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Abstract

Reinforcement learning (RL) agents have been de-
ployed in complex environments where interactions
are costly, and learning is usually slow. One promi-
nent task in these settings is to reuse interactions
performed by other agents to accelerate the learn-
ing process. Causal inference provides a family
of methods to infer the effects of actions from a
combination of data and qualitative assumptions
about the underlying environment. Despite its suc-
cess of transferring invariant knowledge across do-
mains in the empirical sciences, causal inference
has not been fully realized in the context of transfer
learning in interactive domains. In this paper, we
use causal inference as a basis to support a prin-
cipled and more robust transfer of knowledge in
RL settings. In particular, we tackle the problem
of transferring knowledge across bandit agents in
settings where causal effects cannot be identified
by do-calculus [Pearl, 2000] and standard learning
techniques. Our new identification strategy com-
bines two steps – first, deriving bounds over the
arms distribution based on structural knowledge;
second, incorporating these bounds in a dynamic
allocation procedure so as to guide the search to-
wards more promising actions. We formally prove
that our strategy dominates previously known algo-
rithms and achieves orders of magnitude faster con-
vergence rates than these algorithms. Finally, we
perform simulations and empirically demonstrate
that our strategy is consistently more efficient than
the current (non-causal) state-of-the-art methods.

1 Introduction

In reinforcement learning (RL), the agent makes a sequence
of decisions trying to maximize a particular measure of per-
formance. Typical RL methods train agents in isolation, often
taking a substantial amount of time and effort to learn a rea-
sonable control policy. Techniques based on transfer learn-
ing (TL) attempt to accelerate the learning process of a tar-
get task by reusing knowledge gathered from a different, but
somewhat related source task. Common approaches try to

exploit various types of domain expertise and transfer knowl-
edge that is invariant across the source and target domains
[Konidaris and Barto, 2007; Liu and Stone, 2006] (for a sur-
vey, see [Lazaric, 2012; Taylor and Stone, 2009]).

Causal inference deals with the problem of inferring the ef-
fect of actions (target) from a combination of a causal model
(to be defined) and heterogeneous sources of data (source)
[Pearl, 2000; Bareinboim and Pearl, 2016]. One of the fun-
damental challenges in the field is to determine whether a
causal effect can be inferred from the observational (non-
experimental) distribution when important variables in the
problem may be unmeasured (also called unobserved con-
founders, or UCs). Qualitative knowledge about causal re-
lationships is often available in complex RL settings. For ex-
ample, a change of direction of a self-driving car must be
caused by a change of the steering wheel, not vice-versa; a
surge of users click-through rate causes an observed revenue
growth of an advertising engine, not the other way around.

In his seminal work, [Pearl, 1995] developed a general cal-
culus known as do-calculus by which probabilistic sentences
involving interventions and observations can be transformed
into other such sentences. The do-calculus was shown to be
complete for identification, i.e., any causal effect can be iden-
tified from observational and experimental data if and only
if it can be derived by do-calculus [Tian and Pearl, 2002;
Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Barein-
boim and Pearl, 2012].

Despite its success in identifying the effect of actions from
heterogeneous data in compelling settings across the sciences
[Bareinboim and Pearl, 2016], causal inference techniques
have rarely been used to assist the transfer of knowledge in
interactive domains. [Mehta et al., 2008; 2011] assumed a
causal model for the underlying task and performed the trans-
fer of probabilistic knowledge leveraging the invariance en-
coded in the causal model. Still, they were oblivious to the
existence of UCs and did not considered the transfer of causal
knowledge. Connections between causal models with UCs
and RL were first established in [Bareinboim et al., 2015].
Nevertheless, these methods mainly dealt with online learn-
ing scenarios and barely touched the problem of TL.

In this paper, we marry transfer in RL with the theory of
causal inference. We study the offline (batch) transfer prob-
lem between two multi-armed bandits (MAB) agents given a
causal model of the environment while allowing the existence
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of UCs. We apply causal inference algorithms to identify the
causal effect of the target agent’s action from trajectories of
the source agent. In particular, we study three canonical set-
tings where the effect is non-identifiable and show that learn-
ing speed can still be improved by leveraging prior experi-
ences. Our more detailed contributions are listed below:

1. We formulate the transfer learning across MAB agents
in causal language and connect it with the algorithm for
identifying causal effects and off-policy evaluation.

2. For three canonical tasks where the causal effect is not
identifiable, we provide an efficient method to extract
knowledge from the available distributions as bounds
over the expected reward (called causal bounds).

3. We propose two novel MAB algorithms (B-kl-UCB and
B-TS) that take the causal bounds as input. We prove
that the regret bound of B-kl-UCB dominates the stan-
dard kl-UCB [Cappé et al., 2013]. If the causal bounds
impose informative constraints over the arms’ distribu-
tion, B-kl-UCB will be orders of magnitude faster than
kl-UCB; otherwise, the behavior of B-kl-UCB deterio-
rates to kl-UCB, which we show cannot be improved.

4. We run extensive simulations comparing the proposed
algorithms (B-kl-UCB and B-TS) against standard MAB
solvers and show that our algorithms are consistent and
more efficient than state-of-the-art methods.

2 Preliminaries and Notations

In this section, we introduce the basic notations and defini-
tions used throughout the paper. We use the capital letter X
for the variable name and lowercase letter x for a specific
value taken by X . Let D(X) and |X| denote by, repsec-
tively, the domain and the dimension of variable X . We will
consistently use the abbreviation P (x) for the probabilities
P (X = x), x 2 D(X).

2.1 Structural Causal Model

We will use structural causal models (SCMs) [Pearl, 2000,
Ch. 7] as the basic semantical framework of our analysis.
A SCM M consists of a set of observed (endogenous) vari-
ables V and unobserved (exogenous) variables U . The val-
ues of each endogenous variable V

i

2 V are determined
by a structural function f

i

taking as argument a combina-
tion of the other endogenous and exogenous variables (i.e.,
V

i

 f

i

(PA

i

, U

i

), Pa

i

✓ V, U

i

✓ U)). The values of the
exogenous variables U are drawn from a distribution P (U).
A causal diagram associated with the SCM M is a directed
acyclic graph where solid nodes correspond to endogenous
variables (V ), empty nodes correspond to exogenous vari-
ables (U ), and edges represent causal relations (see Fig. 1).

An attractive feature of SCMs is that they are capable of
representing causal operations such as interventions, in addi-
tion to standard probabilistic operations such as marginaliza-
tion and conditioning. The do(·) operator is used to denote
interventions (actions) [Pearl, 2000, Ch. 3]. For an arbitrary
function ⇡(w), the action do(X = ⇡(w)) represents a model
manipulation where the values of a set of variables X are

set to ⇡(w) regardless of how the values of X are ordinar-
ily determined in the model via the pre-interventional struc-
tural functions. The action do(X = x) where X is set to
a constant is the simplest possible intervention and is called
atomic. Figs. 3(a,b) show the pre- and post-intervention SCM
after action do(X = x) is taken. For simplicity, we’ll de-
note actions do(X = x), x 2 D(X) by do(x), so does
P (Y = y|do(X = x)) = P (y|do(x)).
2.2 Multi-Armed Bandits

We now define the MAB setting using causal language. An
agent for a stochastic MAB is given a SCM M with a deci-
sion node X representing the arm selection and an outcome
variable Y representing the reward – see Fig. 3(a). For arm
x 2 D(X), its expected reward µ

x

is thus the effect of the ac-
tion do(x), i.e., µ

x

= E[Y |do(x)]. Let µ⇤ denote the optimal
expected reward, µ⇤

= max

x2D(X)

µ

x

, and x

⇤ the optimal
arm. At each trial t = 1, 2, . . . , T , the agent performs an ac-
tion do(X

t

= x

t

) and observes a reward Y

t

. The objective of
the agent is to minimize the cumulative regret, namely,

R

T

= Tµ

⇤ �
TX
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We use KL(µ

x

, µ

⇤
) to denote the Kullback-Leibler diver-

gence between two Bernoulli distributions with mean µ

x

and
µ

⇤, and KL(µ

x

, µ

⇤
) = µ

x

log

µ

x

µ

⇤ + (1� µ
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) log
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x
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2.3 Identification of Causal Effects

One fundamental problem in causal inference is to estimate
the effect of an intervention do(X = x) on an outcome vari-
able Y from a combination of the observational distribution
P (v) and causal diagram G (associated with the underlying
SCM M ). Let P

M

(·) denote an arbitrary distribution induced
by a SCM M . The following definition captures the require-
ment that a causal effect be estimable from P (v):
Definition 1 (Identifiability). [

Pearl, 2000, pp. 77

]

The

causal effect of X on Y is identifiable from G if and only if

P

M1(y|do(x)) = P

M2(y|do(x)) for any pair of models M

1

and

M

2

compatible with G such that P

M1(v) = P

M2(v) > 0.

A causal effect P (y|do(x)) is non-identifiable if there ex-
ists a pair of SCMs generating the same observational distri-
bution (P (v)) but a different causal distribution P (y|do(x)).
The identification of causal effects can be systematically de-
cided using do-calculus

[Pearl, 1995]. Let X and Z be arbi-
trary disjoint sets of nodes in a causal diagram G. We denote
by G

XZ

the subgraph obtained by deleting from G all ar-
rows incoming towards X and all arrows outgoing from Z.
The do-calculus allows one to see the mapping between ob-
servational and experimental distributions whenever certain
conditions hold in the graph [Pearl, 2000, pp.85–86].

3 Transfer Learning via Causal Inference

In this section, we connect causal analysis with transfer learn-
ing in RL by discussing a transfer scenario between two dif-
ferent MAB agents. We apply do-calculus to systematically
estimate the expected reward of each arm for the target agent.



We first consider an off-policy learning problem [Strehl et

al., 2010; Swaminathan and Joachims, 2015] between two
contextual bandit agents A and A

0 (Fig. 1(a)). Contextual
bandits is a variation of MAB where the agent can observe
extra information associated with the reward signal [Langford
and Zhang, 2008]. Both agents are equipped with the same
sensor and actuator to observe the context U and perform ac-
tion X . Let ✏ be an independent source of randomness. Agent
A follows a policy do(X = ⇡(✏, u))

1 and summarizes its ex-
periences as the joint distribution P (x, y, u). Agent A0, who
is observing A interacting with the environment, wants to be
more efficient and reuse the observed P (x, y, u) to find the
optimal policy faster. This transfer scenario is summarized
as Task I in Fig. 1, where the actions, outcomes, context, and
causal structures used by A and A

0 are identical. Since the
optimal action do(X = x

⇤
) for each context U = u can

be found by evaluating x

⇤
= argmax

x2D(X)

E[Y |do(x), u],
the off-policy learning problem is equivalent to identifying
the causal effect E[Y |do(x), u] given the observational distri-
bution P (x, y, u). Indeed, the answer in this case is simply to
compute the expected conditional reward given X = x, U =

u based on P (x, y, u) and use it as if it were the expected re-
ward. We formally prove this statement through do-calculus.
Proposition 1. For Task I described in Fig. 1, given

P (x, y, u), the U -specific causal effect can be written as

E[Y |do(x), u] = E[Y |x, u] (1)
Proof. Since (Y ?? X|U)

G

X

, P (y|do(x), u) = P (y|x, u)
by the second rule of do-calculus, so does Eqn. 1 holds.

Proposition 1 provides the formal justification for standard
off-policy learning techniques (e.g., propensity score) that use
the samples from A and A

0 interchangeably, often assuming,
implicitly, that source and target agents are identical (but for
the policy itself). We next consider a more challenging sce-
nario involving the transfer from a contextual bandit agent A
(Fig. 1(a)) and a standard MAB agent B (Fig. 1(b)). Agent
B has the same actuator as A, but is not equipped with any
sensor, thus unable to observe the context U . Fig. 1 sum-
marizes this transfer setting. We want to find the optimal
arm x

⇤ for agent B given Agent A’s experiences summarized
as P (x, y, u). Since x

⇤
= argmax

x2D(X)

E[Y |do(x)], this
transfer problem is equivalent to identifying the causal effect
E[Y |do(x)].

To obtain the identification formula for this causal effect,
we repeatedly apply the rules of do-calculus.
Proposition 2. For Task II described in Fig. 1, given

P (x, y, u), E[Y |do(x)] equals to

E[Y |do(x)] =
X

u2D(U)

E[Y |x, u]P (u) (2)

Proof. By basic probabilistic operations,

E[Y |do(x)] =
X

u2D(U)

E[Y |do(x), u]P (u|do(x))

By Prop. 1, E[Y |do(x), u] = E[Y |x, u], and P (u|do(x)) =

P (u) by the third rule of do-calculus since (U ?? X)

G

X

.
1This operation is called stochastic policy in the causal literature.

(a)

U

X

Y (b)

U

X

Y

Task I

Task II

Figure 1: SCMs for (a) a contextual bandit agent. (b) a standard
MAB agent.

Prop. 2 provides a mapping between causal effects and the
observational distribution. Eq. 2 does not contain any do(·)
operator and can be directly estimated from P (x, y, u) – the
average effect E[Y |do(x)] is then said to be identifiable.

The above example shows that transfer learning task can
be seen as a problem of identifying causal effects given het-
erogeneous data (e.g., observational, experimental). Indeed,
the do-calculus can be applied to any SCM to identify causal
effects using the procedure given in [Tian and Pearl, 2002].

The Challenges of Non-identifiable Tasks

While do-calculus provides a complete method for the identi-
fication of causal effects, it cannot construct an identification
formula for queries that are not identifiable. To witness, con-
sider a more challenging transfer setting involving the same
contextual bandit agent A and a standard MAB agent B as
discussed above. Instead of receiving the experiences of A in
the form of P (x, y, u), B now can only learn by observing A

interacting in the environment – i.e., seeing A’s actions and
outcomes. Failing to measure the context U , B can only infer
the observational distribution P (x, y). Fig. 3 summarizes this
transfer scenario as Task 1.

The natural question here is whether the average effect
E[Y |do(x)] can be identified from P (x, y). The do-calculus
fails to identify E[Y |do(x)] in this scenario, which suggests
that the average effect in Task 1 is not identifiable.
Proposition 3. For Task 1 described in Fig. 3, E[Y |do(x)] is

not identifiable from the observational distribution P (x, y).

Proof. Let � represents the exclusive-or function. Suppose
the SCM M encodes the underlying MAB data-generating
model, where U = (U

1

, U

2

), X, Y, U

1

, U

2

2 {0, 1}, X =

U

1

, Y = X � U

1

� U

2

, P (U

1

= 0) = P (U

2

= 0) =

0.1. Expected rewards for arm 0 and 1 are respectively
µ

0

= 0.18, µ

1

= 0.82. Computing P (x, y) from M leads
to E[Y |X = 0] = E[Y |X = 1] = 0.9. Another MAB M

0

can be constructed such that U = (U

1

, U

2

), X, Y, U

1

, U

2

2
{0, 1}, X = U

1

, Y = U

2

, P (U

1

= 0) = P (U

2

= 0) = 0.1.
Both M and M

0 induce the same observational distribution
P (x, y), while the expected rewards in M

0 is µ0
0

= µ

0
1

= 0.9

– the effect is then not identifiable (Def. 1).

Prop. 3 says that E[Y |do(x)] for the target agent cannot
be uniquely computed given prior experiences P (x, y). If
one is naive about identifiability and tries to transfer E[Y |x]
as if it were E[Y |do(x)], negative transfer may occur – i.e.,
the transferred knowledge will have a negative impact on the
performance of the target agent. Unfortunately, in practice,
researchers never have access to the underlying SCM and



Figure 2: Simulation results of negative transfer example in Sec. 3
comparing the standard Thompson sampling (TS) and Thompson
sampling with naive transfer procedure (TS�).

therefore cannot distinguish the two models. To illustrate this
point, we use the model M provided in the proof of Prop. 3
as the true SCM, and run simulations where 500 samples of
E[Y |x] are naively transferred as if they were E[Y |do(x)] –
see Fig. 2. We can see by inspection the significant disparity
between the standard Thompson sampling (TS) [Thompson,
1933; Chapelle and Li, 2011] performance and the Thompson
sampling with the naive transfer procedure (TS�).

In practice, there exist various transfer settings where the
expected reward cannot be identified. We summarize in Fig-
ure 3 and Table 1 three canonical tasks where non-identifiabi-
lity occurs. (C

1

, C

2

and C

3

represent the best achievable re-
gret bounds for Tasks 1, 2 and 3, which will be discussed
in later sections.) All three tasks represent general settings
with a wide range of practical applications. Task 1, as dis-
cussed before, models the transfer learning problem between
a contextual bandit agent and a standard MAB agent with the
context unmeasured (also, when there is a mismatch of con-
text variables). Task 2 and Task 3 describe the transfer learn-
ing problem between two agents with different actuators, thus
having different action spaces [Argall et al., 2009].

The lack of identifiability in these settings has been un-
derstood in the literature. For Task 1, the non-identifiability
results from the unobserved condounding between X and Y

can be found in [Pearl, 2000, Section 3.5]; non-identifiability
from the surrogate do(z) in Task 2 is more subtle, which was
shown in [Bareinboim and Pearl, 2012]; [Pearl, 2014] extends
this argument and showed that E[Y |do(z)] cannot be inferred
from P (y|do(x)) in Task 3.

4 Prior Knowledge as Causal Bounds

One might surmise that the grim results presented so far sug-
gest that when identifiability does not hold, no prior data
could be useful and experiments should be conducted from
scratch. We will show here that this is not the case. For non-
identifiable tasks, we can still obtain bounds over expected
rewards of the target agent by constructing a general SCM, in
some sense, compatible with all possible models.

We first consider the 2-armed Bernoulli bandits (generalis-
ing to higher dimensions emerges naturally) where X,Y, Z 2
{0, 1}. [Pearl, 2000, Section 8.2] constructs a general
SCM for Task 2 by projecting P (u) into a prior distribution
P (r

x

, r

y

), where R

x

, R

y

2 {0, 1, 2, 3} and represent all pos-
sible functions deciding values of X and Y respectively. We
extend this discretization model to bound E[Y |do(x)] in Task
1. Decompose the latent variable U into a pair of discrete
variables (R

x

, R

y

), where R

x

2 {0, 1}, R
y

2 {0, 1, 2, 3}.
Let q

ij

= P (R

x

= i, R

y

= j) � 0, and Q = {q
ij

}. For

(a)

U

X

Y (b)

U

X

Y (c)

U

Z

X

Y

Task 1
Task 2

Task 3

Figure 3: SCM of the three canonical settings where the expected
reward is non-identifiable. (a) a contextual bandit agent with context
U unmeasured. (b) a standard MAB agent. (c) a standard MAB
agent with the action node Z.

Task Source ! Target ID Regret
C

1

C

2

C

3

1 P (x, y) E[Y |do(x)] 7 7 3 3
2 P (x, y|do(z)) E[Y |do(x)] 7 3 3 3
3 P (z, y|do(x)) E[Y |do(z)] 7 7 7 3

Table 1: Canonical off-policy learning tasks. ID stands for point
identifiability. C

1

, C

2

, and C

3

correspond to the bounds 0,
O(log(log(T ))) and O(

log(T )

KL(µ

x

,µ

⇤
)

) over the number of draws for a
sub-optimal arm x.

8x 2 D(X), 8r
x

2 D(R

x

), 8r
y

2 D(R

y

), X and Y are de-
cided by functions X = f

X

(r

x

) and Y = f

Y

(x, r

y

) defined
as follows:

f

X

(r

x

) = r

x

f

Y

(x, r

y

) =

8
>><

>>:

0 if r
y

= 0

x if r
y

= 1

1� x if r
y

= 2

1 if r
y

= 3

(3)

The values of R

y

represents all possible function mapping
from X to Y and have natural causal interpretation [Heck-
erman and Shachter, 1995]. Let p

ij

= P (X = i, Y = j).
P (x, y) and E[Y |do(x)] can then be written as linear combi-
nations in the space spanned by Q:

p

00

= q

00

+ q

01

p

01

= q

02

+ q

03

p

10

= q

10

+ q

12

p

11

= q

11

+ q

13

(4)

E[Y |do(X = 0)] = q

02

+ q

03

+ q

12

+ q

13

(5)
E[Y |do(X = 1)] = q

01

+ q

03

+ q

11

+ q

13

(6)

We can lower (upper) bound E[Y |do(x)] by minimizing
(maximizing) Eqs. 5 and 6 subject to constraints 4 and
q

ij

� 0, which leads to a closed-form solution.
Theorem 1. Consider Task 1 with X,Y 2 {0, 1}, given

P (x, y), E[Y |do(x)] can be bounded by:

E[Y |do(X = 0)] 2 [p

01

, p

01

+ p

10

+ p

11

]

E[Y |do(X = 1)] 2 [p

11

, p

11

+ p

00

+ p

01

]

All proofs for theorems are provided in the extended tech-
nical report [Zhang and Bareinboim, 2017]. From a causal
perspective, this simple bound is somewhat unexpected since
it shows that a model without independence relations (includ-
ing latents) or exclusion restrictions can impose informative
constraints over the experimental distribution.

We can use similar procedure to discretize the model
of Task 3 and decompose U into a 3-tuple (R

z

, R

x

, R

y

),
where R

z

2 {0, 1}, R
x

, R

y

2 {0, 1, 2, 3}. We can write



Algorithm 1: B-kl-UCB
1: Input: A non-decreasing function f : N ! R
2: A list of bounds over µ

x

: {[l
x

, h

x

]}
x2{1,...,K}

3: Initialization: Remove any arm a with h

x

< l

max

.
4: Let K0 denote the number of remaining arms.
5: Pull each arm of {1, . . . ,K0} once
6: for all t = K

0 to T � 1 do

7: For each arm x, compute ˆ

U

x

(t) = min

�
U

x

(t), h

x

 
, where

U

x

(t) = sup

�
µ 2 [0, 1] : KL(µ̂

x

(t), µ)  f(t)

N

x

(t)

 

8: Pick an arm X

t

= argmax

x2{1,...,K0}
ˆ

U

x

(t).
9: end for

P (z, y|do(x)) and E[Y |do(z)] as a set of linear equations
and construct two linear optimization problems that can be
solved, and yield a closed-form solution.
Theorem 2. Consider Task 3 with X,Y, Z 2 {0, 1}, given

P (z, y|do(x)), for any z, E[Y |do(z)] 2 [l, h], where

l = max

8
><

>:

0

p001 + p110 + p011 � p000 � p010 � p000

p010 � p001

p011 + p110 � p000 � p101

9
>=

>;

h = min

8
><

>:

p001 + p100 + 2p011 + 2p110 � p000 � p101

p010 + p100 + p110 + p011

p100 + 2p110 + 2p001 + 2p011 � p000 � p010 � p101

p001 + p011 + p100 + p010

9
>=

>;

Even though embedded in a more constrained structure, the
bounds of Thm. 2 are weaker than Thm. 1 since both arms
coincide. [Pearl, 2014] showed that identification of do(Z)

is infeasible from experiments over X in task 3, and Thm. 2
provides a stronger condition saying that not even an infor-
mative bound can be derived in such settings.

5 Multi-Armed Bandits with Causal Bounds

We discuss in this section how the causal bounds can be used
to efficiently identify an optimal treatment. We consider an
augmented stochastic MAB problem with a prior represented
as a list of bounds over the expected rewards. Formally, for
any arm x, let [l

x

, h

x

] be the bound for µ
x

such that µ
x

2
[l

x

, h

x

]. Without loss of generality, we assume 0 < l

x

<

h

x

< 1 and denote by l

max

the maximum of all lower bounds,
i.e., l

max

= max

x=1,...,K

l

x

.
UCB constitutes an elegant family of algorithms that has

been used in a number of settings given its attractive guaran-
tees – its regret grows only logarithmically with the number
of actions taken [Auer et al., 2002; Cappé et al., 2013]. We
extend UCB to take into account the causal bounds, which
we call B-kl-UCB (Algorithm 1). B-kl-UCB exploits the
causal bound in two ways: 1) filtering any arm a during ini-
tialization if h

x

< l

max

; 2) truncating the UCB U

x

(t) with
ˆ

U

x

(t) = min{U
x

(t), h

x

} and picking an arm with the largest
ˆ

U

x

(t). We derive the regret bound for this modification.
Theorem 3. Consider a K-MAB problem with rewards

bounded in [0, 1]. For each arm x 2 {1, . . . ,K} and expected

reward µ

x

bounded by [l

x

, h

x

], where 0 < l

x

< h

x

< 1.

Choosing f(t) = log(t) + 3 log(log(t)), in B-kl-UCB algo-

rithm, the number of draws E[N
x

(T )] for any sub-optimal

Algorithm 2: B-TS for Bernoulli Bandits
1: Input: A list of bounds over µ

a

: {[l
x

, h

x

]}
x2{1,...,K}

2: Initialization: Remove any arm x with h

x

< l

max

.
3: Let K0 denote the number of remaining arms.
4: S

x

= 0, F

x

= 0, 8x 2 {1, . . . ,K0}
5: for all t = 0 to T � 1 do

6: for all x = 1 to K

0
do

7: repeat

8: Draw ✓

x

⇠ Beta(S

x

+ 1, F

x

+ 1)

9: until ✓

x

2 [l

x

, h

x

]

10: end for

11: Draw arm X

t

= argmax

x2{1,...,K0} ✓x, observe reward y.
if y = 1 then S

x

= S

x

+ 1 else F

x

= F

x

+ 1

12: end for

arm a is upper bounded for any horizon T � 3 as:

8
><

>:

0 if h

x

< l

max

4 + 4e log(log(T )) if h

x

2 [l

max

, µ

⇤
)

log(T )

KL(µ

x

,µ

⇤
)

+O(

log(log(T ))

KL(µ

x

,µ

⇤
)

) if h

x

� µ

⇤

Proof. (sketch-see complete proof in the Appendix) Case
h

x

< l

max

is obvious. Write E[N
x

(T )] as the sum of two
terms: 1)

P
T�1

t=K

0 P( ˆU
x

⇤
(t) < µ

⇤
) and 2)

P
T�1

t=K

0 P(µ⇤ 
ˆ

U

x

(t)), X

t

= x). Term 1 is upper bounded by 3 +

4e log(log(T )) due to [Cappé et al., 2013, Fact A.1]. Term 2
equals to 0 when h

x

2 [l

max

, µ

⇤
). When h

x

� µ

⇤, Term 2 is
upper bounded by log(T )

KL(µ

x

,µ

⇤
)

+O(

log(log(T ))

KL(µ

x

,µ

⇤
)

) due to [Cappé
et al., 2013, Fact A.2].

Thm. 3 demonstrates the potential improvements due to the
causal bounds. Let h

x

< l

max

, l
max

 h

x

< µ

⇤ and h

x

�
µ

⇤ be denoted by cases C
1

, C
2

, and C

3

. If the causal bounds
impose strong constraints over the arm’s distribution such as
cases C

1

, C

2

, B-kl-UCB provides asymptotic improvements
over kl-UCB with bounds over the number of draws for any
sub-optimal arm as, respectively, 0 and O(log(log(T )), and
dominates kl-UCB. On the other hand, when such constraints
are too weak (C

3

), the bound of B-kl-UCB degenerates to
the standard kl-UCB bound. The proposed algorithm B-kl-
UCB, therefore, dominates kl-UCB for all parametrizations.
We will show that the latter bound is not improvable for any
admissible strategy (not grossly under-performing).
Theorem 4. (Lower Bound for h

x

� µ

⇤
) Consider a strat-

egy that satisfies E[T
x

(n)] = o(n

↵

) for any Bernoulli distri-

bution, any arm x with �

x

> 0, and any ↵ > 0. Then, for

any arm x with �

x

> 0 and h

x

> µ

⇤
, the following holds

lim inf

n!+1

E[N

x

(n)]

log(n)

� 1

KL(µ

x

, µ

⇤
)

Remark. These results imply that the constraints imposed
by the bounds over the expected rewards (i.e., C

1

, C

2

, C

3

)
translate into different regret bounds for the MAB agent.
A simple analysis reveals that the three canonical tasks de-
scribed above can be associated with these different bounds,
which is summarized in Table 1. We can see that there ex-
ist no parametrization for task 1 satisfying C

1

since p

0,1





(a) Task 1 with parametrizations in C

2

(b) Task 2 with parametrizations in C

1

(c) Task 3 with parametrizations in C

3

Figure 4: Simulations results of the canonical tasks (Table 1) comparing solvers that are causal enhanced (B-kl-UCB, B-TS), standard (kl-
UCB, TS), and naive (kl-UCB�, TS�). Graphs are rendered in high resolution and can be zoomed in.

p

1,1

+ p

0,0

+ p

0,1

and p

1,1

 p

0,1

+ p

1,0

+ p

1,1

(by Thm. 1).
Still, there exists some instances falling into C

2

, C

3

. Consid-
ering the bounds implied by task 2 [Pearl, 2000, pp. 250], we
note that there exist a number of instances compatible with C

1

and C

2

(e.g., pick large values for p
000

, p

111

), which means
that there is great potential for improvement. For task 3, Thm.
2 indicates that the bounds must be the same for both arms,
which rules out C

1

, C

2

and makes the task to fall into C

3

.
Since this case is not improvable by Thm. 4, it is the less
interesting among the canonical problems.

There exists a class of algorithms based on Thompson
sampling (TS) [Thompson, 1933; Chapelle and Li, 2011]
that presents strong empirical performance, but its theoret-
ical analysis was not completely understood until recently
[Agrawal and Goyal, 2011]. We augment the basic TS solver
to take into account the causal bounds, which we call B-TS
(Algorithm 2). We employ a rejection sampling approach to
enforce the causal bound [l

x

, h

x

] on the estimated expected
reward ⇥

x

. Simulations will be discussed next and compare
the performance of B-TS and B-kl-UCB. We note that the re-
gret analysis of B-TS is a challenging open problem.

6 Experimental Results

In this section, we conduct experiments to validate our find-
ings. In particular, we compare B-kl-UCB and B-TS with
standard MAB algorithms (kl-UCB and TS) without access
to the causal bounds. We also include the counterparts that
incorporate a naive transfer procedure described in Sec. 3
(without distinguishing the do-distribution), which we call kl-
UCB� and TS�. We present simulation results for 2-armed
Bernoulli bandits. Simulations are partitioned into rounds of
T = 5000 trials averaged over N = 200 repetitions. For each
task, we collect 5000 samples generated by a source agent and
compute the empirical joint distribution. The causal bounds
are estimated with the methods described in Sec. 4 from the
empirical joint distributions. We assess each algorithm’s per-
formance with cumulative regrets (CR).
Task 1. The expected rewards of the given parametrization
are µ

1

= 0.66, µ

2

= 0.36, and the estimated causal bounds
are b

1

= [0.03, 0.76], b

2

= [0.21, 0.51]. Since h

2

< µ

⇤
=

µ

1

, this parametrization satisfies C

2

. The results (Fig. 4a)
reveal a significant difference in the regret experienced by B-
kl-UCB (CR = 0.47) and B-TS (CR = 1.14) compared to kl-
UCB (CR = 17.97) and TS (CR = 8.14). kl-UCB� (CR =

1499.70) and TS� (1499.99) perform worst among strategies.
Task 2. The expected rewards of the given param. are µ

1

=

0.58, µ

2

= 0.74 and the estimated causal bounds are b

1

=

[0.48, 0.61], b

2

= [0.7, 0.83]. Since h

1

< l

max

= l

2

, this
parametrization falls into C

1

. Fig. 4b reveals a significant
difference in the regret experienced by B-kl-UCB (CR = 0.00)
and B-TS (CR = 0.00) compared to kl-UCB (CR = 25.94) and
TS (CR = 10.70). kl-UCB� (CR = 799.84) and TS� (CR =
800.00) perform worst due to negative transfer.
Task 3. The expected rewards are µ

1

= 0.2, µ

2

= 0.4 and
the estimated causal bounds are b

1

= b

2

= [0, 0.61]. Since
h

1

� µ

⇤
= µ

2

, this parametrization satisfies C

3

. Simula-
tion results (see Fig. 4c) reveal minor difference in the re-
gret experienced by B-kl-UCB (CR = 23.70) and B-TS (CR
= 10.05) compared to their counterparts kl-UCB (CR = 22.51)
and TS (CR = 10.40). kl-UCB� (CR = 999.8) and TS� (CR
= 1000.00) perform worst due to negative transfer.

These results corroborate with our findings and show that
prior experiences can be transferred to improve the perfor-
mance of the target agent, even when identifiability does not
hold. B-kl-UCB dominates kl-UCB in C

1

, C

2

while obtains
similar performance in C

3

. Interestingly, B-TS exhibits sim-
ilar behaviors as B-kl-UCB in C

1

, C

2

, and superior perfor-
mance (with TS) in C

3

. This suggests that B-TS may be an
attractive practical choice when causal bounds are available.
7 Conclusion

We introduced new learning tools to study settings where the
assumption that sensors (contexts) or actuators of the source
and target agents perfectly coincide does not hold. In particu-
lar, we analyzed the problem of transfer learning across MAB
agents in settings where neither do-calculus nor standard off-
policy learning techniques can be used due to unobserved
confounding. We showed how partial information can still be
extracted in these non-identifiable cases, and then translated
into potentially informative causal bounds. We incorporated,
in a principled way, these bounds into a dynamic allocation
procedure and proved regret bounds showing that our algo-
rithm can perform orders of magnitude more efficiently than
current, non-causal state-of-the-art procedures.
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Supplemental Material

1 Parametrizations

In this section, we provide parametrizations for Task 1, 2 and
3 covering all possible cases (C

1

, C

2

, C

3

). Parametrizations
used for simulations shown in Figure 3 are indicated by aster-
isks (*).
Task 1. • Case C

2

*: Let X,Y, U 2 {0, 1}. P (U = 0) =

0.3. The source agent follows the action do(X = ⇡(u))

where function ⇡(u) is defined as:

X = ⇡(u) = u (1)
Y is drawn from the distribution P (y|x, u) defined in

Table 1. The distribution P (x, y), the expected reward

E[Y |do(x)] and its corresponding bounds l

X

, h

X

can

thus be computed and shown in Table 2 and 3. Since

h

1

< µ

⇤
= µ

0

and h

1

� l

max

= l

1

, this parametriza-

tion satisfies C

2

.

U = 0 U = 1

X = 0 0.1 0.9

X = 1 0.5 0.3

Table 1: P (Y = 1|x, u)

Y = 0 Y = 1

X = 0 0.27 0.03

X = 1 0.49 0.21

Table 2: P (x, y)

E[Y |do(x)] l

X

h

X

X = 0 0.66 0.03 0.73

X = 1 0.36 0.21 0.51

Table 3: E[Y |do(x)] and its bounds

• Case C

3

: Let X,Y, U 2 {0, 1}. P (U = 0) = 0.4. The

source agent follows the action do(X = ⇡(u)) where

function ⇡(u) is defined in Equation 1. Y is drawn from

the distribution P (y|x, u) defined in Table 4. The dis-

tribution P (x, y), the expected reward E[Y |do(x)] and

its corresponding bounds l

X

, h

X

can thus be computed

and shown in Table 5 and 6. Since h

1

� µ

⇤
= µ

0

, this

parametrization satisfies C

3

.

U = 0 U = 1

X = 0 0.1 0.8

X = 1 0.5 0.3

Table 4: P (Y = 1|x, u)

Y = 0 Y = 1

X = 0 0.36 0.04

X = 1 0.42 0.18

Table 5: P (x, y)

E[Y |do(x)] l

X

h

X

X = 0 0.52 0.04 0.64

X = 1 0.38 0.18 0.58

Table 6: E[Y |do(x)] and its bounds

Task 2. • Case C

1

*: Let X,Y, Z, U 2 {0, 1}. P (U =

0) = 0.2 and P (Z = 0) = 0.1. The source agent fol-

lows the action do(X = ⇡(z, u)) where function ⇡(z, u)

is defined as:

X = ⇡(z, u) = z � u (2)

Y is drawn from the distribution P (y|x, u) defined in

Table 7. The distribution P (x, y|do(z)), the expected re-

ward E[Y |do(x)] and its corresponding bounds l

X

, h

X

can thus be computed and shown in Table 8 and 9. Since

h

0

< l

max

= l

1

, this parametrization satisfies C

1

.

U = 0 U = 1

X = 0 0.9 0.5

X = 1 0.1 0.9

Table 7: P (Y = 1|x, u)

Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 0.21 0.09 0.4 0.25

X = 1 0.215 0.335 0.175 0.325

Table 8: P (x, y|do(z))

E[Y |do(x)] l

X

h

X

X = 0 0.58 0.48 0.6

X = 1 0.74 0.72 0.82

Table 9: E[Y |do(x)] and its bounds

• Case C

2

: Let X,Y, Z, U 2 {0, 1}. P (U = 0) = 0.5

and P (Z = 0) = 0.5. The source agent follows the

action do(X = ⇡(z, u)) where function ⇡(z, u) is de-

fined in Equation 2. Y is drawn from the distribu-

tion P (y|x, u) defined in Table 10. The distribution



P (x, y|do(z)), the expected reward E[Y |do(x)] and its

corresponding bounds l

X

, h

X

can thus be computed and

shown in Table 11 and 12. Since h

1

< µ

⇤
= µ

0

and

h

1

� l

max

= l

0

, this parametrization satisfies C

2

.

U = 0 U = 1

X = 0 0.9 0.7

X = 1 0.4 0.8

Table 10: P (Y = 1|x, u)

Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 0.05 0.45 0.15 0.35

X = 1 0.10 0.4 0.30 0.2

Table 11: P (x, y|do(z))

E[Y |do(x)] l

X

h

X

X = 0 0.8 0.5 0.85

X = 1 0.6 0.4 0.7

Table 12: E[Y |do(x)] and its bounds

• Case C

3

: Let X,Y, Z, U 2 {0, 1}. P (U = 0) = 0.5

and P (Z = 0) = 0.5. The source agent follows the

action do(X = ⇡(z, u)) where function ⇡(z, u) is de-

fined in Equation 2. Y is drawn from the distribu-

tion P (y|x, u) defined in Table 13. The distribution

P (x, y|do(z)), the expected reward E[Y |do(x)] and its

corresponding bounds l

X

, h

X

can thus be computed and

shown in Table 14 and 15. Since h

1

� µ

⇤
= µ

0

, this

parametrization satisfies C

3

.

U = 0 U = 1

X = 0 0.7 0.3

X = 1 0.1 0.6

Table 13: P (Y = 1|x, u)

Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 0.15 0.35 0.35 0.15

X = 1 0.20 0.3 0.45 0.05

Table 14: P (x, y|do(z))

E[Y |do(x)] l

X

h

X

X = 0 0.5 0.35 0.65

X = 1 0.35 0.3 0.55

Table 15: E[Y |do(x)] and its bounds

Task 3. • Case C

3

*: Let X,Y, Z, U 2 {0, 1}. P (U =

0) = 0.5 and P (Z = 0) = 0.5. The source agent fol-

lows the action do(Z = ⇡(✏)) where ✏ is an independent

variable representing the uncertainty. X is decided by

the function f

X

(z, u) defined as:

X = f

X

(z, u) = z � u

Y is drawn from the distribution P (y|x, u) defined in

Table 16. The distribution P (y|do(x)), the expected re-

ward E[Y |do(z)] and its corresponding bounds l

Z

, h

Z

can thus be computed and shown in Table 17 and 18.

Since l

0

� µ

⇤
= µ

1

, this parametrization satisfies the

condition of C

3

.

U = 0 U = 1

X = 0 0.1 0.7

X = 1 0.1 0.3

Table 16: P (Y = 1|x, u)

X = 0 X = 1

Y = 0 Y = 1 Y = 0 Y = 1

Z = 0 0.3 0.2 0.4 0.1

Z = 1 0.3 0.2 0.4 0.1

Table 17: P (Z, Y |do(x))

E[Y |do(z)] l

Z

h

Z

Z = 0 0.2 0.0 0.6

Z = 1 0.4 0.0 0.6

Table 18: E[Y |do(z)] and its bounds

2 Proofs for Section 5

Proof of Theorem 2. Remember we have constraints

p

00

= q

00

+ q

01

p

01

= q

02

+ q

03

p

10

= q

10

+ q

12

p

11

= q

11

+ q

13

(3)

E[Y |do(x)] equals to:

E[Y |do(X = 0)] = q

02

+ q

03

+ q

12

+ q

13

(4)
E[Y |do(X = 1)] = q

01

+ q

03

+ q

11

+ q

13

(5)

Based on constraints 3, we have:

q

00

= p

00

� q

01

q

02

= p

01

� q

03

q

10

= p

10

� q

12

q

11

= p

11

� q

13

(6)

Since q

i,j

� 0, q
01

, q

03

, q

12

, q

13

are independent variables
taking values in:

q

01

2 [0, p

00

] q

03

2 [0, p

01

]

q

12

2 [0, p

10

] q

13

2 [0, p

11

]

Replace q
00

, q

02

, q

10

, q

11

in Equation 9 and 10 with Equations
11, we have:

E[Y |do(X = 0)] = p

01

+ q

12

+ q

13

2 [p

01

, p

01

+ p

10

+ p

11

]

E[Y |do(X = 1)] = p

11

+ q

01

+ q

03

2 [p

11

, p

11

+ p

00

+ p

01

]



Proof of Theorem 3. Following the model constructed in the
paper, we can write E[Y |do(z)] as follows:

E[Y |do(Z = 0)]

= q

002

+ q

003

+ q

012

+ q

013

+ q

021

+ q

023

+ q

031

+ q

033

+ q

102

+ q

103

+ q

112

+ q

113

+ q

121

+ q

123

+ q

131

+ q

133

(7)
E[Y |do(Z = 1)]

= q

002

+ q

003

+ q

022

+ q

023

+ q

011

+ q

013

+ q

031

+ q

033

+ q

102

+ q

103

+ q

122

+ q

123

+ q

111

+ q

113

+ q

131

+ q

133

(8)

Recall that p

ijk

= P (Z = i, Y = j|do(X = k)),
P (z, y|do(x)) can be written as:

p

000

= q

000

+ q

010

+ q

020

+ q

030

+ q

001

+ q

011

+ q

021

+ q

031

p

100

= q

100

+ q

110

+ q

120

+ q

130

+ q

101

+ q

111

+ q

121

+ q

131

p

010

= q

002

+ q

012

+ q

022

+ q

032

+ q

003

+ q

013

+ q

023

+ q

033

p

110

= q

102

+ q

112

+ q

122

+ q

132

+ q

103

+ q

113

+ q

123

+ q

133

p

001

= q

000

+ q

010

+ q

020

+ q

030

+ q

002

+ q

012

+ q

022

+ q

032

p

101

= q

100

+ q

110

+ q

120

+ q

130

+ q

102

+ q

112

+ q

122

+ q

132

p

011

= q

001

+ q

011

+ q

021

+ q

031

+ q

003

+ q

013

+ q

023

+ q

033

p

111

= q

101

+ q

111

+ q

121

+ q

131

+ q

103

+ q

113

+ q

123

+ q

133

(9)

By definition, we also have following constraints:

3X

i=0

3X

j=0

q

i,j

= 1 (10)

q

i,j

� 0 8i, j 2 {0, 1, 2, 3} (11)

The lower bound l

0

of E[Y |do(z = 0)] can be obtained by
solving the following linear programming problem:

minimize Equation 7
subject to Equation 9, 10 and 11

The upper bound h

0

of E[Y |do(z = 0)] can be obtained by
solving the following linear programming problem:

maximize Equation 7
subject to Equation 9, 10 and 11

Similarly, the lower bound l

1

of E[Y |do(z = 1)] can be
obtained by solving the following linear programming prob-
lem:

minimize Equation 8
subject to Equation 9, 10 and 11

The upper bound h

1

of E[Y |do(z = 1)] can be obtained by
solving the following linear programming problem:

maximize Equation 8
subject to Equation 9, 10 and 11

The symbolic procedure gives the closed-form solution as
follows:

l0 = l1 = max

8
><

>:

0

p001 + p110 + p011 � p000 � p010 � p101

p010 � p001

p011 + p110 � p000 � p101

9
>=

>;

h0 = h1 = min

8
><

>:

p001 + p100 + 2p011 + 2p110 � p000 � p101

p010 + p100 + p110 + p011

p100 + 2p110 + 2p001 + 2p011 � p000 � p010 � p101

p001 + p011 + p100 + p110

9
>=

>;

3 Proofs for Section 6

Let h⇤
= h

x

⇤ and l

⇤
= l

x

⇤ . To prove Theorem 3, we first
introduce two lemmas:
Lemma 1. Consider a K-armed bandit problem and f(t)

defined in Theorem 4. In B-kl-UCB algorithm, the termP
T�1

t=K

0 P{ ˆU
x

⇤
(t) < µ

⇤} is bounded by:

T�1X

t=K

0

P( ˆU
x

⇤
(t) < µ

⇤
)  3 + 4e log(log(T ))

Proof. Since ˆ

U

x

⇤
(t) = min

�
U

x

⇤
(t), h

⇤ , the means µ

⇤ is
larger than either U

x

⇤
(t) or h⇤. Thus, we have:

T�1X

t=K

0

P( ˆU
x

⇤
(t) < µ

⇤
) 

T�1X

t=K

0

P(U
x

⇤
(t) < µ

⇤
) +

T�1X

t=K

0

P(h⇤
< µ

⇤
)

=

T�1X

t=K

0

P(U
x

⇤
(t) < µ

⇤
) By definition h

⇤ � µ

⇤

By [Cappé et al., 2013, Fact A.1], we have:

T�1X

t=K

0

P( ˆU
x

⇤
(t) < µ

⇤
) 

T�1X

t=K

0

P(U
x

⇤
(t) < µ

⇤
)  3 + 4e log(log(T ))

Lemma 2. Consider the K-armed bandit problem and f(t)

defined in Theorem 4. In B-kl-UCB algorithm, the termP
T�1

t=K

0 P(µ⇤  ˆ

U

x

(t), X

t

= x) is bounded by:

(
0 if l

max

 h

x

< µ

⇤

log(T )

KL(µ

x

,µ

⇤
)

+O(

log(log(T ))

KL(µ

x

,µ

⇤
)

) if h

x

� µ

⇤

Proof. For all n > 1, let µ̂
x

(t) be the empirical estimation of
µ

x

, and ⌧

x,n

denote the round at which x was pulled for the
n-th time, For reward samples from ⌫

ax

, {Y
x,0

, . . . , Y

x,n

},
define µ̂

x,n

=

1

n

P
n

s=1

Y

x,s

. We of course have the writing
µ̂

x

(t) = µ̂

x,N

x

(t)

. We now bound the term by cases:
Case 1. h

x

< µ

⇤. Since ˆ

U

x

(t)  h

x

, we must have µ

⇤ 
U

x

(t)  h

x

which contradicts the fact h
x

< µ

⇤. This means
that

P
T�1

t=K

0 P(µ⇤  ˆ

U

x

(t), X

t

= x) = 0.
Case 2. h

x

� µ

⇤. Since ˆ

U

x

⇤
(t) = min

�
U

x

⇤
(t), h

⇤ , this
means µ

⇤ must be upper bounded by both U

x

⇤
(t) and h

⇤.



Thus, we have:
T�1X

t=K

0

P(µ⇤  ˆ

U

x

(t)) 
T�1X

t=K

0

P(µ⇤  U

x

(t), µ

⇤  h

x

, X

t

= x)

=

T�1X

t=K

0

P(µ⇤  U

x

(t), X

t

= x) By definition h

x

� µ

⇤

=

T�1X

t=K

0

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x

(t), µ)  f(t)

N

x

(t)

, X

t

= x)

=

T�K

0X

n=1

⌧

x,n+1X

t=⌧

x,n

+1

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(t)

n

,X

t

= x)


T�K

0X

n=1

⌧

x,n+1X

t=⌧

x,n

+1

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

,X

t

= x)

=

T�K

0X

n=1

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

)

 n0 +

T�K

0X

n=n0+1

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

)

where n

0

= d f(T )

KL(µ

x

,µ

⇤
)

e. This implies

(8n � n

0

+ 1) KL(µ

x

, µ

⇤
) >

f(T )

n

Since KL(·, µ⇤
) is continuous decreasing function on [0, µ

⇤
],

there must 9µ
f(T )

n

2 (µ

x

, µ

⇤
], such that:

KL(µ

f(T )
n

, µ

⇤
) � f(T )

n

We next show that:

{9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

} ) {µ̂
x,n

� µ

f(T )
n

}

This can be proved by contradiction. Suppose µ̂

x,n

< µ

f(T )
n

,
we then have:

(8µ 2 [µ

⇤
, 1]) KL(µ̂

x,n

, µ) � KL(µ̂

x,n

, µ

⇤
)

> KL(µ

f(T )
n

, µ

⇤
) =

f(T )

n

which contradicts {9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

}.
Thus, 8� > 0, we have:

P(9µ 2 [µ

⇤
, 1] : KL(µ̂

x,n

, µ)  f(T )

n

)

 P(µ̂
x,n

� µ

f(T )
n

)  e

��µ

f(T )
n E[e�µ̂x,n

]

By [Cappé et al., 2013, Fact A.2], we have:

T�1X

t=K

0

P(µ⇤  ˆ

U

x

(t))  log(T )

KL(µ

x

, µ

⇤
)

+O(

log(log(T ))

KL(µ

x

, µ

⇤
)

)

We now proceed to complete the proof of Theorem 3.

Proof of Theorem 4. Without loss of generality, let K 0 � 2.
The proof for the case h

x

< l

max

is trivial, since arms satisfy-
ing this condition are removed in the initialization and never
played. We next focus on the other two cases. By defini-
tion of the algorithm, at rounds t � K

0, one has X

t+1

= x

only if U
x

(t) � U

x

⇤
(t). Therefore, we can follow the same

decomposition in [Cappé et al., 2013]:

{X
t

= x} ✓ { ˆU
x

⇤
(t) < µ

⇤} [ {µ⇤  ˆ

U

x

⇤
(t), X

t

= x}
✓ { ˆU

x

⇤
(t) < µ

⇤} [ {µ⇤  ˆ

U

x

(t), X

t

= x}
(12)

Then, the expected number of trial for arm a after T rounds,
E[N

x

(T )], can be rewritten as:

E[N
x

(T )] = 1 +

T�1X

t=K

0

P( ˆU
x

⇤
(t) < µ

⇤
)

| {z }
Term (1)

+

T�1X

t=K

0

P(µ⇤  ˆ

U

x

(t)), X

t

= x

| {z }
Term (2)

)

Term 1 and 2 are bounded by Lemma 1 and 2 respectively.
Put everything together, we prove the statement.

Proof of Theorem 5. Without loss of generality, let i = 1

with µ

1

> µ

⇤ and µ

2

= µ

⇤. Since KL(µ

1

, ·) is a contin-
uous function, for any ✏ > 0, there exists µ0

1

2 (µ

⇤
, h

1

] such
that:

KL(µ

1

, µ

0
1

)  (1 + ✏)KL(µ

1

, µ

⇤
)

We now have two bandit parameter vectors (µ
1

, µ

⇤
, . . . , µ

k

)

and (µ

0
1

, µ

⇤
, . . . , µ

k

). Let 0 < ↵ < ✏, and C

n

denote the
event:

C

n

=

⇢
N

1

(n) <

(1� ✏)

KL(µ

1

, µ

0
1

)

,

ˆ

kl

N1(n)
 (1� ↵) log(n)

�

where ˆ

kl

m

is defined as

ˆ

kl

m

=

mX

t=1

log

µ

1

Y

1,t

+ (1� µ

1

)(1� Y

1,t

)

µ

0
1

Y

1,t

+ (1� µ

0
1

)(1� Y

1,t

)

The rest follows the proof of [Lai and Robbins, 1985, Theo-
rem 2]. Q.E.D.
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