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Abstract

The tension between rational and irrational behav-
iors in human decision-making has been acknowl-
edged across a wide range of disciplines, from
philosophy to psychology, neuroscience to behav-
ioral economics. Models of multi-agent interac-
tions, such as von Neumann and Morgenstern’s
expected utility theory and Nash’s game theory,
provide rigorous mathematical frameworks for
how agents should behave when rationality is
sought. However, the rationality assumption has
been extensively challenged, as human decision-
making is often irrational, influenced by biases,
emotions, and uncertainty, which may even have
a positive effect in certain cases. Behavioral eco-
nomics, for example, attempts to explain such
irrational behaviors, including Kahneman’s dual-
process theory and Thaler’s nudging concept, and
accounts for deviations from rationality. In this
paper, we analyze this tension through a causal
lens and develop a framework that accounts for
rational and irrational decision-making, which we
term Causal Game Theory. We then introduce
a novel notion called counterfactual rationality,
which allows agents to make choices leveraging
their irrational tendencies. We extend the notion
of Nash Equilibrium to counterfactual actions and
show that strategies following counterfactual ra-
tionality dominate strategies based on standard
game theory. We further develop an algorithm
to learn such strategies when not all information
about other agents is available.

1. Introduction
Decision-making in multi-agent systems (MAS) is a critical
problem that has received significant attention due to its ex-
tensive application across disciplines such as economics, so-
cial sciences, political science, distributed systems, robotics,
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and more recently in aligning AI systems with human pref-
erences. At its core, such decision-making involves taking
into account multiple agents, each with their own objec-
tives, preferences, and constraints, to make coherent and
coordinated decisions within complex, dynamic environ-
ments. Agents may be individuals, autonomous systems, or
organizations, with interactions that range from purely com-
petitive settings to cooperative situations. The complexity of
decision-making in MAS arises from the interplay of several
factors, including uncertainty, inherent biases, conflicting
objectives, and the limitations of the agents’ computational
and observational capabilities.

(Von Neumann & Morgenstern, 1947) introduced the ex-
pected utility theory, providing a mathematical framework
for rational decision-making, where agents select actions to
maximize their expected utility. Since then, Game Theory
(GT) has been the foundational framework for decision-
making in MAS. Its models, such as Nash equilibrium
(Nash Jr, 1950), cooperative game theory (Shapley, 1953),
evolutionary game theory, and Bayesian games (Harsanyi,
1967) have been widely employed to study a range of scenar-
ios where agents’ decisions impact one another. Although
rational decisions are grounded in systematic analysis and
objective reasoning, human choices are often influenced by
cognitive biases, emotions, social, and various unobserved
factors that lead to seemingly irrational outcomes.

Irrational decisions may not be bad for all agents. In some
settings, irrational or naive choices can result in better out-
comes than rational ones, a phenomenon known as the para-
dox of rationality (Howard, 1971; Colman, 2003; Basu,
1994). Behavioral economics has tried to understand and
model several forms of irrationalities, including loss aver-
sion (Kahneman & Tversky, 1979), anchoring (Tversky &
Kahneman, 1974), framing of choices (Kahneman & Tver-
sky, 1984), social preferences (Fehr & Schmidt, 1999), and
emotions (Loewenstein, 2003), to cite a few. (Kahneman,
2011) also proposed the dual-process theory, which suggests
that humans have two systems for processing information
and making decisions – a fast, automatic System 1 and a
slow, deliberate System 2. Although these methods model
some aspects of our irrationalities and attempt to explain hu-
man decision-making, the general question of when and how
players can strategically leverage such unobserved biases to
their advantage in an MAS remains largely unexplored.
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X2 = 0 X2 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1

X1 = 0 U1 = 0 −1.4,−1.4 −1,−1 −14, 0 −8, 0
U1 = 1 −1,−1 0, 0 0, 0 0,−3

X1 = 1 U1 = 0 0,−14 0, 0 0, 0 0,−8
U1 = 1 0,−8 −3, 0 −8, 0 0, 0

Table 1: Y1, Y2 as a function of U1, U2, X1, X2

In this work, we make a significant step towards address-
ing these issues by proposing a framework, rooted in the
causal modeling proposed by (Pearl, 2009; Bareinboim et al.,
2022). Research has shown that human decisions are often
guided by causal structures (Tversky & Kahneman, 2015;
Sloman & Hagmayer, 2006; Nichols & Danks, 2007), and
actions can be thought of as interventions in a causal system
(Hagmayer & Sloman, 2009). Building on these insights,
we model the environment and the agent’s decision-making
process as an interplay between exogenous and endogenous
factors, represented as a structural causal model (SCM).
Structural models have been successfully used in the context
of decision-making, both for single-step bandit problems
(Bareinboim et al., 2015; Zhang & Bareinboim, 2017) and
for multi-step, more general RL problems (Lee & Barein-
boim, 2020; Ruan et al., 2023), as surveyed in (Bareinboim
et al., 2024). The advantage of such modeling is not only
computational but more fundamental. Consider the example
of Greedy Casino, introduced in (Bareinboim et al., 2015),
where a randomized control trial (RCT) suggests that the
expected payoff is higher than the realized payoff of players
following their natural instincts (i.e., irrational behavior).
One may naturally surmise that, given the superiority of the
automated version based on RCTs, humans and their irra-
tionality could be removed from the loop. However, players
could enact a counterfactual randomization procedure that
exploited their natural biases, which, surprisingly, led to
payoffs exceeding those based on the RCT.

In this paper, we build on these insights and model MAS
through a causal lens, showing that existing game models
may not capture some fundamental features of the decision-
making process. This framework models agents’ interac-
tions within a system through the different layers of the
Pearl Causal Hierarchy (Bareinboim et al., 2022). As a
consequence, an agent will have the capability to act ra-
tionally (following Nash’s prescription), irrationally, or as
some mixture of both. We develop the notion of counter-
factual rationality to formally understand if and how it is
preferable for agents to act irrationally, when it is better not
to. The next example illustrates why this task is nontrivial.

Example 1.1 (Causal Prisoner’s Dilemma (CPD)). Two
thieves are suspected in a crime, but due to insufficient ev-
idence, they cannot be convicted outright. Now, they have

-1.0, -1.0 -7.0, -0.5

-0.5, -7.0 -1.9, -1.9

0, 0 -2.4, -2.4

Irrational Irrational

Game
Theory
Rational

Game
Theory
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Figure 1: To be rational or not to be rational, that is the
question.

a choice to make – either remain silent and cooperate (C)
or betray the other by defecting (D). We denote the choices
by variables X1 and X2, and cooperation and defection
by the values 0 and 1, respectively. The thieves’ decisions
are influenced by external circumstances, represented by
variables U1 and U2, which capture factors such as the tem-
perament of police officers, the competence of legal defense,
the likelihood of new evidence or witnesses emerging, and
even the disposition of the judge and the jury. Although
these factors cannot be explicitly measured by the prisoners,
they may subconsciously shape their decisions.

Each prisoner has a natural ability to assess their circum-
stances, denoted by R1 and R2. If prisoner i has an accu-
rate reading of the their situation (Ri = 1), they choose
to cooperate (Xi = 0) if the circumstances are favorable
(Ui = 1), and defect when they are adversarial (Ui = 0);
conversely, if they have a poor reading of their situation
(Ri = 0), they defect when circumstances are good, and
cooperate when circumstances are bad. Mathematically,
for prisoner i, their instinctive or natural choices are given
by the function: Xi ← fX(Ri, Ui) = Ri ⊕ Ui, where ⊕
is the exclusive-or operator. We note that the variables
U1, U2, R1, R2 and the function fX are determined by na-
ture and are unknown to the prisoners.

We consider two scenarios, M1 and M2. In M1, the prison-
ers have a good reading of their situation (R1 = R2 = 1),
while in M2, they have a poor understanding of their circum-
stances (R1 = R2 = 0). In both cases, the situation is ad-
versarial with probability P (U1 = 0) = P (U2 = 0) = 0.6.
The outcome Y = (Y1, Y2) of their decisions is a function
of U1, U2, X1 and X2 as detailed in Table 1. The values
in the table indicate the prison sentences assigned to each
prisoner based on their choices and circumstances. For ex-
ample, when the situation is favorable for both the prisoners
(U1 = 1, U2 = 1) and they cooperate (X1 = 0, X2 = 0),
their payoff is (0, 0). However, if circumstances are favor-
able for Prisoner 1 and not for Prisoner 2 (U1 = 1, U2 = 0),
and Prisoner 1 defects while Prisoner 2 cooperates (X1 =
1, X2 = 0), their payoff is (0,−8).

If both prisoners ignore their intuition and search for the
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optimal strategy, the situation corresponds to the classical
Prisoner’s Dilemma, where the payoff for the actions (X1 =
x1, X2 = x2) is given by:∑

u1,u2

Y · P (u1, u2)P (Y | x1, x2, u1, u2) (1)

Notably, both scenarios M1 and M2 lead to the same Pris-
oner’s Dilemma (PD) game, as shown in the 2× 2 payoff
table at the bottom of Fig. 1. However, if both prisoners
rely on their natural instincts, their expected payoff is (0, 0)
in M1 and approximately (−2.4,−2.4) in M2. This is il-
lustrated in Fig. 1, where X ′

1 and X ′
2 denote the players

acting based on their natural intuition (shown in the top
row). The situation presents a new dilemma – it is better to
follow natural instincts and be irrational in M1, whereas it
is better to be rational and ignore intuition in M2.

This example raises a fundamental question: can we deter-
mine when it is beneficial to follow natural intuition and
when it is better to override it, following Nash’s prescrip-
tion? In this paper, we explore the tension between rational
and irrational behavior through a causal lens and derive from
first principles how agents should deliberate and make deci-
sions, thus resolving the so-called “paradox of rationality.”
Specifically, we outline our technical contributions.

1. We formalize a class of games that incorporate both ra-
tional and irrational behavior (Def. 2.10) and prove that
this class is strictly more expressive than traditional
Normal Form Games (Thm. 2.11).

2. We propose a new family of counterfactual strategies
and establish the existence of equilibrium in the larger
class of games (Thm. 3.5). We further demonstrate
how such strategies can be better compared to other
strategies (Thm. 3.6).

3. We develop an algorithm CTF-Nash-Learning
(Alg. 2) that learns the payoff matrix in the counterfac-
tual action space and identifies equilibria, even when
the actions of the other agents are not fully observed.

Preliminaries. In this section, we introduce the notations
and definitions used throughout the paper. We use capital
letters to denote random variables (X) and small letters to
denote their values (x). DX denotes the domain of X . |S|
denotes the cardinality of the set S. The basic framework of
our model resides on Structural Causal Models (Pearl, 2009).
An SCM M is a tuple ⟨V,U,F , P (U)⟩, where V and U
are sets of endogenous and exogenous variables respectively.
F is a set of functions fV determining the value of V ∈
V, that is, V ← fV (Pa(V ),UV ), where PaV ⊆ V and
UV ⊆ U. Naturally, M induces a distribution over the
endogenous variables, P (V), called observational or L1

distribution. An intervention on a subset X ⊆ V, denoted
by do(x) is an operation where values of X are set to x,
replacing the functions {fX : X ∈ X}, that would normally
determine their values. For an SCM M , Mx denotes the
model induced by the operation do(x) and Px(Y) or P (Yx)
denotes the probability of Y in Mx. Such distributions are
called interventional or L2 distributions. For further details,
refer to Appendix A.1 and (Bareinboim et al., 2022).

2. Causal Normal Form Games
In this section, we model the interaction of multiple agents
in a system through the language of SCMs and the PCH
layers. We first define a set of action nodes and reward
signals for the agents in the system along with the SCM M .

Definition 2.1 (Causal Multi-Agent System). A Causal
Multi-Agent System (CMAS) is a tuple ⟨M,N,X,Y⟩,
where M : ⟨U,V,F ,P⟩ is an SCM and

• N is the set of n agents,

• X = (X1, . . . ,Xn) is the ordered set of action nodes
with Xi,Xj ⊂ V for i, j ∈ [n] and Xi ∩Xj = ∅ if
i ̸= j,

• Y = (Y1, . . . ,Yn) is the ordered set of reward sig-
nals, with Yi ⊆ V for all i ∈ [n]. □

A CMAS is essentially an SCM that contains nodes X that
represent actions available to the n agents in the system.
Each agent has control over a distinct subset of action nodes;
so, no two agents can act on the same variable. Also, the
system contains a set of reward variables, Y, which repre-
sent the feedback or payoff that each agent receives based
on their actions and the underlying causal mechanism.

Example 2.2. Consider the CPD presented in Ex. 1.1. The
SCMM corresponding to scenario M2 is defined as:

1. U = {U1, U2, R1, R2}

2. V = {X1, X2, Y1, Y2}

3. Xi = Ri ⊕ Ui for i ∈ {1, 2}. Y1, Y2 as a function of
U1, U2, X1, X2 are shown in Table 1.

4. P (Ui = 1) = 0.4, P (Ri = 0) = 1 for i ∈ {1, 2}

The elements of CMAS can now be defined as (i) N =
{1, 2}, (ii) M = M, (iii) X = ({X1}, {X2}) and (iv)
Y = ({Y1}, {Y2}).

Now, we define different forms of actions that an agent may
take in such a system. First, we define the action and policy
space and then explore how the action spaces are related.
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Definition 2.3 (L1 action). Given a CMAS ⟨N,M,X,Y⟩,
an L1 action of an agent a is the one in which the value
of their action variables Xa are determined by the natural
mechanism fXa

∈ F . □

We will also call such actions natural actions and denote
them by a0. Note that, while performing a0, an agent does
not know anything about the underlying SCM nor do they
deliberately change any mechanism or variable in the system.
The L1 action space is thusA1 = {a0} and L1 policy space
is also a singleton set Π1 = {a0}.
Example 2.4. Consider the CMAS presented in Ex. 2.2.
The natural action is when the values of X1 and X2 are
determined by their natural function, that is

X1 = R1 ⊕ U1, X2 = R2 ⊕ U2 (2)

The expected payoff when both the agents are following their
natural intuition is given by∑

u1,u2,x1,x2

Y · P (u1, u2)P (x1 | u1)P (x2 | u2)

P (Y | u1, u2, x1, x2) ≈ (−2.4,−2.4) (3)

These and the other payoffs are shown in Fig. 1 (right).

In a more traditional game theoretic sense, an agent can
perform an intervention on the system. These interventions
can be atomic interventions, where an agent sets the value of
the action variable to a constant based on its context (Pearl,
2009), or soft interventions, where an agent samples their
actions from a distribution (Correa & Bareinboim, 2020).
Next, we define L2 actions and the policy space.

Definition 2.5 (L2-action). Given a CMAS ⟨N,M,X,Y⟩,
L2 action of an agent i is a hard intervention do(x), where
x ∈ DXi

. □

Hence, if an agent i performs the action do(xi) in the SCM
M , then Xi’s natural mechanism (fXi

) is replaced by

Xi ← xi (4)

The set of all such L2 action will be denoted by A2. L2

policy can be defined as a distribution over the actions in
A2.

Example 2.6. Consider the CMAS introduced in Ex. 2.2.
L2 action is when an agent performs an intervention, that is
setting their action variable to a particular value. If Player
1 is playing 0 and Player 2 is playing 1, then the assignment
of the variables are given by:

X1 ← 0, X2 ← 1, (5)

and U1, U2, R1, R2 are sampled from the distribution P (U)
as in Ex. 2.2. Similarly, Y1, Y2 are determined by Table 1.

For instance, the expected payoff of the strategy (do(X1 =
0), do(X2 = 1)) will then be given by∑

u1,u2

Y · P (u1, u2)P (Y | u1, u2, X1 = 0, X2 = 1) (6)

≈ (−7.0,−0.5) (7)

It is also possible for one agent to perform an L2 action and
the other to perform an L1 action. For instance, the payoff
the strategy (do(X1 = 1), a0) is given by∑

u1,u2,x2

Y · P (u1, u2)P (x2 | u2)

P (Y | u1, u2, X1 = 1, x2) ≈ (0,−8.9) (8)

In many cases, an agent can interact with the environment
through PCH’s Layer 3 (Bareinboim et al., 2015; 2022;
Raghavan & Bareinboim, 2025). This allows agents to in-
corporate certain counterfactuals into their decision-making.
For example, in scenario M2 of Ex. 1.1, following natural in-
stinct led to a suboptimal outcome for both agents. However,
if both agents had done the exact opposite of their instinctive
choices, they could have achieved a payoff of (0, 0). This
ability to override instinct and strategically adjust behavior
falls within the realm of Layer 3 of PCH. Before formally
defining L3 action, let Xi denote the action variable of the
agent i, where its value is determined as a function fi of its
observable and unobservable parents Pa+(Xa).

Definition 2.7 (L3-action space A3). Given a CMAS
⟨N,M,X,Y⟩, an L3 action of an agent i is when the value
of Xi is determined by a mapping from natural intuition to
action, denoted by h : D(Xi)→ D(Xi). □

When an agent takes an L3 action, they first note their natu-
ral instinct X′

i and then make the decision Xi as follows:

X′
i ← fi(Pa+(Xa)), Xi ← hi(X

′
i) (9)

In case h(x) = x, it is the same as the natural or L1 action,
and if h(x) is constant for all x, then it is an intervention.
In this light, we will often denote a0 as X = X′, where X
is the action variable and X′ is the intuition.

Example 2.8. Consider the CMAS in Ex. 2.2. An L3 action
would allow the agent to choose an action based on their
natural intuition. Let g1 and g2 be two functions from {0, 1}
to {0, 1}. If Player 1 and Player 2 are playing g1 and g2,
respectively, then the variables are given by

X ′
i ← Ri ⊕ Ui, Xi ← gi(X

′
i) (10)

for i ∈ {1, 2}. The variables U1, U2, R1, R2 are sampled
from P (U), and Y1, Y2 are determined by Table 1. For
example, if g1(x) = 1 − x and g2(x) = 1 − x, then the
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expected payoffs are given by∑
u1,u2,x1,x2

Y · P (u1, u2)P (x1 | u1)P (x2 | u2)

P (Y | u1, u2, X1 = g1(x1), X2 = g2(x2)) = (0, 0)
(11)

Once the action spaces are defined, the policy space can be
defined as a distribution over the action space. Let ∆(A)
denotes the set of distribution over set of actions A. Then
L2 policy space Π2 = ∆(A2) and L3 policy space Π3 =
∆(A3). Next, we define the notion of reward.

Definition 2.9 (Reward Function). A reward functionRa :
D(Ya)→ R of an agent a is a function from outcome Ya

to real numbers. □

In the CPD (Ex. 1.1), we assume that the reward function
is identity, that is Ri(Yi) = Yi for i ∈ {1, 2}. Now that
we have all the tools, we are ready to define Normal Form
Games in proper causal language.

Definition 2.10 (Causal Normal Form Game). A tuple Γ =
⟨M,A,R⟩ is a Causal Normal Form Game (CNFG), where

• M is a CMAS ⟨N,M,X,Y⟩,

• A = (A1, . . . ,An) is the set of policies for the n
agents, where Ai ∈ {A1,A2,A1 ∪ A2,A3},

• R = (R1, . . . ,Rn) is the set of reward functions. □

A CNFG is thus a CMAS, along with the policy space of
the n agents and their reward functions. Now that we have
formally defined CNFG, we will formally state the result
following our observation from CPD (Ex. 1.1).

Theorem 2.11. Given a game in normal form, there exists
two CNFGs C1 and C2 with expected L1 payoffs µ1 and µ2

and Nash Equilibrium (NE) payoffs µNE, such that

µ2 ≤ µNE ≤ µ1 (12)

This result implies some important observations. First, the
class of CNFGs is strictly larger (more expressive) than
Normal Form Games (NFGs), meaning that some features
of the decision-making process present in the real world
cannot be expressed in terms of an NFG. Second, CNFGs
provide a natural generalization of NFGs, aligning with the
modern causal language, including the PCH. Third, in terms
of practical decision-making, it is impossible to determine
whether following natural intuition or deliberate actions is
preferable without proper causal modeling. In the next sec-
tion, we explore the properties of policy spaces and how to
determine when to be irrational, rational, or counterfactual.

3. Causal Nash Equilibrium
In this section, we introduce counterfactual rationality and
establish the Causal Nash Equilibrium for a CNFG. Allow-
ing agents to transition between layers of the PCH leads
to a two-step decision process. First, the agent determines
which layers to operate in – whether to act instinctively (L1),
following a classical notion of rationality (L2), like Nash,
or engage in counterfactual reasoning (L3). Second, the
agent must decide which action to take within the chosen
layer. We refer to this two-step process as a causal strategy.
An agent is counterfactually rational if it seeks to maximize
its expected payoff using causal strategies, given that other
agents are also counterfactually rational.

Next, we analyze how equilibrium outcomes change when
agents moves to higher layers of the PCH.

Example 3.1 (Equilibria in CPD). Consider Ex. 1.1 (M2)
where we analyze how the payoffs and equilibria evolve as
agents move across the layers of the PCH, from instinct-
based L1 policies to counterfactual-based, L3 policies.
Fig. 2 shows the prisoner’s payoff under these larger action
space. If both prisoners follow their natural choices, playing
(X1 = X ′

1, X2 = X ′
2), their payoffs are (−2.4,−2.4).

Now, suppose prisoner 1 starts thinking rationally, ignoring
their natural instincts, which results in transition (a) in the
figure. Prisoner 1 eventually defects, meaning they play the
action do(X1 = 1), while prisoner 2 still follows their in-
stinct, X ′

2 = X2. As a result, the payoffs become (0,−8.9),
where Prisoner 1 benefits while Prisoner 2 suffers.

Eventually, prisoner 2 also learns to think rationally, lead-
ing to transition (b). In this case, both prisoners enter the
realm of Standard Game Theory (SGT), each choosing to de-
fect, playing the actions (do(X1 = 1), do(X2 = 1)). This
results in NE with payoffs of (−1.9,−1.9).

A few observations are worth making at this point. First,
the scope of SGT is highlighted in the four central cells of
Fig. 2. Second, as noted earlier, the equilibrium in SGT is
worse than when both agents act irrationally (L1). The SGT
analysis stops at this point, but our new framework suggests
that strategic thinking may continue.

Over time, prisoner 2 introspects and contemplates coun-
terfactual decisions, as highlighted in transition (c). They
realize that their natural instincts provide insights that can
be leveraged, and they should choose to act opposite to
their natural choices, X1 = 1−X ′

1. This yields payoffs of
(−2.4, 0), improving their baseline and hurting prisoner 1.

Eventually, prisoner 1 also reaches L3, leading to transition
(d). Both players, now operating under CGT, settle on
actions against their natural instincts, X1 = 1−X ′

1, X2 =
1 −X ′

2, achieving payoffs of (0, 0). This is the final state,
where no unilateral deviation can increase payoffs.
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-2.4, -2.4 -1.2, -2.6 -8.9, 0 -7.7, -0.2

-2.6, -1.2 -1.0, -1.0 -7.0, -0.5 -5.3, -0.2

0, -8.9 -0.5, -7.0 -1.9, -1.9 -2.4, 0

-0.2, -7.7 -0.2, -5.3 0, -2.4 0, 0

a

b
c

d

Figure 2: Change of Equilibrium with change of policies in Causal Prisoner’s Dilemma.

The game in this example reflects an increasingly refined
form of human rationality, tracing its evolution from primi-
tive instincts based on raw intuition (L1) to a notion of ratio-
nality based on game theory, where the intuition is ignored
(L2), and going to advanced strategic thinking leveraging
both rational and irrational aspects of human cognition (L3).

A natural question that arises from this discussion is if it’s
always better to consider the full payoff table, since it pro-
vides the largest action space. To answer this, consider the
example shown in Table 2. If Player 1’s action space is
limited to L1 and L2, then the equilibrium payoff is (0, 0)
(marked in blue). However, if the action space L3 is con-
sidered, the last row in the table is also considered (gray),
and the equilibrium payoff decreases to (−1,−1). Hence,
regardless of what the other player does, Player 1’s mere
consideration of a larger action space harms them. Broadly,
deciding which action space to follow is non-trivial. Next,
we define a projection of a CNFG, where action spaces are
restricted to specific layers of the PCH.

Definition 3.2 (PCH Projection of CNFG). Given a CNFG
Γ = ⟨M,A,R⟩, where Ai ∈ {A1

i ,A2
i ,A1

i ∪A2
i ,A3

i }. The
PCH projection of Γ, denoted by Γ(A1, . . . , An), is the sub-
game of Γ where the action space of agent i is constrained
to a subset Ai ⊆ Ai. □

This projection captures how a game evolves when agents
operate within a restricted subset of available strategies cor-
responding to different levels of reasoning within the PCH.
The key question now, is if we can find a projection from
where agents have no incentive to unilaterally deviate to a
different layer of the PCH. To address this, we introduce a
strategic selection game, a meta-game, where agents choose
which layer of PCH to operate at.

Definition 3.3 (PCH Layer Selection Game). Given a
CNFG Γ = ⟨M,A,R⟩, its PCH Layer Selection Game,
or PCH-LSG, LΓ is the NFG with the same agents and

Player 1
Player 2

X2 = X ′
2 X2 = 0 X2 = 1

X1 = X ′
1 −2, 2 −2,−2 −2,−2

X1 = 0 0, 0 −1.5,−1.5 −1.5,−1.5
X1 = 1 0, 0 −1.5,−1.5 −1.5,−1.5

X1 = 1−X ′
1 2,−2 −1,−1 −1,−1

Table 2: A Table showing that it is not always good for
agents to jump to L3 policy

• A = A1 × . . . , An is the action space where Ai ⊇
Ai ∈ {A1

i ,A2
i ,A1

i ∪ A2
i ,A3

i },

• The utility function u(A) = NE(Γ(A1, . . . , An)),

where NE(Γ(A1, . . . An)) is a Nash Equilibrium payoff
of the CNFG Γ when actions spaces are restricted to
A1, . . . , An. □

The PCH-LSG represents a higher-level decision process,
where each cell in the payoff matrix corresponds to a PCH
projection of Γ. The equilibrium of this game will determine
the layer of reasoning at which agents should operate.

Let s∗i be the NE strategy of PCH-LSG. Let supp(s∗i ) de-
notes the support of s∗i , that is the action spaces, which has
non-zero probability in s∗i . In particular if, Aj

i ̸∈ supp(s∗i ),
then the agent can ignore, or “forget” about this action space,
and instead play a PCH projection of Γ that excludes Aj

i .
With all the components in place, we are ready to define the
equilibrium under such causal strategies.

Definition 3.4 (Causal Nash Equilibrium, or CNE). Let Γ
be a CNFG and LΓ be its corresponding PCH-LSG, with
NE strategy s∗. A strategy profile π∗ is called CNE if π∗ is
the Nash Equilibrium of the PCH projection of Γ with the
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Player 1
Player 2 A1 A2 A1 ∪ A2

A1 −2, 2 −2,−2 −2, 2
A2 0, 0 −1.5,−1.5 0, 0

A1 ∪ A2 0, 0 −1.5,−1.5 0, 0

A3 2,−2 −1,−1 −1,−1

Table 3: PCH-LSG of the game Γ presented in Table 2

A1 A2 A1 ∪ A2 A3

A1 −2.4,−2.4 −8.9, 0 −8.9, 0 −8.9, 0
A2 0,−8.9 −2,−2 −2,−2 −2.4, 0

A1 ∪ A2 0,−8.9 −2,−2 −2,−2 −2.4, 0
A3 0,−8.9 0,−2.4 0,−2.4 0, 0

Table 4: PCH-LSG for Causal Prisoner’s Dilemma.

restricted action space A∗, defined as

A∗ = A1 × . . .×An, where Ai = ∪A∈supp(s∗i )A (13)

Theorem 3.5 (Existence of CNE). For any CNFG, CNE
always exists.

If playing L2 is the pure strategy Nash Equilibrium of the
PCH-LSG LΓ, then the CNE of Γ in CGT and the NE of the
normal-form game induced by Γ in SGT coincides. Next,
we look at how CNE compares with other action spaces.

Theorem 3.6 (Dominance of causal strategies). Let Γ be a
CNFG with CNE payoff µ∗ and LΓ be its PCH-LSG with NE
strategy s∗. If s∗ is a pure strategy NE and A∗

i = supp(s∗i ),

µ∗ ≥ NE(Γ(Ai, A
∗
−i)) (14)

for all Ai ∈ {A1
i , A

2
i , A

1
i ∪A2

i , A
3
i } and i ∈ [n].

In other words, Thm. 3.6 ensures that no agent can im-
prove their payoff by switching to a different reasoning
layer within the PCH framework, given that LΓ has a pure
strategy NE. To illustrate this, consider Table 3 that rep-
resents the PCH-LSG for the game given in Table 2. The
action spaces available to Player 1 and 2 in the CNFG Γ are
(A3,A1 ∪ A2). The full specification of Γ is provided in
Appendix D. Now, observe that (A2,A1 ∪ A2) is a pure
strategy NE of the PCH-LSG. This means, that in the orig-
inal game Γ, if Player 1 follows L2 policies and Player
2 follows L1 and L2 policies, neither has an incentive to
switch to a different layer of policies. This leads to an in-
teresting insight – CNE payoff of Γ is thus (0, 0). On the
other hand, if both player had chosen L2 policies, the NE
payoff would be (−1.5,−1.5), while choosing a L3 policy
for Player 1 would lead to a payoff of (−1,−1).

Algorithm 1 Learn-CNE
1: Input: PCH projections of CNFG Γ = ⟨M,A,R⟩
2: Output: CNE strategies π∗

3: Construct PCH-LSG LΓ:
4: For all A = A1 × . . . × An, such that Ai ⊇ Ai ∈
{A1,A3,A1 ∪ A2,A3}, u(A) = NE(Γ(A1, . . . , An))

5: Let s∗ be the NE strategy of LΓ

6: A∗ = A∗
1 × . . . A∗

n, where A∗
i =

⋃
A∈supp(s∗i )

A
7: Return: NE strategies of Γ(A∗)

Now, consider the PCH-LSG in Table 4, which corresponds
to the CPD described in Ex. 3.1. The pure strategy NE
is (A3,A3), implying that both players should adopt L3

policies. This was indeed illustrated in Fig. 2.

4. Learning Causal Nash Equilibrium
In this section, we first introduce an algorithm that enables
agents to infer the CNE when the payoff matrix is fully
observable, as in typical game-theoretical settings. Then,
we develop an algorithm to learn the payoff matrix with L3

actions from observations and under partial observability.

Now, we consider the challenge of finding a CNE in a CNFG
Γ, where action spaces available to the agents and their cor-
responding payoffs are available (as in SGT). For instance,
if Player 1 has access to L3 and Player 2 has access only
to L2 then both players are aware of the payoff of all possi-
ble action pairs generated by their respective action spaces.
This assumption is equivalent to the PCH projections of
Γ being common knowledge. We introduce Learn-CNE
(Alg. 1), which implements the ideas presented in Sec. 3.
The algorithm first constructs PCH-LSG LΓ corresponding
to Γ using its PCH projections (Steps 3-4). Then, Step 5
computes its NE strategy. If an action space occurs with
non-zero probability in the NE strategy, it is used for CNE,
or else, we forget it (step 6). Step 7 computes the NE of the
projection of Γ with the restricted action space.

However, such dynamics of the game may not be common
knowledge. If the agents are learning the payoff matrix
through exploration, they may be able to observe only the
other agents action, but not their intuition. To this end, we
propose an algorithm Ctf-Nash-Learning that learns
the payoff matrix in two-player CNFGs, where both agents
have access to L3 policy space. We assume that during
exploration or learning phase, both players are playing
Ctf-RCT (Bareinboim et al., 2024) and collect the dataset
(x′

1, x1, x2,y). Note that for a fixed (x′
1, x1, x2), y is sam-

pled from the mixture,
∑

x′
2
P (x′

2 | x′
1)P (yx1,x2 | x′

2, x
′
1).

Steps 3-4 identify the mean and the weights of the com-
ponents of the mixture, which are essentially a permu-
tation of P (x′

2 | x1) and E[Yx1,x2 | x′
1, x

′
2]. For in-
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Figure 3: Change in payoffs of the players in Causal Pris-
oner’s Dilemma move up the layers of PCH. Transitions (a),
(b), (c) and (d) corresponds to the ones indicated in Fig. 2

stance, when we apply this to learn CNE in CPD, we
see that p1(x′

1, x1, x2) ∼ 0.6 and p1(x
′
1, x1, x2) ∼ 0.4

for all (x′
1, x1, x2). Some examples of the means include

R1(0, 0, 0) = (−1.5,−1.5) and R2(0, 0, 0) = (−1,−1),
which corresponds to E[YX1=0,X2=0 | X ′

1 = 0, X ′
2 = 0]

and E[YX1=0,X2=0 | X ′
1 = 0, X ′

2 = 1]. These values can
be consistently identified under certain technical assump-
tions (Appendix D). Step 5 handles the degenerate case
when Y does not change with change in intuition. Step 6 de-
fines the L3 action spaces for the agents. In CPD, for agent
1, it is {f(x) = x, f(x) = 0, f(x) = 1, f(x) = 1 − x}
which corresponds to the actions {X1 = X ′

1, do(X1 =
0), do(X1 = 1), X2 = X ′

2}, and for agent 2, it is same
{g(x) = x, g(x) = 0, g(x) = 1, g(x) = 1− x}. The input
Agent’s functions may be a permutation of the actual intu-
itions X ′

2. Once, we have a proxy for the L3 actions, the
payoff matrix can be computed using Step 7 and the CNE
strategy using Learn-CNE. The learnt probabilities, mean,
and payoff matrix for CPD are shown in Appendix D.

Theorem 4.1. Given a two player CNFG Γ =
⟨M, (A3

1,A3
2),R⟩, let s∗ be the NE strategy of the cor-

responding PCH-LSG LΓ and A2 =
⋃

A∈supp(s∗2)
A. If

A2 ∈ {A2
2,A3

2}, then Ctf-Nash-Learning correctly
learns the CNE strategy for Player 1.

Experimental evaluation. We empirically investigate
how the behavior of the game changes when the play-
ers move across the layers of PCH. In order to simulate
two agents learning, we enable them with Independent Q-
Learning (Tan, 1993), a multi-agent RL algorithm that does
not require knowledge of the other agents. The dynamics
as Player 1 moves up the layers of PCH, while Player 2
remains in the previous layer is shown in Fig. 3. This is
an experimental realization of the discussions presented in
Ex. 1.1 and Fig. 2. Each 20,000 timesteps, one of the agents

Algorithm 2 Ctf-Nash-Learning
1: Input: Dataset from Ctf-RCT: (x′

1, x1, x2,y)
2: Output: Nash Equilibrium strategy f∗

3: For each (x′
1, x1, x2), estimate the mean and weights

of the distributions’ mixture from the samples (y1, y2).
4: Let the distribution means be

R1(x
′
1, x1, x2), . . . , Rk(x

′
1, x1, x2) with corre-

sponding weights p1(x
′
1, x1, x2), . . . , pk(x

′
1, x1, x2)

(in descending order)
5: If k distributions cannot be identified, assume they are

from a single distribution set Ri(x
′
1, x1, x2) as the mean

of the distribution and pi(x
′
1, x1, x2) = pi(x

′
1, x̄1, x̄2)

where x1, x2 ̸= x̄1, x̄2. In case this assignment fails,
set pi = 1/k for all k.

6: Define the action space for each player:

F1 = {f : X ′
1 → X1}, F2 = {g : [k]→ X2}

7: Construct a payoff matrix where each cell corresponds
to a pair of functions (f, g) ∈ F1 × F2. For each pair
(f, g), compute the payoff as:∑

X′
1,i

P (X ′
1)pi(x

′
1, f(x

′
1), g(i))Ri(x

′
1, f(x

′
1), g(i))

8: (f∗, g∗)← Learn-CNE on constructed payoff matrix
without the action spaces A1

2,A1
2 ∪ A2

2

9: Return: Strategy f∗.

move up the layers of PCH: first, agent 1 (shown in blue)
followed by agent 2 (orange).

5. Conclusions
In this work, we study the tension between rational and
irrational decision-making, or the paradox of rationality,
through a causal lens. In particular, we introduce the
Causal Prisoner’s Dilemma, where being rational is prefer-
able in one setting and being irrational in another, while
both settings induce the same game-theoretic solution. This
presents a puzzle, as standard methods do not allow us
to determine which choice is better. To formally under-
stand this problem, we developed a causal framework ca-
pable of accounting for both rational and irrational be-
haviors, which was shown to be strictly more expressive
than Normal Form Games (Thm. 2.11). Next, we intro-
duced counterfactual strategies and established the proper-
ties of equilibrium under such strategies (Thm. 3.6). We
further developed algorithms to learn Causal NE when the
payoff matrix is common knowledge (Learn-CNE) and
when it is unknown, but agents learn it through interactions
(Ctf-Nash-Learning). We hope this work can help to-
ward constructing more rational decision-making systems.
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6. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Preliminaries and Background
A.1. Structural Causal Models and PCH

Structural Causal Models (Pearl, 2009; Bareinboim et al., 2024) is a general class of data-generating models found in
the literature. It allows three types of distributions based on three levels of interaction with the system: observational,
interventional and counterfactual. First, we will give the formal definitions of these concepts and the heirarchical relation
among them, known as Pearl Causal Hierarchy (PCH). Our presentation mostly follows (Bareinboim et al., 2022).

Definition A.1 (Structural Causal Models). A structural causal modelM is a 4-tuple ⟨U,V,F , P (U)⟩, where

• U is a set of background variables, also called exogenous variables, that are determined by factors outside the model;

• V is a set {V1, V2, . . . , Vn} of variables, called endogenous, that are determined by other variables in the model — that
is, variables in U ∪V.

• F is the set of functions {f1, f2, . . . , fn} such that each fi is a mapping from (the respective domains of) Ui ∪ Pai to
Vi, where Ui ⊂ U, Pai ⊆ V \ Vi, and the entire set F forms a mapping from U to V, that is for each i = 1, 2, . . . , n,
we have vi ← fi(pai, ui);

• P (U) is the distribution over U.

One way to visualize the dependence among the variables in the SCM is through a causal diagram, formal construction of
which is given below (Def. 13, (Bareinboim et al., 2022) ).

Definition A.2 (Causal Diagram (Semi-Markovian Models)). Given an SCMM = ⟨U,V,F , P (U)⟩, a causal diagram G
ofM is constructed as follows:

1. add a vertex for every endogenous variable in the set V

2. add an edge (Vi → Vj), for every Vi, Vj ∈ V and Vi occurs as an argument in fj ∈ F .

3. add a bidirected edge (Vi ← . . . → Vj) for every Vi, Vj ∈ V if the corresponding Ui, Uj ∈ U are correlated or the
corresponding functions fi, fj share some U ∈ U as an argument.

Next, we define three forms of distributions that result from three types of interactions with the SCM.

Definition A.3 (L1 valuation). An SCMM = ⟨U,V,F , P (U)⟩ defines a joint probability distribution PM(V) such that
for each Y ⊆ V:

PM(y) =
∑

u|Y(u)=y

P (u) (15)

Before we define L2 evaluations, we need to understand interventional SCMs. LetM be an SCM and x be an assignment
to X ⊆ V. Then the interventional SCMMx is the 4-tuple ⟨U,V,Fx, P (U)⟩, where Fx = {fi : Vi ̸∈ X} ∪ {X← x}.
This operation is also known as the do(x) operation.

Definition A.4 (L2 valuation). An SCMM = ⟨U,V,F , P (U)⟩ induces a family a joint probability distributions over V,
one for each intervention x. For each Y ⊆ X,

PM(yx) =
∑

u|Yx(u)=y

P (u) (16)

where Yx(u) = YMx(u)

Definition A.5 (L3 valuation). An SCMM = ⟨U,V,F , P (U)⟩ induces a family of joint distributions over counterfactual
events yx, . . . zw for Y,Z, . . . ,W,X ∈ V:

PM(yx, . . . zw) =
∑

u|Yx(u)=y,...Zw(u)=z

P (u) (17)

The collection of observational (L1), interventional (L2) and counterfactual (L3) are together called the PCH.
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Figure 4: Illustration of decision flow fX

Convict 1
Convict 2

X2 = 0 X2 = 1

X1 = 0 −1,−1 −7,−0.5
X1 = 1 −0.5,−7 −1.9,−1.9

Table 5: Payoff matrix for Prisoner’s Dilemma

A.2. Counterfactual Randomization

Counterfactual Randomization. (Bareinboim et al., 2015) introduces a novel form of randomization to interact through
the Layer 3 of PCH. The core idea is to interrupt any reasoning agent just before they execute their choice, treat this choice
as their intention, and then act. This procedure involve subtle issues, and we refer readers to Sec. 7 in (Bareinboim et al.,
2024) for a more detailed discussion. The agent may consider various options during the deliberation process, but only the
final choice matters. For example, an agent may initially choose X ′ = x1, then reconsider and change it to X ′ = x2 and
may continue doing so, until at time step t, it chooses X ′ = xt and decides to execute it. This final decision defines the
agent’s instinct irrespective of the path taken to reach it. The same reference also proposed a procedure called Ctf-RCT,
where an intended action is perceived first, but instead of executing it directly, the final action is chosen uniformly at random
from the entire action space.

A.3. Normal Form Games

In this section, we provide definitions for some of the game theory concepts used in the paper.

Definition A.6 (Normal Form Games). A finite n-person normal form game is a tuple ⟨N,A, u⟩, where

• N is the finite set of n players indexed by i;

• A = A1 × . . .×An where Ai is the finite set of actions available to player i. Each vector a = a1 × . . .× an is known
as the action profile;

• u = {u1, . . . , un} where ui : A→ R is a real-valued utility (or payoff) function for player

A mixed strategy Si for an agent i is a distribution over the elements of Ai. Next, we define best response and Nash
Equilibrium.

Definition A.7 (Best Response). Player i’s best response to the strategy profile s−i is a mixed strategy s∗i ∈ Si such that
ui(s

∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

Definition A.8 (Nash Equilibrium). A strategy profiles s = (s1, . . . , sn) is a Nash equilibrium if, for all agents i, si is a
best response to s−i.
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A.4. Paradox of Rationality

It has been observed several times in the Game Theory literature that irrationality can result in a better outcome than rational
choices. One such example is the prisoner’s dilemma. Both lying would be an irrational choice, but it results in a better
payoff compared to fully rational players both of whom would choose to confess. Such irrational co-operations have also
been observed in practice (Colman, 2003). There has been several attempts in order to explain such irrationalities observed
in human decision-making either through different models of bounded rationality, such as payoff transformations (Tversky
& Kahneman, 1981; Kahneman & Tversky, 1984; 2013) or through alternate forms of reasoning (Colman, 2003).

Consider the example of Travelers’ Dilemma (Basu, 1994), where 2 travelers are asked to write the price of their lost item
between $2-100. One with the lower value receives the lower value + $2 and one with the higher value receives lower value -
$2. If an agent just tries to maximize their own reward and do not reason over others, both of them will write $100 and
receive that. Now, if they do one step of reasoning, they will think “If I write $99 and my opponent writes $100 then, I will
get $101 and my opponent $97”. Hence, both will write $99 and get $99. The amount will decrease with more levels of
reasoning. Irrational players again get higher payoffs than rational agents.

(Basu, 1994) states that different thought processes lay behind different types of choices that people made playing a version
of Traveler’s Dilemma with the options ranging from 180 to 300 (pie chart): a spontaneous emotional response (choosing
300), a strategically reasoned choice (295–299) or a random one (181–294). Players making the formal rational choice (180)
might have deduced it or known about it in advance. As expected, people making “spontaneous” or “random” selections
took the least time to choose (as seen in experiments).

A.5. Graphical Models and Game Theory

Several works have studied game theory from a graphical models perspective. The main emphasis has been on the
computational advantages related to learning equilibria through probabilistic reasoning and corresponding optimization tools
(Koller & Milch, 2003; Kearns et al., 2001). Our approach addresses key gaps in existing models, particularly concerning
the assumption of Markovianity, issues of irrationality, and multi-agent interactions.

Specifically, Kearns et al. (2001) introduced graphical games to leverage graph structures for modeling interactions among
players, making equilibrium computation more efficient when compared to standard Normal Form Games. Furthermore,
Koller & Milch (2003) extended influence diagrams (Howard et al., 1990; Lauritzen & Nilsson, 2001) to multi-agent
settings, where decision nodes represent strategies, and probabilistic dependencies simplify equilibrium computations. Their
framework was called Multi-Agent Influence Diagrams (MAIDs). The main goal of these works was connecting graphical
models and game theory, and where somewhat silent related to how this relate to causality, including interventions and
counterfactual reasoning.

The Structural Causal Influence Model by Everitt et al. (2021) connects causality with the influence diagrams literature
(Howard et al., 1990; Lauritzen & Nilsson, 2001). They study certain notions found in this traditional literature, including
value of information, value of control, among others. Their setting focuses on single-agent settings, whereas this paper
considers multi-agent interactions, including more equilibrium analysis in scenarios where agents compete in a strategic
manner. They also did not consider unobserved confounding, which is one of the main challenges in typical causal settings.

Hammond et al. (2021) extends Koller & Milch’s MAIDs by introducing the concept of MAID subgames and proposing
equilibrium refinements such as subgame perfect and trembling hand perfect equilibria. The authors establish equivalence
results between MAIDs and Extensive Form Games (EFGs), highlighting the computational advantages of MAIDs in
representing and solving certain classes of games. Still, despite its power, this work does not explore causal implications
or counterfactual strategies, which are central to our framework. Our model explicitly integrates these aspects for deeper
insights into strategic decision-making and the meaning of rationality.

Unlike the Structural Causal Games framework in (Hammond et al., 2023), which assumes Markovian dynamics, our model
handles non-Markovian influences, including unobserved confounding that impact both actions and payoffs. We note that
the assumptions required to ascertain Markovianity are inapplicable in our setting, since one of our main goals is to account
for irrational behavior – where the agent acts without knowing why. In a Markovian setting, the agent knows the reasons
for acting in a particular way. In fact, we model irrationality through the notion of counterfactuals and extend equilibrium
concepts beyond purely rational agents, as prescribed by Nash’s framework.

The approach proposed by Chan et al. (2021) embeds irrationality in the Bellman equation under a Markovian assumption in
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a novel way. Our model, however, allows for general irrationality without specifying any functional constraints, which is
necessary in a non-Markovian setting. The assumptions required to ascertain Markovianity are inapplicable in our setting,
since one of our main goals is to account for irrational behavior – where the agent acts without knowing their reasons.
Furthermore, while their focus is on a single-agent environment, ours is on multi-agent, strategic settings.

By bridging these gaps, our model provides a unified view of rational and irrational behaviors through a causal lens and
rooted in first principles. It also extends graphical game-theoretic models to multi-agent systems, contributing to a more
comprehensive understanding of equilibrium dynamics and rationality. Notably, while our work falls within the realm of
causality, it is not primarily focused on its graphical aspects, as evident throughout the main body of the paper. As mentioned
earlier, the central issue addressed here concerns the most fundamental decision-making setting and how counterfactual
reasoning (and randomization) can be leveraged to model and reconcile both irrational and rational behaviors, ultimately
resolving the rationality paradox. We believe that the foundational understanding developed in this pervasive setting can be
generalized to more complex games, where a graphical model and a more fine-grained structure could play a role, including
for computational purposes.

B. Proofs
B.1. Proof of Theorem 2.11

Consider a Normal Form Game G, with the action space A = A1×. . . An and the utility function u = (u1, . . . , un). Assume
all utilites are finite. Suppose, we are looking at the payoff of agent i. Let U =

∑
a∈A ui(a) and the Nash Equilibrium

payoff be µi
NE . Consider a large number M >> |Ui| + µi

NE . Now construct a CNFG Γ1 with U = {U1, . . . , Un} and
Y = {Y1, . . . , Yn}. The domain of Uj is equal to Aj for all j, and P (Uj = aj) = 1/|Aj |, where aj ∈ Aj . Also, for j ̸= i,
Yj(a,u) = uj(a). For agent i:

Yi(a,u) = ui(a) + 1{Ui = ai} ·M · (|Ai| − 1)− 1{Ui ̸= ai} ·M (18)

Construct Γ2 same as Γ1 except

Yi(a,u) = ui(a)− 1{Ui = ai} ·M · (|Ai| − 1) + 1{Ui ̸= ai} ·M (19)

Now, note that under L2 action space, they induce the same NFG with the equilibrium payoff µi
NE . However, for Γ1 the L1

payoff is µ1
i > µi

NE and in Γ2, the L1 payoff is µ2
i < µi

NE . □

B.2. Proof of Theorem 3.5

Consider the PCH-LSG LΓ corresponding to the CNFG Γ. Now since, LΓ is a NFG, a mixed strategy NE exists. Let this
strategy be s∗. Consider the new action space A∗ = A∗

1× . . .×A∗
n, where A∗

i = supp(s∗i ). This is a fixed policy space. The
PCH projection of Γ with A∗ is a subgame of Γ where the action space are restricted to A∗. Now, this can be represented in
Normal Form where the action space is A∗. Now, NE exists for this space. Hence, CNE exists for all CNFGs. Note that,
like NFGs can have multiple NEs, CNFGs can have multiple CNEs.

B.3. Proof of Theorem 3.6

First note that µ∗ = NE(Γ(A∗)). Suppose an agent is able to change the action space from A∗
i to A′

i and improve their
payoff. However, if that was true, then NE(Γ(A′

i, A
∗
−i)) > NE(Γ(A∗

i , A
∗
−i)), which implies in the PCH-LSG LΓ, agent i

would be able to improve the payoff moving from A∗
i to A′

i. However, by our assumption A∗ is the pure strategy NE of LΓ,
hence no such deviations are incentivised - a contradiction. Hence µ∗ ≥ NE(Γ(A′

i, A
∗
−i) for all

B.4. Proof of Theorem 4.1

First, we will show that the payoff matrix learned is a permutation of the true payoff matrix, and then find out why L2 or L3

payoffs will be properly learned. Observe, that since, pi’s are arranged in descending order, their values will be identified
consistently, that is if given x′

1, X ′
2 = 0 occurs with a higher payoff, it will occur with a higher payoff, even when X2

changes. Thus the algorithm can correctly distinguish between the different values of X ′
2. However, the values cannot be

identified, hence we will be able to learn only upto permutation of the values.

14



Causal Game Theory

Player 1
Player 2

X2 = B X2 = F

X1 = B 2, 1 0, 0

X1 = F 0, 0 1, 2

Figure 5: Payoff matrix for Prisoner’s Dilemma with L2

actions

Player 1
Player 2

L1 X2 = B X2 = F

L1 1.5, 1.5 1, 0.5 0.5, 1

X1 = B 1, 0.5 2, 1 0, 0

X1 = F 0.5, 1 0, 0 1, 2

Figure 6: Payoff matrix for Prisoner’s Dilemma with L1

and L2 actions

X1 X2

Y1 Y2

C

Figure 7: Causal Diagram for Battle of Sexes (Scenario 1)

X1 X2

Y1 Y2

Figure 8: Causal Diagram for Battle of Sexes (Scenario 2)

Now, L3 action space consists of all the functions from natural intuition X ′
2 to X2. Hence the values of X ′

2 are essentially
irrelevant and we can learn the whole table upto a permutation of the action of the second player. Since NE of Player 1 and
the NE payoff remains same even with the permutation of the action space, we have that NE(Γ(A3

1, A
3
1)) will be properly

learned.

Now, L2 action spaces are constant functions and remain invariant to permutations of X ′
2. Hence, in a similar manner

NE(Γ(A2
1,A2

2)) will be correctly learned, as will NE(Γ(A3
1,A2

2)) and NE(Γ(A2
1,A3

2)), and so on. By our assumption,
the NE strategy of the PCH-LSG for the other agent spans over A2

2 and A3
2. Hence, the NE strategy of PCH-LSG lies on the

space {A1
1,A2

1,A1
1 ∪ A2

1,A3
1} × {A2

2,A3
2}. Since, we are able to learn NE corresponding to each of these policies, we can

correctly identify the CNE strategy.

C. Causal Games and Information
In this section, we show how the notion of information is orthogonal to the discussion and formalization within CNFG
(Def. 2.10). This means that the framework discussed in the body can be immediately extended to include sources of
information to the agent. First, we will look at the first an example with a correlation signal and how a CNFG will be
different from it. Next, we will analyze an an example with a Bayesian Game to show how information can be incorporated
in CNFG in a natural manner.

Example C.1 (Battle of Sexes). A couple of agents want to spend time together in the evening. Agent 1 wants to go to the
Ballet, while Agent 2 wants to go to a Football match. Their payoffs based on whether they are going to Ballet or Football
are given in Fig. 5. The symmetric Nash equilibrium for this game is when both agents go to their preferred place two-third
of the times and the joint payoff of such a strategy is (0.75, 0.75). Now, consider two scenarios: the first is a classical
example of correlated equilibrium.

Scenario 1 (correlated equilibrium): Suppose the players have access to a coin and observe the outcome of the coin toss,
{H,T}, following the strategy {H → B, T → F}. That is, if the coin shows heads, they will go to the ballet, and if it
shows tails, they will go to watch the football match. Note that this is an equilibrium strategy, as neither of them has any
incentive to deviate from it. The causal diagram for the game, along with the agents’ policy, is shown in Fig. 7.

Scenario 2: Now, suppose they are not able to coordinate using such a correlation signal. However, some external factors,
such as advertisements about the success of a new ballet, may influence their intuitive or natural decisions to go to the ballet
or the football match. Suppose these external factors are incorporated into an unobserved variable U that influences the
decisions X1 and X2 in the natural regime, or Layer 1 of PCH. Assume that the influence is such that either both of them
decide to go to the ballet or both decide to go to the football match with equal probability. The agents, instead of having two
actions, can now choose among three actions: follow their natural intuition (denoted by a0), go to the ballet (B), or go to
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T

P S

Y

UT

UP

Figure 9: Causal Diagram for Sheriff’s Dilemma with L1

policy space.

T

P S

Y

πP πS

Figure 10: Causal Diagram for Sheriff’s Dilemma with L2

policy space.

the football match (F ). The causal diagram is shown in Fig. 8, and the payoffs are shown in Fig. 6. As we can see, following
their natural intuition in this case is a symmetric Nash equilibrium.

Scenarios 1 and 2 of Ex. C.1 demonstrate some important distinctions between the information structure studied in standard
game theory and the concept of intuition in Layer 1 of PCH.

1. Intuition is not trivially observed as information.

2. Intuition, being an instance of the action variable, has the same domain as the action space. This is not true for an
information structure.

3. In the example above, intuition did not require explicit coordination, unlike in Scenario 1, where the agents needed to
decide what Heads and Tails represent.

Intuition and information are, in fact, distinct concepts, and both can be present in a multi-agent system without being at
odds with each other. A richer representation of a game that allows both information for the agents and stochasticity of the
rewards is a Bayesian game, as elaborated next.

Definition C.2 (Bayesian Games). A Bayesian Game is a tuple ⟨N,A,Θ, p, u⟩, where

• N is the set of n players indexed by i;

• A = A1 × . . .×An, where Ai is the action set available to player i;

• Θ = Θ1 × . . .×Θn where Θi is the type space for player i;

• p : Θ→ [0, 1] is a common prior over types

• u = (u1, . . . , un) where ui : A×Θ→ R is the utility function for player i

Causal Multi-Agent System can also contain state variables S, other than the action variables X and the outcome variables
Y. Suppose each agent can condition their decision on information available to them. Suppose agent i has access to Si.
For example, now a hard intervention for agent i would be a mapping g from DSi

to DXi
, that is Xi ← g(Si) instead of

Xi ← xi. This will be the L2 action space with information. Similarly, we can define the L3 action space for agent i as
the collection of mappings h from DSi

× DXi
to DXi

, that is Xi ← h(X′
i,Si). Thus information can be easily added

to Causal Games. In terms of increasing information structure, the Nash Equilibrium (NE), Correlated Equilibrium (CE)
and Bayesian Equilibrium (BE) are shown in Fig. 13. We have already seen causal extensions of two types of information
structure corresponding to NE and CE. Next we provide an example for a Bayesian Game.

Example C.3 (Causal Sheriff’s Dilemma). A police officer faces an armed suspect, and they must simultaneously decide
whether to shoot or not. The suspect could be either a criminal or a civilian, but the officer is unaware of the suspect’s true
identity. It is preferable for the suspect to shoot if they are a criminal and not to shoot if they are a civilian. However, in
hindsight, it is better for the officer to shoot if the suspect shoots, but in reality, they must act simultaneously.

The suspect’s status as a criminal and the likelihood of shooting are probabilistic. In addition, unobserved factors might
influence the officer’s assessment of the suspect and the suspect’s decision to shoot. For instance, a suspect’s background
might affect both their tendency to be a criminal and their behavior. A well-trained officer might be able to intuitively discern
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Police
Suspect

S = 1 S = 0

P = 1 0, 0 2,−2
P = 0 −2,−1 −1, 1

Figure 11: Payoff when suspect is criminal (T = 1).

Police
Suspect

S = 1 S = 0

P = 1 −3,−1 −1,−2
P = 0 −2,−1 0, 0

Figure 12: Payoff when suspect is civilian (T = 0).

these subtle cues and make a quick decision about whether to shoot. An untrained officer, on the other hand, may lack such
abilities. This leads to unobserved confounding between the identity of the suspect and the officer’s tendency to shoot.

The corresponding causal graph is shown in Fig. 9. In this graph, T represents the type of the suspect: T = 0 indicates a
civilian, and T = 1 indicates a criminal. The variable P captures the officer’s decision to shoot or not, while S denotes
whether the suspect chooses to shoot. Finally, Y1 and Y2 represent the utilities of the officer and the suspect, respectively.

Consider two scenarios, M1 and M2, which induce the same causal diagram. In M1, the officers are well-trained, while in
M2, they are not. In both scenarios, let adverse backgrounds be denoted by the variable UT = 1, with P (UT = 1) = 0.1.
Suppose the suspect is a criminal, that is, T = 1 if and only if they are from an adverse background. This background
may influence the suspect’s behavior, which in turn can influence the officer’s decision to shoot. In M1, the officer is
able to pick up on these non-verbal cues, and their probability of shooting is given by P (P = 1 | UT = 1) = 0.9 and
P (P = 0 | UT = 0) = 0.9. In the second scenario, M2, the officer almost always makes mistakes, and their probability of
shooting is given by P (P = UT ) = 0.1. The payoffs Y = Y1, Y2, as a function of P , T , and S, are shown in Tables 11
and 12.

Now, suppose congress wants to recommend, through a new law, whether the officer should shoot or not. They compute the
Bayesian Nash Equilibrium (BNE) of the game induced by the models and find that it is better if the officer does not shoot at
all. Thus, the expected payoff of the officer under the BNE is given by:

µBE = −2 · 0.1 = −0.2 (20)

However, if the law is not implemented, then in M1 and M2, the expected payoff of the policeman is respectively

µ1 = −0.11, µ2 = −0.99 (21)

Thus, µ2 < µBE < µ1. This indicates that, even though both SCMs induce the same Bayesian game, implementing the law
would be harmful in M1, while beneficial in M2.

A table summarizing the increasingly refined information structure assumed as input to the different notions of equilibria is
shown in Fig. 13.

D. Additional Examples and Discussion
D.1. SCM for Table 2

Consider the SCM with U = {U1, U2},X = {X1, X2} and Y = {Y1, Y2}. The domains of U1, U2, X1 and X2 are {0, 1}.
P (U1 = 0) = P (U2 = 0) = 0.5. X1 = U1 and X2 = U2. Y as a function of U1, U2, X1, X2 are shown in Table 6.

The action space available to Player 1 and Player 2 are A3 and A1 ∪ A2 respectively.

D.2. Assumptions for Alg. 2

For the algorithm to work, we will make the following assumptions. Assume that the learning is from the perspective of
Player 1.

Assumption D.1 (Identifiability of Mixture). Let Yx1,x2 | x′
1, x

′
2i ∼ ϕi, for i ∈ k, where ϕi is a distribution dependent on

x′
1, x1, x2 and k = |D(X)|. We assume that the distributions are such that their mean and weights are identifiable from
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Figure 13: Increasing complexity of information structure

X2 = 0 X2 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1

X1 = 0 U1 = 0 −2, 2 −2,−6 −2,−6 −2, 2
U1 = 1 2,−2 −4, 0 −4, 0 2,−2

X1 = 1 U1 = 0 2,−2 −4, 0 −4, 0 2,−2
U1 = 1 −2, 2 −2,−6 −2,−6 −2, 2

Table 6: Y1, Y2 as a function of U1, U2, X1, X2 for SCM in Table 2

their mixture upto a permutation of the i’s:
k∑

i=1

piϕi(x
′
1, x1, x2) (22)

or, the distributions are same for all i ∈ [k].

Next, we show some distributions and conditions that satisfy the above assumption.

Example D.2 (Deterministic Function). Consider the case when P (Yx1,x2
| x′

1, x
′
2) has all its mass on a single point. In

addition, assume that

E[Yx1,x2
| x′

1, x
′
2i] ̸= E[Yx1,x2

| x′
1, x

′
2j ]

for i ̸= j. Then, for each (x′
1, x1, x2) we will get k distinct values of Y, and we can map each (Yi, x

′
1, x1, x2) to a

particular i and pi = P (Yi | x′
1, x1, x2) for i ∈ [k].

Example D.3 (Gaussiam Mixtures). (Yakowitz & Spragins, 1968) showed that mixture of multi-variate Gaussians are
identifiable. Hence, we can get the mixing proportions and the mean of the Gaussians from the sufficient amount of data.

The next assumption ensures that Player 1 can correctly deduce the intuition of the other player from the observations.

Assumption D.4. For all assignments x′
2, x

′′
2 to the natural intuition of the second player P (x′

1, x
′
2) ̸= P (x′

1, x
′′
2).

Note that if P (x′
1, x

′
2) are sampled from a continuous distribution then the assumption is true almost surely.
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Figure 14: Frequencies of rewards observed for a particular tuple (x′
1, x1, x

′
2)

Figure 15: Probabilities of the rewards observed for a particular tuple (x′
1, x1, x

′
2)

D.3. Ctf-Nash Learning on Causal Prisoner’s Dilemma

This section shows the results of applying Ctf-Nash-Learning on Causal Prisoner’s Dilemma. The experiment was
carried out on 100K samples of (x′

1, x1, x2,y) when both agents were playing Ctf-RCT. The rewards were assumed to be
deterministic, that is, P (yx1,x2 | x′

1, x
′
2) has a point mass. Now, for each tuple (x′

1, x1, x2) the frequencies of y obtained
are shown in Fig. 14. From this frequency table, we can compute the probabilities as shown in Fig. 15. The learned payoff
matrix is shown in Table. 7. The code is available at https://anonymous.4open.science/r/CGT-ICML/.

Table 7: Payoff Matrix learned by Player 1 in Causal Prisoner’s Dilemma

X2 = X ′
2 do(X2 = 0) do(X2 = 1) X2 = 1−X ′

2

X1 = X ′
1 (−2.4428,−2.4450) (−1.2184,−2.6837) (−8.8923, 0.0000) (−7.6678,−0.2388)

do(X1 = 0) (−2.6828,−1.2345) (−0.9831,−0.9831) (−6.9321,−0.4901) (−5.2324,−0.2388)
do(X1 = 1) (0.0000,−8.8479) (−0.4753,−6.9509) (−1.9602,−1.8970) (−2.4354, 0.0000)
X1 = 1−X ′

1 (−0.2400,−7.6374) (−0.2400,−5.2502) (0.0000,−2.3872) (0.0000, 0.0000)
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