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Abstract

Greedy Equivalence Search (GES) is a classic score-based algorithm for causal
discovery from observational data. In the sample limit, it recovers the Markov
equivalence class of graphs that describe the data. Still, it faces two challenges in
practice: computational cost and finite-sample accuracy. In this paper, we develop
Less Greedy Equivalence Search (LGES), a variant of GES that retains its theo-
retical guarantees while partially addressing these limitations. LGES modifies the
greedy step: rather than always applying the highest-scoring insertion, it avoids
edge insertions between variables for which the score implies some conditional
independence. This more targeted search yields up to a 10-fold speed-up and
a substantial reduction in structural error relative to GES. Moreover, LGES can
guide the search using prior assumptions, while correcting these assumptions when
contradicted by the data. Finally, LGES can exploit interventional data to refine
the learned observational equivalence class. We prove that LGES recovers the true
equivalence class in the sample limit from observational and interventional data,
even with misspecified prior assumptions. Experiments demonstrate that LGES
outperforms GES and other baselines in speed, accuracy, and robustness to misspec-
ified assumptions. Our code is available at https://github.com/CausalAILab/lges.

1 Introduction

Causal discovery, the task of learning causal structure from data, is a core problem in the field of
causality [48]. The causal structure may be an end in itself to the scientist, or a prerequisite for
downstream tasks such as inference, decision-making, and generalization [1, 36]. Causal discovery
algorithms have been applied to a range of disciplines that span biology, medicine, climate science,
and neuroscience, among others [15, 37, 41, 42].

A hallmark of the field is the algorithm known as Greedy Equivalence Search (GES) [7, 29], which
takes as input observational data and finds a Markov equivalence class (MEC) of causal graphs that
describe the data. In general, the true graph is not uniquely identifiable from observational data,
and the MEC is the most informative structure that can be learned. Under standard assumptions in
causal discovery, GES is guaranteed to recover the true MEC in the sample limit. In contrast, many
causal discovery algorithms—including prominent examples such as max-min hill-climbing [50]
and NoTears [54]—lack such large-sample guarantees. Many variants of GES have been developed,
including faster, parallelized implementations [37], restricted search over bounded in-degree graphs
[8], and Greedy Interventional Equivalence Search (GIES) [19], which can exploit interventional data
but is not asymptotically correct [52].

Despite its attractive features, the GES family faces challenges shared across most causal discovery
algorithms. For instance, the problem of causal discovery is NP-hard [9], and GES commonly
struggles to scale in high-dimensional settings. Moreover, in finite-sample regimes, GES often
fails to recover the true MEC. In other words, applying GES in practice is challenging due to both
computational complexity (scaling) and sample complexity (accuracy) issues. We refer readers to
[50] for an extensive empirical study of GES performance.

https://github.com/CausalAILab/lges


At a high-level, GES searches over the space of MECs by inserting and deleting edges to maximise
a score that reflects data fit. At each state, it evaluates a set of neighbors—possibly exponentially
many—and moves to the highest-scoring neighbor that scores more than the current MEC. It continues
the search greedily until no higher-scoring neighbors are found. In the sample limit, this strategy is
guaranteed to find the global optimum of the score: the true MEC.

In this paper, we first show that GES recovers the true MEC even if it moves to any neighbor
that scores more than the current state—not necessarily the highest-scoring one (Alg. 3, Thm. 1).
This relaxed greedy strategy still finds the global optimum of the score in the sample limit. More
importantly, it opens the door to more strategic neighbor selection. While it may seem that choosing
the highest-scoring neighbor would yield the best performance in practice, surprisingly, we show that
this is not the case; a careful and less greedy choice improves both accuracy and runtime. Based on
this insight, we develop Less Greedy Equivalence Search (LGES) (Alg. 1), a score-based algorithm
for causal discovery from observational and interventional data. LGES can also leverage possibly
misspecified prior assumptions, for e.g., a hypothesized graph, to guide the search while correcting
misspecified edges. In particular, LGES advances on GES in the following ways:

1. Faster, more accurate observational learning. In Sec. 3.2, we introduce two novel
strategies, CONSERVATIVEINSERT and SAFEINSERT, which LGES exploits to choose
which neighbor to move to at a given state. Empirically, these procedures yield up to
a 10-fold reduction in runtime and 2-fold reduction in structural error relative to GES
(Experiment 5.1). LGES with SAFEINSERT asymptotically recovers the true MEC (Prop. 2,
Cor. 1).

2. Repairing misspecified causal models. In Sec. 3.3, we show how LGES can take as input
a partially misspecified causal model expressed as prior assumptions about required or
forbidden edges and repair it to align with the true MEC. We evaluate performance under
varying levels of misspecification and find that LGES is more robust, i.e., able to correct
misspecified assumptions, than GES initialized with the same assumptions (Experiment 5.2).

3. Faster interventional learning. In Sec. 4, we develop a score-based procedure, I-ORIENT
(Alg. 2, Thm. 2), that LGES (or any observational learning algorithm) can use to refine an
observational MEC with interventional data. To our knowledge, this is the first asymptoti-
cally correct score-based procedure for learning from interventional data that can scale to
graphs with more than a hundred nodes. LGES with I-ORIENT is 10x faster than GIES [19]
while maintaining competitive accuracy (Experiment 5.3).

Proofs for all results are provided in Appendix C. Experimental details and further experiments with
synthetic data and real-world protein signalling data [42] are provided in Appendix D.

2 Background

Notation. Capital letters denote variables (V ), small letters denote their values (v), and bold
letters denote sets of variables (V) and their values (v). P (v) denotes a probability distri-
bution over a set of variables V. For disjoint sets of variables X,Y,Z, X ⊥⊥ Y | Z de-
notes that X and Y are conditionally independent given Z and X ⊥d Y | Z denotes that
X and Y are d-separated given Z in the graph in context.

Figure 1: A CPDAG E
and the three DAGs in the
MEC it represents, en-
coding X ⊥d Y | Z.

Causal graphs [36, 2]. A causal graph over variables V is a directed
acyclic graph (DAG) with an edge X → Y denoting that X is a possible
cause of Y . The parents of a variable X in a graph G, denoted PaGX ,
are those variables with a directed edge into X . The superscript will be
omitted when clear from context. A given distribution P (v) is said to be
Markov with respect to a DAG G if for all disjoint sets X,Y,Z ⊆ V, if
X ⊥d Y | Z in G, then X⊥⊥Y | Z in P (v). If the converse is also true,
P (v) is said to be faithful to G. In this work, like GES [7], we assume
that the system of interest is Markovian, i.e. it contains no unobserved
confounders, and that there exists a DAG G with respect to which the
given P (v) is both Markov and faithful.
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Markov equivalence classes [35, 48]. Two causal DAGs G,H are said to be Markov equivalent if
they encode exactly the same d-separations. The Markov equivalence class (MEC) of a DAG is the
set of all graphs that are Markov equivalent to it. A given P (v) may be Markov and faithful with
respect to more than DAG. Hence, the target of causal discovery from observational data is the MEC
of DAGs with respect to which P (v) is Markov and faithful. An MECM is represented by a unique
completed partially directed graph (CPDAG). A CPDAG E forM has an undirected edge X − Y if
M contains two DAGs G1,G2 with X → Y in G1 and Y → X in G2. E has a directed edge X → Y
if X → Y is in every DAG inM. We frequently refer to an MEC by its representative CPDAG. The
adjacencies (neighbours) of a variable X in a CPDAG E , denoted AdjGX (NeGX), comprise those
variables connected by any edge (an undirected edge) to X .

Greedy Equivalence Search [7, 29]. Greedy Equivalence Search (GES) is a score-based algorithm
for learning MECs from observational data. It searches for the true MEC by maximizing a scoring
criterion given m samples of data D ∼ P (v). For example, a popular choice of scoring criterion is
the Bayesian information criterion (BIC) [45].

GES assumes that the given scoring criterion is decomposable, consistent, and score-equivalent,
so that the score of an MEC is the score of any DAG in that MEC (Defs. A.3, A.4, A.5). BIC
satisfies each of these conditions for distributions that are Markov and faithful to some DAG and are
curved exponential families, for e.g., linear-Gaussian or multinomial models [7, 17, 18]. Moreover,
decomposability and consistency imply local consistency ([7, Lemma 7]), the key property needed
for the correctness of GES.

Definition 1 (Locally consistent scoring criterion [7, Def. 6]). Let D be a dataset consisting of i.i.d.
samples from some distribution P (v). Let G be any DAG, and let G′ be the DAG that results from
adding the edge X → Y to G. A scoring criterion S is said to be locally consistent if, as the number
of samples goes to infinity, the following two properties hold:

1. If X ⊥̸⊥ Y | PaGY in P (v) then S(G,D) < S(G′,D).

2. If X ⊥⊥ Y | PaGY in P (v) then S(G,D) > S(G′,D).

Example 1. Consider a distribution P (v) whose true MEC is E and true DAG is G2 ∈ E as in
Fig. 1. Consider G1 ∈ E (Fig. 1), and let G+1 = G1 ∪ {X → Y } and G−1 = G1 \ {Z → Y }. Since

Y ⊥⊥X | PaG1

Y in P (v), where PaG1

Y = {Z}, G+1 has a lower score than G1. Since Y ⊥̸⊥ Z | Pa
G−
1

Y

in P (v), where Pa
G−
1

Y = ∅, G−1 has a lower score than G1.

Given a scoring criterion satisfying the above conditions and data D ∼ P (v) where P (v) is Markov
and faithful to some DAG, GES recovers the true MEC in the sample limit [7, Lemma 10]. The PC
algorithm [48], a constraint-based method, has similar asymptotic correctness guarantees, but uses
conditional independence (CI) tests instead of a score. PC starts with a fully connected graph and
removes edges using CI tests. In contrast, GES starts with a fully disconnected graph and proceeds in
two phases. In the forward phase, at each state, GES finds the highest-scoring INSERT operator that
results in a score increase, applies it, and repeats until no score-increasing INSERT operator exists. At
this point, it has found an MEC E with respect to which P (v) is Markov.

Definition 2 (INSERT operator, [7, Def. 12]). Given a CPDAG E , non-adjacent nodes X,Y in E , and
some T ⊆ NeEY \AdjEX , the INSERT(X,Y,T) operator modifies E by inserting the edge X → Y
and directing the previously undirected edges T − Y for T ∈ T as T → Y .

Intuitively, an INSERT(X,Y,T) operator applied to an MEC E corresponds to choosing a DAG
G ∈ E (depending on X,Y , and T), adding the edge X → Y to G, and computing the MEC of the
resulting DAG. In this paper, we focus on the forward phase of GES. Though P (v) is Markov with
respect to the MEC E found in the forward phase, P (v) may not be faithful to E . In the backward
phase, GES starts the search with E . finds the highest-scoring DELETE(X,Y,H) operator (Def. A.2)
that results in a score increase, applies it, and repeats until no score-increasing DELETE operator
exists. At this point, it has found an MEC with respect to which P (v) is both Markov and faithful.
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Figure 2: Possible trajectories, τ1 and τ2, that GES may take in the forward phase to obtain an MEC
with respect to which a given distribution P (v) is Markov. The true MEC is E∗ (top right). In each
trajectory, E(t+1) results from applying some INSERT operator to E(t).

3 Less Greedy Equivalence Search

3.1 Generalizing GES

To lay the groundwork for our search strategy, we first introduce Generalized GES (GGES) (Alg. 3),
which generalizes GES in two ways. Firstly, GGES allows the search to be initialized from an
arbitrary MEC E0, rather than the empty graph. Secondly, in both the forward and backward phases,
GGES allows the application of any valid score-increasing operator, rather than the highest-scoring
one.

At each state E , GGES calls abstract subroutines GETINSERT or GETDELETE, which either return a
valid score-increasing operator if one exists or indicate that there is no such operator. The forward
and backward phases proceed until no improvements are found.
Theorem 1 (Correctness of GGES). Let E denote the Markov equivalence class that results from
GGES (Alg. 3) initialised from an arbitrary MEC E0 and let P (v) denote the distribution from
which the data D was generated. Then, as the number of samples goes to infinity, E is the Markov
equivalence class underlying P (v).

In the next section, we illustrate how GETINSERT can be implemented in a way that yields significant
improvements in accuracy and runtime relative to GES.

3.2 An improved forward phase

In practice, the output of GES is known to include adjacencies between many variables that are
non-adjacent in the true MEC [30, 50]. Since these adjacencies are introduced by INSERT operators
in the forward phase, this motivates a more careful choice of which INSERT operator to apply. Our
approach is grounded in the following observation.
Proposition 1. Let E denote an arbitrary CPDAG and let P (v) denote the distribution from which
the data D was generated. Assume, as the number of samples goes to infinity, that there exists a valid
score-decreasing INSERT(X,Y,T) operator for E . Then, there exists a DAG G ∈ E such that (1)
Y ⊥d X | PaGY and (2) Y ⊥⊥X | PaGY in P (v).

Then, for a variable pair (X,Y ), even a single score-decreasing INSERT(X,Y,T) implies that (X,Y )
are non-adjacent in the true MEC. However, this does not imply that all INSERT(X,Y, ∗) are also
score-decreasing. GES may thus apply a different INSERT(X,Y,T′), introducing an adjacency not
present in the true MEC. The following example shows how such choices can lead GES to MECs
that contain many excess adjacencies.
Example 2. Consider a distribution P (v) over V = {X1, X2, Y, Z} whose true MEC is given by
E∗ in Fig. 2 (top right). GES starts with the empty graph and successively applies the highest-scoring
INSERT operator that it finds. Trajectories τ1 and τ2 agree until time t = 1. Let E(1) denote the
CPDAG common to τ1 and τ2 at t = 1. At t = 1, GES has many INSERT operators it could apply to
E(1). Recall that each INSERT(α, β,T) applied to E(1) corresponds to choosing some DAG G from
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E(1) and adding α→ β to it. The DAG G is chosen such that for edges γ − β in E(1) where α and γ
are non-adjacent, G contains γ → β if γ ∈ T and β → γ otherwise.

1. α = X1, β = Z,T = ∅. This corresponds to choosing G1 ∈ E(1) (which already has
Z → Y ) and adding X1 → Z to it (Fig. 3, left). Since Z ⊥̸⊥X1 | PaG1

Z , this edge addition
increases the score of G1 (by local consistency, Def. 1) and hence of E(1). This operator is
chosen in trajectory τ1.

2. α = X1, β = Y,T = {Z}. This corresponds to choosing G1 ∈ E(1) (which already has
Z → Y ) and adding X1 → Y to it (Fig. 3, middle). Since Y ⊥⊥ X1 | PaG1

Y , this edge
addition decreases the score of G1 and hence of E(1). This operator is never chosen.

3. α = X1, β = Y,T = ∅. This corresponds to choosing G2 ∈ E(1) (which already has
Y → Z) and adding X1 → Y to it (Fig. 3, right). Since Y ⊥̸⊥X1 | PaG2

Y , this edge addition
increases the score of G1 and hence of E(1). This operator is chosen in trajectory τ2.

Which of these INSERT operators scores the highest in practice? We generated 100 linear-Gaussian
datasets containing 1000 samples each according to a fixed true DAG in E∗, following the set-up
in Sec. 5.1. Then, we computed the scores of GA : G1 ∪ {X1 → Z}, GB : G1 ∪ {X1 → Y }, and
GC : G2 ∪ {X1 → Y } on each dataset. From the fact that GA is closer to the true MEC than GC , it
may seem that GA would almost always score higher. However, GA was the highest-scoring DAG
69% of the time, and GC 31% of the time. As expected, GB is never the highest-scoring DAG. Hence,
GES may often insert an edge between X1 and Y . Even in the sample limit, it is unknown whether
GA or GC would score higher. For an extended discussion, see Ex. B.1.

Figure 3: Illustration of some INSERT operators that may be
applied to the MEC E(1) at t = 1 in Fig. 2. These operators
correspond to various edge additions to the DAGs G1,G2 ∈
E(1), where G1 orients Z − Y as Z → Y and G2 orients
Z − Y as Y → Z.

This motivates avoiding edge inser-
tions for variable pairs (X,Y ) for
which a score-decreasing INSERT is
observed. We hypothesize this has
two benefits: (1) accuracy: it avoids
inserting excess adjacencies that the
backward phase may fail to remove,
and (2): efficiency: it stops the enu-
meration of (X,Y ) insertions when a
lower-scoring one is found; moreover,
reducing excess adjacencies reduces
the number of operators that need to
be evaluated in subsequent states.

We now formalize two strategies for avoiding such insertions.
Strategy 1 (CONSERVATIVEINSERT). At a given state with CPDAG E , for each non-adjacent pair
(X,Y ), iterate over valid INSERT(X,Y,T). If any score-decreasing T is found, stop, discard all
INSERT(X,Y, ∗) operators and continue to the next pair. Among all retained candidates, select the
highest-scoring operator that results in a score increase, if any.

The CONSERVATIVEINSERT strategy avoids inserting edges between any variables (X,Y ) for which
some conditional independence has been found, as evidenced by a score-decreasing INSERT (Prop. 1).
While intuitive, it is unclear if this strategy is guaranteed to find a score-increasing INSERT whenever
one exists. We prove partial guarantees in Prop. C.1, C.2. Moreover, we introduce a relaxation,
SAFEINSERT, that is guaranteed to find a score-increasing INSERT when one exists.
Strategy 2 (SAFEINSERT). At a given state with CPDAG E , pick an arbitrary DAG G ∈ E . For each
non-adjacent pair (X,Y ) in G, if X ∈ ndGY , check if G has a higher score than G ∪ {X → Y }. If not,
discard all INSERT(X,Y, ∗) operators and continue to the next pair. Among all retained candidates,
select the highest-scoring operator that results in a score increase, if any.
Proposition 2 (Correctness of SAFEINSERT). Let E denote a Markov equivalence class and let P (v)
denote the distribution from which the data D was generated. Then, as the number of samples goes
to infinity, SAFEINSERT returns a valid score-increasing INSERT operator if and only if one exists.
Example 3. (Ex. 2 continued). Let E(1),G1, and G2 be as in Ex. 2. Assume GES is at E(1)
and SAFEINSERT picks the DAG G1 ∈ E . Then, G1 ∪ {X1 → Y } has a lower score than G1
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Algorithm 1: Less Greedy Equivalence Search (LGES)
Input: Data D ∼ P(v), scoring criterion S, prior assumptions S = ⟨R,F⟩, initial MEC E0
Output: MEC E of P(v)

1 E ← E0 ; // allows initialisation if preferred by user
2 repeat
3 G ← some DAG in E ;
4 priorityList← GETPRIORITYINSERTS(E ,G,S);
5 foreach candidates in priorityList do
6 (Xmax, Ymax,Tmax)← GETSAFEINSERT(E ,G,D, candidates, S);
7 if (Xmax, Ymax,Tmax) is found then
8 break ; // no need to check lower priority
9 E ← E + INSERT(Xmax, Ymax,Tmax);

10 until no improving insertions exist;
11 repeat
12 E ← E+ the highest-scoring DELETE(X,Y,T) that results in a score increase
13 until no improving deletions exist;
14 return E

since X1 ⊥⊥ Y | PaG1

Y in P (v), where PaG1

Y = {Z}. SAFEINSERT thus does not consider any
INSERT(X1, Y, ∗) operators. In contrast, assume SAFEINSERT picks the DAG G2 ∈ E . Then,
G2 ∪ {X1 → Y } has a higher score than G2, and SAFEINSERT may still consider INSERT(X1, Y, ∗)
operators. However, CONSERVATIVEINSERT will not consider any INSERT(X,Y, ∗) operators, since
INSERT(X1, Y, {Z}), corresponding to G1 ∪ {X1 → Y }, results in a lower score than E(1).

Later, in Sec. 5.1, we compare the two aforementioned strategies, and show how both achieve
substantial gains in accuracy and runtime over GES.

3.3 Repairing misspecified causal models

Often, researchers have prior assumptions about the underlying graph. Existing methods that leverage
such assumptions for causal discovery often assume the assumptions are correct, even if contradicted
by the data, and lack theoretical guarantees on the learned MEC [5, 12, 21, 34, 44]. We show how
Generalized GES (GGES) can leverage such assumptions during the search process, while correcting
them if inconsistent with the data.

We assume we are given prior assumptions in the form of a set of required and forbidden edges
S = ⟨R,F⟩ that may be either directed or undirected. A natural strategy, which we refer to as
GES-INIT, initializes the search to an MEC consistent with the assumptions and then proceeds
greedily, as in standard GES.1 This approach is sound in the large-sample limit (Thm. 1), even when
the assumptions are misspecified.

However, given finite samples, this strategy may result in excess adjacencies. If the prior assumptions
require adjacencies that don’t exist in the true MEC, GES-INIT includes them by default in the
initialisation and may fail to remove them later. Moreover, such initialisation precludes the use of
insertion strategies (e.g., from Sec. 3.2) that would avoid introducing such excess adjacencies.

We instead propose a strategy that uses prior assumptions to prioritize operators, and not to initialize
the search. Specifically, for each non-adjacent pair (X,Y ), we rank it into one of four categories based
on the constraint set S = ⟨R,F⟩ using the procedure GETPRIORITYINSERTS (Alg. 6). Insertions
for higher-priority adjacencies are considered first, but only applied if they increase the score. For
example, if SAFEINSERT finds no score-increasing insertions for the current MEC, then the remaining
adjacencies in R (if any) are redundant, and will not be inserted. In contrast, the initialisation strategy
inserts all adjacencies in R by default.

Next, in Sec. 3.4, we incorporate this prioritization scheme into a novel algorithm, combining it with
the search strategy of Sec. 3.2 to enable a less greedy search. In Sec. 5.2, we empirically demonstrate
the benefit of this prioritization-based strategy.

1This was empirically evaluated in [11]. However, its correctness was not considered.
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Algorithm 2: I-ORIENT

Input: Intervention targets I, data (DI)I∈I ∼ (PI(v))I∈I , observational MEC E , scoring
criterion S

Output: I-MEC E of (PI(v))I∈I)
1 foreach X ∈ E and Y ∈ neEX do
2 ∆S ←

∑
I∈I, X∈I,Y ̸∈I

sDI
(y, x)− sDI

(y);

3 if ∆S > 0 then
4 Orient edge X − Y as X → Y in E ;
5 Apply Meek’s rules in E to propagate orientations [29] ;
6 else if ∆S < 0 then
7 Orient edge X − Y as X ← Y in E ;
8 Apply Meek’s rules in E to propagate orientations [29] ;
9 return E

3.4 The Less Greedy Equivalence Search algorithm

Finally, we introduce the main result of this work: the algorithm Less Greedy Equivalence Search
(LGES, Alg. 1). LGES modifies the forward phase of GES based on our insights in the previous
sections, while using the same search strategy as GES in the backward phase.

Using Thm. 1 and Prop. 2, we can show that LGES recovers the true MEC in the sample limit, even
given a misspecified set of prior assumptions.
Corollary 1 (Correctness of LGES). Let E denote the Markov equivalence class that results from
LGES (Alg. 1) initialised from an arbitrary MEC E0 and given prior assumptions S = ⟨R,F⟩, and let
P (v) denote the distribution from which the data D was generated. Then, as the number of samples
goes to infinity, E is the Markov equivalence class underlying P (v).
Remark 1. While standard LGES uses SAFEINSERT, LGES can also be run with CONSERVATIVEIN-
SERT. Since we only have partial guarantees on CONSERVATIVEINSERT (Prop. C.1, C.2), it remains
open whether this variant of LGES is asymptotically correct.

4 Score-based learning from interventional data

If interventional data is available, LGES can use it to further orient edges in the learned observational
MEC. We now develop a score-based procedure that enables LGES to do so. Unlike existing score-
based methods, which are often inconsistent or computationally infeasible even on moderately sized
graphs [19, 52], our approach scales while preserving soundness.

Following [19], we assume soft unconditional interventions, including hard (do) interventions as
a special case. These set the distribution of a variable X to some fixed P ∗(x), thereby removing
the influence of its parents. Let I denote a family of interventional targets, i.e., subsets I ⊆ V,
with the empty intervention θ ∈ I producing the observational distribution. We observe data from
distributions (PI(v))I∈I . As in the observational case, we assume there exists a DAG G such that
these distributions are I-Markov (Def. A.7) and faithful to the corresponding intervention graphs
(GI)I∈I , obtained by removing edges into any intervened variable V ∈ I [13, 36].

Just as observational data identifies an MEC, interventional data identifies an I-MEC, a typically
smaller equivalence class encoding constraints on both the observational and interventional data [19,
Def. 7]. Two DAGs are I-Markov equivalent iff they are observationally Markov equivalent and if
their intervention graphs have the same adjacencies across all interventions in I [19, Thm. 10].

To recover the I-MEC, we introduce I-ORIENT (Alg. 2), which orients undirected edges in the
observational MEC using scores from interventional data.
Theorem 2 (Correctness of I-ORIENT). Let E denote the Markov equivalence class that results from
I-ORIENT (Alg. 2) given an observational MEC E0 and interventional targets I , and let (PI(v))I∈I
denote the family of distributions from which the data (DI)I∈I was generated. Assume that E0 is
the MEC underlying P∅(v). Then, as the number of samples goes to infinity for each I ∈ I, E is the
I-Markov equivalence class underlying (PI(v))I∈I .
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(a) SHD vs number of variables (b) SHD vs correctness of prior

(c) Runtime vs number of variables (d) Runtime vs correctness of prior

Figure 4: Performance of algorithms on observational data from Erdős–Rényi graphs with p variables
and 2p edges. LGES is our proposed method. Lower is better (more accurate / faster) across all
plots. The time axis uses a log scale. SHD denotes the structural Hamming distance between the true
and estimated CPDAGs. Left column: without prior assumptions, n = 104 samples. Right column:
with prior assumptions, n = 103 samples, p = 50 variables with prior assumptions on m/2 edges for
a true graph with m edges . Error bars denote one standard deviation across 50 random seeds; some
bars are limited for legibility. Detailed figures and additional baselines in Sec D.

5 Experiments

5.1 Learning from observational data

Synthetic data and baselines. We draw Erdős–Rényi graphs with p variables and 2p or 3p edges
in expectation (denoted ER2 and ER3 respectively), for p up to 500. For each p, we sample 50
graphs and generate linear-Gaussian data for each graph. Following [31], we draw weights drawn
from U([−2,−0.5] ∪ [0.5, 2]), and noise variances from U([0.1, 0.5]). We obtain samples of size
n ∈ {500, 1000, 10000} via sempler [16]. We run (1) GES with a turning phase, known to improve
performance [7, 19]; (2) LGES with CONSERVATIVEINSERT, (3) LGES with SAFEINSERT, (4) PC
[48], and (5) NoTears [54]. 2 Our GES implementations share as much code as possible.

Results. In this section, we present results for ER2 graphs, p up to 150, and n = 104; see Sec. D.1
for additional results (including precision and recall metrics), which follow a similar trend. LGES
both with SAFEINSERT and with CONSERVATIVEINSERT outperforms GES in runtime and accuracy
as measured by Structural Hamming Distance (SHD) [50] between the estimated and true CPDAGs
(Figs. 4c, 4a). Both variants of LGES are up to an order of magnitude faster than GES, making
significantly fewer scoring operations under the hood (Fig. D.1.1h). In terms of SHD, LGES with

2All implementations in Python. LGES, GES: https://github.com/juangamella/ges, PC:
causal-learn [55], NoTears: causal-nex [3]
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CONSERVATIVEINSERT is up to 2 times more accurate than GES, for instance, resulting in only ≈ 30
incorrect edges on average in graphs with 150 variables and 300 edges in expectation. The difference
in accuracy is due to excess adjacencies and incorrect orientations; missing adjacencies almost never
occur. PC, though fast, is less accurate than even GES. NoTears has much worse accuracy than other
methods (for e.g., average SHD ≈ 125 on graphs with 100 variables), though its runtime appears to
scale better (Figs. D.1.1c, D.1.1d).

5.2 Repairing misspecified causal models

Synthetic data and baselines. We study the effect of the correctness of prior assumptions when the
available data is limited (n = 1000) on ER2 graphs with up to 50 variables, with data generated as in
Sec. 5.1. For a true DAG G with m edges, we generate prior assumptions on m′ ∈ {m/2, 3m/4}
required edges as follows. We vary the fraction fc of the chosen m′ edges that is ‘correct’, with c ·m′

edges chosen correctly from those in G and the remaining chosen incorrectly from those not in G. We
compare GES-0 and LGES-0 (no initialisation); LGES (only priority insertions); and GES-INIT and
LGES-INIT (only initialisation). We evaluate both variants of LGES across all settings.

Results. In Figs. 4b and 4d, we show results for m′ = m/2, with additional results in Sec. D.2. LGES
with CONSERVATIVEINSERT outperforms GES and GES-INIT across all levels of prior correctness
in terms of time and SHD. When the prior is mostly accurate ( fc ∈ {0.75, 1}), LGES-INIT performs
marginally better than LGES, with both outperforming LGES-0 in runtime and marginally in accuracy.
With more misspecification (fc ∈ {0.5, 0.25, 0.0}), LGES with CONSERVATIVEINSERT outperforms
all other methods that use the prior assumptions, as well as GES-0, run without these assumptions.
Thus, our prioritization strategy (Sec. 3.3) can leverage prior assumptions but still be robust to
misspecification.

5.3 Learning from interventional data

Figure 5: Runtime of LGIES and GIES on interventional data
from Erdős–Rényi graphs with p variables and 2p edges. The
time axis uses a log scale. We generate n = 104 observational
samples and n = 103 samples per intervention. Error bars
denote one standard deviation across 50 random seeds.

Synthetic data and baselines. We
follow a similar set-up as Sec. 5.1
with 104 observational samples.
For a graph on p variables, we ran-
domly construct |I| = p/10 in-
terventions and generate 103 sam-
ples for each. We compare LGES
with SAFEINSERT / CONSERVA-
TIVEINSERT and I-ORIENT (de-
noted LGIES) against GIES [19].3

Results. LGES is up to 10x faster
than GIES (Fig. 5). In terms of
accuracy, LGES with CONSERVA-
TIVEINSERT and GIES attain com-
petitive SHD from the true I-MEC
(Fig. D.3.1).

6 Conclusions

In this paper, we introduced LGES (Alg. 1), a novel and asymptotically correct algorithm for causal
discovery from both observational and interventional data. LGES significantly improves on GES
in terms of runtime and accuracy using a more careful and less greedy search strategy, avoiding
edge insertions between variables for which it finds a witness of conditional independence. It can
also leverage prior assumptions to guide the search, and remains more accurate than GES even
when those assumptions are misspecified. We also developed I-ORIENT (Alg. 2), a score-based and
theoretically sound (Thm. 2) algorithm for orienting edges in the learned MEC using interventional
data. Together, LGES and I-ORIENT are significantly faster than GIES and achieve comparable
accuracy. A limitation of our approach is that it uses interventional data only after the observational

3https://github.com/juangamella/gies
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MEC is learned. A natural direction for future work is to incorporate interventional data during the
search, while preserving LGES’s theoretical guarantees.
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A Background and related works

A.1 Definitions and previous results

First, we provide definitions and results used in the main text.

Definition A.1 (d-separation [35]). Given a causal DAG G, a node W on a path π is said to be a
collider on π if W has converging arrows into W in π, e.g.,→ W ← or↔ W ←. π is said to be
blocked by a set Z if there exists a node W on π satisfying one of the following two conditions: 1)
W is a collider, and neither W nor any of its descendants are in Z, or 2) W is not a collider, and W is
in Z. Given disjoint sets X,Y, and Z in G, Z is said to d-separate X from Y in G if Z blocks every
path from a node in X to a node in Y according to the d-separation criterion.

Definition A.2 (DELETE operator, [7, Def. 13]). For adjacent nodes X,Y in E connected as either
X → Y or X − Y , and for any H ⊆ NeEY ∩AdjEX , the DELETE(X,Y,T) operator modifies E by
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Figure A.1.1: Meek orientation rules for completing partially directed acyclic graphs

deleting the edge between X and Y , and for each T ∈ T, directing any undirected edges X − T as
X → T and any Y − T as Y → T .
Definition A.3 (Decomposable scoring criterion [7, Sec. 2.3]). Let D be a set of data consisting of
iid samples from some distribution P (v). A scoring criterion S is said to be decomposable if it can
be written as a sum of measures, each of which is a function of only a single node and its parents, as

S(G,D) =
∑
Vi∈V

s(vi, pa
G
i )

Each local score s(vi, pa
G
i ) depends only on the values of Vi and Pai in D.

Definition A.4 (Consistent scoring criterion [7, Def. 5]). Let D be a set of data consisting of iid
samples from some distribution P (v). A scoring criterion S is said to be consistent if, as the number
of samples goes to infinity, the following two properties hold for any DAGs G,H:

1. If P (v) is Markov with respect to G but notH, then S(G,D) > S(H,D).

2. If P (v) is Markov with respect to both G andH, but G contains fewer free parameters than
H, then S(G,D) > S(H,D).

Definition A.5 (Score-equivalent scoring criterion [7, Sec 2.3]). Let D be a set of data consisting
of iid samples from some distribution P (v). A scoring criterion S is said to be score-equivalent
if, as the number of samples goes to infinity, for any two DAGs G,H that are Markov equivalent,
S(G,D) = S(H,D).
Definition A.6 (Soft unconditional intervention [19, Sec. 2.1]). A soft unconditional intervention on
a set of variables X sets the value of each variable Vi ∈ X to an independent random variable Ui

from a given set of random variables U. The resulting distribution is given by

PX(v) =
∏

Vi ̸∈X

P (vi | pai)
∏

Vi∈X

P ∗(vi)

where P ∗(vi) denotes the distribution of Ui ∈ U corresponding to Vi ∈ X.
Definition A.7 (I-Markov property [19, Def. 7]). Let V be a set of variables, G a causal DAG over
V, I a family of interventional targets, and (PI(v))I∈I a corresponding family of interventional
distributions. We say (PI(v))I∈I satisfies the I-Markov Property of G if:

1. Each PI(v) is Markov with respect to the interventional graph GI, and

2. For interventions I,J ∈ I and variables Vi ̸∈ I ∪ J, PI(vi | pai) = PJ(vi | pai).

We letMI(G) denote the set of all (PI(v))I∈I that are I-Markov with respect to G. Two causal
DAGs G,H are I-Markov equivalent ifMI(G) =MI(H).

Meek orientation rules. In Fig. A.1.1, we provide Meek’s orientation rules used in I-ORIENT to
orient an I-MEC. These rules provide an algorithm for completing a PDAG to a completed PDAG.
They are applied repeatedly to a PDAG until no eligible motifs exist.

Next, introduce some additional definitions and results that will be used in Sec. C.

The skeleton of a causal DAG G (denoted skel(G)) is the undirected graph that results from ignoring
the edge directions of every edge in G. A triplet of variables (X,Z, Y ) in G is said to be unshielded
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if (X,Z) and (Y,Z) are adjacent but (X,Y ) are not. An unshielded triplet is said to be a v-structure
(or unshielded collider) if it is oriented as X → Z ← Y in G.
Theorem A.1 (Graphical criterion for Markov equivalence [51, Thm. 1]). Two DAGs are Markov
equivalent if and only if they have the same skeletons and same v-structures.

Based on the above characterization, to obtain the CPDAG for the MEC corresponding to a DAG G,
one adds an undirected edge for every adjacency in G; orients any v-structures according to G; then
applies Meek’s orientation rules to complete the resulting PDAG to a CPDAG.
Definition A.8 (Global Markov property [35]). A probability distribution P (v) over a set of variables
V is said to satisfy the global Markov property for a causal DAG G if, for arbitrary disjoint sets
X,Y,Z ⊂ V with X,Y ̸= ∅,

X ⊥d Y|Z =⇒ X⊥⊥Y|Z in P (v).

Let NdG
X denote the set of non-descendants of a variable X in G, i.e. variables in G (excluding X

itself) to which there is no directed path from X .
Definition A.9 (Local Markov property [35]). A probability distribution P (v) over a set of variables
V is said to satisfy the local Markov property for a causal DAG G if, for every variable X ∈ V,

X ⊥⊥NdG
X | PaGX in P (v).

Proposition A.1 (Equivalence of Local and Global Markov Properties [24, Prop. 4]). Let G be a
causal DAG over variables V. A probability distribution over V satisfies the global Markov property
for G if and only if it satisfies the local Markov property for G.
Definition A.10 (Covered edge [6, Def. 2]). An edge X → Y in a given causal DAG G is said to be
covered if PaGY = PaGX ∪ {X}.
Lemma A.1 (Covered edge reversal [6, Lemma. 1]). Let G be any causal DAG containing the edge
X → Y and let G′ be the DAG that is identical to G except it instead contains the edge Y → X .
Then, G′ is a DAG that is Markov equivalent to G iff the edge X → Y is covered in G.
Theorem A.2 (Transformational characterization of Markov equivalent graphs [6, Thm. 2]). Let
G,G′ be a pair of Markov equivalent causal DAGs. Then, there exists a sequence of covered edge
reversals transforming G to G′.
Theorem A.3 (Chickering-Meek theorem [7, Thm. 4]). let G andH be a pair of causal DAGs such
every d-separation that holds inH also holds in G. Then, there exists a sequence of edge additions
and covered edge reversals transforming G toH such that after each reversal and addition, G is DAG
and every d-separation that holdsH also holds in G.

A.2 Related works

A.2.1 Learning from observational data

Algorithms for causal discovery fall into three broad categories: constraint-based, score-based, and
hybrid. Constraint-based algorithms like PC [48] and the Sparsest Permutations (SP) algorithm
[38] learn the true MEC using statistical tests for whether the chosen type of constraints, typically
conditional independencies, hold in the data. A challenge to these approaches is improving the
accuracy of conditional independence tests, for e.g. in controlling type I error [46]. Score-based
algorithms such as GES [7, 28] use a scoring criterion that reflects fit between data and graph,
typically in the form of a likelihood plus a complexity penalty. Hybrid algorithms such as max-min
hill climbing [50] use a combination of the two approaches, for e.g., first learning the skeleton using
a constraint-based method then orienting edges in the skeleton using a score. There is no general
claim about the relative accuracy of these methods; we refer readers to [50] for an extensive empirical
analysis, who found, for instance, that GES outperforms PC in accuracy across various sample sizes
[50, Tables 4, 5] .

Commonly, causal discovery algorithms struggle with scaling in high-dimensional settings. This
has motivated variants such as Parallel-PC [25] and Fast Greedy Equivalence Search (FGES) [37],
which offer faster, parallelized implementations of the algorithms. While FGES offers an additional
heuristic over GES, i.e., not adding any edge X → Y in the forward phase if X,Y are uncorrelated
in the data, this heuristic is not theoretically guaranteed to recover the true MEC. More recent
continuous-optimization based approaches such as NoTears [54] are in principle more scalable, but
lack theoretical guarantees and show brittle performance even in simulated settings [32, 39].
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A.2.2 Repairing misspecified causal models

The task of repairing a partially misspecified causal model using data can be understood as an
example of causal discovery with background knowledge [11]. Such background knowledge may
be provided by a domain expert or even a large language model [27]. Many algorithms under
this umbrella—including tiered-FCI [44] and the K2 algorithm [12]—assume that the background
knowledge is correct, i.e., consistent with the ground truth. However, if the expert is imperfect, such
methods necessarily fail to recover the true MEC. The approach in [33] allows some misspecification
of the expert knowledge, i.e. missing or excess adjacencies, but no incorrect orientations. However,
their approach does not guarantee recovery of the true MEC. Other approaches treat knowledge a
‘soft’ prior [5, 21, 34] to guide the search, but lack theoretical guarantees on the output graph. One
exception is the Sparsest Permutations (SP) algorithm [38], which can initialize the search to an
ordering over variables provided by an expert.

A.2.3 Learning from interventional data

Observational learning algorithms can only learn a causal graph up to its observational Markov
equivalence class (MEC). The MEC is the limit of what can be identified from observational data
without further assumptions. However, MECs can often be large and uninformative for downstream
causal tasks [20]. Interventional data can help significantly refine observational MECs [19], and
is becoming increasingly available, for e.g., in biological settings due to advances in single-cell
technologies [14, 43]. This has motivated the design of algorithms for causal discovery from
observational and interventional data such as the score-based Greedy Interventional Equivalence
Search (GIES) [19] and the CI-based Interventional Greedy Sparsest Permutations (I-GSP) [52].
However, in [52], it was shown that GIES is inconsistent, i.e.. not guaranteed to recover the true
interventional MEC in the sample limit.

B Discussion and examples

Causal sufficiency. In this work, we assume that the underlying system is Markovian, i.e. no two
observed variables have an unobserved common cause. This is also known as the causal sufficiency
assumption. While this assumption is standard in causal discovery, it can be violated in practice. In
settings with unobserved confounders, i.e., non-Markovian settings, the equivalence class of graphs
that can be identified is typically even larger (and hence more uninformative) than in the Markovian
case. One reason for this is that two variables may be non-adjacent in the true graph while still being
inseparable by any set due to the existence of an inducing path between them [51, Def. 2]. As a
result, performing causal inference from equivalence classes of non-Markovian graphs is challenging.

Still, there has been work on causal discovery in non-Markovian settings. Constraint-based approaches
include the FCI algorithm [47, 53] and its interventional variants [22, 23, 26], guaranteed to recover
the true equivalence class in the sample limit. While there has been progress towards score-based
approaches [4, 10, 40, 49], finding algorithms that are asymptotically correct remains an open
problem.

There is a fundamental theoretical challenge to generalizing our approach to non-Markovian settings.
GES relies on a transformational characterization of Markovian causal DAGs that are (a) Markov
equivalent (Thm. A.2) or (b) such that all d-separations that hold in one also hold in the other
(Thm. A.3). While the former has been generalized to non-Markovian causal DAGs, the latter
remains an open problem [53].

Other assumptions. In this work, we assume we are given a distribution that is Markov and faithful
with respect to some causal DAG. This is a standard assumption in causal discovery, often justified
by the fact that the set of distributions that are Markov but not faithful with respect to a given DAG
has Lebesgue measure zero. Moreover, if we assume only that the given distribution is Markov with
respect to some causal DAG, we can never rule out the true DAG being the fully connected DAG. Still,
there has been work on relaxing the faithfulness assumption, giving rise to the Sparsest Permutations
algorithm [38].

We further assume in this work that we are given a scoring criterion that is decomposable and
consistent. This does not strictly mean we make parametric assumptions. Existing scores such
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Figure B.0.1: Figs. 2, 3 partially reproduced for convenience. GES is given a distribution P (v)
whose true MEC is represented by E∗ (left). GES is currently at MEC E , evaluating which INSERT
operator to apply next. Each INSERT corresponds to picking some G ∈ E and adding some edge to it.

as BIC satisfy these criteria as long as the model is a curved exponential family [7, 18]. This
includes multinomial (discrete) and linear-Gaussian models. For continuous data, the linear-Gaussian
assumption can be violated in practice. In this case, one can discretize the data before using it for
causal discovery, as in [42]. However, since the parameter space of multinomial models is quite large,
and information is lost during discretization, it would be valuable future work to investigate scores
for other models of continuous data.

Finally, we return to our explanation of the two trajectories GES might take in Ex. 2, Fig. 2.
Example B.1. (Ex. 2 continued). Recall that GES is given a distribution P (v) whose true MEC is
E∗ (Fig. B.0.1, left). GES is currently at the MEC E , evaluating which INSERT operator to apply.
Each INSERT operator corresponds to picking some DAG G ∈ E and adding some edge to it. One
such operator corresponds to picking G1 ∈ E , and adding the edge X1 → Z to it. Another such
operator corresponds to picking G2 ∈ E , and adding the edge X1 → Y to it. Both operators,
shown in Fig. B.0.1, result in a score increase by local consistency (Def. 1) since Z ⊥̸⊥X1 | PaG1

Z

and Y ⊥̸⊥ X1 | PaG2

Y in P (v). Although G1 ∪ X1 → Z looks ‘closer’ to the true MEC E∗ than
G2 ∪X! → Y , when tested empirically, the latter often scores more than the former (Ex. 2).

Moreover, even in the sample limit, the consistency (Def. A.4) of the scoring criterion does not
guarantee that G2 ∪ {X1 → Y } will score lower than G1 ∪ {X1 → Z}. Neither the global nor the
local consistency of the score provide an immediate guarantee for which will score higher. Global
consistency only allows us to compare graphs when P (v) is Markov with respect to at least one of
them; however, P (v) is not Markov with respect to G2 ∪ {X1 → Y } or G1 ∪ {X1 → Z}. Local
consistency (Def. 1) does not let us compare these graphs either, since they differ by more than an
edge addition. Therefore, GES may move either to the MEC of G1 ∪ {X1 → Z} (as in τ1, Fig. 2)
or to the MEC of G2 ∪ {X1 → Y } (as in τ2, Fig. 2). It is unknown a priori which operator is the
highest-scoring.

C Proofs and additional results

Theorem 1 (Correctness of GGES). Let E denote the Markov equivalence class that results from
GGES (Alg. 3) initialized from an arbitrary MEC E0 and let P (v) denote the distribution from
which the data D was generated. Then, as the number of samples goes to infinity, E is the Markov
equivalence class underlying P (v).

Proof. The proof is similar to that of [7, Lemma 9, 10].

Forward phase. First, we show that P (v) is Markov with respect to the MEC E ′ resulting from the
forward phase of GGES. Let G be any DAG in E ′. By assumption, since GETINSERT does not find
any valid score-increasing INSERT operators, there exists no such operator. Since there exist no
score-increasing INSERT operators, the local consistency of the scoring criterion (Def. 1) implies that
for every X ∈ G and Y ∈ NdG

X , X ⊥⊥ Y | PaGX . Otherwise, if we had some X ∈ G and Y ∈ NdG
X

such that X ⊥̸⊥ Y | PaGX , the INSERT(Y,X, ∗) operator corresponding to G ∪ {Y → X} would
result in a score increase. Since P (v) is faithful to some DAG, it satisfies the composition axiom
of conditional independence [35]: if X ⊥⊥ Y | PaGX for every Y ∈ NdG

X , then X ⊥⊥NdG
X | PaGX .

Since this is true for every X , P (v) satisfies the local Markov property of G. By the equivalence
of the global and local Markov properties (Prop. A.1), this means every d-separation in G implies a
corresponding CI in P (v). Thus, P (v) is Markov with respect to G and hence to E ′.
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Backward phase. Next, we show that P (v) is both Markov and faithful to the MEC E resulting from
the backward phase of GGES. First, we show that P (v) is Markov with respect to E . The backward
phase starts with E ′, output by the forward phase. We have shown that P (v) is Markov with respect
to E ′. By construction, each DELETE operator applied to the current MEC in the backward phase
results in a score increase. If any operator resulted in an E ′′ with respect to which P (v) is not Markov,
the consistency of the scoring criterion A.4 implies that it would decrease the score. Therefore, P (v)
must be Markov with respect to E .

Finally, we show that P (v) is faithful to E . Let E∗ be the true MEC underlying P (v). Since P (v) is
both Markov and faithful with respect to E∗, and P (v) is Markov with respect to E , every d-separation
in E must also hold in E∗. Then, by the Chickering-Meek theorem (Thm. A.3), for any G ∈ E and
H ∈ E∗, there exists a sequence of covered edge reversals and edge additions that transform H
to G. If this sequence only contains covered edge reversals, then H and G are Markov-equivalent
(Lemma. A.1), and we are done. Otherwise, let the last edge addition in this sequence add the edge
X → Y , resulting in the DAG G′. Since G′ can be transformed to G by a sequence of covered edge
reversals, they are Markov equivalent, and we have G′ ∈ E (Lemma. A.1). Moreover, since this
sequence of transformations includes only covered edge reversals and edge additions, and P (v) is
Markov with respect to H, P (v) is also Markov with respect to G′ \ {X → Y } (by Lemma. A.1,
covered edge reversals and additions do not create additional d-separations). By the consistency
of the scoring criterion, G′ \ {X → Y } has a higher score than G′ ∈ E since the former has fewer
parameters. The corresponding DELETE operator thus results in a score increase, and by assumption,
GETDELETE is guaranteed to find some score-increasing operator in this case. Thus, we have a
contradiction.

Proposition 1. Let E denote an arbitrary CPDAG and let P (v) denote the distribution from which
the data D was generated. Assume, as the number of samples goes to infinity, that there exists a valid
score-decreasing INSERT(X,Y,T) operator for E . Then, there exists a DAG G ∈ E such that (1)
Y ⊥d X | PaGY and (2) Y ⊥⊥X | PaGY in P (v).

Proof. The score change of a valid INSERT(X,Y,T) corresponds to picking a DAG G ∈ E and
comparing S(G,D) with S(G ∪ {X → Y },D). By local consistency (Def. 1), if Y ⊥̸⊥X | PaGY ,
then the score must increase. By contrapositive, we have Y ⊥⊥X | PaGY in P (v). Moreover, since X
must be a non-descendant of Y for G ∪ {X → Y } to be a DAG, Y ⊥d X | PaGY in G.

We provide the following guarantee for LGES Alg. 1 run with CONSERVATIVEINSERT (Strategy 1).

Proposition C.1 (Partial guarantee on CONSERVATIVEINSERT). Let LGES∗ denote the variant of
LGES (Alg. 1) that uses CONSERVATIVEINSERT instead of SAFEINSERT in the forward phase. Let E
denote the equivalence class that results from the forward phase of LGES∗initialized to an arbitrary
MEC E0, let P (v) denote the distribution from which the data D was generated, and let E∗ be the
true MEC underlying P (v). Then, as the number of samples goes to infinity,

1. skel(E∗) ⊆ skel(E)

2. For any unshielded triplet (X,Z, Y ) ∈ E∗, either X,Y are adjacent in E or (X,Z, Y ) is a
collider in E∗ if and only if it is a collider in E .

Proof. For any variables X,Y adjacent in E∗, since P (v) is faithful to E∗, X,Y are not independent
in the data conditional on any set Z ⊆ V. Hence, for any G ∈ E , X ⊥̸⊥Y | PaGY . Therefore, we always
have s(G) < s(G ∪ {X → Y }) for any G ∈ E such that X ∈ NdG

Y , and all valid INSERT(X,Y, ∗)
operators will result in a score increase. Hence, CONSERVATIVEINSERT will consider all such
operators. Since Ê is a local optimum of the score, any variables that are adjacent in E∗ must also be
adjacent in E . Therefore, skel(E∗) ⊆ skel(E).
Then, consider some unshielded triplet (X,Z, Y ) ∈ E∗. Since skel(E∗) ⊆ skel(E), (X,Z) and
(Y, Z) must be adjacent in E . If (X,Y ) are also adjacent in E , we are done. Otherwise, we have an
unshielded triplet (X,Z, Y ) ∈ E . Assume (X,Z, Y ) is a collider in E∗. Since CONSERVATIVEIN-
SERT finds no score-increasing INSERT operators for E , and X,Y are non-adjacent in E , it must be
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the case that ∃G ∈ E such that Y ∈ NdG
X and X ⊥⊥ Y | PaGX or X ∈ NdG

Y and X ⊥⊥ Y | PaGY .
Without loss of generality, assume it is the former. Since (X,Z, Y ) is a collider in E∗, X ⊥̸⊥ Y | Z
in P (v) for any set Z containing Z. Therefore, it must be the case that Z ̸∈ PaGX . Hence, G
contains the edge X → Z. Since Y ∈ NdG

X , this further implies that G contains the edge Y → Z.
Therefore, (X,Z, Y ) is a collider in G and hence E∗. Next, assume that (X,Z, Y ) is a collider in
E . Then, Z ̸∈ PaGX and Z ̸∈ PaGY for all G ∈ E . As before, since CONSERVATIVEINSERT finds
no score-increasing INSERT operators for E , and X,Y are non-adjacent in E , it must be the case
that ∃G ∈ E such that Y ∈ NdG

X and X ⊥⊥ Y | PaGX or X ∈ NdG
Y and X ⊥⊥ Y | PaGY . Then,

conditioning on Z is not needed to separate X,Y in P (v), which implies that (X,Z, Y ) is also a
collider in E∗.

We give the following condition, sufficient to guarantee that CONSERVATIVEINSERT returns a
score-increasing INSERT operator when one exists.

Proposition C.2 (Conditional guarantee on CONSERVATIVEINSERT). Let E denote a Markov equiv-
alence class and let P (v) denote the distribution from which the data D was generated.

Assume the following holds.

Assumption. Let G,H be two DAGs such that some d-separation encoded in G
does not hold inH. Then, there exists a pair of variables X,Y non-adjacent in G
with Y ∈ NdG

X such that for every G′ Markov-equivalent to G with Y ∈ NdG′

X ,
X ̸⊥d Y | PaG

′

X inH.

Then, as the number of samples goes to infinity, CONSERVATIVEINSERT returns a valid score-
increasing INSERT operator if and only if one exists.

Proof. Let E∗ indicate the true MEC underlying P (v). If there exists a valid score-increasing
INSERT operator for the current state E , then P (v) is not Markov with respect to E . Since P (v)
is faithful to E∗, this implies that there exists some d-separation encoded in E that does not hold
in E∗. By the assumption, this implies that there exists X,Y non-adjacent in E such that for every
G in E with Y ∈ NdG

X , X ̸⊥d Y | PaGX in E∗ and hence X ⊥̸⊥ Y | PaGX in P (v). Therefore,
every INSERT(Y,X, ∗ operator results in a score increase for E . Then, CONSERVATIVEINSERT is
guaranteed to find a score-increasing INSERT. The reverse direction follows by construction, since
CONSERVATIVEINSERT enumerates only valid INSERT operators and returns one only if it increases
the score.

As a corollary of the above and Thm. 1, we can also show that LGES with CONSERVATIVEINSERT
instead of SAFEINSERT is guaranteed to recover the true MEC in the sample limit, if the assumption
in Prop. C.2 holds. We leave the correctness of this assumption open.
Proposition 2 (Correctness of SAFEINSERT). Let E denote a Markov equivalence class and let P (v)
denote the distribution from which the data D was generated. Then, as the number of samples goes
to infinity, SAFEINSERT returns a valid score-increasing INSERT operator if and only if one exists.

Proof. Assume there exists a valid score-increasing INSERT operator for the given MEC E . Then,
P (v) is not Markov with respect to E . Hence, P (v) is not Markov with respect to the G ∈ E chosen
by SAFEINSERT. By the equivalence of the global and local Markov properties (Prop. A.1), this
implies that there exists X ∈ G such that X ⊥̸⊥NdG

X | PaGX . Since P (v) is faithful to some DAG, it
satisfies the composition axiom of conditional independence [35]; hence, there exists some Y ∈ NdG

X

such that X ⊥̸⊥ Y | PaGX . By the local consistency and decomposability of the scoring criterion,
we have s(X,PaGX) < s(X,PaGX ∪ {Y }). Then, SAFEINSERT will find the valid score-increasing
INSERT(Y,X,T) operator corresponding to G ∪ {Y → X}. The reverse direction is similar. If
SAFEINSERT outputs some (X,Y,T), this implies it has found some X ∈ G and Y ∈ NdG

X such
s(X,PaGX) < s(X,PaGX ∪ {Y }), and hence X ⊥̸⊥ Y | PaGX . This implies that P (v) is not Markov
with respect to G and hence to E , and there exists a valid score-increasing INSERT for E . The INSERT
output by SAFEINSERT is a valid score-increasing operator by construction.
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We provide pseudocode for the GETSAFEINSERT procedure in Alg. 5. GETSAFEINSERT generalizes
SAFEINSERT; instead of searching for a valid INSERT across all non-adjacencies in E , it searches for
a valid INSERT in a subset of the non-adjacencies in E , given by the candidates set. This enables the
use of the prioritisation scheme of GETPRIORITYINSERTS.

Proposition C.3 (Correctness of GETPRIORITYINSERTS). Let priorityList be the list of sets of
edges output by GETPRIORITYINSERTS (Alg. 6) given a Markov equivalence class E and prior
assumptions S = ⟨R,F⟩. Then, the union of all sets of edges in priorityList is equal to the set of
variable pairs (X,Y ) that are non-adjacent in E .

Proof. This follows from the fact that GETPRIORITYINSERTS loops over all non-adjacencies in E ,
and any adjacencies not determined by S are added to priorityList[3] on line 10.

Corollary 1 (Correctness of LGES). Let E denote the Markov equivalence class that results from
LGES (Alg. 1) initialised from an arbitrary MEC E0 and given prior assumptions S = ⟨R,F⟩, and let
P (v) denote the distribution from which the data D was generated. Then, as the number of samples
goes to infinity, E is the Markov equivalence class underlying P (v).

Proof. This follows from Prop. 2, Prop. C.3, and Thm. 1. In the forward phase, if P (v) is not
Markov with respect to the current MEC E , SAFEINSERT will find some score-increasing IN-
SERT(X,Y,T)(Prop. 2. Since (X,Y ) must be in some set in the priority list returned by GETPRIOR-
ITYINSERT (Prop. C.3), some call to GETSAFEINSERT will find a score-increasing INSERT operator.
Therefore, each forward step is guaranteed to find a valid score-increasing INSERT operator, if it
exists. Since the backward step enumerates over all possible valid DELETE, each backward step is
also guaranteed to find a valid score-increasing DELETE operator, if it exists. Thus, LGES satisfies
the conditions of GGES (Alg. 3) and its correctness follows from Thm. 1.

Theorem 2 (Correctness of I-ORIENT). Let E denote the Markov equivalence class that results from
I-ORIENT (Alg. 2) given an observational MEC E0 and interventional targets I, and let (PI(v))I∈I
denote the family of distributions from which the data (DI)I∈I was generated. Assume that E0 is
the MEC underlying P∅(v). Then, as the number of samples goes to infinity for each I ∈ I, E is the
I-Markov equivalence class underlying (PI(v))I∈I .

Proof. Let E∗ denote the true I-MEC underlying (PI(v))I∈I . Since E only orients undirected
edges in E0, and E0 has the same skeleton and v-structures as E∗, E also has the same skeleton and
v-structures as E∗. Next, we show that for every variable pair (X,Y ) adjacent in E∗ (and hence E)
for which there exists some I ∈ I with X ∈ I, Y ̸∈ I, this edge is directed in both E and E∗, and
moreover, has the same direction in both.

Consider some edge (X,Y ) ∈ E∗ for which there exists I ∈ I such that X ∈ I, Y ̸∈ I. Then, (X,Y )
is directed and I-essential in E [19, Cor. 13]. We will show that E∗ contains Y → X if and only if
for every such I, sDI

(y) > sDI
(y, x).

=⇒ Assume E∗ contains Y → X . If X → Y ∈ E∗, then X → Y in every DAG G ∈ E∗. This
implies that in every G ∈ E∗, there are no directed paths from Y → X in G and hence GI. Moreover,
since all edges into X are removed in GI, there are no directed paths from X → Y in GI. Since
PI(v) is Markov with respect to GI, this implies X ⊥⊥ Y in PI(v). Let H denote the empty graph
over variables V. Since X ⊥⊥ Y in PI(v), by the local consistency of the scoring criterion, H has
a higher score than H ∪ {X → Y }. By the decomposability of the scoring criterion, this implies
sDI

(y) > sDI
(y, x). Since I was arbitrary, this must be true for each I ∈ I such that X ∈ I, Y ̸∈ I.

⇐= Assume that sDI
(y) > sDI

(y, x) for some I ∈ I . LetH denote the empty graph over variables
V. Then, since sDI

(y) > sDI
(y, x), the decomposability of the scoring criterion implies that H

has a higher score than H ∪ {X → Y }. If Y ⊥̸⊥X in PI(v), the local consistency of the scoring
criterion would imply that H has a lower score than H ∪ {X → Y }. By contrapositive, it must
be true that Y ⊥⊥X in PI(v). Since PI(v) is faithful to GI for some G ∈ E∗, this must imply that
X,Y are non-adjacent in GI. Since X,Y are adjacent in E∗, and X ∈ I, Y ̸∈ I, this implies that
G and E∗ contain Y → X . This further implies that if the supposition is true for some I ∈ I with
X ∈ I, Y ̸∈ I, it must be true for all of them.

The argument to show that E∗ contains X → Y if and only if for every I with X ∈ I, Y ̸∈ I,
sDI

(y) < sDI
(y, x) is analogous.
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Moreover, since these statements are true for each I ∈ I, they are also true when comparing the sum
over sum over all such I: i.e.,

∑
I∈I,X∈I,Y ̸∈I

sDI
(y) vs

∑
I∈I,X∈I,Y ̸∈I

sDI
(y, x).

Any edge that is directed in E is either (a) already directed in E0, in which case it is similarly directed
in E∗, (b) oriented on lines 4 or 7 of I-ORIENT, in which case it is similarly directed in E∗ by the
above argument, or (c) oriented by the Meek rules on lines 5 or 8, in which case it is a consequence
of edges directed due to (a) and (b), in which case it is also similarly directed in E∗. Moreover, the
edges directed in E∗ are also due to (a) their being directed in E0, (b) there existing some I ∈ I
which contains exactly one endpoint of that edge, or (c) their being a consequence by the Meek
rules of these two edge types. Therefore, edges directed in E∗ are also similarly directed in E , since
I-ORIENT directs each such edge type. We thus have that E = E∗.

Algorithm 3: Generalized Greedy Equivalence Search (GGES)
Input: Data D ∼ P(v), initial MEC E , scoring criterion S, initial MEC E0
Output: MEC E of P(v)

1 E ← E0;
/* forward phase */

2 repeat
3 (X,Y,T)← GETINSERT(E ,D, S) ;
4 E ← E + INSERT(X,Y,T) ;
5 until no improving insertions exist;
/* backward phase */

6 repeat
7 (X,Y,H)← GETDELETE(E ,D, S) ;
8 E ← E + DELETE(X,Y,H) ;
9 until no improving deletions exist;

10 return E

Algorithm 4: GETCONSERVATIVEINSERT

Input: MEC E , data D ∼ P (v), edge insertion candidates candidates, scoring criterion S
Output: A valid score-increasing INSERT operator for E from the adjacencies in candidates, or

∅ if none is found.
1 ∆Smax ← −∞;
2 (Xmax, Ymax,Tmax)← ∅;
3 foreach (X,Y ) in candidates do
4 ∆Sxy ← −∞;
5 (X̂, Ŷ , T̂)← ∅;
6 foreach valid T ⊆ NeEY \AdjEX do
7 ∆S ← s

(
Y, (NeEY ∩AdjEX)∪T∪PaEY ∪{X}

)
− s

(
Y, (NeEY ∩AdjEX)∪T∪PaEY,

)
;

8 if ∆S > ∆Sxy then
9 ∆Sxy ← ∆S;

10 (X̂, Ŷ , T̂)← (X,Y,T);
11 else if ∆S < 0 then
12 ∆Sxy ← −∞;
13 break;
14 if ∆Sxy > ∆Smax then
15 ∆Smax ← ∆Sxy;
16 (Xmax, Ymax,Tmax)← (X̂, Ŷ , T̂);
17 return (Xmax, Ymax,Tmax)
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Algorithm 5: GETSAFEINSERT

Input: MEC E , DAG G ∈ E , data D ∼ P (v), edge insertion candidates candidates, scoring
criterion S

Output: A valid score-increasing INSERT operator for E from the adjacencies in candidates, or
∅ if none is found.

1 ∆Smax ← −∞;
2 (Xmax, Ymax,Tmax)← ∅;
3 foreach (X,Y ) in candidates do
4 if X ∈ NdG

Y and s(Y,PaGY ) < s(Y,PaGY ∪ {X}) then
5 foreach valid T ⊆ NeEY \AdjEX do
6 ∆S ← s

(
Y, (NeEY ∩AdjEX)∪T∪PaEY ∪{X}

)
−s

(
Y, (NeEY ∩AdjEX)∪T∪PaEY,

)
;

7 if ∆S > ∆Smax then
8 ∆Smax ← ∆S;
9 (Xmax, Ymax,Tmax)← (X,Y,T);

10 return (Xmax, Ymax,Tmax)

Algorithm 6: GETPRIORITYINSERTS

Input: MEC E , prior assumptions S = ⟨R,F⟩
1 priorityList← [{} × 4];
2 foreach (X,Y ) non-adjacent in E do
3 if X − ∗Y ∈ R then
4 Add (X,Y ) to priorityList[1] ; // required
5 else if Y → X ∈ R then
6 Add (X,Y ) to priorityList[2] ; // weakly required
7 else if X → Y ∈ F or X − Y ∈ F then
8 Add (X,Y ) to priorityList[4] ; // forbidden
9 else

10 Add (X,Y ) to priorityList[3] ; // ambivalent
11 return priorityList

D Experiments

Compute details. All experiments were run on a shared compute cluster with 2x Intel Xeon
Platinum 8480+ CPUs (112 cores total, 224 threads) at up to 3.8 GHz, and 210 MiB L3 cache.

D.1 Learning from observational data

D.1.1 Baseline details

We ran the PC algorithm using significance level α = 0.05 for conditional independence tests, with the
null hypothesis of independence. Since NoTears often outputs cyclic graphs, we post-processed the
output graph by greedily removing the lowest-weight edges until it was acyclic, following [31]. This
was done so that we could convert the output to a valid CPDAG for comparison with other algorithms.
We ran NoTears with default parameters from the causalnex library, which uses a weight threshold
of w = 0; note that performance may vary depending on the choice of parameters, particularly the
weight threshold and the acyclicity penalty parameter. However, since the implementation of NoTears
is very compute-heavy, we were not able to tune these parameters.

D.1.2 Synthetic data details for Experiment 5.1

For the results shown in Fig. 4, we draw Erdős–Rényi graphs with p variables and {2p edges
in expectation (ER2), for p ∈ {5, 10, 15, 20, 25, 35, 50, 75, 100, 150}. For each p, we sample 50
graphs and generate linear-Gaussian data for each graph. Following [31], we draw weights from
U([−2,−0.5] ∪ [0.5, 2]). In some cases, the resulting weight matrix was (almost) singular, in which
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case each row of weights was ℓ1 normalized. We draw noise means fromN (0, 1) and noise variances
from U([0.1, 0.5]). We obtain n = 104 samples per dataset via sempler [16].

D.1.3 Further metrics for Experiment 5.1

In Fig. D.1.1, we present additional metrics and results for the setting in Sec. 5.1, including the
particular types of structural errors (excess adjacencies, missing adjacencies, incorrect orientations)
and the number of scoring operations conducted by the various algorithms. As in the case of SHD
and runtime, LGES outperforms GES and PC across these metrics, with CONSERVATIVEINSERT
outperforming SAFEINSERT.

The behaviour of NoTears is more variable. It misses significantly more adjacencies than all other
methods—approximately linearly many in the number of variables (Fig. D.1.1f). It also includes
many more excess adjacencies than the other algorithms up to p = 50, after which the number of
excess adjacencies begins to decline, ultimately approaching that of LGES for p = 150 (Fig. D.1.1e);
however, this could be explained by the increasing number of adjacencies that are also missed by
NoTears. We show in the next section how, as a result, the F1 score of NoTears is low across all graph
sizes (Fig. D.1.2f).

D.1.4 Precision, recall, and F1 score for Experiment 5.1

Finally, we evaluate performance by considering causal discovery as a binary classification task. We
use the task definition provided in [30]: an MEC E is said to contain an edge (X,Y ) if it contains
either X → Y or X − Y (but not Y → X). The results are shown in Fig. D.1.2. For graphs with
p < 20 nodes, we find that GES and LGES have similar F1 scores. They both outperform PC, which
in turn substantially outperforms NoTears. For p > 20, LGES with CONSERATIVEINSERT dominates,
followed by LGES with SAFEINSERT. For large p, LGES with CONSERATIVEINSERT achieves a
substantially higher F1 score than GES and other algorithms. For instance, for p = 150, LGES with
CONSERATIVEINSERT achieves an F1 score > 0.9, whereas GES’s F1 score is slightly under 0.85.

D.1.5 Additional experiments with denser graphs

In Fig. D.1.3, we provide results for Erdős–Rényi graphs with p variables and 3p edges in expectation
(ER3), with a similar set-up as in Experiment 5.1. We ran all baselines except NoTears due to its
heavy compute usage. The relative performance of algorithms is similar to the ER2 case (Fig. D.1.1).
Both variants of LGES are up to 10x faster than GES, and substantially more accurate than GES and
PC. This shows that our search strategy improves on GES across various edge densities, not limited
to sparse or to dense graphs. A noteworthy difference from the ER2 case is in the performance of
the PC algorithm. The PC algorithm now includes fewer excess adjacencies than LGES and GES
(Fig. D.1.3c), but misses many more adjacencies (Fig. D.1.3d). As a result, PC has a substantially
lower F1 score than all other algorithms, though its accuracy in terms of SHD is similar to GES
(Fig. D.1.3i).

D.1.6 Additional experiments with small datasets

Our experiments in the previous sections were conducted with n = 104 samples. We conduct
additional experiments with smaller sample sizes, i.e. n ∈ {500, 1000} for ER2 graphs with
p ∈ {10, 25, 50, 100} variables. The results are summarized in Fig. D.1.4, with additional details in
Table D.1.1.

• For smaller graphs (p ∈ {10, 25}), GES and LGES with SAFEINSERT perform comparably
across all metrics. LGES with CONSERVATIVEINSERT performs comparably to GES and
LGES with SAFEINSERT for sample size n = 500, but outperforms them both for n = 1000,
making fewer structural errors and achieving a higher F1 score.

• For larger graphs (p ∈ {10, 25}), LGES with SAFEINSERT begins to outperform GES
marginally. Notably, LGES with CONSERVATIVEINSERT significantly outperforms GES,
achieving > 10 fewer structural errors for both sample sizes.

• Interestingly the PC algorithm tends to outperform the other three algorithms in terms of
SHD and excess adjacencies, though it tends to under-insert edges, missing substantially
more adjacencies than all the other algorithms. LGES with CONSERVATIVEINSERT also
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(a) SHD vs number of variables (NoTears omitted) (b) Runtime vs number of variables (NoTears omitted)

(c) SHD vs number of variables (d) Runtime vs number of variables

(e) Excess adjacencies vs number of variables. (f) Missing adjacencies vs number of variables.

(g) Incorrect orientations vs number of variables. (h) Scoring operations vs number of variables.

Figure D.1.1: Performance of algorithms on observational data from Erdős–Rényi graphs with p
variables and 2p edges and n = 104 samples (Experiment 5.1, Sec. D.1.3). LGES is our proposed
method. Lower is better (more accurate / faster) across all plots. The time axis uses a log scale. SHD
denotes the structural Hamming distance between the true and estimated CPDAGs. Error bars denote
one standard deviation across 50 random seeds. NoTears is omitted from the first row for clarity.
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(a) Precision vs number of variables
(NoTears omitted)

(b) Recall vs number of variables
(NoTears omitted)

(c) F1 score vs number of variables
(NoTears omitted)

(d) Precision vs number of variables (e) Recall vs number of variables (f) F1 score vs number of variables

Figure D.1.2: Binary classification accuracy of algorithms on observational data from Erdős–Rényi
graphs with p variables and 2p edges and n = 104 samples (Experiment D.1.4). LGES is our
proposed method. Higher is better across all plots. An MEC is said to contain an edge (X,Y ) if it
contains either X − Y or X → Y (but not Y → X) (Sec. D.1.4). Error bars denote one standard
deviation across 50 random seeds. NoTears is omitted from the first row for clarity.

generally makes fewer misorientations than PC. As a result, LGES with CONSERVATIVEIN-
SERT tends to have comparable or better F1 score than the PC algorithm, except for the
somewhat extreme case of n = 100, p = 500.

D.1.7 Additional experiments with larger graphs

We scaled up Experiment 5.1 to graphs with p ∈ {175, 250, 500} variables. We ran LGES both with
SAFEINSERT and with CONSERVATIVEINSERT and PC for 50 random seeds for p ∈ {175, 250}.
The results are summarized in Table D.1.2. We were unable to continue running GES and NoTears
due to time and compute constraints; for instance, GES took over 104 seconds without terminating
for p = 175 for a single trial. LGES both with SAFEINSERT and with CONSERVATIVEINSERT is
substantially more accurate (in terms of SHD and F1 score) than PC, with CONSERVATIVEINSERT
achieving less than half the structural error of PC. While PC is faster than LGES, LGES is much
faster than GES, taking only ≈5-6 minutes for p = 175 and ≈15-20 minutes for p = 250. Recall
that for p = 150, GES was already approaching a runtime of 104 seconds (>2 hours) (Fig. D.1.1b).

Finally, we also ran LGES for p = 500 for 5 random seeds. LGES with SAFEINSERT had an average
SHD of 490.75±16.18 and an average runtime of 13657.00±1378.95 seconds (≈3.8 hours). LGES
with CONSERVATIVEINSERT had an average SHD of 360.00±22.64 and an average runtime of
12214.55±1162.79 second (≈3.4 hours). Thus, LGES remains feasible even for graphs with 500
variables.
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(a) SHD vs number of variables (b) Runtime vs number of variables

(c) Excess adjacencies vs number of variables. (d) Missing adjacencies vs number of variables.

(e) Incorrect orientations vs number of variables. (f) Scoring operations vs number of variables.

(g) Precision vs number of variables. (h) Recall vs number of variables. (i) F1 score vs number of variables.

Figure D.1.3: Performance of algorithms on observational data from Erdős–Rényi graphs with p
variables and 3p edges and n = 104 samples (Experiment D.1.5). LGES is our proposed method.
Lower is better (more accurate / faster) across all metrics except precision, recall, and F1 score, for
which higher is better. The time axis uses a log scale. SHD denotes the structural Hamming distance
between the true and estimated CPDAGs. For the binary classification metrics (last row), an MEC is
said to contain an edge (X,Y ) if it contains either X − Y or X → Y (but not Y → X) (Sec. D.1.4).
Error bars denote one standard deviation across 50 random seeds.
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Metric Method n = 500 n = 1000

p = 10 p = 25 p = 50 p = 100 p = 10 p = 25 p = 50 p = 100

SHD

PC 8.58 ± 5.00 36.35 ± 7.22 20.47 ± 7.27 46.96 ± 10.84 2.84 ± 3.24 8.30 ± 5.15 17.50 ± 7.04 40.61 ± 11.21
GES 9.14 ± 5.91 65.68 ± 22.98 32.37 ± 8.01 100.93 ± 13.71 2.46 ± 4.85 10.02 ± 10.33 25.12 ± 7.58 76.68 ± 13.32
LGES (Safe) 9.06 ± 6.38 66.09 ± 23.70 28.19 ± 8.12 97.28 ± 14.98 2.44 ± 4.86 10.18 ± 10.67 21.34 ± 7.91 71.45 ± 13.16
LGES (Cons) 9.38 ± 6.35 65.55 ± 23.81 22.26 ± 14.47 75.17 ± 14.86 2.02 ± 4.79 6.98 ± 9.40 13.78 ± 7.97 53.41 ± 13.45

False Positives

PC 2.80 ± 1.60 16.35 ± 3.86 4.88 ± 2.29 17.20 ± 6.21 0.44 ± 0.75 1.24 ± 1.11 4.54 ± 2.34 16.55 ± 6.49
GES 4.88 ± 3.64 48.68 ± 20.71 21.19 ± 5.51 76.24 ± 10.55 1.08 ± 2.18 6.12 ± 6.53 15.76 ± 5.04 55.64 ± 10.44
LGES (Safe) 4.90 ± 3.77 48.96 ± 21.17 19.58 ± 5.80 75.02 ± 11.23 1.04 ± 2.18 6.20 ± 6.66 14.28 ± 5.23 53.82 ± 9.88
LGES (Cons) 5.10 ± 3.75 48.57 ± 21.13 16.88 ± 10.78 61.13 ± 10.78 0.80 ± 2.11 4.58 ± 6.24 10.68 ± 5.27 43.68 ± 8.94

False Negatives

PC 3.42 ± 2.73 14.88 ± 4.18 7.02 ± 4.11 12.02 ± 5.78 1.20 ± 1.52 3.08 ± 2.62 5.10 ± 3.71 8.25 ± 5.67
GES 1.46 ± 1.25 9.02 ± 2.30 0.33 ± 0.60 0.83 ± 1.49 0.26 ± 0.66 0.36 ± 0.79 0.32 ± 0.71 0.16 ± 0.47
LGES (Safe) 1.36 ± 1.09 9.02 ± 2.40 0.30 ± 0.55 0.72 ± 1.39 0.26 ± 0.66 0.44 ± 0.92 0.26 ± 0.63 0.27 ± 0.65
LGES (Cons) 1.44 ± 1.06 9.06 ± 2.26 0.53 ± 1.09 1.00 ± 1.74 0.28 ± 0.66 0.32 ± 0.79 0.22 ± 0.58 0.43 ± 1.29

Wrong Orientations

PC 2.36 ± 1.84 5.12 ± 2.09 8.56 ± 4.10 17.74 ± 6.80 1.20 ± 1.81 3.98 ± 2.77 7.86 ± 4.43 15.82 ± 5.92
GES 2.80 ± 2.44 7.98 ± 2.67 10.86 ± 4.33 23.87 ± 5.26 1.12 ± 2.47 3.54 ± 3.74 9.04 ± 3.79 20.89 ± 5.55
LGES (Safe) 2.80 ± 2.80 8.11 ± 2.90 8.30 ± 3.97 21.54 ± 5.51 1.14 ± 2.47 3.54 ± 3.87 6.80 ± 3.75 17.36 ± 5.01
LGES (Cons) 2.84 ± 2.80 7.91 ± 3.25 4.84 ± 4.06 13.04 ± 4.97 0.94 ± 2.44 2.08 ± 3.05 2.88 ± 3.17 9.30 ± 5.81

F1 Score

PC 0.60 ± 0.22 0.33 ± 0.10 0.81 ± 0.07 0.78 ± 0.06 0.87 ± 0.14 0.85 ± 0.10 0.83 ± 0.06 0.81 ± 0.05
GES 0.65 ± 0.19 0.29 ± 0.10 0.76 ± 0.06 0.66 ± 0.05 0.90 ± 0.17 0.84 ± 0.14 0.80 ± 0.06 0.72 ± 0.05
LGES (Safe) 0.66 ± 0.20 0.29 ± 0.10 0.79 ± 0.06 0.67 ± 0.05 0.90 ± 0.17 0.84 ± 0.15 0.83 ± 0.06 0.74 ± 0.04
LGES (Cons) 0.65 ± 0.19 0.30 ± 0.10 0.83 ± 0.08 0.73 ± 0.05 0.92 ± 0.16 0.89 ± 0.13 0.89 ± 0.06 0.80 ± 0.04

Table D.1.1: Accuracy of algorithms (mean ± std) on observational data from Erdős–Rényi graphs
with p variables and 2p edges and small datasets with n ∈ {500, 1000} samples (Experiment D.1.6).
LGES is our proposed method. Lower is better (more accurate / faster) across all metrics except
the F1 score, for which higher is better. SHD denotes the structural Hamming distance between
the true and estimated CPDAGs. For the F1 score, an MEC is said to contain an edge (X,Y ) if
it contains either X − Y or X → Y (but not Y → X) (Sec. D.1.4). See Fig. D.1.4 for heatmaps
representing the above data. We draw 50 random seeds per n, p.

Metric Method p = 175 p = 250

SHD LGES (Cons) 42.04 ± 11.51 83.06 ± 14.42
LGES (Safe) 70.62 ± 11.68 135.24 ± 14.31
PC 91.34 ± 17.17 166.20 ± 24.34

F1 Score LGES (Cons) 0.90 ± 0.03 0.86 ± 0.02
LGES (Safe) 0.84 ± 0.03 0.79 ± 0.02
PC 0.78 ± 0.04 0.73 ± 0.04

Runtime LGES (Cons) 315.83 ± 73.23 989.37 ± 205.53
LGES (Safe) 337.45 ± 78.43 1058.11 ± 221.32
PC 29.20 ± 9.50 85.67 ± 23.52

Table D.1.2: Performance of algorithms (mean ± std) on observational data from large Erdős–Rényi
graphs with p variables and 2p edges and n = 104 samples (Experiment D.1.7). LGES is our
proposed method. Lower is better (more accurate / faster) across all metrics except the F1 score,
for which higher is better. SHD denotes the structural Hamming distance between the true and
estimated CPDAGs. For the F1 score, an MEC is said to contain an edge (X,Y ) if it contains either
X − Y or X → Y (but not Y → X) (Sec. D.1.4). We draw 50 random seeds per p. GES and
NoTears are omitted as they required too much compute to scale to these graph sizes.

D.2 Repairing misspecified causal models

D.2.1 Detailed metrics for Experiment 5.2

In Fig. D.2.1, we present more detailed plots of runtime and SHD for the setting in Sec. 5.2. We
use GES-0 and LGES-0 to denote the corresponding algorithms run without any prior assumptions.
LGES with CONSERVATIVEINSERT outperforms all other algorithms across all levels of correctness
of the prior assumptions, with the exception of LGES-0 with CONSERVATIVEINSERT when the
background knowledge is more misspecified (fc ≤ 0.5). Even when all assumptions are incorrect,
LGES with CONSERVATIVEINSERT achieves better runtime and marginally lower SHD than GES-0.
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For both SAFEINSERT and CONSERVATIVEINSERT, we find that the guided search strategy introduced
in Sec. 3.3 is more robust to misspecified assumptions (fc ≤ 0.5) than simply initialising the search
using the prior assumptions. This confirms our hypothesis in Sec. 3.3 that incorrect edges included
by default harm the quality of the search.

The runtime of LGES both with CONSERVATIVEINSERT and with SAFEINSERT improves noticably
when given correct prior assumptions (fc ≥ 0.75) relative to LGES-0, though the accuracy improves
only marginally. For fc≥ 0.75, the initialization strategy benefits LGES more than the guided search
strategy. This suggests a tradeoff between robustness to incorrect prior assumptions and advantage
gained from these assumptions when correct.

D.2.2 Additional experiments varying the number of prior edge assumptions

The results in Fig. 4 are for experiments conducted with m′ = m/2 edges in the set of prior
assumptions for a ground truth graph containing m edges. We conduct additional experiments with
m′ = 3m/4, increasing the number of edges included in the prior assumptions. The results are shown
in Fig. D.2.1, and follow a similar trend as in Experiment 5.2 discussed previously.

D.3 Learning from interventional data

D.3.1 Detailed metrics for Experiment 5.3

In Fig. D.3.1, we present more detailed plots of runtime and SHD for the setting in Sec. 5.3. We
refer to our approach, LGES followed by I-ORIENT, as LGIES. We find that LGIES both with
SAFEINSERT and with CONSERVATIVEINSERT is up to an order of magnitude faster than GIES. The
accuracy of LGIES with CONSERVATIVEINSERT is comparable to that of GIES. However, LGIES
with SAFEINSERT has larger SHD from the ground truth than GIES and LGES with CONSERVA-
TIVEINSERT. This is possibly because, in our experiments, LGES only uses 104 observational
samples during the MEC learning phase. It uses the interventional samples only to orient edges using
I-ORIENT. In contrast, GIES uses 104 + k · 103 samples in the MEC learning phase given k inter-
ventional, since it also uses interventional data during this phase and we generate 103 interventional
samples per target. Moreover, since we choose k = p/10 (where p is the number of variables), GIES
is making use of much more data than LGES for learning the MEC. Although GIES is known not
to be asymptotically sound [52], this suggests that LGIES may benefit from a way of incorporating
interventional data in the MEC learning phase.

D.4 Real-world protein signaling data

Sachs dataset. We compare GES and LGES on a real-world protein signaling dataset [42]. The
observational dataset consists of 853 measurements of 11 phospholipids and phosphoproteins. We
compare the output of our methods with the gold-standard inferred graph [42, Fig. 3]), containing 11
variables and 17 edges. The dataset is continuous but violates the linear-Gaussian assumption.4 We
test our methods both on the original continuous dataset and on a discretized version (3 categories
per variable corresponding to low, medium, and high concentration) from the bnlearn repository.5

Results. The learned graphs provided in Fig. D.4.1. All algorithms output the same MEC and
thus have the same accuracy in both settings. With discrete data, each algorithm had an SHD of 9
edges from the reference MEC, all of which were missing adjacencies. With continuous data, each
algorithm had an SHD of 11 edges from the reference MEC, 9 of which were missing adjacencies
and 2 of which were incorrect orientations.

E Frequently Asked Questions
Q1. What is the difference between score-based and constraint-based causal discovery?

Answer. Constraint-based and score-based approaches to causal discovery solve the same
problem but in different ways. Constraint-based approaches such as PC [48] and Sparsest
Permutations [38] use statistical tests, usually for conditional independence, to learn a

4https://www.bnlearn.com/research/sachs05/
5https://www.bnlearn.com/book-crc-2ed/
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Markov equivalence class from data. Score-based approaches such as Greedy Equivalence
Search [7, 29]instead attempt to maximize a score (for e.g., the Bayesian Information
Criterion or BIC [45]) that reflects the fit between graph and data. There is no general claim
about which of these methods is superior; we refer readers to [50] for an extensive empirical
analysis, who found, for instance, that GES outperforms PC in accuracy across various
sample sizes [50, Tables 4, 5].

Q2. I thought causal discovery was only one problem, but it seems the paper claims to be solving
three different tasks: observational learning, interventional learning, and model repairing.
Can you elaborate on these tasks (why they are different, how they relate, etc.)?
Answer. The most well-studied problem in causal discovery is that of learning causal graphs
from only observational data. However, algorithms for this task have a few limitations.
Firstly, they are computationally expensive and often fail to produce quality estimates of the
true Markov equivalence class from finite samples. This motivates using prior assumptions
in the search to produce better quality estimates of the true Markov equivalence class
and do so faster—the task of model repairing. Secondly, algorithms for learning from
observational data only identify a Markov equivalence of graphs, since this is the most
informative structure that can be learned from observational data. However, MECs can be
quite large, and thus uninformative for downstream tasks such as causal inference. When
interventional data is available, more edges in the true graph become identifiable. This
motivates using interventional data to identify a smaller and more informative interventional
Markov equivalence class—the task of interventional learning. When no prior assumptions
or interventional data are available, these tasks collapse to observational learning.

Q3. If GES is asymptotically consistent, why bother to consider LGES?
Answer. While GES is guaranteed to recover the true Markov equivalence class given
infinite samples, it faces two challenges. First, computational tractability: structure learning
is an NP-hard problem, and GES commonly struggles to scale in high-dimensional settings.
Second, data is often limited in practice, which results in GES failing to recover the true
MEC. LGES improves on GES in both of these aspects; it is up to 10 times faster and 2 times
more accurate (Experiment 5.1). Moreover, while GES and LGES can both incorporate prior
assumptions to guide the search, LGES is more robust to misspecification in the assumptions
(Experiment 5.2).

Q4. How well does LGES scale?
Answer. LGES can scale to graphs with hundreds of variables and is up to 10 times faster
than GES (Sec D.1). Both variants of LGES (SAFEINSERT and CONSERVATIVEINSERT)
terminate in less than 4 hours on graphs with 500 variables and have substantially better
accuracy than other baselines (including PC and NoTears) on these large graphs (Experi-
ments D.1.3, D.1.7). LGES also outperforms these baselines in settings with dense graphs
(Experiment D.1.5).

Q5. LGES may be asymptotically correct, but how well does it perform with finite samples?
Answer. We conduct an extensive empirical analysis of how LGES performs compared with
baselines in finite-sample settings. Both variants of LGES (SAFEINSERT and CONSERVA-
TIVEINSERT) have substantially better accuracy than GES, PC, and NoTears in experiments
with n = 104 samples and up to 500 variables (Experiments 5.1, D.1). For instance, in
graphs with 150 variables and 300 edges in expectation, LGES with CONSERVATIVEIN-
SERT only makes ≈30 structural errors on average, which is twice as accurate as GES,
which makes ≈60 structural errors. LGES also outperforms GES in smaller sample settings
(n ∈ {500, 1000}) (Experiment D.1.6).

Q6. What is the difference between SAFEINSERT and CONSERVATIVEINSERT?
Answer. LGES can use either the SAFEINSERT or the CONSERVATIVEINSERT strategy to
select INSERT operators in the forward phase; both result in improved accuracy and runtime
relative to GES. We show that LGES with SAFEINSERT is asymptotically guaranteed to
recover the true MEC (Cor. 1). However, it remains open whether the same is true of LGES
with CONSERVATIVEINSERT, though we provide partial guarantees (Prop. C.1, C.2). Both
strategies result in similar runtime, though CONSERVATIVEINSERT consistently has greater
accuracy than SAFEINSERT across our experiments (Sec. 5, D).

Q7. How is model repairing different from initializing a causal discovery task to the hypothesized
model?
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Answer. Model repairing is the more general problem of using possibly misspecified prior
assumptions in the process of causal discovery to aid the search. Initializing the search
to a tentative model is one way to achieve this. However, initialization is not robust to
misspecification in the assumptions and can result in worse runtime and accuracy than our
approach of guiding the search using prior assumptions (Sec. 3.3, Experiment 5.2).

Q8. What is the difference between Greedy Interventional Equivalence Search (GIES) [19] and
LGES?
Answer. GIES and LGES are both score-based algorithms for learning from a combination
of observational and interventional data. However, LGES has a few primary advantages over
GIES. First, LGES with SAFEINSERT is guaranteed to recover the true interventional MEC
(Cor. 1, Thm. 2) in the sample limit whereas GIES is not [52]. Second, both variants of LGES
are up to 10 times faster than GIES, and LGES with CONSERVATIVEINSERT has accuracy
competitive with GIES (Experiment 5.3). However, LGES uses interventional data to only
to orient edges in a learned Markov equivalence class (in the I-ORIENT procedure, Alg. 2),
whereas GIES uses a combination of observational and experimental data throughout. An
interesting future direction is to incorporate interventional data in all phases of LGES while
maintaining its asymptotic guarantees, since this may lead to improved accuracy.

Q9. Can your work be combined with other causal discovery algorithms?
Answer. Several components of our approach are modular and can be combined with
other causal discovery algorithms. For one, algorithms in the GES family like FGES [37]
and GIES [19] can be easily modified to use the SAFEINSERT or CONSERVATIVEINSERT
strategies that we introduce; a simple extension would investigate the resulting changes
in accuracy and runtime. For another, the I-ORIENT procedure can be used to refine the
observational MEC output by any causal discovery algorithm (not necessarily LGES) using
interventional data.
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(a) F1 score (n = 500) (b) F1 score (n = 1000)

(c) SHD (n = 500) (d) SHD (n = 1000)

(e) Excess adjacencies (n = 500) (f) Excess adjacencies (n = 1000)

(g) Missing adjacencies (n = 500) (h) Missing adjacencies (n = 1000)

(i) Incorrect orientations (n = 500) (j) Incorrect orientations (n = 1000)

Figure D.1.4: Accuracy of algorithms on observational data from Erdős–Rényi graphs with p variables
and 2p edges and small datasets with n ∈ {500, 1000} samples (Experiment D.1.6). LGES is our
proposed method. Lighter is better across all heatmaps. SHD denotes the structural Hamming
distance between the true and estimated CPDAGs. For the F1 score, an MEC is defined as containing
an edge (X,Y ) if it contains either X − Y or X → Y (but not Y → X) (Sec. D.1.4). Numbers
denote averages across 50 random seeds. More details in Table D.1.1.
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(a) SHD, varying correctness of m/2 prior edges (b) Time, varying correctness of m/2 prior edges

(c) SHD, varying correctness of 3m/4 prior edges (d) Time, varying correctness of 3m/4 prior edges

Figure D.2.1: Performance of algorithms given prior assumptions and observational data from
Erdős–Rényi graphs with 50 variables and 100 edges in expectation and n = 103 samples (Experiment
5.2, Sec. D.2). We vary the correctness of the prior assumptions on the x-axis. LGES is our proposed
method. In the upper panel, we include m/2 prior edge assumptions, where m is the number of
edges in the ground truth DAG; in the lower panel, we increase this to 3m/4. Lower is better (more
accurate / faster) across all plots. The time axis uses a log scale. Error bars denote one standard
deviation across 50 random seeds. Error bars for SHD are clipped to ±20.
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(a) SHD vs number of variables (b) Runtime vs number of variables

Figure D.3.1: Performance of LGIES and GIES on interventional data from Erdős–Rényi graphs
with p variables and 2p edges (Experiment 5.3). We generate n = 104 observational samples and
n = 103 samples per intervention. LGES is our proposed method. Lower is better (more accurate /
faster) across all plots. The time axis uses a log scale. SHD denotes the structural Hamming distance
between the true and estimated interventional CPDAGs. Error bars denote one standard deviation
across 50 random seeds.

(a) Continuous data (b) Discretized data

Figure D.4.1: Comparison between the reference MEC and the learned MEC for n = 853 observa-
tional samples from the Sachs protein-signaling dataset [42]. For both continuous and discretized
data, the three algorithms (GES, LGES (SAFEINSERT) and LGES (CONSERVATIVEINSERT)) return
the same MEC, so only one learned graph is shown per panel. Green solid lines indicate edges
correctly recovered by the algorithms. Blue solid lines indicate edges misoriented by the algorithms.
Black dashed lines indicate edges missed by the algorithms. (a) Continuous data: nine edges are
missed and two are misoriented: Jnk → Pkc and P38→ PKC, both undirected in the reference
MEC. (b) Discretised data: nine edges are missed and none are misoriented.
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