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Abstract

We consider the problem of learning causal structures with latent variables using
interventions. Our objective is not only to learn the causal graph between the
observed variables, but to locate unobserved variables that could confound the
relationship between observables. Our approach is stage-wise: We first learn the
observable graph, i.e., the induced graph between observable variables. Next we
learn the existence and location of the latent variables given the observable graph.
We propose an efficient randomized algorithm that can learn the observable graph
using O(d log2 n) interventions where d is the degree of the graph. We further
propose an efficient deterministic variant which uses O(log n+ l) interventions,
where l is the longest directed path in the graph. Next, we propose an algorithm that
uses only O(d2 log n) interventions that can learn the latents between both non-
adjacent and adjacent variables. While a naive baseline approach would require
O(n2

) interventions, our combined algorithm can learn the causal graph with
latents using O(d log2 n+ d2 log (n)) interventions.

1 Introduction

Causality shapes how we view, understand, and react to the world around us. It is arguably a key
ingredient in building intelligent systems that are autonomous and can act efficiently in complex
environments. Not surprisingly, the task of automating the learning of cause-and-effect relationships
have attracted great interest in the artificial intelligence and machine learning communities. This effort
has led to a general theoretical and algorithmic understanding of the assumptions under which cause-
and-effect relationships can be inferred from data. These results have started to percolate through the
applied fields ranging from genetics to medicine, from psychology to economics [5, 26, 33, 25].

The endeavour of algorithmically learning causal relations may have started from the independent
discovery of the IC [35] and PC algorithms [33], which almost identically, and contrary to previously
held beliefs, showed the feasibility of recovering these relations from purely observational, non-
experimental data. A plethora of methods followed this breakthrough, and now we understand, at
least in principle, the limits of what can be inferred from purely observational data, including (not
exhaustively) [31, 14, 21, 27, 19, 13]. There are a number of assumptions that have been considered
about the data-generating model when attempting to unveil the causal structure. One of the most
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popular assumptions is that the data-generating model is causally sufficient, which means that no
latent (unmeasured) variable affects more than one observed variable. In practice, this is a very
stringent condition since the existence of latents affecting more than one observed variable, and
generating what is called confounding bias, is one of the main concerns of empirical scientists.
The problem of causation is deemed challenging in most of the empirical fields because scientists
recognize that not all the variables influencing the observed phenomenon can be measured. The
general question that arises is then how much of the observed behavior of the system is truly causal,
or whether it is due to some external, unobserved forces [26, 5].

To account for the latent variables in the context of structural learning, the IC* [35] and FCI [33]
algorithms were introduced, which showed the possibility of recovering causal structures even when

latent variables may be confounding the observed behavior 2. One of the main challenges faced
by these algorithms is that although some ancestral relations as well as certain causal edges can be
learned [36, 7], many observationally equivalent architectures cannot be distinguished. Despite the
practical challenges when collecting the data (e.g., finite samples, selection bias, missing data), we
now have a complete characterization of what structures are recoverable from observational data
based on conditional independence constraints [33, 2, 37]. Inferences will be constrained within
an equivalence class. Initial works leveraged ideas of experimental design and the availability of
interventional data to move from the equivalence class to a specific graph, but almost exclusively
considering causally sufficient systems [9, 15, 11, 12, 30, 18].

For causally insufficient systems, there is a growing interest in identifying experimental quantities
and structures based on partially observed interventional data [4, 32, 29, 28, 24, 16, 8, 34, 22], but
without the goal of designing the optimal set of interventions. Perhaps the most relevant paper to
our setup is [23]. Authors identify the experiments needed to learn the causal graph under latents,
given the output of FCI algorithm. However, they are not interested in minimizing the number of
experiments.

In this paper, we propose the first efficient non-parametric algorithm for learning a causal graph with
latent variables. It is known that log(n) interventions are necessary (across all graphs) and sufficient
to learn a causal graph without latent variables [12], and we show, perhaps surprisingly, that there
exists an algorithm that can learn any causal graph with latent variables which requires poly(log n)
interventions when the observable graph is sparse. More specifically, our contributions are as follow:

• We introduce a deterministic 3 algorithm that can learn any causal graph and the existence and
location of the latent variables using O(d log(n) + l) interventions, where d is the largest node
degree and l is the longest directed path of the causal graph.

• We design a randomized algorithm that can learn the observable graph and all the latent variables
using O(d log2(n) + d2 log(n)) interventions with high probability, where d is the largest node
degree.

The first algorithm is useful in practical settings where the longest directed path is not very deep, e.g.,
O(log(n)). This includes bipartite, time-series, and relational type of domains where the underlying
causal topology is somewhat sparse. As an example application, consider the problem of inferring
the causal effect of a set of genes on a set of phenotypes, that could be cast as learning a bipartite
causal system. For the more general setting, we introduce a randomized algorithm that with high
probability is capable of unveiling the true causal structure.

Background

We assume for simplicity that all the random variables are discrete. We use the language of Structural
Causal Models (SCM) [26, pp. 204-207]. Formally, an SCM M is a 4-tuple hU ,V,F , P (u)i, where
U is a set of exogenous (unobserved, latent) variables, V is a set of endogenous (measured) variables.
We partition the set of exogenous variables into two disjoint sets: Exogenous variables with one
observable child, denoted by E , exogenous variables with two observable children, denoted by L.
F = {f

i

} is a collection of functions such that each endogenous variable V
i

2 V is determined by
a function f

i

2 F : Each f
i

is a mapping from the respective domain of the exogenous variables
associated with V

i

and a set of observable variables associated with V
i

, called PA
i

, into V
i

. The

2Hereafter, latent variable refers to any unmeasured variable that affects more than one observed variable.
3We assume access to an oracle that outputs a size-O(d2 log (n)) independent set cover for the non-edges of

a given graph. This oracle can be implemented using another randomized algorithm as we explain in Section 5.
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set of exogenous variables associated with V
i

can be divided into two classes, the one with a single
observable child, denoted by E

i

2 E , and those with two observable children, denoted by L
i

✓ L.
Hence f

i

maps from the domain of E
i

[PA
i

[L
i

to V
i

. The entire set F forms a mapping from U to
V . The uncertainty is encoded through a product probability distribution over the exogenous variables
P (E ,L). For simplicity we refer to L as the set of latents, and E as the set of exogenous variables.

Within the structural semantics, performing an action S = s is represented through the do-operator,
do(S = s), which encodes the operation of replacing the original equation of S by the constant s
and induces a submodel M

S

(also for when S is not a singleton). We denote the post-interventional
distribution by P

S

(·). For a detailed discussion on the properties of structural models, we refer
readers to [5, 23, 24, Ch. 7]. Define D

`

= (V [ L, E
`

) to be the causal graph with latents. We define
the observable graph to be the induced subgraph on V which is D = (V, E).

In practice, we use an independent random variable W
i

taking values uniformly at random in the state
space of V

i

, to implement an intervention do(V
i

). A conditional independence statement, e.g., X is

independent from Y given Z ⇢ V with respect to causal model M
S

, in shown by (X ?? Y |Z)MS ,
or (X ?? Y |Z)

S

when the causal model is clear from the context. These conditional independencies
are with respect to the post-interventional joint probability distribution P

S

(·). In this paper, we
assume that an oracle to conditional independence (CI) tests is available.

The mutilated or post-interventional causal graph, denoted D
`

[S] = (V [ L, E
`

[S]), is identical to
D

`

except that all the incoming edges incident on any vertex in the interventional set S is absent, i.e.,
E

`

[S] = E
`

� {(Y, V ) : V 2 S, (Y, V ) 2 E
`

}. We define the transitive closure, denoted D
tc

, of an
observable causal DAG D as follows: If there is a directed path from V

i

to V
j

in D, there is a directed
edge from V

i

to V
j

in D
tc

. Essentially, a directed edge in D
tc

represents an ancestral relation in D.

For any DAG D = (V,E), a set of nodes S ⇢ V d-separates two nodes a and b if and only if S
blocks all paths between a and b. ‘Blocking’ is a graphical criterion associated with d-separation 4. A
probability distribution is said to be faithful (or stable) to a graph, if and only if every conditional
independence statement can be read off from the graph using d-separation, see [26, Ch. 2] for a
review. We assume that faithfulness holds in the observational and post-interventional distributions
following [12].

Results and outline of the paper

The skeleton of the proposed learning algorithms can be split into 3 steps, namely:

; (a)�! Transitive Closure (b)�! Observable graph (c)�! Observable graph with Latent variables
Each step requires different tools and graph theoretic concepts:

(a) We use a pairwise independence test under interventions that reveals the ancestral relations. This
is combined in an efficient manner with separating systems to discover the transitive closure of D
in O(log n) interventions.

(b) We rely on the transitive reduction of directed acyclic graphs that can be efficiently computed only
from their transitive closure. A key property we observe is that the transitive reduction reveals a

subset of the true edges. For our randomized algorithm, we use a sequence of transitive reductions
computed from transitive closures (obtained using step (a)) of different post-interventional graphs.

(c) Given the observable graph, it is possible to discover latents between non-adjacent nodes using
CI tests under suitable interventions. We use an edge-clique cover on the complement graph to
optimize the number of experiments. For latents between adjacent nodes, we use a relatively
unknown test called the do-see test, i.e., leveraging the equivalence between observing and
intervening on the node. We implement it using induced matching cover of the observable graph.

The modularity of our approach allows us to solve subproblems: given the ancestral graph, we can
use (b) to discover the observable graph D. If D is known, we can learn the latents with (c). Some
pictorial illustrations of the main results in the technical sections are found in the full version [20].

2 Identifying the Observable Graph: A simple baseline

We discuss a natural and a simple deterministic baseline algorithm that finds the observable graph
with experiments when confounders are present. To our knowledge, a provably complete algorithm

4For convenience, detailed definitions of blocking and non-blocking paths are provided in the full version
[20].
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that recovers the observable graph under this setting and is superior than this simple baseline in the
worst case is not known. We start from the following observation. Suppose X ! Y where X,Y
are observable variables and let L be a latent variable such that L ! X, L ! Y . Consider the
post interventional graph D

`

[{X}] where we intervene on X . It is easy to see that, X and Y are
dependent in the post interventional graph too because of the direct causal relationship. However, if
X is not a parent of Y , then in the post interventional graph D

`

[{X}] even with or without the latent
L between X and Y , X is independent of Y since X is intervened on.

It is possible to recreate this condition between any target variable Y and any one of its direct parents
X when many other observable variables are involved. Simply, we consider the post-interventional
graph where we intervene on all observable variables but Y . In D

`

[V �{Y }], Y and X are dependent
if and only if X ! Y is a directed edge in the observable graph D, because every variable except X
becomes independent of all other variables in the post interventional graph. Therefore, one needs n
interventions, each of size n�1 to find out the parent set of every node. We basically show in the next
two sections that when the graph D has constant degree, it is enough to do O(log

2

(n)) interventions
representing the first provably exponential improvement.

3 Learning Ancestral Relations

In this section, we show that separating systems can be used to construct sequences of pairwise CI
tests to discover the transitive closure of the observable causal graph, i.e., the graph that captures all
ancestral relations. The following lemma relates post-interventional statistical dependencies with the
ancestral relations in the graph with latents.

Lemma 1. [Pairwise Conditional Independence Test] Consider a causal graph with latents D
`

. Con-

sider an intervention on the set S ⇢ V of observable variables. Then, under the post-interventional

faithfulness assumption, for any pair X
i

2 S,X
j

2 V\S, (X
i

6?? X
j

)

D`[S]

if and only if X
i

is an

ancestor of X
j

in the post-interventional observable graph D[S].

Lemma 1 constitutes, for any ordered pair of variables (X
i

, X
j

) in the observable graph D, a test for
whether X

i

is an ancestor of X
j

or not. Note that a single test is not sufficient to discover the ancestral
relation between a pair (X

i

, X
j

), e.g., if X
i

! X
k

! X
j

and X
i

, X
k

2 S,X
j

/2 S, the ancestral
relation will not be discovered. This issue can be resolved by using a sequence of interventions
guided by a separating system, and later finding the transitive closure of the learned graph.

Separating systems were first defined by [17], and has been subsequently used in the context of
experimental design [10]. A separating system on a ground set S is a collection of subsets of S,
S = {S

1

, S
2

. . .} such that for every pair (i, j), there is a set that contains only one, i.e., 9k such
that i 2 S

k

, j /2 S
k

or j 2 S
k

, i /2 S
k

. We require a stronger notion which is captured by a strongly
separating system.

Definition 1. An (m,n) strongly separating system is a family of subsets {S
1

, S
2

. . . S
m

} of the

ground set [n] such that for any two pairs of nodes i and j, there is a set S in the family such that

i 2 S, j /2 S and also another set S0
such that i /2 S0, j 2 S0

.

Similar to separating systems, one can construct strongly separating systems using O(log(n)) subsets:

Lemma 2. An (m,n) strong separating system exists on a ground set [n] where m  2dlog ne.
We propose Algorithm 1 to discover the ancestral relations between the observable variables. It uses
the subsets of a strongly separating system on the ground set of all observable variables as intervention
sets, to assure that the ancestral relation between every ordered pair of observable variables is tested.
The following theorem shows the number of experiments and the soundness of Algorithm 1.

Theorem 1. Algorithm 1 requires only 2dlog ne interventions and conditional independence tests on

samples obtained from each post-interventional distribution and outputs the transitive closure D
tc

.

4 Learning the Observable Graph

We introduce a deterministic and a randomized algorithm for learning the observable causal graph D
from ancestral relations. D encodes every direct causal connection between the observable nodes.
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Algorithm 1 LearnAncestralRelations- Given access to a conditional independence testing oracle
(CI oracle), query access to samples from any post-interventional causal model derived out of M
(with causal graph D

`

), outputs all ancestral relationships between observable variables, i.e., D
tc

1: function LEARNANCESTRALRELATIONS(M)
2: E = ;.
3: Consider a strongly sep. system of size  2 log n on the ground set V - {S

1

, S
2

..S
2dlogne}.

4: for i in [1 : 2dlog ne] do
5: Intervene on the set S

i

of nodes.
6: for X 2 S

i

, Y /2 S
i

, Y 2 V do
7: Use samples from M

Si and use the CI-oracle to test the following.
8: if (X 6?? Y )

D`[S]

then
9: E  E [ (X,Y ).

10: end if
11: end for
12: end for
13: return The transitive closure of the graph (V, E)

14: end function

4.1 A Deterministic Algorithm

Based on Section 3, assume that we are given the transitive closure of the observable graph. We show
in Lemma 3 that, when the intervention set contains all parents of X

i

, the only variables dependent
with X

i

in the post-interventional observable graph are the parents of X
i

in the observable graph.
Lemma 3. For variable X

i

, consider an intervention on S where Pa
i

⇢ S. Then {X
j

2 S : (X
i

6??
X

j

)

D[S]

} = Pa
i

.

Let the longest directed path of D
tc

be r. Consider the partial order <
D

tc

implied by D
tc

on
the vertex set V . Define {T

i

: i 2 [r + 1]} as the unique partitioning of vertices of D
tc

where
T
i

<
D

tc

T
j

, 8i < j and each node in T
i

is a set of mutually incomparable elements. In other words,
T
i

are the set of nodes at layer i of the transitive closure graph D
tc

. Define T
i

= [i�1

k=1

T
k

. We have
the following observation: Pa

i

⇢ T
i

. This paves the way for Algorithm 2 that leverages Lemma 3.
Algorithm 2 LearnObservableGraph/Deterministic - Given the ancestral graph, access to a conditional
independence testing oracle (CI oracle) and outputs the graph induced on observable nodes.

1: function LEARNOBSERVABLEGRAPH/DETERIMINISTIC(M)
2: E = ;.
3: for i in {r + 1, r, r � 1, . . . , 2} do
4: Intervene on the set T

i

of nodes.
5: Use samples from MTi and use the CI-oracle to test the following.
6: for X in T

i

do
7: if (X 6?? Y )

D`[Ti]
then

8: E  E [ (X,Y ).
9: end if

10: end for
11: end for
12: return Observable graph
13: end function

The correctness of Algorithm 2 follows from Lemma 3, which is stated explicitly in the sequel.
Theorem 2. Let r be the length of the longest directed path in the causal graph D

`

. Algorithm 2

requires only r interventions and conditional independence tests on samples obtained from each one

of the post-interventional distributions and outputs the observable graph D.

4.2 A Randomized Algorithm

We propose a randomized algorithm that repeatedly uses the ancestor graph learning algorithm from
Section 3 to learn the observable graph 5. A key structure that we use is the transitive reduction:

5Note that this algorithm does not require learning the ancestral graph first.
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V1

V2

V3

V4

(a) (b)

Observable	Graph	D Post-interventional	graph	D[{V2}]
After	intervention	on	V2

V1

V2

V3

V4

Transitive	reduction	of	D

(c)

V1

V2

V3

V4

Transitive	reduction	of	D[{V2}]

(d)

V1

V2

V3

V4

Figure 1: Illustration of Lemma 5 - (a) An example of an observable graph D without latents
(b): Transitive reduction of D. The highlighted red edge (V

1

, V
3

) has not been revealed under the
operation of transitive reduction. c) Intervention on node V

2

and its post interventional graph D[{V
2

}]
d) Since all parents of V

3

above V
1

in the partial order have been intervened on, by Lemma 5, the
edge (V

1

, V
3

) is revealed in the transitive reduction of D[{V
2

}].

Definition 2 (Transitive Reduction). Given a directed acyclic graph D = (V,E), let its transitive

closure be D
tc

. Then Tr(D) = (V,E
r

) is a directed acyclic graph with minimum number of edges

such that its transitive closure is identical to D
tc

.

Lemma 4. [1] Tr(D) is known to be unique if D is acyclic. Further, the set of directed edges of

Tr(D) is a subset of the directed edges of D, i.e., E
r

⇢ E. Computing Tr(D) from D takes the same

time as transitive closure of a DAG D, which takes time poly(n).

We note that Tr(D) = Tr(D
tc

). Now, we provide an algorithm that outputs an observable graph
based on samples from the post-interventional distribution after a sequence of interventions. Let us
assume an ordering ⇡ on the observable vertices V that satisfies the partial order relationships in the
observable causal graph D. The key insight behind the algorithm is given by the following Lemma.

Lemma 5. Consider an intervention on a set S ⇢ V of nodes in the observable causal graph D.

Consider the post-interventional observable causal graph D[S]. Suppose for a specific observable

node V
i

, V
i

2 Sc

. Let Y be a direct parent of V
i

in D such that all the direct parents of V
i

above Y
in the partial order

6 ⇡(·) is in S, i.e., {X : ⇡(X) > ⇡(Y ), (X,V ) 2 D} ✓ S. Then, Tr(D[S]) will

contain the directed edge (Y, V
i

) and it can be computed from Tr((D[S])
tc

)

We illustrated Lemma 5 through an example in Figure 1. The red edge in Figure 1(a) is not revealed
in the transitive reduction. The edge is revealed when computing the transitive reduction of the
post-interventional graph D[{V

2

}]. This is possible because all parents of V
3

above V
1

in the partial
order (in this case node V

2

) have been intervened on.

Lemma 5 motivates Algorithm 3. The basic idea is to intervene in randomly, then compute the
transitive closure of the post-interventional graph using the algorithm in the previous section, compute
the transitive reduction, and then accumulate all the edges found in the transitive reduction at every
stage. We will show in Theorem 3 that with high probability, the observable graph can be recovered.
Theorem 3. Let d

max

be greater than the maximum in-degree in the observable graph D. Al-

gorithm 3 requires at most 8cd
max

(log n)2 interventions and CI tests on samples obtained from

post-interventional distributions, and outputs the observable graph with probability at least 1� 1

n

c�2

.

Remark. The above algorithm takes as input a parameter d
max

that needs to be estimated. One
practical option is to gradually increase d

max

and run Algorithm 3.

6The nodes above with respect to the partial order of a graph are those that are closer to the source nodes.
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Algorithm 3 LearnObservable- Given access to a conditional independence testing oracle (CI oracle),
a parameter d

max

outputs induced subgraph between observable variables, i.e. D
1: function LEARNOBSERVABLE/RANDOMIZED(M, d

max

)
2: E = ;.
3: for i in [1 : c ⇤ 4 ⇤ d

max

log n] do
4: S = ;.
5: for V 2 V do
6: S  S [ V randomly with probability 1� 1/d

max

.
7: end for
8: ˆD

S

= LearnAncestralRelations(M). Let ˆD = (V, ˆE).
9: Compute the transitive reduction of ˆD(Tr(

ˆD
S

)) according to the algorithm in [1].
10: Add the edges of the transitive reduction to the set E if not already there, i.e. E  E[ ˆE.
11: end for
12: return The directed graph (V, E).
13: end function

5 Learning Latents from the Observable Graph

The final stage of our framework is learning the existence and location of latent variables given the
observable graph. We divide this problem into two steps – first, we devise an algorithm that can learn
the latent variables between any two variables that are non-adjacent in the observable graph; later, we
design an algorithm that learns the latent variables between every pair of adjacent variables.

5.1 Baseline Algorithm for Detecting Latents between Non-edges

Consider two variables X and Y such that X  L! Y and where L is a latent variable. Clearly, to
distinguish it from the case where X and Y are disconnected and have no latents, one needs check if
X 6?? Y or not. This is a conditional independence test. For any non edge (X,Y ) in the observable
graph D, when the observable graph D is known, to check for latents between them, when other
variables and possible confounders are around, one has to simply intervene on the rest of the n� 2

variables and do a independence test between X and Y in the post interventional graph. This requires
a distinct intervention for every pair of variables. If the observable graph has maximum degree
d = o(n), this requires ⇥(n2

) interventions. We will reduce this to O(d2 log n) interventions which
is an exponential improvement for constant degree graphs.

5.2 Latents between Non-adjacent Nodes

We start by noting the following fact about causal systems with latent variables:
Theorem 4. Consider two non-adjacent nodes X

i

, X
j

. Let S be the union of the parents of X
i

, X
j

,

S = Pa
i

[ Pa
j

. Consider an intervention on S. Then we have (X
i

6?? X
j

)MS if and only if there

exists a latent variable L
i,j

such that X
j

 L
i,j

! X
i

. The statement holds under an intervention

S such that Pa
i

[ Pa
j

⇢ S, X
i

, X
j

/2 S.

The above theorem motivates the following approach: For a set of nodes which forms an independent
set, an intervention on the union of parents of the nodes of the independent set allows us to learn
the latents between any two nodes in the independent set. We leverage this observation using the
following lemma on the number of such independent sets needed to cover all non-edges.
Lemma 6. Consider a directed acyclic graph D = (V,E) with degree (out-degree+in-degree)

d. Then there exists a randomized algorithm that returns a family of m = O(4e2(d + 1)

2

log(n))
independent sets I = {I

1

, I
2

, . . . , I
m

} that cover all non-edges of D: 8i, j such that (X
i

, X
j

) /2 E
and (X

j

, X
i

) /2 E, 9k 2 [m] such that X
i

2 I
k

and X
j

2 I
k

, with probability at least 1� 1

n

2

.

Note that this is a randomized construction and we are not aware of any deterministic construction.
Our deterministic causal learning algorithm requires oracle access to such a famiy of independent
sets, whereas our randomized algorithm can directly use this randomized construction. Now, we use
this observation to construct a procedure to identify latents between non-edges (see Algorithm 4).
The following theorem about its performance follows from Lemma 6 and Theorem 4.
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Algorithm 4 LearnLatentNonEdge- Given access to a CI oracle, observable graph D with max degree
d (in-degree+out-degree), outputs all latents between non-edges

1: function LEARNLATENTNONEDGE(M, d
max

)
2: L = ;.
3: Apply the randomized algorithm in Lemma 6 to find a family of independent sets I =

{I
1

, I
2

, . . . , I
m

} that cover all non-edges in D such that m  4e2(d+ 1)

2

log(n).
4: for j 2 [1 : m] do
5: Intervene on the parent set of the nodes in I

j

.
6: for every pair of nodes X,Y in I

j

do
7: if (X 6?? Y )

D`[Ij ]
then

8: L L [ {X,Y }.
9: end if

10: end for
11: end for
12: return The set of non-edges L.
13: end function

G1: do(PaX) is needed G2: do(PaY) is needed 

T Z X Y

U L

Z

X Y

M

L
M

Figure 2: Left: A graph where intervention on the parents of X is needed for do-see test to succeed.
Right: A graph where intervention on the parents of Y is needed for do-see test to succeed.

Theorem 5. Algorithm 4 outputs a list of non-edges L that have latent variables between them, given

the observable graph D, with probability at least 1� 1

n

2

. The algorithm requires 4e2(d+ 1)

2

log(n)
interventions where d is the max-degree (in-degree+out-degree) of the observable graph.

5.3 Latents between Adjacent Nodes

We construct an algorithm that can learn latent variables between the variables adjacent in the
observable graph. Note that the approach of CIT testing in the post-interventional graph is not helpful.
Consider the variables X ! Y . To see the effect of the latent path, one needs to cut the direct edge
from X to Y . This requires intervening on Y . However, such an intervention disconnects Y from its
latent parent. Thus we resort to a different approach compared to the previous stages and exploit a
different characterization of causal Bayesian networks called a ‘do-see’ test.

A do-see test can be described as follows: Consider again a graph where X ! Y . If there are no
latents, we have P(Y |X) = P(Y |do(X)). Assume that there is a latent variable Z which causes both
X and Y , then excepting the pathological cases7, P(Y |X) 6= P(Y |do(X)).

Figure 2 illustrates the challenges associated with a do-see test in bigger graphs with latents. Graphs
G1 and G2 are examples where parents of both nodes involved in the test need to be included in the
intervention set for the Do-see test to work. In G1, suppose we condition on X , as required by the
‘see’ test. This opens up a non-blocking path X � U � T �M � Y . Since X ! Y is not the only
d-connecting path, it is not necessarily true that P(Y |X) = P(Y |do(X)). Now suppose we perform
the do-see test under the intervention do(Z). Then the aforementioned path is closed since X is not a
descendant of T in the post interventional graph. Hence we have P(Y |X, do(Z)) = P(Y |do(X,Z)).
Similarly G2 shows that intervening on the parent set of Y is also necessary.

We have the following theorem, which shows that we can perform the do-see test between X,Y
under do(Pa

X

, Pa
Y

):

7These cases are fully identified in the full version [20].
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Theorem 6. [Interventional Do-see test] Consider a causal graph D on the set of observable

variables V = {V
i

}
i2[n]

and latent variables L = {L
i

}
i2[m]

with edge set E. If (V
i

, V
j

) 2 E, then

Pr(V
j

|V
i

= v
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

)) = Pr(V
j

|do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)),

iff @k such that (L
k

, V
i

) 2 E and (L
k

, V
j

) 2 E, where Pa
i

is the set of parents of V
i

in V . Quantities

on both sides are invariant irrespective of additional interventions elsewhere.

Next we need a subgraph structure to perform multiple do-see tests at once in order to efficiently
discover the latents between the adjacent nodes. Performing the test for every edge would take O(n)
even in graphs with constant degree. We use strong edge coloring of sparse graphs.
Definition 3. A strong edge coloring of an undirected graph with k colors is a map � : E ! [k]
such that every color class is an induced matching. Equivalently, it is an edge coloring such that any

two nodes adjacent to distinct edges with the same color are non-adjacent.

Graphs of maximum degree d can be strongly edge-colored with at most 2d2 colors.
Lemma 7. [6] A graph of maximum degree d can be strongly edge-colored with at most 2d2 colors.

A simple greedy algorithm that colors edges in sequence achieves this.

Now observe that a color class of the edges forms an induced matching. We show that due to this,
the ‘do’ part (RHS of Theorem 6) of all the do-see tests in a color class can be performed with a
single intervention while the ‘see’ part (RHS of Theorem 6) can be again performed with another
intervention. We argue that we need exactly two different interventions per color class. The following
theorem uses this property to prove correctness of Algorithm 5.

Algorithm 5 LearnLatentEdge- Observable graph D with max degree d (in-degree+out-degree),
outputs all latents between edges

1: function LEARNLATENTEDGE(M, d)
2: L = ;.
3: Apply the greedy algorithm in Lemma 7 to color the edges of D with k  2d2 colors.
4: for j 2 [1 : k] do
5: Let A

j

be the nodes involved with the edges that form color class j. Let P
j

be the union
of parents of all nodes in A

j

except the nodes in A
j

.
6: Let the set of tail nodes of all edges be T

j

.
7: Following loop requires the intervention on the set T

j

[ P
j

, i.e. do({T
j

, P
j

}).
8: for Every directed edge (V

t

, V
h

) in color class j do
9: Calculate S(V

t

, V
h

) = P (V
h

|do(T
j

, P
j

)) using post interventional samples.
10: end for
11: Following loop requires the intervention on the set P

j

.
12: for Every directed edge (V

t

, V
h

) in color class j do
13: Calculate S0

(V
t

, V
h

) = P (V
h

|V
t

, do(P
j

)) using post interventional samples.
14: if S0

(V
t

, V
h

) 6= S(V
t

, V
h

) then
15: L L [ (V

t

, V
h

)

16: end if
17: end for
18: end for
19: return The set of edges L that have latents between them.
20: end function

Theorem 7. Algorithm 5 requires at most 4d2 interventions and outputs all latents between the edges

in the observable graph.

6 Conclusions

Learning cause-and-effect relations is one of the fundamental challenges in science. We studied the
problem of learning causal models with latent variables using experimental data. Specifically, we
introduced two efficient algorithms capable of learning direct causal relations (instead of ancestral
relations) and finding the existence and location of potential latent variables.
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V1

V2

V3

V4

L1
L2

V5

V6

V7

L3

Separating
Sets

Ground	
Set	

S1 S2 S3

A 1 0 0
B 1 1 0
C 0 0 0
D 0 1 0
E 1 0 1
F 1 1 1

Strongly	
Separating

Sets
Ground	
Set	

S1 S2 S3 S4 S5 S6

A 1 0 1 0 0 0
B 1 1 0 1 0 0
C 0 0 0 1 1 1
D 0 1 0 0 1 1
E 1 0 0 1 1 0
F 1 1 0 0 1 0

(a) (b) (c)

Figure 1: (a): Illustration of Lemma 1: Consider an intervention on V
4

. In the post-interventional
distribution, V

4

is dependent with only V
5

, V
6

, V
7

, its descendants, despite latent connections. (b): A
separating system on the ground set {A,B,C,D,E, F}. Each column is the element-set membership
vector of the corresponding set. Notice that every pair of rows is distinct (b): A strongly separating
system. Notice that, for every pair of rows i, j, there are two columns such that in one column row i
is 1 while row j is 0 and vice versa for the other column.

V1

V2

V3

V4L3

L2

V5

V6

V7

(a)

L1

(b)

Induced	matching	in	one	color	class

(c)

V3

V4
V6

Intervention	on	parent	node	set	P

V3

V4
V6

Intervention	on	tail	nodes	T+	parent	node	set	P

Figure 2: Illustration of Theorem 7 and Algorithm 5 - (a) An example of an observable graph
with latents with an induced matching highlighted (b): An induced matching (color class) under
consideration in the outer loop of Algorithm 5. c) For every color class, only two interventions are
needed. One intervenes on the observable parents of all nodes in the color class present outside it, i.e.
nodes V

3

, V
4

and V
6

. The second intervention intervenes on the parent set along with the tail nodes in
every edge of the color. This is sufficient to carry out all do-see tests in parallel for the color class.

Appendix

Illustrative Figures for Section 3

Figure 1(a) illustrates Lemma 1. Consider an intervention on V
4

. This intervention disconnects V
4

from its parents, including the latent ones. In the post-interventional distribution, V
4

is d-connected
to its descendants V

5

, V
6

, V
7

. An example separating system construction is given in Figure 1(b).
Figure 1(c) shows a strongly separating system construction.
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In Fig. 4, we pictorially illustrate the key idea of using only two post-interventional distributions to
carry out all do-see tests of Theorem 6 for all edges in a single color class simultaneously.

Blocking and Non-Blocking paths in DAGs

Consider any directed acyclic graph D = (V,E). A path P from node v
0

to v
k+1

is a sequence
of nodes P = v

0

, v
1

, v
2

. . . v
k

, v
k+1

such that for all i 2 [0 : k], either (v
i

, v
i+1

) or (v
i+1

, v
i

) is
a directed edge in E. A node v

i

with respect to a path P is said to be a collider if (v
i+1

, v
i

) and
(v

i�1

, v
i

) exists in E, i.e. two directed edges collide at v
i

. A path P between nodes a and b is said
to be non-blocking with respect to a set S if and only if for every collider v on P , either v in S or
a descendant of v is in S and no non collider v in P is in S. S is said to block a path P if it is not
non-blocking.

Proof of Lemma 1

First, we prove the forward direction. Suppose that X
i

and X
j

are dependent under the post-
interventional causal model M

S

. By the assumption of post-interventional faithfulness, this implies
that there is a non-blocking path P between X

i

and X
j

in D
`

[S]. Suppose V in P is a collider
because either that or one of its descendant has to be in the conditioning set. Since, there is no
conditioning set and we are testing only marginal dependence, there cannot be any collider V in P .
Also note that there are no incoming edges into X

i

in either D
`

[S] or D[S] because there X
i

is in the
set S intervened on. Therefore, there cannot be any internal node V 6= X

i

, X
j

in P with no incoming
arrows because then either the path must have a collider or X

i

must have incoming arrows. Since
both these events are ruled out, no internal node V can have in-degree 0 or 2. The only option is for
it to be a directed path from X

i

to X
j

in D
`

[S]. This implies that no latent variable in L is a part of
the path since latents have 0 in-degree. This implies that P is a directed path from X

i

to X
j

in D[S]
also. This proves one direction.

For the other direction, suppose there is a directed path from X
i

to X
j

in D[S], it is still a directed
path from X

i

to X
j

in D
`

[S] as no latents are involved. This implies that it is a non-blocking path
between X

i

to X
j

. By the post-interventional faithfulness assumption, this implies that X
i

and X
j

are dependent in the causal model M
S

. This completes the proof in the other direction.

Proof of Lemma 2

Consider the dlog ne length binary expansions of numbers from 1 : n. For every bit i, create a set S
i

with the numbers where the i-th digit is 1 and another set S0
i

with the numbers where the i-th digit is
0. The family of sets {S

i

, S0
i

} if a strong separating system. It is easy to check the condition.

Proof of Theorem 1

It is enough to show that every directed edge e in the observable graph D is included at some step
in E. Let the directed edge e be from U to V in the observable graph. Due to the strong separating
system property, there is one intervention set S such that U 2 S, V /2 S. Therefore, in that post
interventional graph D[S], U is an ancestor of V and therefore by Lemma 1, it is included in E after
processing Line 8 for S. This implies that all directed edges of D (in addition to other ancestral
relationships) are included in E. Therefore, the transitive closure at the end yields D

tc

.

Proof of Lemma 3

Consider the pair (X
i

, X
j

), where X
i

/2 S,X
j

2 S,X
j

/2 Pa
i

. In the post-interventional graph, X
j

has no parents, including the possible latent variables. Any d-connecting path from X
j

to X
i

must
end with an incoming arrow at X

i

since any path that ends with an outgoing arrow at X
i

is closed as
it travels through a collider and all colliders are closed since no variable is conditioned in the graph.
Thus any X

j

not in the parent set of X
i

is independent from X
i

. Any parent of X
i

will clearly be
statistically dependent with X

i

.
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Proof of Lemma 5

It is easy to show that Tr((D[S])
tc

) = Tr(D[S]) from the properties of Tr(·). We will prove the
rest of the implication by contradiction. Suppose (Y, V

i

) is not a directed edge in Tr(D[S]), then
the ancestral relation (Y, V

i

) needs to be accounted for by another directed path from Y to V
i

in
Tr(D[S]). This is due to the definition of transitive reduction of D[S] and the fact that V

i

is connected
to all its direct parents in the post interventional graph as V

i

has not been intervened on. This implies
that there is a directed path starting from Y and ending at some other parent X 6= Y of V

i

in D[S].
This implies that such a direct parent X has an incoming edge. This cannot happen since then by the
partial ordering ⇡(·), all direct parents of V

i

above Y in the partial order have been intervened on
and thereby leaving no incoming edges onto those nodes in D[S]. This implies a contradiction. This
implies that the directed edge (Y, V

i

) is present in Tr(D[S]).

6.1 Proof of Theorem 3

Consider a directed edge (Y, V
i

) in D. Let the number of direct parents of V
i

above Y in the partial
order be d

i

. Clearly, d
i

 d
max

. Observe that in one run of the inner for loop at Line 3, the probability
V
i

is excluded from S and that all direct parents of V
i

above Y in the partial order are included in S
is given by:

Pr (V
i

/2 S \ {X : ⇡(X) � ⇡(Y ), (X,V
i

) 2 D} ✓ S) =
1

d
max

(1� 1/d
max

)

di

� 1

d
max

(1� 1/d
max

)

d

max

a� 1

d
max

1

4

(1)

(a)- This is because 1

4

 (1� 1/n)
n  1

e

, 8n � 2 and d
max

� 2. Here, e is the base of the natural
logarithm. Let A

i

(Y ) be the event: V
i

/2 S \ {X : ⇡(X) � ⇡(Y ), (X,V
i

) 2 D} ✓ S. By Lemma
5, the event A

i

(Y ) implies that the directed edge (Y, V
i

) is included in the output and the output
cannot contain any extra edges as edges set of Tr(D[S]) is contained in D[S] which is contained in
D. Now, in over 4cd

max

log n runs of the outer for loop we upper bound the probability of failure,
i.e. (A

i

(Y ))

c is true over all runs of the outer for loop.

Pr((A
i

(Y ))

c, for all runs)  (1� 1

4d
max

)

4cd

max

logn  exp(�c log n)  1

nc

. (2)

Union bounding over all possible bad events for every pair Y, V
i

in the graph D, the probability of
failure is at most 1

n

c�2

.

6.2 Proof of Theorem 4

Under the interventional causal faithfulness assumption, we only need to show that, under the
intervention (Pa

i

[Pa
j

), two non-adjacent nodes V
i

, V
j

will be d-separated if and only if there is no
latent variable that causes both. Consider any undirected path (a path that does not necessarily respect
edge directions) between V

i

and V
j

in the post-interventional graph. For convenience, we say the
path starts at V

i

and ends at V
j

without loss of generality. Since the observable parents are intervened
on, any d-connecting path must start with either a child of V

i

or a latent parent of V
i

and end with
either a child of V

j

or a latent parent of V
j

. If the path starts and ends with the children of V
i

and V
j

,
then there must be a collider on the path, which closes the path since no variable is conditioned on in
the graph. Consider a path that starts with a latent parent of V

i

and ends with a latent parent of V
j

.
Since latent variables are non-adjacent, these latent variables can only be connected through their
children. Hence, by the same argument that any path through the children of two variables must have
a collider, the path between these two latent variables is closed, making the path between V

i

and V
j

closed. Consider a path that starts with a latent parent of V
i

and ends with a child of V
j

. The path
should arrive at the child of V

j

through one of its parents, as otherwise there will be a collider on the
path by the same argument above. But then the child of V

j

is a collider on this path, making the path
closed. Hence, any path between V

i

and V
j

in the post-interventional graph is closed. This proves the
first part of the Theorem.

Now, we show that the set S can actually larger without affecting anything. An intervention can only
affect the descendant variables in the causal graph, since all the backdoor paths are closed. In the
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post-interventional graph under (Pa
i

, Pa
j

), X
i

and X
j

do not have any ancestors other than the
direct parents Pa

i

and Pa
j

. Hence, intervening on the variables in S\(Pa
i

[ Pa
j

) does not affect
the interventional distribution between X

i

, X
j

under do(Pa
i

, Pa
j

).

6.3 Proof of Lemma 6

Consider the undirected version G of D. Consider the complement graph Gc. A set of independent
sets I = {I

1

, I
2

, . . . , I
m

} in G that cover every non-edge in G is an edge-clique cover in the
complement graph Gc. The minimum edge-clique cover is also known as the intersection number of
the graph. When D has degree d, Gc has degree at least n�d. It was shown in [3] that the intersection
number of graphs with degree at least n� d is at most 2e2(d+ 1)

2

ln(n) by a probabilistic method
argument that employs a randomized algorithm as follows: Choose every vertex independently with
probability 1

d+1

into a set S. Then prune S to delete vertices that are not connected to the rest of
the vertices in S in Gc to obtain a clique S0 in Gc. Repeat this 4e2(d+ 1)

2

ln(n) times to generate
many cliques. By repeating the calculations in [3], it can be easily shown that the above randomized
procedure succeeds with probability at least 1� 1

n

2

in returning an edge clique cover of Gc.

6.4 Proof of Theorem 6

Proof that if there are no latents, then equality in Thm 6 holds. We use the notation Li for the
set of latent parents of V

i

. Also, with a slight abuse of notation, we use Pa
j

to refer to all observable
parents of V

j

except V
i

. Suppose there does not exist a variable L
k

that is the parent of both V
i

and
V
j

(Li \ Lj

= ;). We can write V
j

= g(V
i

, Pa
j

, L
j

).

Pr(V
j

|do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)) (3)

=

X
lj

Pr(V
j

|Lj

= l
j

, do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)) (4)

Pr(Lj

= l
j

|do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

))

=

X
lj

Pr(V
j

|Lj

= l
j

, do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)) (5)

Pr(Lj

= l
j

)

(4) is obtained through conditioning and marginalizing out the latent parents of X
j

. (5) is due to the
fact Lj are non-descendants of the set {X

i

, Pa
i

, Pa
j

}. We also have,

Pr(V
j

|V
i

= x
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

))

=

X
lj

Pr(V
j

|Lj

= l
j

, V
i

= v
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

)) (6)

Pr(Lj

= l
j

|V
i

= v
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

))

=

X
lj

Pr(V
j

|Lj

= l
j

, do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)) (7)

Pr(Lj

= l
j

|V
i

= v
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

))

=

X
lj

Pr(V
j

|Lj

= l
j

, do(V
i

= v
i

, Pa
i

= pa
i

, Pa
j

= pa
j

)) (8)

Pr(Lj

= l
j

)

(6) is obtained through conditioning and marginalizing out the other parents of Y . (7) is due to
Lemma 8.
Lemma 8. Let S

i

, T
i

be subsets of Pa
X

such that S
1

[ S
2

= Pa
X

, S
1

\ S
2

= ; and T
1

[ T
2

=

Pa
X

, T
1

\ T
2

= ;. Then

Pr(X|S
1

, do(S
2

)) = Pr(X|do(Pa
X

)) = Pr(X|Pa
X

) = Pr(X|T
1

, do(T
2

)). (9)

Proof. The proof uses the invariance principle of causal Bayesian networks: The invariance principle
(see Definition 1.3.1 (iii) in page 24 in ([26]) states that Pr(X|Pa

X

= pa
X

, do(Z = z)) =

Pr(X|Pa
X

= pa
X

) as long as X /2 Z and Z = z is consistent with Pa
X

= pa
X

. Let Z = S
2

.
Then Pr(X|Pa

X

= pa
X

, do(S
2

= s
2

)) = Pr(X|S
1

= s
1

, do(S
2

= s
2

)), where S
1

= Pa
X

\S
2

.
Thus Pr(X|Pa

X

= pa
x

) = Pr(X|S
1

= s
1

, do(S
2

= s
2

)). From Property 1 in page 24 of
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[Pearl2009], we have Pr(X|Pa
X

= pa
X

) = Pr(X|do(S
1

= s
1

, S
2

= s
2

)). Choosing T
1

, T
2

instead of S
1

, S
2

we can show that Pr(X|Pa
X

= pa
X

) = Pr(X|T
1

= t
1

, do(T
2

= t
2

)), which
completes the proof.

(8) is due to the following: For Lj , we have two possibilities: (i) : X
i

is a non-descendant of Lj .
Then the result is implied by the Markov condition. (ii). X

i

is a descendant of Lj . Then there are
directed paths from Lj to X

i

. Note that all these paths must go through variables in Pa
i

. Then, the
result follows from the fact that Lj ?? X

i

|do(Pa
i

).

Outline of the proof that if there are latents, then equality in Thm 6 does not hold. Let us
assume that the between two variables V

i

and V
j

a latent L
ij

exists. Assume V
i

is a parent of
V
j

. Suppose in contradiction, equality in Thm 6 holds. Then we have the following: Denote
do(Pa

i

= pa
i

, Pa
j

= pa
j

) by the shorthand do(pa
ij

). Latent variable L
ij

influences V
i

and V
j

and
U
i

is the exogenous variable tied to V
i

. All other latents are denoted by L’s and exogenous variables
by U ’s. Consider the set of latents L

i

which are related to V
i

and let l
i

be the values they take.

Pr(V
j

|V
i

= v
i

, do(Pa
i

= pa
i

, Pa
j

= pa
j

)) =

Pr(V
j

|do(V
i

= v
i

), do(Pa
i

= pa
i

, Pa
j

= pa
j

))

)
X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|V
i

= v
i

, do(pa
ij

), {u
q

, l
p

}) Pr({u
q

, l
p

}|V
i

= v
i

, do(pa
ij

)) =

X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|do(V
i

= v
i

), do(pa
ij

), {u
q

, l
p

}) Pr({u
q

, l
p

}|do(V
i

= v
i

), do(pa
ij

))

a)
X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|do(V
i

= v
i

), do(pa
ij

), {u
q

, l
p

}) Pr(L
i

= l
i

, U
i

= u
i

|V
i

= v
i

, do(pa
ij

))

...
Y

p:Lp /2Li

Pr(l
p

)

Y

q:Uq 6=Ui

Pr(u
q

) =

X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|do(V
i

= v
i

), do(pa
ij

), {u
q

, l
p

})

...Pr(L
i

= l
i

, U
i

= u
i

)

Y

p:Lp /2Li

Pr(l
p

)

Y

q:Uq 6=Ui

Pr(u
q

)

)
X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|do(V
i

= v
i

), do(pa
ij

), {u
q

, l
p

}) Pr(L
i

= l
i

, U
i

= u
i

)

Pr(V
i

= v
i

|L
i

= l
i

, U
i

= u
i

, do(pa
ij

))

Pr(V
i

= v
i

|do(pa
ij

)

Y

p:Lp /2Li

Pr(l
p

)

Y

q:Uq 6=Ui

Pr(u
q

)

=

X

{Lp=lp,Uq=uq}p,q

Pr(V
j

|do(V
i

= v
i

), do(pa
ij

), {u
q

, l
p

})

...Pr(L
i

= l
i

, U
i

= u
i

)

Y

p:Lp /2Li

Pr(l
p

)

Y

q:Uq 6=Ui

Pr(u
q

)

(10)
(a)- Once all hidden variables l

q

, u
q

(exogenous and latents are conditioned), then do operations and
conditioning are identical. The distributions of latents is unaffected by interventions on observables.
And latents and observables are independent. When hidden variables are conditioned on v

i

and its
parents are intervened on all the latents that are not related to v

i

.

It seems like in both sides the ratio Pr(Vi=vi|Li=li,Ui=ui,do(paij))

Pr(Vi=vi|do(paij)
appears which is a function of l

i

, u
i

.
For most functions (parameters) in the SCM, the ratios will be different from 1 and only with measure
zero over the parameter space will equality hold despite the ratio being different. This gives rise to a
contradiction.

6.5 Proof of Theorem 7

In this proof, when we refer to parents we refer to parent nodes from the observable graph only. Con-
sider a color class j resulting from the strong-edge coloring of the observable graph D. Consider one
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directed edge (V
t

, V
h

) belonging to the color class j. V
h

is the vertex at the head of the edge while V
t

is the vertex at the tail of the edge. First observe that P (V
h

|do(T
j

, P
j

)) = P (V
h

|do(Pa
t

, Pa
h

, V
t

)).
Here, Pa

h

is the set of parent nodes of V
h

not including V
t

. Pa
t

is the set of parent nodes of V
t

. This
is because V

h

has no other parent other than V
t

inside the color class due to the strong edge coloring
property. Note that V

t

2 T
j

. Therefore, once all parents of V
h

are intervened on, other interventions
in the graph do not make any difference on the computation of P (V

h

|do(Pa
t

, Pa
h

, V
t

)). Since there
is no conditioning involved, Latents do not affect the equality.

Now, observe that P (V
h

|V
t

, do(Pa
t

, Pa
h

)) = P (V
h

|V
t

, do(P
j

)). This is because all parents of V
h

except V
t

are in P
j

due to the strong edge coloring property. All parents of V
t

are in P
j

due to
the strong edge coloring property. Since parents of V

t

are intervened on, the random variable V
t

is
independent of any other intervened variable in the system. Further, the joint distribution of (V

h

, V
t

)

is invariant to conditioning on other intervened variables in the system as all parents of V
h

, V
t

have
been intervened on (except the parent V

t

of V
h

). Intervention on non-parents of either V
t

and V
h

have
no effect on the joint distribution of (V

h

, V
t

) on the post-interventional graph where Pa
h

, Pa
t

have
been intervened on. Therefore, all quantities required for the do and see test can be calculated from
just two interventions in the algorithm. This is true within a color class. This proves the theorem.
The experimental budget is quite obvious from the algorithm.
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