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Abstract

The process of editing an image can be naturally modeled as evaluating a counter-
factual query: “What would an image look like if a particular feature had changed?”
While recent advances in text-guided image editing leverage powerful pre-trained
models to produce visually appealing images, they often lack counterfactual con-
sistency – ignoring how features are causally related and how changing one may
affect others. In contrast, existing causal-based editing approaches offer solid
theoretical foundations and perform well in specific settings, but remain limited in
scalability and often rely on labeled data. In this work, we aim to bridge the gap
between causal editing and large-scale text-to-image generation through two main
contributions. First, we introduce Backdoor Disentangled Causal Latent Space
(BD-CLS), a new class of latent spaces that allows for the encoding of causal in-
ductive biases. One desirable property of this latent space is that, even under weak
supervision, it can be shown to exhibit counterfactual consistency. Second, and
building on this result, we develop BD-CLS-Edit, an algorithm capable of learning
a BD-CLS from a (non-causal) pre-trained Stable Diffusion model. This enables
counterfactual image editing without retraining. Our method ensures that edits
respect the causal relationships among features, even when some features are unla-
beled or unprompted and the original latent space is oblivious to the environment’s
underlying cause-and-effect relationships.

1 Introduction

Image editing is an important task in computer vision, which enables a counterfactual question:
"What would a given image be had a feature X changed from x to x′?" Addressing such questions
benefits generative models by realism, interpretability, fairness, generalizability, and transportability
[36, 5, 37, 4, 46, 57]. Earlier approaches to solving this problem typically consider inverting images
into a Latent Space (LS) and manipulating the corresponding latent vectors by leveraging correlations
between the labels of intervened features X and the image [48, 16, 24, 7]. Recently, text-guided
image editing methods leverage large-scale pre-trained models, such as CLIP, Stable Diffusion, and
Rectified Flows [40, 43, 14], to enable edits that align with general human common sense concepts,
without requiring model retraining [11, 17, 18, 6, 29, 26, 44]. These methods prioritize preserving
the edited image as close as possible to the original and maintain semantic invariance (semantic
invariance), but often oblivious to the causal effects of the intervened feature X on other features.

More recently, causal generative models have been proposed to capture causal effects in data [54,
55, 35, 52, 53]. By integrating Structural Causal Models (SCMs) with modern deep generative
architectures, these models can practically achieve high-quality causal image editing given observa-
tional image samples, corresponding feature labels, and a specified causal diagram under restricted
assumptions [42, 41, 12]. From a theoretical standpoint, these methods often (point-)estimate
counterfactual queries under the assumption of identifiability, without formal guarantees on the
validity of their outputs. [32] addresses this gap and introduces the notation of counterfactual con-
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Figure 1: Editing results from Example 1: causal editing (blue); non-casual editing (yellow).

sistency, a criterion that offers formal guarantees for the causal effect of editing specific features.
Despite these recent advances, existing causal editing methods fall short in terms of scalability
compared to large-language vision models and struggle to produce state-of-the-art image gener-
ation results in broader, more diverse real-world contexts. In addition, these methods generally
require explicit annotations of features to perform counterfactual edits. However, in many real-world
scenarios, obtaining these labels can be challenging due to time, cost, or feasibility constraints.

Pre-trained

Weakly 
supervision

Efficiency and Scale

Realism 

Full labeled/
prompted

Partially labeled/
prompted

Train from scratch

Non-
causal

Causal

LS inversion

Semantic invariance

Figure 2: Three axes of contribu-
tions of our work.

In this work, our aim is to combine the best of both worlds,
having methods that are counterfactually consistent while gen-
erating high-quality images with only partial annotated data.
Figure 2 summarizes our contributions along three key axes,
(1) realism, (2) efficiency and scale, and (3) weak supervision.
Realism. In contrast to current large-scale text-to-image edit-
ing methods, our method enables causal editing, which aligns
more closely with the goal of realistic image manipulation by
respecting underlying causal relationships among features; Ef-
ficiency and Scale. Unlike prior causal editing approaches,
which typically require full model retraining and operate on
narrowly scoped datasets, our method leverages pre-trained
language-vision models to enable efficient editing without retraining. Weak Supervision. We address
the weakly supervised setting, where only a subset of generative factors is labeled/prompted. The
next example illustrates these challenges.

Example 1. Consider images describing ’a lady is standing in a garden in a sunny day’. Human
common sense suggests that weather and age are not causally related; however, spurious correlations
exist in the training dataset, e.g., young women appear more often in rainy scenes. Beyond weather
and age, the images include other generative factors, such as the presence of an umbrella (causally
influenced by both age and weather) and the pose of the lady (independent of weather, age, and
umbrella use). The causal relationships are shown in the diagram Fig. 1 (bottom left). Age and
weather are labeled or prompted; other features, such as a umbrella and pose, are unlabeled (gray).

Now, we consider an image editing task ’change the weather from sunny to rainy’. If one naively
edits the initial image by LS inversion and alters the weather based purely on correlations, features
like the age or pose may also change undesirably, despite the nonexistence of a causal link from
weather to them. Furthermore, while such methods may raise an umbrella in the edited image, there
is no causal guarantee about the probability in which an umbrella would be raised. On the other hand,
approaches that prioritize semantic invariance aim to keep features unchanged, e.g., age and pose in
this case. However, this may also result in the umbrella never being raised. Fig. 1(yellow) illustrates
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the edited images following non-casual methods. Editing images with causality, the effects of target
interventions on the other features in the image are guaranteed to be carried over from the factual to
the proper corresponding counterfactual world. To illustrate, the age and pose of the lady should be
invariant and the effect of the rainy weather should be correctly reflected such that an umbrella is
likely to be raised. See the editing results shown in the figure(blue). ■

To enable causal image editing under weak supervision and at scale, we formalize the image generation
process using an Augmented Structural Causal Model (ASCM) (Def.1) that allows for both labeled
and unlabeled generative factors with proper causal semantics. We then introduce the Backdoor
Disentangled Causal Latent Space (BD-CLS) (Def.4) as a modified latent space that serves as a proxy
for the true generative processes. Building on ASCM and BD-CLS, our main contributions are:

1. We formally study which features should be invariant and which should change, and how these
features change when causally editing images (Thm. 1). We then show that BD-CLS provides causal
guarantees for both changed and invariant features, even when they are unlabeled (Thm. 2).

2. We develop BD-CLS-Edit (Alg. 1), a training-free algorithm that learns a BD-CLS from a
pre-trained Stable Diffusion model and enables counterfactual image editing.

Extensive experiments are conducted to demonstrate the effectiveness of the proposed framework.

Preliminaries. We provide here the necessary background to understand this work. An uppercase
letter X indicates a random variable and a lowercase letter x indicates its corresponding value; bold
uppercase X denotes a set of random variables, and lowercase letter x is its corresponding values.
We denote P (X) as a probability distribution over a set of random variables X and P (X = x)
as the probability of X being equal to the value of x under the distribution P (X). Our work use
Structural Causal Models (SCM) as the underlying semantical framework [36, Ch. 7], and we
follow the presentation provided in [3]. An SCMM consists of (1) exogenous variables U, (2)
endogenous variables V, (3) mechanisms F and (4) distribution P (U). F contains a function fVi

for each variable Vi that maps endogenous parents PaVi and exogenous parents UVi to Vi. Each
M induces a causal diagram G, a directed acyclic graph (DAG) where each Vi ∈ V corresponds
to a vertex. There is a directed arrow (Vj → Vi) for every Vi ∈ V and Vj ∈ PaVi

, and there is a
dashed-bidirected arrow (Vj L9999K Vi) for every pair Vi, Vj ∈ V such that UVi

and UVj
are not

independent. We denote GṼ as the causal diagram G after V\Ṽ is marginalized. For example, for
G = {Z → X,Z → Y,X → Y }, GX,Y = {X L9999K Y,X ← Y }. A set of variables B is said to
be a backdoor set relative to the pair (X,Y) if no node in Z is a descendant of X, and B blocks
every path between X and Y that contains an arrow into X. We refer to App. A for more background
on causal models, counterfactuals (Eq.10), and diffusion models.

2 Augmented SCMs and Causal Consistency

We begin by defining a class of SCMs that models the ground-truth image generation process,
incorporating both labeled and unlabeled generative factors.

Definition 1 (Augmented Structure Causal Model). An Augmented Structure Causal Model (for
short, ASCM) over a generative level SCM M0 = ⟨{U0,V0,F0, P

0(U0)}⟩ is a tuple M =
⟨U, {V,L, I},F , P (U)⟩ such that (1) U = U0; (2) {V,L} is a partition of all generative factors
V0, where V are labeled factors; L = V0\V are unlabeled factors; I is an image variable; (3)
F = {F0, fI}, where fI maps from (the respective domains of) V ∪ L to I, which is an invertible
function. Namely, there exists a function h such that {V,L} = h(I). (4) P (U0) = P 0(U0). ■

In words, an ASCMM is a "larger" SCM describing a two-stage generative process of the image
variable I. First, high-level factors V0 are generated at the generative level M0. Labels (e.g.,
annotations, text descriptions, etc.) are given only on the part of factors V ∈ V0. The remaining
factors L are unlabeled. Second, all factors are mapped into pixel spaces to form the image. This
mapping is invertible, which means that, given an image instance x, all factors can be recognized.
That is, there exists a function h that maps from I to {V,L}. (See further discussion in App. E.1).

Equipped with ASCMs (Def. 1), our task to edit the concept X in an original image i from X = x to
X = x′ can be formalized as querying an Image counterfactual distribution (I-ctf) P ∗(Ix′ = i′ | I =
i) induced by the true underlying modelM∗. In addition, ASCMs can formalize the counterfactual
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effect in editing between generative factors. Formally, given factual factors W1 = w1 (W1 ⊆ V),
the probability that factors W2 will be w2 after the edit do(X = x′) is formalized by a counterfactual
quantity P ∗(W2[X=x′] = w2 | w1) at the generative levelM0.

2.1 Proxy model for ground-truth ASCM

Consider an underlying ground-truth ASCM M∗ and image I generated from M∗. Generative
models such as Stable Diffusion, VAEs, and GANs learn a latent space Z along with a mapping
function f : Z→ I, which enables the generation of synthetic images I. Formally, this generation
process can be regarded as a proxy SCM M̂ over variable Z, I such that M̂ approximates the image
distribution induced byM∗, i.e., PM

∗
(I) = PM̂(I). Then editing a given image by these models

can be modeled as evaluating a counterfactual query P (IT=t′ | i) where T ⊆ Z. We define the
following quantity to capture the counterfactuals related to features in image.
Definition 2 (Feature Counterfactual Query). Consider an ASCM over generative factors V and L,
a proxy model M̂ over {Z, I}, a set of factual features W2 ⊆ {V,L}, and a set of counterfactual
features W1 ⊆ {V,L}. A feature counterfactual (F-ctf) query is defined as:

PM̂(W1[T=t′] = w1 |W2 = w2) :=

∫
i,i′∈XI

1
[
h∗W1

(i′) = w1, h
∗
W2

(i) = w2

]
dPM̂(i, i′[T=t′])∫

i∈XI
1
[
h∗W2

(i) = w2

]
dPM̂(i)

(1)
where h∗W1

and h∗W2
are the mappings from I to W1 and W2. ■

In other words, PZ(W1[T=t′] = w1 | W2 = w2) describes the probability that the feature
W1 would take value w1 had T = t′, given that the features W2 are currently equal to w2. The
denominator integrates over all images i1 such that i1 has features w1 in factual worlds; the numerator
integrates (sums) over counterfactual worlds P (i, i′[T=t′]) such that {i, i′} has features {w1,w2}.
Def. 2 provides a way to describe counterfactual quantities over features W1 and W2 even when W1

and W2 are not necessarily endogenous variables in M̂BD-CLS. See more discussion in App. E.3.

Next, we establish a concept to evaluate whether a F-ctf query QM̂ induced by the proxy model
constitutes a reliable approximation to the Q∗ induced by the ground truth model.
Definition 3 (Ctf-consistency). Consider an ASCM over generative factors V and L and a proxy
model M̂. A F-ctf query induced by a proxy model, PM̂(w1 | w2), is said to be counterfactually
consistent with the corresponding ground truth P ∗(w1 | w2), if PM̂(w1 | w2) ∈ [l, r], where [l, r]
is the optimal bound of P ∗(w1 | w2) given the observational distribution P (V,L) and the causal
diagram GV,L at the generative level. ■

This definition offers a principled way to evaluate the estimate produced by a proxy model against the
ground truth counterfactual quantity. It extends the formulation of [32, Def. 4.4]. This is needed since
given the observational distribution and causal diagram, the target counterfactual query is not always
uniquely computable but some possibly informative bound Def. 10 can be obtained and serve as a
natural measure of distance from the data and the true, yet unobserved, counterfactual distribution.
Def. 3 says that any value that is out of this bound is regarded as invalid estimations, and any value
within this bound is acceptable. See Ex. 5 for an illustration.

3 Causal Estimator for Image Editing

In this section, we present our main theoretical results. We first factorize the true I-ctf query
PM

∗
(i′x′ | i), identifying which generative factors should change or remain invariant (Sec.3.1) across

the factual and counterfactual worlds (Sec. 3.1). Then we introduce Backdoor Disentangled Causal
Latent Space, and establish the causal guarantees it provides for evaluating I-ctf queries (Sec. 3.2).

3.1 Factorization of I-ctf query

We begin by expressing the I-ctf query in terms of generative factors and factorizing it based on their
descendant relationships.
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Figure 3: Invariance relationships between features in original image and counterfactual images
(images after editing) cross noncausal methods (a-b) and the newly proposed causal method (c).

Theorem 1. Consider the true underlying ASCM M∗ over {V, I}, and let Let ND denote
∩Xi

ND(Xi)\X (non-descendants of X) in GV,L and DE denote ∪Xi
DE(Xi)\X (descendants of

X) in GV,L. The target query I-ctf query P ∗(Ix′ = i′ | I = i) can be factorized as

P ∗(Ix′ = i′ | I = i) = 1[h∗X(i′) = x′]︸ ︷︷ ︸
Intervention Consistency

· 1[nd′ = nd]︸ ︷︷ ︸
Non-descendants Invariance

· P ∗(Dex′ = de′ | v, l)︸ ︷︷ ︸
Amount of Descendant Changing

(2)

where nd = h∗ND(i), nd′ = h∗ND(i′), de = h∗DE(i), and {v, l} = h∗V,L(i). ■

This result circumscribes which features should remain invariant and which should change through
the editing process. Specifically, the first term in the r.h.s. of Eq. 2 corresponds to the notation of
interventional consistency - the edit should effectively change the features X in the counterfactual
image such that these features are equal to x′; the second term corresponds to non-descendants
invariance - the non-descendant features ND must remain invariant across factual and counterfactual
images; the third term corresponds to amount of change - the descendants of X are possibly affected
and the amount of changes should be consistent with the counterfactual distribution P ∗(Dex′ | v, l).
These feature invariance and relationships between pre- and post-intervention worlds are shown in
Fig. 3(c) (see also Ex. 6 further grounding).

Using this result, we identify key limitations in the current evaluation of image editing methods. A
common approach, LS inversion, edits images by inverting images into an LS and sampling from
P (I | x′), enforcing the target feature value x′. While this ensures interventional consistency, it
often violates non-descendant invariance and descendant changes. Specifically, editing X can lead to
unintended consequences in correlated non-descendants ND. Furthermore, the amount of change in
descendant features DE change lacks a proper causal guarantee, e.g., counterfactual consistency (see
Fig. 3(a) and Ex.7). Modern text-to-image editing methods typically pursue: (1) editing effectiveness:
removing original features x and incorporating the target x′, and (2) semantic invariance: preserving
other content. These correspond to the first two terms in Eq.2. However, the third term, the descendant
change, is often violated. As illustrated in Fig. 3(b), the De are forced to be unchanged, while it
should follow counterfactual distribution P (DEx′ | v, l). See more discussion in App. E.4.

3.2 Backdoor Disentangled Causal Latent Space

In this section, we develop a class of generative models that ensures editing behavior con-
sistent with both non-descendant and descendant requirements, as depicted by Theorem 1.

X

B

Z

I

Figure 4: The structure in
Def. 4.

Definition 4 (Backdoor Disentangled Causal Latent Space). Con-
sider a true ASCMM∗ with diagram GV,I, and a target I-ctf distribu-
tion query P (Ix′ | i). Let B ⊆ V be a backdoor set w.r.t. X to I in
GV,L. Denote the mapping from I to ND is h∗ND. A Backdoor Dis-
entangled Causal Latent Space (BD-CLS) is an SCM M̂BD-CLS =

⟨Û,V = {X,B,Z, I}, F̂ , P (Û)}⟩, such that I ← f̂I(X,B,Z),
and (1) (generation) PM̂

BD-CLS
(I | X,B) = PM̂

∗
(I | X,B); (2)

(disentanglement) ∂τND/∂X = 0, where τND = h∗ND ◦ f̂I; (3)
(structure) Ĝ is compatible as Fig. 4 1. ■

1The "compatible" here does not exactly means M̂ induce the same graph in Fig. 4. There can be less edge
in Ĝ than in Fig. 4 but there cannot be more edges. The definition of "compatible" is formally defined by Def. 9.
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In words, BD-CLS M̂BD-CLS regarding to an image task (I-ctf query P (Ix′ | i)) is a proxy SCM
with endogenous variables X,B, and Z where B is a backdoor set for X to image I in GV,I. In
addition, this proxy model should satisfy three requirements. First, M̂BD-CLS induce same conditional
distribution as ground truth ASCM M∗. Second, the non-descendant ND can be expressed by
composing the mapping h∗ND and the mixing function f̂I

ND = τND(X,B,Z) = h∗ND ◦ f̂I(X,B,Z) (3)

BD-CLS M̂BD-CLS requires τND be disentangled to X, which means changing the value of X will
not change the value of τND(·,B,Z). Third, Ĝ induced by M̂BD-CLS should be compatible with
Fig. 4. It is worth noting that X are independent of Z given B, which implies that B inherits tts
backdoor property in GV,I. See Ex. 8 for more details. The next result discusses the validity of
generating samples from a BD-CLS.

Theorem 2 (Causal validity of BD-CLS). Consider an M̂BD-CLS for M∗ and the target query
P (i′x′ | i). Let PM̂

BD-CLS
(i′x′ | i) be an estimator for P (i′x′ | i). Then, (a) (intervention) PM̂

BD-CLS
(x̃x′ |

v, l) = 1[x̃ = x′], where x̃ = hX(i′); (b) (non-descendants) PM̂
BD-CLS

(nd′x′ | v, l) = 1[nd′ = nd],
(c) (descendants) PM̂

BD-CLS
(y′x′ | x,b,nd,y) is ctf-consistent w.r.t. P ∗(y′x′ | v, l) for every Y ⊆

Ch(X) such that Pa(Y) ∈ ND ∪X, and w = hw(i),w′ = hw(i′) for any W ⊆ V ∪ L. ■

In words, part (a) implies that the query PM̂
BD-CLS

(i′X=x | i) induced by BD-CLS first achieves
intervention consistency. The value x̃ of feature X must be as the intervened value x′. Part (b)
implies that the query PM̂

BD-CLS
(i′X=x | i) induced by BD-CLS satisfies non-descendant invariance.

To illustrate, the feature value nd′ of the counterfactual image should be the same as the feature
value nd of the initial image. Part (c) says that a BD-CLS can guarantee the amount of change in
the descendant Y , where Y is a direct child of X and all parents of Y are not descendants of X .
To illustrate, PM̂

BD-CLS
(y′x′ | v, l) is guaranteed to be within the bound of P ∗(y′x′ | v, l). Thm. 2 is

powerful since BD-CLS can achieve the causal editing principles of Thm. 1. Thus, performing image
editing through BD-CLS constitutes a casual editing approach, offering a significant improvement
over the state-of-the-art non-causal methods illustrated earlier (Fig. 3 and S18). In addition, BD-CLS
only requires that X and B be labeled while ND and Y do not need to be labeled. Then M̂BD-CLS

successfully provides guarantees for unlabeled variables L. See Ex. 9 for illustration.

4 Learning Backdoor Disentangled Casual Latent Space

Now, we show how to obtain a BD-CLS from a pre-trained text-to-image diffusion model for sampling
counterfactual images. Given a target distribution P ∗(Ix′ | I = i) induced by the true modelM∗,
the goal is to generate i′ ∼ PM̂BD-CLS

(Ix′ | i) induced from a BD-CLS M̂BD-CLS using initial image’s
label v (text prompt), the diagram GV,I, and a pre-trained Stable Diffusion (SD) model.

SD models are capable of sampling images from P (I | c) with classifier free guidance [20], where
c is a given prompt/label 2. This generation (reverse) process (Fig. S1(a)) starts from a noise
vector I(T ) ∼ N (0,1) and iteratively denoises it to produce a clean image I using the recursion
I(t−1) = µ̂(I(t), c, t) + σtZ

(t) where I(0) = I, µ̂ is the mean predictor; Z(t) are gaussian random
vectors, and σt are variance terms. This generation process can be regarded as a proxy model
MSD over {C,N = {I(T ),ZT , . . . ,Z(1)}} and I← fSD(C,N) (Fig. S1(b)). Then, the following
proposition suggests that counterfactual image sampling from PM̂

BD-CLS
(IX=x | i) is equivalent to a

sampling procedure from an SD model.
Proposition 1 (Sampling I-ctf instances through SD model). Consider a ground truth ASCMM∗
over {V, I} and a SD model M̂SD. Consider a BD-CLS M̂BD-CLS over {X,B,N} for the target I-ctf
distribution P ∗(Ix′ | i). Let the transformations between {X,B,N} and {C,N} be C = {X,B},
Z = ψ1(X,B,N),N = ψ2(X,B,Z). Then

PM̂
BD-CLS

(IX=x′ = i′ | i) =
∑
n

PM̂
SD
(n | i,x,b)1[i′ = ψ(x,x′,b,n)] (4)

2More details about diffusion model can be found in Appendix A.
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where ψ(x,x′,b,n) = fSD(x′,b, ψ2(x
′,b, ψ1(x,b,n))) ■

To illustrate, Prop. 1 says that sampling a counterfactual image i′ from a BD-CLS involves
two steps using the SD model after setting the prompt variable as {X,B}. First, invert i

to sample noise n ∼ PZSD

(n | i,x,b) Then the sampled n, the initial prompt {x,b},
and the target prompt {x′,b} are fed into the compose transformation ψ to generate a i′.

Algorithm 1: BD-CLS-Edit

Input :Initial image i; Initial label/prompt v; SD model;
Causal diagram GV,I; Initialized transformation ψθ

Output : Ctf-consistency counterfactual image i′ for
P∗(Ix′ | i)

1 B← Backdoor(X, GV,I) // Backdoor set
2 c = {x,b} ← Prompt(X, B, v) // Initial Prompt
3 n←P SD(N | i,x,b)
4 find anyψθ s.t. ψθ(x,x

′, b,N) ∼ P(I | x′, b) and
h∗
ND(ψθ(x,x

′, b,n)) = h∗
ND(i)

5 i′←ψθ(x,x
′, b,n)

6 return i′

Building on this, we develop BD-CLS-Edit
(Alg. 1) to learn ψ and generate i′ simultane-
ously. The algorithm begins by identifying the
largest backdoor set B from X to I in GV,I,
then matches the prompt variables C with the
observed values of X∪B from the label v. Next,
it samples noise n given the SD model. In this
work, we follow the DDPM inversion [21] and
details are provided in Appendix C.

In the fourth step, we optimize the transforma-
tion ψ to ensure that counterfactual samples
come from a BD-CLS. This involves satisfying two key constraints:

ψθ(x,x
′, b,N) ∼ P (I | x′, b), h∗ND(ψθ(x,x

′, b,n)) = h∗ND(i), (5)

The first ensures that ψ transforms Gaussian noise N into I following P (I | x′, b). This constraint
is aligned with the property of BD-CLS to generating true observational distribution, and thus
integrating the necessary effects on descendants when performing editing. The second constraint
enforces that ND remain unchanged, which shows the disentanglement from ND to X. We detail
the optimization procedure in the next section. The following result confirms the soundness of Alg. 1.

Theorem 3 (Sampling I-ctf instances through SD model). Consider a ground truth ASCMM∗
over {V, I} and the target distribution P (Ix′ | i). There exists a BD-CLS M̂BD-CLS such that the
output of Alg. 1 follows distribution PM̂

BD-CLS
(IX=x′ | i). ■

4.1 Implementation of searching transformation ψ

We now describe the practical implementation of the fourth step in Alg. 1, first focusing on the
candidate space of ψθ and the optimized parameters θ. We extend the original denoising process.
Formally, with a specific sample n = {i(T ), z(T ), . . . , z(1)}, the transformation ψθ is the iterative
process

i′(t−1) = µ̂(i′(t), c+ θt(c
′ − c), t) + σtz

(t) (6)

where i′(T ) = i(T ). To illustrate, the new prompt is linearly mixed between c and c′ at each time step
t by a different parameter θt. This prompt mixing technique leverages the coarse-to-fine nature of the
denoising process and demonstrates an ability to disentangle features [51, 34, 2, 8].

Next, we illustrate how to search θ = {θ1, θ2, ..θT } to satisfy two constraints in Eq. 5. First, it
is necessary for ψθ(x,x

′, b,n) to exhibit prompts c′ = {x′,b} to guarantee the first constraint.
Regarding the recursion for µ̂(i′(t), c+ θt(c

′ − c)) + σtz
(t), it is demonstrated in [39] that updating

the parameters with the direction

∇θtLSDS(i
′
t, c, ϵ, t) = (ϵ̂(i′t, c, t)− ϵ)

∂i′t
∂θt

, (7)

will motivate i′ to exhibit features c′, where ϵ is the noise added in the forward process and ϵ̂ is the
noise predictor in diffusion (App. A.2).

This gradient update can be interpreted as asking counterfactuals: "Given that µθt generates i′t, how
should θt be updated had the resulting i′t resembles feature c′ than c?". However, updating θ in this
direction does not guarantee the second constraint. due to the entanglement of µθt . The key challenge
is that the true mapping h∗ND is unknown making it hard to distinguish between non-descendants
and descendants. To address this, we propose an alternative optimization direction inspired by the
following proposition.
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Figure 5: Edit a red "1" with a thin red bar to digit "7". (a) Expectation of counterfactual consistent
editing; (b) Edit results. Top - initial image. Bottom - counterfactual images.

Proposition 2 (Toy entanglement between binary X , Y and R). Consider binary X , non-
descendant R and descendant Y . Suppose P ∗(y | paY ) ̸= P ∗(y | pa′Y ). Suppose R and Y are both
entangled with {X,B,N} in SD modelMSD, then PM̂

SD

(r′x′ | x,b, r) = PM̂
SD

(r′x | x′,b, r) and
PM̂

SD

(y′x′ | x,b, r) ̸= PM̂
SD

(y′x | x′,b, r). ■

Let an image i′ and another image ĩ has different feature X but the same other feature. To illustrate,
PM̂

SD

(r′x′ | x, b, r) approximates the gradient of R when the image i′ moves to have x′ with Eq. 7.
Similarly, PM̂

SD

(r′x | x′, b, r) approximates the gradient of R when reverting x′ to x in image ĩ,
and these two gradients are equal. In contrast, the gradients of Y when toggling X between x and
x′ in i and ĩ under the same toggling are not symmetric. Thus, we can contrast two SDS losses to
update gradients similar to DDS [17] 3 to ensure that the new update direction is orthogonal to ND.
Formally, the contrast direction is

∇θtLCtf(i
′
t, c
′, ĩt, c, t) = (ϵ̂(i′t, c

′, t)− ϵ̂(̃it, c, t))
∂i′t
∂θt

, (8)

i′￼ ̂ϵ (i′￼(t), {x′￼, b}, t) − ϵ

̂ϵ (ĩ(t), {x, b}, t) − ϵ ĩ

,  
, 

X(Weather) = x
R(Tree) = r Y(Um) = y

Final i′￼

 
,

≈ P(r′￼x′￼
∣ x, b, r)

P(y′￼x′￼
∣ x, b, y)

,  
, 

X(Weather) = x′￼

R(Tree) = r Y(Um) = y
 

 
≈ P(r′￼x ∣ x′￼, b, r)
P(y′￼x ∣ x′￼, b, y),

,  
, 

Weather(X) = x′￼

R(Tree) = r Y(Um) = y′￼

∇ℒCTF

 
 

≈ 0,
P(y′￼x′￼

∣ x, b, y)
−P(y′￼x ∣ x′￼, b, y)

Figure 6: Optimization∇θtLCtf .

and this idea is visualized in Fig. 6. Specifically,
when guiding i′ with the SDS direction and
prompt c′ = {x′, b} (top-left panel in Fig. S4),
the weather feature (e.g., the appearance of rain
on the ground) changes from x (sunny) to x′
(rainy). However, due to entanglement, the non-
descendant feature, such as trees, also tends to
change from r to r′. Meanwhile, the descendant
feature (e.g., the umbrella) correctly changes to
y′. In contrast, when guiding ĩ with the SDS
direction and c = {x, b} (bottom left panel of
Fig. 6), the weather changes from x′ (rainy) to x
(sunny). Yet, the non-descendant features again
change in the same direction from r to r′, and
the umbrella no longer tends to change to y′. Af-
ter combining these contrasting directions (right
panel in Fig. 6), the weather reliably changes
from x to x′, the umbrella (a descendant) appro-
priately changes as well, and the non-descendant feature (e.g., the tree) remains invariant, correcting
the entanglement artifacts through cancellation.

To obtain ĩt, we move it in the DDS direction, which only changes feature X but preserves others
as the same. Specifically, a subset of time steps T̃ is selected, i.e., T̃ ⊆ {1, . . . ,T}. And for every
t ∈ T̃, we follow the DDS

ĩ(t) = i(t) + λt(ϵ̂(it, c
′, t)− ϵ̂(it, c, t)) (9)

where λt is a hyperparamter controlling the intensity of the change of X. More details on this
optimization are given in App. C.

3See the details of DDS in App. A.2. Notice that the key improvement is that we leverage the Prop. 2.
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5 Experiments

In this section, we empirically validate our theoretical results (Thm.2) and demonstrate the effective-
ness of BD-CLS-Edit (Alg.1). Additional experimental details are in App. D.

5.1 Colored MNIST and Bars

D DC

BW BC

I

Figure 7: The casual diagram in Sec. 5.1.

We first evaluate the guarantees provided by BD-CLS
(Thm.2) on a modified MNIST dataset [13, 32] featuring
colored digits and bars. 4. The ground truth ASCM in-
cludes factors: Digit (0-9 D), Digit Color (red DC = 0;
green DC = 1), Bar Width (thin BW = 0; thick
BW = 1), Bar Color (red BC = 0; green BC = 1),
and other latent factors such as handwriting style. The
causal relationships are shown in Fig. 7. The digit (D) and
its color (DC) are confounded, with larger digits more
likely to be red. Digit color (DC) causally influences bar
color (BC); red digits tend to have red bars. The digit (D) also affects the bar width (BW ): larger
digits typically have thicker bars, unless the digit is green, in which case the effect is reversed.

We first consider editing the digit. Suppose that we are editing a red "1" with a thin red bar and
wonder what would happen had the digit "1" been a "7". According to the counterfactual editing
principles in Thm. 1, the edit should achieve (1) interventional consistency. The digit should
be "7"; (2) non-descendants invariance. digit color (DC) and bar color (BC) remain red;. (3)
Amount of change. The BW as a descendant, may change thicker and the probability should
be Q = P (BWD=7 = 1 | D = 1, DC = 0, BC = 0, BW = 0). To guarantee counterfactual
consistency, the estimation ofQ should be within the bound according to Def. 3. This edit expectations
are shown in Fig. 5(a).

BD-CLS (Ours) CDiffusion CGN NCM with full labels

Figure 8: The estimated F-ctf query by
our BD-CLS and baselines.

We evaluate both causal and non-causal methods on the
digit editing task. According to Theorem 2, our proposed
BD-CLS enables counterfactual-consistent editing, even
with unlabeled features. We obtain BD-CLS using a Neu-
ral Causal Model (NCM)[54, 55, 32] trained without la-
bels for BW . we also train an NCM with full supervision.
For comparison, we include two non-causal baselines:
(1) Conditional Diffusion (CDiffusion), which relies on
correlations, and (2) CGN[45], which preserves original
semantics. The editing results (Fig. 5(b)) show that all
models change the digits to “7”. However, CDiffusion al-
ters non-descendants (e.g., color), and CGN fails to change
descendants (bar width). In contrast, BD-CLS and fully supervised NCM preserve non-descendants
and correctly update the BW , despite BD-CLS not using BW labels. To quantify descendant
changes, we estimate the query Q (Fig.8) by measuring how often the bar becomes thicker after
editing. Both BD-CLS and fully supervised NCM stay within theoretical bounds, while CDiffusion
and CGN do not. Additional tasks are in App. D.1.

5.2 Text-to-image Counterfactual Editing

In this section, we validate BD-CLS-Edit for sampling counterfactual images. We compare it against
two non-causal SOTA: (1) DDPM inversion [21], representing LS inversion, and (2) DDS[21], which
emphasizes semantic invariance. We begin with the setting from Example 1, where the goal is to
change the weather from sunny to rainy (Fig.9(a), unprompted variables are gray). Non-descendants
(e.g., scene layout, age, pose) should be preserved, while descendants (e.g., umbrella, shadows)
should change. For example, an umbrella may appear and shadows should become fuzzier on wet
ground. As shown in Fig. 9(d), all methods achieve interventional consistency. However, DDPM
inversion changes the non-descendants, the lady and scene. DDS maintains visual similarity to the
original image, but does not reflect downstream effects. To illustrate, the umbrella does not appear

4A bar in an image refers to a complete row of pixels with the same color.
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What would the image look like if the weather had been rainy? What would the image look like if the season had been fall?

DDPM Inversion DDS BD-CLS (ours)Initial Image

Weather

Umbrella

Weather

Shadow

DDPM Inversion DDS BD-CLS (ours)Initial Image

Season

Clothes

What would the image look like if the scene had been a garden?
DDPM Inversion DDS BD-CLS (ours)Initial Image

Scene

Grocery 
bag

(d)

(e)

(f)

Causal Diagrams

Shadow
Umbrella

I

Age Weather Scene

Season

I

(a)

(b)

(c)

Clothes

Scene

I

Grocery Bag

Figure 9: The causal diagrams and editing results for Sec. 5.2.
and the shadows in the sunny day are preserved. In contrast, BD-CLS preserves non-descendants and
reflects the causal effects on umbrella and shadow.

Next, we edit an image of a person in a forest by changing the season from summer to fall (Fig.9(b)).
Non-descendants (e.g. gender, forest layout) should be preserved, while descendants (e.g. clothing)
should change since people wear warmer clothes in fall. As shown in Fig. 9(e), DDPM inversion
fails to generate person details. DDS preserves person’s features but produces unrealistic clothing
by retaining too much from the original image. BD-CLS-Edit accurately reflects warmer clothing
while preserving non-descendants. Third, we edit an image of a person in a grocery store by changing
the scene to a garden (Fig. 9(c)). Non-descendants (e.g., background layout, pose) should remain
unchanged, while descendants like a grocery bag should be removed, as a person is unlikely to bring
it in a garden. As shown in Fig. 9(f), DDPM inversion noticeably alters the person. DDS keeps the
grocery bag. In contrast, BD-CLS-Edit preserves non-descendants and removes the grocery bag.

6 Conclusions

We develop a counterfactual image editing framework that works with pre-trained diffusion models
under weak supervision, without retraining. We introduce a data structure called Backdoor Causal
Latent Space (BD-CLS), which ensures counterfactual consistency (Thm. 1 and 2), and then develop
an BD-CLS-Edit (Alg. 1) to extract it from a Stable Diffusion model. Our approach advances image
editing in terms of causal realism, scalability, and weak supervision.
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A Background

A.1 Causal Models

Our work relies on the basic semantical framework structural causal models (SCMs) [36, Ch. 7], and
we follow the presentation in [3].

Definition 5 (Structure Causal Model(SCM)). A Structure Causal Model (for short, SCM) is a
4-tuple < U,V,F , P (U) >, where (1) U is a set of background variables, also called exogenous
variables, that are determined by factors outside the model; (2) V = {V1, V2, . . . , Vd} is the set of
endogenous variables that are determined by other variables in the model; (3) F is the set of functions
{fV1

, fV2
. . . , fVd

} mapping UVj
∪PaVj

to Vj , where UVj
⊆ U and PaVj

⊆ V\Vj ; (4) P (U) is a
probability function over the domain of U. ■

We bring forth the longer and more formal definition of causal diagrams induced by the SCMs.

Definition 6 (Causal Diagram [3, Def. 13]). Consider an SCMM = ⟨U,V,F , P (U)⟩. We construct
a graph G usingM as follows:

(1) add a vertex for every variable in V,

(2) add a directed edge (Vj → Vi) for every Vi, Vj ∈ V if Vj appears as an argument of
fVi
∈ F ,
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(3) add a bidirected edge (Vj Vi) for every Vi, Vj ∈ V if the corresponding UVi ,UVj ⊆ U
are not independent or if fVi and fVj share some U ∈ U as an argument.

We refer to G as the causal diagram induced byM (or “causal diagram ofM” for short). ■

Then a structure can be defined with the bi-drected edges in a causal diagram.
Definition 7 (Causal Diagram [3, Def. 14]). Let G be a causal diagram. Let C1,C2, . . . ,Ck be a
partition over the set of variables V. where Ci is said to be a confounded component (C-component
for short) of G if for every Va, Vb ∈ Ci , there exists a path made entirely of bidirected edges between
Va and Vb in G, and Ci is maximal. We denote C(Va) as the C-component containing Va. ■

An intervention on a subset of X ⊆ V, denoted by do(x), is an operation where X takes value x,
regardless how X are originally defined. For an SCMM, letMx be the submodel ofM induced by
do(x). For any subset Y ⊆ V, the potential outcome Yx(u) is defined as the solution of Y after
feeding U = u into the submodelMx. Then Yx is called a counterfactual variable induced by
M. Specifically, the event Yx = y represent "Y would be y had X been x". The counterfactual
quantities induced by an SCMM are defined as [3, Def. 7]:

PM(yx, . . . , zw) =

∫
XU

1Yx(u)=y,...,Zw(u)=zdP (u), (10)

where Y, . . . ,Z,X, . . . ,W ⊆ V. Specifically, P (Yx) reduces to an observational distribution
P (Y) taking X as an empty set.

After describing a causal model in the SCM semantics, we can also define a graphical model
independent of a particular generative process and instead based on a set of constraints. Counterfactual
Bayesian Netwrok [9], similarly to a Bayesian Network or a Causal Bayesian Network [3], which are
graphical models that relate a graph and a (set of) distribution(s) is defined as follows.
Definition 8 (CTFBN Semi-Markovian). Let P∗∗ be the collection of all distributions of the form
P (W1[x1],W2[x2], . . . ), where Wi ∈ V, Xi ⊆ V. A directed acyclic graph G over V is a Counter-
factual Bayesian Network for P∗∗∗ if:

1. [Independence Restrictions] Let W∗ be a set of counterfactuals of the form Wpaw
,

C1, ...,Cl the c-components of G[V(W∗)], and C1∗, ...,Cl∗ the corresponding partition
over W∗. Then P (W∗) factorizes as

P (
∧

Wpaw∈W∗

Wpaw) =

l∏
j=1

P (
∧

Wpaw∈Cj∗

Wpaw) (11)

2. [Exclusion Restrictions] For every variable Y ∈ V with parents Pay, for every set
Z ⊆ V\(Pay ∪ {Y }), and any counterfactual set W∗, we have

P (Ypay,z,W∗) = P (Ypay
,W∗) (12)

3. [Local Consistency] For every variable Y ∈ V with parents Pay, let X ⊆ Pay, then for
every set Z ⊆ V\(X ∪ {Y }), and any counterfactual set W∗, we have

P (Yz = y,Xz = x,W∗) = P (Yxz = y,Xz = x,W∗) (13)

As we discussed in 4, an SCM is compatible with G does not mean that SCM induces G exactly.
Definition 9 (Compatible). Consider an SCMM over V and a DAG G over V. The SCMM (or
the graph GM induced byM) is said to be compatible with G if G is a CTFBN for P∗∗, where P∗∗

be the collection of all distributions of the form P (W1[x1],W2[x2], . . . ), where Wi ∈ V, Xi ⊆ V.

Informally speaking, we say that an SCMM (or the graph GM induced byM) is compatible with a
given graph G if GM imposes constraints that are at least as strong as those in G. Since the absence
of an edge in a causal diagram represents a constraint, this means that if GM has strictly fewer edges
than G, thenM is compatible with G.

Given the observed distribution P (V) and causal diagram G, the optimal counterfactual bounds are
closed intervals based on the following optimization problem [56].
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Figure S1: The generation process of a diffusion model. (a) recursion version; (b) proxy model
version.

Definition 10 (Optimal Counterfactual Bounds). For a causal diagram G and observed distributions
P (V), the optimal bound [l, r] over a counterfactual probability PM(yx, . . . , zw) is defined as,
respectively, the minimum and maximum of the following optimization problem:

max /min
M∈Ω(G)

PM(yx, . . . , zw) s.t.PM(V) = P (V) (14)

where Ω(G) is the space of all SCMs that agree with the diagram G, i.e., Ω(G) = {∀M|GM = G}. ■

By the formulation of Eq. (14), all possible values of counterfactual query induced by SCMs that
agree with the observational distributions and causal diagram are contained in the closed interval
[l, r].

A.2 Denoising Diffusion Probabilistic Model and Score Distillation Sampling

A Denoising Diffusion Probabilistic Model (DDPM) model [49, 19] are deep generative models that
consists of a forward process and reverse process with T time-steps. The forward process gradually
perturbs I(t−1) (the image at step t− 1) with gaussian noise to I(t) (the image at step t), where I(0)

(image at step 0) is the original image. Formally,

I(t) =
√
ᾱtI

(0) +
√
1− ᾱtE (15)

where ᾱt is the noise scheduler and E is the standard gaussian noise. In the reverse process, diffusion
model predict noise E at each time step using a neural network ϵ̂ taking I(t) and a text prompt or
label c as input. Specifically, the reverse starts from a random Gaussian noise vector I(T ) ∼ N (0,1)
and iteratively predicts noise with a using recursion

I(t−1) = µ̂(I(t), c, t) + σtZ
(t) (16)

where c is the text prompt/label and Z(t) are gaussian random vectors; and σt are pre-specified
variance terms.

µ̂(I(t), c, t) =

√
ᾱt−1
ᾱt

(I(t) − ᾱt
ᾱt−1

√
1− ᾱt

ϵ̂(I(t), c, t)) (17)

This process is illustrated in Fig. S1(a).

The text conditioned diffusion models use classifier-free guidance [20] to sample images from
conditional distribution P (I | c). Specifically, the reverse process does not only involve noise precitor
ϵ̂(i(t), c, t) with prompt c but also a non-conditional term. Formally, the denoise term is

(1 + ω)ϵ̂(i(t), c, t)− ϵ̂(i(t), ∅, t) (18)

where ω is a hyperparameter and ∅ is the null text. In this work, we fix the parameter ω and simply
denote the denoise term in the generation process as ϵ̂(i(t), c, t). Similarly, the corresponding mean
predictor Then, as we discussed in Sec. 4, this recursion process can be seen as a function that takes
input N = {I(T ),Z(T ), . . . ,Z(1)} and generates the image I as illustrated in Fig. S1(b). In Sec. 4,
we will demonstrate how to transform {C,N} to our proposed BD-CLS and use it for image editing.

In the DDPM training process, the network is trained to predict the noise E scheduled in the forward
process. The training objective can be expressed as:

LDiff = ∥ϵ̂(i(t), c, t)− ϵ∥ (19)
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Recently, [39] proposes Score Distillation Sampling (SDS) and shows that given an arbitrary differen-
tiable generator gθ that is able to generate i′(t) (the noise image i′ at timestep t), updating parameters
of the gθ in the following direction can render features c in the image:

∇θLSDS(i
′
t, c
′, ϵ, t) = (ϵ̂(i′t, c

′, t)− ϵ)∂i
′
t

∂θ
, (20)

Later [17] proposes Delta Denosing Score and shows that updating parameters in the following
direction, the generator produce the image i′ that is the closest image to i, where i′ matches the text
c′ and i′ matches the text c,

∇θtLDDS(i
′
t, c, ϵ, t) = (ϵ̂ω(i

′
t, c
′, t)− ϵ̂ω(it, c, t))

∂i′t
∂θ

, (21)

In other words, DDS is one of semantic invariance image editing approach that preserves features
except c as close as possible to the features in initial image.

B Proofs

B.1 Proof of Thm. 1

Theorem 1. Consider the true underlying ASCM M∗ over {V, I}, and let Let ND denote
∩Xi

ND(Xi)\X (non-descendants of X) in GV,L and DE denote ∪Xi
DE(Xi)\X (descendants of

X) in GV,L. The target query I-ctf query P ∗(Ix′ = i′ | I = i) can be factorized as

P ∗(Ix′ = i′ | I = i) = 1[h∗X(i′) = x′]︸ ︷︷ ︸
Intervention Consistency

· 1[nd′ = nd]︸ ︷︷ ︸
Non-descendants Invariance

· P ∗(Dex′ = de′ | v, l)︸ ︷︷ ︸
Amount of Descendant Changing

(2)

where nd = h∗ND(i), nd′ = h∗ND(i′), de = h∗DE(i), and {v, l} = h∗V,L(i). ■

Proof. We will use ctf-calculus [9, Thm 3.1] for solving this counterfactual. Specifically, we will use
rule 3, the exclusion rule

P (yxz,w∗) = P (yz,w∗) (22)
if X ∩Anc(y) = ∅ in GX, here Anc(y) = ∪Yi∈yAnc(Yi). Also, Recall hW is the inverse mapping
from I to W, for any W ⊆ V ∪ L.

P ∗(Ix′ = i′ | I = i) (23)

=
∑
v′′,l′′

P (i′x′ | i,v′′, l′′)P (v′′, l′′ | i) sum over v′′, l′′

(24)

=
∑
v′′,l′′

P (i′x′ | i,v′′, l′′)1[v′′, l′′ = hV,L(i)] invertibility

(25)

=
∑

x′′,nd′′,de′′

P (i′x′ | x′′x′ ,nd′′x′ ,de′′x′v, l)P (x′′x′ ,nd′′x′ ,de′′x′ | v, l) (26)

=P (Xx′ = x′′,nd′x′ ,de′x′ | v, l) invertibility
(27)

=1[hX(i′) = x′]P (nd′x′ ,de′x′ | v, l) intervention definition
(28)

=1[hX(i′) = x′]P (nd′,de′x′ | v, l) Rule 3, X ∩Anc(ND) = ∅ in GX
(29)

=1[hX(i′) = x′]P (nd′ | v, l)P (de′x′ | v, l) ND ⊆ V ∪ L
(30)

=1[hX(i′) = x′]1[nd′ = nd]P (de′x′ | v, l) ND ⊆ V ∪ L
(31)

B.2 Proof of Thm. 2
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Figure S2: The structure in
Lemma 1.

We first introduce the following lemma to map a F-ctf query to the
generative level.
Lemma 1. Consider a ground truth M∗. For every BD-CLS
M̂BD-CLS, there exists anotherM′ over {X,B,ND, Y, I} that in-
duces the same I-ctf distribution P (Ix′ | i) and is compatible with
G′ shown in Fig. 1, where Y is the descendant variable introduced
in Thm. 2.

Proof. Consider the Def. 4, for any M̂BD-CLS, the mixing mecha-
nism is expressed as:

I← f̂I(X,B,Z) (32)

Since f∗I is invertible DE = hDE ◦ f̂I(X,B,Z), where hDE is the
mapping from I to DE. According to structure condition Def. 4,
Z← f̂Z(B,UZ). According to the disentanglement conditions in
Def. 4 state that function τND = h∗ND ◦ f̂I such that

ND = τND(Z,B) (33)

Notice that
I = f̂I(X,B,Z) = f∗I ◦ hV,L ◦ f(X,B,Z) (34)

Thus, we construct anM′ exact the same as M̂BD-CLS except
ND← τND(fZ(B,UZ),B) (35)
Y ← hY ◦ f(fZ(B,UZ),B,X) (36)

I← f̂I(X,B,Z) = f∗I (X,B,ND\B, Y, hDE\Y ◦ f(X,B, fZ(B,UZ))) (37)

This will lead the same P (Ix′ | i) since the mechanism is the same over {X,B,Z} and the diagram
is shown in Fig. S2 according to the mechanisms.

Before formally proving Thm. 2. We first state our important assumption and clarify some notation
here. We assume that the domains of X, Y,ND are discrete and finite. Pa(Y ) in Thm. 2 denotes
the augmented parents Pa+(Y ), which means that the observed parents and the C components
of Y all belong to the non-descendants or X. Ch(X) denotes the intersection of each Ch(Xi),
which means Y is a child of every Xi ∈ X.
Theorem 2 (Causal validity of BD-CLS). Consider an M̂BD-CLS for M∗ and the target query
P (i′x′ | i). Let PM̂

BD-CLS
(i′x′ | i) be an estimator for P (i′x′ | i). Then, (a) (intervention) PM̂

BD-CLS
(x̃x′ |

v, l) = 1[x̃ = x′], where x̃ = hX(i′); (b) (non-descendants) PM̂
BD-CLS

(nd′x′ | v, l) = 1[nd′ = nd],
(c) (descendants) PM̂

BD-CLS
(y′x′ | x,b,nd,y) is ctf-consistent w.r.t. P ∗(y′x′ | v, l) for every Y ⊆

Ch(X) such that Pa(Y) ∈ ND ∪X, and w = hw(i),w′ = hw(i′) for any W ⊆ V ∪ L. ■

Proof. (a) intervention. According to Def. 4 condition (1),

PM̂
bd-cls

(I | x) = P ∗(I | x) (38)
Due to invertibility from I to X inM∗ and the conditional distribution match, the invertibility also
exists from I to X in M̂bd-cls. Then PM̂

BD-CLS
(x̃x′ | v, l) = 1[x̃ = x′], where x̃ = hX(i′).

(b) non-descendant. Then we use Lem. 1 to map a F-ctf query to the generative level. According to
Def. 2 and ND = hND(I),

PM̂
bd-cls

(nd′x′ | v, l) (39)

= PM̂
bd-cls

(nd′x′ | i) (40)

=

∫
i′′∈XI

1 [h∗ND(i′′) = nd′] dPM̂
bd-cls

(i) (41)

= PM
′
(nd′x′ | i) PM̂

bd-cls
(Ix′ | i) = PM

′
(Ix′ | i), Lem. 1 (42)

(43)
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Figure S3: Diagrams for two proxy SCMs in Proof for Thm. 2.

Since ND inM′ is also non-descendant of X, according to proof of Thm. 1,

PM
′
(nd′x′ | i) = 1[nd′ = nd] (44)

(45)

(c) descendant. First, we simplify the target query P ∗(y′x′ | v, l). First, since Pa(Y ) ⊆ X ∪ND,
there is no incoming edge from the point DE to C(Y ) where C(Y ) is the C component of Y . Then
Yx′ ⊥ DE | Y,ND,X,B. Thus we have

P ∗(y′x′ | v, l) = P ∗(y′x′ | x,b,nd, y) (46)

According to Def. 3, now the proof goal is to show the bound of F-ctf query PM̂
bd-cls

(y′x′ | nd)
(given GM̂bd-cls

and P (V, I)) is in the bound of query P ∗(y′x′ | nd) (given G and P (V,L)). We first
introduce the following lemma to map a F-ctf query to the generative level.

Following the same procedure of the mapping of an F-ctf query above using the fact Y = hY (I):

PM̂
bd-cls

(y′x′ | nd) (47)

= PM̂
bd-cls

(nd′x′ | i) (48)

=

∫
i,i′∈XI

1 [h∗Y (i
′) = y′, h∗ND(i) = nd] dPM̂

bd-cls
(i, i′x′)∫

i∈XI
1 [h∗ND(i) = nd] dPM̂bd-cls(i)

(49)

= PM
′
(y′x′ | nd) Lem. 1 and Eq. 10 (50)

(51)

Now the goal is to proof PM
′
(y′x′ | y,nd) (given GM′

and P (V, I)) is in the bound of query
P ∗(y′x′ | y,nd) (given G and P (V,L)). Since PM

∗
(I | x,b) = PM̂

bd-cls
(I | x,b) = PM

′
(I |

x,b),

PM
∗
(Y,ND | X,B) = PM

′
(Y,ND | X,B) (52)

To illustrate, this means that the observational distributions over {Y,ND,X,B} are equivalent
betweenM andM′. However the graph between them are different, i.e., G∗ ̸= G′. Thus, the proof
goal now is show the bound of the same query given same observational distribution but different
graph. We will prove that the bound is the same as given G1 and the diagram G2 shown in Fig. S3 if
the observational distribution can be matched betweenM(G2) andM(G1).
Denote the two bounds as BG1 and BG2 . BG2 ⊆ BG1 since G2 is a subgraph of G1 thusM(G2) satisfy
all constraints induced inM(G1).
We prove BG1 ⊆ BG2 by proving that for everyM1 that induces G1, we can find anotherM2 that
induces G2 such that PM1(y′x′ | x,b,nd, y) = PM2(y′x′ | x,b,nd, y). Formally, We will use the
spirit of canonical SCM [56, Def. 2.2] for expressing the PM1(y′x′ | y,nd,x,b) and PM2(y′x′ |
y,nd,x,b). Denote the domain of X as {x1,x2, . . . ,xdx}, the domain of B as {b1,b2, . . . ,bdb},
the domain of ND as {nd1,nd2, . . . ,nddnd

}, the domain of Y as {y1, y2, . . . , ydy}.
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Consider the function class FY1
FY = {{y1 ← {x1,b1,nd1}, y1 ← {x1,b1,nd2}, . . . , y1 ← {xdx ,bdb ,nddnd

}
{y1 ← {x1,b1,nd1}, y1 ← {x1,b1,nd2}, . . . , y2 ← {xdx ,bdb ,nddnd

}
· · · ,
{ydy ← {x1,b1,nd1}, ydy ← {x1,b1,nd2}, . . . , ydy ← {xdx ,bdb ,nddnd

}
}

(53)

and the function class FND
1 :

FY = {{nd1 ← {b1, },nd1 ← {b2}, . . . ,nd1 ← {bdb}
{nd1 ← {b1, },nd1 ← {b2}, . . . ,nd2 ← {bdb}
· · · ,
{nddnd

← {b1, },nddnd
← {b2}, . . . ,nddnd

← {bdb}
}

(54)

Consider fM1

Y and fM1

ND in the canonical type forM1

Y ← fM1

Y = f canonical
Y (X,B, R) (55)

ND← fM1

ND = f canonical
ND (B, R) (56)

where the domain of R are discrete values {rfND,fY }fND∈FND,fY ∈FY . Let,
f canonical
Y (x,b, rfND,fY = 1) = fY (X,B) and f canonical

ND (x,b, rfND,fY = 1) = fND(B).
For everyM′, the functions f ′Y and f ′ND can be expressed in the above way. Then:

Q1
1 = PM1(y′x′ | y,nd,x,b) =

∑
y′=fY (x′,b,nd),y=fY (x,b,nd),nd=fND(b) P (rfY ,fND = 1)

P (nd, y | x,b)
(57)

and the conditional observational distribution can be expressed as:

Q1
2 = PM1(y,nd | x,b) =

∑
y=fY (x,b,nd),nd=fND(b)

P (rfY ,fND) (58)

and
Q1

3 = PM1(y′,nd | x′,b) =
∑

y′=fY (x′,b,nd),nd=fND(b)

P (rfY ,fND) (59)

ForM2, consider the same function class

FY = {{y1 ← {x1,b1,nd1}, y1 ← {x1,b1,nd2}, . . . , y1 ← {xdx ,bdb ,nddnd
}

{y1 ← {x1,b1,nd1}, y1 ← {x1,b1,nd2}, . . . , y2 ← {xdx ,bdb ,nddnd
}

· · · ,
{ydy ← {x1,b1,nd1}, ydy ← {x1,b1,nd2}, . . . , ydy ← {xdx ,bdb ,nddnd

}
}

(60)

But with a different canonical model

Y ← fM2

Y = f canonical
Y (X,B, S) (61)

(62)

where the domain of R are discrete values {SfY }fY ∈FY . For a given canonicalM1, the counterfac-
tual quantity is

Q2
1 = PM2(y′x′ | y,nd,x,b) =

∑
y′=fY (x′,b,nd),y=fY (x,b,nd) P (sfY = 1)

P (y | x,b,nd)
(63)

and the condition observational distribution:

Q2
2 = PM2(y | nd,x,b) =

∑
y=fY (x,b,nd)

P (sfY = 1) (64)
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and
Q2

3 = PM2(y′ | nd,x′,b) =
∑

y′=fY (x′,b,nd)

P (sfY = 1) (65)

We set Q2
1 to be equivalent to Q1

1, namely,∑
y′=fY (x′,b,nd),y=fY (x,b,nd)

P (sfY = 1) (66)

=
∑

y′=fY (x′,b,nd),y=fY (x,b,nd),nd=fND(b)

P (rfY ,fND = 1)
P (y | x,b,nd)
P (nd, y | x,b)

(67)

=

∑
y′=fY (x′,b,nd),y=fY (x,b,nd),nd=fND(b) P (rfY ,fND = 1)

P (nd | x,b)
(68)

(69)

This set is feasible due to the following reason. First, the observation constrain P (y, | x,b,nd)
(Q1

2, Q
2
2)and P (y′, | x′,b,nd) (Q1

3, Q
2
3) are satisfied. The reason is that all summed term P (s) inQ2

1
are strictly subsets of P (s) in Q2

2 and P (s) in Q2
3; all summed term P (r) in Q1

1 are strictly subsets
of P (r) in Q1

2 and P (r) in Q1
3; Q1

2 = Q2
2; Q1

3 = Q1
3. Setting these sub-terms will not violate the

sum. Second, this will not violate the observational constraints for any P (y′′, | x′′,b,nd), where
{y′′ ̸= y,x′′ ̸= x} or {y′′ ̸= y′,x′′ ̸= x′}. For all other observation quantity P (y′′, | x′′,b,nd),
there is no P (S) in Q2

1 and P (R) in Q1
1 belongs to them. Third, this will not violate the observational

constraints for any P (y′′, | x′′,b′′,nd′′) for b′′ ̸= b and nd′′ ̸= nd. Any terms in Q1
1 and Q2

1 are
partially summed into these quantities. To construct all terms in Q1

1, P (y′′, | x′′,b′′,nd′′) must be
sum for all y′′ ∈ Domain(Y ). Then Q1

1 satisfies

Q1
1 ≤

∑
y′′

P (y′′, | x′′,b′′,nd′′) = 1 (70)

From this construction, we know the bound is the same as given G1 and the diagram G2 shown in
Fig. S3. And similarly, if any edge from B and ND into Y is missing in G2 compared to the true
diagram G∗, butM(G∗) andM(G2) are capable of inducing the same observational distribution, the
bound will be the same. Then we conclude PM

′
(y′x′ | y,nd) (given GM′

and P (V, I)) is in the
bound of query P ∗(y′x′ | y,nd) since the bound of PM

′
(y′x′ | y,nd) (given GM′

is the same with
the bound of P ∗(y′x′ | y,nd).

B.3 Proof of Thm. 3

We first list the important assumption about the pretrained model. We assume the pretrained model
MSD matches perfectly the conditional distribution P ∗(I | X,B), i.e.,

PM
SD
(I | x′′,b′′) = P ∗(I | x′′,b′′) (71)

for every x′′ and b′′.
Proposition 1 (Sampling I-ctf instances through SD model). Consider a ground truth ASCMM∗
over {V, I} and a SD model M̂SD. Consider a BD-CLS M̂BD-CLS over {X,B,N} for the target I-ctf
distribution P ∗(Ix′ | i). Let the transformations between {X,B,N} and {C,N} be C = {X,B},
Z = ψ1(X,B,N),N = ψ2(X,B,Z). Then

PM̂
BD-CLS

(IX=x′ = i′ | i) =
∑
n

PM̂
SD
(n | i,x,b)1[i′ = ψ(x,x′,b,n)] (4)

where ψ(x,x′,b,n) = fSD(x′,b, ψ2(x
′,b, ψ1(x,b,n))) ■

Proof. let x = hX(i) and b = hB(i). First, since MSD matches the observational distribution
P (I | x,b), PMSD

(x,b | I) = 1 due to the invertibility. Then,

PM
SD
(n,x,b | I) = PM

SD
(n | I,x,b)P (x,b | I) (72)

= PM
SD
(n | I,x,b) (73)
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Then,

PM̂
BD-CLS

(IX=x′ = i′ | i) (74)

=
∑

z′′,x′′,b′′

PM̂
BD-CLS

(z′′,x′′,b′′ | i)PM̂
BD-CLS

(IX=x′ = i′ | z′′,x′′,b′′) (75)

=
∑
z′′

PM̂
BD-CLS

(ψ2(z
′′,x,b) | i)PM̂

BD-CLS
(IX=x′ = i′ | x,b, ψ2(z

′′,x,b)) transform from {X,B,Z} to {X,B,N}

(76)

=
∑
n

PM̂
SD
(n | i)PM̂

SD
(fSD(x,b, ψ2(z

′′,x,b))X=x′ = i′ | z′′,x,b) (77)

formalization of SD model (78)

=
∑
n

PM̂
SD
(n | i)PM̂

SD
(fSD(x,b, ψ2(ψ1(x,b,n),x

′,b)) = i′ | ψ1(x,b,n),x,b) (79)

=
∑
n

PM̂
SD
(n | i,x,b)1[i′ = ψ(x,x′,b,n)] (80)

Theorem 3 (Sampling I-ctf instances through SD model). Consider a ground truth ASCMM∗
over {V, I} and the target distribution P (Ix′ | i). There exists a BD-CLS M̂BD-CLS such that the
output of Alg. 1 follows distribution PM̂

BD-CLS
(IX=x′ | i). ■

Proof. Using Prop. 1, BD-CLS-Edit is sound if ψ let {X,B,Z} with mixing function

I← fSD(X,B, ψ2(X,B,Z)) (81)

be a BD-CLS, where Z = ψ1(X,B,N). First, recall ψ(x,x′,b,n) =
fSD(x′,b, ψ2(x

′,b, ψ1(x,b,n))), where x′ ̸= x. This means the variables X in ψ1(X,B,N) are
not equal to X in fSD(X,B, ψ2(X,B,Z)). Then the parents of Z do not involve X in the BD-CLS
X, but rather B. Then {X,B,Z} is compatible with the structure condition F.g 4.

Now we consider the two constraints in the optimization procedure. The first constraint in optimization
procedure says that

ψθ(x,x
′, b,N) ∼ P (I | x,b) (82)

This implies that fSD(X,B, ψ2(X,B, ψ1(X,B,N))) generates the conditional distribution P (I |
x,b), which satisfies condition (1) in Def. 4. The second constraint in optimization procedure says
that

h∗ND(ψ(x,x′, b,n)) = h∗ND(i) (83)
Take x′ as x, namely,

ψθ(x,x, b,n) = fSD(x,b, ψ2(x,b, z)) = fSD(x,b,n) = i (84)

Then the change of x to x′ does not influence ND. The disentanglement condition is satisfied. Now
three conditions are satisfied in Def. 4, thus {X,B,Z} constructs a CLS.

Proposition 2 (Toy entanglement between binary X , Y and R). Consider binary X , non-
descendant R and descendant Y . Suppose P ∗(y | paY ) ̸= P ∗(y | pa′Y ). Suppose R and Y are both
entangled with {X,B,N} in SD modelMSD, then PM̂

SD

(r′x′ | x,b, r) = PM̂
SD

(r′x | x′,b, r) and
PM̂

SD

(y′x′ | x,b, r) ̸= PM̂
SD

(y′x | x′,b, r). ■

Proof. Given a binary variable W that is entangled with with {X,B,N}, we have we have

W = τW (X,B,N1) (85)

where N1inN. Construct an SCM M̂ over {X,B,W} with fW = τW and UW = N1.

Then
PM̂

SD

(w′x′ | x,b, w) = PM̂(w′x′ | x,b, w) (86)
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Since WX ⊥ X

PM̂(wx′ , wx | b) = PM̂(wx′ , w | x,b) = PM̂(w,wx | x′,b) (87)

When P (w | x, b) = P (w | x′, b),

PM̂(wx′ , w | x,b)
P (w | x, b)

=
PM̂(w,wx | x′,b)

P (w | x′, b)
(88)

PM̂(wx′ | x, b, w) = PM̂(wx | x′, b, w) (89)

1− PM̂(wx′ | x, b, w) = 1− PM̂(wx | x′, b, w) (90)

PM̂(w′x′ | x, b, w) = PM̂(w′x | x′, b, w) (91)

Since B is the backdoor set that X ⊥ R | B in M∗, we have P (r | x, b) = P (r | x′, b), then
PM̂(r′x′ | x, b, r) = PM̂(r′x | x′, b, r).
On the other hand, since P (y | x,b) ̸= P (y | x′,b),

PM̂(y′x′ | x, b, y) ̸= PM̂(y′x | x′, b, y) (92)

C Algorithm Details

Here we illustrate more details of our proposed BD-CLS-Edit.

First, we justify the necessity of the second step in BD-CLS-Edit, constructing the prompt us-
ing X,B. The key idea is that the prompt must not include descendants of ∗X . If the target
prompt involves a descendant of ∗X , then after the intervention, that descendant will have a
fixed value that is aligned with the prompt. This contradicts the variability in the descendant’s
outcome predicted by Thm.1. On the other hand, Thm.2 guarantees that the effect on a descen-
dant Y can still be captured, even if Y is not explicitly labeled in the BD-CLS model M̂bd-cls.

Algorithm 2: DDPM Sampling [21]
Input :Initial image i; Prompt c; SD

model;
Output : n from

1 n← {}
2 for t← T to 1 do
3 ϵ ∼ N (0, 1)

4 i(t) ∼
√
ᾱti

(t) +
√
1− ᾱtϵ

5 for t← 1 to T do
6 z(t) ∼ (i(t−1) − µ̂(i(t), c, t))/σt
7 i(t−1) ← µ̂(i(t), c, t) + σtz

(t)

8 return n = {i(T ), z(T ), . . . , z(1)}

In the third step of BD-CLS-Edit, N is sampled
from the observational distribution P SD(N |
i,x,b). This sampling process is related to in-
version methods that aim to find a noise sample
n given the prompt c = x,b, such that the diffu-
sion model fSD(n, c) reproduce the source real
image i [10, 18, 30, 50, 33]. However, many of
these methods focus on finding a single valid
noise sample n that can reproduce the initial im-
age, rather than sampling from the observational
distribution P SD(N | i, c). This is incorrect ac-
cording to Thm.1. For instance, in an extreme
case, some methods deterministically compute
a specific n given the initial image. If such a
deterministic n is used during generation after
an intervention, the descendants become fixed
- there is no randomness left in the process. However, Thm.1 implies that the descendants should
follow a counterfactual distribution P ∗(DE | v, l), and therefore should vary accordingly (see Ex. 7).
In this work, we use DDPM inversion [21] to sample n from P SD(N | i,x,b) and this full sampling
algorithm is shown in Alg. 2.

For the forth step of BD-CLS-Edit, we first elaborate more on µ̂θ . The denoising process is modified
to take as input a mixing prompt of c = {x,b} and c′ = {x′,b}. Formally, with a specific sample
n = {i(T ), z(T ), . . . , z(1)}, the transformation ψθ is the iterative process

i′(t−1) = µ̂(i′(t), c+ θt(c
′ − c), t) + σtz

(t) (93)

where i′(T ) = i(T ). To illustrate, the new prompt is linearly mixed between c and c′ at each time step
t by a different parameter θt. When θt = 0, the input prompt at step t is the initial labels c = {x,b},
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Algorithm 3: Search ψ in the forth step of Alg. 1

Input :n = {i(T ), z(T ), . . . , z(1)}; Initial θ = {θ1, . . . , θT }; Selected T̃; Adjustment
parameters λθ = {λ1, . . . , λT }; Target prompt embedding c′ = {x′,b}; Initial
prompt embedding c = {x,b}; Optimization iteration number nmax; Noise
predictor ϵ̂ and mean predictor µ̂ in SD model; Variance scheduler {σt}Tt=1 in SD
model; learning rate γ; Clip value θmax

Output : θ = {θ1, . . . , θT }
1 i′(t) ← i(T )

2 for t← T to 2 do
// get ĩ(t−1)

3 ĩ(t−1) ← µ̂(i′(t), c, t) + σtz
(t)

4 if t ∈ T̃ then
5 ĩ(t) ← ĩ(t) + λt(ϵ̂(it, c

′, t)− ϵ̂(it, c, t))
6 for i← 1 to nmax do

// get i′(t−1)

7 cmix ← c+ θt(c
′ − c)

8 i′(t−1) ← µ̂(i′(t), cmix, t) + σtz
(t)

// Update θ

9 θ ← θ + γ∇θtLCtf(i
′
t, c
′, ĩt, c, t)

10 θ ← clip(θ, θmax)

11 i′(t−1) ← µ̂(i′(t), cmix, t) + σtz
(t)

12 return θ = {θ1, . . . , θT }

which encourages the image output to have features X = x and B = b; when θt = 1, the input
prompt at step t is the target labels c′ = {x,b}, which encourages the image output to have features
X = x′ and B = b. Formally,

ψθ(c,N) ∼ P (I | c) If θ1 = θ2 = · · · = θT = 0

ψθ(c
′,N) ∼ P (I | c′) If θ1 = θ2 = · · · = θT = 1

(94)

Then, we illustrate the new counterfactual updating direction designed based on Prop. 2. Here
we explain more about this process leveraging the visualization. Specifically, when guiding i′

with the SDS direction and prompt c′ = {x′, b} (top-left panel in Fig. S4), the weather feature
(e.g., the appearance of rain on the ground) changes from x (sunny) to x′ (rainy). However, due to
entanglement, the non-descendant feature, such as trees, also tends to change from r to r′. Meanwhile,
the descendant feature (e.g., the umbrella) correctly changes to y′. In contrast, when guiding ĩ with
the SDS direction and c = {x, b} (bottom left panel of Fig. S4), the weather changes from x′ (rainy)
to x (sunny). Yet, the non-descendant features again change in the same direction from r to r′, and
the umbrella no longer tends to change to y′. After combining these contrasting directions (right
panel in Fig. S4), the weather reliably changes from x to x′, the umbrella (a descendant) appropriately
changes as well, and the non-descendant feature (e.g., the tree) remains invariant, correcting the
entanglement artifacts through cancellation.

To obtain ĩt, we move it in the DDS direction, which only changes feature X but preserves others
as the same. Specifically, a subset of time steps T̃ is selected, i.e., T̃ ⊆ {1, . . . ,T}. And for every
t ∈ T̃, we follow the DDS

ĩ(t) = i(t) + λt(ϵ̂(it, c
′, t)− ϵ̂(it, c, t)) (95)

where λt is a hyperparamter controlling the intensity of the change of X. Finally, to prevent θt from
being too large, θt is cut to a fixed maximum value θmax. This step is needed since a valid solution
to satisfy the first constraint of Eq. 5 is θ1 = θ2 = · · · = θT = 1 as illustrated in Eq. 94. Thus, θt
should be encouraged to be around 1. The complete procedure for searching ψ is shown in Alg.3.
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i′￼ ∇ℒSDS ∝ ̂ϵ (i′￼(t), {x′￼, b}, t) − ϵ

∇ℒSDS ∝ ̂ϵ (ĩ(t), {x, b}, t) − ϵ ĩ

,  
, 

X(Weather) = x
R(Tree) = r Y(Um) = y

Weather = x′￼

Tree = r′￼

∇ℒCTF ∝ ̂ϵ (i′￼(t), {x′￼, b}, t)−
̂ϵ (ĩ(t), {x, b}, t)

Um = y′￼

Final i′￼

Weather = x

Tree = r′￼

Um = y′￼

Weather = x′￼

Tree = r′￼

Um = y′￼

, ≈ P(r′￼x′￼
∣ x, b, r) P(y′￼x′￼

∣ x, b, y)

,  
, 

X(Weather) = x′￼

R(Tree) = r Y(Um) = y , ≈ P(r′￼x ∣ x′￼, b, r) P(y′￼x ∣ x′￼, b, y) ,  
, 

Weather(X) = x′￼

R(Tree) = r Y(Um) = y′￼

≈ 0,P(y′￼x′￼
∣ x, b, y)−P(y′￼x ∣ x′￼, b, y)

Figure S4: The contracting updating direction ∇LCTF. The entanglement of non-descendants are
canceled by contrasting while the intervention and effect on descendants are reflected in results.

D DC

BW BC
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(a)

Red Digit ( )DC = 0

Big Digits 

( )D ≥ 5

Green Digit ( )DC = 1

Small Digits

 ( )D < 5

(b)

Figure S5: The causal diagram and samples from ground truth generation process in Colored MNIST
and Bars experiments.

D Experiments

D.1 Colored MNIST and Bars

We first evaluate the guarantees provided by BD-CLS (Thm.2) on a modified MNIST dataset [13, 32]
featuring colored digits and bars. 5. The ground truth ASCM includes generative factors: Digit (0-9
D), Digit Color (red: DC = 0; green: DC = 1), Bar Width (thin: BW = 0; thick: BW = 1), Bar
Color (red: BC = 0; green: BC = 1), and other latent factors such as handwriting style. The causal
relationships are shown in Fig. S5(a) Other factors (e.g., writing style S) are considered independent
factors and are ignored in the diagram.

To illustrate, the digit (D) and digit color (DC) are confounded, exhibiting a negative correlation:
larger digits (≥ 5) tend to be red, and smaller digits (< 5) tend to be green, but they do not directly
affect each other. The digit color (DC) has a positive effect on bar color (BC); for example, red
digits are more likely to have red bars. The digit (D) has a positive effect on bar width (BW ); larger
digits are more likely to be with thick bars. However, when the digit color is green, this causal
relationship is flipped, and the digit negatively affects the bar width. Formally, the ground truth

5A bar in an image refers to a complete row of pixels with the same color.
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Figure S6: Replot of Fig. 5. Edit a red "1" with a thin red bar to digit "7". (a) Expectation of
counterfactual consistent editing; (b) Edit results. Top - initial image. Bottom - counterfactual
images.

generation processM∗ is given by

D ← UD
DC ← 1[UD ≥ 5]⊕ UDC
BC ← DC ⊕ UBC
BW ← ((1 [D ≥ 5] ∧ U1)⊕ (1[D < 5] ∧ U2))⊕DC

S← fS(US)

I← fI(D,DC,BC,S),

(96)

where the exogenous variable distributions are:

UD ∼ Uniform[0, 9]

UDC∼ Bernoulli(0.75)

UBC∼ Bernoulli(0.4)

U1 ∼ Bernoulli(0.75)

U2 ∼ Bernoulli(0.1)

(97)

Fig. S5(b) shows 50 random samples in the data set.

Task 1: Counterfactually editing digits

We first consider editing the digit as shown in Sec. 5.1 with additional illustration here. Suppose
that we are editing a red "1" with a thin red bar (D = 1, DC = 0, BC = 0, BW = 0) and wonder
what would happen had the digit "1" been a "7". According to the data generation modelM∗ and the
counterfactual behavior delivered by Thm. 1, the digit should be a "7", which implies interventional
consistency is achieved; (2) the non-descendants should be invariant. So digit color (DC) and bar
color (BC) remain red;. (3) The descendant BW should change by certain amount, in this case, the
probability of being thicker is

Q = P (BWD=7 = 1 | D = 1, DC = 0, BC = 0, BW = 0) (98)

To guarantee counterfactual consistency (Def. 3), the estimation of Q should be within the bound
[0.73, 0.82] according to Def. 3. These edit expectations are summarized in Fig. S6(a).

The editing results are shown in Fig. S6(b). All models achieve interventional consistency, that is, all
edited images depict the digit ’7’. However, CDiffusion fails to preserve non-descendant invariance:
both the digit color and bar color sometimes change to green. CGN, on the other hand, fails to reflect
descendant change: the bar width remains unchanged, even when the digit changes. In contrast,
both the BD-CLS (without labels of BW ) and the NCM (with full labels) achieve counterfactual
consistency. They preserve the color of both the digit and the bar, and successfully induce an increase
width in bar width when editing the digit. Notably, while the fully supervised NCM requires labeled
data for BW , BD-CLS achieves the same behavior without requiring those labels, demonstrating its
ability to provide counterfactual consistency for unlabeled features.

To quantify descendant changes, we report the results of estimating the query Q in Fig. S7(a).
Specifically, we repeat each method four times and measure the probability that the bar becomes
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Figure S7: Numerical evaluations of F-ctf queries.
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Figure S8: Edit a green "0" with a green thick bar to red digit. (a) Expectation of counterfactual
consistent editing; (b) Edit results. Top - initial image. Bottom - counterfactual images.

thicker after changing the digit to “7”. The numerical results show that both BD-CLS and the NCM
with full labels maintain the estimate within the theoretical bounds, whereas the CDiffusion and CGN
do not.

Task 2: Counterfactually Edit Digit Color

We next consider editing a digit’s color. Suppose that we are editing a green "0" with a thick green
bar and wonder what would happen had the digit color been red. According to the data generation
modelM∗ and the counterfactual behavior established by Thm. 1, the digit should be green, which
implies interventional consistency is achieved; (2) the non-descendants should be invariant. So the
digit (D) remain a "0";. (3) The descendant BC should change by certain amount, in this case, the
probability of being red is

Q = P (BCDC=0 = 0 | D = 0, DC = 1, BC = 1, BW = 1) (99)

To guarantee counterfactual consistency, the estimation of Q should be within the bound [0.33, 1].
Another descendant BW should also change by certain amount, in this case, the probability of being
thin is

Q = P (BWDC=0 = 0 | D = 0, DC = 1, BC = 1, BW = 1) (100)

To guarantee counterfactual consistency, the estimation of Q should be within the bound [0.89, 1]
according to Def. 3. These edit expectations are shown in Fig. S6(a). Unlike editing digits (Task 1),
BD-CLS are obtained in this task with only labels of D and DC.

The editing results are shown in Fig. S6(b). All models achieve interventional consistency, that
is, all edited images depict the red digit. However, CDiffusion fails to preserve non-descendant
invariance: the digit almost always changes. CGN, on the other hand, does not reflect the change in
descendant: the bar color and width remain unchanged, even when the digit changes. In contrast, both
the BD-CLS and the NCM with full labels achieve counterfactually consistent results. They preserve
the digit, and successfully change the bar color to red and reduce the bar width. Notably, while the
fully supervised NCM requires labeled data for BC and BW , BD-CLS achieves the same behavior
without requiring those labels, demonstrating its ability to provide counterfactual consistency for
unlabeled features.
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Figure S9: (a) BD-CLS for Task 1 ; (b) BD-CLS for Task 2.

To quantify descendant changes, we report the results of estimating the query Q in Fig. S7(b, c).
Specifically, we repeat each method four times and measure (1) the probability that the bar becomes
red after changing the digit to red (Fig. S7(b)); (2) the probability that the bar becomes thicker after
changing the digit to red (Fig. S7(c)). The numerical results show that both BD-CLS and the NCM
with full labels maintain the estimate within the theoretical bounds, whereas the CDiffusion and CGN
do not.

D.2 Model Details for Colored MNIST and Bars

We first provide more details on the architectures of the BD-CLS and other baselines: conditional
diffusion, CGN, and NCM with supervision. We first present the formal definition of NCM [54, 55].
Definition 11 (G-Constrained Neural Causal Model (G-NCM)). Given a causal diagram G, a G-
constrained Neural Causal Model (for short, G-NCM) M̂(θ) over variables V with parameters
θ = {θVi

: Vi ∈ V} is an SCM ⟨Û,V, F̂ , P̂ (Û)⟩ such that Û = {ÛC : C ⊆ V}, where
(1) each Û is associated with some subset of variables C ⊆ V, and XÛ = [0, 1] for all Û ∈ Û;
(2) F̂ = {f̂Vi

: Vi ∈ V}, where each f̂Vi
is a feed forward neural network parameterized by

θVi
∈ θ mapping values of UVi

∪PaVi
to values of Vi for UVi

= {ÛC : ÛC ∈ Û s.t. Vi ∈ C} and
PaVi

= PaG(Vi);
(3) P̂ (Û) is defined s.t. Û ∼ Unif(0, 1) for each Û ∈ Û. ■

BD-CLS. As illustrated in Sec. 5.1, the implementation is based on NCM. The architecture designed
has two stages, which mimics the ASCM generation process. In the first stage, we train a GAN-NCM
[55] on observed generative factors at the generative level. Specifically, the observed generative
factors are {D,DC,BC} and BW does not belong to V in the NCM for task 1 (editing digits). In
the second stage, we train a conditional diffusion model f̂I taking conditions {D,DC,BC} and
noise N as input to generate image I.

NCMs ensure that the resulting model satisfies the definition of a BD-CLS. For example, in our
setting, Digit Color (DC) serves as a backdoor set for Digit (D) based on the ground-truth causal
graph G shown in Fig.7. According to Def.4, this augmented NCM model satisfies the generation
condition, as the conditional diffusion model is trained to approximate P (I | D,DC). Second,
taking Z = {D,N}, the non-descendants {DC,BC} are directly modeled in the NCM and remain
disentangled from the intervention variable D. The structure of this augmented NCM, shown in
Fig. S9(a), aligns with the structural condition in Def.4, confirming its compatibility with the BD-
CLS framework. For task 2 (editing digit’s color), the observed generative factors are {D,DC}
and {BC,BW} do not belong to V in the NCM. The corresponding NCM structure is shown in
Fig. S9(b).

For detailed implementation, at the generative level, each function f̂V F̂ in M̂ is a feedforward neural
network with 2 hidden layers of width 64 with layer normalization applied [1]. Each exogenous
variable Û ∈ Û is a standard normal four-dimensional distribution. The generator and discriminator
are trained with a learning rate of 10−4, and are optimized with Adam optimizer [25]. All training
processes are performed with a batch size of 100. The model architecture of conditional diffusion
follows the implementation in [19]. Specifically, we use four feature map resolutions (32 × 32 to
4× 4). Two residual blocks per feature map and self-attention blocks at 16× 16 are implemented.
The total step size T is set as 1000. We train the model on a single NVIDIA H100 GPU epoch for
100 epoch. In addition, we generate a pair of initial image and counterfactual image from the model
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What would the image 
look like if the weather 
had been rainy?
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I
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Figure S10: The causal diagrams and image editing results for Task 3 - Edit the weather (umbrella).

in this experiment. In other words, we do not take a real image as input, but we generate the initial
image and edit it at the same time.

Conditional Diffusion. The first non-causal baseline is chosen as the conditional diffusion model
that approximates P (I | X). To have a better comparison, we use the exact same architecture of f̂I
for BD-CLS.

CGN [45]. The second baseline is CGN. We follow the implementation in [32]. CGN proposes to
encode an SCM over variables Shape, Texture,Background, and Label into the proxy generative
model. Given the label of the image, Shape, Texture,Background are independent. Formally, the
mechanism of this SCM is designed as follows:

Label← fl(Ul)

Shape← f̂s(Label, Ud)

Texture← f̂t(Label, Us)

Background← f̂b(Label, Ub)

I← f̂I(Shape, Texture,Background),

(101)

where mechanism fs, ft, fb is designed to learn the conditional distribution P (V | Label) with prior
knowledge, where V ∈ {Shape, Texture,Background}. The composition mechanism f̂I is not
learned but is defined analytically. After fitting the given observational distribution P (Label, I),
the intervention can be performed by changing Label. In task 1, the digit and the writing style are
regarded as Shape; the color is regarded as Texture and the colored bar is regarded asBackground.
In task 2, the color of the digit and the writing style are considered as Shape; the digit is considered
as background and the colored bar is regarded as Texture and the colored bar is regarded as
Background.

We use the same conditional diffusion model learn mechanism fs. ft, fb are directly hand designed
in task 1 while ft is learned through conditional diffusion in task 2. Theoretically, CGN learns
the independent mechanism from Shape, Texture,Background to the image. After performing
interventions on one variable, others should be preserved in the image.

Full supervised NCM. The third baseline is chosen as fully supervised NCMs. The implementation
of this casual basline is exactly the same as BD-CLS but with all the labels over {D,DC,BC,BW}.

D.3 Text-to-Image Editing

In this section, we validate BD-CLS-Edit for sampling counterfactual images in more open scenarios.
We compare the new method against two non-causal SOTA: (1) DDPM inversion [21], which is a
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Figure S11: The causal diagrams and image editing results for Task 3 - Edit the weather (shadow).

representative of the LS inversion family, and (2) DDS[21], which illustrates the semantic invariance
strategy.

Task 3: Counterfactually editing weather

We begin with the setting from Example 1, where the goal is to change the weather from sunny to
rainy in an image of a young (or old) lady in a garden (or street). The causal relationships between the
generative factors are shown in Fig.S10(a)). According to Theorem1, non-descendants (e.g., scene
layout, age, pose) should be preserved, while descendants (e.g., umbrella, shadows) should change
accordingly regardless of whether they are prompted. For example, an umbrella may appear and
shadows should become fuzzier on wet ground due to the weather change. As shown in Fig. S10
and Fig. S11, all methods achieve interventional consistency. However, DDPM inversion alters
non-descendants, changing the lady and scene. DDS maintaining visual similarity to the original
image but failing to reflect downstream effects. To illustrate, the umbrella does not appear and
the shadows in the sunny day are preserved. In contrast, BD-CLS preserves non-descendants and
correctly reflects the causal effects on descendants like the umbrella and shadow.

Task 4: Counterfactually editing season

Next, we consider editing an image described as ’a person in a forest’ by changing the season from
summer to fall. The corresponding causal diagram is shown in Fig. S12(a). According to Theorem1,
non-descendants, for example, the person’s gender, forest layout, should be preserved, even if not
prompted, while descendants, such as clothing, should change according to the causal effect of
season. To illustrate, a person in the fall is intending to wear more clothes. Fig. S12(b) shows
the editing results of our BD-CLS method compared to the baselines. DDPM inversion fails to
generate details for the person and the person’s location changes. DDS preserves personal details,
but the resulting clothing appears unrealistic since it keeps too many original details in the clothes.
In contrast, BD-CLS produces appropriate generate the season and realistic warmer clothing while
preserving non-descendant features.

Task 5: Counterfactually editing scene

Third, we consider editing an image described as “a person in a grocery store”. Specifically, we
intervene on the scene and aim at changing the background to a garden. The causal diagram is
shown in Fig.S13(a). According to the causal structure, non-descendants, for instance, background
layout, person’s pose, should remain unchanged, while descendants, such as a grocery bag, should
be removed, as it is unlikely to appear in a garden setting. Figure S13(b) shows the editing results.
DDPM inversion alters the person significantly, failing to preserve non-descendants. DDS retains
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Figure S12: The causal diagrams and image editing results for Task 4 - Edit the season.

Edit task 5: 

What would the image 
look like if the scene 
had been garden?
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Scene

I

Grocery Bag

Figure S13: The causal diagrams and image editing results for Task 5 - Edit the scene.

most personal details, but incorrectly preserves the grocery bag. In contrast, BD-CLS maintains
interventional consistency while correctly removing the grocery bag, reflecting the expected causal
effect.

Task 6: In contrast, editing the place and the sport Forth, we consider editing an image described
as ’a person is skiing in the snow’ by intervening in the place and the sport. The corresponding
causal diagram is shown in Fig.S14(a). According to Thm. 1, non-descendants, such as the gesture
and position of the person in the image, should remain unchanged, while descendants, including
surrounding details and sports equipment, should change accordingly. Figure S14(b) shows the
editing results. DDPM inversion alters the person’s gesture and location, failing to preserve non-
descendants. DDS retains most visual details from the original image, but this leads to unrealistic
edits; for instance, snowy mountains and trees remain, and skiing gear (e.g., ski poles and clothing)
are preserved, which would not usually appear in a surfing scene. In contrast, BD-CLS preserves the
person’s gesture and location while transforming the background into ocean-like waves and replacing
skiing gear with appropriate surfing equipment.
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Figure S14: The causal diagrams and image editing results for Task 6 - Edit the place and the sport.

D.4 Implementation Details for BD-CLS-Edit

We use Stable Diffusion XL[38], and all editing is performed in the latent space, after encoding
the input image. In other words, i(0) in Alg. 3 refers to the latent representation obtained via the
pre-trained SDXL autoencoder. The input image size is 1024 × 1024 × 3, and the image after
encoding is 128× 128× 4. For classifier-free guidance, we fix the parameter ω (Eq.‘18) is fixed as
7.5. Other hyperparameters in Alg. 3 are given as follows. The total inference steps are set to 200. T
of length 40 is randomly sampled from [1, ..200]. The initial θ is set to 0 for θT through θT−50 and
the others are initialized as 1. The clip value θmax is set as 1.5. The adjusted parameters follow the
coefficients in DDS [17]. The learning rate µ is set as 0.1 and the optimization is performed with
SGD. The experiments are also conducted on a single NVIDIA H100 GPU.

E Further Discussions and Examples

E.1 Augmented Structural Causal Models (Def. 1)

Here are several remarks regarding this ASCM generative process.

Remark 1 (Unlabeled factors L). The unlabeled factors L are the key difference compared to the
ASCM in [32]. An image often contains rich concepts that cannot be fully captured by humans. Thus,
the labeled information cannot be given to all of them. For example, annotations of an image are only
given to several user care features; a text description of an image usually focuses on main concepts
and ignores details.

Remark 2 (Unobserved endogenous variable L and unobserved exogenous variable U in ASCM).
There can be two standard confusions related to the difference between U and L as they are not all
unobserved/labeled. First, generative factors L ∈ Pa(I) are directly reflected in the image, while
U is not. Specifically, even if the unsupervised concept is not described in the annotation or text, it
exists in the image and can be mapped by h from I. See example 2 for more details.

Remark 3 (No exogenous variable UI for image I). L are unobserved parents of image variable I.
While one might surmise that L can be treated as the exogenous variable UI associated with I—that
is, denote L as UI—this is not the case. In the SCM, the variables in L are endogenous and may be
descendants of V, whereas UI, by definition, must not be descendants of any observed variables.

Remark 4 (The invertibility of fI). The fI is assumed invertible in the generative process since
these generative factors are present directly in a given image, regardless of features being labeled
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Figure S16: (a) The causal diagram over V and L at generative level; (b) The causal diagram over V
and I; (c) observational image samples in Ex. 2.

or not. This assumption is standardly used in non-linear ICA and representation learning literature
[28, 27, 22, 23].

We Ag Um P (We,Ag, Um)
0 0 0 0.4416
0 0 1 0.0384
0 1 0 0.3136
0 1 1 0.0064
1 0 0 0.0224
1 0 1 0.0576
1 1 0 0.0984
1 1 1 0.0216

Figure S15: P (V) induced by the
ASCM in Ex.. 2.

The ASCM induces a causal diagram GV,L,I over all gen-
erative factors V,L, and image I. This full diagram can
be projected onto a causal diagram involving only the ob-
served variables, denoted GV,I. In this work, we assume
that prior knowledge of GV,I - sometimes abbreviated as
G for simplicity - is available, from the human common
sense or from experts in the domain and is used as an in-
ductive bias. However, it is not assumed that the complete
generative graph GV,L,I is known.
Example 2 (continued Ex. 1). Consider an image describ-
ing "a young/old lady is standing in the garden during a
rainy/non-rainy day". We consider the augmented genera-
tive process, ASCM

M∗ = ⟨U = {U1, U2, U3, U4,UL}, {V = {We,Ag},L = {Um(L1), L2, L3, ...}, I},F∗, P ∗(U)⟩
(102)

where the mechanisms

F∗ =



We← U1

Ag ← U1 ⊕ U2

Um← ((¬Ag)⊕ U3) ∧ (We⊕ U4)

L2 ← f∗L2
(We,UL1

), L3 ← f∗L3
(UL2

)

...

I← f∗I (We,Ag, Um,L2, L3, ...)

(103)

and exogenous variables U1, U2, U3, U4 are independent binary variables, and P (U1 = 1) =
0.2, P (U2 = 1) = 0.4, P (U3 = 1) = 0.2, P (U4 = 1) = 0.1. UL = {UL2

, UL3
, ...} are also

independent of {U1, U2, U3, U4}.
At the generative level, the labeled variables V contain two variables {We,Ag}; We represents
if the weather is rainy (rainy We = 1; non-rainy We = 0); Ag represents the age of the lady
(Young Ag = 1; Old Ag = 0;). L represents unlabeled factors that do not appear in the text
description, including if the person has an umbrella Um(L1) (with umbrella Um = 1; without
umbrella Um = 0), the shadow of the person (L2), pose (L3), etc. As discussed in Remark 2,
although these factors are not labeled, they are parents of image variable I, and play different roles
with U1, U2, U3, U4,UL in the generative process. The causal diagram G over V,L induced by
M∗0 at the generative level is shown in Fig. S16(a). The distribution P (We,Ag, Um,L2, L3, ...)
induced byM∗ is displayed in Fig. S15 (only one unlabeled factor L1(Um) is shown explicitly for
simplicity). This distribution suggests that there is a positive correlation between rainy (We = 1)
and young age (Ag = 1); a negative correlation between the umbrella (Um = 1) and young age
(Ag = 1); a positive correlation between rainy We = 1 and umbrella Um = 1.
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Figure S17: (a) Causal proxy model. ; (b) A standard LS.

In the second stage of the generative process, all V and L are mixed by function f∗I and generate the
corresponding pixels. Some image samples {i1, i2} from the observational distribution are shown
in Fig. S16(c). The causal diagram G over the observed variables V, I (projected from the whole
diagram) is shown in Fig. S16(b).

The task "edit the original image i1 (shown in Fig. S16(c)) to a rainy day" can be written as a
counterfactual distribution "what would the image be had the weather been rainy?", which corresponds
to the query P ∗(IWe=1 | I = i2). ■

E.2 Proxy Models and Latent Space

As illustrated in Sec. 2, the standard latent space in literature can be regard as a proxy model for the
ground truth ASCM. Here we give two examples for proxy models: one is the standard latent space
M̂LS; and one is a proxy model with a more complex causal structure M̂.
Example 3 (continued Ex. 2). Consider the ASCM image generation processM∗ illustrated in Ex.
2. Consider an SCM,

M̂ = ⟨Û = {Û1, Û2, Û3, Û4, ÛL},Z = {Z1, Z2, Z3, Z4, Z5, Z6, ...}, F̂ , P ∗(Û)⟩, (104)
where the mechanism,

F̂ =



Z1 ← Û1

Z2 ← Û2 ⊕ Z1

Z3 ← (¬Z2)⊕ Û3, Z4 ← Z1 ⊕ Û4

Z5 ← ÛL1
, Z6 ← ÛL2

...

I← f̂I(Z) = f∗I (Z1, Z2, Z3 ∧ Z4, f
∗
L2
(Z1, Z5), f

∗
L3
(Z6), ...)

(105)

and Û follows the same distribution as U ofM∗, namely, P (Û) = P ∗(U). It is verifiable that
M̂ induces the same P (I) as M∗, and the causal structure GM̂ is shown in Fig. S17(a), where
Z− = Z\{Z1, Z2, Z3, Z4}.

Consider another SCM M̂LS with endogenous variables Z exactly the same with M̂, but different
with the following collection of mechanism F as follows:

F̂LS =



Z1 ← Û1

Z2 ← Û2

Z3 ← Û3, Z4 ← Û4

Z5 ← ÛL1
, Z6 ← ÛL2

...

I← f̂LSI (Z) = f∗I (Z1, Z1 ⊕ Z2, ((¬Z1 ⊕ Z2)⊕ Z3) ∧ (Z1 ⊕ Z4), f
∗
L2
(Z1, Z5), f

∗
L3
(Z6), ...)

(106)
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It is verifiable that M̂ induces the same P (I) asM∗, and the causal structure GM̂LS

is shown in
Fig. S17(b). Z are a standard LS where variables Zi and Zj are independent with each other in the
latent space. ■

E.3 Feature Counterfactual Query (Def. 2)

Equipped with ASCMs (Def. 1), our task to edit the concept X in an original image i from X = x to
X = x′ can be formalized as querying an image counterfactual distribution (I-ctf) P ∗(Ix′ | I = i)
induced by the true underlying modelM∗. To illustrate, consider Ex. 2: the task "edit the original
image i1 (shown in Fig. S16(c)) to a rainy day" can be written as a counterfactual distribution "what
would the image be had the weather been rainy?", which corresponds to the query P ∗(IWe=1 | I =
i2).

The I-ctf query can be mapped back to the generative level by the following result.

Lemma 2. Consider a true generative process described by ASCMM∗. Then,

PM
∗
(i′x′ | i)︸ ︷︷ ︸

images

= PM
∗
(v′x′ , l′x′ | v, l)︸ ︷︷ ︸

generative factors

(107)

where v, l = f−1I (i). ■

To illustrate, Lemma. 2 states that an I-ctf query is equivalent to asking "What would all generative
factors be had a concept change to x′?". For example, P ∗(IWe=1 | I = i2) in Ex. 2 is equivalent
to asking what age, umbrella, shadow, the pose of the lady, and other unlabeled factors would
be had the weather changed to a raining day. However, it is reasonable that users may only care
about counterfactual reasoning about a subset of the generative factors. For example, a user may
specifically care what age and umbrella would be had the weather changed to rainy (do(We =
1)) given an old lady without an umbrella on a sunny day, namely a counterfactual distribution
PM

∗
(AgWe=1, UmWe=1 | We = 0, Ag = 0, Um = 0). The following definition provides a way

to denote the feature counterfactual query over concepts generated from a proxy model.

Definition 2 (Feature Counterfactual Query). Consider an ASCM over generative factors V and L,
a proxy model M̂ over {Z, I}, a set of factual features W2 ⊆ {V,L}, and a set of counterfactual
features W1 ⊆ {V,L}. A feature counterfactual (F-ctf) query is defined as:

PM̂(W1[T=t′] = w1 |W2 = w2) :=

∫
i,i′∈XI

1
[
h∗W1

(i′) = w1, h
∗
W2

(i) = w2

]
dPM̂(i, i′[T=t′])∫

i∈XI
1
[
h∗W2

(i) = w2

]
dPM̂(i)

(1)
where h∗W1

and h∗W2
are the mappings from I to W1 and W2. ■

In other words, PZ(W1[T=t′] = w1 | W2 = w2) describes the probability that the feature W1

would take value w1 had T = t′, given the features W2 = w2. Specifically, PM̂(W1[T=t′] =
w1 |W2 = w2) is defined as a conditional distribution where the denominator is the conditional
feature generated by the proxy model and the numerator is the joint counterfactual feature generated
by the proxy model. Specifically, the denominator integrates (sums) over all images i1 such that i1
has features w1 in observational worlds; the numerator integrates (sums) over counterfactual worlds
P (i, i′[T=t′]) such that {i, i′} has features {w1,w2}. Def. 2 provides a way to describe counterfactual
quantities over features W1 and W2 even when W1 and W2 are not exactly represented by Z. This
definition extends [32, Def. 4.4] by allowing the factual set W2 and the counterfactual set W1 to be
arbitrary subsets of V ∪ L, rather than restricted to V alone.

Example 4 (continued Ex. 3). Consider the proxy model M in Ex. 3. Suppose that the F-ctf
query interested is the probability that "given an old lady without an umbrella on a sunny day, the
age of the person would still be old and the umbrella would be added if Z1 = 1". According to
Def. 2, the factual set W1 is chosen as {We,Ag, Um} and the counterfactual set W2 is chosen as
{Ag,Um}. Then the F-ctf query is PM̂(AgZ1=1, UmZ1=1 | We = 0, Ag = 0, Um = 0). Since
{Ag,Um,We} are not endogenous variables in M̂, the F-ctf query cannot be calculated directly
through M̂ and should be computed from Def. 2. To illustrate, the denominator of Eq. 1 evaluates
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the factual part: the probability of generated images are describing "an old lady without an umbrella
in a sunny day", which is∫

i1∈XI

1
[
h∗We(i) = 0, h∗Ag(i) = 0, h∗Um(i) = 0

]
dP (i1) = P (Z1 = 0, Z2 = 0, (¬Z3) ∧ Z4 = 0).

(108)
The numerator evaluates the counterfactual part, integrating over counterfactual worlds P (i, i′[T=t′])

such that i describing "an old lady without an umbrella in a sunny day" and i′ describing "an old lady
with an umbrella in a rainy day".∫

i,i′∈XI

1
[
h∗We(i) = 0, h∗Ag(i) = 0, h∗Um(i) = 0, h∗Ag(i

′) = 0, h∗We(i
′) = 1, h∗Um(i′) = 1

]
dP (i, i′[Z1=1])

= P (Z1 = 0, Z2 = 0, (¬Z3) ∧ Z4 = 0, Z2[Z1=1] = 0, (Z3 ∧ Z4)[Z1=1] = 1)

.

(109)

Then we have

PM̂(AgZ1=1, UmZ1=1 |We = 0, Ag = 0, Um = 0)

=P (Z2[Z1=1] = 0, (Z3 ∧ Z4)[Z1=1] = 1 | Z1 = 0, Z2 = 0, (¬Z3) ∧ Z4 = 0) = 0
(110)

■

Next, we present an example to illustrate how to evaluate the estimation of an F-ctf query using
ctf-consistency, even when the query is not identifiable.
Example 5 (continued Ex. 2). Consider the ASCM introduced in Ex. 2 and the query P ∗(AgWe=1 =
1, UmWe=1 = 1 | We = 0, Ag = 0, Um = 0), corresponding to task "edit the weather to rainy".
According to mechanism F∗ (Eq. 103) and P ∗(U),

P ∗(AgWe=1 = 1, UmWe=1 = 1 |We = 0, Ag = 0, Um = 0) =
P ((¬U3) ∧ (¬U4) = 0)

P ((¬U3) ∧ U4 = 0)
= 0.78

(111)
This is the ground truth and not immediately obtainable. On the other hand, the bound [l, r] of this
query given P (V) and GV,L can be derived as (see [36, Thm. 9.2.12]):

l = max{0, 1− P (Um = 0 |We = 1, Ag = 0)

P (Um = 0 = 0 |We = 0, Ag = 0)
} = 0.70

r = min{1, P (Um = 1 |We = 1, Ag = 0)

P (Um = 0 |We = 0, Ag = 0)
} = 0.78

(112)

Def. 3 is saying that any value within the bound [0.70, 0.78] is regarded as a counterfactual consistent
estimation for the ground truth P ∗(AgWe=1 = 1, UmWe=1 = 1 |We = 0, Ag = 0, Um = 0) and
any value out of this bound will be regarded as invalid from a causal stand point. ■

E.4 Counterfactually Editing principles - Thm. 1

We first apply Thm. 1 to the raining and umbrella setting introduce in Ex. 2.
Example 6 (continued Ex. 2). Consider the ASCM introduced in Ex. 2 and the task of editing the
weather in image i1 (describing an old lady standing in a sunny day without an umbrella, shown in
Fig. S16(c)) to rainy. The target query is written as P (i′We=0 | i1), where i′ ∈ XI. Following Thm. 1,
we can have

P ∗(ix′ = i′ | i = i) = 1[h∗We(i
′) = 1]︸ ︷︷ ︸

Intervention Consistency

·1[h∗Ag(i′) = 0, h∗L2
(i′) = h∗L2

(i), ...]︸ ︷︷ ︸
Non-descendants Invariance

· P ∗(UmWe=0 = h∗Um(i′), L1[We=0] = h∗L1
(i′), ... | v, l)︸ ︷︷ ︸

Amount of Descendant Change

(113)

The first term ascertains that the weather in the edited image i′ must be indeed rainy. The second
term says that non-descendants, such as age, should be invariant after the edit. The third says that the
weather’s descendants, such as the umbrella, should change following P ∗(UmWe=0, L1[We=0], ... |
v, l). ■
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, Nd = nd DE = de , Nd = nd′￼ DE = de
, Nd = nd DE = de′￼ , Nd = nd′￼ DE = de′￼

Initial image space  
P(I = i ∣ x)

Causal

Non-causal Semantic Invariance

Non-causal LS Inversion

Edited image space  
P(I = i′￼∣ x′￼)

Figure S18: The comparison of non-causal editing methods, and the causal editing methods.

We then present a concrete example to clarify the notion of the “amount of change”—illustrating why
a factor may change during editing, yet still fail to reflect a valid counterfactual.
Example 7 (continued Ex. 4 and 5). Consider the true ASCMM∗ introduced in Ex. 2 and the
image editing task "change the weather to rainy", which corresponds to I-ctf query P ∗(IWe=1 | i1),
where i1 is shown in Fig. S16(c). Since Z1 exactly represents We, one may use PZLS

(IZ1=1 | i1) to
estimate P (IWe=1 | i1).
Consider an interested probability that "given an old lady without an umbrella on a sunny day,
an umbrella would be added having the weather change to rainy", which corresponds to Q =
P ∗(UmWe=1 |We = 0, Ag = 0, Um = 0). According to Def. 3, an estimate is ctf consistent with
Q if the estimation is within the bound [0.70, 0.78] ( Ex.. 5).

Consider the proxy model M̂ introduced in Ex. 3. The F-ctf query PM̂(UmZ1=1 |We = 0, Ag =

0, Um = 0) induced by M̂ can be calculated as:

PM̂(UmZ1=1 |We = 0, Ag = 0, Um = 0)

=P (Z3 ∧ Z4 = 1 | Z1 = 0, Z2 = 0, (¬Z3) ∧ Z4 = 0) = 0.02
(114)

Thus, the umbrella would be raised with probability 0.02 due to the statistical correlation between
Um and {Ag,We}. However, the umbrella would be raised at least 0.70 to be ctf-consistent. In
other words, naively using the correlation between the intervened feature Um and the descendant
Um, the amount of descendant change is not guaranteed. ■

In addition to the discussion between change and invariance in Fig. 3. We provide another graph to
illustrate the editing path on I between causal methods and non-causal methods shown in Fig. S18.

E.5 Backdoor Disentangled Causal Latent Space - Def. 4 and Thm. 2

Example 8 (continued Ex. 3). Suppose our goal is the edit task formalized as P ∗(i′We=0 | i1) in
Ex. 6 given P (V, I) and the causal diagram GV,I shown in Fig. S16(b). Note that {Ag} serves as a
backdoor set B in GV,I.

Consider two proxy model introduced in Ex. 3. M̂ and M̂LS are both not BD-CLS. To witness, notice
that condition (a) requires there exists Zi, Zj ∈ Z exactly representsWe andAg (X,B), respectively,
but there is no Zi ∈ M̂LS exactly represents Ag. In the case of M̂, the disentanglement requirement
is satisfied. To illustrate, Z1 exactly represents We and Z2 exactly represents Ag. According to f̂I in
Eq. 105,

Lj = fL∗
j
(Pa(Lj), Zj+2) (115)

For any Lj ∈ ND, Lj is disentangled w.r.t. X since X /∈ Anc(Lj) and X = Z1. However,
condition (b) is not satisfied since X point to B in GM̂.
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Now we consider another SCM M̂BD with endogenous variables ZBD is exactly the same with M̂
but different fZ2

as follows:

Z2 ← Û1 ⊕ Û2. (116)

Then Z = ⟨X = {Z1}, B = {Z2},Z = {Z3, Z4, . . . }⟩ satisfies the disentanglement requirement
(similar to M̂ illustrated above) and also satisfies the structural requirements. ■

Example 9 (continued Ex. 9). Consider M̂BD introduced in Ex. 8. Notice that {Z1} = X = {We}
and {Z2} = B = {Ag}. Consider the image editing task "change the weather to rainy", which is
formalized as the target I-ctf query P ∗(i′we | i1) in Ex. 8, where i1 contains the feature {We =
we = 0, Ag = ag = 0, Um = um = 0} and i′ contains the feature {We = we′ = 1, Ag = ag′ =
0, Um = um′ = 1}.
First, BD-CLS guarantees interventional consistency.

PM̂
BD
(we′We=1 | v, l) = 1[we′ = we] = 1. (117)

Since Ag is a non-descendant of We, Thm. 2 suggests that

PM̂
BD
(ag′We=1 | v, l) = 1[ag′ = ag] = 1. (118)

In other words, BD-CLS guarantees that the feature Age is invariant after editing.

Next, consider a descendantUm. SinceUm is a child ofWe and Pa(Um) = {We,Ag} ⊆ ND∪X ,
Thm 2 suggests that the estimation PM̂

BD
(um′We=1 | we, ag, um) induced by BD-CLS is ctf-

consistent with the ground truth P ∗(um′ | v, l), which means PZBD

(um′We=1 | we, ag, um) is in
the optimal bound of P ∗(um′We=1 | v, l). According to Ex. 5

P ∗(um′ | v, l) = P ∗(Um = 1 |We = 0, Ag = 0, Um = 0) ∈ [l, r]

l = max[0, 1− P ∗(Um = 0 |We = 0, Ag = 0)

P ∗(Um = 1 |We = 1, Ag = 0
)] = 0.70

r = min[1,
P ∗(Um = 1 |We = 1, Ag = 0)

P ∗(Um = 0 |We = 0, Ag = 0
)] = 0.78

(119)

Thus, Thm 2 suggests the estimation PM̂
BD
(um′We=1 | we, ag, um) to be within bound [0.7, 0.78].

This can be verified through Def. 2,

PM̂
BD
(um′We=1 | we, ag, um) =

PM̂
BD
((¬Z3) ∧ (¬Z4) = 0)

PM̂BD((¬Z3) ∧ Z4)
= 0.78 (120)

E.6 Limitation

We discuss several limitations of our approach. First, since our method relies on pre-trained diffusion
models, its performance is bound by the capabilities of these models. For example, if a model does
not understand the input prompt, interventional consistency may not be achieved, and the edited
image i may not reflect the intended features.

Second, while our theoretical results demonstrate the soundness of BD-CLS-Edit, the practical
implementation, particularly Step 4, which searches forψ, relies on the expressiveness of the candidate
class µθ (Sect. 4.1). There is no guarantee that this class can disentangle all non-descendants ND,
especially in cases involving complex causal relationships with object moving, sizes changing, etc.

For example, editing an image of “a rabbit looking at a carrot in the forest” to “a rabbit looking at a
wolf” fails to reflect the expected size differences: the wolf should appear much larger than the rabbit,
but this is not captured by the current edit (Fig.S19(a)). Similarly, replacing a white cat with a rat
in an image of “a black cat and a white cat in a room” does not correctly reflect the causal effect of
chasing behavior: the black cat should be chasing the rat, and both should be in motion, which is not
the case in the result shown in Fig.S19(b). In other words, there are some more complex dynamics in
the relationships of these objects that are not captured in a single image.
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Species 
(Cat/Rat)

Change the white cat to a ratChange the carrot to a wolf

Action 
(look/chase)

Category 
(carrot/wolf)

Size 
(small/big)

(a) (b)

Figure S19: Failure cases of BD-CLS-Edit.

E.7 Broader Impact

This paper aims to bridge the gap between causal image editing and the capabilities of large-scale
pre-trained text-to-image models. Our work contributes to the growing need for more principled and
reliable generative models by introducing a causal framework that respects the underlying structure
of the data, rather than relying on correlation-driven editing strategies. A key motivation for this work
is to challenge the common practice in current editing methods that prioritize semantic invariance,
i.e., preserving as much of the original image as possible, while ignoring the causal effect of the edit
on other semantics. This often leads to unrealistic results, particularly when editing should naturally
induce downstream changes. By incorporating causal principles into the editing process, our method
enables generative models to produce more realistic, consistent, especially in cases involving complex
dependencies between visual features, which is beneficial for downstream tasks related to reliability,
interpretability, and fairness generation.

E.8 Safeguards

Similar to previous generative methods, our framework could be misused, for example, to manipulate
visual content in ways that appear causally plausible but are misleading, such as in the spread of
misinformation or the generation of unsafe content. Since our method builds on existing pre-trained
models rather than releasing a new one, existing safety mechanisms developed for diffusion-based
models can be applied to enhance the safety of our approach [15, 31, 47].
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