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Abstract

Causal discovery approaches are limited by scalability and are primarily for learning
relationships among variables. Learning causal relationships among sets or clusters
of variables is of interest because for some applications, relationships among
variables grouped in semantically meaningful ways is the goal, and in others,
clusters improve causal discovery in high-dimensions by reducing dimensionality.
Here, we introduce an approach for learning over clusters in Markov causal systems.
We develop a new graphical model to encode knowledge of relationships between
user-defined clusters while fully representing independencies and dependencies
over clusters, faithful to a given distribution. Then we define and characterize a
graphical equivalence class of these models that share cluster-level independence
information. Lastly, we introduce an algorithm for causal discovery, leveraging
these new representations, to soundly represent learnable causal relationships
between clusters of variables.

1 Introduction

Causal discovery, where observational data are used to uncover causal relationships between variables,
is a task of interest in many domains [13, 16]. However, existing algorithms are often computationally
prohibitive with many variables and prone to errors in practice [7]. One approach to improve
scalability in high-dimensional settings is to group variables into clusters and infer relationships
between these clusters. In the context of diagrams constructed from knowledge used for identification
of causal effects, Cluster Directed Acyclic Graphs (C-DAGs) [1] are introduced as causal diagrams
defined over clusters, allowing the visual representation of a high-dimensional system to be simplified
and the requisite knowledge for graph specification lessened. In a C-DAG, nodes are clusters of
variables, and an edge exists if a variable in one cluster causally influences a variable in another.
C-DAGs are assumed to be constructed based on partial knowledge of causal and confounding
relationships between variables across clusters, oblivious to variable-level relationships within
clusters.
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Figure 1: (a) and (d) are C-DAGs. (b) and (e) are DAGs in the class of GC and GC2 , respectively.
(c): an attempted graphical equivalence class for (a) after applying a collider search test given
a distribution from G1. (f): an attempted graphical equivalence class for GC2 after applying a
modified collider search test, where X→↑→Y|Z is required, and applying an orientation rule, given a
distribution from G2.

In this work, we address causal discovery over clusters of variables. We assume that the underlying
causal model is a DAG over individual variables V = {V1, ...Vn} with no latent variables, known as
a Markovian system. Given a predefined partition of V into clusters C = {C1, . . . ,Ck}, we aim
to learn causal relationships between these clusters based on observed conditional (in)dependencies
between clusters encoded in the distribution P (C) = P (C1, . . . ,Ck) without access to variable-level
relationships.

One might attempt to simply treat each cluster as a multivariate random variable and apply existing
causal discovery algorithms like PC [15]. However, consider the DAG G1 and its corresponding
C-DAG GC1 in Figure 1(b) and 1(a), respectively. Assuming a probability distribution faithful to G1,
PC will correctly construct the skeleton X↓Z↓Y, but observing the independence X→→Y will lead
to the collider structure PC1 in Figure 1(c), clearly misrepresenting the true causal directions. In fact,
we have both X→→Y and X→→Y|Z according to G1. No DAG structures over clusters X↓ Z↓Y
can simultaneously capture both independencies. This implies the need for a new graphical object to
represent (in)dependence information between clusters. Suppose we revise our collider test to only
assigna collider to a triplet ↔A,B,C↗ when A →→C and A →↑→C|B. Consider G2 and its C-DAG
GC2 in Figure 1(e), and 1(d), respectively. In this context, our modified collider test allows one to
correctly deduce a collider structure X ↘ Z ≃ Y, and this is the only collider learned. Applying
the standard orientation rule that for the triplet X ↘ Z↓W, Z↓W should be oriented as Z ↘ W
to reflect that since ↔X,Z,W↗ is not a collider, it must be a non-collider, and again this results in a
misdirected edge.

These somewhat surprising results illustrate the complexities of representing causal and independence
relationships over clusters and show that naively applying existing algorithms like PC over clusters
can lead to incorrect orientations. PC over individual variables learns a Markov equivalence class
of causal diagrams with the same conditional (in)dependencies [16, 17, 9, 19], represented as a
completed partially directed acyclic graph (CPDAG) [6, 9, 2]. Analogously, for clusters, the goal is
to recover a Markov equivalence class reflecting the same (in)dependencies between clusters.

Summary of Contributions Our contributions are as follows:

1. In section 2, we define a new graphical object, ωC-DAG (Definition 7), that, in addition
to causal relations, explicitly represents all (in)dependence information over clusters. We
define a new criterion for d-separation in ωC-DAGs (Definition 8) which we show is sound
and complete for extracting conditional independencies over cluster variables (Theorem 1).

2. In section 3, we define Cluster Completed Partially Directed Acyclic Graphs, or ωC-
CPDAGs, to represent a Markov equivalence class of ωC-DAGs (Definition 10). We
introduce a learning algorithm for sound and complete causal discovery over clusters to
learn an ωC-CPDAG by testing conditional independencies over clusters (Algorithm 1).

1.1 Related work and Preliminaries

In the literature, clusters are mainly used as an intermediate step in learning a graphical equivalence
class over variables. Typically, clusters of nodes sharing some properties are learned, then structures
within or between these clusters are learned, and ultimately integrated into a graph over variables
representing a class of DAGs [18, 12, 4, 5, 22]. Prior approaches that learn structures over clusters
either group variables heuristically based on structural similarity [10], assume clusters with strict
internal structural constraints [3, 14], including where structures such as those in Figure 1 are
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(a) Example DAGs representing non-colliders and colliders
with possible independence information for clusters.
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Figure 2
disallowed [11, 21], or consider only two clusters [20]. In contrast, we consider a user-defined
partition of variables and learn a structure representing a cluster-level equivalence class.

Notation. A boldfaced uppercase letter X denotes a set (or a cluster) of variables. We use kinship
relations, defined via edges in the graph. We denote by Pa(X)G, An(X)G, and De(X)G, the sets of
parents, ancestors, and descendants in graph G, respectively. A vertex V is said to be active on a path
relative to Z if 1) V is a collider and V or any of its descendants are in Z or 2) V is a non-collider
and is not in Z. A path p is said to be active given (or conditioned on) Z if every vertex on p is active
relative to Z. Otherwise, p is said to be inactive. Given a graph G, X and Y are d-separated by Z if
every path between X and Y is inactive given Z. We denote this d-separation by (X →→Y | Z)G.
Learned Equivalence Classes. A completed partially directed acyclic graph (CPDAG) G can have
either directed (↘) or undirected (↓) edges. Directed edges are common for all members of the
Markov equivalence class represented by the CPDAG whereas undirected edges are variant. A triplet
of vertices ↔X,Y, Z↗ is unshielded if X and Z are not adjacent to each other. If X and Z are adjacent
to one another, the triplet is said to be shielded. In a consecutive triplet ↔X,Z, Y ↗, Z is a definite
collider if edges from X and Y are into it (X ↘ Z ↘ Y ). Z is a definite non-collider if at least
one edge is out of it (X ≃ Y ↓ Z, X ↓ Y ↘ Z) or both edges are undirected and the triplet is
unshieleded (X ↓ Y ↓ Z). Otherwise, Y has a non-definite status. Definition. Cluster DAG or
C-DAG (Markov)[1] Given an DAG G(V,E) and a partition C = {C1, . . . ,Ck} of V, construct a
graph GC(C,EC) over C with a set of edges EC defined as follows: An edge Ci ↘ Cj is in EC if
exists some Vi ⇐ Ci and Vj ⇐ Cj such that Vi ⇐ Pa(Vj) in G. If GC(C,EC) contains no cycles,
then we say that C is an admissible partition of V. We then call GC a cluster DAG, or C-DAG,
compatible with G.

2 ωC-DAGs: a new graphical object for encoding causal relationships and
independences over clusters

2.1 Representing Independence Information Over Clusters

In DAGs, marginal and conditional independencies align consistently with structural edges and
arrowhead orientations between variables. As d-separation rules familiarly show, for an unshielded
triplet X,Z, Y , a collider structure exists if and only if X→→Y,X→↑→Y |Z and a non-collider structure
exists if and only if X →↑→ Y,X →→ Y |Z. It is only possible for X →↑→ Y,X →↑→ Y |Z if the triplet is
shielded. The last combination of independence information, X →→ Y,X →→ Y |Z such that X and
Y are adjacent as well as Z and Y , never occurs. With C-DAGs, ambiguity is introduced and the
correspondence between graphical structure and independence information changes. Consider G1

and G2 in Figure 2(a) which are both colliders over the clusters ↔X,Z,Y↗, but are each associated
with distinct independence information. G3 and G4 illustrate analogous behavior for non-colliders,
whether a chain or fork. Therefore, neither collider nor non-collider structures over clusters can be
singularly associated with specific independencies or dependencies, unlike with variables. Fortunately,
the converse is true: certain independence tests can singularly inform structure, and we can leverage
this property for learning over clusters in some cases. However, a new representation is needed to
ensure complete representation of independence information for structural inference.
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Figure 3: G1 is an ADMG in the class of C-DAGs (with Independence Arcs) GC1 . Independence
arcs encode (in)dependencies between clusters, for example that A→→D and A→↑→D|C. GC2 is a
C-DAG (with Independence Arcs and Separation Marks, or ωC-DAG) and G2 is a compatible DAG.

2.2 A novel representation of independence information

We introduce a new semantic representation called “independence arcs” to graphically encode
known independence information. These arcs explicitly conveys independence information between
variables, decoupled from ancestral relationships. We note that while the terms of “edges” and “arcs”
are often used interchangeably to refer to the connections between nodes in a graph, we use the term
“independence arc” to refer to a novel symbolic representation of an arc drawn between two edges of
a cluster graph. The form and representation of the arc conveys information about the conditional
and marginal (in)dependencies of the triplet of which these two edges are a part. This is in contrast to
what we consistently refer to as edges, meaning the connections between nodes in a graph.

Figure 2(b) shows the three new independence arc markings and their meanings, defined formally
in Definition 2. A break in the independence arc indicates a marginally inactive triplet, while an
arc without any break represents a marginally active triplet. A dashed arc indicates a conditionally
inactive triplet, while a solid line indicates a conditionally active triplet. Under this new representation,
edges preserve their semantics with regards to conveying parent-child relationships between nodes,
and independence information of a triplet is determined exclusively through the independence arc.

Independence arcs annotate both unshielded triplets, ↔Ci,Ck,Cj↗, where Ck is adjacent to both Ci

and Cj , and Ci and Cj are not adjacent, and shielded triplets, ↔C↗
i,C

↗
k,C

↗
j↗, where C↗

k is adjacent to
both C↗

i and C↗
j , and C↗

i and C↗
j are adjacent. To determine the arc for a shielded triplet, we introduce

the concept of a manipulated shielded triplet where one edge of the triplet is removed so that the
triplet can become unshielded, and the arc describes the behavior of this induced unshielded triplet.

Definition 1 (Manipulation of a shielded triplet). Given a shielded triplet over clusters ↔Ci,Cm,Cj↗,
its manipulation involves removing the edge between Ci and Cj , corresponding to removal of any

edges between variables in these clusters. After manipulation, the shielded triplet becomes unshielded

and this manipulated unshielded triplet is referenced as ↔Ci,Cm,Cj↗↘CiCj .

Example 1: Consider Figure 3. Triplet ↔A,B,E↗ in GC1 is shielded. To manipulate the triplet,
the edge A ↘ E is removed, corresponding to removing the edge A1 ↘ E2 in G1. This manipu-
lated unshielded triplet in GC1 is referred to as ↔A,B,E↗↘AE. The complete process for adding
independence arcs to a graph is described below in Definition 2.

Definition 2 (Independence Arcs). Consider a graph GC over clusters C = ↔C0, ...,Cn↗. For any

unshielded triplet ↔Ci,Ck,Cj↗ (or manipulated unshielded triplet ↔Ci,Ck,Cj↗↘CiCj ), let S equal

a (possibly empty) set of clusters S ⇒ (C \ ↔Ci,Cj ,Ck↗) such that Ci →→Cj |S, if such a set exists.

For some triplet ↔Ci,Ck,Cj↗, an independence arc, ACi,Ck,Cj ⇐ A, can be drawn from some point

on the edge between Ci and Ck to some point on the edge between Cj and Ck in the following way:

1. A marginally-connecting independence arc of - - - - is drawn if and only if Ci →↑→Cj |S \Ck

and Ci →→Cj |S, where Ck ⇐ S.

2. A conditionally-connecting independence arc of —⇑— is drawn if and only if Ci→→Cj |S\Ck

and Ci →↑→Cj |S, where Ck ⇐ S
3. A never-connecting independence arc of ↓↓⇑↓↓ is drawn if and only if Ci →→Cj |S \Ck

and Ci →→Cj |S, where Ck ⇐ S
Shielded triplets are annotated according to the behavior of their respective manipulated triplets.
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Example 2: Consider DAG G1 in Figure 3. Unshielded triplets ↔A,B,C↗, ↔E,B,C↗, and ↔C,D,E↗,
are marked with a marginally-connecting arc, as are manipulated unshielded triplets ↔E,A,B↗↘EB

and ↔A,B,E↗↘AE. A conditionally-connecting arc is drawn for ↔B,C,D↗ Never-connecting arcs
are added to triplets ↔A,E,D↗ and ↔B,E,D↗, and manipulated unshielded triplet ↔A,E,B↗↘AB.
Remark 1. In a Markov C-DAG with independence arcs, a conditionally-connecting independence

arc always implies a collider structure.

While a collider structure X ↘ Z ≃ Y in a C-DAG does not necessarily imply that X→→Y;X→↑→Y|Z,
Remark 1 notes that the converse is true. Independence arcs allow for d-separations to be read in a
new way, unrelated to edge connections. For an isolated triplet with clusters ↔Ci,Ck,Cj↗, the triplet
is active (d-connecting) relative to the (possibly empty) set of cluster vertices Z if a) ↔Ci,Ck,Cj↗ is
marked with a marginally-connecting independence arc and Ck /⇐ Z or b) ↔Ci,Ck,Cj↗ is marked
with a conditionally-connecting independence arc and Ck ⇐ Z. Otherwise, ↔Ci,Ck,Cj↗ is d-
separated relative to Z. In a larger graph, we introduce the notion of arc trajectories, or the sequence
of independence arcs corresponding to a path between two variables. Arc trajectories can be analyzed
to determine if two variables are connected or not.
Definition 3 (Arc Trajectory). Given a graph GC , for some path over clusters ↔C1,C2,C3, ...,Cn↗,
the arc trajectory refers to the sequence of independence arcs for each triplet along the path, a =
↔AC1,C2,C3 , ...,ACn→2,Cn→1,Cn↗.

Example 3: Consider the example in Figure 3. To determine if A and D are d-separated (A→→D)
in GC1 , we first identify all simple paths between A and D, of which there are three: A ↘ B ↘
C ≃ D, A ↘ B ↘ E ↘ D, and A ↘ E ↘ D. The arc trajectory corresponding to the first
path is ↔AA,B,C,AB,C,D↗, consisting of a marginally-connecting arc and a conditionally-connecting
arc. Because there is no conditioning set in the query, only AA,B,C indicates an active triplet but
not AB,C,D, and therefore A and D are not connected along this path. For the second path, the
arc trajectory is ↔AA,B,E,AB,E,D↗. AA,B,E is an always-connecting arc, but AB,E,D is a never-
connecting arc, so A and D are not connected by this path either. The last path has the arc trajectory
↔AA,E,D↗, and its only independence arc is never-connecting. Therefore, we can conclude that
A→→D. By a similar analysis, we can conclude that A→↑→D|C.

With some simple examples, we illustrate that determining d-separations by independence arcs can
sometimes be more complex. Consider Figure 3. From G2, the following independence information
is clear: X →↑→ W and AX,Z,W is a marginally-connecting arc, Z →↑→ Y|W, and AZ,W,Y is a
conditionally-connecting arc. Then the arc trajectory in GC2 from X to Y might lead us to believe
that X→↑→Y|W, but this is not true. Independence arcs indicate information with regards to a triplet
of clusters, but alone, may misrepresent d-separation for paths over clusters. We enrich independence
arcs with a new semantic representation to denote unexpected independencies. We introduce a new
symbol, ⇓C, which we call a “separation mark.” This mark annotates an independence arc of a triplet
to indicate a cluster (specified by the subscript of the separation mark) further along on a path that, by
independence arcs, would appear to have a d-connection to the variables in the triplet, but is actually
separated. This notion is formalized in definition 5. First, we define a supporting concept below.
Definition 4 (Analogous Paths). Given a C-DAG GC and a compatible ADMG G, we define a

simple path in G over variables, p = ↔V1, V2, V3, ..., Vm↗ to be considered analogous to a path in

GC over clusters pC = ↔C1,C2,C3, ...,Cn↗ (and pC analogous to p) if and only if the following

hold: 1) for every variable Vi on p, Vi is in some cluster Ci on pC, 2) for every cluster Cj on pC,

there exists some variable Vj ⇐ Cj where Vj is on p, and 3) for any variable Vn ⇐ Cn, there does

not exist any variable that appears after Vn on p that is in a cluster before Cn on pC.

In Fig. 3, the path over variables pv = ↔A1, B1, C1, D1↗ in G1 is an analogous path for the path over
clusters pc = ↔A,B,C,D↗ in GC1 , but the path over variables p↗v = ↔A1, B1, E1, E2, E3, D1↗ is
not analogous to pc, since E is not on pc but ⇔Ve ⇐ E on p↗v and ⊋Vc ⇐ C on p↗v , but C is on pc.
Definition 5 (Separation Marks). Let G be an ADMG, and let GC denote a possible C-DAG for G.

Consider a path pC in GC over clusters ↔C1,C2,C3, ...,Cn↗ and its corresponding arc trajectory

a = ↔AC1,C2,C3 , ...ACn→2,Cn→1,Cn↗ such that:

1. there is no arc ACi,Ci+1,Ci+2 ⇐ a that is a never-connecting arc,

2. there is no d-connecting path p in G over variables relative to clusters Z, analogous to pC,

3. there exists a d-connecting path p↗ in G over variables relative to some set of clusters Z↗
that is

analogous to the path in GC, p↗C = ↔C1, ...,Cn↘1↗, and
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4. there exists a d-connecting path p↗↗ in G over variables relative to some set Z↗↗
of clusters that is

analogous to the path in GC, p
↑↑

C = ↔C2, ...,Cn↗.
Then, a separation mark, ⇓C1 is placed on the arc ACn→2,Cn→1,Cn , and a separation mark, ⇓Cn is

placed on the arc AC1,C2,C3 .

Example 4: In Figure 3, we identify where a separation mark is needed by traversing paths of length
greater than 3 in GC2 and compare to the paths over variables in G2. For example, traversing the path
↔X,Z,W,Y↗ in GC2 and comparing to G2, we see that there is no path between any variable in X
and a variable in Y. We place a separation mark with the subscript Y, as in ⇓Y, on the independence
arc of AX,Z,W. This indicates that when traversing a path starting at X where AX,Z,W is in the arc
trajectory associated with the path, Y is separated from X (in addition to any nodes past Y on the
path). We place a mirroring separation mark, ⇓X, along arc trajectory AZ,W,Y to reflect the reverse.
GC2 in Figure 3 shows the C-DAG with independence arcs and separation marks. Further discussion
on separation marks can be found in the appendix.

Separation marks indicate separations on paths masked by the clusters and independence arcs.
Connections may also be masked if conditioning on a descendant of a collider within a cluster, where
the descendant is in a different cluster from the collider. We introduce a new connection mark, which,
like separation marks, annotates independence arcs. Specifically, a connection mark, ↖Cx in an
independence arc ACi,Cj ,Ck denotes that the triplet ↔Ci,Cj ,Ck↗ is activated by conditioning on
Cx due to some variable Vx ⇐ Cx being a descendant of some collider variable Vj ⇐ Cj . Definition
6 formalizes this.
Definition 6 (Connection Marks). Let G be an ADMG and let GC denote a possible C-DAG for G
with independence arcs. Consider a triplet over clusters in GC, ↔Ci,Cj ,Ck↗, and its corresponding

independence arc, ACi,Cj ,Ck . If ACi,Cj ,Ck is a never-connecting or conditionally-connecting

independence arc, and there exists a path p in G over variables through the triplet ↔Vi, ..., Vj , ...Vk↗
such that Vi ⇐ Ci, Vj ⇐ Cj , and Vk ⇐ Ck then ↙V ↗

j ⇐ Cj and on p, where V ↗
j is a collider, let D be

the set of clusters that are children of Cj and which include descendants of all colliders along the

path, (D =
⋃
{Cd : Vd ⇐ Cd} where Vd /⇐ {Ci,Cj ,Ck} and Vd ⇐ Ch(Vj)). Then the connection

mark ↖D is added to ACi,Cj ,Ck .

Example 5: Consider again Figure 3. Collider Y2 in the triplet ↔Y1, Y2, Y3↗ in G2 is not discernible
in triplet W,Y,R in GC2 , which is marked by a never-connecting independence arc. However,
conditioning on Q renders R and W dependent. The connection mark ↖Q is placed along arc
AW,Y,R, as shown. Further discussion on connection marks can be found in the appendix.

2.3 ωC-DAG Definition and Properties

With the introduction of the new symbolic representations of independence arcs, separation marks,
and connection marks we can fully define a new graphical model for C-DAGs with independence arcs,
which we call ωC-DAGs, for short. The “ω" prefix will be used to indicate graphical representations
making use of the new semantics of independence arcs, separation marks and connection marks.
Definition 7 (ωC-DAG (C-DAG with Independence Arcs)). Given a DAG G(V,E) and a partition

C = {C1, . . . ,Cn} of V, construct a graph GC(C,EC,A) over C.

• An edge Ci ↘ Cj is in EC if exists some Vi ⇐ Ci and Vj ⇐ Cj such that Vi ⇐ Pa(Vj) in G;

• The set of independence arcs A is defined over all triplets ↔Ci,Ck,Cj↗, by to Definition 2.

• For each arc trajectory in GC, separation marks are added according to Definition 5.

• For each path in GC, connection marks are added according to Definition 6.

If for all pairs of clusters Ci,Cj where there exists an edge Ci ↘ Cj , there is no directed path

Cj ↘ ... ↘ Ci, then we say that C is an admissible partition of V. We then call GC a cluster DAG
with independence arcs, or an ωC-DAG, compatible with G.

As with the definition of C-DAGs, ωC-DAGs include an assumption about acyclicity over the clusters.
Specifically, we disallow what we define as apparent directed cycles (or just apparent cycles), where
edges over clusters give the appearance of a cycle such that for some pair of clusters Ci,Cj there
exists an edge Ci ↘ Cj and a directed path Cj ↘ ... ↘ Ci. While Definition 7 takes as input
a DAG, we also note that construction of an ωC-DAG could alternatively take as input a C-DAG
and a probability distribution P (C) where P (C) is faithful to the true data-generating process. This
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Figure 4: G1 and G2 are DAGs in the class of the ωC-DAGs GC1 and GC2 , respectively. GC1 and
GC2 are in the Markov equivalence class of ωC-CPDAG, PC. In PC, R0 is applied to ↔X,R,Y↗,
and then R1 is applied to ↔X,R,Q↗. Lastly, R5 is applied to ↔X,Z,Y↗ with descendant W.

approach would simply rely on P (C) to inform independence arcs, separation marks and connections
marks such that the ωC-DAG is still an object constructed from knowledge, rather than one that is
learned.
Remark 2. An ωC-DAG can be constructed by modification to Definition 7 where a C-DAG GC and

faithful probability distribution P (C) are taken as input. GC informs the relationships over clusters

and P (C) is leveraged to set independence arcs, separation marks and connection marks.

D-separation over ωC-DAGs can be determined according to the criteria below. In the theorem that
follows, we show these d-separation rules are sound and complete in ωC-DAGs.
Definition 8 (d-separation over ωC-DAGs.). A path pC in an ω-C-DAG, GC, is said to be d-

separated (or blocked) by a set of clusters Z ⇒ C if and only if its corresponding arc trajectory a
contains an independence arc ACi,Cj ,Ck that is:

1. a marginally-connecting independence arc (a) Cj is in Z or (b) there exists a separation

mark ⇓Cx on ACi,Cj ,Ck where Cx is on pC,

2. a conditionally-connecting independence arc and (a) Cj is not in Z nor is any true descen-

dant of Cj in Z, (b) there exists a separation mark on ACi,Cj ,Ck ⇓Cx where Cx is on pC,

or, (c) for any connection mark ↖Cx on ACi,Cj ,Ck , Cx is not in Z

3. a never-connecting independence arc and for connection mark ↖Cx on ACi,Cj ,Ck , Cx /⇐ Z

Theorem 1. [Soundness and completeness of d-separation in ωC-DAGs.] In an ωC-DAG GC, let

X,Z,Y ⇒ C. X and Y are d-separated by Z in GC, if and only if for any DAG, G compatible with

GC, X and Y are d-separated by Z in G. (X→→Y | Z)GC ∝′ (X→→Y | Z)G.

With this d-separation definition, we have a tool for reading independence information over clusters
in an ωC-DAG. This new graph can be used to represent knowledge not only of connections between
clusters but also of independence information over clusters. Semantics of ωC-DAGs are discussed
further in the appendix. In the next section, we build on the semantics introduced in the context of
ω-CDAGs to define new graphical objects to serve as the foundation for learning over clusters.

3 ωC-CPDAGs and learning

3.1 Equivalence classes of ωC-DAGs

Now we define of a new graphical object that represents the equivalence class of cluster graphs
sharing the same independence structure induced by that distribution. This graphical object will be
analogous to a completed partially directed acyclic graph (CPDAG) which uniquely represents a
Markov equivalence class of variables, and will represent an equivalence class of ωC-DAGs. We
introduce this new graph, a cluster CPDAG, or ωC-CPDAG, define how an ωC-DAG can be mapped
to an ωC-CPDAG, and describe how this new object can be learned from an observational distribution.

Two DAGs, G1 and G2 with the same vertices are Markov equivalent if for any three disjoint sets of
vertices X,Z,Y, X and Y are d-separated by Z in G1 if and only if X and Y are d-separated by Z
in G2. We extend a similar notion for clusters and ωC-DAGs in Definition 9. From the definition of
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d-separation for ωC-DAGs, we know that such separations are discernible from independence arcs,
separation marks and connection marks alone, which leads to the theorem following the definition.
Definition 9 (Cluster Markov Equivalence). Two ωC-DAGs, GC1 and GC2 (with the same partition

C over the same variables V) are cluster Markov equivalent if for any three disjoint sets of clusters

X,Z,Y, X and Y are d-separated by Z in GC1 iff X and Y are d-separated by Z in GC2 .

Theorem 2. Two ωC-DAGs, GC1 and GC2 (with the same partition C over the same set of variables

V) are cluster Markov equivalent if and only if they share the same: 1) adjacencies, 2) independence

arcs, 3) separation marks and 4) connection marks.

Figure 4 illustrates example DAGs and ωC-DAGs in the same cluster Markov equivalence
class. Markov equivalent ωC-DAGs share some unshielded colliders, namely those marked by
a conditionally-connecting arc. This characterization of equivalent ωC-DAGs leads to the definition
of the cluster CPDAGs (ωC-CPDAGs). As with a partially directed acyclic graph, an ωC-CPDAG
may contain both directed and undirected edges and does not contain any directed cycles. As with
ωC-DAGs, an ωC-CPDAG is defined over a user-defined partition of clusters C over the variables V.
Definition 10 (ωCluster CPDAG). Let [GC] be the Markov equivalence class of an arbitrary ωC-

DAG, GC. The ωC-CPDAG for [GC], denoted P , is a cluster completed partially directed acyclic

graph (ωC-CPDAG) such that:

1. P has the same adjacencies as GC (and therefore any member of [GC]) does.

2. A directed edge is in P iff shared by all DAGs in [GC] and otherwise the edge is undirected

3. P has the same independence arcs, separation marks, and connection marks as GC (and

therefore any member of [GC]) does.

3.2 A Constraint-Based Learning Algorithm for ωC-CPDAG

Algorithm 1: CLOC: Algorithm for Learning an ωC-CPDAG

Input: Admissible partition C = {C1, ...,Cn},
P (C)

Output: ωC-CPDAG, P
1 Form complete graph P over C with undirected

edges.
2 for X,Y ⇐ C do
3 for S ∞ C \ {X,Y} do
4 if P (y|s,x) = P (y|s) then
5 SepSet ≃ S, SepFlag ≃ True,

break

6 if SepFlag = True then
7 Remove the edge between X,Y in P

8 for every unshielded triplet ↔X,Z,Y↗ in P do
9 if Z /⇐ SepSet(X,Y) and

X→↑→Y|Z ∈ SepSet(X,Y) then
10 Mark ↔X,Z,Y↗ in P with a

conditionally-connecting arc, and
orient as X ↘ Z ≃ Y

11 else if Z ⇐ SepSet(X,Y) then
12 Mark ↔X,Z,Y↗ in P with a

marginally-connecting arc
13 else
14 Mark ↔X,Z,Y↗ in P with a

never-connecting arc

15 for each path p = ↔C0, ...,Cn↗ ⇐ P do
16 if length(p) ∋ 4 and arc trajectory a for p is

only marginal/conditionally-connecting

arcs (with no marks ⇓Ca where Ca ⇐ p)

then
17 Let K ≃

⋃
{Cz | ACx,Cz,Cy ⇐

a is conditionally-connecting}
18 if C0 →→Cn|K∈ (SepSet(C0,Cn) \ p)

then
19 For shortest subpath

p↗ = ↔Ci, ...,Cj↗ ∞ p s.t.
length(p↗) ∋ 4 and
Ci→→Cj |K∈(SepSet(C0,Cn)\p)

20 Add ⇓Cj to ACi,Ci+1,Ci+2

21 Add ⇓Ci to ACj→2,Cj→1,Cj

22 for each triplet ↔X,Z,Y↗ in P do
23 if AX,Z,Y is a conditionally or never

connecting arc and ⇔ some W such that

Z↓W then
24 Let WZ ≃ {W | Z↓W exists in P}
25 Let S be the power set of WZ \ △
26 for each subset D ⇐ S do
27 if X→↑→Y|D ∈ SepSet(X,Y) then
28 Add ↖D to AX,Z,Y

29 Apply the five orientation rules until none apply

Given how to define an ωC-DAG from a DAG, and an ωC-CPDAG from an ωC-DAG, we can
understand the reverse process of constructing an ωC-CPDAG from independence information in
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(a) SHD plot (b) CI test (c) Run time

Figure 5: Plots comparing the (a) structural Hamming distance for each combination of cluster count
(c) and variable count (p), (b) algorithm run time, and (c) number of conditional-independence tests
calculated for CLOC(red) compared to the PC-then-cluster approach (blue).

an observational dataset. This procedure is shown in Algorithm 1, which we call Causal Learning
Over Clusters (CLOC) and is based on the assumption that an available distribution P (C) (or
data representing it) is faithful to the true underlying ωC-DAGs (in addition to the aforementioned
assumptions of causal sufficiency and an admissible partition C). Figure 4 illustrates an ωC-CPDAG
learned by the algorithm.
Definition 11 (Faithfulness for ωC-DAGs). Given an ωC-DAG GC and probability distribution

over the clusters P (C) that is generated by an SCM consistent with any causal diagram compatible

with GC, we say that P (C) is faithful to GC if (X→→Y|Z)P (c) ′ (X→→Y|Z)P (GC).

CLOC has three phases to it. In the first, edges between two nodes X and Y are removed from
a complete graph with undirected edges if there exists some separating set of clusters S such that
(X→→Y|S). In the second phase, independence arcs, separation marks, and connection marks are
added. Unshielded colliders are also determined from conditionally-connecting arcs (Remark 1).
(R0: If X↓ Z↓Y, X and Y are not adjacent, and AX,Z,Y is conditionally-connecting, then orient
the triplet as X ↘ Z ≃ Y (i.e. Z /⇐ SepSet(X,Y) and X→↑→Y|Z ∈ SepSet(X,Y)). In the final
phase, five orientation rules are applied until none apply. Rules 1, 3 and 4 extend from PC, leveraging
independence arcs to determine where the logic is sound. Rule 2 extends precisely, and Rule 5 is
our contribution. This algorithm gives us an ωC-CPDAG, which represents the Cluster Markov
equivalence class of ωC-DAGs compatible with the distribution P (C). We review the rules below
and proofs are in the appendix. We demonstrate after that the orientation rules as well as the learning
algorithm overall are sound for learning causal relations between clusters. Note that in the orientation
rules, asterisks indicate either an arrowhead or tail is possible.
R1: If X ↘ Z↓Y, X and Y are not adjacent, and AX,Z,Y is marginally-connecting, then orient
the triplet as X ↘ Z ↘ Y.
R2: If X ↘ Z ↘ Y and X↓Y, then orient X↓Y as X ↘ Y.
R3: If X ↘ Z ≃ Y, X↓W↓Y, X and Y are not adjacent, W↓Z, and AX,W,Y is marginally-
connecting, then orient W ↓ Z as W ↘ Z.
R4: If X ↘ Z ↘ Y, X ↓ W ↓ Y, X and Y are not adjacent, W ▽↓▽ Z, and AX,W,Y is
marginally-connecting, then orient W ↓Y as W ↘ Y.
R5: If X ▽↓▽Z ▽↓▽Y, Z↓W, X and W are not adjacent, Y and W are not adjacent, and AX,Z,Y

is never-connecting or conditionally-connecting with connection mark ↖D such that W ⇐ D, then
orient Z↓W as Z ↘ W.
Theorem 3. [Soundness and Completeness of Orientation Rules and CLOC] The five orientation

rules and the procedure of CLOC are sound and complete.

4 Experiments

We show performance of our algorithm in comparison to applying PC over the entire graph of
variables and then imposing clusters on the graph. We generate random C-DAGs (c = 3, 5, 6, 7, 8
clusters), and random DAGs (p = 4, 8, 32, 64, 128, 256 variables) compatible with the C-DAGs. A
Gaussian distribution (samples of n= 500, 1000, 3000) faithful to the DAG is drawn over which PC
and CLOC are run. Runtime, conditional independence test counts called, and the structural hamming
distances between the graph returned from each method and the true C-DAG are shown in Figure 5.
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PC requires exponentially more independence tests relative to CLOC. Runtime also is improved for
CLOC. As more efficient multivariate independence tests are developed, the runtime for CLOC can
be expected to show even greater improvements. We find that the distances of the graphs generated
by PC and CLOC are similar in value. Additional details and results are in the appendix.

5 Conclusions

In this work, we address the need for causal discovery over Markov causal systems by proposing
a new graphical representation, ωC-DAGs, that captures both causal directions and independence
information over the clusters. We also introduce and characterize a novel graphical object for an
equivalence class of ωC-DAGs. We then propose a sound algorithm, CLOC, to learn this new
graphical representation of an equivalence class from observational data. We illustrate that our
proposed algorithm learns a graphical equivalence class over clusters that is just as (if not more
accurate than) what can be learned by applying PC over variables and then applying clustering, and
that our algorithm achieves this with fewer independence tests and faster runtime. Limitations of
the approach include assumptions of causal sufficiency and faithfulness which may not apply for a
given practical question. Users are required to have knowledge of a partition of variables into clusters
that does not induce a cycle, which is non-negligible, while feasible for many applications. While in
practice, CLOC may be limited by slow multi-variate conditional independence tests for certain data
distributions or types, the foundational work introduced here sets the stage for improved scalability.
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A Proofs

Remark 1. In a Markov C-DAG with independence arcs, a conditionally-connecting independence

arc always implies a collider structure.

Proof. Consider an unshielded triplet ↔Ci,Ck,Cj↗ such that ACi,Ck,Cj is a conditionally-
connecting independence arc. This implies that Ci →→ Cj |S \ Ck;Ci →↑→ Cj |Ck ∈ S where S
is a separating set for Ci and Cj . Then there must exist some path, p = Vi, ..., Vk, ...Vj where
Vi ⇐ Ci, Vk ⇐ Ck, and Vj ⇐ Cj , such that every non-endpoint node is a collider. In Markovian
cases, this can only occur if there is only one non-endpoint. Therefore, Vk must be the only non-
endpoint node on p such that Vk is a collider. Moreover, due to the admissibility of the partition, it
follows that no additional variable in Ck can act as a cause of any variable in Ci or Cj . Therefore,
Ci,Ck,Cj must follow a collider structure.

Theorem 1. [Soundness and completeness of d-separation in ωC-DAGs.] In an ωC-DAG GC, let

X,Z,Y ⇒ C. X and Y are d-separated by Z in GC, if and only if for any DAG, G compatible with

GC, X and Y are d-separated by Z in G. (X→→Y | Z)GC ∝′ (X→→Y | Z)G.

Proof. First we prove the soundness of d-separation by showing that if X and Y are d-separated by Z
in GC, then, in any ADMG, G, compatible with GC, X and Y are d-separated by Z in G. We show
by contradiction. Assume X and Y are d-separated by Z in GC but in some compatible ADMG, G,
there exists a path p between a variable X ⇐ X and Y ⇐ Y that is active when the set of variables
contained in cluster Z are conditioned on. By the preservation of paths and adjacencies, no connection
is destroyed through clustering, so p in G is contained in a path pC of GC between clusters X and Y.
Since X and Y are d-separated by Z in GC, pC is blocked, and X and Y are not adjacent. Therefore,
by definition 8, there is at least one triplet of clusters in pC that indicates a block on the path. Let
this triplet be ↔Ci,Cm,Cj↗, and let its associated independence arc be ACi,Cm,Cj where Cm is
distinct from X and Y. Consider the subpath pij of p contained in the triplet ↔Ci,Cm,Cj↗ in pC.
Since p is active by assumption, every subpath of p is active, including pij . The triplet ↔Ci,Cm,Cj↗
indicates a block on the path either if 1) ACi,Cm,Cj is a never connecting arc with no connection
marks ↖Cd such that Cd ⇐ Z, 2) if ACi,Cm,Cj is a marginally-connecting arc where Cm ⇐ Z, 3)
if ACi,Cm,Cj is a conditionally-connecting arc such that Cm /⇐ Z and with no connection mark
↖Cd such that Cd /⇐ Z or 4) if there is a separation mark ⇓Cx on ACi,Cm,Cj such that Cx is on
pC. In case 1, pij cannot be a connecting path or a collider path so pij would be inactive. In case
2, pij cannot be a collider path, and since Cm ⇐ Z, pij cannot be active. In case 3, pij cannot be
a connecting path and since Cm /⇐ Z and for any connection mark ↖Cd , Cd /⇐ Z, pij cannot be
active. In case 4, definition 5 states that if ACi,Cm,Cj is an always-connecting path, if ACi,Cm,Cj is
a marginally-connecting arc such that Cm /⇐ Z, or if ACi,Cm,Cj is a conditionally-connecting arc
such that Cm ⇐ Z, then pij may be active, but since ACi,Cm,Cj is marked with a separation mark
⇓Cx , there must exist some sub-path pix of p from some Vi ⇐ Ci to some Vx ⇐ Cx such that Cx is
on pC that is inactive. Therefore, p must be inactive, there is a contradiction, and we conclude that if
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X and Y are d-separated by Z in GC, then, in any ADMG, G, compatible with GC, X and Y are
d-separated by Z in G.

Then, we prove the completeness of d-separation by showing that if X and Y are d-separated by
Z in a ADMG G, then X and Y are d-separated by Z in a compatible ωC-DAG GC. We prove
by contradiction. Assume all paths from some X ⇐ X to some Y ⇐ Y are blocked by Z in some
ADMG G, but X and Y are not d-separated by Z in GC, i.e. (X →↑→ Y|Z)GC . If all paths from
any X ⇐ X to any Y ⇐ Y are inactive by Z, then by preservation of paths and adjacencies, X
and Y are not adjacent in GC. No connections are destroyed through clustering so any p in G is
contained in a path pC of GC between clusters X and Y. Because X→↑→Y|Z in GC, by Definition 8,
there must exist some path pC such that 1) for any triplet ↔Ci,Cm,Cj↗ on pC, the independence
arc ACi,Cm,Cj marking it must not be marked by a separation mark ⇓Ck where Ck is on pC, 2)
for all marginally-connecting arcs Cm /⇐ Z, 3) for all conditionally connecting arcs Cm ⇐ Z, or
ACi,Cm,Cj is marked with a connection mark ↖Cd and Cd or a true descendant is in Z, 4) for all
never-connecting arcs, ACi,Cm,Cj is marked by a connection mark ↖Cd and Cd or a true descendant
is in Z.

For all paths p from some X ⇐ X to some Y ⇐ Y in G to be blocked, there must exist at least one
triplet, ↔Vi, Vm, Vj↗, contained either within 1 cluster (i.e. ↔Vi, Vm, Vj↗ ⇐ Cm) or between 2 (i.e.
↔Vi, Vm↗ ⇐ Cm, Vj ⇐ Cj or Vi ⇐ Ci, ↔Vm, Vj↗ ⇐ Cm) or 3 clusters (i.e. Vi ⇐ Ci, Vm ⇐ Cm, Vj ⇐
Cj) on pC, that is blocked.

1. If the blocked triplet is a non-collider, Vi ≃ Vm ↘ Vj or Vi ↘ Vm ↘ Vj , then Vm must
be in Z, which implies that Cm ⇐ Z. As there could be multiple paths through a cluster, the
triplet over clusters, ↔Ci,Cm,Cj↗ could still be marked by any independence arc.
(a) If ACi,Cm,Cj is a marginally-connecting arc or never-connecting arc, since Cm ⇐ Z,

there is a contradiction with the implications of (X→↑→Y|Z)GC .
(b) If ACi,Cm,Cj is a conditionally-connecting arc, then then there must exist a different

path, p↗, over variables through the triplet from some some V ↗
i ⇐ Ci to V ↗

j ⇐ Cj

through Cm that is a collider path. Because Cm ⇐ Z, either there is no X ⇐ X or
Y ⇐ Y on p↗ or there must be another triplet, Vq, Vr, Vw, on p↗ that is blocked.

2. If the triplet is a collider, Vi ↘ Vm ≃ Vj , then Vm nor any of its descendants, Vd can be in
Z, implying that Cm /⇐ Z and Cd /⇐ Z where Vd ⇐ Cd and ACi,Cm,Cj is marked with the
connection mark ↖Cd .
(a) If ACi,Cm,Cj is a marginally-connecting arc, then there must exist a different path, p↗,

over variables through the triplet from some some V ↗
i ⇐ Ci to V ↗

j ⇐ Cj through Cm

that is a connecting path. Because Cm /⇐ Z, either there is no X ⇐ X or Y ⇐ Y on p↗

or there must be another triplet, Vq, Vr, Vw, on p↗ that is blocked.
(b) If ACi,Cm,Cj is a conditionally-connecting arc or a never-connecting arc, because

Cm /⇐ Z, and there is a connection mark ↖Cd , Cd /⇐ Z, there is a contradiction with
the implications of (X→↑→Y|Z)GC .

For any path p↗ with a blocked triplet ↔Vq, Vr, Vw↗, either one of the conditions above leading to a
contradiction (case 1a or 2b) applies, or there is a contradiction because a separation mark must exist
along the path pC. By definition 5, the separation mark would be required because by assumption, all
paths between any X ⇐ X and Y ⇐ Y are blocked by Z in G, so it is not possible for there to be
a d-connecting path relative to Z in G analogous to pC in GC . However, p is a d-connecting path
relative to Z analogous to p↗C = ↔Ci, ...,Cr↗ and p↗ is a d-connecting path relative to Z analogous to
p↗↗C = ↔Cm, ...,Cw↗, so by definition 5, the criteria is met and a separation must be placed.

If X and Y are d-separated by Z in G, it is also possible that there is no path from any X ⇐ X
to any Y ⇐ Y, and Z would equal the empty set. In this case, by preservation of adjacencies, for
any triplet ↔Ci,Cm,Cj↗ along pC, there must be some Vi ⇐ Ci adjacent to some Vm ⇐ Cm, and
some V ↗

m ⇐ Cm adjacent to some Vj ⇐ Cj . Then, there must exist some such triplet where Vm

is not adjacent to V ↗
m. If for all Vm and V ↗

m in Cm, Vm and V ↗
m are not adjacent, then ACi,Cm,Cj

must be marked with a never-connecting arc in GC with no connection mark, and there would be a
contradiction with the implications of (X→↑→Y|Z)GC . Otherwise, because X and Y are d-separated
by Z in G, there must exist some connecting subpaths of pC, Ci, ...,Cn and Ci+1, ...,Cn + 1 such
that Ci →→Cn+1, which, by definition 5, necessitates a separation mark and then there would be a
contradiction with the implications of (X→↑→Y|Z)GC .
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Theorem 2. Two ωC-DAGs, GC1 and GC2 (with the same partition C over the same set of variables

V) are cluster Markov equivalent if and only if they share the same: 1) adjacencies, 2) independence

arcs, 3) separation marks and 4) connection marks.

Proof. The proof follows directly from the definitions of cluster Markov equivalence, and d-separation
for ωC-DAGs. Because d-separation is determined solely by the independence arcs, separation marks,
and connection marks in a graph for a series of adjacent clusters, two ωC-DAGs with the same
adjacencies, independence arcs, separation marks, and connection marks will necessarily lead to the
same d-separations between clusters and will therefore be cluster Markov equivalent.

Theorem 3. [Soundness and Completeness of Orientation Rules and CLOC] The five orientation

rules and the procedure of CLOC are sound and complete.

First we prove the soundness of the collider search and each of the five orientation rules. We then
establish orientation completeness by showing that, whenever no more rules can be applied, there
exist two Markov-equivalent ωC-DAGs that differ in orientation of any undirected edge. The proof for
the soundness and completeness of CLOC follows. First, we introduce two remarks complementing
remark 1, and an associated lemma.
Remark 3. In a Markov C-DAG with independence arcs, a marginally-connecting independence arc

always implies a non-collider structure.

Proof. We prove by contradiction. Consider an unshielded triplet ↔Ci,Ck,Cj↗ such that ACi,Ck,Cj

is a marginally-connecting independence arc. We show that orienting the triple as Ci ↘ Ck ≃ Cj

necessarily leads to a contradiction. By definition of a marginally-connecting independence arc, we
have Ci→↑→Cj |S \Ck;Ci→→Cj |S∈Ck, where S is a separating set for Ci and Cj . Assume that the
structure over clusters forms a collider, Ci ↘ Ck ≃ Cj . There are two possible cases: either there
is no path at all between Ci and Cj through Ck, or such a path exists. If no such path exists, then the
dependence implied by the marginally-connecting independence arc ACi,Ck,Cj cannot hold, leading
to a contradiction. If there exists a path p between Ci and Cj through Ck, then, since Ci is assumed
to point to Ck, there must be a pair of nodes Vi ⇐ Ci and Vk ⇐ Ck on p such that Vi ↘ Vk. By the
admissibility of the partition, an edge of the form Vi ≃ Vk is not allowed. To preserve the marginal
dependence implied by the marginally-connecting independence arc ACi,Ck,Cj , every subsequent
edge between Vk, Vk+1 ⇐ Ck along the path p must be of the form Vk ↘ Vk+1. Otherwise, a collider
would be introduced, rendering the path inactive and violating the assumed marginal dependence,
leading to a contradiction. Now, because Ck ≃ Cj , there must also exist some Vj ⇐ Cj and some
V ↗
k ⇐ Ck such that V ↗

k ≃ Vj where V ↗
k is on p. Because of the assumption of the admissibility of the

partition, there can be no edge V ↗k ↘ Vj . Then there must exist a collider and there is a contradiction.
Therefore, the triplet ↔Ci,Ck,Cj↗ must be a non-collider.

Remark 4. In a Markov C-DAG with independence arcs, a never-connecting independence arc could

imply either a collider or a non-collider structure.

Proof. Consider a triplet ↔Ci,Ck,Cj↗ such that ACi,Ck,Cj is a never-connecting independence arc.
This implies that Ci→→Cj |S\Ck;Ci→→Cj |S∈Ck, where S is a separating set for Ci and Cj . Then
either there is no path from any Vi ⇐ Ci to some Vj ⇐ Cj through Ck, or every such path p must
include at least 4 nodes, p = Vi, ..., Vk1 , Vk2 , ..., Vj where Vi ⇐ Ci, Vk1 , Vk2 ,⇐ Ck, and Vj ⇐ Cj ,
such that there is at least one collider triplet and at least one non-collider triplet on p. Consider the
latter case. Let p be a path of exactly 4 nodes ↔Vi, Vk1 , Vk2 , Vj↗ such that Vi ⇐ Ci, Vk1 , Vk2 ,⇐ Ck

and Vj ⇐ Cj . Either Vk1 is a collider node and Vk2 is a non-collider node or Vk1 is a non-collider
node and Vk2 is a collider node. In the first case, Vi ↘ Vk1 ≃ Vk2 ↘ Vj or Vi ↘ Vk1 ≃ Vk2 ≃ Vj .
In the second case, Vi ↘ Vk1 ↘ Vk2 ≃ Vj or Vi ≃ Vk1 ↘ Vk2 ≃ Vj . Then ↔Ci,Ck,Cj↗ may be
either a collider or a non-collider. Adding any additional node, Vki+1, to p either creates an additional
collider or an additional non-collider, but still allows for collider and non-collider structures over
clusters. Now consider where there is no path from any Vi ⇐ Ci to some Vj ⇐ Cj through Ck. Then
the direction of any edge Vi ↓ Vk or V ↗

k ↓ Vj can be variant such that ↔Ci,Ck,Cj↗ may be either a
collider or a non-collider.

Lemma 1. For a distribution P (C) over clusters C = ↔C1, ...,Cn↗ such that for every triplet

↔Ci,Ck,Cj↗, ACi,Ck,Cj is not a never-connecting independence arc, the orientation rules reduces

to Meek’s rules [9] and the PC algorithm [16].
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Proof. The proof follows from noting that modifications to Rules 1 and 3 require independence arcs
aligning with the independence information typically associated with colliders and non-colliders
over variables, and from Remarks 1, 3, and 4. The absence of never-connecting arcs ensure triplets
exhibit expected behavior with regards to structure and observed independencies and dependencies.
When there are no never-connecting arcs, Rule 5 reduces to Rule 1, as all triplets marked with
conditionally-connecting arcs must be a collider, and any descendant of that collider is part of a
non-collider triplet, so will be oriented by Rule 1. When there are no never-connecting arcs and there
is no background knowledge, Rule 4 never applies, following from Meek, 1995 [9].

R0: If X↓ Z↓Y, X and Y are not adjacent, and AX,Z,Y is conditionally-connecting, then orient
the triplet as X ↘ Z ≃ Y

Proof. The proof of soundness follows directly from Remark 1.

R1: If X ↘ Z↓Y, X and Y are not adjacent, and AX,Z,Y is marginally-connecting, then orient
the triplet as X ↘ Z ↘ Y.

Proof. The proof for soundness follows directly from Remark 3.

R2: If X ↘ Z ↘ Y and X↓Y, then orient X↓Y as X ↘ Y.

Proof. The soundness of the rule comes from observing that if X ≃ Y, a cycle would be induced,
violating the admissible partition criteria of ωC-DAGs.

R3: If X ↘ Z ≃ Y, X↓W↓Y, X and Y are not adjacent, W↓Z, and AX,W,Y is marginally-
connecting, then orient W ↓ Z as W ↘ Z.

Proof. The soundness of the rule comes from observing that if W ≃ Z, then by two applications of
rule 2, Y ↘ W, X ↘ W, and then there would be a collider at W. Since AX,W,Y is marginally
connecting, there is a contradiction by remark 3.

R4: If X ↘ Z ↘ Y, X ↓ W ↓ Y, X and Y are not adjacent, W ▽↓▽ Z, and AX,W,Y is
marginally-connecting, then orient W ↓Y as W ↘ Y.

Proof. The soundness of the rule comes from observing that if W ≃ Y, then to avoid a cycle, it
must be that X ↘ W. Then, however, there would be a collider at W, but AX,W,Y is marginally
connecting, so there is a contradiction.

R5: If X ▽↓▽Z ▽↓▽Y, Z↓W, X and W are not adjacent, Y and W are not adjacent, and AX,Z,Y

is never-connecting or conditionally-connecting with connection mark ↖D such that W ⇐ D, then
orient Z↓W as Z ↘ W.

Proof. The soundness of the rule comes from the definition of a connection mark, ↖D, where any
cluster W ⇐ D must be a descendant of a collider, such that Z ↘ W.

Next we prove orientation completeness for Rules 1-5.
Lemma 2. Rules 1-5 collectively are complete in the sense that all orientations determined from

successive application are valid and result in all possible orientations.
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Proof. In the case that there are no never-connecting arcs, by lemma 1 the rules are complete
following Meek 1995 [9]. If there is one or more never-connecting arc, the orientation rules of CLOC
result in fewer orientations, as never-connecting arcs always imply ambiguous orientations by remark
4. For any edge between Ci and Cj left undirected by successive applications of Rules 1-5, either
the edge is part of a triplet marked with a marginally connecting or conditionally connecting arcs, or
it is part of a triplet marked with a never-connecting arc. In the former case, by lemma 1 the cluster
Markov equivalence class includes at least one model with Ci ↘ Cj and at least one with Ci ≃ Cj .
In the latter case, by Remark 4, there exists at least one model in the cluster Markov equivalence class
with Ci ↘ Cj and at least one with Ci ≃ Cj .

Because CLOC and the orientation rules only make use of cluster level independence and dependence
information, all marginal and conditional independencies for a given triplet are already evaluated. For
a given triplet Ci,Ck,Cj , by theorem 1, Ci and Cj can only be dependent if 1) they are adjacent, 2)
they are not adjacent and ACi,Ck,Cj is marginally connecting, 3) they are not adjacent, ACi,Ck,Cj is
conditionally connecting, and Ck is in the conditioning set, or 4) they are not adjacent, ACi,Ck,Cj is
never connecting, and there exists some descendant of a variable-level collider within Ck in cluster
Cw where Cw is in the conditioning set. Cases 1, 2, and 3 are covered by the skeleton and collider
search phases. Rule 5 captures conditional dependencies created by case 4, such that orientations
for a non-oriented triplet can be made to reflect the dependence. As orientations of Rule 5 follow
a non-standard pattern relative to Rules 1-3, we can consider information determined by Rule 5
to be a form of background knowledge introduced to the graph. Then, with Rule 4, and given the
admissibility assumption of the partition, the proof for completeness extends directly from Meek
1995, where the PC algorithm with background knowledge is proved to be complete in that any
subsequent orientations that can be determined following Rule 5 must be valid and complete.

Finally, we prove Theorem 3 by showing that CLOC does return an ωC-CPDAG.

Proof. An ωC-CPDAG must reflect the cluster Markov equivalence class of ωC-DAGs for a given
partition. This means that all cluster level independencies and dependencies must be represented,
all directed edges are non-variant and all undirected edges are variant. The proof for non-variant
directed edges and variant undirected edges follows from lemma 2. To represent all independencies
and dependencies, we must ensure that all adjacencies, independence arcs, separation marks, and
connection marks are determined. The proof for valid adjacencies follows directly from the proof for
skeleton construction of Spirtes et. al 1993 [16]. The procedure for determining independence arcs
follows from definition 2, where for each triplet, searches for variables in or not in the separating
set for any given pair of variables X and Y allows for determination of the appropriate arc. The
procedure for determining separation marks follows from definition 5, where independence tests
are performed to identify where the closest pair of clusters, appearing to be dependent, are in fact
independent. Lastly, the procedure for determining connection marks follows from definition 6,
where independence tests are performed to determine if any combination of possible descendants
render two variables dependents such that the set of clusters are necessarily descendants. Therefore,
by theorem 2, the ωC-CPDAG completely represents a cluster Markov equivalence class.

Remark 5. CLOC is complete with background knowledge.

Proof. The proof follows directly from the completeness of CLOC including the orientation rule
(Rule 4) for background knowledge.

B Further discussion on ωC-DAG semantics

B.1 On separation marks, connection marks, and graph interpretation

In this section, we extend the discussion on the interpretation and semantics of ωC-DAGs.

We first further explore separation marks and connection marks. We note that separation marks
can be placed on any independence arc that signifies a connection: marginally-connecting arcs, or
conditionally-connecting arcs. Separation marks can not be placed on never-connecting arcs, as
there is no connection for the separation mark to dispute. When a separation mark is found on
a marginally-connecting arc, a marginal connection is disputed. When a separation mark is on a
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conditionally-connecting arc, the connection, conditional on the center node of the triplet marked by
the independence arc, is disputed. Since paths can be traversed in two directions, and independence
statements can be read in two ways (X→→Y,Y →→X), separation marks come in pairs.

Connection marks are read in a way distinct from separation marks. The subscript of a connection
mark indicates the directly connected nodes or sets of nodes that, when conditioned on, create a
connecting triplet where there otherwise is not one. Any true descendants of the nodes in the subscript
of the connection mark are understood to also create the connection, where a true descendant is
identified by a true connecting path over clusters (see d-separation criteria, Def. 8). Connection marks
can only be placed along never-connecting independence arcs. This is because a marginally active
triplet can not have a new connection created due to conditioning on a descendant of a collider because
the triplet is already active. If the center node of the triplet marked by a marginally-connecting
independence arc is conditioned on, any descendant of a collider that is conditioned on would still
fail to create a new connection as the independence arc necessitates there are non-colliders along
any path the collider may appear on, which would be conditioned on, so the path would be blocked.
As conditionally-connecting arcs require a collider, any true descendant will create a connection,
following expected behavior, so there is no need to explicitly denote a connection mark. Lastly, we
note that the subscript of a connection mark can be a set of sets of clusters. Each set of cluster denotes
one way that the triplet can be made active, and it is noted that a path through a cluster with multiple
colliders on it would need multiple descendants (possibly in different clusters) to be conditioned on
for the triplet over clusters to be active.

There are certain graph semantics and attributes that require new interpretation for ωC-DAGs. In
particular, we can create a more refined class of descendants and ancestors, informed by connections
through the clusters. In C-DAGs, similarly as in DAGs and other graphs, a directed path from some
node C0 to Cn is a sequence of distinct vertices ↔C0, ...,Cn↗ such that for 0 ̸ i ̸ n ↓ 1, Ci

is a parent of Ci+1 in GC. In ωC-DAGs, applying this same definition yields what we define as
an apparent directed path, since even with the described pattern of edges, it is possible to have
independence arcs and separation marks that describe a break or block which contradicts the notion
of a directed path. By contrast a true directed path in an ωC-DAG from some node C0 to Cn is
defined as a sequence of distinct vertices ↔C0, ...,Cn↗ such that for 0 ̸ i ̸ n↓ 1, Ci is a parent of
Ci+1 in GC and where every arc on the corresponding arc trajectory is a marginally-connecting arc
with no separation marks. Then, CA is called a true ancestor of CB and CB a true descendant
of CA if CA = CB or there is a true directed path from CA to CB . We contrast these terms with
what we call apparent ancestors and apparent descendants where there may only be an apparent
directed path from CA to CB . In ωC-DAGs, we use the notation AnGC(CB) and DeGC(CA) to
refer to the sets of true ancestors of CB and true descendants of CA in GC, respectively.

B.2 On relaxing the assumption of acyclicity

In our definition of ωC-DAGs (and by extension for ωC-CPDAGs), we require that there is no
apparent cycle over clusters, that is where for some pair of clusters Ci,Cj , where there exists an
edge Ci ↘ Cj , there is no directed path Cj ↘ .... ↘ Ci. We believe this is a reasonable assumption
in the context of clusters as the user intentionally defines the partition over variables, likely because
these variables represent together some semantically meaningful entity or are otherwise similar in
some ways, such that knowledge of a potential cycle is available. However, we also note that in
some cases, such an assumption may not be feasible, and it is easy to construct an example where
the underlying graph over variables is acyclic, but a certain partition over the variables creates an
apparent cycle. In such a case, ωC-DAGs have the representational capacity to differentiate between
a true cycle and an apparent cycle, as is clear by the discussion above differentiating between true
and apparent ancestors and descendants. Specifically, if the assumption of acyclicity over clusters is
relaxed (assuming an acyclic distribution over variables), then where there is an edge Ci ↘ Cj and
some directed path Cj ↘ .... ↘ Ci, there will necessarily exist some independence arc or separation
mark along the path Cj ↘ .... ↘ Ci that denotes that Cj is not a true ancestor of Ci, and therefore
there is no true cycle. In this context, properties such as d-separation extend soundly for ωC-DAGs.
However, the relaxation of the assumption of no apparent cycles over clusters does have implications
in the context of structure learning. In particular, rules that leverage this assumption of acyclicity are
no longer valid, such as Rule 2 and Rule 4. Rule 3 depends upon the validity of Rule 2 and therefore
also becomes invalid. An area of future work is to determine sound extension of or different rules
that allow for sound and complete learning over clusters when the acyclicity assumption is relaxed.
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Figure 6: (a) is a DAG and (b) is the CPDAG that comes from G1. Following the procedure in
definition 12, (c) is the clustered CPDAG that comes from P . This object reflects orientations that
are determined from tests on P (V). By contrast, (d) is the ωC-CPDAG that corresponds to G1.
All edges are undirected as X→↑→Y;X→→Y|Z and the edges cannot be oriented as, by Remark 3,
the cluster level dependencies and independencies align with the representations of X ↘ Z ↘ Y,
X ≃ Z ↘ Y, and X ≃ Z ≃ Y.
B.3 On the special case of clusters of size 1

We note that when all clusters include at most 1 variable, CLOC reduces to PC, following Lemma 1.
Independence arcs, separation marks, and connection marks all become redundant. When clusters
have more than 1 variable, and there are no never-connecting arcs, the orientation rules also reduce to
PC, however the graphical object still requires separation and connection marks to fully represent
conditional independences and dependences. When clusters have at most 1 variable, this is no longer
the case. For any triplet ↔Ci,Ck,Cj↗ such that Ck is of size n = 1 (i.e. there is only one variable in
the cluster), the alignment of the edge orientations and marginal and conditional independencies and
dependencies will be aligned as the case is for variables. For a simplified representation in ωC-DAGs
and ωC-CPDAG, independence arcs and connection marks could be removed for these triplets. The
interpretation of this object is that wherever there is an omitted independence arc, the behavior for
the triplet is as anticipated. If there exists another triplet in the graph ↔Cr,Cq,Cw↗ such that Cq

is not of size n = 1, it is possible a separation mark is required for ↔Ci,Ck,Cj↗, in which case
the independence arc, with the appropriate separation mark, would be required. If all clusters in an
ωC-DAG or ωC-CPDAG include at most 1 variable, then the simplified representation holds for all
triplets and the result would be a DAG or CPDAG respectively.

C Experimental details and additional results

C.1 Experimental Setup

All experiments were run on a machine with CPU: Intel i9 Chip, 32 GB of RAM, and macOS
operating system. A single core was used for the experiments. Algorithms are implemented in R.

In our simulations, we compare two approaches to developing a clustered graphical equivalence
class. The first approach consists of applying PC to the distribution over variables, P (V), and then
imposing clusters. The clustering procedure is shown below.
Definition 12 (Clustered CPDAG.). Given a CPDAG, P over variables V, and a partition C =
{C1, ...,Cn} of V, construct a graph PC over C as follows.

• An edge Ci ↘ Cj is in PC if there exists some Vi ⇐ Ci and some Vj ⇐ Cj such that

Vi ⇐ Pa(Vj) in P
• An edge Ci ↓Cj is in PC if for all Vi ⇐ Ci that are adjacent to some Vj ⇐ Cj , there is an

undirected edge between Vi and Vj , i.e. Vi ↓ Vj .

We note that the graphical object created by the procedure above, which we refer to as a clustered
CPDAG, determined by the PC-then-Cluster approach, is distinct from an ωC-CPDAG. In particular,
edges that may in fact be variant in a cluster Markov equivalence class may become oriented in the
clustered CPDAG, due to some feature of the distribution over variables. For example, in Figure 6,
the distribution over variables, P (V) allows the collider over ↔Z2, Z3, Y1↗ to be learned, allowing for
an orientation between Y and Z to be possible for the clustered CPDAG. Subsequent applications
of Rule 1 of the PC algorithm allows for orientation of the edge Z1 ↘ X1, so that an orientation
between X and Z is possible. By contrast, the ωC-CPDAGis learned from the distribution P (C)
where cluster-level independence tests reveal X→↑→Y;X→→Y|Z. The cluster Markov equivalence
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class for this information includes graphs with the orientations X ↘ Z ↘ Y, X ≃ Z ↘ Y, and
X ≃ Z ≃ Y, so no orientations in the ωC-CPDAGcan be made.

For the experiments in the main body of the paper, we compare the methods of CLOC and the
PC-cluster approach, as there is no other comparable method outputting an equivalence class over
clusters. For the latter method, we use the built-in implementation of PC in the R package pcalg
[8] using the gaussCItest built-in for the independence test over variables. The output is a CPDAG,
which is then clustered by the procedure described in definition 12 using the defined partition over
variables into clusters. In our implementation of CLOC the multi-variate conditional independence
test used iterates over pair-wise tests of variable level independence tests with early stopping when a
dependence is determined implying dependence over clusters.

C.2 Additional results

We show additional experimental results in Figure 7. In comparing oracle (ground truth) results by the
PC-then-cluster approach with CLOC, we can note information that is lost by using only cluster-level
information rather than variable-level information. As is illustrated in Figure 6, orientations beyond
those representing the cluster Markov equivalence class are possible when the (variable-level) Markov
equivalence class is learned by leveraging P (V). The blue line on the plot shows how much of this
sort of information, translating to orientations aligning with P (V), is lost when only P (C) is used.
We expect this number to be non-zero. This tradeoff in orientation capacity can be weighed against
improvements in required number of conditional independence tests and runtime, as demonstrated in
the main body.

The green and red lines compare, for each method of CLOC and the PC-then-cluster approach, the
structural hamming distance between a graph estimated from a data sample as compared to the ground
truth equivalence class. We note that we see lower structural hamming distances for CLOC compared
to the PC-then-Cluster approach, which reflects robustness of our proposed method to noise in data
samples.

Figure 7: Red: comparison of CLOC output, estimated from a simulated Gaussian dataset, compared
to the oracle for the corresponding data-generating process. Green: comparison of the PC-then-
Cluster approach output, estimated from a simulated Guassian dataset, compared to the oracle for the
corresponding data-generating process. Blue: Comparison of the oracle solutions by CLOC and the
PC-then-Cluster approach.
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