
Covc

l i [x ! ] (X, Y )L c
!

#
i =1 ,..., 4 are equal to:

Covc
l 1 [x ! ] (X, Y )L c

!
= Cov( X, Y " Yl 1 [x ! ] )

= Cov( X, Y " Yx ! ,W 1 ,W 2 ),

Covc
l 2 [x ! ] (X, Y )L c

!
= Cov( X, Yl 1 [x ! ] " Yl [1 , 2] [x ! ] )

= Cov( X, Yx ! ,W 1 ,W 2 " Yx ! ,W 1x ! ,W 2 ),

Covc
l 3 [x ! ] (X, Y )L c

!
= Cov( X, Yl [1 , 2] [x ! ] " Yl [1 , 3] [x ! ] )

= Cov( X, Yx ! ,W 1x ! ,W 2 " Yx ! ,W 1x ! ,W 2x ! ,W 1
),

Covc
l 3 [x ! ] (X, Y )L c

!
= Cov( X, Yl [1 , 3] [x ! ] " Yl [1 , 4] [x ! ] )

= Cov( X, Yx ! ,W 1x ! ,W 2x ! ,W 1
" Yx ! ).

The path-speciÞc spurious covariance"
Covs

l i [x ! ] (X, Y )L s
!

#
i =5 ,..., 20 are equal to:

Covs
l 5 [x ! ] (X, Y )L s

!
= Cov ts

! 1 [x ! ] (X, Y )L s
!

= Cov( X " X g1
l 1

, Yx ! " Yx ! ,g1
r 1

)

= Cov( X " X Z 1
U l

1
,Z 2 , Yx ! " Yx ! ,W 1x ! ,W 2x ! ,Z 1U r

1
,Z 2 ),

Covs
l 6 [x ! ] (X, Y )L s

!
= Cov ts

! 2 [x ! ] (X, Y )L s
!

= Cov( X " X g1
l 1

, Yx ! ,g1
r 1

" Yx ! ,g1
r [1 , 2]

)

= Cov( X " X Z 1
U l

1
,Z 2 ,

Yx ! ,W 1x ! ,W 2x ! ,Z 1U r
1

,Z 2

" Yx ! ,W 1x ! ,Z 1U r
1

,Z 2
,W 2x ! ,Z 1U r

1
,Z 2 ),



Covs
l 7 [x⇤] (X, Y )L s

!
= Cov ts

! 3 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 2]

� Yx⇤,g1
r [1 , 3]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,W 1x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2 ),

Covs
l 8 [x⇤] (X, Y )L s

!
= Cov ts

! 4 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 3]

� Yx⇤,g1
r [1 , 4]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,W 1x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2 ),

Covs
l 9 [x⇤] (X, Y )L s

!
= Cov ts

! 5 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 4]

� Yx⇤,g1
r [1 , 5]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2U r
1

),

Covs
l 10 [x⇤] (X, Y )L s

!
= Cov ts

! 6 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 5]

� Yx⇤,g1
r [1 , 6]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2U r
1

� Yx⇤,W 1x ⇤ ,U r
1

,W 2x ⇤ ,Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1
),

Covs
l 11 [x⇤] (X, Y )L s

!
= Cov ts

! 7 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 6]

� Yx⇤,g1
r [1 , 7]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,U r
1

,W 2x ⇤ ,Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

� Yx⇤,W 1x ⇤ ,U r
1

,W 2x ⇤ ,W 1Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

,Z 1U r
1

,Z 2U r
1

),

Covs
l 12 [x⇤] (X, Y )L s

!
= Cov ts

! 8 [x⇤] (X, Y )L s
!

= Cov( X � X g1
l 1

, Yx⇤,g1
r [1 , 7]

� Yx⇤,g1
r [1 , 8]

)

= Cov( X � X Z 1
U l

1
,Z 2 ,

Yx⇤,W 1x ⇤ ,U r
1

,W 2x ⇤ ,W 1Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

,Z 1U r
1

,Z 2U r
1

� Yx⇤,U r
1
),

Covs
l 13 [x⇤] (X, Y )L s

!
= Cov ts

! 9 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤ � Yx⇤,g1

r 1
)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
, Yx⇤ � Yx⇤,W 1x ⇤ ,W 2x ⇤ ,Z 1U r

1
,Z 2 ),

Covs
l 14 [x⇤] (X, Y )L s

!
= Cov ts

! 10 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤,g1

r 1
� Yx⇤,g1

r [1 , 2]
)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
,

Yx⇤,W 1x ⇤ ,W 2x ⇤ ,Z 1U r
1

,Z 2 � Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2 ),

Covs
l 15 [x⇤] (X, Y )L s

!
= Cov ts

! 11 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤,g1

r [1 , 2]
� Yx⇤,g1

r [1 , 3]
)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,W 1x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2 ),

Covs
l 16 [x⇤] (X, Y )L s

!
= Cov ts

! 12 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤,g1

r [1 , 3]
� Yx⇤,g1

r [1 , 4]
)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,W 1x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2 ),

Covs
l 17 [x⇤] (X, Y )L s

!

= Cov ts
! 13 [x⇤] (X, Y )L s

!
+ Cov ts

! 17 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤,g1

r [1 , 4]
� Yx⇤,g1

r [1 , 5]
)

+ Cov( X g1
l [1 , 2]

� X g1
l [1 , 2]

! g2
l 1

, Yx⇤,g1
r [1 , 8]

� Yx⇤,g1
r [1 , 8]

! g2
r 1

)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2

� Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2U r
1

)

+ Cov( X U l
1
� X U l

[1 , 2]
, Yx⇤,U r

1

� Yx⇤,U r
1 ,W 1x ⇤ ,U r

1
,W 2x ⇤ ,U r

1
,Z 2U r

[1 , 2]

),

Covs
l 18 [x⇤] (X, Y )L s

!

= Cov ts
! 14 [x⇤] (X, Y )L s

!
+ Cov ts

! 18 [x⇤] (X, Y )L s
!

= Cov( X g1
l 1
� X g1

l [1 , 2]
, Yx⇤,g1

r [1 , 5]
� Yx⇤,g1

r [1 , 6]
)

+ Cov( X g1
l [1 , 2]

� X g1
l [1 , 2]

! g2
l 1

, Yx⇤,g1
r [1 , 8]

! g2
r 1

� Yx⇤,g1
r [1 , 8]

! g2
r [1 , 2]

)

= Cov( X Z 1
U l

1
,Z 2 � X U l

1
,

Yx⇤,W 1x ⇤ ,Z 1U r
1

,Z 2
,W 2x ⇤ ,Z 1U r

1
,Z 2

,Z 1U r
1

,Z 2U r
1

� Yx⇤,W 1x ⇤ ,U r
1

,W 2x ⇤ ,Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1
)

+ Cov( X U l
1
� X U l

[1 , 2]
,

Yx⇤,U r
1 ,W 1x ⇤ ,U r

1
,W 2x ⇤ ,U r

1
,Z 2U r

[1 , 2]

� Yx⇤,U r
1 ,W 1x ⇤ ,U r

[1 , 2]
,W 2x ⇤ ,U r

1
,Z 2U r

[1 , 2]

),



Cov

s
l 19 [x ! ](X, Y )L s

!

= Cov

ts
! 15 [x ! ](X, Y )L s

!
+Cov

ts
! 19 [x ! ](X, Y )L s

!

= Cov(X g1
l 1

! X g1
l [1 , 2]

, Yx ! ,g1
r [1 , 6]

! Yx ! ,g1
r [1 , 7]

)

+ Cov(X g1
l [1 , 2]

! X g1
l [1 , 2]

! g2
l 1

, Yx ! ,g1
r [1 , 8]

! g2
r [1 , 2]

! Yx ! ,g1
r [1 , 8]

! g2
r [1 , 3]

)

= Cov(X Z 1
U l

1
,Z 2 ! X U l

1
,

Yx ! ,W 1x ! ,U r
1

,W 2x ! ,Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

! Yx ! ,W 1x ! ,U r
1

,W 2x ! ,W 1Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

,Z 1U r
1

,Z 2U r
1
)

+ Cov(X U l
1

! X U l
[1 , 2]

,

Yx ! ,U r
1 ,W 1x ! ,U r

[1 , 2]
,W 2x ! ,U r

1
,Z 2U r

[1 , 2]

! Yx ! ,U r
1 ,W 1x ! ,U r

[1 , 2]
,W 2x ! ,U r

[1 , 2]
,W 1x ! ,U r

1
,Z 2U r

[1 , 2]

),

Cov

s
l 20 [x ! ](X, Y )L s

!

= Cov

ts
! 16 [x ! ](X, Y )L s

!
+Cov

ts
! 20 [x ! ](X, Y )L s

!

= Cov(X g1
l 1

! X g1
l [1 , 2]

, Yx ! ,g1
r [1 , 7]

! Yx ! ,g1
r [1 , 8]

)

+ Cov(X g1
l [1 , 2]

! X g1
l [1 , 2]

! g2
l 1

, Yx ! ,g1
r [1 , 8]

! g2
r [1 , 3]

! Yx ! ,g1
r [1 , 8]

! g2
r [1 , 4]

)

= Cov(X Z 1
U l

1
,Z 2 ! X U l

1
,

Yx ! ,W 1x ! ,U r
1

,W 2x ! ,W 1Z 1U r
1

,Z 2
,Z 1U r

1
,Z 2U r

1

,Z 1U r
1

,Z 2U r
1

! Yx ! ,U r
1
)

+ Cov(X U l
1

! X U l
[1 , 2]

,

Yx ! ,U r
1 ,W 1x ! ,U r

[1 , 2]
,W 2x ! ,U r

[1 , 2]
,W 1x ! ,U r

1
,Z 2U r

[1 , 2]

! Yx ! ,U r
[1 , 2]

).
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