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Abstract
Reward shaping has been demonstrated to be an
effective technique for accelerating the learning
process of reinforcement learning (RL) agents.
While successful in empirical applications, the
design of a good shaping function is less well
understood in principle and thus often relies on
domain expertise and manual design. To over-
come this limitation, we propose a novel auto-
mated approach for designing reward functions
from offline data, possibly contaminated with the
unobserved confounding bias. We propose to use
causal state value upper bounds calculated from
offline datasets as a conservative optimistic esti-
mation of the optimal state value, which is then
used as state potentials in Potential-Based Re-
ward Shaping (PBRS). When applying our shap-
ing function to a model-free learner based on UCB
principles, we show that it enjoys a better gap-
dependent regret bound than the learner without
shaping. To the best of our knowledge, this is
the first gap-dependent regret bound for PBRS
in model-free learning with online exploration.
Simulations support the theoretical findings.

1. Introduction
Reward shaping is an effective technique for improving
sample efficiency in reinforcement learning. It augments
the original environment reward with extra learning sig-
nals such that the learner is guided towards high-rewarding
states in the environment. Though if not designed properly,
there is a risk of misleading the agent towards suboptimal
policies (Saksida et al., 1997; Randløv & Alstrøm, 1998).
Potential Based Reward Shaping (PBRS, Ng et al. (1999))
solves this problem by constructing the shaping functions
as the difference between state potentials. In this way, the
set of optimal policies after reward shaping is guaranteed to
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be unchanged compared with the one without shaping. It
has been followed in many practical applications since then.

The core of PBRS is the design of potential functions, which
denote the potential of a state or how good a state is. First,
people generally rely on domain expertise to compose such
potential functions. This dependence on experts’ knowl-
edge could make designing potential functions expensive
and time-consuming. One may even argue these extensive
human efforts are against the promise of AI that domain ex-
perts should be free from handcrafting solutions. Moreover,
this designing process endures risks of misspecification due
to human biases, which in turn could slow down the training
substantially or lead to erroneous agents (Ng et al., 1999;
Randløv & Alstrøm, 1998; Pan et al., 2022). An ongoing
line of research exists to simultaneously automate the pro-
cess of learning the shaping function and training the online
agent (Pathak et al., 2017; Yuan et al., 2023; Raileanu &
Rocktäschel, 2020; Devidze et al., 2022; Zou et al., 2019;
Ma et al., 2024). However, these methods involve non-
trivial optimization procedures relying on prior parametric
knowledge over the potential function. The risks of mis-
specification persist. In other words, designing potential
functions is still a significant obstacle when applying PBRS.

An alternative strategy is to learn the shaping function from
previous offline data, possibly collected by different be-
havior policies or observing human operators interacting
with the environment (Brys et al., 2015; Mezghani et al.,
2022; Zhang et al., 2024). In their seminal work, Ng et al.
(1999) noted that the optimal state value is a good candidate
for potential functions, characterizing the “state potentials”
in the underlying environment. In the field of reinforce-
ment learning, the problem of evaluating optimal state value
functions from past offline data has been studied under
the rubrics of off-policy learning or batch learning (Sutton,
2018; Levine et al., 2020). Several algorithms and methods
have been proposed, including Q-learning (Watkins, 1989;
Watkins & Dayan, 1992), importance sampling (Swami-
nathan & Joachims, 2015; Jiang & Li, 2016), and temporal
difference (Precup et al., 2000; Munos et al., 2016). These
algorithms rely on the critical assumption that there is no
unobserved confounding (NUC) in the offline data (Murphy,
2003; 2005). One might be able to enforce this assumption
by deliberately controlling the behavior policies generat-
ing the data. However, in many practical applications, the
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NUC condition can be difficult to enforce and, consequently,
does not necessarily hold. In these cases, directly apply-
ing standard off-policy learning could introduce bias in the
estimation, leading to misspecified shaping functions. For
example, when some input states to the behavior policy are
not fully observed, these states could become unobserved
confounders, introducing spurious correlations in the of-
fline data. When NUC is violated, the effects of candidate
policies are generally not identifiable, i.e., the model as-
sumptions are insufficient to uniquely determine the value
function from the offline data, regardless of the sample size
(Pearl, 2009; Zhang & Bareinboim, 2019).

This paper addresses the challenges of confounding bias
in designing potential functions for reward shaping. We
study the problem of constructing reward-shaping func-
tions automatically via confounded offline data from a
causal perspective. We focus on the environment of Con-
founded Markov Decision Processes (CMDPs) where unob-
served confounders generally exist at each stage of decision-
making Zhang & Bareinboim (2022); Tennenholtz et al.
(2020). Under CMDPs, we demonstrate the difficulties of
manually designing proper reward shaping functions with
the presence of unobserved confounding, due to the mis-
match in the observed input states. Then we show how
one can extrapolate informative shaping functions from con-
founded offline data using partial causal identification tech-
niques (Manski, 1989). Finally, we develop novel online
reinforcement learning algorithms that can leverage the de-
rived shaping functions to improve the learning performance
in terms of the sample complexity. More specifically, our
contributions are summarized as follows:

• We propose the first theoretically justified (Thm. 3.1),
data-driven method (Algo. 2) for learning reward shap-
ing functions from confounded offline data.

• We introduce a model-free UCB algorithm that can
improve performance by levering confounded offline
data using the derived shaping functions (Algo. 1).

• We derive a novel gap-dependent regret bound for the
proposed UCB algorithm. Our analysis reveals how
and under what condition (Def. 4.1) the derived shap-
ing functions affect the learning efficiency of future
online learners (Thm. 4.5).

Due to limited space, related work, experiment details and
all the proof are provided in Apps. A, D and H, respectively.

Notations. We will consistently use capital letters (V ) to
denote random variables, lowercase letters (v) for their val-
ues, and cursive V to denote the their domains. Fix indices
i, j ∈ N. We use bold capital letters (V ) to denote a set of
random variables and let |V | denote its cardinality of set V .
Finally, 1Z=z is an indicator function that returns 1 if event
Z = z holds true; otherwise, it returns 0.

2. Challenges of Designing Reward Shaping in
the Face of Unobserved Confounders

We will focus on a sequential decision-making setting in the
Markov Decision Process (MDP, Puterman (1994)) where
the agent intervenes on a sequence of actions X1, . . . , XH

in order to optimize the cumulative return over reward sig-
nals Y1, . . . , YH ; H ∈ N is a finite horizon.

Standard MDP formalism focuses on the perspective of
the learners who could actively intervene in the environ-
ment. Consequently, the data collected from randomized
experiments is from the contamination of unobserved con-
founding bias and is generally assumed away in the model.
However, when considering offline data collected by passive
observation, the learner may not necessarily have deliberate
control over the behavioral policy generating the data. Con-
sequently, this could lead to confounding bias in various
decision-making tasks, including off-policy learning (Kallus
& Zhou, 2018; Lu et al., 2023; Zhang & Bareinboim, 2024),
and imitation learning (Zhang et al., 2020; Kumor et al.,
2021; Ruan et al., 2024). In this paper, we will consider an
extended family of MDPs explicitly modeling the presence
of unobserved confounders when generating offline data.

Definition 2.1. A Confounded Markov Decision Process
(CMDP)M is a tuple of ⟨S,X ,Y,U , H,F,P⟩ where,

• S,X ,Y are, respectively, the space of observed states,
actions, and rewards;

• U is the space of unobserved exogenous noise;
• H ∈ N is a finite horizon;
• F is a set consisting of the transition function τh :
S ×X × U 7→ S , behavioral policy βh : S × U 7→ X ,
and reward function rh : S × X × U 7→ Y for every
time step h = 1, . . . ,H;

• P is a set of distributions Ph over the unobserved do-
main U for every time step h = 1, . . . ,H .

Consider a demonstrator agent interacting with a CMDP. For
every time step h = 1, . . . ,H , the nature draws an exoge-
nous noise Uh from the distribution P (U); the demonstrator
performs an action Xh ← βh(Sh, Uh), receives a subse-
quent reward Yh ← rh(Sh, Xh, Uh), and moves to the next
state Sh+1 ← τh(Sh, Xh, Uh). The observed trajectories of
the demonstrator (from the learner’s perspective) are thus
summarized as the observational distribution P (X̄, S̄, Ȳ ).1

In the data-generating process described above, for every
time step t, the exogenous noise Uh becomes an unobserved
confounder affecting the action Xh, reward Yh, and next
state Sh+1 simultaneously. Therefore, CMDP is also re-
ferred to MDP with Unobserved Confounders (MDPUC,
Zhang & Bareinboim (2022)) and is a subclass of Con-

1We will consistently use X̄, S̄, Ȳ to represent sequences
{X1, . . . , XH}, {S1, . . . , SH} and {Y1, . . . , YH}
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Figure 1. (a) Causal diagram of the CMDP modeling the shaping function designing process; (b) Causal diagram of the CMDP modeling
the online learning process under policy do(π).

(a) Falling to walk. (b) Target task.

Figure 2. Walking Robot Example.

founded Partially Observed MDP (Shi et al., 2022; Miao
et al., 2022; Bennett & Kallus, 2024) where Markov prop-
erty holds. The following example, inspired by human walk-
ing dynamics (O’Connor & Kuo, 2009; Wang & Srinivasan,
2014), demonstrates an instance of CMDP.

Example 1 (Walking Robot). Consider a scenario where a
robot learns to walk across a hallway. The agent can take
two actions, small-step and big-step, denoted as
Xh = 0 and Xh = 1, respectively. Whether the agent can
move forward (Lh+1) depends on both the step size, Xh,
and the current body stability status, Fh. It’s defined as
Lh+1 ← Lh +1[(¬Fh ∧ (Xh = Uh))∨ (Fh ∧¬Xh)]. The
body stability is modeled as Fh+1 ← ¬Xh if the body is
in stable status Fh = 1 or Fh+1 ← ¬Xh ⊕ Uh if it is not
stable Fh = 0 and needs to adjust step size accordingly.
The required step size to stay stable is modeled as a uniform
random noise Uh. The agent receives a reward Yh = 1 if it
reaches the goal location or it moves forward. It receives a
reward Yh = −1 if it cannot stabilize the body accordingly.
Formally, Yh ← 1 if Lh+1 = G otherwise Yh ← 1[(¬Fh ∧
Xh = Uh) ∨ (Fh ∧ ¬Xh)]− 1[¬Fh ∧Xh ⊕ Uh].

In this example, body stability Fh affects whether the robot
can step forward. We will consider offline data generated
by two demonstrators. When the robot is currently unstable
Fh = 0, a competent demonstrator following a behavioral
policy β

(1)
h : Xh ← Uh takes a step in the size of exactly

the latent noise Uh. As a result, it will always transit from
being unstable Fh = 0 to a stable status Fh+1 = ¬Xh ⊕
Uh = ¬Uh ⊕ Uh = 1. On the contrary, an incompetent
demonstrator following β

(2)
X : Xh ← ¬Uh will always

attempt to remain unstable Fh+1 = ¬Xh ⊕ Uh = Uh ⊕
Uh = 0 even when the opposite is preferable. ■

Fig. 1a shows the graphical representation (i.e., causal di-
agram) describing the generative process generating the

offline data in CMDPs. More specifically, nodes represent
observed variables Xh, Sh, Yh, and arrows represent the
functional relationships βh, τh, rh among them. The ex-
ogenous noise Uh is often not explicitly shown. However,
bi-directed arrows Xh ↔ Yh and Xh ↔ Sh+1 indicate the
presence of an unobserved confounder (UC) Uh affecting
Xh, Yh and Sh+1, simultaneously. These bi-directed arrows
characterize the spurious correlations among action Xh, re-
ward Yh, and state Sh+1 in the offline data, violating the
NUC condition. Such violations could lead to challenges
in evaluating value function and reward shaping, which we
will discuss in the next section.

2.1. Potential-Based Reward Shaping

A policy π in a CMDPM is a sequence of decision rules
πh : S 7→ X , for every step h = 1, . . . ,H , mapping from
state to action. Similarly, πh(xh | sh) is a stochastic policy
mapping from state space S to a distribution over action
spaceX . An intervention do(π) is an operation that replaces
the behavioral policy βh in modelM with the decision rule
πh for every step h. LetMπ be the submodel induced by
intervention do(π). Fig. 1b shows the graphical represen-
tation of the data generating process in the submodelMπ;
bi-directed arrows are now removed.

The interventional distribution Pπ(X̄, S̄, Ȳ ) is defined as
the joint distribution over observed variables inMπ , i.e.,

Pπ(x̄, s̄, ȳ) = P (s1)

H∏
h=1

(
πh(xh | sh)

Th(sh, xh, sh+1)Rh(sh, xh, yh)

) (1)

where the transition distribution Th and the reward distribu-
tionRh are given by, for h = 1, . . . ,H ,

Th(s, x, s′) =
∫
u

1s′=τh(s,x,u)Ph(u) (2)

Rh(s, x, y) =

∫
u

1y=rh(s,x,u)Ph(u) (3)

For convenience, we write the reward functionRh(s, x) as
the expected value

∑
y yRh(s, x, y).
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For reinforcement learning tasks, the agent’s goal is to learn
an optimal policy π∗ maximizing the cumulative reward
in CMDP M, i.e., π∗ = argmaxπ Eπ

[∑H
h=1 Yh

]
. In

analysis, we also evaluate the state value function V π
h (s) =

Eπ [
∑

t=h Yt | Sh = s] following a policy π for every step
h = 1, . . . ,H . A state-action value function is defined as
Qπ

h(s, x) = Eπ [
∑

t=h Yt | Sh = s,Xh = x].

Reward shaping is a popular line of techniques for incorpo-
rating domain knowledge during policy learning. Common
approaches such as Potential-Based Reward Shaping (PBRS,
Ng et al. (1999)) add supplemental signals to the reward
function so that it would be easier to learn in future down-
stream tasks without affecting the optimality of the learned
policy. The following proposition establishes the validity of
PBRS in CMDP with a finite horizon.

Proposition 2.2. For a CMDP M, let M′ be a CMDP
obtained fromM by replacing the reward function with the
following, for every time step h = 1, . . . ,H ,

r′h := rh + ϕh(Sh+1)− ϕh(Sh), (4)

where rh is the reward function inM; ϕh(·) : S 7→ R is a
real valued potential function and ϕH(s) = 0. Then,

argmax
π

Eπ

[∑
h

Yh;M

]
= argmax

π
Eπ

[∑
h

Yh;M′

]
.

That is, every optimal policy inM will also be an optimal
policy inM′, and vice versa.

In other words, PBRS modifies the reward function in the
system to encourage the learning agent to visit states with
high potential in future return. At the same time, the agent is
penalized for visiting states with low potential. More impor-
tantly, optimal policies remain invariant across this shaping
process, i.e., every optimal policy in the after-shaping model
M′ is guaranteed to be optimal in the original modelM.

Designing the potential function is a central problem when
applying PBRS. The optimal state value functions V ∗

h (s) =
V π∗

h (s) (Ng et al., 1999) are a good candidate for measuring
state potential. When the NUC condition holds, it is possible
to compute such optimal value functions using standard off-
policy methods (Sutton, 2018). However, when unobserved
confounding generally exists, evaluating value functions
from confounded data could introduce bias in the shaping
process, promoting states with low potential. The following
example demonstrates such challenges.

Example 2 (Confounded Potential Functions). Consider
again the Walking Robot in Example 1. Computing the
optimal optimal state function V ∗

h (Lh, Fh) from the ground-
truth modelM gives, for every step h = 1, . . . ,H ,

V ∗
h (Lh = 0, Fh = 0) = 5.0, V ∗

h (Lh = 0, Fh = 1) = 5.5

If one sets the potential function ϕh := V ∗
h , the reward shap-

ing will add the supplemental signal in favor of transitioning
form an unstable state Fh = 0 to a stable state Fh+1 = 1,

ϕh(Lh+1 = 0, Fh+1 = 1)− ϕh(Lh = 0, Fh = 0) = 0.5

On the other hand, if one applies standard off-policy meth-
ods using offline data generated by the competent behavioral
policy β

(1)
h , it leads to the following value function,

V
(1)
h (Lh = 0, Fh = 0) = 10, V

(1)
h (Lh = 0, Fh = 1) = 10

This seems to suggest that being stable does not improve
the robot’s performance. If we set the potential function
ϕh := V

(1)
h , the reward shaping will not encourage the robot

to be stable. More interesting, if we compute the value
function from offline data generated by the incompetent
behavioral policy β

(2)
h , we have the following

V
(2)
h (Lh = 0, Fh = 0) = −23, V (2)

h (Lh = 0, Fh = 1) = −42

Being stable Fh = 1 appears to lead to lower future returns.
If one sets the potential function ϕh := V

(2)
h , the reward

shaping will even penalize the robot to transit from being un-
stable Fh = 0 to being stable Fh+1 = 1, which contradicts
the underlying system dynamics. ■

The above example shows that when unobserved con-
founders generally exist, naively computing potential func-
tions from offline data could lead to biased evaluation. Shap-
ing reward with a biased potential function could lead to
sub-optimal performance, encouraging undesirable behav-
iors. Indeed, when the NUC does not hold, the transition
function T and reward functionR are generally not uniquely
discernible from the offline data, regardless of the sample
size (Pearl, 2009). For the remainder of this paper, we will
introduce a robust procedure to design potential functions
from confounded offline data, and how to leverage these
potential functions for future online learning tasks.

3. Robust Potential Functions from
Confounded Offline Data

Our goal is to upper bound the optimal state value for on-
line interventional agents, the ones that cannot utilize con-
founders, from potentially confounded offline datasets. In-
stead of attempting to identify the underlying reward and
transition distribution under confounded datasets, we bound
them for every s, x, s′, h ∈ S × X × S × [H] following
similar partial identification strategies in (Manski, 1989),

Th(s, x, s′) ≤ T̃h(s, x, s
′)Ph(x|s) + Ph(¬x|s) (5)

Rh(s, x) ≤ R̃h(s, x)Ph(x|s) + bPh(¬x|s) (6)

where R̃h(s, x) = E[Yh|Sh = s,Xh = x], T̃h(s, x, s′) =
Ph(Sh+1 = s′|Sh = s,Xh = x) and Ph(x|s) = Ph(Xh =
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x|Sh = s) are all empirical estimations from the offline
dataset. b is a known upper bound on the reward signal,
Yh ≤ b. Similar to the bounding approach developed in
(Zhang & Bareinboim, 2024), we apply the above bounds to
the Bellman Optimal Equation (Sutton & Barto, 2018) and
arrive at the following Causal Bellman Optimal Equation
that calculates the optimal state value optimistically from
the confounded offline datasets.

Theorem 3.1 (Causal Bellman Optimal Equation). For a
CMDP environment M with reward Yh ≤ b, b ∈ R, the
optimal value of interventional policies, V ∗

h (s),∀s ∈ S, is
upper bounded by V ∗

h (s) ≤ V h(s) satisfying the Causal
Bellman Optimality Equation, for every step h = 1, . . . ,H ,

V h(s) =max
x

[
Ph(x|s)

(
R̃h(s, x) + ET̃h

[V h+1(s
′)]
)

+ Ph(¬x|s)
(
b+max

s′
V h+1(s

′)
)]

(7)

and V H+1(s) = 0 for all state s ∈ S.

Compared with the original Bellman Optimal Equation,
ours accounts for the uncertainty brought by confounders
in the offline dataset via an extra term, b+maxs′ V h+1(s

′).
This represents the best rewards that the agent could have
achieved from those “unselected” actions, i.e., Ph(¬x|s).
With the Causal Bellman Optimal Equation, we can robustly
upper bound the optimal state values from a confounded
offline dataset generated by CMDPM.

When multiple offline datasets from different behavioral
policies are available, each of them provides a unique per-
spective on the true underlying CMDP without necessarily
overlapping state space coverage. Since the upper bounds
calculated for each state from different datasets are all valid
according to Thm. 3.1, taking the minimum yields the tight-
est estimation for the optimal state value.

Corollary 3.2 (Unified Causal Optimal Upper Bound). Let
the causal optimal value upper bound estimated from offline
datasets D(i) be V

(i)
, i = 1, 2, ..., N , the unified causal op-

timal upper bound is defined as V h(s) = min
s∈D(i)

h

V
(i)

h (s)

where s ∈ D(i)
h means state s is visited at step h inD(i) and

satisfies V ∗
h (s) ≤ V h(s), for all s.

In actual computation, to avoid over-estimation brought
by bootstrapping on the highest value state, we clip the
optimistic bonus for the optimal transitions and calculate
the value update as follows,

Q
(i)

h (s, x) = P
(i)
h (¬x|s)

(
b+min

{
max
s∗

V
(i)
h+1(s

∗), ωh

})
+ P

(i)
h (x|s)

(
R̃

(i)
h (s, x) +

∑
s′

T̃
(i)
h (s, x, s′)V

(i)
h+1(s

′)

)
(8)

where ωh = (H − h)b is the maximum possible next state
value an optimistic transition should receive in an episodic

CMDP with horizon H . For state-action pairs that are not
visited in the dataset, we will skip those state-action en-
tries directly.2 To summarize, the overall algorithmic pro-
cedure to calculate causal bounds runs as standard value
iteration (Sutton, 2018) except that we update the state val-
ues backwards in time, i.e., from V h+1 to V h by Eq. (8),
skip unvisited state-action pairs and take the minimum ac-
cording to Corol. 3.2 at last. Algo. 2 in App. C shows the
full pseudo-code for approximating the optimal value upper
bound from offline datasets. Now we can calculate the pro-
posed state potentials for the Walking Robot problem and
verify if it upper bounds the true optimal state values.

Example 3 (Potential Functions Calculated for Robot Walk-
ing). Recall that running value iteration in the interventional
policy space, we have the optimal state value for Example 1,

V ∗
h (Lh = 0, Fh = 0) = 5.0, V ∗

h (Lh = 0, Fh = 1) = 5.5.

As we have shown, directly calculating state value from
offline datasets cannot yield informative potential functions.
While with Corol. 3.2, we can extract the following potential
functions from the same offline datasets,

ϕh(Lh = 0, Fh = 0) = 9.0, ϕh(Lh = 0, Fh = 1) = 9.5,

which perfectly upper bound the optimal state values and
encourages the agent to stay in stable status. From the
interventional policy space optimal value and our potential
functions, we see that for interventional agents, stability is
always preferred, which can be achieved via taking small
steps (Xt = 0) every time. This also aligns well with the
intuition that people glide with small steps when walking
on slippery surfaces. See App. B for the the full confounded
state values, optimal values and calculated bounds. ■

4. Efficient Online Learning with PBRS
In this section, we will apply the derived potential function
from the confounded offline data to improve the agent’s
performance in an online learning task. For a CMDPM,
let ϕh, h = 1, . . . ,H , be the potential functions derived
in the previous section. We first apply reward shaping and
obtain an augmented CMDPM′ following the procedure
described in Prop. 2.2.3

In the augmented CMDP M′, an online learning agent
attempts to learn an optimal policy π∗ by performing in-
terventions for repeated episodes k = 1, . . . ,K. For every
episode k, the agent picks a policy πk, performs intervention
do(πk), and receives subsequent outcomes. The cumulative
regret after K > 0 episodes of interventions in the augment

2For a state not visited in any of the offline datasets, we can
simply set the bound optimistically as V h(s) = (H − h)b.

3This can be done by adding supplemental signal ϕh(Sh+1)−
ϕh(Sh) to every observed reward Yt.
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CMDPM′ is defined as the sum of the gap between the
optimal value function V ∗

1 following an optimal π∗ and the
value function V πk

1 induced by policy πk. Formally,

EM′ [Regret(K)] = EM′

[
K∑

k=1

V ∗
1 (S

k
1 )− V πk

1 (Sk
1 )

]

A desirable property for the agent is to achieve a sublinear
regret EM′ [Regret(K)] = o(K).4 This means that it is
able to converge to an optimal policy π∗.

We propose an online learning algorithm based on a model-
free learner, Q-UCB (Jin et al., 2018), to leverage the po-
tential function ϕ extrapolated from offline data. Details of
the algorithm is described in Algo. 1. Compared with the
original Q-UCB, we make a few modifications for Q-UCB
to work with PBRS: (1) Zero initializing the Q-values; (2)
Using potential function dependent UCB bonus and value
clipping; and finally, (3) Incorporating shaped reward during
learning updates. See also App. F for the pseudo-code of
the vanilla Q-UCB. As in the original Q-UCB, we have visi-
tation counter, Nh(sh, xh), for the state-action pair (sh, xh)
at step h. Note that the UCB bonus uses t as its denomi-
nator under the square root, which is the visitation count
of (sh, xh) at the beginning of episode k. The counter is
updated after assigning t, Nh(sh, xh) ← Nh(sh, xh) + 1.
We use the same adaptive learning rate as αt =

H+1
H+t and

define ι = log (|S||X |T/p) where p′ = 2p is the probabil-
ity of the event when the difference between learned and the
optimal Q-values is bounded.

As we shall see later in experiments (Fig. 4), using con-
founded values in Q-UCB Shaping usually impairs the train-
ing efficiency rather than helping. While using potential
functions that upper bound the optimal state values, learning
efficiency is significantly boosted. This observation also res-
onates with the optimism in the face of uncertainty (OFU)
heuristics in reinforcement learning (Gupta et al., 2022;
Brafman & Tennenholtz, 2002; Kearns & Singh, 2002). We
formalize this observation as the following condition.

Definition 4.1 (Conservative Optimism). The learned po-
tential function is conservatively optimistic if it satisfies,
V ∗
h (s) ≤ ϕh(s) ≤ H for all S, h ∈ S × [H] where

V ∗
h (s) = max

π∈Π
EMπ

[
H∑

h′=h

Yh′ | s

]
. (9)

This condition ensures that the potential function upper
bounds the optimal state value while being informative by
not exceeding H (assuming Yh ≤ 1).

Next, we will show that this is indeed a sufficient condition
for guaranteed sample efficiency improvement under reward

4A function f(n) = o(g(n)) if for all c > 0, there exists
k > 0 such that f(n) < cg(n) for all n ≥ k.

Algorithm 1 Q-UCB Shaping

1: Input: Potential function ϕh(s),∀s, h. Const. c > 0.
2: Q1

h(s, x) = 0, Nh(s, x) = 0,∀(s, x, h) ∈ S×X × [H].
3: Calculate maximum potential, ϕm = maxs ϕ(s).
4: for k = 1 to K do
5: Observe initial state s1.
6: for h = 1 to H do
7: Take action xh = argmaxx Q

k
h(sh, x).

8: Observe sh+1, yh.
9: Update visitation counter and UCB bonus, t =

Nh(sh, xh)← Nh(sh, xh)+1, bt = c
√

Hϕ2
mι/t

10: Calculate shaped reward,
y′h = yh + ϕh+1(sh+1)− ϕh(sh).

11: Update Q-value,
Qk+1

h (sh, xh) = (1 − αt)Q
k
h(sh, xh) + αt(y

′
h +

V k
h+1(sh+1) + bt).

12: Update value function,
V k+1
h (sh) = min{ϕh(sh),maxx Q

k+1
h (sh, x)}.

13: end for
14: end for

shaping. We start with writing the learned Q-value under
shaping at step h episode k following Algo. 1 as follows,

Qk
h(s, x) =

t∑
i=1

αi
t

(
yh − ϕh(s) + (P̂ki

h V ki

h+1 + P̂ki

h ϕh+1)(s, x) + bi

)
,

where we use P̂ki

h to denote the empirical transition of
episode ki. That is, for the value of a function mapping
from state space to real numbers, f : S 7→ R,its value given
the next state s′ in episode ki as input is denoted as, f(s′) =
(P̂ki

h f)(s, x). Similarly, we write the expected value of such
function f over the transitions of an online CMDP under re-
ward shaping,M′,as (Phf)(s, x) = EM′

π
[f(s′)|s, x]. αi

t is
the cumulative learning rates defined as α0

t = Πt
j=1(1−αj)

and αi
t = αiΠ

t
j=i+1(1 − αj). Note that we also assume

deterministic reward functions for notation wise simplic-
ity (Jin et al., 2018). With the notations above, we bound
the difference between the learned Q-value and the optimal
Q-value with high probability in both direction.

Lemma 4.2 (Bounded Differences Between Qk
h and

Q∗
h). With probability at least 1 − 2p, the difference be-

tween the learned Q-value at the beginning of episode
k and step h and the optimal Q-value can be bounded
as 0 ≤ Qk

h(s, x) − Q∗
h(s, x) ≤ α0

t (−Q∗
h(s, x)) +∑t

i=1 α
i
t

[
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x)

]
+ 3bt where bt is

the UCB bonus as in Algo. 1.

The final expected regret bound can be built upon this
bounded Q-value difference via a gap-dependent decom-
position. We can then bridge this gap dependent regret de-
composition with the difference between learned Q-values
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and optimal Q-values on non-optimal actions based on the
fact that Qk

h(s, x)−Q∗
h(s, x) ≥ ∆h(s, x) (Lem. H.7),

E [Regret(K)] = EM′

[
K∑

k=1

H∑
h=1

∆h(s
k
h, x

k
h)

]

≤ (1− 2p)

H∑
h=1

K∑
k=1

(
Qk

h(s
k
h, x

k
h)−Q∗

h(s
k
h, x

k
h)
)
+ 2pTH.

Utilizing the function clip [x|δ] = x · 1[x ≥ δ], x, δ ∈
R introduced by Simchowitz & Jamieson (2019) and its
properties (Lem. G.2, Lem. G.3), we can further write the
difference between learned Q-values and optimal Q-values
as a recursion,

Qk
h(s

k
h, x

k
h)−Q∗

h(s
k
h, x

k
h) ≤ clip

[
3bt

∣∣∣∣∆(skh, x
k
h)

2H

]
+ (1 +

1

H
)

t∑
i=1

αi
t

[
(Qki

h+1 −Q∗
h+1)(s

ki

h+1, x
ki

h+1)
]
,

where we unify the optimality gaps of each state action
pairs across time steps via ∆(s, x) = minh ∆h(s, x) =
minh V

∗
h (s)−Q∗

h(s, x). Though we can already solve the
recursion and calculate the regret based on the property of
the clip(·) function (Lem. G.3), a direct summation cannot
reveal the benefits of reward shaping to the online learner.
Inspired by Gupta et al. (2022), we denote the set of state-
action pairs that are far from being even the second best
choices as pseudo-suboptimal state-action pairs based on
the minimum optimal gap, ∆(s, x).

Definition 4.3 (Pseudo-Suboptimal State-Action Pairs). We
define the set of pseudo-suboptimal state-action pairs as,

Sub∆ ={(s, x) ∈ S × X | ∃h, δh(s, x) ≤ V ∗
h (s)}, (10)

where δh(s, x) = y−ϕh(s)+2E[ϕh+1(s
′)|s, x]+∆(s, x).

With this set of pseudo-suboptimal state-action pairs, we
show that the total number of visits made to such pairs
during training can be bounded, contributing to a reduction
on our final regret bound in Thm. 4.5.

Lemma 4.4 (Bounded Number of Visits to Sub∆). The
number of visits to (s, x) ∈ Sub∆, t = Nk

h (s, x), is

bounded by, t ≤ 16c2Hϕ2
mι

∆2(s,x) .

By treating the summation of clipped terms in the regret
differently with respect to whether the state action pairs
belong to the set Sub∆ or not, we arrive at a two-part regret
bound that both demonstrates the efficiency gain of reward
shaping and subsumes prior result on the gap-dependent
regret of Q-UCB (Yang et al., 2021).

Theorem 4.5 (Regret Bound of Algo. 1). Given a po-
tential function ϕh(·), with its maximum value defined as

ϕm = maxs,h ϕh(s), after running algorithm Algo. 1 for
K episodes of length H , the expected regret is bounded by,

O

 ∑
s,x∈Sub∆

H5 log (SAT )

∆(s, x)
+

∑
s,x/∈Sub∆

H6 log (SAT )

∆(s, x)

 .

where T = KH is totally number of steps; Sub∆ is the
set of pseudo-suboptimal state action pairs and ∆(s, x) =
minh ∆h(s, x), for all h ∈ [H].

See App. H.3 for the full version regret bound and proof de-
tails. The first part of the regret is for the set of state-action
pairs on which offline learned shaping functions would cut
unnecessary over explorations resulting in an order of mag-
nitude better dependence on the horizon factor H . This
improved dependence on H even matches with state-of-the-
art Q-learning variant in the literature (Xu et al., 2021). The
second part corresponds to the set of state-action pairs that
our shaping function cannot decide when to stop exploring
during learning matching the gap-dependent regret bound
of the vanilla Q-UCB (Yang et al., 2021).

5. Experiments
In this section, we show simulation results verifying that:
(1) Q-UCB with our proposed shaping function enjoys bet-
ter sample efficiency , and (2) the policy learned by our
shaping pipeline at convergence is the optimal policy for an
interventional agent. The baselines include vanilla Q-UCB
(No Shaping), Q-UCB shaping with minimum state values
learned from offline datasets (Shaping + Min Beh. Value),
shaping with maximum offline state values (Shaping + Max
Beh. Value), and shaping with average offline state values
(Shaping + Avg Beh. Value). We test those algorithms in a
series of customized windy MiniGrid environments (Zhang
& Bareinboim, 2024; Chevalier-Boisvert et al., 2018).

We use tabular state-action representations and the rewards
are all deterministic in those environments. There is a step
penalty of −0.1, +0.2 for getting a coin, 0 for reaching
the goal, and −1 for touching the lava. The episode ends
immediately when either a goal/lava grid is reached or the
episode length hits the horizon limit. In windy grid worlds,
the state transition is determined by the resultant force of
both agent’s action and the wind direction if the agent tries
to move. For example, if the agent wants to move right
when there is a north wind (wind blowing from the north),
the agent will end up being in the lower right grid concern-
ing its original location instead of the right-hand side grid.
However, the wind direction can only be observed by more
capable behavioral agents. In our collected offline datasets,
wind direction is thus a hidden confounder forming a CMDP.
See App. D for detailed experiment setups and more results.

In Windy Empty World (Fig. 3a), there is a uniform wind
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(a) Windy Empty World. (b) LavaCross (easy). (c) LavaCross (hard). (d) LavaCross (maze).

Figure 3. Windy grid worlds. The blue arrows and circles in the lower right of each grid denote the possible wind directions. The flag is
the goal and the orange tile is the lava. The agent’s task is to reach the goal quickly without touching lava and collect coins if possible.

(a) Windy Empty World (b) Windy LavaCross (easy) (c) Windy LavaCross (hard) (d) Windy LavaCross (maze)

Figure 4. Cumulative regrets in windy grid worlds.

from each direction and a big chance for no wind (denoted
as a hollow blue circle). As an interventional agent, there
isn’t much extra information it can utilize from the shap-
ing function. Thus, in Fig. 4a, the cumulative regret of our
method and other shaping baselines are on par with each
other. Note that we do expect the vanilla Q-UCB not to per-
form well in all our windy grid worlds mainly because that
it assumes reward being in [0, 1] and initializes overly opti-
mistically as H . Yet, our Q-UCB Shaping (Algo. 1) lifts this
restriction and learns well with simply zero initializations.

(a) Easy mode (b) Hard mode (c) Maze mode

Figure 5. Optimal polices learned by our proposed method.

In both Windy LavaCross easy mode and hard mode, there
is a strong north wind and only a slight chance of being still
across the map. We see from Fig. 3b and Fig. 3c that only
the lower left L-shaped route is safe for an interventional
agent. We provide offline datasets from both a conservative
behavioral agent taking the safe route and an adventurous
behavioral agent taking the risky northern route. The ad-
venturous behavioral agent only moves when there is no
wind. This fact is not reflected in the offline datasets though.
When shaping with such values, the mixed learning signal
from the adventurous agent slows down the learning process
since the interventional agent cannot observe the wind and

gets punished constantly by taking the risky northern route.
Only our proposed shaping with causal offline upper bound
provides the correct learning signal and helps the online
interventional agent converge efficiently to the right optimal
policy (Fig. 5a, Fig. 5b).

In a more challenging LavaCross maze (Fig. 3d), there are
three coins. Though the lower left L-shaped route is still a
safe option, there is a good chance for the agent to get the
middle coin given the wind distribution Fig. 4d. The other
two coins are traps that only behavioral agents sensing the
wind could get. If the interventional agent is shaped with
such confounded values, there is a high chance that it will be
pushed into lava by the wind. As a result, we see in Fig. 4d
that shaping with our causal upper bound helps the agent
converge and find the right optimal policy (Fig. 5c).

6. Conclusion
In this work we study the problem of designing potential-
based reward-shaping functions automatically with con-
founded offline datasets from a causal perspective. Though
the optimal state value is a competitive candidate for state
potentials, it’s not easily accessible or identifiable from
confounded offline datasets. We tackle this challenge by
extending the Bellman Optimal Equation to confounded
MDPs to robustly upper bound the optimal state values for
online interventional agents. Then, we propose a modified
model-free learner, Q-UCB Shaping, which has a better
regret bound than the vanilla Q-UCB when using our pro-
posed potentials that upper bound the optimal state values.
The effectiveness of our method is also verified empirically.
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A. Related Work
Reward Shaping. Before Ng et al. (1999) proposed the Potential-Based Reward Shaping (PBRS), the idea of transforming
and modifying rewards to better facilitates learning has been studied in various problem settings (Saksida et al., 1997;
Randløv & Alstrøm, 1998). Ng et al. (1999) first formalized a shaping framework that guarantees the policy invariance under
reward transformation. Though this policy invariance comes at a price that shaping functions are limited to certain forms
of state potential functions. There are numerous successful applications of PBRS (Brys et al., 2015; Harutyunyan et al.,
2015) but there are also a growing numbers of papers that focus on using carefully designed biased shaping functions (not
following the PBRS framework) (Ibrahim et al., 2024). Such shaping functions have shown effectiveness in robots playing
rubic cubes (OpenAI et al., 2019), in autonomous driving (Wu et al., 2023) and more. People are also not satisfied with
designing shaping functions manually and tries to learn shaping functions automatically, either serving as an exploration
bonus or a supplement to the task rewards (Zou et al., 2019; Ma et al., 2024; Pathak et al., 2017; Yuan et al., 2023; Raileanu
& Rocktäschel, 2020; Devidze et al., 2022).

Off-Policy Evaluation and Learning. Off-policy learning has a long history in RL dating back to the classic algorithms of
Q-learning (Watkins, 1989; Watkins & Dayan, 1992), importance sampling (Swaminathan & Joachims, 2015; Jiang & Li,
2016), and temporal difference (Precup et al., 2000; Munos et al., 2016). Recently, people also propose to utilize offline
datasets to warm start the training (Nakamoto et al., 2023; Bhargava et al., 2023; Kumar et al., 2020), augmenting online
training replay buffer (Song et al., 2023; Ball et al., 2023) or incorporating imitation loss with offline data (Kang et al.,
2018; Zhu et al., 2018). However, these work rely on a critical assumption that there is no unobserved confounders in the
environment. While this assumption is generally true when the off-policy data is collected by an interventional agent, offline
datasets generated by potentially unknown sources can easily break this assumption (Levine et al., 2020). In recent years,
there is also a growing interest in identifying policy values from confounded offline data (Shi et al., 2022; Miao et al., 2022;
Guo et al., 2022; Bennett & Kallus, 2024) or partially identifying the policy values via bounding (Zhang & Bareinboim,
2024; 2019).

Regret Analysis of Finite Horizon Episodic Tabular MDPs. Many of the prior work on regret analysis focus on the
model-based setting where the transitions and reward distributions are estimated from collected data and planning is then
executed in the learned model to extract the optimal policy (Singh & Yee, 1994; Kearns & Singh, 1998; Kakade, 2003; Dann
& Brunskill, 2015; Dann et al., 2017; Simchowitz & Jamieson, 2019). In this work, we mainly focus on the regret analysis
for model-free learners (Strehl et al., 2006; Jin et al., 2018; Wang et al., 2020; Xu et al., 2021; Chen et al., 2024). More
specifically, our analysis focuses on a Q-learning variant, Q-UCB (Jin et al., 2018) that incorporates the UCB bonus into
Q-learning showing model-free learners can also enjoy

√
T regret as the model-based learners do. Later, Yang et al. (2021)

provides a more fine-grained gap-dependent regret analysis on Q-UCB showing that it also enjoys a logarithmic dependency
on total training steps T .

B. Walking Robot Example Details
From the environment set up, there are two ways of walking optimally.

If the agent can observe the step size required to stabilize itself (Uh), it should always act as Xh = Uh when Fh = 0. Under
this perfect behavioral policy, a walking process should be: (1) When the robot is stable, Fh = 1, it takes a big step Xh = 1
and transit into an unstable status, Fh+1 = 0. At this stage, the agent’s location does not change, Lh+1 = Lh; then (2)
the agent takes an appropriate size step, Xh = Uh, transits back to stable status Fh+2 = 1 and move forward by one step,
Lh+2 = Lh+1 + 1. The whole process resembles human walking as a “controlled falling” process. This is the optimal
behavioral policy. Formally, this is defined as β(1)

h : Xh ← Uh if Fh = 0 else Xh ← 1. (In Example 2, the incompetent
behavioral policy is defined as β(2)

h : Xh ← ¬Uh.)

However, there is an alternative approach to walking steadily when the robot cannot determine the required step size Ut

to stabilize itself. By taking small step size every time, Xt = 0, the agent always stays in stable status Ft = 1 and moves
forward steadily in each time step. This is the optimal interventional policy. Formally, this is written as π(Xt|Lt, Ft) = 0.

To see the quantitative difference between the optimal behavioral policy and optimal interventional policy, we calculated
the optimal state values as shown in the below chart. Note that for each state with given Lt, Ft, the optimal behavioral
state values are the same for all Ut. We can see from the table that while the optimal behavioral policy can achieve optimal
rewards from any stability status, an interventional agent should only stay in the stable status due to observational mismatch.
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Table 1. Optimal behavioral and interventional policy values.
Behavioral Interventional

Lt Ft = 0 Ft = 1 Ft = 0 Ft = 1

0 10. 10. 5.0 5.5
1 9. 9. 4.5 5.
2 8. 8. 4. 4.5
3 7. 7. 3.5 4.
4 6. 6. 3. 3.5
5 5. 5. 2.5 3.
6 4. 4. 2. 2.5
7 3. 3. 1.5 2.
8 2. 2. 1. 1.5
9 1. 1. 0. 1.

10 0. 0. 0. 0.

In the meantime, state values of the behavioral policies estimated via Monte-Carlo simulation during the offline dataset
collection are shown in Table 2. We see a clear trend that for the good behavioral policy π1, it does not show any preference

Table 2. Confounded values of behavioral policies.
Beh. Policy π1 Beh. Policy π2

Lt Ft = 0 Ft = 1 Ft = 0 Ft = 1

0 10. 10. -22.5 -41.7
1 9. 9. -21.8 -40.1
2 8. 8. -21.0 -38.4
3 7. 7. -20.25 -36.9
4 6. 6. -19.5 -34.5
5 5. 5. -18.75 -33.6
6 4. 4. -18.0 -32.5
7 3. 3. -17.3 -32.1
8 2. 2. -16.5 -31.5
9 1. 0. 0. 0.

10 0. 0. 0. 0.

over the stability status while for a bad behavioral policy π2, it even penalizes being stable. Thus, both confounded values
are not a good approximation for our optimal interventional state value. The final state potential learned by our method, on
the other hand, is shown in Table 3. We see clearly that our proposed algorithm successfully learns an upper bound to the
optimal interventional state values and also showing a clear tendency towards the stable status (Ft = 1), the same as the
optimal interventional values do.

C. Causal Upper Bound Algorithm
We present the full pseudo-code for calculating causal upper bounds on optimal state values from multiple offline datasets in
Algo. 2.

D. Detailed Experiment Design and More Results
In this section, we provide a detailed description of experiment setups and additional experiment results.
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Table 3. Causal state value upper bound.
Lt Ft = 0 Ft = 1
0 7.6 9.3
1 7.5 9.3
2 7.5 9.3
3 7.6 9.3
4 7.6 9.3
5 7.9 9.1
6 8.0 8.9
7 7.9 8.6
8 7.6 7.6
9 5.3 5.3
10 0. 0.

Algorithm 2 Causal Upper Bound Potential

1: Input: Offline datasets, D(i), i = 1, ..., N and reward upper bound, b.
2: for i = 1 to N do
3: while Not Converged do
4: for h = H to 1 do
5: for state s ∈ S do
6: for action x ∈ X do
7: if s, x not visited in D(i)

h then
8: Continue
9: end if

10: Calculate Q
(i)

h (s, x) by Eq. (8)
11: end for
12: Update V

(i)

h (s) = max
x∈D(i)

h

Q
(i)

h (x|s)
13: end for
14: end for
15: end while
16: end for
17: return V h(s) = min

s∈D(i)
h

V
(i)

h (s),∀s, h ∈ S × [H]

D.1. Experiment Setups

All of our experiment results are obtained from a 2021 MacBook Pro with M1 chip and 32GB memory. The cumulative
regret results are averaged over three random seeds. We implement the Q-UCB in a homogeneous way that there is no step
indices for state spaces.

Regarding the environment parameters, for Windy Empty World, the episode length is set to 15 while the LavaCross series
has a horizon of 20. To compensate for the hard exploration situation, we allow random initial starting states over the whole
map walkable area. For training steps, we set a total of 100K environment steps for Windy Empty World and 20K for the
LavaCross series. We represent the wind distribution in those windy Grid World as a five-tuple meaning the probability
mass for (WEST WIND, NORTH WIND, EAST WIND, SOUTH WIND, NO WIND). We list them as follows,

• Windy Empty World: (.1, .1, .1, .1, .6)

• Windy LavaCross (easy): (0, .8, 0, 0, .2)

• Windy Lava Cross (hard): (0, .7, 0, 0, .3)

• Windy Lava Cross (maze):


(0., .5, 0., 0., .5) if s[0] = 0

(.5, 0., 0., 0., .5) if s[1] = 7

(.15, .15, .15, .15, .4) otherwise
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And for each environment, we have three different behavioral policies for collecting offline datasets. Here we list their brief
descriptions as below,

• Windy Empty World: The first one is a good behavioral policy that stands still when the wind is blowing the agent
away from the goal and go towards the goal when the wind direction is in its favor. The second one is a bad behavioral
policy that follows the good policy half of the time while being fully random the other half. And the last one is a fully
random policy.

• Windy LavaCross (easy): The first one is a good behavioral policy that takes the L-shaped safe route staying tight to
the lower and left side walls. The second one is a bad behavioral policy that tries to cross the upper side gateway when
there is no wind. And the last one is again a fully random policy.

• Windy Lava Cross (hard): The first one is a good behavioral policy that takes the same safe route in the lower left side.
The second one is a bad behavioral policy that collects those coins on the northern bank of the lava lake when there is
no wind then reach the goal. And the last one is also a fully random policy.

• Windy Lava Cross (maze): The first one is a good behavioral policy that goes directly to the goal location. The second
one is less preferred that it takes a bit detour to get the extra coin near the goal. And the last behavioral policy goes
directly to the coin on upper right corner without reaching the goal at all.

D.2. Extra Experiment Results

Additionally, we have another LavaCross maze with fewer coins. The safe route is still the lower left L-shaped route.
The behavioral agents generating offline datasets in this environment include a conservative one taking the safe route, an
adventurous one taking the detour to get an extra coin before reaching the goal, and a radical one only looking for the top
right corner coin without even reaching the goal. As shown in Fig. 6a, only shaping with our proposed causal upper bound
helps the online interventional agent converge efficiently to the right policy (Fig. 6c,Fig. 6b).

(a) Map (b) Regret (c) Learned Policy

Figure 6. LavaCross maze with fewer coins.

Figure 7. Wind distribution in the LavaCross maze with fewer coins.

18



E. Shaping and Initialization
If we have the optimal state value, warm-starting the online learning by initializing state values with such optimal ones
seems more straightforward than shaping. But their effects on learning are only the same under unrealistically strict
conditions (Wiewiora, 2003). That is, given the same sequence of samples, the learned Q-values (Watkins & Dayan,
1992) after shaping is always less than the one learned without shaping by the amount of the potential functions. A direct
implication of this result is that the policy learned under shaping at each time step is indifferent from the one learned without
shaping, thus, learning efficiency is unchanged.

Proposition E.1. Given a fixed sequence of samples, the policy distribution learned under shaping is equivalent to that
learned without shaping but initialized with ϕ(·).

There is also prior work showing that for the epsilon-greedy exploration strategy, potential-based reward shaping does not
directly affect learning efficiency. Instead, how optimistic the initialization is compared with the potential functions affects
the learning efficiency (Dann et al., 2022). While people also find that for model-based learners, certain forms of reward
shaping can boost learning efficiency provably (Gupta et al., 2022).

F. Original Q-UCB Algorithm
We restate the pseudo-code for origianl Q-UCB in Algo. 3. For more details please see Jin et al. (2018).

Algorithm 3 Q-UCB

1: Initialize Q1
h(s, x)← H , Nh(s, x) = 0, for all (s, x, h) ∈ S × X × [H].

2: for k = 1 to K do
3: Observe initial state s1.
4: for h = 1 to H do
5: Take action xh = argmaxx Q

k
h(sh, x) and observe sh+1, yh.

6: Update visitation counter and calculate UCB bonus, t = Nh(sh, xh)← Nh(sh, xh) + 1, bt = c
√
H3ι/t

7: Update Q-value, Qk+1
h (sh, xh) = (1− αt)Q

k
h(sh, xh) + αt(yh + V k

h+1(sh+1) + bt).
8: Update value function, V k+1

h (sh) = min{H,maxx Q
k+1
h (sh, x)}.

9: end for
10: end for

G. Useful Results for Proofs
We will first restate some useful claims in the literature to be used later in our proofs for completeness.

Lemma G.1 (Properties of Cumulative Learning Rates). Let αt = H+1
H+t . We define α0

t = Πt
j=1(1 − αj) and αi

t =

αiΠ
t
j=i+1(1− αj). The following properties hold for αi

t:

(a) 1√
t
≤
∑t

i=1
αi

t√
i
≤ 2√

t
for every t ≥ 1.

(b) maxi∈[t] α
i
t ≤ 2H

t and
∑t

i=1(α
i
t)

2 ≤ 2H
t for every t ≥ 1.

(c)
∑∞

t=i α
i
t = 1 + 1

H for every i > 1.

In addition, we have (1)
∑t

i=1 α
i
t = 1 and α0

t = 0 for t ≥ 1; (2)
∑t

i=1 α
i
t = 0 and α0

t = 1 for t = 0.

Proof. See Jin et al. (2018) App. B for details.

Lemma G.2 (Property of the Clip Function). Let clip [x|δ] = x · 1[x ≥ δ] (Simchowitz & Jamieson, 2019). For any three
positive numbers a, b, c satisfying a+ b ≥ c, and for any x ∈ (0, 1), the following holds,

a+ b ≤ clip
[
a
∣∣∣ac
2

]
+ (1 + x)b (11)

Proof. See Claim A.8 in App. A from Xu et al. (2021) for details.
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Lemma G.3 (Bounded Summation for Clipped Function). The summation of a clipped function which scales proportionally
to the inverse of the square root of the variable n has the following bound:

∞∑
n=1

clip

[
c√
n

∣∣∣∣ ϵ] ≤ 4c2

ϵ
(12)

Proof. See Claim A.13 in App. A from Xu et al. (2021) for details.

H. Proof Details
H.1. Potential-Based Reward Shaping in CMDP Proof

This is for Prop. 2.2.

Proof. Because CMDP also enjoys the Markov property, the overall proof procedure highly resembles the original one in
Ng et al. (1999). Only to note that the optimal policy invariance is proved in the online learning sense, which is between
M′

π andMπ .

H.2. Causal Bellman Optimal Equation Proof

In this section, we derive the Causal Bellman Optimal Equation from the original Bellman Optimal Equation of MDPs. For
stationary CMDPs, we also prove that our Causal Bellman Optimal Equation has a unique fixed point and the optimality of
this unique fixed point.

Theorem H.1 (Causal Bellman Optimal Equation (Thm. 3.1)). For a CMDP environmentM with reward Yh ≤ b, b ∈ R,
the optimal value of interventional policies, V ∗

h (s),∀s, is upper bounded by V ∗(s) ≤ V h(s) satisfying the Causal Bellman
Optimality Equation,

V h(s) =max
x

[
Ph(x|s)

(
R̃h(s, x) + ET̃h

[V h+1(s
′)]
)
+ Ph(¬x|s)

(
b+max

s′
V h+1(s

′)
)]

(13)

Proof. Starting from the Bellman Optimal Equation, the optimal state value function is given by,

V ∗
h (s) = max

x
Rh(s, x) +

∑
s′

Th(s, x, s
′)V ∗

h+1(s
′) (14)

Note that the actions here are done by an interventional agent, which is actually do(x) in the context of a CMDP. We swap
in the causal bounds for interventional reward and transition distribution,

V ∗
h (s) ≤ max

x
R̃h(s, x)Ph(x|s) + bPh(¬x|s) +

∑
s′

T̃h(s, x, s
′)Ph(x|s)V ∗

h+1(s
′) + Ph(¬x|s)max

s′′
V ∗
h+1(s

′′) (15)

where R̃h(s, x) = E[Yh|Sh = s,Xh = x], T̃h is shorthand for T̃h(s, x, s′) = P (Sh+1 = s′|Sh = s,Xh = x) and
P (x|s) = Ph(Xh = x|Sh = s) are estimated from the offline dataset. And b is a known upper bound on the reward signal,
Yh ≤ b. In this step, we upper bound the next state transition by assuming the best case that for the action not taken with
probability Ph(¬x|s), the agent transits with probability 1 the best possible next state, maxs′′ V

∗
h+1(s

′′).

Then after rearranging terms, we have,

V ∗
h (s) ≤ max

x

[
Ph(x|s)

(
R̃h(s, x) +

∑
s′

T̃h(s, x, s
′)V ∗

h+1(s
′)

)
+ Ph(¬x|s)

(
b+max

s′′
V ∗
h+1(s

′′)
)]

(16)

And optimizing the value function w.r.t this inequality gives us an upper bound on the optimal state value,

V h(s) ≤ max
x

[
Ph(x|s)

(
R̃h(s, x) +

∑
s′

T̃h(s, x, s
′)V h+1(s

′)

)
+ Ph(¬x|s)

(
b+max

s′′
V h+1(s

′′)
)]

(17)
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More interestingly, we will show in Prop. H.2 that this will also converge to a unique fixed point in stationary CMDPs.

Proposition H.2 (Convergence of Causal Bellman Optimal Equation in Stationary CMDPs). The Causal Bellman Optimality
Equation converges to a unique fixed point which is also an upper bound on the optimal interventional state values under
the assumption that P (s, x) > 0,∀s, x in stationary CMDPs.

Proof. We will first show that the following Causal Bellman Optimal operator is a contraction mapping with respect to
a weighted max norm. The major proof technique is from Bertsekas & Tsitsiklis (1989) (Sec 4.3.2). Then by Banach’s
fixed-point theorem (Banach, 1922), this Causal Bellman Optimal operator has a unique fixed point and updating any initial
point iteratively will converge to it. Then we will show that this unique fixed point is indeed an upper bound on the optimal
interventional state value.

Let the operator T be,

TV (s) = max
x

[
P (x|s)

(
R̃(s, x) +

∑
s′

T̃ (s, x, s′)V (s′)

)
+ P (¬x|s)

(
b+max

s′′
V (s′′)

)]
. (18)

For arbitrary value bound, V 1, V 2, we can bound their difference under one step update by,

∣∣TV 1(s)− TV 1(s)
∣∣ ≤ max

x

∣∣∣∣∣P (x|s)
∑
s′

T̃ (s, x, s′)
(
V 1(s

′)− V 2(s
′)
)
+ P (¬x|s)max

s′′

∣∣V 1(s
′′)− V 2(s

′′)
∣∣∣∣∣∣∣ . (19)

Note that we combine the terms together and extract max operator out because of its non-expansive property. Then we
partition the state space as follows. Let S1 = {s∅} be the set of a sink state (in episodic CMDP, we always transit into the
sink state after we reach the horizon limit). For k = 2, 3, ..., we define,

Sk = {i|i /∈
⋃

k′∈[1,k−1]

Sk′ ∧min
x

max
j∈

⋃
k′∈[1,k−1] Sk′

T (i, x, j) > 0}. (20)

The set Sk intuitively represents the set of states that can transit to states closer to the sink state even with adversarial action
picks. Let Sm be the last of these sets that is nonempty. We will show that all those nonempty sets cover the whole state
space. Suppose the set S∞ = {i|i /∈ ∪mk=1Sk} is nonempty. Then by definition, for any state i ∈ S∞, there exists an action
x such that T (i, x, j) = 0,∀j ∈ ∪mk=1Sk. This means that state i cannot transit into the sink state with certain actions,
which contradicts with our episodic setting that starting from any state-action pair, the episode will end at the horizon limit.

Then we define the max norm with respect to which we will later show that the difference between value update is a
contraction mapping. We set the weight vector w > 0 in a way that each of the entry wi, i ∈ S corresponds to a set Sk and
all states inside the same set shares the same weight, that is, wi = yk if i ∈ Sk.

We will for now assume the following properties of sequence {yk}mk=1 hold, prove T is a contraction mapping, and then
come back to show we can find such sequences.

1 = y1 < y2 < · · · < ym (21)
ym
yk

(1− ϵδ) +
yk−1

yk
ϵδ ≤ γ < 1, k = 2, ...,m (22)

where ϵ = mink∈[2,m] minx mini∈Sk

∑
j∈

⋃
k′∈[1,k−1] Sk′ T (i, x, j) is the minimal one-step transition probability that a state

from later set Sk transfer to a state that is closer to the sink state and δ = mins,x P (s, x) > 0 from the behavioral dataset,.
From previous discussion and probability distribution validity property, we have ϵ ∈ (0, 1].

Let the initial difference between the value vectors be ||V 1 − V 2||w∞ ≤ c where c > 0 is a constant. Then we have, for any
state s ∈ Sk(s) where k(s) means the index of the state set that s belongs to,

V 1(s)− V 2(s) ≤ cyk(s). (23)
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Now we can continue to write the value update difference as,

|TV 1(s)− TV 2(s)|
cyk(s)

≤ 1

yk(s)
max

x

∣∣∣∣∣P (x|s)
∑
s′

T̃ (s, x, s′)yk(s′) + P (¬x|s)max
s′′

yk(s′′)

∣∣∣∣∣ . (24)

=
1

yk(s)
max

x

(
P (x|s)

∑
s′

T̃ (s, x, s′)yk(s′) + P (¬x|s)max
s′′

yk(s′′)

)
. (25)

Given the fact that yk ≤ ym,∀k ∈ [1,m],

|TV 1(s)− TV 2(s)|
cyk(s)

≤ 1

yk(s)
max

x

(
P (x|s)

∑
s′

T̃ (s, x, s′)yk(s′) + P (¬x|s)ym

)
. (26)

We can split the sum over next state s′ by differentiating whether it belongs to the sets closer to sink state than s or the sets
further away from the sink state than s,w2

|TV 1(s)− TV 2(s)|
cyk(s)

≤ 1

yk(s)
max

x

P (x|s)
∑

s′∈
⋃

k′∈[1,k(s)−1] Sk′

T̃ (s, x, s′)yk(s′)

+ P (x|s)
∑

s′∈
⋃

k′∈[k(s),m] Sk′

T̃ (s, x, s′)yk(s′) + P (¬x|s)ym

 . (27)

And by the property of {yk}mk=1, 1 = y1 < y2 < · · · < ym and the fact that
∑

s′ T̃ (s, x, s
′) = 1, we have,

|TV 1(s)− TV 2(s)|
cyk(s)

≤ 1

yk(s)
max

x

(yk(s)−1 − ym)P (x|s)
∑

s′∈
⋃

k′∈[1,k(s)−1] Sk′

T̃ (s, x, s′) + ymP (x|s) + P (¬x|s)ym


(28)

≤ 1

yk(s)
max

x

(yk(s)−1 − ym)P (x|s)
∑

s′∈
⋃

k′∈[1,k(s)−1] Sk′

T̃ (s, x, s′)

+
ym
yk(s)

. (29)

By definition, ϵ lower bounds the transition probability of
∑

s′∈
⋃

k′∈[1,k(s)−1] Sk′ T̃ (s, x, s
′), we have,

|TV 1(s)− TV 2(s)|
cyk(s)

≤ 1

yk(s)
max

x
P (x|s)(yk(s)−1 − ym)ϵ+

ym
yk(s)

(30)

≤ ym
yk

(1− ϵδ) +
yk−1

yk
ϵδ (31)

≤ γ (32)

Thus, for the state value bound vectors, we have,

||TV 1 − TV 2||w∞ ≤ γc (33)

for all V 1, V 2 satisfying ||V 1 − V 2|| ≤ c. Thus, T is a contraction mapping with respect to a weighted max norm.

Lastly, we will show that a sequence {yk}mk=1 satisfying Eq. (21) and Eq. (22) is realizable. Let y0 = 0, y1 = 1, and suppose
that y1, y2, ..., yk have been chosen. If ϵδ = 1, we set yk+1 = yk + 1. If ϵδ < 1, we set

yk+1 = 1/2(yk + zk) (34)

where

zk = min
i∈[1,k]

[
yi +

ϵδ

1− ϵδ
(yi − yi−1)

]
. (35)
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And we can write zk recursively as,

zk = min{zk−1, yk +
ϵδ

1− ϵδ
(yk − yk−1)}. (36)

We will first show by induction that this sequence satisfies Eq. (21).

(1) Base Case: By definition, y0 < y1.

(2) Induction Hypothesis: Assume yk−1 < yk holds.

(3) Inductive Step: Our goal is to show that yk < yk+1. By definition, yk+1 = 1
2 (yk + zk), the problem is reduced to

whether yk+1 − yk = zk − yk > 0. Since yk = 1
2 (yk−1 + zk−1) and we have yk−1 < yk. Thus, we have zk−1 > yk. And

clearly we have yk + ϵ
1−ϵ (yk − yk−1) > yk. By the recursive update rule, we have,

zk = min{zk−1, yk +
ϵ

1− ϵ
(yk − yk−1)} (37)

As we have shown that both term are bigger than yk, we have zk > yk. Thus, the sequence {yk}mk=1 satisfies Eq. (21).

For Eq. (22), we first notice that since zm−1 − ym = ym − ym−1 > 0, we have,

zm = min{zm−1, ym +
ϵ

1− ϵ
(ym − ym−1)} > ym. (38)

By definition, zm is also calculated as,

zm = min
i∈[1,m]

[
yi +

ϵδ

1− ϵδ
(yi − yi−1)

]
. (39)

Swapping this definition into Eq. (38), we have,

yk +
ϵδ

1− ϵδ
(yk − yk−1) > ym (40)

ym
yk

< 1 +
ϵδ

1− ϵδ
(1− yk−1

yk
) (41)

(1− ϵδ)
ym
yk

+ ϵδ
yk−1

yk
< 1. (42)

Thus, we have shown that a weight sequence {yk}mk=1 satisfying Eq. (21) and Eq. (22) is indeed realizable.

Thus, T is a contraction mapping with respect to a realizable max norm. There exists a unique fixed point V
∗

when we
optimize V with T iteratively till convergence. For the optimal state value vector V ∗, we can also apply T iteratively until it
converges to the fixed point V

∗
. By the update rule of T (Eq. (17)), ∀V, V ≤ TV . Thus, we have V ∗ ≤ limk→∞ T kV ∗ =

V
∗

where T k denotes applying T iteratively for k times. The fixed point of the Causal Bellman Optimal Equation is indeed
an upper bound of the optimal state value vector.

H.3. Q-UCB with Shaping Regret Analysis Details

We define the adaptive learning rate as αt =
H+1
H+t and a shorthand notion ι = log (|S||X |T/p) where T = KH . We also

have ϕ(sH+1) = 0 according to Prop. 2.2 and assume deterministic reward functions. Throughout the proof, we also assume
conservative optimism condition is satisfied (Def. 4.1).

We first present lemmas used in proving the regret bound of Algo. 1.

Lemma H.3 (Concentration of Transition Weighted Bounded Functions). Let f be a function mapping from state space
to a convex set of real values, S 7→ [0, ϕm], ϕm ∈ R. With high probability, the following sum is bounded for all
(s, x, h, k) ∈ S × X × [H]× [K],

∀t ∈ [K],

t∑
i=1

αi
t · 1[ki < K] · (P̂ki

h f − Phf)(s, x) ≤
bt
2
, (43)
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where t = Nk
h (s, x) is the visitation count at the beginning of k-th episode and we define the index of the episode when

state-action pair (s, x) is visited for the i-th time to be,

ki = min
(
{k ∈ [K]|k > ki−1 ∧ (skh, x

k
h) = (s, x)} ∪ {K + 1}

)
. (44)

Proof. Note that ki = K+1 if (s, x) is not visited for the i-th time. The sequence {αi
t ·1[ki < K] ·(P̂ki

h f−Phf)(s, x)}ti=0

is a martingale difference sequence w.r.t filtration Fi≥0 and we have |αi
t · 1[ki < K] · (P̂ki

h f − Phf)(s, x)| ≤ αt
i · ϕm and

α0
t · 1[k0 < K] · (P̂k0

h f − Phf)(s, x) = 0 since no visitation occurs at all when i = 0. By Azuma-Hoeffding inequality, we
have that ∀ϵ > 0,

P (|
t∑

i=0

αi
t · 1[ki < K] · (P̂ki

h f − Phf)(s, x)| ≥ ϵ) ≤ 2 exp

(
−ϵ2

2
∑t

i=0(α
i
t)

2ϕ2
m

)
. (45)

Thus, with probability p′ ≤ p
SAT , |

∑t
i=0 α

i
t · 1[ki < K] · (P̂ki

h f − Phf)(s, x)| ≥ c
2

√
ϕ2
m log (SAT/p)H/t = bt

2 where
c > 0 is a constant. By union bound over all (s, x, h, k) ∈ S × X × [H]× [K], we conclude the proof for the claim.

Lemma H.4 (Bounded Differences Between Qk
h and Q∗

h (Lem. 4.2)). The difference between the learned Q-value at the
beginning of episode k and step h and the optimal Q-value can be bounded with high probability as follows,

0 ≤ Qk
h(s, x)−Q∗

h(s, x) ≤ α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

[
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x)

]
+ 3bt, (46)

where Ph denotes the expected transition w.r.t the true confounded MDP and P̂k
h denotes the sample transition experienced

by the agent at episode k step h.

Proof. First, we can rewrite the optimal Q-value as follows by the Bellman equation and Prop. 2.2,

Q∗
h(s, x) = α0

tQ
∗
h(s, x) +

t∑
i=1

αi
t(yh(s, x)− ϕ(s) + (PhV

∗
h+1 + Phϕ)(s, x). (47)

The learned Q-value can be written as follows using the defined accumulative learning rates Lem. G.1,

Qk
h(s, x) =

t∑
i=1

αi
t

(
yh − ϕ(s) + (P̂ki

h V ki

h+1 + P̂ki

h ϕ)(s, x) + bi

)
. (48)

Subtracting Eq. (47) from Eq. (48), we have,

Qk
h(s, x)−Q∗

h(s, x) (49)

= α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

(
(P̂ki

h V ki

h+1 − PhV
∗
h+1)(s, x) + (P̂ki

h ϕ− Phϕ)(s, x) + bi

)
(50)

= α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

(
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x) + (P̂ki

h V ∗
h+1 − PhV

∗
h+1)(s, x) + (P̂ki

h ϕ− Phϕ)(s, x) + bi

)
.

(51)

By Lem. H.3, we have that with probability at least 1− 2p for all (s, x, h, k) ∈ S × X × [H]× [K],

Qk
h(s, x)−Q∗

h(s, x) ≤ α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

(
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x) + bi

)
+ bt. (52)

By Lem. G.1, we have,

Qk
h(s, x)−Q∗

h(s, x) ≤ α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

[
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x)

]
+ c
√

Hϕ2
mι ·

t∑
i=1

αi
t√
i
+ bt (53)

≤ α0
t (−Q∗

h(s, x)) +

t∑
i=1

αi
t

[
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x)

]
+ 3bt. (54)
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This concludes the proof for the right hand side. Then we will show that Qk
h(s, x)−Q∗

h(s, x) ≥ 0 by induction on the steps
of the episode from H to 1. Without losing generality, we assume t > 0 since when t = 0 it’s straightforward to show this
holds.

(1) Base case: When h = H and for all k, it’s the last time step and all future state values are zero by definition. We have,

Qk
h(s, x)−Q∗

h(s, x) =

t∑
i=1

αi
t

(
(P̂ki

h ϕ− Phϕ)(s, x) + bi

)
. (55)

By Lem. H.3 and together with the discussion above for the other side, we know (P̂ki

h ϕ − Phϕ)(s, x) ≥ − bt
2 with high

probability. While by Lem. G.1,
∑t

i=1 α
i
tbi ≥ bt, thus, we have,

Qk
h(s, x)−Q∗

h(s, x) ≥ bt + (−bt
2
) ≥ 0. (56)

The base case holds.

(2) Induction hypothesis: for h = h′ and for all k, Qk
h(s, x)−Q∗

h(s, x) ≥ 0.

(3) Induction step: Now we show that for h = h′ − 1, the claim still holds. Recall that we can write the Q-value differences as
follows when t > 0,

Qk
h(s, x)−Q∗

h(s, x) (57)

=

t∑
i=1

αi
t

(
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x) + (P̂ki

h V ∗
h+1 − PhV

∗
h+1)(s, x) + (P̂ki

h ϕ− Phϕ)(s, x) + bi

)
. (58)

And by Lem. G.1 and similar discussions as in the base case, we are left with terms,

Qk
h(s, x)−Q∗

h(s, x) ≥
t∑

i=1

αi
t(P̂

ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x). (59)

By Algo. 1, V k+1
h+1 (sh+1) = min{ϕ(sh+1),maxx Q

k+1
h+1(sh+1, x)}. Thus, no matter which value V k+1

h+1 (sh+1) is getting, by
the potential function property (ϕ ≥ V ∗) and the induction hypothesis, V k+1

h+1 (sh+1) ≥ V ∗
h+1(sh+1) holds.

Thus, we have concluded the proof for the left hand side.

Definition H.5 (Psudo-Suboptimal State-Action Pairs (Def. 4.3)). We define the set of pseudo-suboptimal state-action pairs
to be the set that satisfies,

Sub∆ = {(s, x) ∈ S × X|∃h ∈ [H], yh(s, x)− ϕh(s) + 2(Phϕh+1)(s, x) + ∆(s, x) ≤ V ∗
h (s)}, (60)

where ∆(s, x) = minh ∆h(s, x) = minh(V
∗
h (s)−Q∗

h(s, x)).

Lemma H.6 (Bounded Number of Visits to Sub∆ (Lem. 4.4)). The number of visits to (s, x) ∈ Sub∆, t = Nk
h (s, x), is

bounded by,

t ≤ 16c2Hϕ2
mι

∆2(s, x)
. (61)

Proof. When t exceeds the bound,

t >
16c2Hϕ2

mι

∆2(s, x)
, (62)

by property in Lem. G.1, we have,

2c
√
Hϕ2

mι

t∑
i=1

αi
t√
i
≤ 2c

√
Hϕ2

mι
2√
t
< ∆(s, x). (63)
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This implies 2
∑t

i=1 α
i
tbi < ∆(s, x). And by Lem. H.3, with high probability, we have,

t∑
i=1

αi
t · P̂

ki

h f ≤
t∑

i=1

αi
t · Phf +

bt
2
≤

t∑
i=1

(
αi
t · Phf +

bi
2

)
(64)

where f is a bounded real value function f : S 7→ [0, ϕm]. Apply this to the learned Q value Qk
h and by the conservative

optimism condition (Def. 4.1) that V ki

h ≤ ϕ,

Qk
h(s, x) =

t∑
i=1

αi
t

(
yh − ϕh(s) + (P̂ki

h V ki

h+1 + P̂ki

h ϕh+1)(s, x) + bi

)
(65)

≤
t∑

i=1

αi
t(yh − ϕh(s) + 2(Phϕh+1)(s, x) + 2bi). (66)

(67)

Plug 2
∑t

i=1 α
i
tbi < ∆(s, x) into this,

Qk
h(s, x) <

t∑
i=1

αi
t(yh − ϕh(s) + 2(Phϕh+1)(s, x) + ∆(s, x)). (68)

For (s, x) ∈ Sub∆, by the definition of Sub∆ and the optimistic property of the learned Q-value (Lem. H.4), we have,

Qk
h(s, x) <

t∑
i=1

αi
t · V ∗

h (s) (69)

= Q∗
h(s, x

∗) (70)

≤ Qk
h(s, x

∗). (71)

This indicates that when the number of visits to the state action pairs in Sub∆, t, exceeds the proposed bound, its learned Q
value will be upper bounded by the learned Q value of the optimal actions, and by the greedy action selection rule in Algo. 1,
such actions will no longer be chosen going forward.

Lemma H.7 (Lower Bound on Sub-optimal Action’s Q-Value Differences). For actions that are suboptimal but being
selected in the algorithm, x ̸= x∗, with high probability, we have,

Qk
h(s, x)−Q∗

h(s, x) ≥ ∆h(s, x) (72)

Proof. Because such actions are selected over the optimal, their learned Q-value must be larger. And by Lem. H.4,
Qk

h(s, x
∗) ≥ Q∗

h(s, x
∗) with high probability. Thus, we have,

Qk
h(s, x)−Q∗

h(s, x) ≥ Qk
h(s, x

∗)−Q∗
h(s, x) (73)

≥ Q∗
h(s, x

∗)−Q∗
h(s, x) (74)

= V ∗
h (s)−Q∗

h(s, x) (75)
= ∆h(s, x). (76)

Now we are ready to prove the main theorem.
Theorem H.8 (Regret Bound for Algo. 1. (Thm. 4.5)). Given a potential function ϕ(·), with its maximum value defined as
ϕm, after running algorithm Algo. 1 for K episodes with H steps each, the expected regret is bounded by,

Õ

 ∑
s,x∈Sub∆

H3ϕ2
m

∆(s, x)
+

∑
s,x/∈Sub∆

H4ϕ2
m

∆(s, x)

 , (77)

where Sub∆ is the set of pseudo suboptimal state action pairs and ∆(s, x) = minh ∆h(s, x), for all h ∈ [H].
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Proof. By the definition of expected regret over trajectories τ , we can decompose it as follows,

E [Regret(K)] = Eτ

[
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

]
(78)

= Eτ

[
K∑

k=1

V ∗
1 (s

k
1)−Q∗

1(s
k
1 , x

k
1) +Q∗

1(s
k
1 , x

k
1)− V πk

1 (sk1)

]
(79)

= Eτ

[
K∑

k=1

∆1(s
k
1 , x

k
1) + Es2 [V

∗
2 (s2)− V πk

2 (s2)|πk, x
k
1 , s

k
1 ]

]
(80)

= ... (81)

= Eτ

[
K∑

k=1

H∑
h=1

∆h(s
k
h, x

k
h) | πk

]
. (82)

We can split trajectories by whether the high probability event in Lem. H.4 happens. When Lem. H.4 happens with at least
1− 2p probability, Lem. H.7 is also satisfied and we have,

E [Regret(K)] = Eτ

[
K∑

k=1

H∑
h=1

∆h(s
k
h, x

k
h) | πk

]
(83)

≤ (1− 2p)

H∑
h=1

K∑
k=1

(
Qk

h(s
k
h, x

k
h)−Q∗

h(s
k
h, x

k
h)
)
+ 2pTH. (84)

We can set failure probability to be p = 1
2T and by L.H.S of the inequality in Lem. H.4,

E [Regret(K)] ≤
H∑

h=1

K∑
k=1

(
Qk

h(s
k
h, x

k
h)−Q∗

h(s
k
h, x

k
h)
)
+H. (85)

Now, the regret bound boils down to the cumulative Q value differences. We revisit Lem. H.4 and expand the R.H.S with
Bellman equations,

Qk
h(s

k
h, x

k
h)−Q∗

h(s
k
h, x

k
h) ≤

t∑
i=1

αi
t

[
(P̂ki

h V ki

h+1 − P̂ki

h V ∗
h+1)(s, x)

]
+ 3bt (86)

=

t∑
i=1

αi
t

[
(Qki

h+1 −Q∗
h+1)(s

ki

h+1, x
ki

h+1)
]
+ 3bt. (87)

By Lem. G.2, Lem. H.7 and the fact that ∆(s, x) ≤ ∆h(s, x),

Qk
h(s

k
h, x

k
h)−Q∗

h(s
k
h, x

k
h) ≤ clip

[
3bt

∣∣∣∣∆(skh, x
k
h)

2H

]
+ (1 +

1

H
)

t∑
i=1

αi
t

[
(Qki

h+1 −Q∗
h+1)(s

ki

h+1, x
ki

h+1)
]
. (88)

Since Q∗
H+1 = Qk

H+1 = 0, we can expand the above recursion and solve for value difference of all episodes at step h,∑K
k=1 Q

k
h(s

k
h, x

k
h)−Q∗

h(s
k
h, x

k
h), as follows,

K∑
k=1

Qk
h(s

k
h, x

k
h)−Q∗

h(s
k
h, x

k
h) ≤

∑
k′,h′≥h

(1 +
1

H
)2(h

′−h) clip

[
3bNk′

h′

∣∣∣∣∣∆(sk
′

h′ , xk′

h′)

2H

]
(89)

≤ e2
∑
k,h

clip

[
3bNk

h

∣∣∣∣∆(skh, x
k
h)

2H

]
. (90)
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The term (1 + 1
H )2 comes from both the coefficient (1 + 1

H ) and the fact that
∑∞

i=1 α
i
t ≤ 1 + 1

H by Lem. G.1. Then we
plug this term back into our regret bound (Eq. (85)),

E [Regret(K)] ≤ e2H
∑
k,h

clip

[
3bNk

h

∣∣∣∣∆(skh, x
k
h)

2H

]
+H. (91)

We can rewrite the summations regarding the state action space and split the summation by whether (s, x) ∈ Sub∆ or not,

E [Regret(K)] ≤ e2H
∑
k,h

clip

[
3bNk

h

∣∣∣∣∆(skh, x
k
h)

2H

]
+H (92)

= e2H

H∑
h=1

∑
(s,x)∈Sub∆

NK
h (s,x)∑
i=1

clip

[
3bi

∣∣∣∣∆(s, x)

2H

]

+ e2H

H∑
h=1

∑
(s,x)̸∈Sub∆

NK
h (s,x)∑
i=1

clip

[
3bi

∣∣∣∣∆(s, x)

2H

]
+H. (93)

Since from Lem. H.6, we know the total number of visits for each (s, x) ∈ Sub∆ is bounded, we can apply this result on
NK

h (s, x) for (s, x) ∈ Sub∆. And for (s, x) ̸∈ Sub∆, we apply Lem. G.3 directly. Then the expected regret is bounded as
follows,

E [Regret(K)] ≤ 3e2H2
∑

(s,x)∈Sub∆

NK
h (s,x)∑
i=1

bi + e2H2
∑

(s,x)̸∈Sub∆

8H · 9c2 ·Hϕ2
mι

∆(s, x)
+H (94)

= 3ce2H2
√

Hϕ2
mι

∑
(s,x)∈Sub∆

NK
h (s,x)∑
i=1

1√
i
+

∑
(s,x)̸∈Sub∆

72c2e2ϕ2
mH4ι

∆(s, x)
+H (95)

≤ 3ce2H2
√
Hϕ2

mι
∑

(s,x)∈Sub∆

√
16c2Hϕ2

mι

∆2(s, x)
+

∑
(s,x) ̸∈Sub∆

72c2e2ϕ2
mH4ι

∆(s, x)
+H (96)

=
∑

(s,x)∈Sub∆

12c2e2ϕ2
mH3ι

∆(s, x)
+

∑
(s,x) ̸∈Sub∆

72c2e2ϕ2
mH4ι

∆(s, x)
+H (97)

= O

 ∑
(s,x)∈Sub∆

ϕ2
mH3 log (SAT )

∆(s, x)
+

∑
(s,x) ̸∈Sub∆

ϕ2
mH4 log (SAT )

∆(s, x)

 . (98)

We can further simplify the regret bound by the fact that ϕ(·) ≤ H and arrive at the final bound,

O

 ∑
s,x∈Sub∆

H5 log (SAT )

∆(s, x)
+

∑
s,x/∈Sub∆

H6 log (SAT )

∆(s, x)

 . (99)
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