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Abstract

One of the fundamental tasks in causal infer-
ence is to decompose the observed association
between a decision X and an outcome Y into
its most basic structural mechanisms. In this
paper, we introduce counterfactual measures
for effects along with a specific mechanism,
represented as a path from X to Y in an ar-
bitrary structural causal model. We derive a
novel non-parametric decomposition formula
that expresses the covariance of X and Y as
a sum over unblocked paths from X to Y con-
tained in an arbitrary causal model. This for-
mula allows a fine-grained path analysis with-
out requiring a commitment to any particular
parametric form, and can be seen as a gen-
eralization of Wright’s decomposition method
in linear systems (1923,1932) and Pearl’s non-
parametric mediation formula (2001).

1 INTRODUCTION

Analyzing the relative strength of different pathways be-
tween a decision X and an outcome Y is a topic that
has interested both scientists and practitioners across dis-
ciplines for many decades. Specifically, path analysis
allows scientists to explain how Nature’s “black-box”
works, and practically, it enables decision analysts to
predict how an environment will change under a variety
of policies and interventional conditions [Wright, 1923;
Baron and Kenny, 1986; Bollen, 1989; Pearl, 2001].

More recently, understanding using causal inference
tools how a black-box decision-making system operates
has been a target of growing interest in the Artificial In-
telligence community, most prominently in the context
of Explainability, Transparency, and Fairness [Lu Zhang,
2017; Kusner et al., 2017; Zafar et al., 2017; Kilbertus
et al., 2017; Zhang and Bareinboim, 2018a]. For exam-

ple, consider the standard fairness model described in
Fig. 1(a) that is concerned with the relation between a
hiring decision (Y ) and an applicant’s religious beliefs
(X), which are mediated by the location (W ), and con-

founded by the education background (Z) of the appli-
cant. 1 Directed edges represent functional relations
between variables. The relationship between X and Y

is materialized through four different pathways in the
system – the direct path l1 : X ! Y , the indirect

path l2 : X ! W ! Y , and the spurious paths
l3 : X  Z ! Y and l4 : X  Z !W ! Y .

Assuming, for simplicity’s sake, that the functional re-
lationships are linear and U

V

i

is an independent “er-
ror” associated with each variable V

i

(called the linear-
standard model), Fig. 1(a) shows the structural coeffi-
cients corresponding to each edge – i.e., the value of the
variable Y is decided by the structural function Y  
↵

YX

X+↵

YZ

Z+↵

YW

W+U

Y

. The celebrated result known
as Wright’s method of path coefficients [Wright, 1923,
1934], also known as Wright’s rule, allows one to ex-
press the covariance of X and Y , denoted by Cov(X,Y ),
as the sum of the products of the structural coefficients
along the paths from X to Y in the underlying causal
model. 2 In particular, Cov(X,Y ) is equal to:

↵

YX|{z}
X!Y

+ ↵

WX

↵

YW| {z }
X!W!Y

+ ↵

XZ

↵

YZ| {z }
X Z!Y

+ ↵

XZ

↵

WZ

↵

YW| {z }
X Z!W!Y

. (1)

Using the observational covariance matrix, the decom-
position above allows one to answer some compelling
questions about the relationship between X and Y in the
underlying model. For instance, the product ↵

WX

↵

YW

ex-
plains how much the indirect discrimination through the
location (the path l2) accounts for the observed dispari-
ties in the religion composition among hired employees.

The path analysis method gained momentum in the so-
1This specific setting has been called standard fairness

model given its generality to representing a variety of decision-
making scenarios [Zhang and Bareinboim, 2018a].

2For a survey on linear methods, see [Pearl, 2000, Ch. 5].
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cial sciences during 1960’s, becoming extremely popular
in the form of the mediation formula in which the total
effect of X on Y is decomposed into direct and indi-
rect components [Baron and Kenny, 1986; Bollen, 1989;
Duncan, 1975; Fox, 1980]. 3 The bulk of this literature,
however, required a commitment to a particular paramet-
ric form, thus falling short of providing a general method
for analyzing natural and social phenomena with nonlin-
earities and interactions [MacKinnon, 2008].

It took a few decades until this problem could be tack-
led in higher generality. In particular, the advent of non-
parametric structural causal models (SCMs) allowed this
leap, and a more fine-grained path-analysis with a much
broader scope, including models with nonlinearities and
arbitrarily complex interactions [Pearl, 2000, Ch. 7]. In
particular, Pearl introduced the causal mediation formula

for arbitrary non-parametric models, which decomposes
the total effect TE

x0,x1(Y ) = E[Y

x1 ]�E[Yx0 ], the differ-
ence between the causal effect of the intervention do(x1)

and do(x0)
4, into what is now known as the natural di-

rect (NDE) and indirect (NIE) effects [Pearl, 2001] (see
also [Imai et al., 2010, 2011; VanderWeele, 2015]). In
the case of the specific linear-standard causal model,

TE0,1(Y ) = ↵

YX|{z}
NDE

+↵

WX

↵

YW| {z }
NIE

for x0 = 0 and x1 = 1 levels. Remarkably, when
compared with Eq. 1, NDE and NIE capture the effects
along with the direct and indirect paths, but omits the
spurious (non-causal) paths between X and Y (in this
case, l3, l4). The mediation formula was recently gen-
eralized to account for these spurious paths (more akin
to Wright’s rules), which appears under the rubric of
the causal explanation formula [Zhang and Bareinboim,
2018a]. This formula decomposes the total variation
TV

x0,x1(Y ) = E[Y |x1]� E[Y |x0] (difference in condi-
tional distributions) into counterfactual measures of the
direct (Ctf-DE), indirect (Ctf-IE), and spurious (Ctf-SE)
effects. In the linear-standard model, for x0 = 0, x1 = 1,

TV0,1(Y ) = ↵

YX|{z}
Ctf-DE

+↵

WX

↵

YW| {z }
Ctf-IE

+↵

XZ

↵

YZ

+ ↵

XZ

↵

WZ

↵

YW| {z }
Ctf-SE

Despite the generality of such results, there are still out-
standing challenges when performing path analysis in
non-parametric models, i.e.: (1) Estimands are defined
relative to specific values assigned to the treatment x1

and its baseline x0, which may be difficult to select in
some non-linear settings; (2) Mediators and confounders

3Just to give an idea of this popularity, Baron and Kenny’s
original paper counts more than 70,000 citations.

4By convention [Pearl, 2000], the post-interventional
distribution is represented interchangeably by P (y

x

) and
P (y|do(x)). General notation is discussed in the next section.
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Figure 1: Causal diagrams for (a) the standard fairness
model where X stands for the protected attribute, Y for
the outcome, W the mediators, and Z the confounders;
(b) the two-mediators setting where causal paths from X

to Y are mediated by W1,W2.

are collapsed and considered en bloc, leading to a coarse
decomposition of the relationship between X and Y

[Pearl, 2001; Vansteelandt and VanderWeele, 2012; Tch-
etgen and Shpitser, 2012; VanderWeele et al., 2014;
Daniel et al., 2015; Zhang and Bareinboim, 2018a]; (3)
Path-specific estimands are well-defined [Pearl, 2001;
Avin et al., 2005], but not in a way that they sum up to
either the total effect (TE) or variation (TV), precluding
the comparison of their relative strengths.

This paper aims to circumvent these problems. In partic-
ular, we decompose the covariance of a treatment X and
an outcome Y over effects along different mechanisms
between X and Y . We define a set of novel counter-
factual estimands for measuring the relative strength of a
specific mechanism represented as a path from X to Y in
an arbitrary causal model. These estimands lead to a non-
parametric decomposition formula, which expresses the
covariance Cov(X,Y ) as a sum of the unblocked paths
from X to Y in the causal graph. This formula allows
a more fine-grained analysis of the total observed vari-
ations of Y due to X (both through causal and spurious
mechanisms) when compared to the state-of-art methods.
More specifically, our contributions are: (1) counterfac-
tual covariance measures for a specific pathway from X

to Y (causal and spurious) in an arbitrary causal model
(Defs. 8, 11-12); (2) non-parametric decomposition for-
mulae of the covariance Cov(X,Y ) over paths from X

to Y in the causal model (Thm. 5); (3) identification con-
ditions for estimating the proposed path-specific decom-
position from the passively-collected data in the standard
model (Thms. 6-7).

2 PRELIMINARIES

In this section, we introduce notations used throughout
the paper. We will use capital letters to denote variables
(e.g., X), and small letters for their values (x). The ab-
breviation P (x) represents the probabilities P (X = x).
For arbitrary sets A and B, let A�B denote their differ-



ence, and let |A| be the dimension of set A. V[i,j] stands
for a set {V

i

, . . . , V

j

} (; if i > j). We use graphical
family abbreviations: An(X)

G

, De(X)

G

, Non-De(X)

G

,
Pa(X)

G

, Ch(X)

G

, which stand for the set of ancestors,
descendants, non-descendants, parents and children of X
in G. We omit the subscript G when obvious.

The basic semantical framework of our analysis rests
on structural causal models (SCM) [Pearl, 2000, Ch. 7;
Bareinboim and Pearl, 2016]. A SCM M consists of a set
of endogenous variables V (often observed) and exoge-
nous variables U (often unobserved). The values of each
V

i

2 V are determined by a structural function f

i

taking
as argument a combination of the other endogenous and
exogenous variables (i.e., V

i

 f

i

(PA

i

, U

i

), PA

i

✓
V, U

i

✓ U)). Values of U are drawn from a distribu-
tion P (u). A SCM M is called Markovian when the
exogenous are mutually independent and each U

i

2 U is
associated with only one endogenous V

i

2 V . If U
i

is
associated with two or more endogenous variables, M is
called semi-Markovian.

Each recursive SCM M has an associated causal diagram
in the form of a directed acyclic graph (DAG) G, where
nodes represent endogenous variables and directed edges
represent functional relations (e.g., Figs. 1-2). By con-
vention, the exogenous U are not explicitly shown in the
graph; a dashed-bidirected arrow between V

i

and V

j

indi-
cates the presence of an unobserved confounder (UC) U

k

affecting both V

i

and V

j

(e.g., the path V

i

 U

k

! V

j

).

A path from X to Y is a sequence of edges which does
not include a particular node more than once. It may go
either along or against the direction of the edges. Paths
of the form X ! · · · ! Y are causal (from X to Y ).
We use d-separation and blocking interchangeably, fol-
lowing the convention in [Pearl, 2000]. Any unblocked
path that is not causal is called spurious. The direct link
X ! Y is the direct path and all the other causal paths
from X to Y are called indirect. The set of unblocked
paths from X to Y given a set Z in a causal diagram G

is denoted by ⇧(X,Y |Z)

G

; causal, indirect, and spuri-
ous paths are denoted by ⇧

c

(X,Y |Z)

G

, ⇧i

(X,Y |Z)

G

,
and ⇧

s

(X,Y |Z)

G

(G will be omitted when obvious).
For a causal path g including nodes V1, V2, we denote
g(V1, V2) a subpath of g from V1 to V2.5

An intervention on a set of endogenous variables X and
exogenous variables U

i

, denoted by do(x

⇤
, u

⇤
i

), is an op-
eration where values of X,U

i

are set to x

⇤
, u

⇤
i

, respec-
tively, without regard to how they were ordinarily deter-
mined (X through f

X

and U

i

through P (U

i

)). Formally,
we can rewrite the definition of potential response [Pearl,
2000, Ch. 7.1] to account for operation on U

i

, namely:
5Mediators (relative to X and Y ) are a set of variables W ✓

De(X) \ Non-De(Y ) such that |⇧i

(X,Y |W )| = 0.

Definition 1 (Potential Response). Let M be a SCM,
X,Y sets of arbitrary variables in V , and U

i

a set of ar-
bitrary variables in U . Let U�i = U � U

i

. The potential
response of Y to the intervention do(x

⇤
, u

⇤
i

) in the situ-
ation U = u, denoted by Y

x

⇤
,u

⇤
i

(u), is the solution for
Y with U�i = u�i, Ui

= u

⇤
i

in the modified submodel
M

x

⇤ where functions f

X

are replaced by constant func-
tions X = x

⇤ , i.e., Y
x

⇤
,u

⇤
i

(u) , Y

M

x

⇤ (u
⇤
i

, u�i).6

Y

x

⇤
,u

⇤
i

(u) can be read as the counterfactual sentence “the
value that Y would have obtained in situation U�i =

u�i, had the treatment X been x

⇤ and the situation U

i

been u

⇤
i

.” Averaging u over the distribution P (u), we
obtain a counterfactual random variable Y

x

⇤
,u

⇤
i

. If the
values of x⇤, u⇤

i

follow random variables X⇤, U⇤
i

, we de-
note the resulting counterfactual Y

X

⇤
,U

⇤
i

.

3 A COARSE COVARIANCE
DECOMPOSITION

In this section, we introduce counterfactual measures that
will allow us to non-parametrically decompose the co-
variance Cov(X,Y ) in terms of direct, indirect and spu-
rious pathways from X to Y . Given space constraints,
all proofs are included in Appendix 1.

If there exists no spurious path from X to Y , then treat-
ment X is independent of the counterfactual Y

x

⇤ , i.e.,
(X ?? Y

x

⇤
) [Pearl, 2000, Ch. 11.3.2]. The spurious co-

variance can then be defined as the correlation between
the factual variable X and counterfactual Y

x

⇤ .

Definition 2 (Spurious Covariance). The spurious co-
variance between treatment X = x

⇤ and outcome Y is:

Cov

s

x

⇤(X,Y ) = Cov(X,Y

x

⇤
). (2)

Property 1. |⇧s

(X,Y )| = 0) Cov

s

x

⇤(X,Y ) = 0.

The causal covariance can naturally be defined as the
difference between the total and spurious covariance.

Definition 3 (Causal Covariance). The causal covariance
of the treatment X = x

⇤ and the outcome Y is:

Cov

c

x

⇤(X,Y ) = Cov(X,Y � Y

x

⇤
). (3)

Prop. 2 establishes the correspondence between the
causal paths and the causal covariance – if there is no
causal path from X to Y in the underlying model, the
causal covariance equates to zero.

Property 2. |⇧c

(X,Y )| = 0) Cov

c

x

⇤(X,Y ) = 0.

We consider more detailed measures corresponding to
the different causal pathways, and first, the direct path:

6An alternative way to see the replacement operation rela-
tive to U

i

is to envision a system where U

i

is observed.



Definition 4 (Direct Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covdp

x

⇤(X,Y )) and to-
tal (Covdt

x

⇤(X,Y )) direct covariance of the treatment
X = x

⇤ on the outcome Y are defined respectively as

Cov

dp

x

⇤(X,Y ) = Cov(X,Y � Y

x

⇤
,W

), (4)

Cov

dt

x

⇤(X,Y ) = Cov(X,Y

W

x

⇤ � Y

x

⇤
). (5)

By the composition axiom [Pearl, 2000, Ch. 7.3], Eqs. 4
and 5 can be explicitly written as follows 7:

Cov(X,Y � Y

x

⇤
,W

) = Cov(X,Y

X,W

� Y

x

⇤
,W

),

Cov(X,Y

W

x

⇤ � Y

x

⇤
) = Cov(X,Y

X,W

x

⇤ � Y

x

⇤
,W

x

⇤ ).

The counterfactual pure direct covariance (Eq. 4) is
shown graphically in Fig. 2, where (a) corresponds to
the Y -side, and (b) to the Y

x

⇤
,W

-side. Note that from
the mediator W perspective, X remains at the level that
it would naturally have attained, while the “direct” in-
put from X to Y varies from its natural level (Fig. 2a)
to do(x

⇤
) (b). The change of the outcome Y thus mea-

sures the effect of the direct path. A similar analysis also
applies to the total direct covariance (Eq. 5).

Property 3. Cov

dp

x

⇤(X,Y ) = Cov

dt

x

⇤(X,Y ) = 0 if X is

not a parent of Y (i.e., X 62 Pa(Y )).

We can turn around the definitions of direct covariance
and provide operational estimands for indirect paths.

Definition 5 (Indirect Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covip

x

⇤(X,Y )) and to-
tal (Covit

x

⇤(X,Y )) indirect covariance of the treatment
X = x

⇤ on the outcome Y are defined respectively as:

Cov

ip

x

⇤(X,Y ) = Cov(X,Y � Y

W

x

⇤ ), (6)

Cov

it

x

⇤(X,Y ) = Cov(X,Y

x

⇤
,W

� Y

x

⇤
). (7)

Eqs. 6 and 7 correspond to the indirect paths, since they
capture the covariance of X and Y , but only via paths
mediated by W . The first argument of Y is the same in
both halves of the contrast, but this value can either be
x

⇤ (Eq. 7) or at the level that X would naturally attain
without intervention (Eq. 6).

Property 4. |⇧i

(X,Y )| = 0 ) Cov

ip

x

⇤(X,Y ) =

Cov

it

x

⇤(X,Y ) = 0.

Putting these definitions together, we can prove a general
non-parametric decomposition of Cov(X,Y ):

7Consider Eq. 4 as an example. For any U = u,
Y

X(u),W (u)(u) = Y

x

⇤
,w

(u) if X(u) = x

⇤
,W (u) = w.

By the composition axiom, X(u) = x

⇤
,W (u) = w im-

plies Y (u) = Y

x

⇤
,w

(u), which in turn gives Y
X(u),W (u)(u) =

Y (u). Averaging u over P (u), we obtain Y

X,W

= Y .

(a) Y

W

X Y

�
(b) Y

x

⇤
,W

W

X x

⇤
Y

Figure 2: The graphical representation of measuring the
pure direct covariance Cov

dp

x

⇤(X,Y ).

Theorem 1. Cov(X,Y ), Cov

s

x

⇤(X,Y ) and

Cov

c

x

⇤(X,Y ) obey the following non-parametric

relationship:

Cov(X,Y ) = Cov

c

x

⇤(X,Y ) + Cov

s

x

⇤(X,Y ), (8)

where Cov

c

x

⇤(X,Y ) = Cov

dp

x

⇤(X,Y )+Cov

it

x

⇤(X,Y ) =

Cov

dt

x

⇤(X,Y ) + Cov

ip

x

⇤(X,Y ).

In other words, the covariance between X and Y can
be partitioned into its corresponding direct, indirect, and
spurious components. In particular, Thm. 1 coincides
with Eq. 1 in the linear-standard model.
Corollary 1. In the linear-standard model, for

any x

⇤
, Cov

s

x

⇤(X,Y ), Cov

dp

x

⇤(X,Y ), Cov

dt

x

⇤(X,Y ),

Cov

ip

x

⇤(X,Y ) and Cov

it

x

⇤(X,Y ) are equal to:

Cov

s

x

⇤(X,Y ) = ↵

XZ

↵

YZ

+ ↵

XZ

↵

WZ

↵

YW

,

Cov

dp

x

⇤(X,Y ) = Cov

dt

x

⇤(X,Y ) = ↵

YX

,

Cov

ip

x

⇤(X,Y ) = Cov

it

x

⇤(X,Y ) = ↵

WX

↵

YW

.

Corol. 1 says that the proposed decomposition (Thm. 1)
does not depend on the value of do(x

⇤
) in the linear

model of Fig. 1(a), which is not achievable in previous
value-specific decompositions [Pearl, 2001; Zhang and
Bareinboim, 2018a].8

4 DECOMPOSING CAUSAL
RELATIONS

We now focus on the challenge of decomposing the
causal covariance into more elementary components. We
use the two-mediators setting (Fig. 1(b)) as example,
where X and Y are connected through four causal paths:
through both W1,W2 (g1 : X !W1 !W2 ! Y ), only
through W1 (g2 : X ! W1 ! Y ), only through W2

(g3 : X ! W2 ! Y ), and directly (g4 : X ! Y ). Our
goal is to decompose the Cov

c

x

⇤(X,Y ) over the paths
g[1,4]. Our analysis applies to semi-Markovian models,
without loss of generality, and the Markovian example
(Fig. 1(b)) is used for simplicity of the exposition.

8For the nonlinear models, the decomposing terms (e.g.,
Cov

s

x

⇤(X,Y )) are still sensitive to the target level do(x

⇤
). To

circumvent the challenges of picking a specific decision value,
one could assign a randomized treatment do(x

⇤ ⇠ P (X)),
where P (X) is the distribution over the treatment X induced
by the underlying causal model.



For a node S

i

2 Pa(Y ) and a set of causal paths ⇡, the
edge S

i

! Y defines a funnel operator C
S

i

!Y

, which
maps from ⇡ to the set of paths C

S

i

!Y

(⇡) obtained from
⇡ by replacing all paths of the form X ! · · ·! S

i

! Y

with X ! · · · ! S

i

, and removing all the other paths.
As an example, for ⇡ = {g1, g2, g3}, C

W2!Y

(⇡) =

{g1(X,W2), g3(X,W2)}, where g1(X,W2) is the sub-
path X ! W1 ! W2 and g3(X,W2) is the subpath
X ! W2. We next formalize the notion of path-specific
interventions, which isolates the influence of the inter-
vention do(x

⇤
) passing through a subset ⇡ of causal

paths from X , denoted by do(⇡[x

⇤
]) (a similar notion

has been introduced by [Pearl, 2001], and then [Avin et

al., 2005; Shpitser and Tchetgen, 2016]).
Definition 6 (Path-Specific Potential Response). For a
SCM M and an arbitrary variable Y 2 V , let ⇡ be a set
of causal paths. Let X be the source variables of paths
in ⇡. Further, let X

⇡!Y

= {X
i

: 8X
i

2 X,X

i

! Y 2
⇡} and S = (Pa(Y )

G

\ V ) � X

⇡!Y

. The ⇡-specific
potential response of Y to the intervention do(⇡[x

⇤
]) in

the situation U = u, denoted by Y

⇡[x⇤](u), is defined as:

Y

⇡[x⇤](u) =

(
Y

x

⇤
⇡!Y

,SC
S!Y

(⇡)[x⇤](u) if ⇡ 6= ;
Y (u) otherwise

where SC
S!Y

(⇡)[x⇤](u) is a set of ⇡-specific potential
response {S

iC
S

i

!Y

(⇡)[x⇤]
(u) : S

i

2 S}.9

Despite the non-trivial notation, the ⇡-specific counter-
factual Y

⇡[x⇤] is simply assigning the treatment do(x

⇤
)

exclusively to the causal paths in ⇡, while allowing all
the other causal paths to behave naturally. This con-
trasts with the counterfactual Y

x

⇤ , which can be seen as
assigning the treatment do(x

⇤
) to all causal paths from

X to Y . For instance, repeatedly applying Def. 6 to
g1 : X ! W1 ! W2 ! Y (see Appendix 2.1), we
obtain the g1-specific potential response Y

g1[x⇤] as

Y

g1[x⇤] = Y

X,W1,W2
X,W1

x

⇤
= Y

W2
W1

x

⇤
.

The intervention do(g1[x
⇤
]) can be visualized more im-

mediately through its graphical representation (Fig. 3(b))
– the treatment do(x

⇤
) is assigned throughout g1 while

all the other paths are kept at the level that it would have
attained “naturally” following X . The difference of the
outcome Y (induced by do(g1[x

⇤
])) and the unintervened

Y (Fig. 3(a)) measures the relative strength of g1 itself,
which leads to the following definition.
Definition 7 (Pure Path-Specific Causal Covariance).
For a semi-Markovian model M and an arbitrary causal
path g from X , the pure g-specific causal covariance of
the treatment X = x

⇤ on the outcome Y is defined as:

Cov

c

g[x⇤](X,Y ) = Cov(X,Y � Y

g[x⇤]). (9)
9For a single causal path g, let Y

g[x⇤](u) = Y{g}[x⇤](u).
Averaging u over P (u), we obtain a random variable Y

⇡[x⇤].
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Figure 3: Graphical representations of the causal covari-
ance specific to g1 (a-b), g[2,3] (c-d) and g4 (e-f).

In the previous example, more explicitly, the pure g1-
specific causal covariance is equal to (Fig. 3(a-b)):

Cov

c

g1[x⇤](X,Y ) = Cov

⇣
X,Y � Y

W2
W1

x

⇤

⌘
. (10)

For U = u, the counterfactual Y;[x⇤](u) stands for the
values of Y when all causal paths are under the natural
regime. Eq. 9 can then be rewritten as:

Cov

c

g[x⇤](X,Y ) = Cov(X,Y;[x⇤] � Y

g[x⇤]).

The pure path-specific causal covariance for g can be
seen as a function of the difference between two path-
specific potential response Y

⇡0[x⇤] and Y

⇡1[x⇤] such that
g 62 ⇡0 and ⇡1 = ⇡0[{g} (i.e., the difference between ⇡1

and ⇡0 is g). The difference Y

⇡1[x⇤] � Y

⇡0[x⇤], therefore,
measures precisely the effects of do(x

⇤
) along the target

causal path g. Def. 7 can be generalized to account for
the path-specific covariance in terms of path-differences.
Definition 8 (Path-Specific Causal Covariance). For a
semi-Markovian model M and an arbitrary causal path g

from X , let ⇡ be a function mapping g to a set of causal
paths ⇡(g) from X such that g 62 ⇡(g). The g-specific
causal covariance of the treatment X = x

⇤ on the out-
come Y is defined as:

Cov

c

g[x⇤](X,Y )

⇡

= Cov(X,Y

⇡(g)[x⇤] � Y

⇡(g)[{g}[x⇤]).

The following property establishes the correspondence
between a causal path and its path-specific estimand.
Property 5. g 62 ⇧

c

(X,Y )) Cov

c

g[x⇤](X,Y )

⇡

= 0.

Prop. 5 follows immediately as a corollary of Lem. 1,
which implies that the counterfactuals Y

⇡(g)[x⇤] and
Y

⇡(g)[{g}[x⇤] define the same variable over U if g is not
a causal path from X to Y .



Lemma 1. g 62 ⇧

c

(X,Y ) ) Y

⇡(g)[x⇤](u) =

Y

⇡(g)[{g}[x⇤](u).

Considering again the model in Fig. 1(b), let g[i,j] =

{g
k

}
ikj (; if i > j). Recall that g4 = {X ! Y }, and

note that the g4-specific causal covariance can be com-
puted using ⇡(g4) = g[1,3], yielding:

Cov

c

g4[x⇤](X,Y )

⇡

= Cov(X,Y

g[1,3][x⇤] � Y

g[1,4][x⇤])

= Cov(X,Y

W1
x

⇤ ,W2
x

⇤ � Y

x

⇤
), (11)

which coincides with the direct effect (Eq. 5 with W =

{W1,W2}). Fig. 3(e-f) shows a graphical representation
of this procedure.

The path-specific quantity given in Def. 8 has an-
other desirable property, namely, the causal covariance
Cov

c

x

(X,Y ) can be decomposed as a summation over
causal paths from X to Y . To witness, first let an or-
der over ⇧c

(X,Y ) be Lc

: g1 < · · · < g

n

. For a path
g

i

2 ⇧

c

(X,Y ), the order Lc defines a function Lc

⇡

which
maps from g

i

to a set of paths Lc

⇡

(g

i

) that precede g

i

in
Lc, i.e., Lc

⇡

(g

i

) = g[1,i�1]. We derive in the sequel a
path-specific decomposition formula for the causal co-
variance relative to an order Lc.
Theorem 2. For a semi-Markovian model M , let Lc

be

an order over ⇧

c

(X,Y ). For any x

⇤
, the following non-

parametric relationship hold:

Cov

c

x

(X,Y ) =

X

g2⇧c(X,Y )

Cov

c

g[x⇤](X,Y )Lc

⇡

.

Thm. 2 can be demonstrated in the model of Fig. 1(a).
Let an order Lc over g[1,4] be g

i

< g

j

if i < j.
First note that the path-specific causal covariance of g2
(Covc

g2[x⇤](X,Y )Lc

⇡

) and g3 (Covc
g3[x⇤](X,Y )Lc

⇡

) are
equal to, respectively,

Cov

⇣
X,Y

W2
W1

x

⇤
� Y

W2
W1

x

⇤
,W1

x

⇤

⌘
(12)

Cov

⇣
X,Y

W2
W1

x

⇤
,W1

x

⇤ � Y

W1
x

⇤ ,W2
x

⇤

⌘
(13)

The causal covariance Cov

c

x

(X,Y ) can then be de-
composed as the sum of Eqs. 10-13, respectively,
g1, g4, g2, g3. Fig. 3 describes this decomposition pro-
cedure: we measures the difference of the outcome
Y as the intervention do(x

⇤
) propagates through paths

g1, g2, g3, g4. The sum of these differences thus equate
to the total influence of the intervention do(x

⇤
) to the

outcome Y , i.e., the causal covariance Cov

c

x

⇤(X,Y ).

5 DECOMPOSING SPURIOUS
RELATIONS

We introduce in the sequel a new strategy to decompose
the spurious covariance (Def. 2), which will play a cen-

(a)

Z1 U1

Z2 U2

X Y

(b)

Z1 U1

Z2 U2

X Y

Z1
x

⇤

Z2
x

⇤

Y

x

⇤

Figure 4: Causal diagrams for (a) the one-confounder
setting where X and Y are confounded by the variable
Z2, of which Z1 is a parent node; (b) the twin network
for the model of (a) under do(x

⇤
).

tral role in the analysis of the spurious relations relative
to the pair X,Y . The spurious covariance measures the
correlation between the observational X and the counter-
factual Y

x

⇤ (Def. 2). We will employ in our analysis the
twin network [Balke and Pearl, 1994; Pearl, 2000, Sec.
7.1.4], which is a graphical method to analyzing the rela-
tion between observational and counterfactual variables.

Consider the causal model M in Fig. 4(a), for example,
where the exogenous variables {U1, U2} are shown ex-
plicitly. Its twin network is the union of the model M
(factual) and the submodel M

x

⇤ (counterfactual) under
intervention do(x

⇤
), which is shown in Fig. 4(b). The

factual (M ) and counterfactual (M
x

⇤ ) worlds share only
the exogenous variables (in this case, U1, U2), which
constitute the invariances shared across worlds. In this
twin network, the observational X and the counterfac-
tual Y

x

⇤ are connected through two paths: one through
U1 and the other through U2. These paths correspond to
two pathways from X to Y in the original causal dia-
gram: ⌧1 : X  Z2  Z1  U1 ! Z1 ! Z2 ! Y ,
and ⌧2 : X  Z2  U2 ! Z2 ! Y .

Note that when considering the corresponding paths in
the original graph (Fig. 4(a)), these paths (⌧1, ⌧2) are not
necessarily simple, i.e., they may contain a particular
node more than once. Furthermore, each path can be
partitioned into a pair of causal paths (say, g

l

, g

r

) from
a common source U

i

2 U (e.g., ⌧1 consists of a pair
(g

l1 , gr1), where g

l1 : U1 ! Z1 ! Z2 ! X , and
g

r1 : U1 ! Z1 ! Z2 ! Y ). Indeed, these non-simple
paths are referred to as treks in the causal inference lit-
erature, which usually has been studied in the context of
linear models [Spirtes et al., 2001; Sullivant et al., 2010].

Definition 9 (Trek). A trek ⌧ in G (from X to Y ) is
an ordered pair of causal paths (g

l

, g

r

) with a common
exogenous source U

i

2 U such that g
l

2 ⇧

c

(U

i

, X) and
g

r

2 ⇧

c

(U

i

, Y ). The common source U

i

is called the
top of the trek, denoted top(g

l

, g

r

). A trek is spurious if
g

r

2 ⇧

c

(U

i

, Y |X), i.e., g
r

is a causal path from U

i

to Y

that is not intercepted by X .



We denote the set of treks from X to Y in G by
T (X,Y )

G

and spurious treks by T s

(X,Y )

G

(G will
be omitted when obvious). We introduce next an esti-
mand for a specific spurious trek. For a spurious trek
⌧ = (g

l

, g

r

) with U

i

= top(⌧), first let X
g

l

denote the
path-specific potential response X

g

l

[U l

i

], where U

l

i

is an
i.i.d. draw from the distribution P (U

i

). Similarly, let
Y

x

⇤
,g

r

= Y

x

⇤
,g

r

[Ur

i

]
10, where U

r

i

⇠ P (U

i

). Pure trek-
specific covariance can then finally be defined.
Definition 10 (Pure Trek-Specific Spurious Covariance).
For a semi-Markovian model M and a spurious trek
⌧ = (g

l

, g

r

) with U

i

= top(g

l

, g

r

), the pure ⌧ -specific
spurious covariance of the treatment X = x

⇤ on the out-
come Y is defined as:

Cov

ts

⌧ [x⇤](X,Y ) = Cov(X �X

g

l

, Y

x

⇤ � Y

x

⇤
,g

r

).

In words, the differences X �X

g

l

and Y

x

⇤ � Y

x

⇤
,g

r

are
simply measuring the effects of the causal paths g

l

and
g

r

(Lem. 1), while the Cov(·) operator is in charge of
compounding them. (In the extreme case when g

l

or g
r

are disconnected, the pure ⌧ -specific spurious covariance
will equate to zero.) For example, the pure ⌧1-specific
spurious covariance Cov

ts

⌧1[x⇤](X,Y ) in Fig. 4(a) is

Cov(X �X

g

l1
, Y

x

⇤ � Y

x

⇤
,g

r1
). (14)

Note that the counterfactuals X
g

l1
and Y

x

⇤
,g

r1
assign the

randomized interventions do(U

l

1), do(U

r

1 ) to the paths
g

l1 , gr1 , respectively. By Def. 6, Eq. 14 is equal to:

Cov(X �X

U

l

1
, Y

x

⇤ � Y

x

⇤
,U

r

1
).

This quantity can be more easily seen through its graph-
ical representation in Fig. 5 (top). The main idea is to
decompose U1 into two independent components U l

1, U
r

1

(Fig. 5b), which is then contrasted with the world in
which U1 is kept intact (a).11 12 We note that by Def. 6,
X = X; and Y

x

⇤
= Y

x

⇤
,;. The pure ⌧1-specific spurious

covariance can be written as:

Cov

ts

⌧1[x⇤](X,Y ) = Cov(X; �X

g

l1
, Y

x

⇤
,; � Y

x

⇤
,g

r1
).

More generally, the pure trek-specific spurious covari-
ance for ⌧ = (g

l

, g

r

) measures the covariance of vari-
ables X

⇡

l

� X

⇡

l

[{g
l

} and Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[{g
r

}, where
⇡

l

(⇡
r

) is an arbitrary set of causal paths from U that does
not contain g

l

(g
r

). This observation will be useful later
on, which leads to the trek-specific spurious covariance.

10
Y

x

⇤
,g

r

[Ur

i

] is the g

r

-specific potential response of Y to
do(g

r

[U

r

i

]) in the submodel M
x

⇤ .
11This operation can be seen as the parallel to the pure path-

specific covariance (Def. 7), with the distinct requirement that
the replacement operator, used to generate the differences, is
not relative to the observed X , but the corresponding U

i

.
12To avoid clutter, Fig. 5 is a projected version of the original

twin network focused on the relevant quantities (w.l.g.).
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Figure 5: The decomposition procedure of the spurious
covariance over the spurious treks ⌧1, ⌧2 (Thm. 3).

Definition 11 (Trek-Specific Spurious Covariance). For
a semi-Markovian model M , let ⌧ be a spurious trek
(g

l

, g

r

) and ⇡ is a function mapping ⌧ to a pair ⇡(⌧) =

(⇡

l

,⇡

r

) where ⇡

l

and ⇡

r

are sets of causal paths from U

such that g
l

62 ⇡

l

and g

r

62 ⇡

r

. The ⌧ -specific spurious
covariance of the treatment X = x

⇤ on the outcome Y ,
denoted by Cov

ts

⌧ [x⇤](X,Y )

⇡

, is defined as

Cov(X

⇡

l

�X

⇡

l

[{g
l

}, Yx

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[{g
r

}).

The next proposition establishes the relationship between
Def. 11 and the corresponding spurious treks. This prop-
erty can be seen as a necessary condition for any measure
of strength for spurious relations.

Property 6. ⌧ 62 T s

(X,Y )) Cov

ts

⌧ [x⇤](X,Y )

⇡

= 0.

As an example of Def. 11, the trek ⌧2 in Fig. 4(a) consists
of paths g

l2 : U2 ! Z2 ! X and g

r2 : U2 ! Z2 ! Y .
If we set ⇡(⌧2) = ({g

l1}, {gr1}), the ⌧2-specific spurious
covariance can be measured by Cov

ts

⌧2[x⇤](X,Y )

⇡

, i.e.,

Cov(X

g

l1
�X

g

l[1,2]
, Y

x

⇤
,g

r1
� Y

x

⇤
,g

r[1,2]
) (15)

= Cov(X

U

l

1
�X

U

l

[1,2]
, Y

x

⇤
,U

r

1
� Y

x

⇤
,U

r

[1,2]
). (16)

Eq. 16 is graphically represented in Fig. 5(c-d), where the
effect of the trek ⌧2 is measured. In words, the difference
between Fig. 5(c) and (d) is the effect of the causal paths
g

l2 and g

r2 when U2 is kept intact versus when divided
into two independent components (U l

2, U
r

2 ).

Armed with the definition of trek-specific spurious co-
variance, we can finally study the decomposability of
the spurious covariance Cov

s

x

⇤(X,Y ) (Def. 2). First, let
U

s ✓ U denote the maximal set of exogenous variables
that simultaneously affect variables X and Y

x

⇤ (com-
mon exogenous ancestors), and let an order over Us be
Ls

u

: U1 < · · · < U

n

. For each U

i

2 U

s, let Ls

l

i

be an order g

i

l1
< · · · < g

i

l

n

over the set ⇧c

(U

i

, X).
Similarly, we define Ls

r

i

for ⇧

c

(U

i

, Y |X). The tuple
Ls

= hLs

u

, {(Ls

l

i

,Ls

r

i

)}1i|Us|i thus defines an order



for the spurious treks T s

(X,Y ). We denote Ls

⇡

a func-
tion which maps from a trek ⌧ to sets of paths Ls

⇡

(⌧) cov-
ered by the spurious treks preceding ⌧ in Ls. Formally,
given a spurious trek ⌧ = (g

i

l

j

, g

i

r

k

), Ls

⇡

(⌧) is equal to

(⇧

c

(U[1,i�1], X) [ g

i

l[1,j�1]
,⇧

c

(U[1,i�1], Y |X) [ g

i

r[1,k�1]
).

We are now ready to derive the decomposition formula
for the spurious covariance Cov

s

x

⇤(X,Y ).
Theorem 3. For a semi-Markovian model M , let Ls

=

hLs

u

, {(Ls

l

i

,Ls

r

i

)}1i|Us|i be an order over spurious

treks T s

(X,Y ). For any x

⇤
, the following non-

parametric relationship hold:

Cov

s

x

⇤(X,Y ) =

X

⌧2T s(X,Y )

Cov

ts

⌧ [x⇤](X,Y )Ls

⇡

For example, in the model of Fig. 4(a), Us

= {U1, U2}.
⌧1 (⌧2) is the only spurious trek associated with U1 (U2).
If we consider the order Ls such that Ls

u

: U1 < U2,
Thm. 3 dictates that Cov

s

x

⇤(X,Y ) should be decom-
posed as the sum of Eqs. 14 and 15. Fig. 5 shows
the graphical representation of this decomposition proce-
dure: we measure the change of the covariance between
X and Y

x

⇤ as we disconnect the relations going through
⌧1 (assocaited with U1) and ⌧2 (U2), sequentially. The
sum of these changes thus equates to the correlations of
X and Y along the spurious pathways, i.e., the spurious
covariance Cov

s

[x⇤](X,Y ). (See Appendix 2 for more
examples.)

6 NON-PARAMETRIC PATH
ANALYSIS

In this section, we put the results of the previous sections
together and derive a general path-specific decomposi-
tion for the covariance of the treatment X and the out-
come Y without assuming any specific parametric form.

We start by noting that each spurious path from X to Y

corresponds to a unique set of spurious treks that start
on X and end in Y . Recall that a spurious path l can
be seen as a pair of causal paths (g

l

, g

r

), where the only
node shared among g

l

and g

r

is the common source. For
example, the spurious path l : X  Z2 ! Y is a pair
(g

l

, g

r

) such that g
l

: Z2 ! X and g

r

: Z2 ! Y . We can
thus define a rule f which maps a trek ⌧ 2 T s

(X,Y ) to
a spurious path l 2 ⇧

s

(X,Y ). For ⌧ = (g

l

, g

r

), let V
t

be
the most distant recurring node from top(g

l

, g

r

) such that
V

t

is the only node shared among subpaths g
l

(V

t

, X) and
g

r

(V

t

, Y ); the pair (g
l

(V

t

, X), g

r

(V

t

, Y )) corresponds to
a path l in ⇧

s

(X,Y ). As an example, the trek ⌧1 in
Fig. 4(a) has V

t

= Z2, which corresponds to the spu-
rious path l : X  Z2 ! Y , and similarly, f(⌧1) = l as
well as f(⌧2) = l. Lem. 2 shows that the rule f forms a
valid surjective function.

Lemma 2. For a semi-Markovian model M , for each

spurious trek ⌧ 2 T s

(X,Y ), there always exists a

unique most distant recurring node V

t

.

For a spurious path l, let T s

(l) = f

�1
(l) denote its cor-

responding treks. Specifically, if l 62 ⇧

s

(X,Y ), then
for each ⌧ 2 T s

(l), we must have ⌧ 62 T s

(X,Y ). For
instance, if the spurious l in Fig. 4(a) is disconnected,
e.g., Z2 6! X , treks ⌧1, ⌧2 are both disconnected as well.
From this observation, we could naturally define the spu-
rious covariance of a path l as a sum over treks in T s

(l).
Definition 12 (Path-Specific Spurious Covariance). For
a semi-Markovian model M with an associated causal
diagram G, let l be an arbitrary spurious path in G. Let
⇡ be a function that maps a trek ⌧ = (g

l

, g

r

) 2 T s

(l) to
a pair ⇡(⌧) = (⇡

l

,⇡

r

), where ⇡
l

and ⇡

r

are arbitrary sets
of causal paths from U such that g

l

62 ⇡

l

and g

r

62 ⇡

r

.
The l-specific spurious covariance of the treatment X =

x

⇤ on the outcome Y is defined as

Cov

s

l[x⇤](X,Y )

⇡

=

X

⌧2T s(l)

Cov

ts

⌧ [x⇤](X,Y )

⇡

Property 7. l 62 ⇧

s

(X,Y )) Cov

s

l[x⇤](X,Y )

⇡

= 0.

The surjectivity of the function f assures that the set
{T s

(l)}
l2⇧s(X,Y ) forms a partition over the spurious

treks T s

(X,Y ). From Thm. 3, it follows immedi-
ately that the path-specific spurious covariance (Def. 12)
has the property that expresses the spurious covariance
Cov

s

x

⇤(X,Y ) as a sum over ⇧s

(X,Y ).
Theorem 4. For a semi-Markovian model M , let Ls

=

hLs

u

, {(Ls

l

i

,Ls

r

i

)}1i|Us|i be an order over spurious

treks T s

(X,Y ). For any x

⇤
, the following non-

parametric relationship hold:

Cov

s

x

⇤(X,Y ) =

X

l2⇧s(X,Y )

Cov

s

l[x⇤](X,Y )Ls

⇡

As an example, the path l : X  Z2 ! Y in Fig. 4(a)
corresponds to T s

(l) = {⌧1, ⌧2}. For an arbitrary or-
der Ls, Thm. 4 is applicable and immediately yields
Cov

s

x

⇤(X,Y ) = Cov

s

l[x⇤](X,Y )Ls

⇡

, which means that
the path l accounts for all the spurious relations between
X and Y . In other words, the spurious joint variability of
X and Y is fully explained by the variance of Z2, which
is a function of the exogenous variables U1 (through ⌧1)
and U2 (through ⌧2).

Thms. 1-2 and 4 together lead to a general path-specific
decomposition formula, which allows one to non-
parametrically decompose the covariance Cov(X,Y )

over all open paths from X to Y in the underlying model.
Theorem 5 (Path-Specific Decomposition). For a semi-

Markovian model M , let Lc

be an order over ⇧

c

(X,Y )



and Ls

= hLs

u

, {(Ls

l

i

,Ls

r

i

)}1i|Us|i be an order over

T s

(X,Y ). For any x

⇤
, the following non-parametric re-

lationship hold:

Cov(X,Y ) =

X

l2⇧c(X,Y )

Cov

c

l[x⇤](X,Y )Lc

⇡

+

X

l2⇧s(X,Y )

Cov

s

l[x⇤](X,Y )Ls

⇡

.

(17)

We illustrate the use of Thm. 5 using the model discussed
in Sec. 1 (Fig. 1(a)). Recall that X and Y are connected
through the causal paths l1, l2 and spurious paths l3, l4.
Note that Us

= {U
Z

} spuriously affects the treatment X
through the path g

l

= U

Z

! Z ! X , and the outcome Y
through the paths g

r1 = U

Z

! Z ! Y and g

r2 = U

Z

!
Z ! W ! Y . Let order Lc be l1 < l2 and Ls

r

be g

r1 <

g

r2 . For any level x⇤, Thm. 5 equates the covariance
Cov(X,Y ) to the sum of

�
Cov

c

l

i

[x⇤](X,Y )Lc

⇡

 
i=1,2

and�
Cov

s

l

i

[x⇤](X,Y )Ls

⇡

 
i=3,4

, which can be written as

Cov(X,Y � Y

x

⇤
,W

)

| {z }
l1:X!Y

+Cov(X,Y

x

⇤
,W

� Y

x

⇤
)

| {z }
l2:X!W!Y

+Cov(X �X

U

l

Z

, Y

x

⇤ � Y

x

⇤
,W

x

⇤Z
U

r

Z

)

| {z }
l3:X Z!Y

+Cov(X �X

U

l

Z

, Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

� Y

x

⇤
,U

r

Z

)

| {z }
l4:X Z!W!Y

,

(18)

which are all well-defined, computable from the struc-
tural causal model [Def. 1; Pearl, 2000, Sec. 7.1].

7 IDENTIFYING PATH-SPECIFIC
DECOMPOSITION

By and large, identifiability is one of the most studied
topics in causal inference. It is acknowledged in the lit-
erature that obtaining identifiability may be non-trivial
even in the context of less granular measures of causal
effects, including quantities without nested counterfac-
tual and following the do-calculus analysis.

In this section, we start the study of identifiability condi-
tions for when the path-specific decomposition formula
(Thm. 5) can be estimated from data, when the SCM is
not fully known. We’ll analyze the causal model dis-
cussed in Fig. 1(a) given its generality and potential to
encode more complex models. The main assumption en-
coded in this model is Markovianity, i.e., that all exoge-
nous variables are independent. We show next that iden-
tifiability can be obtained under these assumptions.
Theorem 6. The path-specific decomposition of Eq. 18

is identifiable if the distributions P (x, y

x

⇤
), P (x, y

x

⇤
,W

)

and P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) are identifiable. Specifically,

in the model of Fig. 1(a), P (x, y

x

⇤
), P (x, y

x

⇤
,W

), and

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) can be estimated, respectively, from

the observational distribution P (x, y, z, w) as follows:

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, w, z)P (w|x⇤

, z)P (x, z)

P (x, y

x

⇤
,W

) =

X

z,w

P (y|x⇤
, z, w)P (x, z, w)

P (x, y

x

⇤
,W

x

⇤ ,Z

U

r

Z

) =

X

z,z

0
,w

P (y|x⇤
, z, w)P (w|x⇤

, z

0
)P (x, z

0
)P (z)

Note that all the quantities listed in Thm. 6 are ex-
pressible in terms of conditional distributions and do not
involve any counterfactual (simple nor nested), which
are readily estimable from the observational distribu-
tion. As an example, the l2-specific causal covari-
ance Cov

c

l2[x⇤](X,Y )Lc

⇡

in Eq. 18 can be written as
Cov(X,Y

x

⇤
,W

) � Cov(X,Y

x

⇤
), which is computed

from the counterfactual distributions P (x, y

x

⇤
) and

P (x, y

x

⇤
,W

), respectively. These distributions can be es-
timated from the observational distribution P (x, y, z, w)

following Thm. 6. Indeed, the path-specific decompo-
sition formula (Thm. 5) is identifiable in the model of
Fig. 1(a) regardless of the order Lc and Ls. (For identi-
fications of other decompositions, see Appendix 1.)

We further considered the identifiability conditions for
the path-specific decomposition formula when the more
stringent assumption that the underlying structural func-
tions are linear is imposed.
Theorem 7. Under the assumption of linearity and the

assumption of Fig. 1(a), for any arbitrary orders Lc

and

Ls

, for any x

⇤
, the path-specific covariance of l1, l2, l3

and l4 are equal to:

Cov

c

l1[x⇤](X,Y )Lc

⇡

= ↵

YX

, Cov

c

l2[x⇤](X,Y )Lc

⇡

= ↵

WX

↵

YW

Cov

s

l3[x⇤](X,Y )Ls

⇡

= ↵

XZ

↵

YZ

,Cov

s

l4[x⇤](X,Y )Ls

⇡

= ↵

XZ

↵

WZ

↵

YW

The parameters ↵ can be estimated from the correspond-

ing (partial) regression coefficients [Pearl, 2000, Ch. 5].

Clearly, after applying Thm. 7 to Eq. 18, the resulting
decomposition coincides with Wright’s method of path
coefficients in the linear-standard model (Eq. 1).

8 CONCLUSIONS
We introduced novel covariance-based counterfactual
measures to account for effects along with a specific path
from a treatment X to an outcome Y (Defs. 8, 11-12).
We developed machinery to allow, for the first time, the
non-parametric decomposition of the covariance of X

and Y as a summation over the different pathways in the
underlying causal model (Thm. 5). We further provided
identification conditions under which the decomposition
formula can be estimated from data (Thm. 6-7).
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Non-Parametric Path Analysis in Structural Causal Models
Supplemental Material

1 PROOFS

Proofs build on the exclusion and independence restric-

tions rules of SCMs [Pearl, 2000, pp. 232], and three ax-

ioms of structural counterfactuals: composition, effec-

tiveness, and reversibility [Pearl, 2000, Ch.7.3.1].

Proof of Property 1. If X has no spurious path connect-

ing Y in G, the independence relation Y

x

⇤ ?? X must

hold for any x

⇤
[Pearl, 2000, Ch. 11.3.2], which gives:

Cov

s

x

⇤(X,Y ) = Cov(X,Y

x

⇤
) = 0.

Proof of Property 2. If X has no causal path connecting

Y in G, then for any x

⇤
, Y

x

⇤
= Y . This implies:

Cov

c

x

⇤(X,Y ) = Cov(X,Y � Y ) = 0

Proof of Property 3. We first consider the total direct co-

variance. To prove Cov

dt

x

⇤(X,Y ) = 0, it suffices to show

that for any x, x

⇤
, y,

P (x, y

x

⇤
,W

) = P (x, y). (1)

Let PA = Pa(Y ). Conditioned on PA,W , P (x, y

x

⇤
,W

)

can be written as:

P (x, y

x

⇤
,W

) =

X

w,pa

P (x, y

x

⇤
,w

|pa, w)P (pa, w)

=

X

w,pa

P (x, y

x

⇤
,w

|pa
w

, w)P (pa, w).

The last step holds by the composition axiom: for any u,

if W (u) = w, then PA(u) = PA

w

(u). We will next

show that for any u,w, x

⇤
,

PA

w

(u) = PA

x

⇤
,w

(u). (2)

We will prove this statement by contradictions. If Eq. 2

does not hold, there must exist a unblocked causal path

from X to a node in PA given W [Galles and Pearl,

1997]. Since PA are the parents of Y and X 62 Pa(Y ),

we can find a indirect path from X to Y given W , which

contradicts the definition of mediators. Eq. 2 implies

that:

X

w,pa

P (x, y

x

⇤
,w

|pa
w

, w)P (pa, w)

=

X

w,pa

P (x, y

x

⇤
,w

|pa
x

⇤
,w

, w)P (pa, w)

=

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
x

⇤
,w

, w)P (pa, w)

=

X

w,pa

P (x, y

pa,w

|pa
x

⇤
,w

, w)P (pa, w)

The last steps hold by the assumption that X 6! Y : since

all parents of Y are fixed, the exclusion restrictions rule

gives Y

x

⇤
,pa,w

(u) = Y

pa,w

(u) for any u, x

⇤
, pa, w. Ap-

plying Eq. 2 and the composition axiom again gives:

P (x, y

x

⇤
,W

)

=

X

w,pa

P (x, y

pa,w

|pa
x

⇤
,w

, w)P (pa, w)

=

X

w,pa

P (x, y

pa,w

|pa, w)P (pa, w)

=

X

w,pa

P (x, y|pa, w)P (pa, w) = P (x, y),

which gives Eq. 1. To prove the pure direct covari-

ance Cov

dp

x

⇤(X,Y ) = 0, it suffices to show that for any

x, x

⇤
, y,

P (x, y

x

⇤
) = P (x, y

W

x

⇤ ). (3)

By expanding on W

x

⇤
, PA

W

x

⇤ , P (y

W

x

⇤ ) is equal to:

P (x, y

W

x

⇤ ) =

X

w,pa

P (x, y

w

|pa
w

, w

x

⇤
)P (pa

w

, w

x

⇤
)

=

X

w,pa

P (x, y

pa,w

|pa
w

, w

x

⇤
)P (pa

w

, w

x

⇤
).



The last step holds by the composition axiom: If PA

w

=

pa, then Y

w

= Y

pa,w

. Since X 6! Y in G, we have

Y

pa,w

= Y

x

⇤
,pa,w

, which gives:

X

w,pa

P (x, y

pa,w

|pa
w

, w

x

⇤
)P (pa

w

, w

x

⇤
)

=

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
w

, w

x

⇤
)P (pa

w

, w

x

⇤
).

Applying Eq. 2 gives:

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
w

, w

x

⇤
)P (pa

w

, w

x

⇤
)

=

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
x

⇤
,w

, w

x

⇤
)P (pa

x

⇤
,w

, w

x

⇤
)

=

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
x

, w

x

⇤
)P (pa

x

, w

x

⇤
).

The last step holds by the composition axiom: if

W

x

⇤
(u) = w, PA

x

⇤
,w

(u) = PA

x

(u). Apply the com-

position axiom on Y

x

⇤
,pa,w

(u) again gives:

P (x, y

W

x

⇤ )

=

X

w,pa

P (x, y

x

⇤
,pa,w

|pa
x

, w

x

⇤
)P (pa

x

, w

x

⇤
)

=

X

w,pa

P (x, y

x

|pa
x

, w

x

⇤
)P (pa

x

, w

x

⇤
) = P (x, y

x

⇤
),

which proves Eq. 3.

Proof of Property 4. Without loss of generality, we sup-

pose the mediators |W | > 0. To prove the pure indirect

covariance Cov

ip

x

⇤(X,Y ) = 0, it suffices to show that for

any x

⇤
, u,

Y

W

x

⇤ (u)(u) = Y (u). (4)

We will first show that if |⇧i

(X,Y )| = 0, then for any

x

⇤
, u, w, one of the following equation must hold

Y

w

(u) = Y (u), (5)

W

x

⇤
(u) = W (u). (6)

Suppose that Eq. 5 and 6 both fail, there must exist a

unblocked causal path from X to W and a unblocked

causal path from W to Y . We then find an indirect path

from X to Y , which is a contradiction. Either Eq. 5 or 6

imply Eq. 4.

To prove the total indirect covariance Cov

it

x

⇤(X,Y ) = 0,

it suffices to show that for any x

⇤
, u,

Y

x

⇤
(u) = Y

x

⇤
,W (u)

(u). (7)

Similarly, We will show that if |⇧i

(X,Y )| = 0, then

for any x

⇤
, u, w, Eq. 6 and the following equation cannot

both be false:

Y

x

⇤
,w

(u) = Y

x

⇤
(u), (8)

Suppose Eq. 6 and 8 both fail, there must exist a un-

blocked causal path from X to W and a unblocked causal

path from W to Y given X . Since removing condition-

ing nodes only opens up more causal path, we then find

a indirect path from X to Y , which is a contradiction.

Either Eq. 6 or 8 imply Eq. 7.

Proof of Theorem 1. By basic mathematical operations,

Cov(X,Y ) can be written as:

Cov(X,Y ) = Cov(X,Y � Y

x

⇤
) + Cov(X,Y

x

⇤
)

= Cov

c

x

⇤(X,Y ) + Cov

s

x

⇤(X,Y ).

Cov

c

x

⇤(X,Y ) can be further decomposed as:

Cov

c

x

⇤(X,Y ) = Cov(X,Y )� Cov(X,Y

x

⇤
)

= Cov(X,Y )� Cov(X,Y

x

⇤
,W

)

+ Cov(X,Y

x

⇤
,W

)� Cov(X,Y

x

⇤
)

= Cov

dp

x

⇤(X,Y ) + Cov

it

x

⇤(X,Y ).

By replacing the term Cov(X,Y

x

⇤
,W

) in the above equa-

tion with Cov(X,Y

W

x

⇤ ), we have:

Cov

c

x

⇤(X,Y ) = Cov(X,Y )� Cov(X,Y

x

⇤
)

= Cov(X,Y )� Cov(X,Y

W

x

⇤ )

+ Cov(X,Y

W

x

⇤ )� Cov(X,Y

x

⇤
)

= Cov

ip

x

⇤(X,Y ) + Cov

dt

x

⇤(X,Y ).

Proof of Corollary 1. In the linear-standard model, val-

ues of X,Y, Z,W are decided by the following func-

tions:

z = u

Z

, x = ↵

XZ

z + u

X

, w = ↵

WX

x+ ↵

WZ

z + u

W

,

y = ↵

YX

x+ ↵

YZ

z + ↵

YW

w + u

Y

.

Computing Cov

s

x

⇤(X,Y ) gives:

Cov

s

x

⇤(X,Y ) = Cov(X,Y

x

⇤
)

= Cov(X,↵

YX

x

⇤
+ ↵

YZ

Z + ↵

YW

W

x

⇤
+ U

Y

)

= ↵

YZ

Cov(X,Z) + ↵

YW

Cov(X,W

x

⇤
)

= ↵

YZ

Cov(X,Z) + ↵

YW

Cov(X,↵

WX

x

⇤
+ ↵

WZ

Z + U

W

)

= (↵

YZ

+ ↵

YW

↵

WZ

)Cov(X,Z)

= (↵

YZ

+ ↵

YW

↵

WZ

)Cov(↵

XZ

Z + U

X

, Z)

= (↵

YZ

+ ↵

YW

↵

WZ

)↵

XZ

Cov(Z,Z)

= (↵

YZ

+ ↵

YW

↵

WZ

)↵

XZ



The last step holds since Cov(Z,Z) = Var(Z) = 1. We

can compute Cov

dt

x

⇤(X,Y ) as:

Cov

dt

x

⇤(X,Y ) = Cov(X,Y

W

x

⇤ � Y

x

⇤
)

= Cov(X,↵

YX

X + ↵

YZ

Z + ↵

YW

W

x

⇤
+ U

Y

)

� Cov(X,↵

YX

x

⇤
+ ↵

YZ

Z + ↵

YW

W

x

⇤
+ U

Y

)

= ↵

YX

Cov(X,X) = ↵

YX

.

Similarly, Cov

dp

x

⇤(X,Y ) is equal to:

Cov

dp

x

⇤(X,Y ) = Cov(X,Y � Y

x

⇤
,W

)

= Cov(X,↵

YX

X + ↵

YZ

Z + ↵

YW

W + U

Y

)

� Cov(X,↵

YX

x

⇤
+ ↵

YZ

Z + ↵

YW

W + U

Y

)

= ↵

YX

Cov(X,X) = ↵

YX

.

Finally, Cov

it

x

⇤(X,Y ) and Cov

ip

x

⇤(X,Y ) can be written

as:

Cov

it

x

⇤(X,Y ) = Cov(X,Y

x

⇤
,W

� Y

x

⇤
)

= Cov(X,↵

YX

x

⇤
+ ↵

YZ

Z + ↵

YW

W + U

Y

)

� Cov(X,↵

YX

x

⇤
+ ↵

YZ

Z + ↵

YW

W

x

⇤
+ U

Y

)

= ↵

YW

Cov(X,W �W

x

⇤
)

= ↵

YW

Cov(X,↵

WX

X + ↵

WZ

Z + U

W

)

� ↵

YW

Cov(X,↵

WX

x

⇤
+ ↵

WZ

Z + U

W

)

= ↵

YW

↵

WX

Cov(X,X)

= ↵

YW

↵

WX

.

Cov

ip

x

⇤(X,Y ) = Cov(X,Y � Y

W

x

⇤ )

= Cov(X,↵

YX

X + ↵

YZ

Z + ↵

YW

W + U

Y

)

� Cov(X,↵

YX

X + ↵

YZ

Z + ↵

YW

W

x

⇤
+ U

Y

)

= ↵

YW

Cov(X,W �W

x

⇤
)

= ↵

YW

↵

WX

.

Proof of Lemma 1. We will prove this lemma by show-

ing a more general case. Let ⇡

0

,⇡

1

be arbitrary sets of

causal paths from X such that ⇡

0

✓ ⇡

1

. Let ⇧

c

(X,Y )

⇡0

denote the set of open causal paths in ⇡

0

which connects

Y from X , i.e., ⇧

c

(X,Y ) \ ⇡

0

, so does ⇧

c

(X,Y )

⇡1 =

⇧

c

(X,Y ) \ ⇡

1

. Let ⇧

c

(X,Y )

⇡0,⇡1 denote the differ-

ence of sets ⇧

c

(X,Y )

⇡1 � ⇧

c

(X,Y )

⇡0 . We would like

to show that if |⇧c

(X,Y )

⇡0,⇡1 | = 0, then for any x

⇤
, u,

Y

⇡0[x
⇤
]

(u) = Y

⇡1[x
⇤
]

(u). (9)

We will prove this statement by induction on the length

N of the longest causal path in ⇡

1

.

Base Case: If N = 0, the means that ⇡

0

= ⇡

1

= ;. By

definition, Y

⇡0[x
⇤
]

(u) = Y

⇡1[x
⇤
]

(u) = Y (u), i.e., Eq. 9

holds.

Inductive Case: Assume that for an arbitrary variable

Y 2 V and sets of causal paths ⇡

0

,⇡

1

where ⇡

0

✓ ⇡

1

and the length of all paths in ⇡

1

is no greater than

N , |⇧c

(X,Y )

⇡0,⇡1 | = 0 implies that Y

⇡0[x
⇤
]

(u) =

Y

⇡1[x
⇤
]

(u). We use this assumption to prove that for

⇡

1

with the length of paths no greater than N + 1, if

|⇧c

(X,Y )

⇡0,⇡1 | = 0, then for any x

⇤
, u, Eq. 9 holds.

We will prove its contra-positive statement: if Eq. 9 does

not hold for some x

⇤
, u, then we can find a causal path

g from X to Y where g is contained in ⇡

1

but not in ⇡

0

,

i.e., |⇧c

(X,Y )

⇡0,⇡1 | > 0.

If Eq. 9 does not hold for some x

⇤
, u, then one of the

following cases must hold:

1. There exists a variable U

i

2 U such that U

i

2
X

⇡1!Y

, U

i

62 X

⇡0!Y

and its treatment assignment

u

⇤
i

is different from its natural value u

i

.

2. There exists a variable X

i

2 X

⇡1!Y

, X

i

62 X

⇡0!Y

and x

⇤
i

6= X

iC
X

i

!Y

(⇡0)[x⇤]
(u).

3. There exists a variable S

i

2 (Pa(Y )

G

\V )�X

⇡

i

!Y

such that S

iC
S

i

!Y

(⇡0)[x⇤]
(u) 6= S

iC
S

i

!Y

(⇡1)[x⇤]
(u).

We will next show that for each of the above cases,

one can find a causal path g 2 ⇧

c

(X,Y )

⇡0,⇡1 . As for

Case. 1 and 2, it immediately follows that the direct

links U

i

! Y and X

i

! Y construct a causal paths

g 2 ⇧

c

(X,Y )

⇡0,⇡1 respectively.

As for Case. 3, by the assumption, S

iC
S

i

!Y

(⇡0)[x⇤]
(u) 6=

S

iC
S

i

!Y

(⇡1)[x⇤]
(u) implies that there exists a path g

s

2
⇧

c

(X,S

i

)C
S

i

!Y

(⇡0),CS

i

!Y

(⇡1)
. We can then construct

a casual path g from X to Y by appending the edge

S

i

! Y to g

s

. By the definition of the funnel opera-

tor C
S

i

!Y

(·), we must have g 2 ⇧

c

(X,Y )

⇡0,⇡1 .

To prove Lem. 1, let ⇡

0

= ⇡(g),⇡

1

= ⇡(g) [ {g}. If

g 62 ⇧

c

(X,Y ), then |⇧c

(X,Y )

⇡0,⇡1 | = 0. This implies

that Eq. 9 holds, i.e.,

Y

⇡(g)[x

⇤
]

(u) = Y

⇡(g)[{g}[x⇤
]

(u).

Proof of Property 5. Lem. 1 implies that for any x

⇤
, u,

g 62 ⇧

c

(X,Y ) ) Y

⇡(g)[x

⇤
]

(u) = Y

⇡(g)[{g}[x⇤
]

(u).

This gives

Cov

c

g[x

⇤
]

(X,Y )

⇡

= Cov(X,Y

⇡(g)[x

⇤
]

� Y

⇡(g)[{g}[x⇤
]

) = 0.

Proof of Theorem 2. By definition,

Y;[x⇤
]

(u) = Y (u)



Following the order Lc

, let g

[1,n]

denote ⇧

c

(X,Y ). In

the model associated with the g

[1,n]

-specific counterfac-

tual Y

g[1,n][x
⇤
]

(u), all variables are under the influence of

the intervention X = x

⇤
, i.e.,

Y

g[1,n][x
⇤
]

(u) = Y

x

⇤
(u)

Thus, the causal covariance Cov

c

x

(X,Y ) is equal to:

Cov

c

x

(X,Y ) = Cov(X,Y � Y

x

⇤
)

= Cov(X,Y;[x⇤
]

� Y

g[1,n][x
⇤
]

)

= Cov(X,Y;[x⇤
]

� Y

g1[x
⇤
]

)

+ Cov(X,Y

g1[x
⇤
]

� Y

g[1,n][x
⇤
]

)

= Cov(X,YLc

⇡

(g1)[x
⇤
]

� YLc

⇡

(g1)[{g1}[x⇤
]

)

+ Cov(X,Y

g1[x
⇤
]

� Y

g[1,n][x
⇤
]

)

= Cov

c

g1[x
⇤
]

(X,Y )Lc

⇡

+Cov(X,Y

⇡1[x
⇤
]

� Y

⇡

n

[x

⇤
]

)

.

.

.

=

nX

i=1

Cov

c

g

i

[x

⇤
]

(X,Y )Lc

⇡

.

Reorganizing the above equation gives

Cov

c

x

(X,Y ) =

X

g2⇧

c

(X,Y )

Cov

c

g[x

⇤
]

(X,Y )Lc

⇡

Proof of Property 6. Let U

i

= top(⌧) and (⇡

l

,⇡

r

) =

⇡(⌧). ⌧ = (g

l

, g

r

) 62 T s

(X,Y ) implies one the fol-

lowing conditions:

g

l

62 ⇧

c

(U

i

, X), (10)

g

r

62 ⇧

c

(U

i

, Y |X). (11)

By Lem. 1, Eq. 10 implies that for any x

⇤
, u, u

l

i

:

X

⇡

l

[u

l

i

]

(u) = X

⇡

l

[{g
l

}[ul

i

]

(u).

Eq. 11 implies that in the submodel M

x

⇤
with an asso-

ciated causal diagram G

x

⇤
where all incoming edges of

X are removed, g

r

62 ⇧

c

(U

i

, Y )

G

x

⇤ . By the definition

of the submodel M

x

⇤
[Pearl, 2000, Ch. 7.1], the counter-

factual Y

x

⇤
is the outcome Y in the submodel M

x

⇤
. By

Lem. 1, we then have, for any x

⇤
, u, u

r

i

,

Y

x

⇤
,⇡

r

[u

r

i

]

(u) = Y

x

⇤
,⇡

r

[{g
r

}[ur

i

]

(u).

The ⌧ -specific spurious covariance thus equates to:

Cov

ts

⌧ [x

⇤
]

(X,Y )

= Cov(X

⇡

�X

⇡[{g
l

}, Yx

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[{g
r

}) = 0.

To prove Thm. 3, we first introduce two lemmas.

Lemma 3. For a semi-Markovian model M , let an or-

der over U

s

be Ls

u

: U

1

< · · · < U

n

. For any x

⇤
,

Cov

s

x

⇤(X,Y ) can be expressed as:

nX

i=1

Cov(X

U

l

[1,i�1]
�X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i�1]
� Y

x

⇤
,U

r

[1,i]
)

| {z }
denoted by Cov

s

x

⇤ (X,Y )

U

i

.

Proof. Following the order Ls

u

, let U

[1,n]

denote U

s

. We

will use I{·} to represent an indicator function. Since

the exogenous variables U,U

l

[1,n]

, U

r

[1,n]

explain all the

uncertainties of variables X

U

l

[1,n]
and Y

x

⇤
,U

r

[1,n]
, we must

have:

P (x

U

l

[1,n]
, y

x

⇤
,U

r

[1,n]
)

=

X

u

X

u

l

[1,n]

X

u

r

[1,n]

I{X
u

l

[1,n]
(u) = x}I{Y

x

⇤
,u

r

[1,n]
(u) = y}

· P (u)P (u

l

[1,n]

)P (u

r

[1,n]

).

Let U

X

denote the set of exogenous variables which affect

X other than U

c

. Similarly, we define U

Y

for Y

x

⇤
. Since

U

s

is the maximal set of exogenous variables that affects

both X and Y

x

⇤
, we must have U

X

\ U

Y

= ;. The above

equation can thus be written as:

P (x

U

l

[1,n]
, y

x

⇤
,U

r

[1,n]
)

=

X

u

X

u

l

[1,n]

X

u

r

[1,n]

I{X(u

l

[1,n]

, u

X

) = x}

· I{Y
x

⇤
(u

r

[1,n]

, u

Y

) = y}P (u)P (u

l

[1,n]

)P (u

r

[1,n]

)

=

X

u

X

X

u

l

[1,n]

I{X(u

l

[1,n]

, u

X

) = x}P (u

X

)P (u

l

[1,n]

)

·
X

u

Y

X

u

r

[1,n]

I{Y
x

⇤
(u

r

[1,n]

, u

Y

) = y}P (u

Y

)P (u

r

[1,n]

)

=

X

u

r

[1,n]

P (X(u

l

[1,n]

) = x)P (u

l

[1,n]

)

·
X

u

r

[1,n]

P (Y

x

⇤
(u

r

[1,n]

) = y)P (u

r

[1,n]

) (12)

= P (x

U

l

[1,n]
)P (y

x

⇤
,U

r

[1,n]
). (13)

Eq. 13 implies that X

U

l

[1,n]
?? Y

x

⇤
,U

r

[1,n]
, i.e.,

Cov(X

U

l

[1,n]
, Y

x

⇤
,U

r

[1,n]
) = 0.

Since U

[1,0]

= ;, the spurious covariance Cov

s

x

⇤(X,Y )

can be written as

Cov

s

x

⇤(X,Y ) = Cov(X,Y

x

⇤
)

= Cov(X

U

l

[1,0]
, Y

x

⇤
,U

r

[1,0]
)� Cov(X

U

l

[1,n]
, Y

x

⇤
,U

r

[1,n]
)

= Cov(X

U

l

[1,0]
, Y

x

⇤
,U

r

[1,0]
)� Cov(X

U

l

[1,1]
, Y

x

⇤
,U

r

[1,1]
)

+ Cov(X

U

l

[1,1]
, Y

x

⇤
,U

r

[1,1]
)� Cov(X

U

l

[1,n]
, Y

x

⇤
,U

r

[1,n]
)



.

.

.

=

nX

i=1

Cov(X

U

l

[1,i�1]
, Y

x

⇤
,U

r

[1,i�1]
)

� Cov(X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i]
)

We will next show that

Cov(X

U

l

[1,i�1]
, Y

x

⇤
,U

r

[1,i�1]
)� Cov(X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i]
)

= Cov(X

U

l

[1,i�1]
�X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i�1]
� Y

x

⇤
,U

r

[1,i]
).

(14)

By the basic mathematical operations of covariance,

Cov(X

U

l

[1,i�1]
, Y

x

⇤
,U

r

[1,i�1]
)� Cov(X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i]
)

= Cov(X

U

l

[1,i�1]
�X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i�1]
� Y

x

⇤
,U

r

[1,i]
)

+ Cov(X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i�1]
� Y

x

⇤
,U

r

[1,i]
)

+ Cov(X

U

r

[1,i�1]
�X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i]
).

It suffices to prove that for any x, y,

P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i�1]
) = P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i]
) (15)

P (x

U

l

[1,i�1]
, y

x

⇤
,U

r

[1,i]
) = P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i]
). (16)

Let us first consider Eq. 15. From Eq. 12, the distribu-

tions P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i�1]
) and P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i]
) can

be written as:

P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i�1]
)

=

X

u[i,n]

X

u

l

[1,i]

X

u

r

[1,i�1]

P (X(u

l

[1,i]

, u

[i+1,n]

) = x)

· P (Y

x

⇤
(u

r

[1,i�1]

, u

[i,n]

) = y)P (u

l

[1,i]

)

· P (u

r

[1,i�1]

)P (u

i

)P (u

[i+1,n]

),

P (x

U

l

[1,i]
, y

x

⇤
,U

r

[1,i]
)

=

X

u[i+1,n]

X

u

l

[1,i]

X

u

r

[1,i]

P (X(u

l

[1,i]

, u

[i+1,n]

) = x)

· P (Y

x

⇤
(u

r

[1,i]

, u

[i+1,n]

) = y)P (u

l

[1,i]

)

· P (u

r

[1,i�1]

)P (u

r

i

)P (u

[i+1,n]

).

Since U and U

r

are i.i.d. draws from the exogenous dis-

tribution P (u), we have for u

i

= u

r

i

, P (u

i

) = P (u

r

i

).

Replacing u

r

i

with u

i

in the above equations gives Eq. 15.

Similarly, we can prove Eq. 16. Eqs. 15-16 together

prove Eq. 14.

Lemma 4. For a semi-Markovian model M , let

T s

(X,Y ;U

i

) denote the set of spurious treks from

X to Y with a common source U

i

. Let Ls

=

hLs

u

, {(Ls

l

i

,Ls

r

i

)}
1i|Us|i be an order over spurious

treks T s

(X,Y ). For any x

⇤
, the following non-

parametric relationships hold:

Cov

s

x

⇤(X,Y )

U

i

=

X

⌧2T s

(X,Y ;U

i

)

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

Proof. Let (⇡

l

,⇡

r

) denote the pair

(⇧

c

(U

[1,i�1]

, X),⇧

c

(U

[1,i�1]

, Y |X)).

Following the order Ls

, let g

i

l[1,n]
= ⇧

c

(U

i

, X) and

g

i

r[1,m]
= ⇧

c

(U

i

, Y |X). Since the intervention do(U

l

i

)

(do(U

r

i

)) assigns a randomized treatment U

l

i

(U

r

i

) to all

causal paths in g

i

l[1,n]
(g

i

r[1,m]
). The term Cov

s

x

⇤(X,Y )

U

i

can thus be written as:

Cov(X

U

l

[1,i�1]
�X

U

l

[1,i]
, Y

x

⇤
,U

r

[1,i�1]
� Y

x

⇤
,U

r

[1,i]
)

= Cov(X

⇡

l

�X

⇡

l

[g

i

l[1,n]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
).

The above equation can be decomposed over causal paths

in g

i

l[1,n]
:

Cov(X

⇡

l

�X

⇡

l

[g

i

l[1,n]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

= Cov(X

⇡

l

[g

i

l[1,0]

�X

⇡

l

[g

i

l[1,1]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

+ Cov(X

⇡

l

[g

i

l[1,1]

�X

⇡

l

[g

i

l[1,n]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

= Cov(X

⇡

l

[g

i

l[1,0]

�X

⇡

l

[g

i

l[1,1]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

+ Cov(X

⇡

l

[g

i

l[1,1]

�X

⇡

l

[g

i

l[1,2]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

+ Cov(X

⇡

l

[g

i

l[1,2]

�X

⇡

l

[g

i

l[1,n]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

.

.

.

=

nX

j=1

Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
).

The summation term can be further decomposed over

paths in g

i

r[1,m]
:

Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

, Y

x

⇤
,⇡

r

� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

= Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,0]
� Y

x

⇤
,⇡

r

[g

i

r[1,1]
)

+ Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,1]
� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

= Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,0]
� Y

x

⇤
,⇡

r

[g

i

r[1,1]
)



+Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,1]
� Y

x

⇤
,⇡

r

[g

i

r[1,2]
)

+ Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,2]
� Y

x

⇤
,⇡

r

[g

i

r[1,m]
)

.

.

.

=

mX

k=1

Cov(X

⇡

l

[g

i

l[1,j�1]

�X

⇡

l

[g

i

l[1,j]

,

Y

x

⇤
,⇡

r

[g

i

r[1,k�1]
� Y

x

⇤
,⇡

r

[g

i

r[1,k]
).

Together, we can obtain

Cov

s

x

⇤(X,Y )

U

i

=

nX

j=1

mX

k=1

Cov

ts

⌧

i

j,k

[x

⇤
]

(X,Y )Ls

⇡

where ⌧

i

j,k

= (g

i

l

j

, g

i

r

k

). Reorganizing the above equa-

tion gives:

Cov

s

x

⇤(X,Y )

U

i

=

X

⌧2T s

(X,Y ;U

i

)

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

.

We are now ready to prove Thm. 3

Proof of Theorem 3. By Lem. 3 and 4, we have:

Cov

s

[x

⇤
]

(X,Y ) =

|Us|X

i=1

X

⌧2T s

(X,Y ;U

i

)

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

.

Reorganizing the above equation gives:

Cov

s

[x

⇤
]

(X,Y ) =

X

⌧2T s

(X,Y )

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

.

Proof of Lemma 2. Existence. We will prove the exis-

tence of V

t

by proving a stronger statement: in a semi-

Markovian model M , for any non-simple path of the

form (g

l

, g

r

) where g

l

, g

r

share a common source V

i

and have sink X and Y respectively, there always ex-

ists a most distant recurring node V

t

such that V

t

is the

only shared common node among subpaths g

l

(V

t

, X)

and g

r

(V

t

, Y ). We will prove this statement by induc-

tion on the number of recurring node N shared among

g

l

, g

r

.

• Base Case: For N = 1, then the common source V

i

is the most distant recurring node V

t

.

• Induction Case: Assume that for all non-simple

path of the form (g

l

, g

r

) with N recurring nodes

, there always exists a most distant recurring node

V

t

such that V

t

is the only shared common node

among subpaths g

l

(V

t

, X) and g

r

(V

t

, Y ). We

will use this assumption to prove that for all non-

simple path of the form (g

l

, g

r

) with N + 1 re-

curring nodes, the most distant recurring node

V

t

also exists. For a non-simple path (g

l

, g

r

),

we find the next recurring node V

0
i

of g

l

, g

r

other than the common source V

i

. The sub-

paths (g

l

(V

0
i

, X), g

r

(V

0
i

, Y )) forms a non-simple

path with N recurring nodes. By the assumption,

for the non-simple path (g

l

(V

0
i

, X), g

r

(V

0
i

, Y )),

there exists a most distant recurring node V

t

such

that V

t

is the only node shared among subpaths

g

l

(V

t

, X), g

r

(V

t

, Y ).

We will show that the most distant recurring node

V

t

of (g

l

(V

0
i

, X), g

r

(V

0
i

, Y )) is also satisfied for

(g

l

, g

r

). Suppose V

t

is not a most distant recur-

ring node of (g

l

, g

r

), this means that the subpaths

g

l

(V

t

, X), g

r

(V

t

, Y ) share another common node

other than V

t

, which contradicts our assumption.

Uniqueness. We will prove this lemma by contradic-

tions. Suppose there are two distinct nodes V

0

t

, V

1

t

for a

trek ⌧ = (g

l

, g

r

) such that for i = 0, 1, V

i

t

is the only

node shared among subpaths g

l

(V

i

t

, X) and g

r

(V

i

t

, Y ).

V

0

t

, V

1

t

must satisfy one of the following cases.

1. There exists a causal path from V

0

t

to V

1

t

in g

l

, de-

noted by (V

0

t

! V

1

t

)

g

l

, and a causal path from V

0

t

to V

1

t

in g

r

, denoted by (V

0

t

! V

1

t

)

g

r

.

2. (V

1

t

! V

0

t

)

g

l

and (V

1

t

! V

0

t

)

g

r

.

3. (V

0

t

! V

1

t

)

g

l

and (V

1

t

! V

0

t

)

g

r

.

4. (V

1

t

! V

0

t

)

g

l

and (V

0

t

! V

1

t

)

g

r

.

For Case. 1, we must have that V

1

t

is also a com-

mon node shared among the subpaths g

l

(V

0

t

, X) and

g

r

(V

0

t

, Y ), which contradicts our assumptions. Simi-

larly, Case. 2 lead to an contradiction, as V

0

t

is also a

common node shared among the subpaths g

l

(V

1

t

, X) and

g

r

(V

1

t

, Y ).

For Case. 3, if exists a causal path from V

0

t

to V

1

t

and a

causal path from V

1

t

to V

0

t

, the causal diagram G of the

semi-Markovian model M is not a DAG, which is a con-

tradiction. Similarly, Case. 4 contradicts the assumption

that G is a DAG. Since Cases. 1-4 all lead to contradic-

tions, the most distant recurring node V

t

is unique for

each trek ⌧ 2 T s

(X,Y ).

Proof of Property 7. For a spurious path l = (g

l

, g

r

)

with the common source V

t

, if l 62 ⇧

s

(X,Y ), then one



of the following conditions must hold:

g

l

62 ⇧

c

(V

t

, X), g

r

62 ⇧

c

(V

t

, Y |X).

For each ⌧ 2 T s

(l), g

l

, g

r

are both its subpaths. This

implies that from the above conditions, we must have

⌧ 62 T s

(X,Y ). By Prop. 6, we have

Cov

s

l[x

⇤
]

(X,Y )

⇡

=

X

⌧2T s

(l)

Cov

ts

⌧ [x

⇤
]

(X,Y )

⇡

= 0.

Proof of Theorem 4. Thm. 3 implies

Cov

s

x

⇤(X,Y ) =

X

⌧2T s

(X,Y )

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

. (17)

Since the mapping f : T s

(X,Y ) ! ⇧

s

(X,Y ) is a sur-

jective function, {T s

(l) = f

�1

(l)}
l2⇧

s

(X,Y )

is a parti-

tion over the set T s

(X,Y ). Eq. 17 could be written as:

Cov

s

x

⇤(X,Y ) =

X

⌧2T s

(X,Y )

Cov

ts

⌧ [x

⇤
]

(X,Y )Ls

⇡

=

X

l2⇧

s

(X,Y )

X

⌧2T s

(l)

Cov

ts

⌧ [x

⇤
]

(X,Y )

⇡

=

X

l2⇧

s

(X,Y )

Cov

s

l[x

⇤
]

(X,Y )

⇡

.

Proof of Theorem 5. By Thm. 1, we have

Cov(X,Y ) = Cov

c

x

⇤(X,Y ) + Cov

s

x

⇤(X,Y ).

Applying Thm. 2 and 5 to the above equation gives

Cov(X,Y ) =

X

l2⇧

c

(X,Y )

Cov

c

l[x

⇤
]

(X,Y )Lc

⇡

+

X

l2⇧

s

(X,Y )

Cov

s

l[x

⇤
]

(X,Y )Ls

⇡

.

We will next prove Thm. 6. Recall in the standard model

of Fig. 1(a), X and Y are connected with causal paths

l

1

: X ! Y , l

2

: X ! W ! Y and spurious paths

l

3

: X  Z ! Y and l

4

: X  Z ! W ! Y .

U

s

= {U
Z

} affects the treatment X through a causal

path g

l

= U

Z

! Z ! X and the outcome Y through

causal paths g

r1 = U

Z

! Z ! Y and g

r2 = U

Z

!
Z ! W ! Y . To prove Thm. 7, we will introduce

following lemmas.

Lemma 5. In the standard model (Fig. 1(a)), for an or-

der Lc

: l

1

< l

2

, the path-specific decomposition of

the causal covariance Cov

c

x

⇤(X,Y ) (Thm. 2) are iden-

tifiable if P (x, y

x

⇤
,W

) and P (x, y

x

⇤
) are identifiable.

Specifically, distributions P (x, y

x

⇤
,W

) and P (x, y

x

⇤
)

can be estimated from the observational distribution

P (x, y, z, w) as following:

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, z, w)P (w|x⇤

, z)P (x, z),

P (x, y

x

⇤
,W

) =

X

z,w

P (y|x⇤
, z, w)P (x, z, w).

Proof. By Thm. 2, the causal covariance Cov

c

x

⇤(X,Y )

equates to

Cov

c

x

⇤(X,Y ) = Cov

c

l1[x
⇤
]

(X,Y )Lc

⇡

+Cov

c

l2[x
⇤
]

(X,Y )Lc

⇡

.

We will show that each quantity on the right-hand side

of the above equation is identifiable from P (x, y, z, w).

For the order Lc

: l

1

< l

2

,

Cov

c

l1[x
⇤
]

(X,Y )Lc

1
⇡

= Cov

dp

x

⇤(X,Y ) (18)

= Cov(X,Y � Y

x

⇤
,W

)

= Cov(X,Y )� Cov(X,Y

x

⇤
,W

),

Cov

c

l2[x
⇤
]

(X,Y )Lc

1
⇡

= Cov

it

x

⇤(X,Y ) (19)

= Cov(X,Y

x

⇤
,W

� Y

x

⇤
)

= Cov(X,Y

x

⇤
,W

)� Cov(X,Y

x

⇤
).

It suffices to show that distributions P (x, y

x

⇤
,W

) and

P (x, y

x

⇤
) are identifiable. By expanding on Z,W

x

⇤
,

P (x, y

x

⇤
) can be written as:

P (x, y

x

⇤
)

=

X

z,w

P (y

x

⇤ |x, z, w
x

⇤
)P (w

x

⇤ |x, z)P (x, z)

=

X

z,w

P (y

x

⇤
,z,w

|x
z

, z, w

x

⇤
,z

)P (w

x

⇤
,z

|x
z

, z)P (x, z).

The last step holds due to the following reasons: (1)

by the exclusion restrictions rule, since Z has no parent

node in the model of Fig. 1(a), Z = Z

x

⇤
for any x

⇤
; (2)

by the composition axiom, we have:

Z = z ) X = X

z

,

Z

x

⇤
= z )W

x

⇤
= W

x

⇤
,z

,

Z

x

⇤
= z,W

x

⇤
= w ) Y

x

⇤
= Y

x

⇤
,z,w

.

By the independence exclusions rule, for any x

⇤
, x, z, w,

W

x

⇤
,z

?? X

z

, Z, (20)

Y

x

⇤
,z,w

?? X

z

, Z,W

x,z

. (21)

We thus have:

X

z,w

P (y

x

⇤
,z,w

|x
z

, z, w

x

⇤
,z

)P (w

x

⇤
,z

|x
z

, z)P (x, z)

=

X

z,w

P (y

x

⇤
,z,w

)P (w

x

⇤
,z

)P (x, z)



Since the standard model is Markovian,

P (w

x

⇤
,z

) = P (w|x⇤
, z), (22)

P (y

x

⇤
,z,w

) = P (y|x⇤
, z, w). (23)

Thus,

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, z, w)P (w|x⇤

, z)P (x, z).

By expanding on Z,W , P (x, y

x

⇤
,W

) can be written as:

P (x, y

x

⇤
,W

)

=

X

z,w

P (y

x

⇤
,w

|x, z, w)P (x, z, w)

=

X

z,w

P (y

x

⇤
,w

|x, z
x

⇤
,w

, w

x,z

)P (x, z, w)

The last step holds due to following reasons: (1) By the

composition axiom, W = W

x,z

if X = x, Z = z; (2)

By the exclusion restrictions rules, Z = Z

x

⇤
,w

if Z has

no parent node. Applying the composition axiom again

gives:

Z

x

⇤
,w

= z ) Y

x

⇤
,w

= Y

x

⇤
,z,w

.

We thus have:

X

z,w

P (y

x

⇤
,w

|x, z
x

⇤
,w

, w

x,z

)P (x, z, w)

=

X

z,w

P (y

x

⇤
,z,w

|x, z
x

⇤
,w

, w

x,z

)P (x, z, w)

The independence relation 21 gives:

P (x, y

x

⇤
,W

) =

X

z,w

P (y

x

⇤
,z,w

|x, z
x

⇤
,w

, w

x,z

)P (x, z, w)

=

X

z,w

P (y

x

⇤
,z,w

)P (x, z, w)

=

X

z,w

P (y|x⇤
, z, w)P (x, z, w).

The last step holds by Eq. 23.

Lemma 6. In the standard model (Fig. 1(a)),

for a order Ls

where Ls

r

: g

r1 < g

r2 , the

path-specific decomposition of the spurious co-

variance Cov

s

x

⇤(X,Y ) (Thm. 5) is identifiable if

P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) are identifiable. Specif-

ically, distributions P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) are

identifiable can be estimated from the observational

distribution P (x, y, z, w) as following:

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, z, w)P (w|x⇤, z)P (x, z),

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) =

X

z,z

0
,w

P (y|x⇤
, w, z)P (w|x⇤

, z

0
)

· P (x, z

0
)P (z)

Proof. By Thm. 5, the spurious covariance

Cov

s

x

⇤(X,Y ) equates to

Cov

s

x

⇤(X,Y ) = Cov

s

l3[x
⇤
]

(X,Y )Ls

⇡

+Cov

s

l4[x
⇤
]

(X,Y )Lc

⇡

.

We will next show that each quantity on the right-

hand side of the above equation is identifiable from

P (x, y, z, w). In the standard model, Considering the

order Ls

where Ls

r

: g

r1 < g

r2 ,

Cov

s

l3[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X �X

g

l

, Y

x

⇤ � Y

x

⇤
,g

r1
)

= Cov(X �X

U

l

Z

, Y

x

⇤ � Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

)

= Cov(X,Y

x

⇤ � Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) (24)

= Cov(X,Y

x

⇤
)� Cov(X,Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

).

The last step holds since X

U

l

Z

is an independent counter-

factual variable: the variable X is function over U

X

, U

l

Z

;

the exogenous variables U

X

, U

l

Z

are independent of all the

other variables in the domain. Similarly,

Cov

s

l4[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X �X

g

l

, Y

x

⇤
,g

r1
� Y

x

⇤
,g

r[1,2]
)

= Cov(X �X

U

l

Z

, Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

� Y

x

⇤
,U

r

Z

)

= Cov(X,Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

� Y

x

⇤
,U

r

Z

) (25)

= Cov(X,Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

).

The last two steps holds since X

U

l

Z

and Y

x

⇤
,U

r

Z

are inde-

pendent counterfactual variables. It will suffice to show

that the distributions P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) are

identifiable. P (x, y

x

⇤
) can be identified using Lem. 5.

By conditioning on U

r

Z

, P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) can be writ-

ten as:

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) =

X

u

r

Z

P (x, y

x

⇤
,W

x

⇤ ,Z
u

r

Z

|ur

Z

)P (u

r

Z

)

With U

r

Z

fixed, variables X and Y

x

⇤
,W

x

⇤ ,Z
u

r

Z

are func-

tions of the exogenous variable U , which is independent

of U

r

Z

. We thus have the following independence relation

U

r

Z

?? X,Y

x

⇤
,W

x

⇤ ,Z
u

r

Z

,

which gives:

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

) =

X

u

r

Z

P (x, y

x

⇤
,W

x

⇤ ,Z
u

r

Z

)P (u

r

Z

)

(26)

By expanding on Z,Z

U

r

Z

,W

x

⇤
, P (x, y

x

⇤
,W

x

⇤ ,Z
u

r

Z

) can

be written as:

P (x, y

x

⇤
,W

x

⇤ ,Z
u

r

Z

) =

X

z,z

0
,w

P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
, z

u

r

Z

)



Since the function f

Z

takes only U

Z

as an argument, the

variables Z

u

r

Z

are deterministic, i.e.,

P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
, z

u

r

Z

)

= P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
)I{Z

u

r

Z

= z}

where I{·} is an indicator function. The above equation,

together with Eq. 26, gives:

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

)

=

X

z,z

0
,w

P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
)

X

u

r

Z

I{Z
u

r

Z

= z}P (u

r

Z

)

=

X

z,z

0
,w

P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
)P (z). (27)

By the composition axiom and the exclusion restrictions

rule [Pearl, 2000, Ch. 7.3], in the model of Fig. 1(a), for

any z, x

⇤
,

Z = z ) X = X

z

,

Z = Z

x

⇤
,

Z

x

⇤
= z ) W

x

⇤
= W

x

⇤
,z

,

(28)

The above relations imply that:

P (x, y

x

⇤
,w,z

, w

x

⇤
, z

0
) = P (x

z

0
, y

x

⇤
,w,z

, w

x

⇤
,z

0
, z

0
)

The independence restrictions rule [Pearl, 2000, Ch. 7.3]

implies that in the model of Fig. 1(a), counterfactuals

X

z

0
, Y

x

⇤
,w,z

,W

x

⇤
,z

0
, Z are mutually independent. We

thus obtain

P (x

z

0
, y

x

⇤
,w,z

, w

x

⇤
,z

0
, z

0
)

= P (x

z

0
)P (y

x

⇤
,w,z

)P (w

x

⇤
,z

0
)P (z

0
) (29)

Since the standard model is Markovian,

P (x

z

0
) = P (x|z0),

P (y

x

⇤
,w,z

) = P (y|x⇤
, w, z),

P (w

x

⇤
,z

0
) = P (w|x⇤

, z

0
).

(30)

Eqs. 27, 29 and 30 together give

P (x, y

x

⇤
,W

x

⇤ ,Z
U

r

Z

)

=

X

z,z

0
,w

P (x|z0)P (y|x,w, z)P (w|x⇤
, z

0
)P (z

0
)P (z)

=

X

z,z

0
,w

P (y|x,w, z)P (w|x⇤
, z

0
)P (x, z

0
)P (z).

We are now ready to prove Thm. 6.

Proof of Theorem 6. Recall the target path-specific de-

composition of Cov(X,Y ) is:

Cov(X,Y � Y

x

⇤
,W

) + Cov(X,Y

x

⇤
,W

� Y

x

⇤
)

+ Cov(X �X

U

l

Z

, Y

x

⇤ � Y

x

⇤
,W

x

⇤Z
U

r

Z

)

+ Cov(X �X

U

l

Z

, Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

� Y

x

⇤
,U

r

Z

).

This decomposition is induced by the order Lc

: l

1

< l

2

and Ls

where Ls

r

: g

r1 < g

r2 . Thm. 6 immediately

follows from Lems. 5 and 6.

We next consider the identification of other decomposi-

tions of Cov(X,Y ) in the model of Fig. 1(a). Indeed,

one could show that the decomposition of Cov(X,Y )

(Thm. 5) are always identifiable in the standard model

regardless of the order Lc

and Ls

.

Lemma 7. In the standard model (Fig. 1(a)), for an or-

der Lc

: l

2

< l

1

, the path-specific decomposition of

the causal covariance Cov

c

x

⇤(X,Y ) (Thm. 2) are iden-

tifiable if P (x, y

x

⇤
) and P (x, y

W

x

⇤ ) are identifiable.

Specifically, distributions P (x, y

x

⇤
) and P (x, y

W

x

⇤ )

can be estimated from the observational distribution

P (x, y, z, w) as following:

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, z, w)P (w|x⇤⇤, z)P (x, z),

P (x, y

W

x

⇤ ) =

X

z,w

P (y|x, z, w)P (w|x⇤
, z)P (x, z).

Proof. Consider the order Lc

: l

2

< l

1

. The path-

specific causal covariance of l

1

, l

2

are equal to:

Cov

c

l1[x
⇤
]

(X,Y )Lc

2
⇡

= Cov

dt

x

⇤(X,Y ) (31)

= Cov(X,Y

W

x

⇤ � Y

x

⇤
)

= Cov(X,Y

W

x

⇤ )� Cov(X,Y

x

⇤
),

Cov

c

l2[x
⇤
]

(X,Y )Lc

2
⇡

= Cov

ip

x

⇤(X,Y ) (32)

= Cov(X,Y � Y

W

x

⇤ )

= Cov(X,Y )� Cov(X,Y

W

x

⇤ ).

It suffices to show that distributions P (x, y

W

x

⇤ ) and

P (x, y

x

⇤
) are identifiable. P (x, y

x

⇤
) can be identified

using Lem. 5. By expanding on Z,W

x

⇤
, P (x, y

W

x

⇤ ) can

be written as:

P (x, y

W

x

⇤ )

=

X

z,w

P (y

w

|x, z, w
x

⇤
)P (w

x

⇤ |x, z)P (x, z)

=

X

z,w

P (y

w

|x
w

, z

w

, w

x

⇤
)P (w

x

⇤ |x, z
x

⇤
)P (x, z).

In the last step, since Z is a non-descendant node of

X,W and X is a non-descendant node of W , we have

Z = Z

x

⇤
= Z

w

and X = X

w

. By the composition

axiom,

Z = z ) X = X

z

,

Z

x

⇤
= z ) W

x

⇤
= W

x

⇤
,z

,

X

w

= x, Z

w

= z ) Y

w

= Y

x,z,w

.



which gives:

X

z,w

P (y

w

|x
w

, z

w

, w

x

⇤
)P (w

x

⇤ |x, z
x

⇤
)P (x, z)

=

X

z,w

P (y

x,z,w

|x
w

, z

w

, w

x

⇤
)P (w

x

⇤
,z

|x, z
x

⇤
)P (x, z)

=

X

z,w

P (y

x,z,w

|x, z, w
x

⇤
)P (w

x

⇤
,z

|x, z)P (x, z)

=

X

z,w

P (y

x,z,w

|x
z

, z, w

x

⇤
)P (w

x

⇤
,z

|x
z

, z)P (x, z)

=

X

z,w

P (y

x,z,w

|x
z

, z, w

x

⇤
,z

)P (w

x

⇤
,z

|x
z

, z)P (x, z)

The last step holds since Z = Z

x

⇤
and Z

x

⇤
= z )

W

x

⇤
= W

x

⇤
,z

. Applying Eqs. 20 and 21 gives:

P (x, y

W

x

⇤ ) =

X

z,w

P (y

x,z,w

)P (w

x

⇤
,z

)P (x, z)

=

X

z,w

P (y|x, z, w)P (w|x⇤
, z)P (x, z).

The last step holds by Eqs. 22 and 23.

Lemma 8. In the standard model (Fig. 1(a)),

for a order Ls

where Ls

r

: g

r2 < g

r1 , the

path-specific decomposition of the spurious co-

variance Cov

s

x

⇤(X,Y ) (Thm. 5) is identifiable if

P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) are identifiable. Specif-

ically, distributions P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) are

identifiable can be estimated from the observational

distribution P (x, y, z, w) as following:

P (x, y

x

⇤
) =

X

z,w

P (y|x⇤
, z, w)P (w|x⇤, z)P (x, z),

P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) =

X

z,z

0
,w

P (y|x⇤
, w, z

0
)P (w|x⇤

, z)

· P (x, z

0
)P (z).

Proof. Considering the order Ls

where Ls

r

: g

r2 < g

r1 ,

Cov

s

l3[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X �X

g

l

, Y

x

⇤
,g

r2
� Y

x

⇤
,g

r[1,2]
)

= Cov(X �X

U

l

Z

, Y

x

⇤
,W

x

⇤
,U

r

Z

� Y

x

⇤
,U

r

Z

)

= Cov(X,Y

x

⇤
,W

x

⇤
,U

r

Z

� Y

x

⇤
,U

r

Z

) (33)

= Cov(X,Y

x

⇤
,W

x

⇤
,U

r

Z

).

Similarly,

Cov

s

l4[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X �X

g

l

, Y

x

⇤ � Y

x

⇤
,g

r2
)

= Cov(X �X

U

l

Z

, Y

x

⇤ � Y

x

⇤
,W

x

⇤
,U

r

Z

)

= Cov(X,Y

x

⇤ � Y

x

⇤
,W

x

⇤
,U

r

Z

) (34)

= Cov(X,Y

x

⇤
)� Cov(X,Y

x

⇤
,W

x

⇤
,U

r

Z

).

The last step holds since X

U

l

Z

and Y

x

⇤
,U

r

Z

are indepen-

dent counterfactual variables. It will suffice to show that

the distributions P (x, y

x

⇤
), P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) are identi-

fiable. By conditioning on U

r

Z

,

P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) =

X

u

r

Z

P (x, y

x

⇤
,W

x

⇤
,u

r

Z

|ur

Z

)P (u

r

Z

)

With U

r

Z

fixed, variables X and Y

x

⇤
,W

x

⇤
,u

r

Z

are functions

of the exogenous variable U , which is independent of

U

r

Z

. We thus have the independence relation

U

r

Z

?? X,Y

x

⇤
,W

x

⇤
,u

r

Z

,

which gives:

P (x, y

x

⇤
,W

x

⇤
,U

r

Z

) =

X

u

r

Z

P (x, y

x

⇤
,W

x

⇤
,u

r

Z

)P (u

r

Z

) (35)

By expanding on Z,Z

u

r

Z

,W

x

⇤
,u

r

Z

,

P (x, y

x

⇤
,W

x

⇤
,u

r

Z

) =

X

z,z

0
,w

P (x, y

x

⇤
,w

, w

x

⇤
,u

r

Z

, z

0
, z

u

r

Z

)

By the composition axiom and the exclusion restrictions

rule [Pearl, 2000, Ch. 7.3] (treating U

Z

as an endogenous

variable), for any z, x

⇤
, w, u

Z

,

Z

u

Z

= Z

x

⇤
,u

Z

,

Z

x

⇤
,u

Z

= z ) W

x

⇤
,u

Z

= W

x

⇤
,z,u

Z

= W

x

⇤
,z

,

Z = Z

x

⇤
,w

,

Z

x

⇤
,w

= z ) Y

x

⇤
,w

= Y

x

⇤
,w,z

.

(36)

Eqs. 28 and 36 imply

P (x, y

x

⇤
,w

, w

x

⇤
,u

r

Z

, z

0
, z

u

r

Z

)

= P (x

z

0
, y

x

⇤
,w,z

0
, w

x

⇤
,z

, z

0
, z

u

r

Z

)

Since the function f

Z

takes only U

Z

as an argument. The

variables Z

u

r

Z

are thus deterministic, i.e.,

P (x

z

0
, y

x

⇤
,w,z

0
, w

x

⇤
,z

, z

0
, z

u

r

Z

)

= P (x

z

0
, y

x

⇤
,w,z

0
, w

x

⇤
,z

, z

0
)I{Z

u

r

Z

= z}.

The above equation, together with Eq.35, gives

P (x, y

x

⇤
,W

x

⇤
,U

r

Z

)

=

X

z,z

0
,w

P (x

z

0
, y

x

⇤
,w,z

0
, w

x

⇤
,z

, z

0
)

X

u

r

Z

I{Z
u

r

Z

= z}P (u

r

Z

)

=

X

z,z

0
,w

P (x

z

0
, y

x

⇤
,w,z

0
, w

x

⇤
,z

, z

0
)P (z)

The independence restrictions rule [Pearl, 2000, Ch. 7.3]

implies that in the model of Fig. 1(a), counterfactuals



X

z

0
, Y

x

⇤
,w,z

0
,W

x

⇤
,z

, Z are mutually independent. To-

gether with Eq. 30, the above equation is equal to:

P (x, y

x

⇤
,W

x

⇤
,U

r

Z

)

=

X

z,z

0
,w

P (x

z

0
)P (y

x

⇤
,w,z

0
)P (w

x

⇤
,z

)P (z

0
)P (z)

=

X

z,z

0
,w

P (x|z0)P (y|x⇤
, w, z

0
)P (w|x⇤

, z)P (z

0
)P (z)

=

X

z,z

0
,w

P (y|x⇤
, w, z

0
)P (w|x⇤

, z)P (x, z

0
)P (z).

Since Lems. 5-8 cover all possible orders Lc

, Ls

, the de-

compositions Thm. 5 are always identifiable in the stan-

dard fairness model.

Proof of Theorem 7. By Eqs. 18, 19, 31 and 32, we have

for order Lc

1

: l

1

< l

2

and Lc

2

: l

2

< l

1

,

Cov

c

l1[x
⇤
]

(X,Y )Lc

1
⇡

= Cov

dp

x

⇤(X,Y ),

Cov

c

l1[x
⇤
]

(X,Y )Lc

2
⇡

= Cov

dt

x

⇤(X,Y ),

Cov

c

l2[x
⇤
]

(X,Y )Lc

1
⇡

= Cov

it

x

⇤(X,Y ),

Cov

c

l2[x
⇤
]

(X,Y )Lc

2
⇡

= Cov

ip

x

⇤(X,Y ).

Applying Thm. 1 to the above equations implies that for

an arbitrary order Lc

over l

[1,2]

,

Cov

c

l1[x
⇤
]

(X,Y )Lc

⇡

= ↵

YX

,Cov

c

l2[x
⇤
]

(X,Y )Lc

⇡

= ↵

WX

↵

YW

.

We will next consider the path-specific spurious covari-

ance of l

3

, l

4

. As for Ls

where Ls

r

: g

r1 < g

r2 , by

Eqs. 24-25,

Cov

s

l3[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X,Y

x

⇤ � Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

)

= ↵

YZ

Cov(X,Z) + ↵

YZ

Cov(X,Z

U

r

Z

) (37)

Since the domain is normalized, Cov(Z,Z) =

Var(Z) = 1, Cov(X,Z) is equal to

Cov(X,Z) = Cov(↵

XZ

Z + U

X

, Z)

= ↵

XZ

Var(Z) = ↵

XZ

(38)

Cov(X,Z

U

r

Z

) equates to:

Cov(X,Z

U

r

Z

) = Cov(↵

XZ

Z + U

X

, Z

U

r

Z

)

= Cov(↵

XZ

U

Z

+ U

X

, U

r

Z

)

= ↵

XZ

Cov(U

Z

, U

r

Z

) + Cov(U

X

, U

r

Z

) = 0. (39)

The last step holds since U

Z

, U

X

and U

r

Z

are mutually in-

dependent. Eqs. 37-39 together give:

Cov

s

l3[x
⇤
]

(X,Y )Ls

1
⇡

= ↵

XZ

↵

YZ

. (40)

Similarly,

Cov

s

l4[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X,Y

x

⇤
,W

x

⇤ ,Z
U

r

Z

� Y

x

⇤
,U

r

Z

)

= ↵

YW

Cov(X,W

x

⇤
) + ↵

YZ

Cov(X,W

x

⇤
,U

r

Z

)

= ↵

WZ

↵

YW

(Cov(X,Z) + Cov(X,Z

U

r

Z

))

= ↵

XZ

↵

WZ

↵

YW

. (41)

We will next consider the order Ls

where Ls

r

: g

r2 < g

r1 .

By Eqs. 33-34,

Cov

s

l3[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X,Y

x

⇤
,W

x

⇤
,U

r

Z

� Y

x

⇤
,U

r

Z

)

= ↵

YZ

Cov(X,Z) + ↵

YZ

Cov(X,Z

U

r

Z

)

= ↵

XZ

↵

YZ

(42)

and

Cov

s

l4[x
⇤
]

(X,Y )Ls

1
⇡

= Cov(X,Y

x

⇤ � Y

x

⇤
,W

x

⇤
,U

r

Z

)

= ↵

YW

Cov(X,W

x

⇤
) + ↵

YZ

Cov(X,W

x

⇤
,U

r

Z

)

= ↵

XZ

↵

WZ

↵

YW

(43)

Eqs. 40 - 43 combined imply that for an arbitrary order

Ls

,

Cov

s

l3[x
⇤
]

(X,Y )Ls

⇡

= ↵

XZ

↵

YZ

,

Cov

s

l4[x
⇤
]

(X,Y )Ls

⇡

= ↵

XZ

↵

WZ

↵

YW

.

Specifically, Parameters ↵ can be estimated from the par-

tial regression coefficients [Pearl, 2000, Ch. 5] as follow-

ing:

↵

YX

= �

YX.ZW

, ↵

YZ

= �

YZ.XW

, ↵

YW

= �

YW.XZ

,

↵

WX

= �

WX.Z

, ↵

WZ

= �

WZ.X

, ↵

XZ

= ↵

XZ

.

2 EXAMPLES

In this section, we will illustrate the results presented in

this paper with more detailed examples.

2.1 PATH-SPECIFIC POTENTIAL RESPONSE

Consider the standard model of Fig. 1(a). Recall the

path g

1

: X ! W

1

! W

2

! Y . We next show,

step by step, the derivation of the g

1

-specific potential

response Y

g1[x
⇤
]

. Since the edge X ! Y 62 {g
1

}, the

set X

⇡!Y

= ;. We thus have S = (Pa(Y )

G

\ V ) �
X

⇡!Y

= {X,W

1

,W

2

}. By Def. 6,

Y

g1[x
⇤
]

= Y

XC
X!Y

(g1)[x⇤],W1C
W1!Y

(g1)[x⇤]
,W2C

W2!Y

(g1)[x⇤]
.



Since the edges X ! Y and W

1

! Y are not subpaths

of g

1

,

C
X!Y

(g

1

) = C
W1!Y

(g

1

) = ;.

By Def. 6, the above equation implies

XC
X!Y

(g1)[x
⇤
]

= X, W

1C
W1!Y

(g1)[x⇤]
= W

1

.

Y

g1[x
⇤
]

can thus be written as:

Y

g1[x
⇤
]

= Y

X,W1,W2C
W2!Y

(g1)[x⇤]
.

Since C
W2!Y

(g

1

) returns the subpath {g
1

(X,W

2

)},

Y

g1[x
⇤
]

= Y

X,W1,W2
g1(X,W2)[x⇤]

, (44)

where W

2

g1(X,W2)[x⇤]
is the path-specific potential re-

sponse of W

2

. Since X ! Y 62 {g
1

(X,W

2

)}, the set S

for W

2

g1(X,W2)[x⇤]
is {X,W

1

}. Applying Def. 6 again,

W

2

g1(X,W2)[x⇤]

= W

2

XC
X!W2

(g1(X,W2))[x⇤],W1C
W1!W2

(g1(X,W2))[x⇤]
.

Since

C
X!W2 (g1(X,W

2

)) = ;,
C

W1!W2 (g1(X,W

2

)) = {g
1

(X,W

1

)},

W

2

g1(X,W2)
can be written as:

W

2

g1(X,W2)[x⇤]
= W

2

X,W1
g1(X,W1)[x⇤]

, (45)

where W

1

g1(X,W1)[x⇤]
is the path-specific potential re-

sponse of W

1

. Since the edge X ! W

1

= g

1

(X,W

1

),

the set X

⇡!W1 = {X} and S = (Pa(W

1

)

G

\ V ) �
X

⇡!W1 = ;. By Def. 6,

W

1

g1(X,W1)[x⇤]
= W

1

x

⇤ . (46)

Eqs. 44-46 together give:

Y

g1[x
⇤
]

= Y

X,W1,W2
X,W1

x

⇤
= Y

W2
W1

x

⇤
.

2.2 DECOMPOSING CAUSAL RELATIONS

We will consider the model in Fig. 6 where causal ef-

fects from X and Y are mediated by W

1

,W

2

,W

3

, and

all directed edges are confounded. There are eight causal

paths from X to Y :

g

1

: X ! Y,

g

2

: X ! W

1

! Y,

g

3

: X ! W

2

! Y,

g

4

: X ! W

3

! Y,

g

5

: X ! W

1

! W

2

! Y,

g

6

: X ! W

1

! W

3

! Y,

g

7

: X ! W

2

! W

3

! Y,

g

8

: X ! W

1

! W

2

! W

3

! Y.

W

1

W

2

W

3

X Y

Figure 6: Causal diagram for the three-mediators set-

ting where causal paths from X and Y are mediated by

W

1

,W

2

,W

3

.

Let an order Lc

be g

i

< g

j

if i < j. Thm. 2 is applicable

and express the causal covariance Cov

c

x

⇤(X,Y ) as:

Cov

c

x

⇤(X,Y ) =

8X

i=1

Cov

c

g

i

[x

⇤
]

(X,Y )Lc

⇡

.

The path-specific causal covariance�
Cov

c

g

i

[x

⇤
]

(X,Y )Lc

⇡

 
i=1,...,8

are equal to:

Cov

c

g1[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y � Y

g1[x
⇤
]

)

= Cov(X,Y � Y

x

⇤
,W1,W2,W3),

Cov

c

g2[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g1[x
⇤
]

� Y

g[1,2][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1,W2,W3 � Y

x

⇤
,W1

x

⇤ ,W2,W3),

Cov

c

g3[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,2][x
⇤
]

� Y

g[1,3][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2,W3 � Y

x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

,W3),

Cov

c

g4[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,3][x
⇤
]

� Y

g[1,4][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

,W3

� Y

x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

,W3
x

⇤
,W1,W2

),

Cov

c

g5[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,4][x
⇤
]

� Y

g[1,5][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

,W3
x

⇤
,W1,W2

� Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1,W2

),

Cov

c

g6[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,5][x
⇤
]

� Y

g[1,6][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1,W2

� Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1

x

⇤ ,W2
),

Cov

c

g7[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,6][x
⇤
]

� Y

g[1,7][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1

x

⇤ ,W2

� Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

),

Cov

c

g8[x
⇤
]

(X,Y )Lc

⇡

= Cov(X,Y

g[1,7][x
⇤
]

� Y

g[1,8][x
⇤
]

)

= Cov(X,Y

x

⇤
,W1

x

⇤ ,W2
x

⇤ ,W3
x

⇤
,W1

x

⇤ ,W2
x

⇤
,W1

� Y

x

⇤
).

2.3 DECOMPOSING SPURIOUS RELATIONS

We will consider the generalized two-confounders set-

ting described in Fig. 7(a) where X and Y are con-

founded by Z

1

, Z

2

. The exogenous variables U

1

, U

2



associated with Z

1

, Z

2

are represented explicitly in the

causal diagram. In the model of Fig. 7(a), U

s

=

{U
1

, U

2

} which affects the observational X and the

counterfactuals Y

x

⇤
through causal paths shown in

Fig. 7(b). There are thus five spurious treks:

⌧

1

= (g

1

l1
, g

1

r1
), ⌧

2

= (g

1

l1
, g

1

r2
), ⌧

3

= (g

1

l2
, g

1

r1
)

⌧

4

= (g

1

l2
, g

1

r2
), ⌧

5

= (g

2

l1
, g

2

r1
).

The treatment X and the outcome Y are connected

through four spurious paths:

l

1

: X  Z

1

! Y, l

2

: X  Z

2

! Y,

l

3

: X  Z

1

! Z

2

! Y, l

4

: X  Z

2

 Z

1

! Y.

Let an order Ls

u

be U

1

< U

2

. Let an order L

s

r

i

be g

i

r

j

<

g

i

r

k

if j < k. The order L

l

i

is similarly defined. Thm. 3

decomposes the spurious covariance Cov

s

x

⇤(X,Y ) over

the spurious paths l

1

, . . . , l

4

:

Cov

s

x

⇤(X,Y ) =

4X

i=1

Cov

s

l

i

[x

⇤
]

(X,Y )Ls

⇡

.

The path-specific spurious covariance�
Cov

s

l

i

[x

⇤
]

(X,Y )Ls

⇡

 
i=1,...,4

are equal to:

Cov

s

l1[x
⇤
]

(X,Y )Ls

⇡

= Cov

ts

⌧1[x
⇤
]

(X,Y )Ls

⇡

= Cov(X �X

g

1
l1
, Y

x

⇤ � Y

x

⇤
,g

1
r1
)

= Cov(X �X

Z1
U

l

1

,Z2 , Yx

⇤ � Y

x

⇤
,Z1

U

r

1
,Z2),

Cov

s

l2[x
⇤
]

(X,Y )Ls

⇡

= Cov

ts

⌧4[x
⇤
]

(X,Y )Ls

⇡

+Cov

ts

⌧5[x
⇤
]

(X,Y )Ls

⇡

= Cov(X

g

1
l1
�X

g

1
l[1,2]

, Y

x

⇤
,g

1
r1
� Y

x

⇤
,g

1
r[1,2]

)

+ Cov(X

g

1
l[1,2]

[g

2
l1
, Y

x

⇤
,g

1
r[1,2]

� Y

x

⇤
,g

1
r[1,2]

[g

2
r1
)

= Cov(X

Z1
U

l

1

,Z2 �X

U

l

1
, Y

x

⇤
,Z1

U

r

1
,Z2 � Y

x

⇤
,U

r

1
)

+ Cov(X

U

l

1
�X

U

l

[1,2]
, Y

x

⇤
,U

r

1
� Y

x

⇤
,U

r

[1,2]
),

Cov

s

l3[x
⇤
]

(X,Y )Ls

⇡

= Cov

ts

⌧2[x
⇤
]

(X,Y )Ls

⇡

= Cov(X �X

g

1
l1
, Y

x

⇤
,g

1
r1
� Y

x

⇤
,g

1
r[1,2]

)

= Cov(X �X

Z1
U

l

1

,Z2 , Yx

⇤
,Z1

U

r

1
,Z2 � Y

x

⇤
,U

r

1
),

Cov

s

l4[x
⇤
]

(X,Y )Ls

⇡

= Cov

ts

⌧3[x
⇤
]

(X,Y )Ls

⇡

= Cov(X

g

1
l1
�X

g

1
l[1,2]

, Y

x

⇤ � Y

x

⇤
,g

1
r1
)

= Cov(X

Z1
U

l

1

,Z2 �X

U

l

1
, Y

x

⇤ � Y

x

⇤
,Z1

U

r

1
,Z2).

(a)

Z

1

U

1

Z

2

U

2

X Y

(b)

U

2

Z

2

Z

2

X Y

g

2

l1
g

2

r1

U

1

Z

1

Z

1

Z

2

X

X

Z

1

Z

1

Z

2

Y

Y

g

1

l1

g

1

l2

g

1

r1

g

1

r2

Figure 7: (a) Causal diagram for the two-confounders

setting where X to Y are confounded by Z

1

, Z

2

; (b)

Causal paths through which the exogenous variables

U

1

, U

2

affect X and Y

x

⇤
in the two-confounders setting.

2.4 PATH-SPECIFIC DECOMPOSITION

Considering the model of Fig. 8, the treatment X and the

outcome Y are connected by the causal paths:

l

1

: X ! Y, l

2

: X !W

1

! Y,

l

3

: X !W

2

! Y, l

4

: X !W

1

!W

2

! Y,

and the spurious paths:

l

5

: X  Z

1

! Y,

l

6

: X  Z

1

!W

1

! Y,

l

7

: X  Z

1

!W

2

! Y,

l

8

: X  Z

1

!W

1

!W

2

! Y,

l

9

: X  Z

1

! Z

2

! Y,

l

10

: X  Z

1

! Z

2

!W

1

! Y,

l

11

: X  Z

1

! Z

2

!W

2

! Y,

l

12

: X  Z

1

! Z

2

!W

1

!W

2

! Y,

l

13

: X  Z

2

 Z

1

! Y,

l

14

: X  Z

2

 Z

1

!W

1

! Y,

l

15

: X  Z

2

 Z

1

!W

2

! Y,

l

16

: X  Z

2

 Z

1

!W

1

!W

2

! Y,

l

17

: X  Z

2

! Y,

l

18

: X  Z

2

!W

1

! Y,

l

19

: X  Z

2

!W

2

! Y,

l

20

: X  Z

2

!W

1

!W

2

! Y.

Let U

1

, U

2

denote the independent errors associated with

the confounders Z

1

, Z

2

respectively. In this model,

U

s

= {U
1

, U

2

} where the causal paths ⇧

c

(U

1

, X) and



Z

1

Z

2

X Y

W

1

W

2

Figure 8: Causal diagram for the two-mediators-two-

confounders setting where X to Y are confounded by

Z

1

, Z

2

and mediated by W

1

,W

2

.

⇧

c

(U

1

, X|Y ) are:

g

1

l1
: U

1

! Z

1

! X,

g

1

l2
: U

1

! Z

1

! Z

2

! X,

g

1

r1
: U

1

! Z

1

! Y,

g

1

r2
: U

1

! Z

1

! W

1

! Y,

g

1

r3
: U

1

! Z

1

! W

2

! Y,

g

1

r4
: U

1

! Z

1

! W

1

! W

2

! Y,

g

1

r5
: U

1

! Z

1

! Z

2

! Y,

g

1

r6
: U

1

! Z

1

! Z

2

! W

1

! Y,

g

1

r7
: U

1

! Z

1

! Z

2

! W

2

! Y,

g

1

r8
: U

1

! Z

1

! Z

2

! W

1

! W

2

! Y,

and the causal paths ⇧

c

(U

2

, X) and ⇧

c

(U

2

, X|Y ) are:

g

2

l1
: U

2

! Z

2

! X,

g

2

r1
: U

1

! Z

2

! Y,

g

2

r2
: U

1

! Z

2

! W

1

! Y,

g

2

r3
: U

1

! Z

2

! W

2

! Y,

g

2

r4
: U

1

! Z

2

! W

1

! W

2

! Y.

There are thus twenty spurious treks from X to Y :

⌧

1

= (g

1

l1
, g

1

r1
), ⌧

2

= (g

1

l1
, g

1

r2
), ⌧

3

= (g

1

l1
, g

1

r3
),

⌧

4

= (g

1

l1
, g

1

r4
), ⌧

5

= (g

1

l1
, g

1

r5
), ⌧

6

= (g

1

l1
, g

1

r6
),

⌧

7

= (g

1

l1
, g

1

r7
), ⌧

8

= (g

1

l1
, g

1

r8
), ⌧

9

= (g

1

l2
, g

1

r1
),

⌧

10

= (g

1

l2
, g

1

r2
), ⌧

11

= (g

1

l2
, g

1

r3
), ⌧

12

= (g

1

l2
, g

1

r4
),

⌧

13

= (g

1

l2
, g

1

r5
), ⌧

14

= (g

1

l2
, g

1

r6
), ⌧

15

= (g

1

l2
, g

1

r7
),

⌧

16

= (g

1

l2
, g

1

r8
), ⌧

17

= (g

2

l1
, g

2

r1
), ⌧

18

= (g

2

l1
, g

2

r2
),

⌧

19

= (g

2

l1
, g

2

r3
), ⌧

20

= (g

2

l1
, g

2

r4
).

The set {T s

(l

i

)}
i=5,...,20

is a partition over the spurious

treks ⌧

[1,20]

:

T s

(l

5

) = {⌧
1

}, T s

(l

6

) = {⌧
2

},
T s

(l

7

) = {⌧
3

}, T s

(l

8

) = {⌧
4

},
T s

(l

9

) = {⌧
5

}, T s

(l

10

) = {⌧
6

},
T s

(l

11

) = {⌧
7

}, T s

(l

12

) = {⌧
8

},
T s

(l

13

) = {⌧
9

}, T s

(l

14

) = {⌧
10

},
T s

(l

15

) = {⌧
11
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