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Abstract
Health equity is defined as the state in which everyone has a fair and just opportunity to attain
their highest level of health. Achieving health equity is believed to improve the well-being of
communities, reduce healthcare costs, and increase productivity and longevity. However, disparities
in health are still significant. In this context, the new era of large-scale data collection and analysis
presents an opportunity for diagnosing and understanding the causes of health inequities. In this
study, we describe a framework for systematically analyzing health disparities using tools of causal
inference. We illustrate the framework by investigating racial and ethnic disparities in intensive
care unit (ICU) outcome between majority and minority groups in Australia (Indigenous vs. Non-
Indigenous) and the United States (African-American vs. White). We demonstrate that commonly
used statistical measures for quantifying inequity are insufficient, and focus on attributing the
observed disparity to the causal mechanisms that generate it. We find that minority patients are
younger at admission, have worse chronic health, are more likely to be admitted for urgent and
non-elective reasons, and have higher illness severity. At the same time, however, we also find a
protective direct effect of belonging to a minority group, with minority patients showing improved
survival compared to their majority counterparts, with all other variables being equal. We then
demonstrate that this protective effect is related to the increased probability of being admitted to
ICU, with minority patients having an increased risk of ICU admission. Additionally, we also find
that minority patients, while showing improved survival, are in fact more likely to be readmitted
to ICU. These findings support the hypothesis that, due to worse access to primary health care,
minority patients are more likely to end up in ICU for preventable conditions, causing a reduction
in the mortality rates and creating an effect that appears to be protective. Since the baseline risk of
ICU admission may serve as proxy for lack of access to primary care, we developed the Indigenous
Intensive Care Equity (IICE) Radar, a monitoring system for tracking the over-utilization of ICU
resources by the Indigenous population of Australia across geographical areas.
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1 Introduction
Health equity is defined as the state in which everyone has a fair and just opportunity to attain their
highest level of health (Braveman et al, 2017). One of the key goals in pursuing health equity is the
elimination of economic, social, and other obstacles to health and health care, together with eliminating
existing, preventable differences in health (Braveman, 2014). The goal is to reduce preventable illnesses
and deaths, improve the overall well-being of communities, and create a more inclusive healthcare
system that serves everyone effectively (Braveman et al, 2011). Despite a commitment of public health
organizations and government agencies to address issues of health equity (Centers for Disease Control
and Prevention (CDC), 2024; U.S. Department of Health & Human Services (HHS), 2024b,a; World
Health Organization (WHO), 2024; European Union (EU), 2024; Healthy People 2030, 2023), health
disparities are still large (Commonwealth Fund, 2023; Dwyer-Lindgren et al, 2022; Health, 2023), and
many consider the solutions to health inequities to be in their early stages.

In this context, the rise of the new generation of computational tools and the widespread adoption
of electronic health records (EHRs) (Evans, 2016) offer a major opportunity to quantify and under-
stand health disparities. This task is even more important due to a broad transition to using artificial
intelligence (AI) tools in healthcare, which may perpetuate or amplify existing biases. In fact, recent
works demonstrate formally that understanding disparities in human decision-making is an essential
step for understanding disparities in automated AI systems (Plečko and Bareinboim, 2024). Therefore,
a successful transition to healthcare systems that benefit from the numerous advantages of AI requires
careful scrutiny of the data that is given to such AI systems for training, which includes understanding
and quantifying the biases in the data itself. In this paper, we demonstrate that significant disparities
in health exist in the data even before applying AI tools. Thus, training AI systems using such biased
data may lead to further biases, if not handled appropriately (Plecko and Bareinboim, 2024). At the
same time, while great care needs to be taken when training AI systems, a transition to such systems
also presents the opportunity to possibly correct for existing human biases.

So far, a systematic framework for analyzing health equity that is compatible with the new needs
of the data-driven era has not been proposed. In this paper, we discuss such a framework that may
appeal to a broad range of practitioners, data scientists, and AI engineers. The main aim of the
framework is to use a causal lens to obtain actionable insights that can improve patient engagement
and outcomes. To illustrate this, we perform a case study and focus on the question of racial and
ethnic disparities in outcome following admission to an intensive care unit (ICU) (McGowan et al,
2022), in particular focusing on disparities in mortality. We analyze data from Australia (Secombe
et al, 2023) for disparities between the Indigenous (Aboriginal and Torres Strait Islander) and Non-
Indigenous (majority group) population of Australia. In parallel, we also analyze a database from a
large tertiary hospital in Boston, Massachusetts (Johnson et al, 2020), focusing on the racial disparity
between the African-American and White population. We illustrate how a systematic approach for
analyzing equity can illuminate different causal mechanisms that generate disparities observed in the
data, and demonstrate that racial/ethnic disparities in ICU outcome are markedly similar between the
United States and Australia.

2 Results
The research in this paper was approved by the ethics committee of the Alfred Hospital, Melbourne
(Project #661/24), and was done in collaboration with the Indigenous Data Network (IDN) of Australia
(Indigenous Data Network, 2024b).

2.1 Data
The first dataset we analyzed is the Australian and New Zealand (ANZ) Intensive Care Society (ANZ-
ICS) Adult Patient Database (APD) (Secombe et al, 2023). The ANZICS APD receives submissions
from 98% of ICUs in Australia. We analyzed all admissions from 181 hospitals across Australia between
2018 and 2024, yielding a cohort of 1, 035, 890 patients, of whom 38, 736 (3.7%) were Indigenous. The
overall mortality rate was 7.5%. The second dataset we analyzed is the Medical Information Mart for
Intensive Care (MIMIC-IV) (Johnson et al, 2020) database, from the Beth Israel Deaconess Medical
Center in Boston, Massachusetts. We analyzed all ICU admissions between 2008 and 2019, yielding
a cohort of 38, 844 patients, of whom 4, 640 (11.9%) were African-American. The overall mortality
rate was 7.6%. Further patient information for both datasets, including patient filtering steps, and the
description of the covariates used in the analysis, can be found in the Methods section and Appendix A.
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Fig. 1: Diagram of the performed analysis steps.

2.2 Framework of Causal Fairness Analysis
Throughout, we followed the framework of causal fairness analysis described in (Plečko and Barein-
boim, 2024). A diagram of the analysis performed in the paper is shown in Fig. 1. Using the ricu
R-package (Bennett et al, 2023), we performed data loading for both datasets, which includes infor-
mation on race (MIMIC-IV) or ethnicity (ANZICS APD), age, sex, socioeconomic status (SES for
short, available in ANZICS APD only), chronic health status, admission diagnosis, illness severity, and
in-hospital mortality. Based on domain knowledge, we constructed a specific type of causal diagram
called the Standard Fairness Model (SFM), in which variables are categorized into four groups (see
Fig. 2a). The protected attribute is race/ethnicity (depending on the dataset), labeled X. The set of
confounders, labeled Z, includes age, sex, and SES (SES was available only in Australian data). These
demographic variables were chosen as confounders since they may be correlated with race/ethnicity but
may not necessarily be causally influenced by it. The set of mediators W includes chronic health sta-
tus, admission diagnosis, and illness severity. The outcome of interest is in-hospital mortality, labeled
Y . A comparison of patient characteristics for majority and minority groups for the ANZICS APD and
MIMIC-IV cohorts is given in Tbls. A1 and A2, respectively.

Our goal in this paper was to explain the observed disparity in mortality between the demographic
groups. We started by computing the average differences in mortality rates (also known as the total
variation, or TV measure), a commonly used measure of disparity, and found that

(AU) E[death | Non-Indigenous]− E[death | Indigenous] = −0.4%, (1)
(US) E[death |White]− E[death | African-American] = 0.8%. (2)

These statistics show that minority patients in Australia were more likely to die after ICU admission,
while this finding is reversed in the US data. Based on the constructed causal diagram from Fig. 2a,
however, we see that the average difference in mortality rates as in Eqs. 1-2 can arise in three different
ways:
(i) confounded/spurious effect: race/ethnicity may be associated with age, sex, or socioeconomic

status, which may influence the mortality risk,
(ii) indirect effect: race/ethnicity may influence chronic health, admission diagnosis, and illness

severity, which have an effect on the mortality risk,
(iii) direct effect: race/ethnicity may influence the mortality risk, with all other variables kept equal.
Using the framework of causal fairness analysis, we can compute the above three effects, and quantify
how much each of the effects contributes to the marginal disparity reported in Eqs. 1-2.
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Fig. 2: (a) Standard Fairness Model constructed for the data (b) Decomposition of the marginal
disparity in outcome into confounded, indirect, and direct effects, on ANZICS APD and MIMIC-IV
datasets.

2.3 Decomposing the Disparity
The results quantifying confounded, indirect, and direct effects on both datasets are shown in Fig. 2b.
The TV measure, reported in Eqs. 1-2 and shown in the last column of Fig. 2b, takes opposite signs on
the two datasets. However, when applying a causal perspective on the problem, we obtain the following
decomposition of the TV measure:

(AU) E[death | Non-Indigenous]−E[death | Indigenous] = −0.4% = 1.8%︸ ︷︷ ︸
confounded

+(−2.7%)︸ ︷︷ ︸
indirect

+0.5%︸ ︷︷ ︸
direct

, (3)

(US) E[death | White]−E[death | African-American] = 0.8% = 1.1%︸ ︷︷ ︸
confounded

+(−1.3%)︸ ︷︷ ︸
indirect

+1.0%︸ ︷︷ ︸
direct

. (4)

We see that the direct, indirect, and spurious effects (first three columns in Fig. 2b) are in fact
equal in sign when applying the causal decomposition. The causal interpretation of the decomposition
can be summarized as follows. First, along the confounded causal pathway, there exists a protective
effect for minority patients, transmitted through variables such as age, sex, or SES (accounting for
1.8% and 1.1% of the overall variation in the AU and US data, respectively). Second, along the
indirect causal path, there is a harmful effect on minority patients, indicating that minority patients
are more likely to die as a result of the indirect effect (accounting for negative 2.7% and 1.3% of
the overall variation, respectively). Variables that transmit the indirect effect include chronic health
status, admission diagnosis, and the degree of illness severity. Third, along the direct causal path (when
keeping all other variables equal), there is a protective effect of belonging to the minority group, which
accounted for 0.5% of the overall variation in the AU data, and 1.0% in the US data. In other words,
for two individuals with comparable characteristics (age, chronic health, illness severity, admission
diagnosis) who differ with respect to the protected attribute, the one belonging to the minority group
is more likely to survive after ICU admission. Finally, we emphasize that all the effects studied were
statistically significant, indicating that the average differences between groups are in fact a complex
interplay of multiple causal mechanisms that transmit change between these demographics.
Explaining the confounded effect. The confounding variables between the protected attribute
ethnicity/race and the outcome are age, sex, and SES (see Fig. 2a). We therefore analyzed the age/sex
distributions of different subpopulations. In both datasets, minority patients were admitted much
younger on average compared to their majority counterparts (average difference in age of 13.6 years
in Australian, and 6.3 years in US data). The age distributions for the two countries, across minority
and majority groups, are shown in Figs. 3a, 3b. Further, we found differences in socioeconomic status
in the Australian data (see Fig. 3c). Indigenous patients have lower SES on average, which increases
the mortality risk. Since younger age and higher SES reduce the mortality risk, the group-specific
differences in age/SES are both relevant for understanding the confounded effect in the first column
of Fig. 2b.
Explaining the indirect effect. The indirect effect, reported in the second column of Fig. 2b, is
protective for the majority group. This effect is mediated by admission diagnosis, illness severity,
and chronic health status. Therefore, we compared group-specific distributions of illness severity after
adjusting for age. In Australia, minority patients had higher illness severity (Fig. 3d, p < 0.001 for
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Fig. 3: (a) Age in Australian data; (b) Age in US data; (c) Deciles of socioeconomic status in Australian
data; (d) SOFA score in Australian data; (e) SOFA score in US data; (f) chronic health status in US
data (Charlson comorbidity index).

difference in means), while the distribution of illness severity in the US data did not show a clear
trend (Fig. 3e, p = 0.30 for difference in means). We also analyzed differential patterns in admission
diagnosis after adjusting for age. Minority patients were more likely to be admitted for a medical vs. a
surgical reason (both p < 0.001) and were more likely to be a non-elective admission (both p < 0.001).
This mechanism also explains a part of the observed indirect effect, since medical and non-elective
admissions carry a greater risk of death. Furthermore, in the US data, minority patients had a higher
average Charlson comorbidity index (Charlson et al, 1987) (Fig. 3f, p < 0.001), while in the Australian
data, minority patients scored higher on the Clinical Frailty Scale (Rockwood et al, 2005) (p < 0.001).
Therefore, worse pre-morbid health status also contributed to the indirect effect. In summary, the
indirect effect is explained through a combination of differences in admission pattern, chronic health
status, and illness severity.
Explaining the direct effect. In both datasets, the direct effect was protective for minority patients
when all other variables were kept equal. This finding required an extended analysis, which is described
next. First, we note that possible unobserved confounders for the direct effect of race/ethnicity on
outcome include variables such the SES (measured only in AU data) or other unobserved social deter-
minants of health (SDoH). However, the above analysis shows that SES (when available) indicates
better status for the majority group. Thus, the addition of SES or SDoH data to the analysis would
likely not explain away the protective direct effect for the minority group, but rather make it more pro-
nounced. To better understand direct effects, we took a more granular approach to the quantification
of such effects.

2.4 Interaction Testing and Heterogeneous Effects
To assess potential interactions between the causal pathways under study, we performed non-parametric
interaction testing (Plecko, 2024). This approach provides statistical tests to detect interactions
between causal effects along different pathways. As discussed, there are three pathways between ethnic-
ity/race (X) and mortality (Y ) in Fig. 2a, namely confounded, indirect, and direct. Using interaction
testing, for each pair of pathways, we tested if their interaction was significant. In both datasets, we
identified significant interactions between (i) indirect and confounded pathways and (ii) direct and
indirect pathways. In the ANZICS APD data, we additionally found significant interactions of direct
and confounded pathways. The full set of p-values for interaction tests is given in Appendix B. The
indirect-confounded interaction suggests that the indirect effect along X → W → Y is modified by
values of the confounders Z. This modification is studied in Appendix D. Similarly, the direct-indirect
interaction suggests that the direct effect along X → Y is modified by values of the mediators W .
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(a) Direct effect heterogeneity on
death on ANZICS APD.

(b) Baseline risk ratio of ICU
admission in Australia.

(c) Direct effect heterogeneity on
readmission on ANZICS APD.

(d) Direct effect heterogeneity on
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Fig. 4: Heterogeneity according to age group and admission type of (a) direct effect of minority status
on death on ANZICS APD; (b) baseline risk ratio of ICU admission in Australia; (c) direct effect
of minority status on readmission on ANZICS APD; (d) direct effect of minority status on death on
MIMIC-IV; (e) direct effect of minority status on readmission on MIMIC-IV.

Finally, the direct-confounded interaction indicates that the direct effect is also modified by the con-
founders Z. We therefore analyzed the heterogeneity of direct effects of race/ethnicity on outcome
across admission diagnoses (mediator) and age groups (confounder). The results are shown in Fig. 4a
for ANZICS APD and Fig. 4d for MIMIC-IV. The red color indicates a protective direct effect for the
minority group. The protective direct effect of minority race/ethnicity was present for the group of
medical admissions in both datasets.

We considered several hypotheses for explaining the protective direct effect for medical admissions
of minority patients. Firstly, this effect could represent a genuine biological difference between the
majority and minority groups. However, such biological effect would most likely need to be present
for both medical and surgical admissions. Further, the fact that we are observing this effect for two
entirely distinct populations (Australian Indigenous and African-American) that are far apart in terms
of ancestral lineages (Tishkoff et al, 2009; Malaspinas et al, 2016) makes this explanation less likely.
Therefore, this effect is more likely to be a consequence of social differences between groups, since the
minority groups on both continents are known to be disadvantaged in their socioeconomic positions.
As discussed earlier, however, it is implausible that confounders related to socioeconomic disadvantage
would explain away the direct effect that is protective for the minority group.

2.5 Tipping Over Hypothesis and Population Risks
We hypothesized that the protective effect of race/ethnicity observed in the data was due to a tipping
over effect – minority patients are more likely to require ICU care due to medical complications. The
increase in the probability of requiring ICU admission may be a result of worse access to primary
health care, since minority groups are less likely to have access to and utilize health care, as reported in
previous literature (Davy et al, 2016). Put differently, for majority patients, medical complications are
more likely to be prevented through primary care, and therefore only the more severe cases reach the
ICU, causing a selection bias (or left-censoring). Following this hypothesis, we sought to investigate the
baseline risk of ICU admission across different admission groups in the ANZICS APD. This analysis
was possible since the ANZICS APD covers 98% of all ICU admissions in Australia. Data on the age
and ethnicity structure of the Australian population were obtained from the Australian Bureau of
Statistics (Australian Bureau of Statistics, 2021a,b). After computing the risks of ICU admission, we
found that minority patients were 182% more likely to be admitted to ICU (compared to a majority
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group patient) for a medical reason, 79% more likely for emergency surgery, and 14% less likely for
elective surgery (all p < 0.001).

We sought to investigate if the risk ratio for ICU admission was related to the strength of the
observed protective direct effect for the minority group. A possible causal mechanism of the phe-
nomenon may be described as follows. Larger risk ratios for ICU admission indicate that a larger
number of patients were admitted for a specific diagnosis. A higher prevalence of a specific diagnosis
may decrease the underlying illness severity, since ICU admissions for patients with conditions that
may have been prevented at an earlier stage of care are likely to reduce the overall risk in the group. To
investigate this potential explanation, we assessed the age-adjusted risk ratio of ICU admission across
age groups and admission types, defined as:

P (admission d | do(minority), age group)
P (admission d | do(majority), age group)

. (5)

The larger the ratio, the more likely minority patients are to be admitted for this diagnosis and age
group, compared to majority patients. The risk ratios across age groups and admission types are
presented in Fig. 4b. We tested the similarity of the risk ratios in Fig. 4b with the estimates of the
direct effect of minority status on mortality in Fig. 4a. These effects were significantly correlated
(Pearson’s correlation coefficient ρ = 0.45 with 95% confidence interval [0.22, 0.68]). Therefore, the
pattern of increased risk of ICU admission appeared to be related to the protective effect of minority
status on mortality for different age-diagnosis groups. Logically, however, other unknown factors (such
as baseline disease incidence) would provide further insight into this analysis.

2.6 Readmission Analysis
After examining the patterns of protective direct effects on mortality, and baseline risk of ICU admis-
sion, we further investigated the risk of ICU readmission. Within the cohort of patients who survived
their hospital stay, we analyzed whether the patient was readmitted to ICU after being released from
the hospital, and this readmission outcome was labeled R (in the Australian data, readmission to any
hospital in the database was considered, while in the US data only readmission to the same hospital
was available). Using the same quantitative approach as in Sec. 2.2, and the same causal model in
Fig. 2a with readmission R replacing the mortality outcome Y , we estimated the direct effect of minor-
ity status on readmission (along the direct X → R pathway). The values of this direct effect along
different age-admission groups are shown in Fig. 4c for ANZICS APD and in Fig. 4e for MIMIC-IV.
Here, the red color indicates an increased risk of readmission for minority patients compared to their
majority group counterparts. In both datasets, minority patients were more likely to be readmitted,
with a stronger pattern in the US data. In both countries, the increase in readmission had significant
similarity with the protective direct effect pattern for mortality (ρ = 0.74 with 95% CI [0.53, 0.94] for
Australia, comparing Figs. 4a, 4c; ρ = 0.81 with 95% CI [0.58, 1] for the US, comparing Figs. 4d, 4e).
In Australia, the increase in readmission also had significant similarity with the baseline risk of ICU
admission (ρ = 0.88, 95% CI [0.81, 0.97] for comparing patterns in Figs. 4b, 4c).

2.7 Indigenous Intensive Care Equity (IICE) Radar
The fact that Indigenous patients showed improved survival compared to Non-Indigenous patients (with
all other variables kept equal) suggests that their actual condition was less severe than the data showed.
At the same time, the higher likelihood of Indigenous patients (i) being admitted to the ICU and (ii)
being readmitted to the ICU, together with the significant correlation between these patterns and the
protective effect on mortality, suggests that these patterns may be jointly explained by limited access
to or under-utilization of primary care by the minority group. Based on this, we hypothesized that the
increase in the baseline risk of ICU admission should be investigated as a proxy variable for the under-
utilization of primary care by Indigenous patients. This motivated the construction of the Indigenous
Intensive Care Equity (IICE) Radar. From the Australian Bureau of Statistics (Australian Bureau of
Statistics, 2021b), we extracted data about age and Indigenous status across different geographical
areas of Australia. We then matched areas with the patient information available in the ANZICS APD,
to compute the age-adjusted baseline risk ratio of ICU admission, i.e., how much more likely minority
patients were to be admitted to ICU depending on the area (our analysis was performed on the level
of Statistical Areas 3 used by the Australian Bureau of Statistics for the year 2021). The IICE Radar
is shown in Fig. 5, with five risk categories for the different areas. Excess risk ratio of less than 10%
was considered as no risk (white color). Excess RR of 10-50% was classified as moderate risk (light
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Fig. 5: Indigenous Intensive Care Equity (IICE) Radar.

pink), 50-100% as substantial (light red), 100-200% as severe (red), and >200% as extreme (black).
Many of the statistical areas experienced at least moderate risk, implying Indigenous patients were
50% to a 100% more likely to be admitted to ICU. Some parts of Western Australia (South West -
Perth) recorded excess risk ratios of more than 300% (minority patients were four times more likely to
be admitted), while in other parts (Outback North) the excess risk was up to 900% (minority patients
were ten times more likely to be admitted to ICU). The IICE Radar uncovers substantial differences
in risk of ICU admission across different regions, requiring further investigation. The construction of
the Radar opens the door to monitoring the increase in admission to ICU, and future studies of access
to primary care and its impact on health outcomes of minority groups.

3 Methods

3.1 Dataset Description and Covariates
The ANZICS APD contains information on demographics (including age, sex, Indigenous status),
biochemical and physiological values during the first 24 hours of the ICU stay, and ICU admission
diagnosis (ANZICS modification of the APACHE IV diagnosis list). The information is used for the
calculation of severity of illness scores including Sequential Organ Failure Assessment (SOFA), Acute
Physiology and Chronic Health Evaluation (APACHE) III scores, APACHE III predicted risk of death,
and in-hospital outcomes. The covariates extracted for purposes of analysis were:

• protected attribute X: indigenous status (Indigenous vs. Non-Indigenous),
• confounders Z: age, sex, and postcode-based socioeconomic status (SES),
• mediators W : the APACHE III (Knaus et al, 1991) predicted risk of death, ANZICS modi-

fied APACHE-III admission diagnosis (see full list of considered diagnoses), indicator of whether
admission was elective,

• outcome Y : in-hospital mortality.
SES was not directly available in the data. However, patient postcodes were available, and the post-
code information was matched to the Index of Relative Socioeconomic Advantage and Disadvantage
(IRSAD) developed by the Australian Bureau of Statistics (Australian Bureau of Statistics, 2021c).
This provided information on SES, while 10, 911 (1.1%) patients did not have a recorded postcode. For
these patients, a fixed value of -1 was imputed to indicate a missing value.

The MIMIC-IV dataset is a publicly available resource with comprehensive information on patients
admitted to the Beth Israel Deaconess Medical Center (BIDMC), in Boston, Massachusetts. It is
sourced from two in-hospital database systems, a custom hospital wide EHR and an ICU specific
clinical information system. From the dataset, we extracted the following information:

• protected attribute X: race (White and African-American),
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• confounders Z: age and sex,
• mediators W : the Sequential Organ Failure Assessment (SOFA) (Vincent et al, 1996) score at 24

hours into ICU stay, the Charlson comorbidity index (Charlson et al, 1987), admission diagnosis
from one of the 20 categories available in the MIMIC-IV data (see full list of considered diagnoses),
indicator of whether admission was elective,

• outcome Y : in-hospital mortality.
Study flowcharts with patient filtering steps are available in Fig. A1 in Appendix A. Final cohort
numbers were n = 1, 035, 890 for ANZICS APD and n = 38, 844 for MIMIC-IV data.

R Statistical Software Version 4.3.2 was used (R Core Team, 2021) for all the analyses. Data loading
was performed using the ricu R-package (Bennett et al, 2023). The README file in our Github
repository includes instructions for: (i) installing dependencies; (ii) running a demo analysis requiring
no data access; (iii) reproducing each figure in the paper; (iv) setting up the MIMIC-IV and ANZICS
APD data sources (for which access needs to be obtained).

3.2 Decomposing the Disparity in Outcome
We follow the framework of Causal Fairness Analysis described in (Plečko and Bareinboim, 2024), which
is based on the language of structural causal models (SCMs) (Pearl, 2000). Our approach of analyzing
and aggregating findings across multiple data sources is also related to the data-fusion paradigm in
the causal inference literature (Bareinboim and Pearl, 2016). An SCM is a tupleM := ⟨V,U,F , P (u)⟩,
where V , U are sets of endogenous (observable) and exogenous (latent) variables, respectively, F is
a set of functions fVi , one for each Vi ∈ V , where Vi ← fVi(pa(Vi), UVi) for some pa(Vi) ⊆ V and
UVi ⊆ U . P (u) is a strictly positive probability measure over U . Each SCM M is associated to a
causal diagram G (Bareinboim et al, 2022) over the node set V where an edge Vi → Vj exists if Vi

is an argument of fVj , and a bidirected edge Vi L9999K Vj exists if the corresponding UVi , UVj are not
independent. An instantiation of the exogenous variables U = u is called a unit. By Yx(u) we denote the
potential outcome of Y when setting X = x for the unit u, which is the solution for Y (u) to the set of
equations obtained by evaluating the unit u in the submodelMx, in which all equations in F associated
with X are replaced by X = x. Throughout the paper, we use a specific cluster causal diagram GSFM
known as the standard fairness model (SFM) (Plečko and Bareinboim, 2024) over endogenous variables
{X,Z,W, Y }, shown in Fig. 2a, representing the protected attribute, confounders, mediators, and the
outcome, respectively.

Our key goal is to decompose the average difference in mortality rates between majority and
minority groups, as given in Eq. 1-2. The average difference in mortality, written E[Y | X = x1]−E[Y |
X = x0], where Y is the outcome, x1 the majority group, x0 minority, can be decomposed as (Zhang
and Bareinboim, 2018; Plečko and Bareinboim, 2024):

E[Y | X = x1]− E[Y | X = x0] = E[Yx1,Wx0
− Yx0 | X = x0]︸ ︷︷ ︸

x-DEx0,x1 (y|x0)

(direct)

− E[Yx1,Wx0
− Yx1 | X = x0]︸ ︷︷ ︸

x-IEx1,x0 (y|x0)

(indirect) (6)

− E[Yx1 | X = x0]− E[Yx1 | X = x1]︸ ︷︷ ︸
x-CEx1,x0 (y)

. (confounded)

The difference E[Yx1,Wx0
− Yx0 | X = x0] captures the effect of changing X from minority group x0 to

majority group x1 along the direct causal pathway while keeping the mediators at their natural level
Wx0 , averaged across all minority patients (represented by the conditioning X = x0 in the expectation).
The difference E[Yx1,Wx0

− Yx1 | X = x0] captures the effect of changing X from majority group x1 to
minority group x0 along the indirect causal pathway while keeping X = x1 along the direct causal path,
average across individuals. For the indirect effect, we considered the reverse transition of changing
x1 → x0 (as opposed to x0 → x1 for the direct effect), and this difference was subtracted from the
direct effect quantity. Finally, the confounded term E[Yx1 | X = x0] − E[Yx1 | X = x1] compares the
effect of setting X = x1 along direct and indirect pathways for the minority group x0 vs. the majority
group x1. The marginal difference E[Y | X = x1] − E[Y | X = x0] is obtained by subtracting the
above-described quantifications of indirect and confounded effects from the quantification of the direct
effect as shown in Eq. 6. In Eqs. 3-4 we report the x-DEx0,x1(y | x0) effect, and the negative of indirect,
and confounded effects, −x-IEx1,x0(y | x0) and −x-CEx1,x0(y), respectively. This way of reporting the
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results allows us to represent the TV measure in a simplified way, written as

TV = x-DEx0,x1(y | x0)︸ ︷︷ ︸
direct

+(−x-IEx1,x0(y | x0))︸ ︷︷ ︸
indirect

+(−x-CEx1,x0(y))︸ ︷︷ ︸
confounded

. (7)

For estimating the effects from finite samples, we derived the efficient influence functions for each term
appearing in Eq. 7, and performed one-step debiasing (Kennedy, 2024) to obtain asymptotically normal
estimators, for which the uncertainty estimation can be obtained using the normal approximation.
Sensitivity analysis for the impact of data missingness on the inference of results is described in
Appendix E, while in Appendix C we perform a sensitivity analysis to investigate the effect of overlap
on inference.

3.3 Interaction Testing and Heterogeneous Effects
When decomposing the marginal disparity into direct, indirect, and confounded effects, a transition
x0 → x1 along the direct effect is considered, while the reverse transitions x1 → x0 along the indirect
and confounded effects are subtracted from it (see Eq. 6). The reason why a reverse transition needs
to be considered is the possible existence of interactions, as noted by (VanderWeele, 2015). Following
(Plecko, 2024), an absence of an interaction would imply that the structural mechanism fy of Y can
be written as:

fy(x, z, w, uy) = f (1)
y (x, uy) + f (2)

y (w, uy) + f (3)
y (z, uy), (8)

where f
(1)
y , f

(2)
y , and f

(3)
y are the structural functions corresponding to effects of covariates X, W ,

and Z, respectively. For binary outcomes, the absence of interactions is considered on the risk-scale,
meaning that the structural mechanism fy which returns a binary value is replaced by py(x, z, w) =
P (fy(x, z, w, Uy) = 1). For the binary case, the absence of any interactions would be written as this
would be given by the condition:

py(x, z, w) := P (fy(x, z, w, Uy) = 1) = p(1)y (x) + p(2)y (w) + p(3)y (z), (9)

where p(i) are different functions. In case of no interactions (Eq. 9), we have the following implications:

x-DEx0,x1(y | x0) = x-DEx1,x0(y | x0) (10)
x-IEx0,x1(y | x0) = x-IEx1,x0(y | x0) (11)

x-CEx0,x1(y) = x-CEx1,x0(y) (12)

We follow the approach of (Plecko, 2024) as described above and perform non-parametric interaction
testing by performing a hypothesis test for each of the Eqs. 10-12. The obtained p-values for each
interaction are provided in Appendix B. For quantifying heterogeneous effects, we considered four
different age groups C1, . . . , C4, corresponding to 18-54, 55-64, 65-74, and 75-100 years of age. These
groups were chosen as approximate quartiles of age in the data. For admission categories, we considered
three admission types, namely medical admissions dmed, emergency surgery admissions dems, and
elective surgery admissions dels. For investigating heterogeneity of direct effects, we computed the
quantity

DEx0,x1(y | Ci, d, x0) = E[Yx1,Wx0
− Yx0,Wx0

| age ∈ Ci, admission = d,X = x0] (13)

for different values of Ci, d (reported in Fig. 4). For heterogeneity of indirect effects, we investigated
the quantity

−IEx1,x0(y | age ∈ Ci, x0) = E[Yx1,Wx1
− Yx1,Wx0

| age ∈ Ci, X = x0] (14)

for different values of Ci (see Appendix D). The effects DEx0,x1(y | Ci, d, x0) and IEx1,x0(y | Ci, x0)
were estimated using causal forests (Wager and Athey, 2018), while the uncertainty estimates were
obtained using bootstrap.
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3.4 Tipping Over Hypothesis and Population Risks
The Australian Bureau of Statistics provides census-based values of population in each age group for
years 2016, 2021 (Australian Bureau of Statistics, 2021b). Based on this data, we performed piecewise
linear interpolation in each age group for both the overall and minority populations to determine the
population counts between 2018 and 2024. After performing the imputation, we were able to compute
the number of minority and majority persons who are possibly at risk in each year t and age group a,
denoted as N(x0, a, t), N(x1, a, t), respectively. The number of minority and majority patients admitted
in year t and age group a to the ICU for diagnosis group d was labeled n(x0, a, d, t), n(x1, a, d, t),
respectively. The indicator of whether a person is admitted is labeled with I. The probability (or risk)
of admission for a diagnosis D = d, in age group a, demographic group x, and year t, denoted by
P (I = 1 ∧D = d | age = a, year = t,X = x), is given by:

P (I = 1 ∧D = d | age = a, year = t,X = x) =
n(x, a, d, t)

N(x, a, t)
. (15)

For any conditioning event E, one can consider the E-specific risk, defined as

P (I = 1 ∧D = d | E, do(X = x)) =
∑
a,t

P (I = 1 ∧D = d | age = a, year = t,X = x)P (a, t | E) (16)

where P (a, t | E) is defined as

P (a, t | E) =

∑
a,t∈E N(x0, a, t) +N(x1, a, t)∑
a,t N(x0, a, t) +N(x1, a, t)

. (17)

Then, to obtain the effect of minority status on the risk of ICU admission for any conditioning event
E, we can compute the E-specific risk ratio:

RR(d|E) =
P (I = 1 ∧D = d | E, do(X = x0))

P (I = 1 ∧D = d | E, do(X = x1))
. (18)

In Fig. 4b we reported RR(d | age ∈ Ci, D = d) for medical diagnoses dmed, emergency surgery diag-
noses dems, elective surgery diagnoses dels, and across age groups Ci (18-49, 50-64, 65-74, 75-100 years
old). For quantifying the correlation of different heatmaps in Fig. 4, we used Pearson’s correlation coef-
ficient. Consider a heatmap H consisting of 12 entries Hij , with i ∈ {18-49, 50-64, 65-74, 75-100 years}
and j ∈ {Medical, Surgery (Emergency), Surgery (Elective)}. For two heatmaps H,L, the Pearson’s
correlation coefficient is defined as

ρ(H,L) =

∑
i,j(Hij − H̄)(Lij − L̄)√∑

i,j(Hij − H̄)2
√∑

i,j(Lij − L̄)2
, (19)

where H̄ := 1
12

∑
i,j Hij , L̄ := 1

12

∑
i,j Lij . When computing correlations for heatmaps of the read-

mission pattern (Figs. 4c, 4e), we considered the negative −H heatmap, since negative entries −Hij

measure the increase in the risk of ICU readmission for the minority group. Confidence intervals for
ρ(H,L) are obtained by taking bootstrap samples Db of the original data, and repeatedly estimating
Hb, Lb, and ρ(Hb, Lb), based on Db. The confidence interval for ρ(H,L) is then constructed based on
the values ρ(Hb, Lb) across the bootstrap draws, using a Gaussian approximation.

4 Discussion
In this paper, we introduced a systematic approach for analyzing health disparities, based on the tools
of causal fairness analysis (Plečko and Bareinboim, 2024). The framework was illustrated through an
analysis of racial/ethnic disparities in ICU outcomes between minority and majority groups in Australia
and the United States (see Fig. 1). Our investigation demonstrated that commonly used, statistical
measures to quantify disparity are insufficient for investigating health equity. In the Australian cohort,
the minority group had a higher average mortality rate than the majority group, while this was reversed
in the US cohort. However, when taking a more fine-grained, causal perspective on data analysis, the
studied effects (direct, indirect, spurious) had the same signs and were consistent across populations.
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Using a causal lens also allowed us to investigate different possible pathways that may transmit
change between minority status and the outcome of interest. When considering confounded effects,
we found that minority race/ethnicity was associated with lower age at admission in both countries
(Martin et al, 2003), which in turn reduced the risk of mortality. This effect is most likely driven by
increased chronic health problems, and/or lack of access to primary care for the minority groups. For
the indirect effects, we found that minority groups had worse chronic health, were more likely to be
admitted for urgent (non-elective) and medical reasons, and had higher illness severity levels (after
removing the age effect). All of these factors are known to increase the mortality risk. At the same
time, surprisingly, we found that along the direct effect, minority patients showed better survival,
when all other variables were held constant (ceteris paribus). A further analysis of effect interactions
showed that this direct effect was heterogeneous across admission types. For medical admissions, there
was a pronounced protective direct effect for the minority group, while this was not the case for
surgical admissions. We hypothesized that the protective direct effect of race/ethnicity, which applied
predominantly to medical admissions, may be due to the fact that minority patients have poor access
to primary healthcare, as reported in previous literature (Davy et al, 2016). The causal mechanism for
such a protective effect would be that worse access to primary care results in a higher prevalence of
ICU admission for a specific diagnosis, and that such increased prevalence reduces the overall risk of
death in that group, since increased prevalence also implies that less severe and possibly preventable
cases reach the ICU. A related phenomenon of increased prevalence and reduced mortality has been
observed in the literature on sex-related ICU disparities (Modra et al, 2022). In this context, we
analyzed the baseline risk of ICU admission in Australia. We showed that the increase in risk for the
minority group was highest in the group of medical admissions (compared to the baseline risk for the
majority group), and significantly higher than for surgical admissions. Such increase in risk constitutes
a selection bias (or left-censoring of majority group patients), which may explain the observed direct
effect. Accordingly, we demonstrated that the pattern of increase in the risk of ICU admission was
statistically related to the strength of the protective direct effect observed for different diagnostic and
age groups. In a separate analysis of readmissions, we found that minority patients were in fact more
likely to be readmitted (Soto et al, 2013), and this effect was also strongest within the group of medical
admissions. The fact that Indigenous patients showed increased risk of admission, improved survival,
and a higher chance of readmission, along with the significant similarity of these patterns across age-
admission groups, supports the interpretation that under-utilization of primary health care may be
one of the causes of our findings. This motivated us to construct the Indigenous Intensive Care Equity
(IICE) Radar, which monitors the increase in risk of ICU admission for Indigenous patients across
different geographical areas. The increase in risk of ICU admission is a hypothesized proxy of lack
of access and reduced utilization of primary care. The construction of the Radar opens the door to
important future studies with possibly significant public health implications.

An important finding of our study is that, when considering direct, indirect, and spurious effects,
racial and ethnic disparities in ICU outcome are a consequence of differences that happen prior to
the time the patient enters the ICU, with key factors being (i) worse chronic health and lower age at
admission; (ii) higher risk of a non-elective, urgent admission; (iii) worse access to primary care for
earlier treatment of preventable ICU admissions.

Another important takeaway of our study is that the “sign” of a causal effect estimate is not
a definitive way to conclude whether a protected group is discriminated against. For instance, the
confounded association of minority race/ethnicity with lower age at admission, resulted in reduced
mortality for the minority group. Similarly, along the direct effect, we also observed a protective effect
of minority race/ethnicity. However, upon interpreting these effects, we noted that they are most likely
a consequence of socioeconomic disadvantage and worse access to healthcare. Therefore, critical care
needs to be interpreted within a multi-layered system of healthcare, and the filtering and selection bias
of populations that require critical care has direct implications on the health disparities observed in
ICU outcomes.

A major strength of our work is the size and the heterogeneity of the data we studied. We studied
almost 1.1 million ICU admissions across two countries on different continents, and our findings were
robust and consistent across these countries. A second strength is the use of a systematic framework
for analyzing health inequities, which allows us to both decompose the observed disparity in average
mortality rates into its constitutive causal elements, and also allows us to investigate whether there are
significant interactions between different causal pathways. Thirdly, we were able to establish hypothe-
ses that explained why differences along direct, indirect, and spurious pathways occur, and we tested
a tipping-over hypothesis to explain the protective direct effect for minority patients. We further con-
nected the quantification of the direct effects with external data on the baseline risk of ICU admission,
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adding further evidence to support our explanation of the direct effects, and constructed a monitoring
tool that may provide the basis for important public health policy in the future.

In terms of limitations, we acknowledge the observational nature of our study, and note that some
relevant confounders such as socioeconomic status were only partially included in our analyses (missing
in US data, available in Australian data). Other unobserved social determinants of health (SDoH)
should also be included in future studies. Still, we were able to demonstrate that tools of causal inference
may help uncover important patterns in health equity investigations. Furthermore, as elaborated in the
main text, such missing confounders would likely not explain away the effects we studied, but rather
make the protective direct effect for minority patients even more pronounced. Secondly, we note that
our analysis of baseline risk of ICU admission did not include the overall prevalence of different diseases
in the population but focused on rates of admission to ICU according to different diagnoses. Disparities
in chronic health are also inherently related to limited access to primary care, since not accessing
primary care may result in worse management of chronic health issues (Rothman and Wagner, 2003).
Future studies on minority health disparities in ICU outcomes should attempt to further disentangle
these different contributing factors and their impact on ICU admission risk.

5 Conclusion
In a large study of almost 1.1 million ICU admissions in Australia and the United States, we used
the framework of Causal Fairness Analysis to investigate whether tools of causal reasoning can help to
disentangle the mechanisms underlying disparities in mortality according to race and ethnicity among
critically ill patients. We found that three different causal effects explained the disparity: (i) minority
patients were admitted younger on average, decreasing the mortality rate; (ii) minority patients had
worse chronic health and were more likely to be admitted for non-elective and medical reasons, increas-
ing the mortality risk; (iii) there was a protective direct effect for minority group patients admitted
for medical reasons, indicating a decrease in mortality compared to the majority group, when all other
variables were kept equal. The last, protective direct effect may be explained through a causal mech-
anism in which minority patients are, due to worse access to primary health care, more likely to end
up in ICU for less severe and preventable conditions, which then spuriously reduces the mortality risk.
Finally, we emphasize that the novel framework used in this manuscript can be applied across a range
of problems in health equity, as it provides a systematic way of causally explaining health disparities,
while being compatible with the modern tools of large-scale data analysis and causal inference.
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Appendix A Patient Information & Filtering

n = 1,160,903
(202 sites)

n = 1,035,890
(181 sites)

ANZICS APD
Cohort

age < 18 years (n = 10,848)

sex missing (n = 262)

elective status missing
(n = 4,860)

repeated admission
(n = 50,255)

Indigenous status missing
(n = 58,788)

(a) ANZICS APD filtering.

n = 73,181

n = 38,844

MIMIC-IV Cohort

repeated admission
(n = 22,261)

race missing or not
Caucasian / African-American

(n = 12,076)

(b) MIMIC-IV filtering.

Fig. A1: Study flowchart of patient filtering steps for (a) ANZICS APD and (b) MIMIC-IV.

Variable Reported ANZICS APD (Majority) ANZICS APD (Indigenous) p-value

Cohort size n 997154 38736
Age (years) Median (IQR) 66.58 (52.88-76.08) 50.6 (37.09-61.6) < 0.001
Admission type < 0.001

- Medical % 45 69
- Surgical % 55 31

Mortality n (%) 74820 (7.5%) 3064 (7.9%) 0.003
ICU LOS (days) Median (IQR) 1.76 (0.92-3.25) 2.02 (1.01-3.96) < 0.001
Hospital LOS (days) Median (IQR) 7.71 (4.05-14.06) 7.16 (3.48-14.2) < 0.001
Sex (Male) % 56 51 < 0.001
Ventilated n (%) 306332 (30.7%) 15164 (39.1%) < 0.001
APACHE-III Score Mean, Med. (IQR) 50.7, 47 (35-62) 51.6, 47 (33-66) 0.063
APACHE-III Risk of Death Mean, Med. (IQR) 0.12, 0.05 (0.02-0.14) 0.14, 0.06 (0.02-0.16) < 0.001

Table A1: Comparison of patient characteristics on ANZICS APD.

Variable Reported MIMIC-IV (White) MIMIC-IV (African-American) p-value

Cohort size n 34204 4640
Age (years) Median (IQR) 67 (55-78) 60 (47-72) < 0.001
Admission type < 0.001

- Medical % 60 75
- Surgical % 40 25

Mortality n (%) 2627 (7.7%) 318 (6.9%) < 0.001
ICU LOS (days) Median (IQR) 1.85 (1.08-3.37) 1.8 (1-3.26) < 0.001
Hospital LOS (days) Median (IQR) 6.5 (3.91-10.9) 6.41 (3.68-11.54) 0.460
Sex (Male) % 56 46 < 0.001
Ventilated n (%) 13692 (40.0%) 1480 (31.9%) < 0.001
SOFA < 0.001

- Respiratory Median (IQR) 2 (1-3) 2 (1-3)
- Coagulation Median (IQR) 0 (0-1) 0 (0-1)
- Hepatic Median (IQR) 0 (0-1) 0 (0-1)
- Cardio Median (IQR) 1 (1-1) 1 (0-1)
- CNS Median (IQR) 0 (0-1) 0 (0-1)
- Renal Median (IQR) 0 (0-1) 0 (0-1)
- Total Median (IQR) 4 (2-6) 4 (2-6)

Table A2: Comparison of patient characteristics on MIMIC-IV.
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Appendix B Interaction Testing

Interaction Test ANZICS APD (AU) MIMIC-IV (US)

TE ⊗ SE < 0.01∗ 0.11

DE ⊗ IE 0.02∗ 0.02∗

DE ⊗ SE 0.04∗ 0.71

IE ⊗ SE 0.03∗ < 0.01∗

DE ⊗ IE ⊗ SE 0.59 0.11

Table B3: Interaction Testing for ANZICS APD and MIMIC-IV datasets.
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Appendix C Investigating Overlap
An important assumption required for correct causal effects estimation is known as overlap:

δ < P (X = 1 | Z = z,W = w) < 1− δ, (C1)

for some δ > 0. In this appendix, we investigate the overlap assumption in the datasets we analyzed.
We abbreviate the quantity P (X = 1 | Z = z,W = w) by ex1(z, w), and similarly P (X = 0 | Z =
z,W = w) by ex0(z, w). The minimum of the two propensity weights emin(z, w) is defined as

emin(z, w) := min{ex0(z, w), ex1(z, w)}. (C2)

The notation ex(Z,W ) denotes a random variable depending on random values Z,W , as opposed to a
fixed value ex(z, w) for Z = z,W = w. To investigate the validity of the overlap assumption in Eq. C1,
we first estimate the propensity weights êx(Zi,Wi) for each of our data samples (Zi,Wi). Then, we
perform a sensitivity analysis using quantile-based trimming of the propensity weights (Crump et al,
2009). Let Q(q; emin(Z,W )) denote the lower q quantile of the distribution of the propensity weights
emin(Z,W ). For each dataset, and each quantile q ∈ {1%, . . . , 5%}, we select all the samples with
values above the lower q quantile, and construct the dataset

D(q) = {(Xi, Zi,Wi, Yi) ∀i : êmin(Zi,Wi) > Q(q; êmin(Z,W ))}. (C3)

We then perform the decomposition of the TV measure as in Eq. 6 for the subset of the data D(q) with
the q-quantile of samples with extreme propensity weights removed. For the dataset D(q), for which the
overlap criterion in Eq. C1 should hold with the value of δ = Q(q; êmin(Z,W )), we compute the 95%
O-value using the difference-in-tails method (DiT) (Lei et al, 2021), labeled Ô(q), which provides an
upper bound on the overlap value δ for the dataset D(q), in a distribution-free way. To test for overlap
violations, we use the hypothesis test that compares if Ô(q) is smaller than the nominal overlap bound
Q(q; êmin(Z,W )) of the trimmed dataset D(q). If so, the test detects overlap violations and signals
that a stronger trimming procedure is necessary.

Fig. C2: Sensitivity analysis of the impact of quantile-based trimming of propensity weights on TV
decompositions on ANZICS APD and MIMIC-IV.

Fig. C2 provides the results of the sensitivity analysis, and demonstrates that the causal decom-
position is not significantly affected by the trimming of propensity weights over different thresholds q.
Furthermore, for both datasets and at each threshold q, we found that the O-values were greater than
the nominal overlap condition after trimming, namely Ô(q) > Q(q; êmin(Z,W )), meaning that no sig-
nificant overlap violations were detected (trimming was strong enough). Putting everything together,
we conclude that there is no evidence that the TV decompositions are affected by overlap violations.

20



Appendix D Indirect Effect Heterogeneity
The interaction testing analysis performed in Sec. 2.4 demonstrated that important interactions exist
between indirect and spurious pathways. In this appendix we focus on the heterogeneity of indirect
effects according to age, as a consequence of significant interactions of spurious and indirect paths. For
the four age groups 18-54, 55-64, 65-74, and 75-100, labeled C1 to C4, and corresponding approximately
to the quartiles of age in the data, we compute the indirect effects

−IEx1,x0(y | age ∈ Ci, x0) = E[Yx1,Wx1
− Yx1,Wx0

| age ∈ Ci, X = x0]. (D4)

The effects are estimated for both the Australian and US data, and visualized in Fig. D3a. In both
datasets, the strength of the indirect increases with age, and the risk of death for majority group
patients is reduced along the indirect path. After establishing these effects, we explain mechanistically

(a) Indirect effect heterogeneity across age groups on ANZICS APD and MIMIC-IV.

(b) Effect of minority status on admission type. (c) Effect of admission type on mortality.

Fig. D3: Understanding the heterogeneity of indirect effects on ANZICS APD and MIMIC-IV data.

what drives this heterogeneity. In Fig. D3b, we plot how the proportion of medical and emergency
surgery admissions (these admissions are jointly referred to as urgent) changes across age groups Ci

and minority status. In Fig. D3c, we plot how the mortality rate for urgent and elective admissions
changes across age groups Ci. Fig. D3b illustrates that in every age group Ci, minority patients are
more likely to be admitted for an urgent condition. Fig. D3c illustrates that while the risk of death
increases with age for both urgent and elective admissions, the difference in risk of urgent vs. elective
admissions becomes larger with age, making the indirect effect more pronounced. These observations
explain why the indirect effect, along which minority patients are more likely to die, is more pronounced
with older age.
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Appendix E Missing Value Sensitivity Analysis

Fig. E4: Sensitivity analysis of how the imputation of missing values of X affects the TV decomposition
on the ANZICS APD data.

In this appendix, we investigate the effect of missing values on the data analysis. In the ANZICS APD,
of the overall cohort under investigation, n = 58788 patients (5.4%) had no reported Indigenous status.
To investigate the effect of this data missingness on the decompositions of the TV measure, we proceed
as follows. Let M denote the missingness indicator. We assume that the data is missing at random
(MAR), meaning that the missingness pattern depends on the other observed variables Z,W, Y , and
not on the value of X itself, i.e.,

M⊥⊥X | Z,W, Y. (E5)

The MAR condition can also be written as

P (M = 1 | X = x1, Z = z,W = w, Y = y) = P (M = 1 | X = x0, Z = z,W = w, Y = y). (E6)

For a fixed value of Z = z,W = w, Y = y, the missingness of X does not depend on the actual value
of X. A standard consequence of the MAR assumption is the fact that

P (X = x |M = 1, Z = z,W = w, Y = y) = P (X = x |M = 0, Z = z,W = w, Y = y). (E7)

In words, the distribution of X given Z,W, Y is the same within the subsets of data where X is
unobserved (M = 1) and where X is observed (M = 0). Therefore, we perform the following sensitivity
analysis. We first regress X on Z,W, Y using xgboost (Chen and Guestrin, 2016) on the complete
subset of data with X recorded. Then, for the subset where X is missing, we impute the missing values
of X based on the observed values Z = z,W = w, Y = y. We repeat the imputation process ten
times, obtaining imputed datasets D1, . . . ,D10. We repeat the TV decomposition on each dataset Di,
and compute the effect estimates and their confidence interval. These results (based on imputed data)
are then compared to the data analysis focusing on complete data only, to understand how the effect
estimates change, and how much uncertainty is added once missingness is taken into account. The
results of this experiment are shown in Fig. E4, and indicate that the data missingness has a negligible
impact on the results.
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