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Abstract

Artificial intelligence (AI) systems hold great promise for advancing various sci-
entific disciplines, and are increasingly used in real-world applications. Despite
their remarkable progress, further capabilities are expected in order to achieve
more general types of intelligence. A critical distinction in this context is between
factual knowledge, which can be evaluated against true or false answers (e.g.,
“what is the capital of England?”), and probabilistic knowledge, which reflects
probabilistic properties of the real world (e.g., “what is the sex of a computer
science graduate in the US?”). In this paper, our goal is to build a benchmark
for understanding the capabilities of large language models (LLMs) in terms of
knowledge of observational distributions. Here, the term observational refers to
Pearl’s Causal Hierarchy (PCH), to make explicit that we are interested in observa-
tional probabilistic knowledge (Layer 1 of the PCH), as opposed to interventional
(Layer 2) or counterfactual (Layer 3) knowledge. Given that LLMs are trained on
vast amounts of text, it may be plausible to think that they internalize aspects of
real-world observational distributions. Indeed, this idea has gained traction, with
LLMs being touted as powerful and universal approximators of real-world distribu-
tions. At the same time, classical results in statistics, known under the term curse
of dimensionality, highlight fundamental challenges in learning distributions in
high dimensions, challenging the notion of universal distributional learning. In this
paper, we develop the first benchmark to directly test this hypothesis, evaluating
whether LLMs have access to empirical observational distributions (corresponding
to Layer 1 of Pearl’s Hierarchy) describing real-world populations across domains
such as economics, health, education, and social behavior.

1 Introduction

Artificial intelligence (AI) systems hold great potential to accelerate many scientific disciplines
including healthcare [27, 44], education [24], and economics [11]. Automated systems based on
AI are also increasingly used in a wide variety of real-world settings. Yet, despite rapid progress
and broad adoption of these systems, many core capabilities required for robust and reliable AI still
need to be developed further, on the path to reaching artificial human intelligence [14, 29]. One of
the hallmark features expected from AI systems is the ability to reason probabilistically about the
world, and not only to mimic human intuition and language. Such capabilities are needed for systems
capable of assisting scientific discovery, advancing our understanding of complex phenomena, and
help societal decision-making.

In this context, it is helpful to distinguish between two types of knowledge embedded in AI systems:
factual knowledge, which can be evaluated based on true or false answers based on questions for
which there is an agreed upon answer (e.g., “what is the capital of England?”); and probabilistic
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knowledge, which reflects the inherent uncertainties of the world we operate in (e.g., question such
as “what is the sex of a computer science graduate in the US?”). Much of the current evaluations of
large language models (LLMs), currently the prevailing paradigm in AI research [13], has focused on
factual knowledge, i.e., question answering, fact recall, etc. At the same, the degree to which LLMs
encode probabilistic knowledge about the real world remains relatively underexplored.

In this work, our focus is on observational probabilistic knowledge, where the term observational
refers to the first layer of Pearl’s Causal Hierarchy (PCH, for short) [38, 8]. The PCH distinguishes
different types of probabilistic knowledge, corresponding to different cognitive capabilities of (AI)
systems: Layer 1 of observation (seeing), which includes reasoning about observed events and
correlations between variables; Layer 2 of intervention (doing), which includes inferences about
systems in which causal interventions are performed; and Layer 3 of counterfactual reasoning
(imagining, see Fig. 2 left), which allows inference for hypothesized events for which the required
pre-conditions may not have materialized in reality. Important results from previous work demonstrate
that, in absence of appropriate assumptions, moving across different layers of PCH is provably
impossible. The result known as the Causal Hierarchy Theorem (CHT, [8]) states that observational
knowledge (Layer 1) about a system underdetermines its interventional (Layer 2) and counterfactual
(Layer 3) behavior. With causal modeling and assumptions, inferences across layers may become
feasible. A classical example is causal modeling that uses observational data, combined with structural
assumptions, to infer interventional or counterfactual distributions [38, 7]. Therefore, if one can show
that LLMs do not have access to observational knowledge (Layer 1), based on the CHT, one may also
be skeptical of these models’ capabilities for performing reliable statements about interventions or
counterfactuals.

Given the abundance of observational data, it is plausible that LLMs, trained on vast corpora of text
data, have internalized aspects of real-world observational distributions. Indeed, strong claims in
this debate have emerged, with OpenAI’s CEO Sam Altman suggesting that “humanity has found
a universal way to approximate distributions,” [5] implying that large models serve as powerful
approximators of the world, and may have access to any kind of Layer 1 knowledge.

While LLMs have been tremendously successful at various tasks, some caution is nonetheless
warranted. Classical results in statistics highlight fundamental limitations of learning distributions
in higher dimensions: the famous curse of dimensionality results demonstrate theoretically that
learning distributions becomes exponentially harder (in terms of required samples) as dimensionality
grows. Seminal work by Charles Stone [45] establishes that estimation rates degrade sharply with
dimensionality, with the optimal rate of convergence for an unknown differentiable regression function
f being O(n→ 1

2+d ) in any Lp norm, where d is the dimension of the input of f . Such results challenge
the notion of universal distributional learning in higher dimensions, in stark contrast with the notion
of LLMs working as universal approximators.
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Figure 1: Benchmark leaderboard.

This tension raises a natural question: should one
believe the optimism of universal approximation put
forward by Sam Altman, or the caution grounded in
statistical theory, such as the results of Charles Stone?
In this paper, we attempt to shed light on this debate
and examine different aspects of LLMs’ capabilities
in approximating distributions. We introduce a bench-
mark specifically designed to assess whether LLMs
have access to observational distributions describ-
ing real-world populations, across various domains
including economics, health, education, crime, and
social behavior. This is why our approach can be
termed as epidemiology, from Greek epi (fall upon) +
demos (population) + logos (knowledge) – the knowledge of what falls upon populations.

1.1 Contributions

Our contribution in this work is to construct a benchmark for evaluating the capabilities of large
language models in terms of access to knowledge about observational distributions in the real-world.
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Data Source Task Example Prompt

Census: Age What is the age of a person living in the
United States?

Census: Sex by Age What is the sex of a person living in the
United States who is {} years old?

Department of Education:
Sex by Degree

What is the sex of a person who gradu-
ated with a degree in physical sciences?

Department of Education:
Race by Degree

What is the race of a person who gradu-
ated with a degree in physical sciences?

Department of Labor: Sex
by Occupation

What is the sex of a person working as
a software engineer?

Department of Labor:
Race by Occupation

What is the race of a person who is
working as a librarian?
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Figure 2: Overview figure for our benchmark.

(i) We curate a total of 10 datasets, ranging from healthcare, health behavior, and education, to
labor, consumer spending, and crime statistics. For each large scale dataset, which describes
the population level statistics in the United States, we extract a set of questions to test whether
a language model has knowledge about the population encoded in the respective dataset.

(ii) We design a modular evaluation framework that facilitates easy benchmarking of additional
models, making it straightforward to add datasets, questions, or models to our benchmark.

A preview of our results is shown in Fig. 1, indicating that over a range of models, the performance of
the current generation of LLMs in terms of knowledge of real-world distributions is quite poor. As we
argue later in the text, access to observational distributions is a fundamental step towards performing
interventional (Layer 2) or counterfactual (Layer 3) inference, implying that are our results also
implicitly challenge the abilities of LLMs in higher layers of Pearl’s Hierarchy.

Related Literature. A growing body of literature investigates aspects of knowledge and general-
ization abilities of LLMs. The two works most related to ours are that of Santurkar et al. [43], which
examines the responses on language models on Pew Research Center’s American Trends Panel [39],
in order to investigate if LLMs exhibit responses of a specific demographic group. Another related
work is that of Dominguez-Olmedo et al. [18], that examines the responses of language models on
the American Community Survey (ACS) [50], and compares them to the real responses of individual.
Our work takes a broader view, and attempts to build a benchmark for systematically analyzing the
knowledge of models on observational distributions (Layer 1 of the PCH), across a wide range of
datasets, and distributions over variables with different dimensions.

Other works investigate the ability of models to perform correct probabilistic inferences, given
information in forms of probability tables or probability conditionals [22, 28, 33]. This line of work
is distinct from ours, since our benchmark aims to evaluate the availability of the true probabilities
to the model, rather than the validity of inferences over these probabilities. We also mention the
work of Zhao et al. [54], aimed at testing factual correctness of model responses on various domains,
including knowledge about the world, math, or reasoning. In parallel, other lines of work use the term
faithfulness while evaluating language models, usually referring to faithfulness of model responses
to the the actual source material where the information is available. For instance, [55] investigates
whether responses of models are affected by knowledge conflict, and whether they exhibit appropriate
response abstentions. This work is focused on testing factual knowledge, as opposed to descriptive
knowledge investigated by our benchmark. Another body of work looks at faithfulness of model
explanations, that is, whether the explanation cited by the model is in fact compatible with the model’s
actual reasoning steps [3, 32], differing from the approach and the goal of our work.
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2 Benchmark Axes

We use the language of structural causal models (SCMs) to motivate some of the reasoning in this
work [38]. A structural causal model (SCM) is defined as:
Definition 1 (Structural Causal Model (SCM) [38]). A structural causal model M is a 4-tuple
→V, U, F , P (u)↑, where

1. U = {U1, ..., Un} is a set of exogenous variables, also called background variables, that
are determined by factors outside the model;

2. V = {V1, ..., Vn} is a set of endogenous (observed) variables, that are determined by
variables in the model (i.e., by the variables in U ↓ V );

3. F = {fV1 , ..., fVn} is the set of variable assignment functions determining V , Vi ↔

fVi(pa(Vi), Vi), where pa(Vi) ↗ V \ Vi and Ui ↗ U are the functional arguments of fVi ;

4. P (u) is a distribution over the exogenous variables U .

The assignment mechanisms F determine how each of the observed variables Vi attains its value,
based on other observed variables and the latent variables U . Together with the probability distribution
P (u) over the exogenous variables U , it specifies the entire behavior of the underlying phenomenon,
meaning that it fully specifies all observational, interventional, and counterfactual distributions [8].

The remainder of the section is organized according to Fig. 2, and the different axes appearing therein.
We first discuss observational knowledge and its different dimensionalities (Sec. 2.1), followed by
the description of datasets that are used (Sec. 2.2), and then the tasks constructed for eliciting models’
capabilities (Sec. 2.2.1). In Sec. 2.3, we discuss different models currently included in the benchmark.

2.1 Axis 1: Dimensionality of Layer 1 (Observational) Knowledge

Our focus in this paper is on evaluating observational (Layer 1) knowlege available in AI systems.
The observational distribution of the underlying phenomenon can be defined through the SCM itself:
Definition 2 (Observational Distribution [8]). An SCM M that is a 4-tuple →V, U, F , P (u)↑ induces
a joint probability distribution P (V ) such that for each Y ↗ V ,

PM(Y = y) =
∑

u

1
(
Y (u) = y

)
P (U = u), (1)

where Y (u) is the solution for Y after evaluating F with U = u.

In the above definition, Y ↗ V should be thought of as multidimensional. A fixed value of exogenous
U = u is called a unit, and can be thought of as a individual in the population. To obtain the
observational distribution P (Y = y), we go over all units u, and add up the probability mass
P (U = u) of all units for which Y attains the value y. The observational distribution P (V ) captures
all probabilistic relationships among observed variables under passive observation. On top of the
distribution, we can also consider other types of quantities, such as (conditional) moments. In
particular, we may consider different types of knowledge, such as:

(i) Marginal expectations: e.g., E[V1], the average value of a single variable.
(ii) Marginal distributions: e.g., P (V1), the full distribution of a variable.

(iii) Conditional expectations: e.g., E[V1|V2], the average value conditioned on another variable.
(iv) Conditional distributions: e.g., P (V1|V2), the distribution of one variable given another.
(v) Joint distributions: e.g., P (V1, . . . , Vk), the distribution of over the variables V1, . . . , Vk.

The above types of knowledge can be viewed as a hierarchy, with the level of required knowledge
being progressively more refined. Our goal can be described as follows: we design tasks probing the
above types of knowledge, based on large-scale datasets describing populations. For instance, we
refer to a dataset D, and consider the distribution over covariates P (V ) implied by D. Then, we elicit
responses from an LLM about the same distribution. The model’s distribution is labeled P̃ (V ). Our
goal is to then compare various aspects of P̃ (V ) and P (V ), according to types of knowledge (i)-(v).
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In this way, we can systematically evaluate whether LLMs internalize such quantities over real-world
populations. In fact, we can formally argue that testing knowledge on observational distributions is a
critical first step for understanding knowledge on causal capabilities more broadly:
Proposition 1 (Causal Hierarchy Theorem [8]). Let M be an SCM, P (V ) be its observational
distribution, and A a set of causal assumptions encoded in the form of a causal diagram [8] or
ignorability statements [41, 38]. Then, we can say that

(a) in absence of A, P (V ) underdetermines interventional and counterfactual distributions,

(b) in absence of P (V ), A underdetermines interventional and counterfactual distributions.

The first part of the above proposition is the one commonly considered in the causal inference
literature – in short, it states that, in absence of causal assumptions, it is generally impossible to
provide any guarantees for inference over interventional or counterfactual distributions. The second
part states that in absence of the observational distribution, no inferences can be made for higher
layers of the PCH, leading to the following important corollary:
Corollary 2 (No Observational Distribution =↘ No Layer 2/3 Inference). If a model’s distribution
P̃ (V ) differs from the true P (V ), no guarantees can be provided for the validity of the model’s
interventional or counterfactual inferences.

The above corollary captures an important motivation for the benchmark constructed in this paper –
even if we assume that an LLM has access to correct causal knowledge (a point we do not investigate
in this manuscript), it still may not be able to perform causal inferences in case its observational
distribution does not match the one in the real world. Therefore, testing whether language models
have access to observational knowledge (required for causal reasoning) is an important first step since
a negative answer warrants skepticism about the model’s capabilities for performing claims in higher
layers of the PCH.

2.2 Axis 2: Datasets Describing Populations

As mentioned in the previous section, we will leverage large-scale datasets that describe population
level statistics in order to establish the ground truth observational distribution P (V ). After this,
we will probe the language model’s distribution P̃ (V ) to draw comparisons. In this work, for
the observational distributions P (V ), we make use of ten large, publicly available datasets that
collectively describe diverse aspects of the US population, and are often considered representative of
the national level statistics:

(1) American Community Survey (ACS) 2023 [49]: Conducted by the US Census Bureau, the
ACS collects detailed demographic, social, economic, and housing data annually. In this dataset,
our focus is on income, education, and employment information across demographics.

(2) National Health and Nutrition Examination Survey (NHANES) 2021-2023 [34]: Adminis-
tered by the Centers for Disease Control and Prevention (CDC), NHANES combines interviews
and physical exams to assess health and nutrition of individuals in the US. We investigate obesity,
diabetes, and dietary habits across demographics.

(3) Behavioral Risk Factor Surveillance System (BRFSS) 2023 [15]: A telephone survey system
run by the CDC, tracking health-related risk behaviors and conditions. We investigate exercise
habits, diabetes, blood pressure, asthma, cholesterol, visual/auditive impairments by US states.

(4) Medical Expenditure Panel Survey (MEPS) 2023 [4]: A set of surveys conducted by the
Agency for Healthcare Research and Quality (AHRQ), measuring health services use, expendi-
tures, and insurance coverage. We investigate healthcare expenditure, utilization, and insurance
across demographics.

(5) National Survey on Drug Use and Health (NSDUH) 2023 [46]: Collected by Substance Abuse
and Mental Health Services Administration (SAMHSA), the NSDUH provides information on
substance use and mental health in the US. We investigate alcohol, cigarette, marijuana, cocaine,
and heroin usage across demographics.

(6) Survey of Consumer Finances (SCF) 2022 [12]: Sponsored by the Federal Reserve Board, the
SCF provides detailed data on US household finances. We investigate food expenditure, home
ownership, assets, and debt across demographics.
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(7) General Social Survey (GSS) 2022 [35]: Conducted by the National Opinion Research Center
(NORC) at the University of Chicago, the GSS collects data on social attitudes, behaviors, and
demographics of U.S. adults. We investigate political views and party identification across age,
sex, race, education, and income.

(8) Department of Education (IPEDS) [51]: The Integrated Postsecondary Education Data System
(IPEDS) collects data from colleges, universities, and technical schools. We investigate college
degrees by sex.

(9) Department of Labor BLS Data 2023 [48]: The Bureau of Labor Statistics of the US Depart-
ment of Labor provides detailed information about occupations, including worker demographics.
We investigate occupations by sex and race.

(10) Federal Bureau of Investigation (FBI) Arrest Statistics (UCR Program): Compiled by the
FBI’s Uniform Crime Reporting Program (UCR), this dataset contains arrest statistics across the
US. We investigate crime rates by race and sex.

Each of the datasets either reports national-level statistics, or provides data on individuals. When
individual data is available, sample weights are provided (determining how many persons in the
overall US population the individual represents), allowing one to obtain representative results at
the national level. Together, these datasets allow for a broad evaluation of models’ abilities to
approximate population-level observational distributions across social, economic, educational, health,
and behavioral domains. We next describe how different tasks in our benchmark are constructed.

2.2.1 Axis 2 Tasks: Responses and Scoring

Our benchmark consists of different tasks, and each task is associated with a dataset. The task is
defined by the pair VY , VX , representing the conditional distribution P (VY | VX) (here, VX could be
possibly empty). Each task is also accompanied by a natural language prompt template ω (which
takes a value of VX = vX and returns a natural language question), and a set of valid answers in the
domain of VY , labeled dom(VY ).
Example 1 (NSDUH: Marijuana Usage by Age). The NSDUH dataset tracks various aspects of
addiction and mental health for the US population. Suppose that VY represents whether a person ever
used marijuana, and VX represents age. In the benchmark, we are interested whether the LLM has
access to the conditional distribution P (VY | VX). To test this, the accompanying prompt template ω
for the task is given by:

ω(vX) = “Has a person aged {vX} ever used marijuana?" (2)

Once a specified value vX = 16 is chosen, this results in a prompt “Has a person aged 16 ever used
marijuana?", which is given to the model. In the prompt, the model is provided with a set of possible
answers, which in this case amounts to dom(VY ) = {no, yes}. For open-weights models, we can
inspect the probabilities associated with each of the responses in the model’s next-token prediction.
Alternatively, for closed models, the same question can be repeated multiple times, and we record all
the provided answers, allowing us to reconstruct the distribution over answers. Finally, we compare
the model’s distribution with the true P (VY | VX) distribution from the NSDUH dataset. ↭

Intuitively, the difficulty of the task should increase with larger dimensions of VY and VX . For
instance, if |VY | = 1, |VX | = 0, our task is to recover the 1-dimensional marginal distribution
P (VY ). If |VY | = 1, |VX | > 0, we are trying to recover a 1-dimensional conditional distribution
P (VY | VX). The question templates ω are carefully designed, to reflect the original questions
asked to individuals during data acquisition. In total, we constructed 75 tasks across 10 datasets for
|VY | = 1, |VX | = 1 (we refer to this as the low-dimensional setting), and 94 tasks across 4 datasets
for |VY | = 1, |VX | ≃ {2, 3, 4, 5} and VY binary (referred to as the high-dimensional setting). Fig. 2
(bottom left) offers some further examples, in addition to Ex. 1, while Appendix A contains the full
list of tasks. We remark here that an alternative way of eliciting the model’s knowledge also exists,
captured by the following example:
Example 1 (continued – NSDUH: Marijuana Usage by Age). For the task of eliciting the distribution
of marijuana usage by age group, a template prompt

ωprob(vX) = “What is the probability that a person aged {vX} ever used marijuana?" (3)

may be used instead, representing an alternative way of eliciting P̃ (VY | VX). ↭
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The comparison of the two prompting approaches (probabilistic vs. Q&A) is discussed in Appendix D,
while in the main text we focus on Q&A prompt templates as in Eq. 2.

Eliciting Responses. As mentioned, for each question the model is asked, there is a specific range of
possible responses. Our approach to obtain the model answers is to label each response in dom(VY )
with labels A, B, C, . . . , and then inspect the conditional probability associated with tokens A, B, C,
etc. Let A(vY ) denote the letter of the answer vY . The model’s probability associated with each
answer vY ≃ dom(VY ) corresponding to label A(vY ) in the prompt is then simply computed as

P̃ (VY = vY | VX = vX)
!
=

P̃ nt(answer A(vY ))
∑

ṽY ↑dom(VY ) P̃ nt(answer A(ṽY ))
, (4)

where P̃ nt is the model’s next-token probability function given the prompt.
Example 1 (continued – NSDUH: Marijuana Usage by Age). Suppose that following the prompt

Has a person aged 16 years ever used marijuana?

A. yes

B. no

we find the model’s next-token probabilities to be P̃ nt(answer A) = 0.01, P̃ nt(answer B) = 0.03.
Then, the model’s probability of a positive outcome would be computed as:

P (VY = 1 | VX = 16) =
0.01

0.01 + 0.03
= 25%. (5)

↭

This is a known strategy for eliciting model responses used in numerous works on question answering
[18, 23, 43]. As models may exhibit ordering bias [18], we consider all of the different |dom(VY )|!
permutations of labels A, B, C, . . . , over the answers vY ≃ dom(VY ), and average the probabilites
accordingly (if the number of permutations |dom(VY )|! > 120, we consider 120 random permuta-
tions). The above way of eliciting responses may be used for all models with open-source weights,
which allows us to access next-token prediction probabilities. An adaptation of this approach is used
for closed models requiring API queries (see Sec. 2.3 for more details). In this case, the same prompt
is given to the model, but we sample nmc Monte Carlo samples, and then determine the model’s
distribution P̃ based on the MC sample, using bin-counting. For the ground truth distribution P , in
the low-dimensional setting we use a simple bin-counting estimator on the available dataset, whereas
in the high-dimensional case we fit the distribution P (VY | VX) using lightgbm [30], ensuring that
the actual values P (VY = vY | VX = vx) are obtained out-of-sample (using cross-validation).

Scoring Strategy. We next develop a scoring strategy for each task based on the true distribution
P (VY | VX) and the model’s distribution P̃ (VY | VX). For this purpose, we use the L1-norm (instead
of KL divergence, to avoid sensitivity to low-probability events and support mismatch [19]), and
define the following distributional distance:

D(P̃ ||P ; VY , VX) =
∑

vX

∑

vY

∣∣∣P (VY = vY | VX = vX) → P̃ (VY = vY | VX = vX)
∣∣∣P (VX = vX) (6)

The above notion of distance allows the evaluation of how far P, P̃ are for the specific conditional
VY | VX . To obtain a normalized score, we compare the distance D(P ||P̃ ) to the distance of P from
a uniform distribution over the answers, labeled P unif, defined as

P unif(VY = vY | VX = vX)
!
=

1

|dom(VY )|
⇐vX , vY . (7)

In this context, we refer to the P unif distribution as a random baseline. In the high-dimensional case,
which focuses on binary VY , we add another baseline, namely a fixed 0/1 prediction depending
on the dataset mean, given by P 0/1(VY = 1 | VX = vX)

!
= 1( P [VY ] > 0.5) for all vY , vX ,

where P [VY ] represent the true distribution mean. Therefore, the 0/1 baseline predicts a constant
probability of 0 for all conditioning sets for outcomes with a marginal incidence P [VY ] ⇒ 0.5,
and predicts a constant 1 whenever the marginal incidence is P [VY ] > 0.5. Such a baseline also
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Figure 3: Scoring strategy and model performance across task groups.

corresponds to effectively no probabilistic knowledge. With these baselines in place, our scoring
system is described next (illustrated in Fig. 3a). As many datasets consist of samples of the population
(and do not survey the entire population), there is some uncertainty on the ground truth distribution
P . In the scoring, we account for this fact, and proceed as follows. We draw bootstrap samples of
size |D| (size of the dataset) labeled D

(b), and extract the bootstrap ground truth distribution P (b).
We then look at the distance D(P ||P (b)) of P (based on the available data) and P (b) (obtained from
bootstrapped data), across different samples (see green density in Fig. 3a). The upper 5% quantile of
the spread of D(P ||P (b)) is labeled with the perfect score S = 100 – meaning that the score 100 is
assigned if a model’s distribution cannot be statistically distinguished from the ground truth at the
5% significance level. For setting the score of 0, we use the minimum of the distances D(P ||P unif),
D(P ||P 0/1), with the latter only considered for binary outcomes. The model’s final score is then
linearly interpolated between S = 0 and S = 100, as follows:

ST = 100 ⇑ max
(
1 ⇓

D(P̃⇔P )

min {D(P unif⇔P ), D(P 0,1⇔P )}
, 0
)
. (8)

2.3 Axis 3: Models

Models we consider can be divided in two groups: open-weight models, whose trained parameters
are publicly available, and closed-weight models, whose parameters remain proprietary and can be
accessed only via an API. We focus mainly on open models, but also consider some closed models to
ensure our benchmark covers a broad range of state-of-the-art models.

Open-weight Models. Our open-weight models include both the original pretrained checkpoints,
and instruction-tuned variants, which are further trained on human-generated instruction–response
pairs to improve their ability to follow instructions in user prompts. Particularly, we evaluate
the following models: Mistral 7B [26], LLaMA3 8B [20], LLaMA3 70B [20], Gemma3 27B [47],
DeepSeek 7B [10], Phi-4 [1], and DeepSeek R1 32B [10]. Appendix B contains a detailed comparison
of these models.

Closed-weight Models. Closed-weight models are available only through API-based access to
proprietary weights, and include a state-of-the-art reasoning model. In particular, we evaluate
Reasoning Language Models (RLMs) such as OpenAI’s o4-mini. These models augment standard
LLM backbones with components like Monte Carlo Tree Search, policy and value networks, and
reinforcement learning to perform explicit, multi-step reasoning [9]. We also include models with web
access that use retrieval-augmented generation (RAG) [31], such as OpenAI’s GPT-4.1. These models
pull in external documents at inference time—so as to assess how dynamic knowledge augmentation
impacts performance. Appendix C contains the details on the performance of selected closed models.

2.4 Benchmark Construction

Our benchmark is designed with reproducibility and extensibility as key principles. All dataset
constructions are made available, ensuring transparency and verifiability. The modular structure of
the benchmark allows easy addition of both new datasets and new models, facilitating broader future
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(a) Performance by dataset (low-dimensional). (b) Performance by dimension.

Figure 4: Model performance across (a) datasets; (b) dimension.

evaluations. Furthermore, model evaluation is streamlined: any model available through Hugging
Face [53] can be benchmarked with a single line of code, allowing for rapid inclusion of diverse
architectures. At the time of submission, our benchmark consists of 10 pre-processed datasets, 169
tasks (75 low-dimensional and 94 high-dimensional), with 12 open-weight models evaluated.

3 Key Insights and Observations

Our results summarizing the leaderboards for the low-dimensional and high-dimensional settings
are shown in Figure 3b. The results indicate that the observational distributions P̃ (V ) encoded
in the LLMs are closer to the ground truth, real-world observational distributions P (V ) than the
uniform distribution P unif(V ) since models achieve scores above zero. All models achieve scores
better than uniform guessing, suggesting some access to L1 knowledge. However, overall, the
models’ performance is rather poor, with the best model scoring an average of 28/100 points in the
low-dimensional setting, and 17/100 in the high-dimensional setting. Therefore, capabilities of LLMs
for encoding real-world observational distributions seem limited, and using such knowledge for
downstream tasks should be done with care. We next analyze different aspects of model performance.

Low-Dimensional Setting & Performance by Dataset. The performance of models on 75 low-
dimensional tasks, comparing P̃ (VY | VX) with the ground truth P (VY | VX) for |VY | = |VX | = 1
is shown in Fig. 3b (purple bars). Among a selection of models from different organizations (Meta,
Microsoft, Google, DeepSeek AI, Mistral AI), the overall performance across models does not exhibit
large differences, and all models perform poorly. Another interesting aspect is the performance of
models across different datasets, visualized in Fig. 4a. The best performance is observed over the ACS
Census data (questions on employment, education, and income across demographics), FBI Arrest
Statistics (sex/race distributions over crime types), and Departments of Education (sex by graduation
degree) and Labor (sex/race by occupation). The latter three datasets, in fact, offer these detailed
statistics on their websites, meaning that models could have had access to the exact probability
tables used for constructing our questions. Therefore, we hypothesize that improved performance
may correspond to the actual data being available in the model’s training set. This observation also
emphasizes the importance of the high-dimensional setting – in which we condition on multiple
observed variables – as this knowledge is not readily available on the web.

High-Dimensional Setting & Performance by Dimension. The performance of models in the
high-dimensional case, for P (VY | VX) with |VY | = 1, |VX | ≃ {2, 3, 4, 5}, and VY binary, is shown
in Fig. 3b (yellow bars). As the scores indicate, performance is again quite poor across models,
and certainly worse than in the low-dimensional case. We also inspect the model performance with
varying dimension (Fig. 4b). The pattern of the performances does not clearly indicate the curse of
dimensionality, possibly due to the fact that each dimension d has a relatively small number of tasks,
and additional tasks may need to be added to investigate this effect in more detail.

Implications on Causal Inferences. The recovery of high-dimensional conditional distributions
investigated in this work may be seen as related to questions of causal inference. Commonly, to adjust
for confounding by a set of covariates VZ , data analysts may wish to adjust for the propensity of a
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treatment VX , that is, reweigh the samples with P (VX = vX | VZ = vZ)→1 to obtain estimates of a
desired potential outcome [42, 40]. The other strategy is to use a predictive model for the outcome
variable VY , namely, a model for the distribution P (VY | VX , VZ) in order to allow for or improve
causal inference [6]. However, if these conditional distributions are not available to a model, eliciting
them may be a futile exercise. Therefore, our work brings into question some recent approaches
claiming to improve causal inferences using foundation models [17]. In our view, using powerful AI
models for causal inferences may require a more sophisticated approach.

Limitations & Future Work. A limitation of our work is the limited number of models evaluated
on our benchmark. However, by choosing a representative sample of models, we attempted to cover a
wide range of models developed by different organizations. Furthermore, our emphasis on easy access
and evaluation of models on the benchmark will facilitate the benchmarking of other models, currently
left for future work. Another limitation is the fact that high-dimensional inference is investigated
across 4 datasets, and the number of datasets and contexts for evaluation should grow over time.
In terms of future work, we envision that our work will set the basis for evaluating capabilities of
AI models for inference in Layers 2 & 3 of the PCH – to systematically test how observational
distributions available to models affect downstream tasks such as causal or counterfactual inferences.

4 Conclusions

One of the initial motivations of this paper is the broad insight coming from the discipline of causal
inference: to make claims about interventional or counterfactual aspects of reality (Layers 2 and 3 of
the Pearl Causal Hierarchy), one needs two key ingredients – (i) observational (associational) data
(Layer 1) and (ii) qualitative assumptions about the environment. Since AI systems aim to perform
such inferences, we ask whether they even possess the first ingredient. (Of course, the question of
whether LLMs are capable of answering probabilistic queries about the world is also interesting in its
own right.) To that end, we introduce the first benchmark designed to systematically evaluate whether
LLMs can provide observational information across diverse domains; or, put differently, whether their
statistics are aligned with the world they are intended to model. Our benchmark assesses language
models on a range of associational quantities for which the ground truth is relatively well established.
These experiments test the hypothesis that LLMs can serve as a proxy for real-world associations
and, in principle, support causal inference. However, results across a broad suite of models suggest
that their statistics are consistently and substantively misaligned with the ground truth. We hope that
these sobering findings motivate LLM developers to improve the statistical fidelity of their models –
a necessary, if insufficient, step toward enabling credible causal reasoning.
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Supplementary Material for Epidemiology of Large Language

Models: A Benchmark for Observational Distribution Knowledge

The source code for reproducing the benchmark can be found in the anonymized code reposi-
tory https://anonymous.4open.science/r/llm-epidemia-563D. The repository includes a
README file explaining all the steps for setting up the benchmark. For the Llama3 8B, Mistral
7B, and Phi4 models the experiments were run on a single NVIDIA H100 GPU. Evaluating both
the low- and high-dimensional settings required <1 hour per model. Evaluating DeepSeek 7B (Chat
version), Gemma3 27B, and LLama3 70B models was done on a node with four NVIDIA GH200
Grace Hopper chips, and running both settings required <1 hour of compute per model.

A Tasks

This appendix contains the full list of tasks considered in the benchmark, complementing the
description of task construction from Sec. 2.2.1. In Tab. 1, the 75 tasks for the low-dimensional
setting are listed, which are concerned with recovering P (VY | VX) for univariate VX , VY . Tab. 2
lists all the 94 tasks for the high-dimensional setting, recovering P (VY | VX) for VY univariate and
binary, and |VX | ≃ {2, 3, 4, 5}.

Table 1: Low-dimensional tasks.

Task # Task Name
1 Census: Employment Status by Sex
2 Census: Employment Status by Race
3 Census: Employment Status by Age
4 Census: Employer by Sex
5 Census: Employer by Race
6 Census: Employer by Age
7 Census: Salary by Sex
8 Census: Salary by Race
9 Census: Salary by Age
10 Census: Education by Sex
11 Census: Education by Race
12 Census: Education by Age
13 BRFSS: Exercise by State
14 BRFSS: Diabetes by State
15 BRFSS: High BP by State
16 BRFSS: Asthma by State
17 BRFSS: Cholesterol by State
18 BRFSS: Visual Impairments by State
19 BRFSS: Hearing Impairments by State
20 BRFSS: Heart Attack by State
21 BRFSS: Stroke by State
22 Department of Education: Sex by Type of Degree
23 FBI Crime Statistics: Sex by Crime Type
24 FBI Crime Statistics: Race by Crime Type
25 GSS: Political View by Age
26 GSS: Political View by Race
27 GSS: Political View by Education
28 GSS: Political View by Income
29 GSS: Political View by Sex
30 GSS: Party Affiliation by Age
31 GSS: Party Affiliation by Race
32 GSS: Party Affiliation by Education
33 GSS: Party Affiliation by Income
34 GSS: Party Affiliation by Sex
35 Department of Labor: Sex by Occupation
36 Department of Labor: Race by Occupation

14



Task # Task Name
37 MEPS: Expenditure by Age Group
38 MEPS: Office-based Visits by Age Group
39 MEPS: Inpatient Visits by Age Group
40 MEPS: Dental Visits by Age Group
41 MEPS: Has Insurance by Age Group
42 MEPS: Expenditure by Race
43 MEPS: Office-based Visits by Race
44 MEPS: Inpatient Visits by Race
45 MEPS: Dental Visits by Race
46 MEPS: Has Insurance by Race
47 NHANES: Age by BMI Group
48 NHANES: Diabetes by BMI Group
49 NHANES: Diabetes by Age Group
50 NHANES: Weekly Alcohol Consumption by Age Group
51 NSDUH: Alcohol Use in Last Month by Age
52 NSDUH: Cigarette Use in Last Month by Age
53 NSDUH: Marijuana Ever Used by Age
54 NSDUH: Cocaine Ever Used by Age
55 NSDUH: Heroin Ever Used by Age
56 NSDUH: Alcohol Use in Last Month by Race
57 NSDUH: Cigarette Use in Last Month by Race
58 NSDUH: Marijuana Ever Used by Race
59 NSDUH: Cocaine Ever Used by Race
60 NSDUH: Heroin Ever Used by Race
61 SCF: Food Expenditure by Age Group
62 SCF: House Ownership by Age Group
63 SCF: Total Assets by Age Group
64 SCF: Debt by Age Group
65 SCF: Net Worth by Age Group
66 SCF: Food Expenditure by Race
67 SCF: House Ownership by Race
68 SCF: Total Assets by Race
69 SCF: Debt by Race
70 SCF: Net Worth by Race
71 SCF: Food Expenditure by Education
72 SCF: House Ownership by Education
73 SCF: Total Assets by Education
74 SCF: Debt by Education
75 SCF: Net Worth by Education

Table 2: High-dimensional tasks. The third column indicates the task dimension d = |VX |, and the
fourth column indicates whether the task is used for the evaluation of closed models in Appendix C.

Task # Task Name d Closed Eval
1 BRFSS: Diabetes by Sex, Race 2 ✁
2 BRFSS: Diabetes by Age, Income 2 ✁
3 BRFSS: Diabetes by Age, Race 2 ✁
4 BRFSS: Diabetes by Sex, Income 2 ✁
5 BRFSS: Diabetes by Age, Sex, Race 3 ✁
6 BRFSS: Diabetes by Age, Race, Income 3 ✂
7 BRFSS: Diabetes by Age, Education, Income 3 ✁
8 BRFSS: Diabetes by Age, Sex, Income 3 ✁
9 BRFSS: Diabetes by Age, Education, Sex, Race 4 ✂

10 BRFSS: Diabetes by Age, Sex, Race, Income 4 ✂
11 BRFSS: Diabetes by Age, Education, Race, Income 4 ✂
12 BRFSS: Diabetes by Age, Education, Sex, Income 4 ✂
13 BRFSS: Diabetes by Age, Education, Sex, Race, Income 5 ✂
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Task # Task Name d Closed Eval
14 BRFSS: High Blood Pressure by Education, Race 2 ✁
15 BRFSS: High Blood Pressure by Age, Race 2 ✁
16 BRFSS: High Blood Pressure by Sex, Income 2 ✁
17 BRFSS: High Blood Pressure by Race, Income 2 ✁
18 BRFSS: High Blood Pressure by Age, Sex, Income 3 ✁
19 BRFSS: High Blood Pressure by Sex, Race, Income 3 ✁
20 BRFSS: High Blood Pressure by Age, Education, Race 3 ✁
21 BRFSS: High Blood Pressure by Education, Sex, Income 3 ✁
22 BRFSS: High Blood Pressure by Age, Sex, Race, Income 4 ✂
23 BRFSS: High Blood Pressure by Age, Education, Sex, Income 4 ✂
24 BRFSS: High Blood Pressure by Age, Education, Sex, Race 4 ✂
25 BRFSS: High Blood Pressure by Age, Education, Race, Income 4 ✂
26 BRFSS: High Blood Pressure by Age, Education, Sex, Race, Income 5 ✂
27 BRFSS: Depression by Race, Income 2 ✁
28 BRFSS: Depression by Sex, Race 2 ✁
29 BRFSS: Depression by Age, Income 2 ✁
30 BRFSS: Depression by Education, Race 2 ✁
31 BRFSS: Depression by Age, Race, Income 3 ✂
32 BRFSS: Depression by Education, Sex, Income 3 ✁
33 BRFSS: Depression by Age, Sex, Income 3 ✁
34 BRFSS: Depression by Sex, Race, Income 3 ✁
35 BRFSS: Depression by Age, Education, Sex, Race 4 ✂
36 BRFSS: Depression by Age, Education, Sex, Income 4 ✂
37 BRFSS: Depression by Education, Sex, Race, Income 4 ✂
38 BRFSS: Depression by Age, Sex, Race, Income 4 ✂
39 BRFSS: Depression by Age, Education, Sex, Race, Income 5 ✂
40 MEPS: Health Insurance by Education, Sex 2 ✁
41 MEPS: Health Insurance by Age, Sex 2 ✁
42 MEPS: Health Insurance by Age, Race 2 ✂
43 MEPS: Health Insurance by Education, Race 2 ✁
44 MEPS: Health Insurance by Age, Education 2 ✂
45 MEPS: Health Insurance by Sex, Race 2 ✁
46 MEPS: Health Insurance by Education, Sex, Race 3 ✁
47 MEPS: Health Insurance by Age, Sex, Race 3 ✂
48 MEPS: Health Insurance by Age, Education, Sex 3 ✂
49 MEPS: Health Insurance by Age, Education, Race 3 ✂
50 MEPS: Health Insurance by Age, Education, Sex, Race 4 ✂
51 NSDUH: Cigarette Use (Last 30d) by Education, Sex 2 ✁
52 NSDUH: Cigarette Use (Last 30d) by Age, Sex 2 ✁
53 NSDUH: Cigarette Use (Last 30d) by Age, Race 2 ✁
54 NSDUH: Cigarette Use (Last 30d) by Education, Race 2 ✁
55 NSDUH: Cigarette Use (Last 30d) by Age, Education 2 ✁
56 NSDUH: Cigarette Use (Last 30d) by Sex, Race 2 ✁
57 NSDUH: Cigarette Use (Last 30d) by Education, Sex, Race 3 ✁
58 NSDUH: Cigarette Use (Last 30d) by Age, Sex, Race 3 ✁
59 NSDUH: Cigarette Use (Last 30d) by Age, Education, Sex 3 ✁
60 NSDUH: Cigarette Use (Last 30d) by Age, Education, Race 3 ✂
61 NSDUH: Cigarette Use (Last 30d) by Age, Education, Sex, Race 4 ✂
62 NSDUH: Marijuana Use by Education, Sex 2 ✁
63 NSDUH: Marijuana Use by Age, Sex 2 ✁
64 NSDUH: Marijuana Use by Age, Race 2 ✁
65 NSDUH: Marijuana Use by Education, Race 2 ✁
66 NSDUH: Marijuana Use by Age, Education 2 ✁
67 NSDUH: Marijuana Use by Sex, Race 2 ✁
68 NSDUH: Marijuana Use by Age, Education, Race 3 ✂
69 NSDUH: Marijuana Use by Age, Sex, Race 3 ✁
70 NSDUH: Marijuana Use by Education, Sex, Race 3 ✁
71 NSDUH: Marijuana Use by Age, Education, Sex 3 ✁
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Task # Task Name d Closed Eval
72 NSDUH: Marijuana Use by Age, Education, Sex, Race 4 ✂
73 NSDUH: Cocaine Use by Education, Race 2 ✁
74 NSDUH: Cocaine Use by Education, Sex 2 ✁
75 NSDUH: Cocaine Use by Age, Race 2 ✁
76 NSDUH: Cocaine Use by Age, Education 2 ✁
77 NSDUH: Cocaine Use by Sex, Race 2 ✁
78 NSDUH: Cocaine Use by Age, Sex 2 ✁
79 NSDUH: Cocaine Use by Age, Sex, Race 3 ✁
80 NSDUH: Cocaine Use by Age, Education, Race 3 ✂
81 NSDUH: Cocaine Use by Age, Education, Sex 3 ✁
82 NSDUH: Cocaine Use by Education, Sex, Race 3 ✁
83 NSDUH: Cocaine Use by Age, Education, Sex, Race 4 ✂
84 SCF: Home Ownership by Education, Sex 2 ✁
85 SCF: Home Ownership by Age, Sex 2 ✁
86 SCF: Home Ownership by Age, Race 2 ✁
87 SCF: Home Ownership by Education, Race 2 ✁
88 SCF: Home Ownership by Age, Education 2 ✁
89 SCF: Home Ownership by Sex, Race 2 ✁
90 SCF: Home Ownership by Education, Sex, Race 3 ✁
91 SCF: Home Ownership by Age, Sex, Race 3 ✁
92 SCF: Home Ownership by Age, Education, Sex 3 ✁
93 SCF: Home Ownership by Age, Education, Race 3 ✂
94 SCF: Home Ownership by Age, Education, Sex, Race 4 ✂
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B Comparison of Base & Instruction-Tuned Models

In this appendix, we compare the performance of base models vs. instruction-tuned models optimized
via either self-instruction [52] or supervised fine-tuning [37] followed by reinforcement learning
with human feedback (RLHF) [16]. In the main text, we analyzed the performance of instruction-
tuned models on our benchmark: Mistral 7B [26], LLaMA3 8B [20], LLaMA3 70B [20], Gemma3
27B [47], DeepSeek 7B [10], and Phi-4 [1]. For each of these models, we compare the model’s
performance against the corresponding base (pre-trained) model. The only exception is the Phi-4
model, for which a base model is not released due to safety concerns [1].

For evaluating the models on our benchmark, we focus on the 94 tasks in the high-dimensional
setting (see Sec. 2.2.1 and Tab. 2 for details). The results of comparing base vs. instruction-tuned
models are shown in Fig. 5a, which again indicates poor performance across all models. We note
that, for all families of models (here, a family refers to a pair of base and instruction-tuned models),
instruction-tuned models perform equal or better than base models. Furthermore, a comparison of
base model’s vs. instruction-tuned model’s scores for each task is shown in Fig. 5b. The figure
indicates that for a number of tasks, instruction-tuning improves performance from a zero score to a
non-zero score. Less commonly, instruction tuning makes performance worse (some instances are
observed for DeepSeek and Gemma 3 model families).

(a) Comparing the performance of base and instruct models on high-dimensional tasks.

(b) Performance of base and instruct models by task and model family.

Figure 5: Performance of base vs. instruction-tuned models.
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C Closed Models Performance

In this appendix, we look at how the performance of closed models compares to the performance of
open-weight models. In particular, we evaluate two closed models from OpenAI – GPT-4.1 [2] and
o4-mini [36], where the latter model is a reasoning language model (RLM) [9]. Since these models
require access to an API, we evaluate them on a subset of the tasks in the high-dimensional setting
(consisting of tasks with a univariate binary VY , and |VX | ≃ {2, 3, 4, 5}). In particular, we select 63
out of 94 tasks (the selected tasks are indicated in the Closed Eval column of Tab. 2), focusing on
tasks for which at most 250 queries need to be evaluated on the model.

To elicit the model’s distribution P̃ (VY | VX), we use the likelihood-prompting technique, described
in detail in Appendix D. We choose likelihood prompting, since closed models such as GPT-4.1 and
o4-mini do not provide access to next-token prediction probabilities, meaning that question/answer-
prompting used in the main text becomes possible only via Monte Carlo sampling. This, however,
would increase the number of queries sent to the models and the associated cost by at least two
orders of magnitude. This is due to the fact that even with nmc = 100 Monte Carlo samples, the
95% confidence interval for a probability P̃ (VY = 1 | VX = vX) ≃ [0, 1] is only guaranteed to be
reduced to a width of approximately 0.1, still reflecting a high level of uncertainty.

The performance of GPT-4.1 and o4-mini models on the 63 selected tasks is shown in Fig. 6. The

Figure 6: Performance of closed OpenAI models GPT-4.1 and o4-mini.

figure shows that GPT-4.1 and o4-mini outperform the evaluated open-weights models. This may
be explained by the fact that GPT-4.1 is the largest model we evaluated, in terms of the parameter
count (even though the number of parameters is not officially published). Even though OpenAI’s
models outperform the evaluated open-weights models, they still do not perform well. In Fig. 6,
the orange line indicates the performance of the so-called mean-baseline, which outputs the overall
population mean P mean(VY = 1 | VX = vX) = P [VY ] for all values vX ≃ dom(VX) (and
extended discussion on this baseline can be found in Appendix D.1). Therefore, none of the models
are able to outperform such a baseline.

Retrieval-Augmented Generation (RAG) [31]. Retrieval-augmented generation (RAG) is a tech-
nique in which an LLM is combined with an external retriever [31]. In this case, the model does not
have to rely only on its internal knowledge, but relevant documents can be fetched from a collection
of texts. To investigate the impact of RAG on our benchmark, we used the GPT 4.1 model with
web access (the model can search the web for each query). To test how RAG affects performance,
we focused on 11 tasks on which the GPT 4.1 model without web-based RAG had a score of 0
(corresponding to task indices 40, 43, 57, 62, 63, 64, 65, 66, 67, 70, and 71 in Tab. 2). Here, the
expectation is that RAG would help the model performance, and would result in a higher score.
However, the results for the GPT 4.1 model with web-based RAG still showed a zero score for each
task. Therefore, perhaps surprisingly, for these tasks RAG did not result in improved performance.
This finding warrants further investigation of how RAG may improve the performance of models on
our benchmark. This investigation is left for future work.
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D Likelihood vs. Question-Answering Prompts

In this appendix, we discuss an alternative way of eliciting model distributions P̃ (VY | VX). We
recall Ex. 1 from the main text, in which we were interested in marijuana usage (VY ) over age groups
(VX ). For this task, we used a prompt template

ω(vX) = “Has a person aged {vX} ever used marijuana?", (9)

which for different values of age vX creates different questions posed to the model. With the question,
the model is also given the choice of answers yes/no, which are labeled with letters A, B. For
extracting the model’s probability P̃ (VY = 1 | VX = vX), we investigate the probabilities associated
with letters A, B in the model’s next-token prediction distribution P̃ nt.

However, this approach, which we refer to as question/answer-prompting (QA-prompting, for short),
is not the only way to elicit the model’s distribution P̃ (VY | VX). An alternative way of eliciting this
distribution is to use a different prompting strategy, which asks for the probability directly:

ωprob(vX) = “What is the probability that a person aged {vX} ever used marijuana?" (10)

This strategy, which we refer to as likelihood-prompting, is investigated in this appendix. To elicit a
probability from the model, a range of responses is offered, namely responses in the following form:

A. 0%

B. 0%-5%

C. 5%-10%

...

U. 95%-100%

V. 100%

We then again inspect the next-token prediction probabilities in P̃ nt, and choose the response with
the highest probability:

A
resp = arg max

A↑{A,...,V }
P̃ nt(answer A). (11)

The chosen response letter A
resp is then mapped to either an interval, or a fixed value of 0% or 100%.

For assigning the final predicted probability, for intervals, we take the midpoint. For instance, if the
answer B. 0%-5% is chosen, we set the predicted probability to 0.025, and so on. In this way, we
elicit the probability P̃ (VY = 1 | VX = vX) of the model.

Model performances on the benchmark when using likelihood-prompting, on the 94 tasks in the
high-dimensional setting with a binary one-dimensional VY , and |VX | ≃ {2, 3, 4, 5}, are shown in
Fig. 7. On top of the models used in the main text, we also include a version of DeepSeek R1 [21]
distilled using Qwen2.5 32B [25]. The results in the figure can be compared with the performance

Figure 7: Models’ performance with likelihood-prompting on the 94 high-dimensional tasks.

of models on the same tasks via QA-prompting used in the main text. We note that the model
performances, for some models, improve with likelihood-prompting (in particular, the Phi4 model
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moves from an average score of 17/100 to 33/100, Gemma3 27B from 13/100 to 33/100, LLama3
70B from 7/100 to 27/100). At the same time, for some models, the performance with likelihood
prompting becomes worse (LLama3 8B). However, overall, model performance is still quite poor,
and we further contextualize this in the sequel.

D.1 Baselines – how good are the models?

In the evaluation of our benchmark, we used two baselines, which corresponded to the notion of zero
probabilistic knowledge. The first baseline was the uniform baseline P unif, which is in the binary
case given by:

P unif(VY = 1 | VX = vX) =
1

2
⇐vX . (12)

This baseline corresponds to random guessing. In the main text, we also discussed the 0/1 baseline,
which outputs either a probability 0 for events with a marginal probability ⇒ 0.5, or a probability 1
for events with a marginal probability > 0.5:

P 0/1(VY = 1 | VX = vX) = 1( P [VY ] > 0.5) ⇐vX , (13)

where P [VY ] is the true mean of VY (in the ground truth distribution P ). In our scoring scheme,
these baselines were used to determine the score S = 0 for a given task (see Sec. 2.2.1). However,
another interesting baseline is the mean-baseline, defined by:

P mean(VY = 1 | VX = vX) = P [VY ] ⇐vX . (14)

This baseline outputs a fixed value (the marginal mean of the outcome VY ) for each vX ≃ dom(VX).
In words, this baseline is aware of the marginal probability of the event VY , but has no knowledge
about the variation of P (VY = 1 | VX = vX) according to vX around the marginal mean P [VY ].
This baseline corresponds to some probabilistic knowledge (marginal mean), but without any knowl-
edge over how the probability varies across population subsets. Assigning a score of S = 0 to this
baseline would make high scores on our benchmark even more difficult to achieve, and an argument
could be made for including it in future iterations of the benchmark. In Fig. 7, the performance of the
mean-baseline with respect to the current evaluation is shown (orange horizontal line), indicating an
average score of 46/100. This means that the inclusion of this baseline would effectively render the
scores of all models investigated in this manuscript close to 0. This observation once again confirms
that the current generation of LLMs does not possess knowledge about observational distributions in
the real world, regardless of the strategy (QA- or likelihood-prompting) we choose for eliciting the
model distributions P̃ (VY | VX).
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