
Learning Invariances for Causal Abstraction Inference

Paul Kroeger
→ and Kevin Xia

→ and Elias Bareinboim

Causal Artificial Intelligence Laboratory
Columbia University, USA

paul.kroeger@columbia.edu, {kevinmxia,eb}@cs.columbia.edu

TECHNICAL REPORT
R-129

May, 2025

Abstract

Causal abstraction inference is the task of inferring causal effects from limited
data by first mapping the complicated low-level data (e.g., pixels) into a simpler
high-level space (e.g., image representation) before performing causal inferences
on the high-level. A major restriction in this task is known as the abstract invariance
condition (AIC), which forces high-level representations to retain all information
from the low-level data to prevent any ambiguity in high-level inference. In this
work, we provide the first approach that can learn low-dimensional high-level
representations that satisfy the strictest form of the AIC without weakening the
allowable causal inferences. We show how the concept of invariances, such as
rotational invariance in image data, is related to causal abstractions and how
they can be used to learn lower dimensional representations using out-of-the-box
invariance learning tools such as contrastive learning. Finally, we demonstrate our
findings empirically, including in a high-dimensional image setting.

1 Introduction

Causality is a key component of human reasoning, allowing one to plan a course of action, to
determine blame and responsibility, and to generalize across changing environments. A key insight
from both causality and the philosophy of science is that effective reasoning often involves abstraction
– the process of simplifying a complex system by ignoring details deemed irrelevant to the task. In
this context, “irrelevant details” typically refer to certain transformations or conditions that leave
important aspects of the system unchanged, called invariances in the machine learning literature.
For example, humans will interpret the object in the television as a “dog” rather than a collection of
pixels, and this interpretation does not change whether the pixels are rotated, flipped, or cropped. The
pixels are abstracted to the concept of a “dog”, and it is invariant to transformations such as rotation.
Invariances, when studied under the lens of causal abstractions, can therefore be a powerful tool for
advancing AI systems.

Modern AI systems are often studied under the foundation of generative modeling. Deep generative
models have shown impressive results in many practical tasks such as image generation [8], text
generation [33], and style transfer [14]. Causal inference is typically studied under the semantics
of structural causal models (SCMs) [30], which are generative models that represent reality with a
collection of mechanisms and exogenous noise. Each SCM induces a collection of distributions that
can be categorized into three successively more descriptive layers known as the Pearl Causal Hierarchy
(PCH) [31, 4]. These layers refer to the observational (L1), interventional (L2), and counterfactual
(L3) distributions. While traditional generative modeling focuses on a single distribution (usually
the observational distribution from L1), causal generative modeling is an emerging field that aims
to extend the capabilities of generative modeling to higher layers of the hierarchy. It has been
shown that, given the proper causal constraints, causal generative models are capable of identifying,
estimating, and sampling causal effects, trained on limited available data such as observational data
[23, 38, 39, 32, 28].

→These authors contributed equally.

Figure 1: An illustration of the causal abstraction
inference problem. The true model is a low-level
model ML which generates distributions of the
PCH over VL. VL is connected to its high-level
counterpart VH through ω . In practice, ML and
data from interventional (L2) and counterfactual
(L3) may not be available (in gray). The goal is
to construct an SCM M̂H on the high-level space,
apply causal assumptions in the form of constraints
(GC), train it on available observational data (L1),
and then use it to infer L2 and L3 queries.

Formal studies of causal abstractions typically
aim to compare a low-level model ML with a
high-level counterpart MH through an abstrac-
tion function ω that maps low-level variables
VL to high-level variables VH . Semantic def-
initions such as exact transformations and ω -
abstractions establish key properties expected of
abstractions such as the commutativity of inter-
ventions and abstractions [34, 6, 5, 15]. These
properties have been useful in the explainable
AI domain, where a high-level causal model is
hypothesized to explain a black-box model such
as a neural network, and an abstraction function
ω is learned to test this hypothesis by seeing how
well the function satisfies these important prop-
erties [16, 25, 43, 13]. Separately, constructive
abstractions have been useful for an emerging
field of study called causal abstraction infer-
ence, the main focus of this work. The concept
is shown in Fig. 1. While many established ab-
straction definitions focus on comparing SCMs
ML and MH , recent work has decomposed ab-
straction analysis into individual distributions of
the PCH, which allows one to perform causal inferences in the high-level space given limited data
from the low-level space [36, 37]. This allows one to perform high-dimensional causal inferences
tractably by first converting the data to a high-level abstract space (akin to representation learning).

One particularly challenging restriction in the causal abstraction inference task that is not present in
typical noncausal representation learning problems is known as the abstract invariance condition
(AIC). The AIC states, informally, that to preserve correctness in high-level causal inferences, a
high-level representation must disambiguate values that have different causal effects on downstream
variables. This is illustrated in Fig. 2. A classic instance of this phenomenon is the study of the
effects of cholesterol on heart disease [35]. There are two types of cholesterol, HDL and LDL,
that both affect heart disease rates, so scientists may be tempted to abstract them together as total
cholesterol. However, deeper analysis shows that HDL lowers the risk of heart disease while LDL
raises it. Abstracting them together as total cholesterol leaves the analysis ambiguous, as one would
not be able to assess the risk of heart disease without knowing whether the total cholesterol consists
more of HDL or LDL cholesterol.

Since the true structural model is typically not available in most practical settings, it is generally
impossible to verify that the AIC holds, leading to severe constraints on the types of representations
that can be learned. Xia and Bareinboim [36] accommodates this issue by enforcing bijectivity in
learned representations through an autoencoder structure, but this approach suffers from a lack of
dimensionality reduction, which is one of the main purposes of representation learning. Chalupka
et al. [9] explores a weaker version of the AIC that is verifiable by data, but this implies weaker
inferences. Xia and Bareinboim [37] generalizes the abstraction framework to show that high-level
inferences under AIC violations can be corrected by interpreting them as soft interventions on the
low-level model, but this requires additional assumptions to specify the form of the soft interventions
and leaves fewer identifiable results.

In this work, we present an approach that leverages the availability of invariance information to learn
representations that (1) satisfy the most fundamental form of the AIC, (2) allow for dimensionality
reduction, and (3) make no additional assumptions (other than invariance information) without
sacrificing inferential power. More specifically, in Sec. 2, we formally define invariances in the
context of causal models and prove that they can be used to generate low-dimensional representations
that still satisfy the AIC. Importantly, this allows for out-of-the-box techniques for invariance learning
used in noncausal contexts to learn representations in causal models. In Sec. 3, we show how to
use one such popular technique, contrastive learning [10], to accomplish this in practice. We then
empirically demonstrate the strength of the learned representations in Sec. 4 before concluding our
findings in Sec. 5. Due to space constraints, proofs can be found in App. A.

2

1.1 Preliminaries

Figure 2: An illustration of
an AIC violation. Note that
X causes Y , and x1 and x2

are different values of X that
provide different outputs in
Y . If they are abstracted into
the same high-level value xH ,
then the behavior of fY is am-
biguous on the input of xH .

This section introduces the notation and definitions used throughout
the paper. We use uppercase letters (X) to denote random variables
and lowercase letters (x) to denote corresponding values. Simi-
larly, bold uppercase (X) and lowercase (x) letters denote sets of
random variables and values respectively. We use DX to denote
the domain of X and DX = DX1 → · · · → DXk

for the domain of
X = {X1, . . . , Xk}. We denote P (X = x) (often shortened to
P (x)) as the probability of X taking the values x under the distri-
bution P (X). We use the notation z[W] to indicate the values of
z restricted to variables in Z ↑ W. We utilize the basic semantic
framework of structural causal models (SCMs) [30], following the
presentation in Bareinboim et al. [4].
Definition 1 (Structural Causal Model (SCM)). An SCM M is a
4-tuple ↓U,V,F , P (U)↔, where U is a set of exogenous variables
(or “latents”) that are determined by factors outside the model; V is
a set {V1, V2, . . . , Vn} of (endogenous) variables of interest that are
determined by other variables in the model – that is, in U ↗V; F is
a set of functions {fV1 , fV2 , . . . , fVn

} such that each fVi
is a mapping from (the respective domains

of) UVi
↗PaVi

to Vi, where UVi
↘ U, PaVi

↘ V \ Vi, and the entire set F forms a mapping from
U to V. That is, for i = 1, . . . , n, each fVi

≃ F is such that vi ⇐ fVi
(pa

Vi
,uVi

); and P (U) is a
probability function defined over the domain of U. ↭
Each SCM induces distributions from the 3 layers of the PCH. This work is general to all three layers,
but for clarity, we define the set of layer 2 distributions as follows.
Definition 2 (Layer 2 Valuation [4, Def. 5]). An SCM M = ↓U,V,F , P (U)↔ induces a fam-
ily of joint distributions over V, one for each intervention x. For each Y ↘ V, PM(y |
do(x)) =

∫
DU

{Yx(u) = y}dP (u), where Yx(u) is the solution for Y in the submodel
Mx = ↓U,V,Fx, P (U)↔, where Fx := {fV : V ≃ V \X} ↗ {fX ⇐ x : X ≃ X}. ↭
L2 is the set of all such distributions, and L1 is the subset where X = ⇒. L3 is defined in App. A.1.
The theory of causal abstractions developed in this paper build on the foundations of constructive
abstraction functions, under which individual distributions of the PCH are well-defined between low
and high-level models.
Definition 3 (Inter/Intravariable Clusterings [36, Def. 5]). Let M be an SCM over V. A set C is
said to be an intervariable clustering of V if C = {C1,C2, . . .Cn} is a partition of a subset of V.
C is further considered admissible w.r.t. M if for any Ci ≃ C and any V ≃ Ci, no descendent of
V outside of Ci is an ancestor of any variable in Ci. That is, there exists a topological ordering of
the clusters of C relative to the functions of M. A set D is said to be an intravariable clustering of
variables V w.r.t. C if D = {DCi

: Ci ≃ C}, where DCi
= {D1

Ci
,D2

Ci
, . . . ,Dmi

Ci
} is a partition (of

size mi) of the domains of the variables in Ci, DCi
. ↭

Definition 4 (Constructive Abstraction Function [36, Def. 6]). A function ω : DVL
⇑ DVH

is said
to be a constructive abstraction function w.r.t. inter/intravariable clusters C and D iff ω is composed
of subfunctions ωCi

for each Ci ≃ C such that vH = ω(vL) = (ωCi
(ci) : Ci ≃ C), where

ωCi
(ci) = vj

H,i
if and only if ci ≃ Dj

Ci
. ↭

In this work, we leverage causal diagrams (often denoted as G) and their corresponding cluster causal
diagrams (C-DAGs) (denoted as GC, relative to a set of intervariable clusters C). See App. A.1 for
the formal definitions. Finally, we state the AIC formally below.
Definition 5 (Abstract Invariance Condition (AIC)). Let ML = ↓UL,VL,FL, P (UL)↔ be an
SCM and ω : DVL

⇑ DVH
be a constructive abstraction function relative to C and D. The SCM

ML is said to satisfy the abstract invariance condition (AIC, for short) with respect to ω if, for all
v1,v2 ≃ DVL

such that ω(v1) = ω(v2), ⇓u ≃ DUL
,Ci ≃ C, the following holds:

ωCi

((
fL

V
(pa(1)

V
,uV) : V ≃ Ci

))
= ωCi

((
fL

V
(pa(2)

V
,uV) : V ≃ Ci

))
, (1)

where pa(1)
V

and pa(2)
V

are the values corresponding to v1 and v2. ↭
Intuition for the AIC in the context of this paper is provided in Ex. 2.

3

2 Invariances in Causal Abstractions

Figure 3: Visualization of Ex. 1. (a) On the
intervariable level, X1, X2, and X3 are clus-
tered together to form XH , while Y is clus-
tered by itself. (b) On the intravariable level,
the 8 possible values of C1 = {X1, X2, X3}
are clustered based on the number of votes
for A. (c) The corresponding causal diagram
G and C-DAG GC.

Causal abstractions are useful since they provide a
framework for bridging the gap between models of
different granularities, allowing one to work in a sim-
pler high-level space despite having complicated data
from the low-level space. The task of performing
causal inferences across abstractions is well-studied
in the case where the abstraction function ω is given.
When the inter/intravariable clusters C and D are
provided alongside the structural assumptions of a
graphical model GC, one can straightforwardly con-
struct ω and then make high-level inferences using
low-level data.
Example 1. Suppose a country is voting to elect
an official, deciding between candidate A and B.
Votes are collected from three districts, X1, X2, and
X3, and the outcome of the election (Y) is based
on which candidate receives the most votes. On
the low level, VL = {X1, X2, X3, Y }, all with
a domain of {A,B}. Instead of collecting data
on individual district votes, one may wish to ab-
stract the votes into a single variable representing
their sum (i.e., XH = ω(X1, X2, X3) = X1 +
X2 + X3). This corresponds to the intervariable
clusters C = {C1 = {X1, X2, X3},C2 = {Y }},
shown in Fig. 3(a). The high level variables XH

and YH correspond to the clusters C1 and C2. The intravariable clusters over C1 would be
DC1 = {{BBB}, {ABB,BAB,BBA}, {AAB,ABA,BAA}, {AAA}}, with the 4 sets corresponding
to the values of XH = 0, 1, 2, and 3 respectively (Fig. 3(b)). Then the abstraction is quite natural,
with (XH , YH) ⇐ ω(X1, X2, X3, Y) = (X1 +X2 +X3, Y). The corresponding causal diagram G
and C-DAG GC are shown in Fig. 3(c). ↭

In practice, it may not be the case that C and D are readily available. For intervariable clusters C, it is
often the case that the clusters are fixed in advance when deciding on the assumptions of the graphical
model GC. The C-DAG GC over C can be much simpler to specify than the full causal diagram G,
which requires a full specification of every pairwise relationship in VL. Given the prevalence of
hierarchical structures in data, it can often be quite intuitive which choices of clusters make sense. If
all else fails, intervariable clusters can be chosen through a heuristical approach (see [36, Alg. 3]).

Specifying intravariable clusters D is a much more difficult challenge. In extremely high-dimensional
scenarios such as those involving image data, the size of the domain can become prohibitively large
(e.g., a 128 → 128 → 3 image with 256 possible pixel values has 256128↑128↑3 different values in
its domain). Specifying a partition over such a large space is intractable in general since doing so
would require enumerating each possible image and assigning a corresponding cluster label. It would
therefore be desirable to use a machine learning approach to learn intravariable clusters from data in
a tractable manner.

Learning intravariable clusters is a representation learning task. For each intervariable cluster Ci,
the goal is to find which values of Ci map to which values of VH,i (i.e., learning the mapping
ωCi

: DCi
⇑ DVH,i

). VH,i can then be interpreted as the representation of Ci. Unfortunately, there
are strict requirements on what kinds of representations are allowed, shown by the following result.
Proposition 1 ([36, Prop. 5]). Consider a low level SCM ML and constructive abstraction function
ω w.r.t. clusters C and D. ML is guaranteed to satisfy the AIC w.r.t. ω if and only if DCi

= {{ci} :
ci ≃ DCi

} for all Ci ≃ C. ↭

In words, the only choice of intravariable clusters that is guaranteed to satisfy the AIC (Def. 5) is
the one where every value in the domain of Ci is clustered by itself. Any other set of clusters that
group two values together may potentially violate the AIC, which is undesirable since it may result in
incorrect causal inferences in the high-level model.

4

Figure 4: Three images of DIL
, for Ex. 2.

i2 is simply a ε/2 rotation of i1, repre-
sented by the invariance function gI .

For intuition on why this presents a problem, consider
the following example.
Example 2. Consider an image classification task where
VL = {IL, Y } for image IL and label Y . For the sake
of simplicity, suppose Y is binary, and IL can only take
three possible values: i1, i2, and i3, shown in Fig. 4.
Intuitively, it seems that i1 and i2 are the same image
but rotated, so it may be tempting to cluster them into the
same high-level value (i.e., DI = {x1 = {i1, i2}, x2 =
{i3}}). That is, one may wish to construct high-level
representation IH that takes only two possible values,
x1 or x2, where x1 refers to both i1 and i2.

Unfortunately, without information or assumptions about the underlying causal model, performing
this clustering violates the AIC and may result in incorrect inferences. For example, suppose in
one possible SCM of the setting, M1, the function f1

Y
(iL, uY) = {iL ≃ {i1, i2}}⇔ uY , while in

another, M2, f2
Y
(iL, uY) = {iL ≃ {i1, i3}}⇔ uY . An interpretation might be that in M1, Y is a

label that refers to whether the image is a cat or a dog, while in M2, Y represents whether the animal
in the image is on its side. The proposed clusters for DI satisfy the AIC for M1, but in the case of
M2, clustering these two images leads to ambiguity over whether x1 should receive the label Y = 0
or Y = 1. However, without additional information about fY , it is not clear whether M1 or M2 (or
neither) is the true model. ↭

An implication of Prop. 1 is that the only kinds of representations ωCi
that can be learned for each

cluster Ci are ones where ωCi
is bijective, also implying that the cardinality of the representation

stays the same (i.e., |DCi
| = |DVH,i

|). Still, this bijectivity requirement is limiting in that it does not
allow for dimensionality reduction, one of the main benefits of representation learning.

We now focus on a new strategy of learning intravariable clusters leveraging invariances. Prop. 1 only
holds given no additional information about the underlying generating model. However, it may be
given that certain invariances hold in the setting. This approach allows for a reduction in the cardinality
of the representation without relaxing the AIC definition or removing any causal constraints. We use
the concept of cluster coarseness to formalize this idea of dimensionality reduction.
Definition 6 (Intravariable Cluster Coarsening). Let D1 and D2 be two sets of intravariable clusters
w.r.t. intervariable clusters C. We say that D2 is coarser than D1 (or D1 is finer than D2) if for all
Ci ≃ C and all Dj1

Ci
≃ D1

Ci
, there exists Dj2

Ci
≃ D2

Ci
such that Dj1

Ci
↘ Dj2

Ci
. ↭

In words, a set of intravariable clusters D2 is coarser than D1 if all clusters within D1 are subsumed
by some cluster in D2. For example, in Ex. 1, one could merge the clusters of XH = 2 and XH = 3
and still conclude that candidate A won from a majority vote. A coarser cluster is therefore more
desirable because it implies a lower cardinality in the high-level space. Note that by this definition,
all possible sets of intravariable clusters are coarser than the set of individual clusters from Prop. 1.
The goal is to see when it is possible to obtain coarser clusters without violating the AIC.

Invariances are used throughout the deep learning literature to improve the efficiency of models for
high-dimensional data with rich patterns. For example, in computer vision, many image tasks are
assumed to be invariant to rotation, translation, scale, cropping, and jitter [20, 24]. In recurrent tasks
like with language, it is assumed that a prediction is invariant to all information outside of the context
window [7] (temporal invariance). For tasks related to sets and pooling, often permutation invariance
can be applied [42, 27]. In these tasks, instead of working on the raw data, it is often beneficial to
work on a simpler representation that removes unnecessary information by incorporating all of these
invariances. We formally define how invariances are interpreted in this work below.
Definition 7 (Structural Invariance). Given intervariable cluster Ci ≃ C over variables VL, define
ChCi

= {V ≃ VL : V /≃ Ci,PaV ↑Ci ↖= ⇒} as the children of Ci. Let gCi
: DCi

→Dω ⇑ DCi

be a function (with parameters ϑ) that transforms a value of Ci to another value of Ci. gCi
is said

to be a structural invariance of SCM ML = ↓UL,VL,FL, P (UL)↔ for Ci iff, for all V ≃ ChCi
,

ϑ ≃ Dω, uV ≃ DUV
, ci ≃ DCi

, and z ≃ DPaV \Ci
,

fL

V
(ci[PaV], z,uV) = fL

V
(gCi

(ci,ϑ)[PaV], z,uV). (2)
↭

5

Figure 5: An illustration of
constructing the maximal in-
variance clusters. The values
of the intervariable cluster C
(black dots) are connected to
each other (via dotted lines)
through functions gk ≃ I
(each color representing a dif-
ferent k). Values that are con-
nected together in some way
form an intravariable cluster
that defines a high-level value
for XH = ω(C).

In words, gCi
is a structural invariance of M if transforming values

of Ci with gCi
does not affect the output of the functions of any of

its children. Taking advantage of these structural invariances, we
define the following set of intravariable clusters which group values
based on available invariance information.
Definition 8 (Maximal Invariance Clusters). Let I = {gkCi

k

}ε
k=1

be a set of structural invariances of SCM M for some intervariable
cluster in C (each gk could apply to a different cluster Cik

). For
each Ci ≃ C, define DI

Ci
as the partition over DCi

relative to
the closure of I. That is, for any Dj

Ci
≃ DI

Ci
, if c1 ≃ Dj

Ci
then

c2 ≃ Dj

Ci
if and only if there exists gkCi

and some ϑk ≃ Dωk

such that c2 = gkCi
(c1,ϑk). That is, DI

Ci
is a partition of the

equivalence classes of Ci according to I. Then, the intravariable
clusters D = {DI

Ci
: Ci ≃ C} are called the maximal invariance

clusters of I. ↭

In words, two values are clustered together in the maximal invariance
clusters if they are connected through a series of any of the available
structural invariances. Intuitively, one can imagine a graph connected
by the functions of I, as illustrated in Fig. 5. Values (nodes) are
connected with edges corresponding to functions gk ≃ I (e.g., an
edge is added between c1 and c2 if c1 = gk(c2,ϑk) or c2 = gk(c1,ϑk) for some gk and ϑk). The
corresponding maximal invariance clusters are simply the connected components of the graph.
Example 3. Continuing Ex. 1, note that Y is permutation invariance to X1, X2, X3 (i.e., the order
of the votes does not matter). One can define a structural invariance gX(X1, X2, X3,ϑ) where ϑ
indicates some permutation of the three values. Then, the clusters chosen clusters in Fig. 3 correspond
to the maximal invariance clusters of I = {gX}. ↭

It turns out that despite potentially clustering infinite values together, the maximal invariance clusters
always satisfy the AIC, as shown next.
Theorem 1 (Invariance Abstraction Connection). Let I be a set of structural invariances of SCM
ML. Then ML satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters
D of I. ↭

The maximal invariance clusters are maximal in the sense that no coarser cluster is guaranteed to
satisfy the AIC with the same set of structural invariances, as shown next.
Corollary 1. ML may not satisfy the AIC w.r.t. C and D↓ of structural invariances I for any D↓ that
is coarser than the maximal invariance clusters D, and D↓ ↖= D. ↭

The concept of maximal invariance clusters is powerful since it provides a much coarser set of clusters
that nontrivially reduces the representation size given information about invariances, which is often
intuitively assumed to hold in many high-dimensional data settings.
Example 4. Continuing Ex. 2, suppose we are given that fY is rotationally invariant to the image
input IL. This implies that gI(i,ϑ), which rotates i by ϑ radians, is a structural invariance of ML.
In this case, the maximal invariance clusters of I = {gI} is the originally proposed set of clusters
DI = {x1 = {i1, i2}, x2 = {i3}} because i2 = gI(i1,ϑ = ε/2). By Thm. 1, we can therefore
eliminate the possibility that ML = M2 and conclude that D does indeed satisfy the AIC. ↭

Nonetheless, the uniqueness of the maximal invariance clusters makes it difficult to achieve that
specific set of clusters in practice. The following two results help relax this requirement.
Corollary 2. ML is guaranteed to satisfy the AIC w.r.t. C and D↓ for any D↓ that is finer than the
maximal invariance clusters D of structural invariances I. ↭

Corollary 3. Let I1 and I2 be two sets of structural invariances of SCM ML such that I1 ↘ I2 (i.e.,
there are more invariances in I2 than I1). Then, the maximal invariance clusters of I2 is a coarsening
of the maximal invariance clusters of I1. ↭

6

Figure 6: (a) An example construction of a GC-RNCM. Data is
given in low-level form (VL, at bottom in red) and is mapped
to high-level form (VH , in yellow) through neural networks ω̂ .
Structural functions f̂ are neural networks that take inputs accord-
ing to GC and are trained to output their respective variables. (b)

An example of contrastive learning applied for training ω̂ in an
RNCM. A low-level sample xL is transformed through structural
invariances g↓ and g↓↓ to achieve two transformed samples xL,i

and xL,j . These samples are passed through neural abstraction
function ω̂ to produce representations xH,i and xH,j , which are
compared for similarity in the loss function.

Corol. 2 implies that the AIC is
still satisfied even if not all aspects
of the invariances are accounted
for and a finer set of clusters is
learned instead of the maximal
one. Corol. 3 implies that the AIC
will still hold even if not all of the
possible invariances in I are ac-
counted for. The maximal invari-
ance clusters continue to become
increasingly coarse as more invari-
ance functions are added, imply-
ing that taking into account more
invariances allows for greater di-
mensionality reduction at no risk
of AIC violations.
Example 5. Continuing Ex. 1,
suppose we are given another
structural invariance g↓

X
such that

g↓
X
(AAA) = AAB. Incorporat-

ing this invariance into the max-
imal invariance clusters would
merge the XH = 3 cluster with the XH = 2 cluster. Note that this is indeed a coarsening of
the original clusters, consistent with Corol. 3. Moreover, even though the coarser clusters satisfy the
AIC, Corol. 3 guarantees that the original clusters do as well. ↭

3 Contrastive Learning for Abstractions

Thm. 1 establishes that the maximal invariance clusters obtained through a set of structural invariances
will satisfy the AIC. In this section, we explore how to perform representation learning to obtain
these clusters in practice. Many sources in the deep learning literature have tackled the interesting but
challenging problem of learning invariances, and we leverage the celebrated approach of contrastive
learning, following the presentation of Chen et al. [10].

For causal modeling, we leverage the GC-constrained representational neural causal model (GC-
RNCM) [36], which constructs an SCM using neural networks to fit a given C-DAG GC (based on
intervariable clusters C). An example architecture is shown in Fig. 6(a). Data is provided from the
low-level variables VL, and for each XL ≃ VL, a neural network abstraction function ω̂X maps XL

to its high-level representation XH ≃ VH . For each XH , a structural function f̂X outputs values of
XH according to inputs specified by GC. Exogenous variables are sampled from a random distribution
such as N(0, 1) or Unif(0, 1). Collectively, these exogenous variables combined with the structural
functions form an SCM that models the high-level variables VH .

The RNCM follows a two-step training procedure. In the first step, the abstraction functions ω̂ must
be trained to learn a representation XH for each XL ≃ VL. Following the results of Sec. 2, we use
contrastive learning in this step to learn invariances for a simpler and more robust representation
compared to previous methods of training RNCMs. Fig. 6(b) illustrates this process. Given a
low-level sample xL ≃ DXL

, xL is transformed through structural invariances g↓, g↓↓ ≃ I to obtain
xL,i, xL,j ≃ DXL

(g↓ and g↓↓ can be any composition of functions in I with any parameters ϑ).
xL,i and xL,j are then mapped through neural network abstraction function ω̂X to obtain high-level
representation values xH,i, xH,j ≃ DXH

. Given a batch of 2n transformations from n data samples,
the following loss function is used.

L(xH,i, xH,j) = ↙ log
exp (sim(h(xH,i), h(xH,j))/T)∑

k↔{1,...,2n}:k ↗=i
exp (sim(h(xH,i), h(xH,k))/T)

, (3)

where h is a neural-parameterized projection head, sim is any function that computes the similarity
of its inputs, and T is a temperature hyperparameter. We leverage cosine similarity for comparing
representations, defined as sim(zi, zj) =

zi·zj
↘zi↘↘zj↘ for vectors zi, zj .

7

Figure 7: Results for the Votes experiment. (a) The
C-DAG GC for the model. Provinces X and Z each
have three districts that vote for their preferred candi-
date, influencing the outcome of the election Y . (b)

Error at different amounts of data for computing the
query P (Y = A | do(X = (A, A, A)). The con-
trastive RNCM (blue, ours) is compared with the orig-
inal RNCM (orange). The dashed red line shows the
error of using the noncausal P (Y | X) as the estimate.

An interesting aspect of this loss is that neg-
ative samples are not explicitly penalized.
Two values that are not intended to be clus-
tered together have representations that are
expected to be different due to the nature
of how the loss function handles batches.
Each sample is implicitly penalized for hav-
ing too similar of a representation to other
samples in the same batch. Nonetheless,
in ideal data and computation settings, one
can expect this procedure to achieve the
maximal invariance clusters, as shown in
the next result.

Theorem 2. Under sufficiently large rep-
resentation size and batch diversity, a set
of intravariable clusters D minimizes loss
from Eq. 3 for a given set of structural invariances I if and only if D is the maximal invariance
clusters of I. ↭

In the second step of RNCM training, the structural functions f̂ are trained to fit available data on
the representation space (e.g., observational data P (VH) = P (ω(VL))). It is likely that the queries
of interest arise from a higher layer of the PCH than the data (e.g., inferring interventional (L2)
quantities from observational (L1) data). Before inferring these queries, it must be shown that they
are identifiable, which can be done through the RNCM model using the NeuralAbstractID algorithm
[36, Alg. 2]. Identifiable queries can then be computed directly from the trained RNCM. We leverage
the generative adversarial network (GAN) version of the RNCM architecture for training purposes
[39]. We defer the full discussion of RNCM design, training, and inference to prior works, but the
details of the models used in this work can be found in App. B.

4 Experimental Results

In this section, we validate our findings experimentally. Additional experimental details can be found
in App. B. Code will be released after paper acceptance.

4.1 Voting Experiment

We first test our approach in a synthetic toy experiment. A democratic country is collecting votes to
determining who to elect for an office position (C-DAG illustrated in Fig. 7(a)). Votes come from
either province X or Z, and both provinces have three districts which each have a representative vote.
Each vote can go towards candidate A or B, and the outcome (Y) will be one of these candidates.
The goal is to determine the probability of A winning the election if all votes in X are set to go to
A (i.e., P (Y = A | do(X = (A, A, A))). Note that there is confounding between the votes of X
and Z (a popular candidate will sway the votes of both provinces), so the query is not equivalent to
the conditional distribution P (Y | X). However, it is identifiable from observational data and the
C-DAG (full proof in App. B).

While the values of X and Z are represented by 3-dimensional vectors, we aim to first learn a
representation ω of the two variables and work in the high-level space. The representations take the
form of [0, 1]2, so it will be challenging to learn a 2D representation that captures the original 3D
inputs. That said, it is noted that the values of X and Z are permutation invariant, that is, the order
of the values do not matter for deciding Y . The contrastive approach is able to leverage a structural
invariance g that maps values of X and Z to permutations of itself.

The results are shown in Fig. 7. Our approach (blue) is an RNCM that leverages contrastive learning
to learn its embedding, and it is compared to the original RNCM implementation (orange). Note that
the contrastive RNCM clearly outperforms the original RNCM, showing significantly lower error
with higher samples. In fact, the original RNCM has trouble outperforming the baseline error for
incorrectly using P (Y | X) as an estimator for P (Y | do(X)) (dashed red line).

8

Figure 8: (a) Sample x-ray images of I . (b) C-DAG GC. (c) Comparison of the mean absolute error
(MAE) of the query P (Y | do(X), I) between the proposed contrastive learning approach (blue)
with the original RNCM (orange) across different sizes of embeddings. (d) Comparison of the two
approaches at classifying Y using P (Y | do(X), I) across different sizes of embeddings.

4.2 Pneumonia Experiment

We next evaluate our approach on a medical setting in which we are given patient records on chest
X-ray images (I), pneumonia symptoms (S), whether they were given treatment (X), and whether
they recovered within 30 days (Y). The corresponding C-DAG is illustrated in Fig. 8(b). Given
a new chest X-ray image I = i, we are interested in estimating the causal effect of the treatment
X . Specifically, we aim to compute the interventional quantity P (Y = 1 | do(x), i). Due to
unobserved confounding of X with S and I , this interventional query differs from the observational
P (Y = 1 | x, i). Nonetheless, the queries remain identifiable from observational data under the
assumptions encoded in the C-DAG (full proof in App. B).

We use approximately 6,000 chest X-ray images of size 28→28 as provided in [21, 40, 41]. Examples
of the images are shown in Fig. 8(a). We assume that the image I is invariant to the transformations
present in the implementation of [10], including translation, zoom, crop, flip, jitter, and blur (i.e., the
set of structural invariances I consist of these transformation functions). Leveraging these invariances,
we apply the contrastive learning method from Sec. 3 to learn invariant image embeddings. These
embeddings are then used in the RNCM when fitting the observational data. Using the trained model,
we estimate P (Y = 1 | do(x), i). We compare with the original RNCM as a baseline.

We vary the dimensionality of the learned embeddings and plot the resulting errors for both approaches.
The mean absolute errors (MAE) for both methods are shown in Fig. 8(c). Notably, our approach
(blue) significantly outperforms the baseline (orange) across all embedding dimensions, consistently
achieving lower MAE. In Fig. 8(d), we also evaluate the quality of the learned embeddings using
a simple linear classifier to predict ground truth labels from the original dataset, comparing the
accuracies of the two models. With the improved performance of the contrastive RNCM, it is
clear that improved embedding quality directly translates to more accurate estimates for high-level
causal queries. Interestingly, we note that the classification accuracy of the original RNCM slowly
approaches the accuracy of the contrastive RNCM, likely indicating a stronger performance when the
embedding size is sufficiently large to avoid AIC violations.

5 Conclusions

In this paper, we showed how invariance information can allow for lower-dimensional representations
in causal abstraction inference (Thm. 1, Corols. 1, 2, 3). We showed how to learn these invariant
representations using contrastive learning (Thm. 2), a state-of-the-art tool in noncausal settings. We
then demonstrated the strength of these representations empirically, showing how the contrastive
RNCM greatly outperforms the original RNCM. This research takes an important step in bridging the
gap between state-of-the-art deep learning techniques and causal methods.

9

Acknowledgements

This research is supported in part by the NSF, ONR, AFOSR, DoE, Amazon, JP Morgan, and The
Alfred P. Sloan Foundation.

References

[1] Anand, T. V., Ribeiro, A. H., Tian, J., and Bareinboim, E. (2023). Causal effect identification in
cluster dags. In Proceedings of the 37th AAAI Conference on Artificial Intelligence. AAAI Press.

[2] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks.
In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223.
PMLR.

[3] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

[4] Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. (2022). On pearl’s hierarchy and the
foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea Pearl,
page 507–556. Association for Computing Machinery, New York, NY, USA, 1st edition.

[5] Beckers, S., Eberhardt, F., and Halpern, J. Y. (2019). Approximate causal abstraction. In
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence.

[6] Beckers, S. and Halpern, J. Y. (2019). Abstracting causal models. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications
of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press.

[7] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model. In
Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems,
volume 13. MIT Press.

[8] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child,
R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
(2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc.

[9] Chalupka, K., Perona, P., and Eberhardt, F. (2015). Visual causal feature learning. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI’15, page 181–190,
Arlington, Virginia, USA. AUAI Press.

[10] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

[11] Correa, J. and Bareinboim, E. (2024). Counterfactual graphical models: Constraints and
inference. Technical Report R-115, Causal Artificial Intelligence Lab, Columbia University.

[12] Falcon, W. and The PyTorch Lightning team (2019). PyTorch Lightning.

[13] Felekis, Y., Zennaro, F. M., Branchini, N., and Damoulas, T. (2024). Causal optimal transport
of abstractions. In Conference on Causal Learning and Reasoning, CLeaR 2024.

[14] Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style. CoRR,
abs/1508.06576.

[15] Geiger, A., Ibeling, D., Zur, A., Chaudhary, M., Chauhan, S., Huang, J., Arora, A., Wu, Z.,
Goodman, N., Potts, C., et al. (2023a). Causal abstraction: A theoretical foundation for mechanistic
interpretability. arXiv preprint arXiv:2301.04709.

10

[16] Geiger, A., Potts, C., and Icard, T. (2023b). Causal abstraction for faithful model interpretation.

[17] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

[18] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems, volume 27, pages 2672–2680. Curran Associates, Inc.

[19] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved
training of wasserstein gans. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 5769–5779, Red Hook, NY, USA. Curran Associates
Inc.

[20] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735–1742.

[21] Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., McKeown,
A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M. Y., Zhu, J., Li, C.,
Hewett, S., Dong, J., Ziyar, I., Shi, A., Zhang, R., Zheng, L., Hou, R., Shi, W., Fu, X., Duan, Y.,
Huu, V. A., Wen, C., Zhang, E. D., Zhang, C. L., Li, O., Wang, X., Singer, M. A., Sun, X., Xu,
J., Tafreshi, A., Lewis, M. A., Xia, H., and Zhang, K. (2018). Identifying medical diagnoses and
treatable diseases by image-based deep learning. Cell, 172(5):1122–1131.e9.

[22] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Representations.

[23] Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath, S. (2018). CausalGAN: Learning
causal implicit generative models with adversarial training. In International Conference on
Learning Representations.

[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Commun. ACM, 60(6):84–90.

[25] Massidda, R., Geiger, A., Icard, T., and Bacciu, D. (2023). Causal abstraction with soft
interventions. In van der Schaar, M., Zhang, C., and Janzing, D., editors, Proceedings of the
Second Conference on Causal Learning and Reasoning, volume 213 of Proceedings of Machine
Learning Research, pages 68–87. PMLR.

[26] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations.

[27] Murphy, R. L., Srinivasan, B., Rao, V., and Ribeiro, B. (2019). Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs. In International Conference on Learning
Representations.

[28] Pan, Y. and Bareinboim, E. (2024). Counterfactual image editing. In Salakhutdinov, R., Kolter,
Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors, Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pages 39087–39101. PMLR.

[29] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

[30] Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York, NY, USA, 2nd edition.

[31] Pearl, J. and Mackenzie, D. (2018). The Book of Why. Basic Books, New York.

11

[32] Rahman, M. M. and Kocaoglu, M. (2024). Modular learning of deep causal generative models
for high-dimensional causal inference. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 41886–41926. PMLR.

[33] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I.
(2021). Zero-shot text-to-image generation. In Meila, M. and Zhang, T., editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 8821–8831. PMLR.

[34] Rubenstein, P. K., Weichwald, S., Bongers, S., Mooij, J., Janzing, D., Grosse-Wentrup, M., and
Schölkopf, B. (2017). Causal Consistency of Structural Equation Models. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence.

[35] Spirtes, P. and Scheines, R. (2004). Causal inference of ambiguous manipulations. Philosophy
of Science, 71:833–845.

[36] Xia, K. and Bareinboim, E. (2024). Neural causal abstractions. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(18):20585–20595.

[37] Xia, K. and Bareinboim, E. (2025). Causal abstraction inference under lossy representations. In
Proceedings of the 42nd International Conference on Machine Learning.

[38] Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural connection:
Expressiveness, learnability, and inference. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34,
pages 10823–10836. Curran Associates, Inc.

[39] Xia, K., Pan, Y., and Bareinboim, E. (2023). Neural causal models for counterfactual iden-
tification and estimation. In Proceedings of the 11th International Conference on Learning
Representations (ICLR-23).

[40] Yang, J., Shi, R., and Ni, B. (2021). Medmnist classification decathlon: A lightweight automl
benchmark for medical image analysis. In IEEE 18th International Symposium on Biomedical
Imaging (ISBI), pages 191–195.

[41] Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., and Ni, B. (2023). Medmnist
v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Scientific
Data, 10(1):41.

[42] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
(2017). Deep sets. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

[43] Zennaro, F. M., Drávucz, M., Apachitei, G., Widanage, W. D., and Damoulas, T. (2023). Jointly
learning consistent causal abstractions over multiple interventional distributions. In van der Schaar,
M., Zhang, C., and Janzing, D., editors, Conference on Causal Learning and Reasoning, CLeaR
2023, 11-14 April 2023, Amazon Development Center, Tübingen, Germany, April 11-14, 2023,
volume 213 of Proceedings of Machine Learning Research, pages 88–121. PMLR.

12

A Proofs

In this section we present the proofs for the technical results of the paper.

A.1 Important Definitions

Quantities from the distributions of the three layers can be evaluated via the following definitions
from [4].
Definition 9 (Layer 1 Valuation [4, Def. 2]). An SCM M = ↓U,V,F , P (U)↔ defines a joint
probability distribution PM(V) such that for each Y ↘ V:

PM(y) =

∫

DU

{Y(u) = y}dP (u)

where Y(u) is the solution for Y after evaluating F with U = u. ↭
Definition 10 (Layer 2 Valuation [4, Def. 5]). An SCM M = ↓U,V,F , P (U)↔ induces a family of
joint distributions over V, one for each intervention x. For each Y ↘ V:

PM(yx) =

∫

DU

{Yx(u) = y}dP (u)

where Yx(u) is the solution for Y in the submodel Mx = ↓U,V,Fx, P (U)↔, where Fx := {fV :
V ≃ V \X} ↗ {fX ⇐ x : X ≃ X}. ↭
Definition 11 (Layer 3 Valuation [4, Def. 7]). An SCM M = ↓U,V,F , P (U)↔ induces a family of
joint distributions over counterfactual events Y1[x1],Y2[x2], . . . for any Yi,Xi ↘ V:

PM(y1[x1],y2[x2], . . .) =

∫

DU

{Y1[x1](u) = y1,Y2[x2](u) = y2, . . . }dP (u).

↭

The results of this work are general on all three layers of the PCH.

Every SCM induces a structure called a causal diagram, defined as follows.
Definition 12 (Causal Diagram [4, Def. 13]). Each SCM M induces a causal diagram G, constructed
as follows:

1. add a vertex for each Vi ≃ V;

2. add a directed arrow (Vj ⇑ Vi) for every Vi ≃ V and Vj ≃ PaVi
; and

3. add a dashed-bidirected arrow (Vj ↫↬↬↬↬⊜ Vi) for every pair Vi, Vj ≃ V such that UVi
and

UVj
are not independent (i.e., unobserved confounding is present). ↭

Given the impossibility of inferring higher layers from lower layers without additional assumptions,
many works often assume the availability of the causal diagram and its corresponding implied
constraints (possibly in the form of a causal or counterfactual Bayesian network [4, 11]). In the
context of causal abstractions, a causal diagram on the low-level may be too difficult to specify given
the potentially large amount of variables. Instead, a cluster causal diagram is typically assumed
instead, defined below.
Definition 13 (Cluster Causal Diagram (C-DAG) [1, Def. 1]). Given a causal diagram G = ↓V,E↔
and an admissible clustering C = {C1, . . . ,Ck} of V, construct a graph GC = ↓C,EC↔ over C with
a set of edges EC defined as follows:

1. A directed edge Ci ⇑ Cj is in EC if there exists some Vi ≃ Ci and Vj ≃ Cj such that
Vi ⇑ Vj is an edge in E.

2. A dashed bidirected edge Ci ∝ Cj is in EC if there exists some Vi ≃ Ci and Vj ≃ Cj

such that Vi ∝ Vj is an edge in E. ↭

The cluster causal diagram GC is constructed relative to a causal diagram G given intervariable
clusters C. It can be thought of as the causal diagram of the high-level model MH , defined via the
constructive abstraction function ω defined over C.

13

A.2 Proofs of Sec. 2

Theorem 1 (Invariance Abstraction Connection). Let I be a set of structural invariances of SCM
ML. Then ML satisfies the AIC w.r.t. intervariable clusters C and the maximal invariance clusters
D of I. ↭

Proof. Let I be a set of structural invariances of SCM ML = ↓UL,VL,FL, P (UL)↔ with respect
to intervariable clusters C. Let D be the maximal invariance clusters of I. Assume for the sake of
contradiction that ML does not satisfy the AIC with respect to the constructive abstraction function
ω constructed from C and D. This implies that for some Ci ≃ C, there exists ca, cb ≃ DCi

such that
ca and cb belong in the same partition in DCi

, but there is some fL

V
≃ FL that takes Ci as input such

that
ωCi

((
fL

V
(pa(a)

V
,uV) : V ≃ Ci

))
↖= ωCi

((
fL

V
(pa(b)

V
,uV) : V ≃ Ci

))
, (4)

where pa(a)
V

and pa(b)
V

correspond to inputs from ca and cb respectively.

Suppose that two values, c1, c2 ≃ DCi
are “linked” if c1 = gk(c2,ϑk) or c2 = gk(c1,ϑk) for

some gk ≃ I and ϑk ≃ Dωk
. If it is the latter, then this would imply that for all uV ≃ DUV

and
z ≃ DPaV \Ci

,

fL

V
(c1[PaV], z,uV) = fL

V
(gk(c1,ϑk)[PaV], z,uV) = fL

V
(c2[PaV], z,uV) (5)

c1 and c2 can be swapped in the case of the former.

By Def. 8, if D is the set of maximal invariance clusters of I, then there must exist some sequence of
c1, c2, . . . , cε≃1 and g1, g2, . . . , gε ≃ I such that c1 is linked with ca through g1, ck is linked with
ck≃1 through gk, and cb is linked with cε≃1 through gε.

If I is a set of structural invariances of ML, then by definition (Eq. 2), it must be the case that for all
uV ≃ DUV

and z ≃ DPaV \Ci
,

fL

V
(ca[PaV], z,uV) = fL

V
(c1[PaV], z,uV) (6)

= fL

V
(c2[PaV], z,uV) (7)

= . . . (8)

= fL

V
(cε≃1[PaV], z,uV) (9)

= fL

V
(cb[PaV], z,uV) (10)

following Eq. 5. This contradicts the inequality in Eq. 4 since all such fL

V
must therefore produce the

same output for any such c1, c2 in the same cluster. Therefore, the AIC must be satisfied with these
clusters.

Corollary 1. ML may not satisfy the AIC w.r.t. C and D↓ of structural invariances I for any D↓ that
is coarser than the maximal invariance clusters D, and D↓ ↖= D. ↭

Proof. For the premise of this proof, we make no assumptions about the underlying generating model
other than that I is a set of structural invariances of ML. That is, ML can be any SCM such that this
applies.

Consider a set of intravariable clusters D↓ that is coarser than D such that D↓ ↖= D. By Def. 6, this
means, for some Ci ≃ C, there must exist some Dj1

Ci
,Dj2

Ci
≃ DCi

and some Dj
→

Ci
≃ D↓

Ci
such that

Dj1

Ci
′ Dj

→

Ci
and Dj2

Ci
′ Dj

→

Ci
. Consider c1 ≃ Dj1

Ci
and c2 ≃ Dj2

Ci
.

Construct ML = ↓UL,VL,FL, P (UL)↔ as follows.

1. Define UL and P (UL) arbitrarily.

2. For some Ci→ ↖= Ci and some X ≃ Ci→ , define fL

X
(ci) = x1 if ci ≃ Dj1

Ci
and fL

X
(ci) = x2

for all other ci ≃ DCi
.

14

3. For all other fL

V
where V ≃ Ci→ , V ↖= X , define them such that they have no endogenous

inputs, and there exists c↓1, c↓2 ≃ DC
i→ such that c↓1[X] = x1 and c↓2[X] = x2, and c1 and

c2 are in separate clusters in DC
i→ .

4. Define all other functions in FL arbitrarily, but with no endogenous inputs.

Note that this construction of ML satisfies the AIC with respect to the constructive abstraction
function ω from C and D. Eq. 1 is trivially satisfied for any fL

V
where V /≃ Ci since it does not

belong in the input set of any other function. For fL

X
, note that it will output the same value for any

set of inputs ci ≃ DCi
that belong in the same cluster, so Eq. 1 is also satisfied for fL

V
where V ≃ Ci.

However, ML clearly does not satisfy the AIC for ω from C and D↓. Note that fL

X
(c1) = x1 and

fL

V
(c2) = x2, and ω(c↓1) ↖= ω(c↓2). Therefore, it is not guaranteed that any coarser clustering than D

will allow for the AIC to be satisfied.

For the next proof, first consider the following result.
Lemma 1 ([36, Lem. 6]). For any choice of intravariable clusters D such that ML satisfies the AIC
w.r.t. the corresponding ω , ML will also satisfy the AIC w.r.t. any finer clustering D↓. ↭
Corollary 2. ML is guaranteed to satisfy the AIC w.r.t. C and D↓ for any D↓ that is finer than the
maximal invariance clusters D of structural invariances I. ↭

Proof. This directly follows from Thm. 1 and Lemma 1.

Corollary 3. Let I1 and I2 be two sets of structural invariances of SCM ML such that I1 ↘ I2 (i.e.,
there are more invariances in I2 than I1). Then, the maximal invariance clusters of I2 is a coarsening
of the maximal invariance clusters of I1. ↭

Proof. Denote D1 and D2 as the maximal invariance clusters of I1 and I2 respectively. If I1 ↘ I2,
then if two values are in the same cluster in D1, they must also be in the same cluster in D2. This is
because there must be some sequence of functions in I1 that link the two values (as in the proof of
Thm. 1), and those same functions must exist in I2.

Trivially, if I2 = I1, then D2 = D1, so it must be a coarsening. Otherwise, starting with the baseline
of D1, consider two values ca, cb ≃ Ci such that they are linked by some function gk ≃ I2 \ I1,
that is, either ca = gk(cb,ϑk) or cb = gk(ca,ϑk) for some ϑk ≃ Dωk

. If ca and cb are in the same
cluster in D1, then this function is redundant, and nothing is changed in D2. Otherwise, ca and cb are
linked through gk, implying that all values of Ci in the same cluster as ca can be connected through
some sequence of functions in I2 with all values of in the same cluster as cb, merging the two clusters
together in D2. Given that any additional function in I2 can only merge clusters of D1 into larger and
larger clusters, D2 must be a coarsening of D1.

A.3 Proofs of Sec. 3

Theorem 2. Under sufficiently large representation size and batch diversity, a set of intravariable
clusters D minimizes loss from Eq. 3 for a given set of structural invariances I if and only if D is the
maximal invariance clusters of I. ↭

Proof. For simplicity, consider a single intervariable cluster C ≃ C, since the loss can be applied
independently for each cluster. For this cluster C, denote xH,i and xH,j as the representations
of cL,i and cL,j respectively (i.e., ω(cL,i) = xH,i), ω(cL,j) = xH,j). cL,i and cL,j are derived
from applying transformations (in I) to some original value cL ≃ DC, and then their high-level
representations xH,i and xH,j are evaluated through Eq. 3.

Assume that sim(zi, zj) is maximized when zi = zj , that T > 0, and that h is bijective. When
h is bijective, we can continue the rest of the proof assuming without loss of generality that the
similarity function sim is applied directly on top of the embeddings xH,i and xH,j . Also assume
that the representation space (|DXH

|) is sufficiently high-dimensional such that sim(zi, zj) can take
arbitrary values when zi ↖= zj .

15

By the monotonicity of the log and exp function, note that Eq. 3 is minimized when sim(xH,i, xH,j)
is maximized and sim(xH,i, xH,k) for i ↖= k is minimized.

Note that cL,i and cL,j are placed in the same intravariable cluster if xH,i = xH,j , and Eq. 3 is
only applied when cL,i and cL,j are intended to be in the same intravariable cluster in the maximal
invariance clusters of I, since both cL,i and cL,j are transformations of cL by some composition of
functions in I.
If cL,i is in the same cluster as cL,j , and it is not in the same cluster as any cL,k (i.e., sufficient batch
diversity), then any representation such that xH,i ↖= xH,j or xH,i = xH,k can change this to further
optimize Eq. 3, concluding the proof.

Note that the above proof requires that cL,i is not in the same cluster as any cL,k. In practice, this
is likely to be true for high-dimensional data settings such as with images, since it is unlikely that
any image (or transformation of one) is going to be identical to another image in the same batch.
Nonetheless, this may be a concern in discrete low-dimensional data settings. To understand the
limitations of Eq. 3, consider the following results.
Lemma 2. If x, y, c, d > 0 and y ∞ dx, then

x+ c

y + dc
∞ x

y
. (11)

Proof. Observe that

x(y + c) = xy + cy ∞ xy + c(dx) = x(y + cd), (12)

and (y + c) and (y + cd) can be divided from both sides to achieve the result.

Corollary 4. Denote sj as exp(sim(xH,i, xH,j)/T) and sk as exp(sim(xH,i, xH,k)/T). Denote
s→ = maxzi,zj sim(zi, zj), achieved when zi = zj . Denote c = s→ ↙ sj , and let D be the indices of
k of the batch samples that are in the same cluster as cL,i (i.e., xH,k = xH,i in the intended clusters).
Suppose

∑
k↔D

sk ∈ dc. Then, the maximal invariance clusters minimize Eq. 3 if
∑

k
sk ∞ dsj . ↭

Proof. For any particular set of representations, the loss of Eq. 3 can be written as

L(xH,i, xH,j) = ↙ log
sj∑
k
sk

, (13)

which is minimized when sj∑
k
sk

is maximized. Forcing xH,i = xH,j would result in the value of
s
↑

∑
k/↓D

sk+
∑

k↓D
s↑ , where D represents the d values that are also forced into the same cluster. Now

observe that

s→∑
k/↔D

sk +
∑

k↔D
s→

∞ s→∑
k
sk + dc

(14)

∞ s→ ↙ c∑
k
sk

from Lem. 2 (15)

=
sj∑
k
sk

. (16)

Therefore, the new clusters with xH,i = xH,j is more optimal with respect to Eq. 3 than any
alternative set of clusters.

B Experimental Details

This section provides detailed information about our experiments. Our models were implemented
primarily in PyTorch [29], and training was facilitated by PyTorch Lightning [12].

The models in this paper are based on neural causal models, specifically G-constrained neural causal
models, defined below.

16

Definition 14 (G-Constrained Neural Causal Model (G-NCM) [38, Def. 7]). Given a causal diagram
G, a G-constrained Neural Causal Model (for short, G-NCM) M̂(ω) over variables V with parameters
ω = {ϖVi

: Vi ≃ V} is an SCM ↓Û,V, F̂ , P (Û)↔ such that

• Û = {ÛC : C ≃ C(G)}, where C(G) is the set of all maximal cliques over bidirected edges
of G;

• F̂ = {f̂Vi
: Vi ≃ V}, where each f̂Vi

is a feedforward neural network parameterized by
ϖVi

≃ ω mapping values of UVi
↗PaVi

to values of Vi for UVi
= {ÛC : ÛC ≃ Û s.t. Vi ≃

C} and PaVi
= PaG(Vi);

• P (Û) is defined s.t. Û ∋ Unif(0, 1) for each Û ≃ Û. ↭

A G-NCM is a causal generative model that takes the form of a neurally-parameterized SCM, with
functions following the graphical structure of G. In particular, in the context of abstractions, we use
the representational version, defined below.
Definition 15 (Representational NCM (RNCM) [36, Def. 11]). A representational NCM (RNCM) is
a tuple ↓ω̂ , M̂↔, where ω̂(vL;ωϑ) is a function parameterized by ωϑ mapping from VL to VH , and
M̂ is an NCM defined over VH . A GC-constrained RNCM (GC-RNCM) is an RNCM ↓ω̂ , M̂↔ such
that ω̂ is composed of subfunctions ω̂Ci

for each Ci ≃ C (each with its own parameters ωϑCi
), and

M̂ is a GC-NCM (Def. 14). ↭

That is, a GC-RNCM is an NCM constructed over the high-level representation VH , which is learned
through neural paramerized functions ω , as discussed in Sec. 3.

B.1 Voting Experiment

In this section, we discuss the experimental setup of the voting experiment in Sec. 4.1.

B.1.1 Data Generation

The SCM M→ = ML = ↓UL,VL,FL, P (UL)↔ that was used to generate the data for the experi-
ment can be described as

M→ =

UL = {UXZ ≃ [0, 1], UX ≃ {0, 1}3, UZ ≃ {0, 1}3, UY ≃ {0, 1}}
VL = {X ≃ {0, 1}3, Z ≃ {0, 1}3, Y ≃ {0, 1}}

FL =

X ⇐ UX

Z ⇐ UZ

Y ⇐ {sum(X) + sum(Z) > 3}⇔ UY

P (UL) =

UXZ ∋ Unif(0,1)+Unif(0,1)
2

UX , UZ ∋ Bernoulli(UXZ)3

UY ∋ Bernoulli(0.1)

, (17)

that is, the votes of X and Z are sampled independently according to a Bernoulli distribution with a
bias determined by UXZ . Candidates 0 and 1 correspond to B and A respectively. Y indicates a win
for candidate 1 if the collected total votes is larger than 3, with UY occasionally flipping the result
randomly. The C-DAG GC is shown in Fig. 7(a).

The query of interest, P (Y = 1 | do(X = (1, 1, 1))), corresponding to P (Y = A | do(X =
(A,A,A))), is approximately equal to 0.855, which has a 0.105 error compared to the observational
P (Y | X) △ 0.75.

B.1.2 Identifiability of the Query

Given observational data from P (VL), which can be mapped to P (VH) through ω , and the C-DAG
GC in Fig. 7(a), the query P (Y | do(X)) can be shown to be identifiable. Specifically, backdoor
adjustment on Z can be applied, resulting in P (y | do(x)) =

∑
z
P (y | x, z)P (z).

17

B.1.3 Model Architecture

Both the original RNCM approach and contrastive RNCM approach follow the definition of Def. 15.
For ω̂ , applied to X and Z, a multilayer perceptron (MLP) is used with 2 16-dimensional hidden
layers, with ReLU activations and a 2-dimensional sigmoid output (i.e., constrained between [0, 1]).
For the original RNCM, which uses an autoencoder structure, an inverse ω̂≃1 is used for each ω̂ , also
an MLP with 2 16-dimensional hidden layers, ReLU activations, and a 3-dimensional sigmoid output.

For the NCM body, neural networks f̂X , f̂Z , and f̂Y are constructed to generate X , Z, and Y
respectively, following the graph GC. f̂X and f̂Z share a 12-dimensional exogenous input UXZ

sampled from Unif(0, 1)12, and f̂Y takes X , Z, and UY ∋ Unif(0, 1)2. All three neural networks
are MLPs with 2 16-dimensional hidden layers, ReLU activations, and sigmoid outputs. f̂X and f̂Z
are modeled to output the representations ω̂(X) and ω̂(Z), which take the form of [0, 1]2 and are
not rounded at inference time. Y is not mapped through a representation ω̂ , so f̂Y directly outputs
samples of Y , where the sigmoid outputs are rounded at inference time.

In training, NCMs are implemented using a generative adversarial approach [18]. During the
distribution-learning phase, the NCM serves as the generator, while a separate discriminator (or critic)
network is used to compare fake generated samples with the real samples from the data. In this
experiment, the discriminator is an MLP with 2 32-dimensional hidden layers, ReLU activations, and
real-valued outputs, which takes the entirety of VH as input.

In all MLPs, we apply layer normalization after each hidden layer [3]. All weights are initialized via
Glorot initialization [17]. Hyperparameters are largely chosen based on recommendations from prior
works, but similar hyperparameters flexibly provided similar quality results.

B.1.4 Experimental Procedure

In the experiment procedure, first, low-level data is generated from the data-generating model from
Sec. B.1.1. The model is then instantiated according to Sec. B.1.3. A two part training phase is used,
as described in Sec. 3.

In the first phase, the representation networks ω̂ are trained. In each epoch, the dataset is passed in
batches of 256 through a forward pass through the ω̂ functions to obtain the representations XH and
ZH . For the contrastive RNCM, the loss in Eq. 3 is computed for the representations (the projection
head h is not used for this experiment). In this case, the set of structural invariances I contains a single
function g in which g(xL) outputs a permutation of xL. For the original RNCM, a reconstruction
loss is applied leveraging ω̂≃1. That is,

L(XL) = d(ω̂≃1(ω̂(XL)), XL), (18)

where d is a distance metric (MSE is used in this work). The loss is then backpropagated, and the
weights are updated using the Adam optimizer [22]. A learning rate of 10≃4 was used, and the
procedure is run for 200 epochs. A temperature value of T = 0.01 is used for the contrastive RNCM.

In the second phase, the NCM is trained to fit the high-level observational data P (VH). In each
epoch, a fake and a real batch of 128 samples are generated. The real batch is sampled from the
data, while the fake batch is generated from the NCM through a forward pass of the NCM functions.
Both batches are passed through the discriminator, and both the NCM and the discriminator are then
trained using the Wasserstein GAN loss [2]. A learning rate of 10≃4 is used for the NCM, while
2→ 10≃4 is used for the discriminator. The procedure is run for 200 epochs.

After models are trained, they are evaluated on the query P (Y = 1 | do(X = (1, 1, 1)), corre-
sponding to the query P (Y = A | do(X = (A,A,A)). The NCM is evaluated on 105 Monte-Carlo
samples of the query, sampled via Def. 2. The ground truth is sampled similarly but from the
data-generating model.

We reran this procedure for different sample sizes n ≃ {103, 103.5, 104, 104.5} and reran each setting
10 times, displaying 95% confidence intervals for the 10 trials. The results are shown in Fig. 7.

The trials of this experiment were run on Nvidia H100 GPUs, requiring approximately 100 GPU
hours.

18

Figure 9: (a) Classification accuracy of a linear model trained to predict image labels, using either
the contrastive-learning embeddings (blue) or the autoencoder embeddings (orange). (b) Mean
absolute error (MAE) of the interventional query P (Y | do(X), I) for the proposed contrastive
learning approach (blue) versus the original RNCM (orange), evaluated across different embedding
dimensionalities. All results are based on N = 10 experimental runs and are summarized as box
plots.

B.2 Pneumonia Experiment

In this section, we discuss the experimental setup of the pneumonia experiment in Sec. 4.2.

B.2.1 Additional Results

To corroborate the findings presented in Fig. 8, we repeated each experiment N = 10 times and
summarize the outcomes as box plots in Fig. 9.

To evaluate the quality of the learned encoders, we extracted embeddings for every image in the
PneumoniaMNIST dataset [21, 40, 41] and fit a linear classifier to predict the presence of pneumonia
using the dataset’s ground-truth labels. The resulting accuracies are shown in Fig. 9(a).

B.2.2 Data Generation

For our pneumonia experiment, we generate synthetic training data from an SCM
M→ = ML = ↓UL,VL,FL, P (UL)↔ which can be described as follows

M→ =

VL = {I, S,X, Y }
UL = {UIS , USX , UY }

FL =

I ⇐ h(UIS)
S ⇐ c(I) ▽ ((USX < 0.75) ̸ (USX > 0.90))
X ⇐ (S ▽ ((U1 < 0.25) ̸ (U1 > 0.75)))
̸ (¬S ▽ ((U2 < 0.35)⇔ (U1 > 0.45)))

Y ⇐

¬(c(I) = 1 ▽ S = 1 ▽X = 0)

▽ ¬(c(I) = 1 ▽ S = 0 ▽X = 0)

▽ ¬(c(I) = 0 ▽ S = 0 ▽X = 1)

▽ ¬(c(I) = 0 ▽ S = 1 ▽X = 1)

⇔ (UY < 0.2)

P (UL) =

UIS , USX , UY ∋ U [0, 1]

, (19)

Here, ⇔ denotes the logical XOR operator. The function c(I) returns the binary class label corre-
sponding to the presence of pneumonia in the image I , i.e., c(I) ≃ {0, 1}. The function h(UIS)
randomly selects an image from class 0 if UIS < 0.5, and from class 1 otherwise.

Therefore, each data point corresponds to a patient associated with an X-ray image of their lungs I .
Based on this image, a binary symptom variable S is inferred, indicating whether the patient exhibits
pneumonia symptoms. Depending on the presence or absence of symptoms, the patient might receive
treatment X . There is unobserved confounding between I and X , as well as between S and X .
Finally, a binary outcome variable Y indicates whether the patient recovered within a month, and it is
a function of I , S, and X .

19

To generate syntetic data from M→, we use the Pneumonia-MNIST dataset introduced in Kermany
et al. [21], Yang et al. [40, 41], which provides X-ray images and corresponding binary labels. These
images serve as a base for generating synthetic data using M→. The corresponding C-DAG GC is
shown in Fig. 8(b).

B.2.3 Model Architecture

Both the original RNCM and the contrastive RNCM approach follow the structure defined in Def. 15.
In both cases, an abstraction function ω̂ is learned to map the low-level image variable I to its
high-level representation E = ω̂I(I).

For the original RNCM approach, the abstraction function ω̂ is learned jointly with its inverse ω̂≃1

using an autoencoder. The encoder consists of two convolutional layers with 64 and 128 channels,
respectively, each followed by a ReLU activation and max-pooling. The resulting feature map is
flattened and passed through two fully connected layers to produce the final embedding. The decoder
reverses this process, starting with two fully connected layers to reshape the embedding, followed by
two transposed convolutional layers that reconstruct the input image. During training we minimize
the mean squared error between the input and its reconstruction.

In the contrastive RNCM approach, ω̂ is learned using the unsupervised contrastive learning objective
from Eq. 3. Each image is augmented twice using random resized cropping and discrete rotations,
with the resulting views forming a positive pair. The encoder consists of three convolutional layers
with increasing channel widths (64, 128, 256), each followed by a ReLU activation and max-pooling.
After the convolutional blocks, a dense layer converts the pooled feature maps into a fixed-size vector.
This vector is then passed through a projection head consisting of two sequential dense layers with a
ReLU activation between them to produce the contrastive embedding. Finally, we ϱ2-normalize these
embeddings before computing the contrastive loss.

To train the structural functions F̂ in the GAN-RNCM, we adopt an adversarial training setup in
which the generator represents the structural functions of the causal model, and a discriminator (critic)
distinguishes real from generated samples [18]. Each function in F̂ is modeled as a fully connected
MLP with ReLU activations and a hidden dimension of 128. The generator is composed of five
separate networks, namely f̂E , f̂S , f̂X , f̂ emb

Y
, and f̂Y .

f̂E maps a 2-dimensional noise vector U1 to logits over discrete indices into a learned table of image
embeddings, using Gumbel-softmax sampling with a temperature of ω = 0.5 to enable differentiable
index selection. Rather than generating embeddings directly, f̂E produces indices, a design choice
we justify in the following paragraphs. f̂S takes the selected image embedding and a second 2-
dimensional noise vector U2 as input, and is implemented as a 3-layer MLP. f̂X receives U1, U2, and
S, and is modeled as a 2-layer MLP. The image embedding is projected into a lower-dimensional
space using f̂ emb

Y
, a 4-layer MLP that outputs a 4-dimensional representation. f̂Y takes the projected

embedding, X and S, and an additional noise vector UY as input, and is implemented as a 3-layer
MLP. The discriminator is a fully connected MLP with two hidden layers of width 128, using ReLU
activations. Spectral normalization [26] is applied to each linear layer.

As described in Sec. B.2.4, our experiment involves performing interventions on real images from the
dataset. Consider, for example, a query Q that requires intervening on a specific image I0. Given
that Q is admissible, we aim to estimate it using the trained GAN-RNCM model. This is achieved
through the mutilation procedure described next.

The standard inference process in GAN-RNCM involves sampling the noise variables U1, U2, and
UY , and then generating all variables in the SCM using the learned structural functions. However,
to model an intervention on the image variable, we override the output of the image generator f̂E
with ω̂I(I0). This ensures that all downstream components of the GAN-RNCM operate on the
specific intervention-defined embedding. This procedure can be extended to more variables as needed,
depending on the structure of the query Q. For further details on the mutilation approach, we refer
the reader to prior work [39, 36].

In practice, however, we observed that this form of intervention introduces distribution shift. Specifi-
cally, the embeddings produced by the generator during regular training differ significantly from those
injected during mutilation, which are derived from real images. This discrepancy negatively affects

20

the reliability of downstream functions such as f̂S and f̂Y when used on out-of-distribution inputs.
To address this, we avoid training the generator to produce image embeddings directly. Instead, we
associate each training image with a unique index. During training, the generator is modified to
produce such indices instead of actual image embeddings. When downstream functions (e.g., f̂S ,
f̂Y) require the image embedding, we retrieve the embedding corresponding to the generated index.
This ensures that all image embeddings passed to the structural functions during both training and
inference correspond to real images, thereby eliminating the distribution shift described previously.

Although this approach restricts the generator from producing entirely new image embeddings,
this limitation is acceptable for our experimental setup since we are only interested in evaluating
interventional queries that intervene on image embeddings.

B.2.4 Experimental Procedure

To evaluate the performance of the GAN-RNCM pipeline, we conduct experiments on the Pneumoni-
aMNIST dataset [21, 40, 41]. The dataset is originally imbalanced, with 1,214 images in the minority
class and 3,484 in the majority class. To construct a balanced dataset, we randomly subsample 1,214
images from the majority class, resulting in a total of 2,428 images with equal class representation.

Using these images and their associated class labels, we generate synthetic training data following
the procedure in Sec. B.2.2. From the resulting dataset, we set aside 228 examples (approximately
10%) as a test set. The test set is balanced across class labels, with 50% positive and 50% negative
pneumonia cases. The remaining 2,200 examples are used for training.

As described in Sec. B.2.3, we train two variants of the RNCM model, one using representations
learned via unsupervised contrastive learning, and the other using representations from an autoencoder
baseline. For each representation type, we train models with embedding dimensionalities of 4, 8, 16,
and 32. In both cases, the encoder is trained for 25 epochs using the Adam optimizer [22] with a
learning rate of 3→ 10≃4 and a batch size of 32. For contrastive learning, we use the loss from Eq. 3
with a temperature parameter of T = 0.1. The autoencoder baseline is trained using a mean squared
reconstruction loss.

In the second phase of training, the GAN-RNCM is optimized to approximate the high-level ob-
servational distribution P (VH). During each epoch, two batches of data are prepared. The real
batch is sampled directly from the training data, and the generated batch is created by sampling noise
variables and passing them through the generator, which consists of the structural functions F̂ .

Both the real and generated batches contain 1,024 samples and are passed to the discriminator. The
discriminator is trained to assign higher values to real samples and lower values to generated samples.
At the same time, the generator is trained to produce samples that are indistinguishable from real
data based on the discriminator’s output. This procedure follows the WGAN-GP framework [19],
which regularizes the discriminator through a soft penalty on the gradient norm to enforce a relaxed
Lipschitz condition.

The training alternates between updating the generator and the discriminator. For each generator
update, the discriminator is updated twice. Optimization is performed using the Adam optimizer [22].
The learning rate for the generator is set to 2→ 10≃5, and the learning rate for the discriminator is set
to 1→ 10≃5. This training procedure is repeated for a total of 5,000 epochs. All parameters of the
generator and discriminator are updated jointly throughout this phase.

In practice, we observe that training the GAN-RNCMs benefit from incorporating a supervised loss
signal with the original adverserial loss. Specifically, at the beginning of each epoch, we perform a
supervised update for the structural functions f̂S , f̂X , and f̂Y using real data from that epoch. Let
Er, Sr, Xr, and Yr denote the real values of the variables E, S, X , and Y , respectively. We then
minimize the following supervised losses:

LS

sup = EEr,Sr,U2

CE

(
f̂S(Er, U2), Sr

)
, (20)

LX

sup = ESr,Xr,U1,U2

CE

(
f̂X(Sr, U1, U2), Xr

)
, (21)

LY

sup = EEr,Sr,Xr,Yr,UY

CE

(
f̂Y (Er, Sr, Xr, UY), Yr

)
, (22)

21

where CE denotes the cross-entropy loss and U1, U2, and UY are the i.i.d. noise variables from the
definition of the SCM M→. We optimize these supervised losses using the Adam optimizer [22] with
a fixed learning rate of 10≃3.

To evaluate each trained model, we estimate the interventional query P (Y = 1 | I = I0, do(X = x))
for every image I0 in the test set and for both values x ≃ {0, 1}. Each estimate is computed using
104 Monte Carlo samples from the trained model. As we will show, this query is identifiable and has
a high-level counterpart P (Y = 1 | E = ωI(I0), do(X = x)), which can be estimated directly using
the learned generative model.

The identifiability follows from an application of Rule 2 of the do-calculus [30]:

P (Y = 1 | I = I0, do(X = x)) =

s

P (Y = 1 | I = I0, do(X = x), S = s) · P (S = s | I0)

=

s

P (Y = 1 | I = I0, X = x, S = s) · P (S = s | I0).

Now, one could further apply Rule 2 to obtain:

P (S = s | I = I0) = P (S = s | do(I = I0)),

P (Y = 1 | I = I0, do(X = x), S = s) = P (Y = 1 | do(I = I0), do(X = x), do(S = s)),

which can both be estimated using the mutilation procedure described in Section B.2.3. However,
following the analysis in [39, Appendix B.2], we find that estimating the nested counterfactual
P (Y = 1 | do(I = I0), do(X = x)) directly tends to yield lower error, likely due to avoiding the
accumulation of error across multiple estimates.

The quality of each model is assessed by computing the mean absolute error between the estimated
and ground truth interventional probabilities, averaged over all test samples. Each configuration is
evaluated over 10 independent runs, and results are shown in Fig. 9.

C Additional Examples

This section contains additional examples that supplement the main body.

C.1 Examples for Sec. 2

Table 1 shows examples of structural invariances (Def. 7) for different tasks.

Consider the following example for a more nuanced understanding of maximal invariance clusters
relative to a given set of structural invariances.
Example 6. Suppose in a company, there are four employees (X1, X2, X3, X4) who are each trying
to decide if they wish to work on project A or B (i.e., X1, X2, X3, X4 ≃ {A,B}). Suppose we
would like to cluster the decision of the four employees into a single variable XH , and now the goal
is to learn an intravariable clustering of the 16 possible values of the joint tuple (X1, X2, X3, X4).
These variables impact the eventual project direction of the company (Y ≃ {A,B}).

To proceed, we must ensure that any two values that are clustered together would not be ambiguous
for deciding Y (violating the AIC). Suppose we are given the information that Xi is a higher-ranked
employee than Xj for i > j, and a higher-ranked employee overwrites the decision of a lower-ranked
employee. This can be represented by the structural invariance

g((X1, X2, X3, X4),ϑ) =

(X2, X2, X3, X4) ϑ = 2
(X1, X3, X3, X4) ϑ = 3
(X1, X2, X4, X4) ϑ = 4

, (23)

where ϑ ≃ {2, 3, 4} represents an index of X . For example, g((A,B,A,B), 2) = (B,B,A,B),
indicating that X1 will take the value of X2 = B even if X1 was originally A.

Suppose I = {g} and D is the maximal invariance clusters of I. Under the definition of maximal
invariance clusters, it is therefore the case that (A,B,A,B) and (B,B,A,B) are in the same

22

Name Function Description Illustration

Permutation Invariance g(x,ϑ) is a reordering of the dimen-
sions of x specified by indices in ϑ

Temporal Invariance g(xt,ϑ) = xt+ω for time step t

Rotational Invariance g(i,ϑ) rotates image i by ϑ radians

Scale Invariance g(i,ϑ1,ϑ2) zooms image i by ϑ1

amount and crops it to region ϑ2

Translational Invariance g(i,ϑ) pans image i by ϑ pixels

Table 1: Examples of invariances and their corresponding structural invariance functions. Many
invariances are specifically applicable to the image setting, such as the bottom three on this table.

cluster of D. However, note that g is not reversible in this case (i.e., there is no ϑ such that
g((B,B,A,B),ϑ) = (A,B,A,B).

Interestingly, note that g((B,B,A,B), 4) = (B,B,B,B), putting (B,B,A,B) and (B,B,B,B)
in the same cluster in D as well. This implies that (A,B,A,B) and (B,B,B,B) are in the same
cluster despite the lack of direct connection through g in either direction (i.e., there is no ϑ such
that g((A,B,A,B),ϑ) = (B,B,B,B) or g((B,B,B,B),ϑ) = (A,B,A,B)). Hence, to fully
evaluate whether two values are in the same cluster, it must be checked whether there is a path that
connects the two values through some series of applications of functions in I, in either direction. ↭

D Discussion

This section includes additional discussion points for this work.

D.1 Limitations

The results in this work, both theoretical and empirical, are limited by the validity of the assumptions.

Naturally, the most prominent assumption in this paper is the availability of invariance information,
with the properties described in Def. 7. Without this information or any other types of assumptions,
no set of intravariable clusters can be learned without potentially violating the AIC, as described by
Prop. 1. Furthermore, it is possible that the set of available structural invariances, I, does not contain
that much helpful information. If the functions are not flexible in terms of mapping to different values
given the parameterization ϑ, it is possible that the corresponding maximal invariance clusters are
still quite fine. Nonetheless, this is the crucial assumption that allows the applicability of the methods
of this paper. If this assumption cannot be met, then it is recommended to find alternative solutions to
navigate the AIC. Still, this assumption is quite reasonable in any setting in which invariances are
naturally assumed to hold anyways, such as rotational invariance in image settings.

23

In the context of causal abstraction inference, identification of causal queries is crucial for guarantee-
ing that the causal queries can be inferred from the available information. Notably, the assumption of
a graphical model such as the C-DAG GC is necessary to avoid issues regarding the Causal Hierarchy
Theorem [4]. Without graphical assumptions (or sometimes even with graphical assumptions), non-
identifiability of the desired query would pose a significant issue. Alternative solutions are possible,
such as using weaker assumptions for structural learning, or bounding the query rather than precise
identification. Still, it is generally the case that the set of inferrable results grows in proportion to the
strength of the assumptions.

For contrastive learning, notably Thm. 2, proper representation learning requires a diverse batch such
that equivalent values are always compared similarly and different values are always contrasted apart.
That is, in the ideal case, any pair of values intended to be in the same cluster will eventually be
compared as xH,i and xH,j in Eq. 3, while all other values in the batch are intended to be in different
clusters. It is possible that this ideal case is violated, but the maximal invariance clusters are still
achieved, as shown in Corol. 4. In higher-dimensional cases like with image data, it is more likely
that this is not an issue, since it is unlikely that two different samples in the same batch belong in
the same cluster, and a representative set of samples from the invariance functions will eventually be
achieved with sufficient training.

Finally, in the context of empirical training, it is always a possibility that training may have issues
converging, either due to low compute, underparameterization, or difficulties with gradient-based
optimization. This can occur both in the representation training phase and in the generative modeling
phase. Failures in the representation training phase are more forgiving, since with a sufficiently
large representation dimensionality, this would simply mean a finer set of clusters, which while not
ideal, would not violate the AIC. Failures in the generative modeling phase may result in incorrect
inferences, but the inferences are guaranteed given proper fitting of the available data, so it is crucial
in this phase to ensure that the given data distribution is fitted properly.

24

	Introduction
	Preliminaries

	Invariances in Causal Abstractions
	Contrastive Learning for Abstractions
	Experimental Results
	Voting Experiment
	Pneumonia Experiment

	Conclusions
	Proofs
	Important Definitions
	Proofs of Sec. 2
	Proofs of Sec. 3

	Experimental Details
	Voting Experiment
	Data Generation
	Identifiability of the Query
	Model Architecture
	Experimental Procedure

	Pneumonia Experiment
	Additional Results
	Data Generation
	Model Architecture
	Experimental Procedure

	Additional Examples
	Examples for Sec. 2

	Discussion
	Limitations

