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Abstract. Conditional ignorability is a cornerstone of the Neyman–Rubin po-
tential outcomes framework, enabling identification of causal effects via co-
variate adjustment. However, we argue that such assumptions are more diffi-
cult to assess than commonly appreciated, due to the implicit judgments they
require about relationships within the covariate set used for adjustment. For-
mally, we show that verifying ignorability over n covariates may implicitly
require evaluating over O(4n

2

) structural configurations — posing a combi-
natorial challenge that is intractable for most data scientists to resolve by the
naked eye, without structural or graphical support. To address this challenge,
we develop a structural account of ignorability grounded in the semantics of
structural causal models, and introduce a new class of graphical models —
cluster causal diagrams over three distinct blocks (treatment, outcome, ad-
justment covariates), denoted CG(3) — that abstract away the internal struc-
ture within the set of covariates. We define the notion of structural ignorabil-
ity, which can be evaluated using the back-door criterion on CG(3) diagrams,
offering a transparent and practical method for assessing ignorability-type
assumptions. Our proposal bridges potential outcomes and graphical frame-
works, drawing on foundational ideas from statistics, genetics, econometrics,
and computer science, while retaining the clarity of the structural approach
and requiring fewer assumptions than full causal diagrams.

1. INTRODUCTION

Inference of causal effects is a fundamental task across
the sciences. Although randomized experiments [14] are
considered the gold standard for causal inference in many
applied fields, much of the literature is concerned with
inferring effects from non-experimental (observational)
data. In such settings, however, inferences may remain
impossible, even with unlimited data. As Cartwright fa-
mously put it, “no causes in, no causes out” [9]; causal
conclusions require causal assumptions. This intuition is
formalized by the Causal Hierarchy Theorem (CHT) [6,
Thm. 1], which shows that, in an information-theoretic
sense, causal inferences cannot be drawn in the absence
of causal knowledge. Acknowledging this impossibility,
a central question in causal inference becomes: when and
under what conditions can causal effects be inferred from
data? [36, 28]. Two major frameworks provide languages
for articulating the necessary assumptions to connect data
with causal claims — potential outcomes and structural
causal models — each offering distinct perspectives on
model elicitation, abstraction, and operational practice.
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The first, potential outcomes (PO) framework, is as-
sociated with the work that started with Don Rubin and
colleagues [36], which extended pioneering ideas by
Jerzy Neyman on modeling counterfactual outcomes in
randomized experiments [24]. This framework formal-
izes the notion of potential outcomes, enabling reasoning
about their distributions (see the gray/left side of Fig. 1).
Its assumptions are typically algebraic, expressed in terms
of independence among factual and counterfactual vari-
ables. For inferring causal effects, a common route starts
by assessing some form of unconfoundedness – usually
encoded through the so-called conditional ignorability as-
sumption [35, 33]. If a corresponding ignorability state-
ment holds, the causal query can be reduced to a statistical
functional of the observational data distribution (often in
the form of adjustment), and attention shifts to estimat-
ing the query from a finite amount of data. While this
focus on estimation has made the PO framework influen-
tial in applied fields, it offers little guidance for assess-
ing whether key causal assumptions are justified. For the
estimation step, a range of remarkably influential tech-
niques have been developed, such as inverse-propensity
weighting [33], matching [32], and doubly-robust meth-
ods [30, 31, 2], to name a few (see [17] for a review).
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Figure 1: Inferential pipeline’s overview, highlighting emphasis of the PO and graphical approaches. The PO approach
route (R1) typically assesses ignorability directly from the joint distribution P (X,Yx,Z); the classical graphical ap-
proach assesses ignorability based on the causal diagram (R2). The new proposal in this paper elicits ignorability from a
cluster diagram over three nodes (R3).

Effect estimation remains an active field of research, with
several interesting recent developments [10, 20].

The second, alternative framework — rooted in early
ideas from genetics [39] and in the Cowles Commis-
sion’s econometric modeling of interdependent systems
[15], and further developed in computer science — is
known as the structural approach to causality, pioneered
by Judea Pearl [28]. This framework begins from a dif-
ferent premise: mechanisms. It posits a data-generating
process formalized as a structural causal model (SCM),
which encodes the causal processes through which data
arise. The SCM provides semantics for various causal ob-
jects, including both factual and counterfactual distribu-
tions, thereby supporting reasoning under hypothetical in-
terventions, a key requirement for scientific understand-
ing and policy analysis. Fundamentally, this approach
aligns with the central aim of scientific discovery in that it
describes phenomena through a mechanistic perspective.
1 A distinctive feature of the approach is its use of ex-

1As Marschak observed, “The aim of economic policy is to choose
among actions, which requires prediction under hypothetical or coun-
terfactual assumptions. Structural models serve this purpose because
they represent the mechanism generating the data” [23]. Similarly,
Haavelmo argued that “the reason why we are interested in structural
relations is that they enable us to perform controlled experiments (at
least conceptually), which provide the only way to answer the typical
questions of economic policy” [15]. While the spirit of these founda-
tional insights is preserved in our approach, namely, that data arise
from underlying causal mechanisms and that policy analysis requires
structural semantics, we depart from the Cowles-style practice of try-
ing to learn or requiring fully specified models. That tradition, though

plicit, nonparametric graphical representations — where
variables are nodes in a directed acyclic graph (DAG)
— to express assumptions about the underlying causal
mechanisms, making them an accessible abstraction for
data scientists to reason about cause and effect. Within
this framework, causal inference typically proceeds in
two steps. The first, known as identification, determines
whether a causal query can be uniquely computed from
available data and structural assumptions encoded in the
DAG. To this end, the structural approach offers powerful
tools such as the interventional (do-) calculus [27] and the
counterfactual calculus [13], which enable the derivation
of arbitrary interventional and counterfactual quantities.
A widely used identification criterion in this framework
is the back-door criterion, which determines whether a
set of variables that causally precede both the treatment
variable X and the outcome Y suffices to block spurious
associations. When this criterion is met, it identifies an
admissible adjustment set for estimating the causal effect
of X on Y using observational data. 2

conceptually rigorous, faced severe empirical difficulties, including
unstable parameter estimates and poor predictive performance across
policy regimes (e.g., see [22, 11]). This historical experience echoes
the formal content of the CHT discussed earlier, which shows that
learning the full SCM is generally impossible without strong assump-
tions. Our approach retains structural commitments where they are in-
formative and tractable, but avoids the pitfalls of overcommitted, fully
mechanistic modeling. We thank Guido Imbens for helpful discussion
on this historical distinction.

2We note that the identification machinery in the graphical ap-
proach does not end with the back-door criterion. Numerous exam-
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1.1 Limits of PO Assumptions and the Need for
Structural Grounding

While the back-door criterion aligns closely with the
conditional ignorability assumption used in the PO frame-
work, their operationalization differs substantially. In the
PO approach, ignorability must be assessed directly in al-
gebraic form, typically through the independence state-
ment Yx →→ X | Z (within the gray region in Fig. 1). In
contrast, the structural-graphical approach ties such as-
sumptions to a causal diagram, allowing for systematic
verification via graphical criteria.

Formally, the structural approach encompasses the PO
framework, with each object in the analysis assigned
proper semantics (as illustrated in Fig. 1, blue region).
However, in practice, the latter’s algebraic assumptions
often lack semantic grounding. Analysts are asked to ac-
cept independence statements over counterfactual out-
comes — without a mechanism to evaluate or interpret
them transparently. This becomes especially problematic
when deciding which covariates suffice to control for con-
founding.

To illustrate the challenge, consider the four diagrams
in Fig. 2, each involving a treatment X , an outcome
Y , and a set of covariates {Z1,Z2}. In all cases, the
data scientist is expected to assess whether the condi-
tional ignorability statement Yx →→X | Z holds, treating
Z = {Z1,Z2} as a single block. In the top row, this as-
sumption is valid regardless of whether Z1 and Z2 are
confounded, as in Fig. 2(b) (bidirected arrows). But in the
bottom row, the same assumption fails to hold in the pres-
ence of additional confounding (as in Fig. 2(d)). The lan-
guage of conditional ignorability is ill-suited to express
such distinctions. As we will elaborate further, it treats Z
monolithically, ignoring the internal structure that may be
critical for deciding whether adjustment is valid. Conse-
quently, it cannot distinguish between examples (a) and
(b), or between (c) and (d) — despite these differences
being decisive for identification. Analysts who rely on ig-
norability must make such distinctions implicitly, without
formal tools to support them.

This lack of transparency has been noted by some
scholars. For instance, Judea Pearl argues that “it is almost
impossible to articulate the ignorability statement in a lan-
guage familiar to scientists” [29]. Marshall Joffe similarly
observes that “such assumptions are usually made casu-
ally, largely because they justify the use of available sta-
tistical methods and not because they are truly believed”

ples show that even when no back-door set exists, identification of
causal effects is still possible from observational data [27]; sound
and complete algorithms for identification have also been developed
[38, 37, 16, 7, 21]. Beyond the challenge of confounding bias, the dis-
cussion extends to a broader class of data fusion problems, including
selection bias [3, 12] and external validity [4, 25], as surveyed in [8].
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Figure 2: Motivating example, where X and Y represent
the treatment and the outcome, and {Z1,Z2} a set of con-
founders. The shaded-gray area illustrates what is consid-
ered a block, where the structure is often abstracted away
by the data scientist.

[19]. In defense, Guido Imbens notes that the assump-
tion is “so common and well studied that merely referring
to its label is probably sufficient” [18, Sec. 4.4]. Yet this
current practice of invoking conditional ignorability with-
out reference to an underlying structural model conceals
a deeper concern: the algebraic statement Yx →→ X | Z ,
while concise, lacks meaningful semantics unless it is
supported by explicit causal structure. A more principled
foundation may require minimal but explicit causal com-
mitments to assess these assumptions rigorously. To rec-
oncile these mismatches while retaining operational clar-
ity, we now introduce a structured yet parsimonious alter-
native.

1.2 Our Proposal: the CG(3) Model

The discussion so far has revealed a core tension: while
the structural-graphical approach promotes transparency
through diagrams, it often demands explicit assumptions;
the PO framework, by contrast, is perceived as requir-
ing fewer commitments, but its assumptions are alge-
braically opaque and combinatorially complex. To ad-
dress this mismatch, we propose a middle-ground so-
lution based on a graphical abstraction of the space of
SCMs we call the CG(3) model. This construct retains
the transparency and semantics of the graphical approach
while offering a practical analogue to conditional ignor-
ability. Instead of specifying a full causal diagram, we
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work with a coarser object defined over three conceptual
blocks — X (treatment), Y (outcome), and Z (covariates)
— that captures only the direct and bidirected relation-
ships among these blocks. As shown in Fig. 3(a), the fully
connected CG(3) includes six possible edges (three di-
rected and three bidirected), and specific assumptions are
represented by removing edges. This design allows ana-
lysts to articulate minimal causal commitments, avoiding
the perceived rigidity of full DAGs, while still enabling
principled graphical assessment of ignorability-like con-
ditions.

DEFINITION 1 (Informal – Cluster Causal Diagram
CG(3)). Let X be the treatment variable, Y the out-
come, and Z the set of confounders. The class of clus-
ter causal diagrams over three nodes is defined as the
set of all subgraphs of the graph in Fig. 3(a), where the
causal (↑) and confounding (↭↫↫↫↫↬) arcs between the
pairs (X,Y ), (X,Z), and (Y,Z) may be removed under
additional assumptions. ⊜

This abstraction offers two major advantages. First, it en-
ables a systematic graphical criterion for assessing con-
ditional ignorability without requiring full specification
of the internal structure of variables in Z . In particular,
CG(3) supports a form of back-door analysis: whenever
(i) there is no bidirected arc between X and Y , and (ii) at
least one of the bidirected arcs between X and Z or Y and
Z is missing, then the model implies the conditional in-
dependence Yx →→X | Z . Second, the CG(3) framework
preserves alignment with the PO perspective by focusing
on the same key variables (X , Y , Z), but provides struc-
tural semantics that clarify which ignorability assump-
tions are justified. Rather than assuming away all poten-
tial confounding at once, this model allows for incremen-
tal exclusion of paths via explicit edge removals, making
the assumption process more transparent and modular.

This modeling approach offers a practical alternative to
directly assessing independence statements over counter-
factuals — an exercise often more opaque and error-prone
than practitioners realize. The example in Fig. 2 illus-
trates this point: diagrams (a) and (b) correspond to the
CG(3) structure in Fig. 3(b), where conditional ignora-
bility is implied via the back-door criterion. In contrast,
diagrams (c) and (d) map to Fig. 3(c), where the assump-
tions required for ignorability are no longer entailed. This
mapping shows how the CG(3) framework helps distin-
guish cases that would otherwise be conflated in the PO
formalism.

At the same time, this abstraction reflects a deliberate
compromise. The CG(3) framework explicitly acknowl-
edges that eliciting the internal structure among covariates
in Z may be infeasible. As a result, structurally distinct
cases — like those in Fig. 2(c) and (d) — are intentionally
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Figure 3: Causal diagrams in the CG(3) class.

coarsened to the same abstract object, reflecting a deliber-
ate modeling choice. In contrast, the PO framework treats
Z as a block but still asks the analyst to distinguish be-
tween these cases without providing the tools necessary to
do so. This disconnect places an unrealistic burden on the
data scientist’s judgment. By striking a balance between
abstraction and expressiveness, the CG(3) model offers a
principled middle ground: it retains the operational sim-
plicity of the PO framework while restoring transparency
through graphical semantics.

The remainder of the paper develops the proposed
framework in depth. Section 2 introduces the structural
machinery and semantics of potential outcomes. Sec-
tion 2.1 interprets causal diagrams as abstractions over the
space of SCMs. Section 2.2 provides a structural reading
of conditional ignorability. Section 3 explores the mis-
match between graphical models and algebraic assump-
tions. Finally, Section 3.1 formalizes cluster diagrams and
structural ignorability as a transparent middle ground.

2. PRELIMINARIES

We start by introducing a general class of generative
models known as structural causal models [28], which
will act as the basic semantical framework of our discus-
sion. We will follow the presentation and results as devel-
oped in [6].

DEFINITION 2 (Structural Causal Model (SCM) [28,
6]). A structural causal model (SCM) M is a 4-tuple
↓V,U,F , P (u)↔, where

(1) U is a set of exogenous variables, also called back-
ground variables, that are determined by factors
outside the model;

(2) V = {V1, ..., Vn} is a set of endogenous (observed)
variables, that are determined by variables in the
model (i.e. by the variables in U ↗ V );

(3) F = {f1, ..., fn} is the set of structural func-
tions determining V , vi ↘ fi(pa(vi), ui), where
pa(Vi)≃ V \ Vi and Ui ≃ U are the functional ar-
guments of fi;

(4) P (u) is a distribution over the exogenous variables
U .

We denote by ! the space of all instantiations of all struc-
tural causal models (SCMs) over a fixed set of endoge-
nous variables. ⊜
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The SCM represents the “ground truth" about the under-
lying causal phenomenon. In particular, the assignment
mechanisms F determine how each of the observed vari-
ables Vi attains its value, based on other observed vari-
ables and the latent variables U . Together with the proba-
bility distribution P (u) over the exogenous variables U , it
specifies the behavior of the underlying phenomenon. We
note that the SCM will almost never be fully observed and
known to the data scientist. Still, it will provide a baseline
from which we can derive formal semantics and essen-
tial properties of the system under study. For instance, the
SCM specifies the observational distribution of the un-
derlying phenomenon, defined as follows:

DEFINITION 3 (Observational Distribution [6]). An
SCM M that is a 4-tuple ↓V,U,F , P (u)↔ induces a joint
probability distribution P (V ) such that for each Y ≃ V ,

P
M(y) =

∑

u

1
(
Y (u) = y

)
P (u),(1)

where Y (u) is the solution for Y after evaluating F with
U = u. ⊜

An important related notion building on the concept of the
SCM is that of a submodel, defined next:

DEFINITION 4 (Submodel [28]). Let M be a struc-
tural causal model, X a set of variables in V , and x a
particular value of X . A submodel Mx (of M) is a 4-
tuple:

(2) Mx = ↓V,U,Fx, P (u)↔
where

(3) Fx = {fi : Vi /⇐X}↗ {X ↘ x},
and all other components are preserved from M. ⊜

In words, the SCM Mx is obtained from M by replacing
the equations in F related to variables X by equations
that set X to a specific value x. This corresponds to set-
ting the value of X = x in the model, which is written
through the do-operator, do(X = x). Building on sub-
models, the notion of a potential outcome (or potential
response) follows naturally:

DEFINITION 5 (Potential Outcome [34, 28]). Let X
and Y be two sets of variables in V and u ⇐ U be a unit.
The potential outcome (or potential response) Yx(u) is
defined as the solution for Y of the set of equations Fx

evaluated with U = u. That is, Yx(u) denotes the solution
of Y in the submodel Mx of M. ⊜

In words, Yx(u) is the value variable Y would take if
(possibly contrary to observed facts) X is set to x, for
a specific unit U = u. Also related to the concept of a
submodel, we next introduce the key concept of an inter-
ventional distribution:

DEFINITION 6 (Interventional Distribution). Let X,Y ≃
V be disjoint sets of variables in an SCM M. Then, the
interventional distribution P (Y | do(X = x)) denotes the
distribution of Y in the submodel Mx. ⊜

Consider a simple two-variable causal diagram X ↑ Y .
There is an immediate way of seeing how potential out-
comes are defined based on SCMs, with the potential out-
come Yx being given by

Yx ↘ fY (x,Uy),(4)

and the distribution of P (Yx) = P (Y | do(X = x)) is im-
plied by this equation. In other words, the mechanisms
in the SCM M span a set of potential outcomes com-
puted from the corresponding submodels. We next define
the notion of a joint counterfactual distribution:

DEFINITION 7 (Counterfactual Distributions [6]). Let
M = ↓V,U,F , P (u)↔ be an SCM, and let Y1, . . . , Yk ⇒
V , and X1, . . . ,Xk ⇒ V be subsets of the observables,
and let x1, . . . , xk be specific values of X1, . . . ,Xk. De-
note by (Yi)xi the potential response of variables Yi when
setting Xi = xi. The SCM M induces a family of joint
distributions over counterfactual events (Y1)x1 , . . . , (Yk)xk ,
with P

M((y1)x1 , . . . , (yk)xk) defined via:

∑

u

1
( k∧

i=1

(Yi)xi(u) = yi

)
P (u).(5)

⊜

The distribution P
M((y1)x1 , . . . , (yk)xk) contains vari-

ables with different subscripts, which syntactically repre-
sent different potential outcomes (Def. 5), or counterfac-
tual worlds. It may be instructive to apply this definition
to the distribution P (Z = z,X = x

↑
, Yx = y), which is

defined through
∑

1
(
Z(u) = z,X(u) = x

↑
, Yx(u) = y

)
P (u)(6)

In words, in Eq. 6, for each unit u ⇐ U , we check:

(1) whether Z(u) = z,X(u) = x
↑ for the unit naturally,

and
(2) whether Yx(u) = y, that, in the modified SCM with

the mechanism Fx for X replaced by a fixed value
X = x, whether the solution for Y (u) equals y,

and the probability mass P (u) for each such unit is added.
The counterfactual distribution P (Z = z,X = x

↑
, Yx =

y), defined through Eq. 6, is the core building block from
which the conditional ignorability statement needs to be
judged, a point to which we return in Sec. 2.2.

As alluded to earlier, the mechanisms F and the dis-
tribution over the exogenous variables P (u) are almost
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never observed in practice, despite their existence. How-
ever, to perform causal inference, we need a way to en-
code assumptions about the underlying SCM. A common
method for representing such assumptions is the use of a
causal diagram, which highlights one of the fundamental
operational differences between the potential outcomes
and the structural-graphical approaches to causality.

2.1 Causal Diagrams as a Modeling Tool for
Coarsening the Space of SCMs !

Causal diagrams are formal constructs whose semantics
are grounded in an underlying SCM as follows:

DEFINITION 8 (Causal Diagram [28, 6]). Let an SCM
M be a 4-tuple ↓V,U,F , P (u)↔. A graph G is said to be
a causal diagram (of M) if:

(1) there is a vertex for every endogenous variable Vi ⇐
V ,

(2) there is an edge Vi ↑ Vj if Vi appears as an argu-
ment of fj ⇐F ,

(3) there is a bidirected edge Vi ↭↫↫↫↫↬ Vj if the cor-
responding Ui,Uj ⇒ U are correlated or the corre-
sponding functions fi, fj share some Uij ⇐ U as an
argument. ⊜

The causal diagram can be understood as a specific type
of coarsening operation over the space of structural causal
models (!). It retains information about: (1) the func-
tional arguments of the structural mechanisms F , but not
their functional forms; and (2) the independence relations
between exogenous variables U , while it does not contain
information about the specific distribution over the exoge-
nous variables (P (u)). In particular, there is an edge from
an endogenous variable Vi to Vj whenever Vj “listens to”
Vi to determine its value. Similarly, a bidirected edge be-
tween Vi and Vj indicates shared, unobserved information
affecting how both variables obtain their values.

While the SCM makes explicit both the functional
mechanisms (F ) and the distribution over exogenous vari-
ables (P (u)), the causal diagram retains only qualitative
features of each. That is, the diagram abstracts out the
specifics of the functions F and distribution P (u), while
retaining information about their arguments and indepen-
dence relations, respectively. Therefore, constructing a
causal diagram can be understood as establishing a many-
to-one mapping from the space of SCMs ! to the space of
causal diagrams, since many different SCMs map to the
same diagram. In Fig. 4(a), this coarsening is visualized:
multiple SCMs within ! are grouped into a single causal
diagram, represented by an oval shape.

Therefore, instead of encoding assumptions at the level
of the SCM (which may be too challenging and require
highly granular knowledge), assumptions are articulated

in a coarser manner through a causal diagram. 3 The dia-
gram can then be subsequently used to license the identi-
fication of a causal effect through different strategies. One
prominent example of this is through the celebrated crite-
rion known as the back-door:

DEFINITION 9 (Back-door Criterion [28]). A set of
variables Z satisfies the back-door criterion relative to
an ordered pair of variables (X , Y ) in a causal diagram
G if:

(i) no node in Z is a descendant of X ,
(ii) Z blocks every path between X and Y that contains

an arrow into X .

Here a path X ⇑ · · · ⇑ Y is said to be blocked by Z if
either there exists Vi ⇐ Z along the path with at least one
outgoing arrow, or there exists a Vj with both incoming
arrows (. . . ↑ Vj ↘ . . . , usually known as collider) such
that neither Vj nor any of its descendants are in Z . ⊜

The back-door criterion, applied to the causal diagram, al-
lows one to identify interventional distributions (and con-
sequently causal effects):

PROPOSITION 1 (Back-door Identification). If there
exists a set of variables Z satisfying the back-door cri-
terion relative to an ordered pair of variables (X,Y ) in
a causal diagram G, then it follows that the distribution
P (Y | do(X = x)) is identifiable and given by the for-
mula

P (y | do(X = x)) =
∑

z

P (y | x, z)P (z),(7)

that is, it can be computed uniquely from observational
data and the causal diagram G through the adjustment
formula. ⊜

The process of identifying interventional distributions in
the structural-graphical approach to causal inference can
be understood as consisting of two steps. In the first step,
assumptions are elicited in the form of a causal diagram.
In the second step, graphical criteria (such as the back-
door criterion) are applied to determine whether the query
of interest is identifiable. This process of identification
corresponds to the route R2 highlighted in Fig. 1. The
strength of this approach lies in its ability to provide a
powerful and systematic tool for eliciting assumptions —
using the metaphor of the SCM to capture causal relations

3This is, in fact, a fundamental point about local versus global con-
straints and the original motivation for using graphical models to en-
code probabilistic knowledge—and later, to formalize modularity—a
key insight from the early literature [26]. See also the discussions
around Def. 16 and footnotes 47 and 48 in [6].
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among variables based on domain expert knowledge, ex-
pressed through a causal diagram. The main challenge,
however, is that constructing the causal diagram may still
be demanding in practice, as it requires domain knowl-
edge that, while less stringent than what is needed to fully
specify an SCM, may nonetheless be highly granular and
non-trivial to obtain.

2.2 Conditional Ignorability as a Tool for Coarsening
the Space of SCMs !

We next contrast the structural-graphical approach to
causal effect identification with the approach taken in the
PO framework. To do so, we formally introduce the no-
tion of conditional ignorability, which is commonly in-
voked in this literature:

DEFINITION 10 (Conditional Ignorability). Let X be
a treatment and Y the outcome. We say that the ordered
pair (X,Y ) satisfies the ignorability criterion conditional
on a set Z if the following independence holds:

Yx →→X | Z,(8)

where x is a fixed value of X . ⊜

We provide a similar interpretation of conditional ignora-
bility (C-Ign, for short), analogous to the coarsening de-
scribed for causal diagrams. The idea is to introduce a
common denominator — grounded in the space ! —
that allows these two approaches to be related in a uni-
fied framework. The notion of C-Ign can be understood
as a mapping from ! to the set 0,1, where C-Ign(M) = 1
whenever Yx →→X | Z holds in the SCM M . In this way,
C-Ign partitions ! into two subsets: one in which the in-
dependence statement Yx →→ X | Z is true, and one in
which it is not. This partition is indicated by the red line
in Fig. 4(a). C-Ign allows one to identify a causal effect
through a well-known result:

PROPOSITION 2 (Conditional Ignorability Identifica-
tion). If the ordered pair (X,Y ) satisfies the condi-
tional ignorability criterion with respect to the set Z , then
the effect of X on Y is identified by:

P (Yx) =
∑

z

P (y | x, z)P (z).(9)

⊜

Therefore, the purpose of invoking a C-Ign is to determine
for which cases interventional distributions can be identi-
fied from observational data. An important connection of
C-Ign to the back-door criterion is given by the following
result:

PROPOSITION 3 (Back-door Criterion =⇓ Condi-
tional Ignorability). If there exists a set of variables Z

that satisfies the back-door criterion relative to an or-
dered pair of variables (X,Y ) in a causal diagram G,
then it follows that the pair (X,Y ) satisfies the ignorabil-
ity criterion conditional on Z . ⊜

The back-door allows the data scientist to assess whether
an effect is identifiable through the adjustment expression
based on the set Z . As Prop. 3 also shows, the back-door
criterion implies the ignorability statement. This result,
together with Fig. 4(a), helps clarify the difference be-
tween the two approaches. The graphical approach begins
by coarsening the space !, partitioning it into equivalence
classes corresponding to different causal diagrams. Then
each class can be evaluated for whether it supports iden-
tification through adjustment on Z (or by other means).

Alternatively, the conditional ignorability criterion skips
the step of explicitly modeling causal connections and
instead partitions ! into two regions — depending on
whether the independence statement Yx →→X | Z holds in
the counterfactual distribution P (X,Yx,Z). The process
of identification for conditional ignorability corresponds
to the route R1 highlighted in Fig. 1. Although this ap-
proach may appear appealing, since it bypasses the need
to elicit assumptions encoded in a causal diagram, this
simplicity comes at the cost of transparency. The C-Ign
approach does not offer a systematic procedure for as-
sessing the assumption’s validity; that is, it does not pro-
vide a sequence of steps by which a human analyst might
judge whether the conditional ignorability assumption is
justified.

Furthermore, as we illustrate next, the boundary in-
duced by C-Ign (red line in Fig. 4(a)) is more complex
than commonly appreciated. This means that determining
whether C-Ign holds in a given setting may require granu-
lar domain knowledge, which is unlikely to be accessible
to a data scientist attempting to evaluate ignorability.

3. STRUCTURAL CONDITIONAL IGNORABILITY

We now take a closer look at how ignorability state-
ments are assessed in practice, and illustrate through ex-
amples that the level of knowledge required to assess
these statements can be very granular, contrary to pop-
ular belief. Therefore, in the absence of formal tools, we
argue that applying ignorability in its current form may
be difficult in practice. Ultimately, we propose an alter-
native approach that enables the assessment of ignorabil-
ity through a graphical model, while avoiding the need to
fully specify the causal diagram.

We begin by analyzing the separation of the ignora-
bility statement into blocks, to illustrate the mental con-
struct evoked by scientists when judging the plausibility
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(b) Coarsening implied by structural ignorability.

Figure 4: Visualization of different coarsening approaches discussed in the paper. Each black point in the space of SCMs
! represents an SCM. In (a), different SCMs are joined into groups if they have the same causal diagram, represented
by black oval shapes. The notion of conditional ignorability splits the space ! into two parts, based on whether the
required conditional independence statement holds. In (b), the coarsening related to structural ignorability and CG(3)
model (Def. 11) is visualized. Here, multiple causal diagrams are mapped to a single cluster diagram CG(3). Notably,
examples discussed in Fig. 5(c, d) fall on opposite sides of the ignorability boundary, but belong to the same CG(3)
model.

of such assumptions. Three distinct blocks are invoked in
this analysis, reproduced below for visual convenience:

Yx︸︷︷︸
block B1

→→ X︸︷︷︸
block B2

| Z︸︷︷︸
block B3

.(10)

The block B1 corresponds to the variable Y in the hy-
pothetical regime do(X = x), B2 to the treatment vari-
able X , and B3 to the set of covariates Z . Elaborating
on Fig. 2, we highlight a fundamental limitation of this
mental construct through the analysis of the following ex-
amples:

EXAMPLE 1. We consider the models in Fig. 5(a-b),
where X is the treatment, Y is the outcome, and Z1,Z2

are the set of observed confounders. We analyze the pair-
wise relations between the blocks B1 (Yx),B2 (X), and
B3 (Z) following Eq. 10:

(i) B1-B2 relation: in both models, X may cause Y

(but not the other way around), and there are no
unobserved confounders between X and Y , but all
confounders are observed and equal to B3,

(ii) B2-B3 relation: in both models, Z1,Z2 affect X in
the same fashion – Z may cause X (but not the
other way around), and there are no unobserved
confounders between these blocks of variables,

(iii) B1-B3 relation: again, in both models, Z1,Z2 af-
fect Y in the same fashion – Z may cause Y (but
not the other way around) and there are no unob-
served confounders between these blocks of vari-
ables.

Therefore, upon closer inspection, we see that all the
inter-block relationships are the same for models in

Fig. 5(a) and (b). The relations between blocks are sum-
marized in the table in the first row of Fig. 5 (right side).

Based on the above, one would be tempted to believe
that ignorability holds (Eq. 10) since, in a pairwise man-
ner, there is no unobserved confounder between any of the
blocks. In fact, ignorability does hold in both models in
Figs. 5(a) and (b), and this conclusion holds regardless of
the relationship between the variables Z1 and Z2, which
belong to block B3. The shaded area that includes Z1 and
Z2 is highlighted graphically to show that the modeler
trying to assess ignorability is agnostic to the relation-
ship among these variables, and simply treats them as a
single block. ⊜

In the above example, we see how the analyst can arrive at
a correct conclusion, and at the same time abstract away
the seemingly irrelevant causal structure within the ignor-
ability blocks. Unfortunately, as the following example
demonstrates, ignoring the structure within a block may
also lead to invalid conclusions.

EXAMPLE 2. Consider now the models in Fig. 5(c-
d), which are similar to Fig. 5(a-b). In particular, the
relations within the shaded area remain the same – in
models (a) and (c), Z1 and Z2 are independent, while
in models (b) and (d), they have an unobserved com-
mon cause (dashed arrow). Now we analyze the relations
across blocks.

(i) B1-B2: in both models, X may cause Y (but not
the other way around), and there are no unobserved
confounders between them, i.e., all exogenous vari-
ations go through B3,
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X Y

Z1 Z2

(a) : Yx →→X | Z
X Y

Z1 Z2

(b) : Yx →→X | Z

Cases (a,b) Causal Confounded
(Z, X) ≿ ✁

(Z, Y) ≿ ✁

(X, Y) ≿ ✁ (thr. Z)

(a)-(b) block specification

X Y

Z1 Z2

(c) : Yx →→X | Z
X Y

Z1 Z2

(d) : Yx →⇔→X | Z

Cases (c,d) Causal Confounded
(Z, X) ≿ ≿
(Z, Y) ≿ ≿
(X, Y) ≿ ✁ (thr. Z)

(c)-(d) block specification

Figure 5: Causal diagrams and blocks specifications for Ex. 1 and Ex. 2.

(ii) B2-B3: in both models, Z1 and Z2 may cause X

(but not the other way around), and there exists un-
observed confounding between {Z1,Z2} and X ,

(iii) B1-B3: in both models, Z1,Z2 may cause Y (but
not the other way around), and there exists unob-
served confounding between {Z1,Z2} and Y .

Again, the relations between the blocks are identical for
models in Fig. 5(c) and (d), as summarized in the table
in Fig. 5 (bottom-right). The difference between models
in Fig. 5(c) and (d) is within-blocks, namely that in 5(c)
Z1,Z2 are independent, whereas in 5(d) they are not.

When analyzing these examples, the analyst may be
tempted to also abstract away the structure between the
variables Z1 and Z2, i.e., within the block B3, since this
was a successful strategy in Ex. 1. Furthermore, the an-
alyst may also be tempted to surmise that conditional ig-
norability holds as in Ex. 1, arguing that all confound-
ing between X and Y pass through confounders Z1,Z2,
which therefore could be removed by controlling for them.

Based on the specific causal diagrams, we now ver-
ify the back-door criterion model by model. Starting with
the model in Fig. 5(c), the back-door criterion states that
the set {Z1,Z2} is back-door admissible since (X →→ Y |
Z)GX . On the other hand, when considering Fig. 5(d),
conditioning on the set {Z1,Z2} opens the path X ↭↫↫
↫↫↬ Z1 ↭↫↫↫↫↬ Z2 ↭↫↫↫↫↬ Y , meaning that X,Y are not d-
separated by {Z1,Z2}.

The critical observation here is that the relationships
between the blocks are the same in both (c) and (d), while
ignorability holds in (c), but not in (d). The difference be-
tween the models is strictly within the block B3, which
ignorability does not take into account. ⊜

In light of the above examples, we note that judgments
about ignorability seem to provide conflicting answers

since they systematically ignore fine-grained level of
knowledge about the relationship inside the set of covari-
ates (which is called a block in our terminology). At the
same time, treating variables as blocks is one of the mo-
tivations for evoking ignorability statements in the first
place. For some graphs, within block relationships can
indeed be ignored, and the answer may not depend on
these relations, such as in the models in Fig. 5(a, b). In
other cases, there are graphs which share the same rela-
tionships across all the blocks but lead to different ignor-
ability statements, depending on the relationships within
a block, as in Fig. 5(c,d). Relating this back to the visu-
alization in Fig. 4(a), we see that examples (c), (d) are on
opposite sides of the ignorability line, and to be able to
distinguish these cases, highly granular knowledge about
the structure within the Z-block is required. Without a
systematic way of eliciting assumptions, it is unlikely that
the analyst can perform this task, and for this reason, we
see that the boundary that delineates whether ignorabil-
ity holds true or not is much more difficult to navigate
than commonly believed. We next consider an empirical
example that further grounds the above discussion and il-
lustrates the possible implications of dismissing relations
within blocks of variables.

EXAMPLE 3. Consider the following SCMs M(i)

over endogenous variables V = {Z,X,Y } and exoge-
nous U = {Uz,Ux,Uy,Uzx,Uzy}. The structural mech-
anisms F are linear, and given by

(11)

(12)

(13)

F :






Z ↘ Uz + (Uxz,Uzy)
T

X ↘ ω
T
Z +Ux +Uxz

Y ↘ ε
T
Z + ϑX +Uy +Uzy,
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with Gaussian probability distributions over the exoge-
nous variables, i.e.,

(14)

(15)

(16)

P (u) :






Ux,Uy ↖N(0,1)

Uz ↖N

((
0
0

)
,

(
1 ϖ

(i)

ϖ
(i) 1

)

Uxz,Uzy ↖N(0,ϱ(i)),

where the parameters ϖ(i),ϱ(i) are given by:

M(1): ϖ
(i) = 0, ϱ(i) = 0 corresponding to Fig. 5(a),

M(2): ϖ
(i) = 0.5, ϱ(i) = 0 corresponding to Fig. 5(b),

M(3): ϖ
(i) = 0, ϱ(i) = 1 corresponding to Fig. 5(c),

M(4): ϖ
(i) = 0.5, ϱ(i) = 1 corresponding to Fig. 5(d).

The inferential challenge is, of course, that the data scien-
tist does not have access to the true SCM, which includes
the values of structural parameters ϖ

(i)
,ϱ

(i). Firstly, we
consider the cases (1) and (2) that correspond to causal
diagrams in Fig. 5(a) and (b) discussed in Ex. 1. The
goal is to estimate the effect of X on Y , represented by
the structural coefficient ϑ. The scientist may estimate
such an effect through linear regression (say using or-
dinary least squares, OLS). In Fig. 6 (top row), we plot
the density of the OLS estimator ϑ̂ over different repeti-
tions of n = 1,000 samples generated from the SCM in
Eq. 11-16 (that is, from the observational distribution),
with the dashed-red line representing the true effect. In-
terestingly, regardless of dismissing the different relation-
ships between Z1 and Z2 – ϖ

(i) is equal to 0 in the first
model and different from 0 in the second – the structural
coefficient ϑ is estimated consistently in both models. In
other words, these differences could in fact be dismissed
and assessing ignorability leads to correct adjustment –
based on covariates Z .

Secondly, we contrast that with cases (3) and (4) that
correspond to causal diagrams Fig. 5(c) and (d) in Ex. 2,
respectively. Using OLS again in this setting leads to the
plots shown in Fig. 6 (bottom row), where the dashed-
red line represents the true effect. The effect estimates are
quite different in this case – one of the models has a posi-
tive effect while the other has a negative one. Thus, ignor-
ing the structure within the set of variables Z may system-
atically lead to erroneous effects estimates. ⊜

The main takeaway from Exs. 1 and 2 is the follow-
ing. Ignorability statements seemingly depend only on
the blocks B1, B2, and B3 and the relationships between
them, which may lead the data scientist performing the
analysis to believe that relationships within the set of co-
variates Z can be safely ignored. In Ex. 1, this strategy is,
in fact, successful: valid conclusions about effect identi-
fication through ignorability are reached for both models

Figure 6: Density of the estimator of the causal effect of
X on Y using OLS and adjusting for Z1,Z2. n = 1000
samples are generated from the system Eqs. (11)-(16) 500
times for ϖ ⇐ {0,0.5},ϱ ⇐ {0,1}. The dashed-red line in-
dicates the true value of the causal effect.

(a) and (b). On the other hand, Ex. 2 reveals that the situ-
ation is more subtle. We introduced two models with the
same structure between blocks, yet they differ with re-
spect to their ignorability statements. Abstracting away
the structure within blocks in Ex. 2 ignores the struc-
tural coefficient ϖ, which plays a key role in determining
whether ignorability holds. As a result, the estimated ef-
fect of X on Y using ordinary least squares (OLS), with
Y regressed on X and Z , is correct in cases (1)–(3) of
Fig. 5, but incorrect – and even of opposite sign – in case
(4) (see Fig. 6). Clearly, this conclusion cannot be reached
when assessing ignorability as in the potential outcomes
approach, in the absence of a graphical model.

Taken together, these examples illustrate that assess-
ing ignorability may systematically lead to invalid con-
clusions when important structure within blocks is ab-
stracted away. Still, one could argue that the judgment
of what happens within a cluster Z may be carried out
implicitly in the mind of the data scientist while inspect-
ing Eq. 10. For instance, [18, Sec. 4.4] argues that, in the
context of assessing ignorability, “adding a DAG is su-
perfluous because researchers are familiar with the setting
and its implications.” Consider a model shown in Fig. 7,
which extends the previous discussion. Note that within
the set of covariates Z, consisting of |Z| = n ⇑ 2 vari-
ables, there are

n↓2
2


possible pairwise relationships that

must be specified. Now, for any pair Zi,Zj ⇐ Z, there
may be: (i) no relation between them; (ii) a causal rela-
tion; (iii) a confounding relation; or (iv) both a causal and
a confounding relationship. This implies that the data sci-
entist must implicitly evaluate an order of 4n

2

possible
configurations. In fact, for a set of two covariates, there
are only four possible relationships to consider, but for a
set of five covariates, this number already grows to over
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a million configurations. The suggestion that such eval-
uation is superfluous—and can be carried out implicitly,
without a clearer understanding of which relationships are
or are not allowed and how they affect ignorability judg-
ments—seems somewhat far-fetched.

As the preceding discussion suggests, the boundary de-
lineated by ignorability (red line in Fig. 4(a)) is challeng-
ing to establish and characterize, and the level of knowl-
edge needed to distinguish cases on either side can be
rather strong, as illustrated by previous examples and the
super-exponential number of assumptions that must be
specified in the general case. To address this concern, we
propose in the sequel a solution that strikes a balance be-
tween modeling flexibility and transparency in the encod-
ing of assumptions, one that may prove appealing to pro-
ponents of both the PO and graphical frameworks.

3.1 On the Structural Basis of Conditional
Ignorability

In this section, we introduce the notion of structural
ignorability and connect the block-based construction of
ignorability with the structural semantics of causal dia-
grams. We begin by providing a formal definition of the
corresponding graphical object, grounding Def. 1.

DEFINITION 11 (Cluster Diagram over Three Blocks).
Consider a causal diagram G over Z , X , and Y , and
assume that no element of Z is a descendant of X or Y ,
and that X is not a descendant of Y . Construct a graph
CG(3) over X , Y , and Z with the following set of edges:

(i) Directed edges: an edge Z ↑ X exists if Zi ⇐
pa(X) for any Zi ⇐ Z; an edge Z ↑ Y exists if
Zi ⇐ pa(Y ) for any Zi ⇐ Z; an edge X ↑ Y exists
if X ⇐ pa(Y ).

(ii) Bidirected edges: a dashed bidirected edge be-
tween blocks Bi and Bj exists whenever there exist
variables Vi ⇐ Bi and Vj ⇐ Bj that share a com-
mon exogenous (unobserved) cause.

Any such graph is referred to as a cluster diagram over
three nodes X , Y , and Z , denoted CG(3). ⊜

The above definition introduces a type of cluster causal
diagram, in which the set of confounders Z is collapsed
into a single group. 4 To ground this notion further, we
provide examples of how a causal diagram relates to its
CG(3) representation.

EXAMPLE 4 (Causal Diagram to CG(3)). Consider
the causal diagram in Fig. 5(a). Since no bidirected arcs
across blocks {X},{Y },{Z} exist, this causal diagram

4For simplicity, we focus on cluster graphs with three nodes, but
this construction can be generalized for arbitrary graphs [1].

X Y

Z1 Z2
. . .

Zn↓3 Zn↓2

Figure 7: Extended graph entailing an exponential num-
ber of relations within the covariate set.

is mapped to the CG(3) model in Fig. 8(h). Similarly,
the causal diagram in Fig. 5(b) is also mapped to the
CG(3) model in Fig. 8(h). Therefore, when moving from
the space of causal diagrams to the CG(3) representa-
tion, the existence of a bidirected edge Z1 ↭↫↫↫↫↬ Z2 is not
considered, and can be abstracted away.

For the examples in Figs. 5(c,d), the existence of the
arrow X ↭↫↫↫↫↬ Z1 implies the existence of the arrow
X ↭↫↫↫↫↬ Z in CG(3). Similarly, the existence of the arrow
Y ↭↫↫↫↫↬ Z2 implies the existence of the arrow Y ↭↫↫↫↫↬ Z
in CG(3). Therefore, both diagrams are mapped to the
CG(3) model in Fig. 8(b), and the structure within the
block Z is, once again, ignored. ⊜

For simplicity, when considering a CG(3), we may as-
sume that the directed edges are always present (i.e.,
Z ↑ X , Z ↑ Y , and X ↑ Y ). Therefore, within the
CG(3) class of models, we distinguish among the 8 pos-
sible graphs shown in Fig. 8. For instance, for |Z| = 2,
the original space of causal diagrams contains 128 dis-
tinct elements (assuming a fully connected graph). As this
suggests, the notion of a cluster causal diagram CG(3)
represents a further coarsening of the space of SCMs !,
compared to the coarsening induced by standard causal
diagrams, as shown in Fig. 4(b). In particular, multiple
causal diagrams may map to a single CG(3) representa-
tion, and in moving from a causal diagram to its CG(3)
abstraction, some of the underlying structure of the orig-
inal diagram is lost. In other words, a CG(3) diagram is
strictly weaker than a standard causal diagram.

The key idea behind this new representation is that the
process of eliciting assumptions is simplified—by elicit-
ing the CG(3) diagram directly, rather than the full set
of assumptions required for a complete causal diagram.
Specifically, the data analyst needs to perform the follow-
ing steps:

(1) Determine whether any unobserved common causes
of X and Y exist; if not, the bidirected edge X ↭↫↫
↫↫↬ Y can be removed.

(2) Determine whether any unobserved common causes
of X and Zi exist, for any Zi ⇐ Z; if not, the bidi-
rected edge X ↭↫↫↫↫↬ Z can be removed.
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(b) CG2(3)

X Y

Z

(c) CG3(3)

X Y

Z

(d) CG4(3)

X Y

Z

(e) CG5(3)

X Y
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(f) CG6(3)

X Y

Z

(g) CG7(3)

X Y

Z

(h) CG8(3)

Figure 8: Collection of eight possible CG(3) cluster diagrams.

(3) Determine whether any unobserved common causes
of Y and Zi exist, for any Zi ⇐ Z; if not, the bidi-
rected edge Y ↭↫↫↫↫↬ Z can be removed.

The three steps above describe the core process of elicit-
ing the assumptions required for ignorability-type iden-
tification. For example, consider the CG(3) model in
Fig. 8(f), in which the existence of an exogenous variable
Uxy affecting both X and Y has been ruled out, as well
as Uzy affecting both Z and Y . However, an exogenous
variable Uxz affecting X and Z may still exist.

In practice, this implies that the underlying structural
causal model takes the form:

Z ↘ fZ(Uz,Uxz)(17)

X ↘ fX(Z,Ux,Uxz)(18)

Y ↘ fY (X,Z,Uy),(19)

where all of the exogenous Uz,Uxz,Ux,Uy are indepen-
dent. Based on this SCM, the potential outcome Yx can
be written as fY (x,Z,Uy). This further allows us to say
that

fY (x, z,Uy)→→ fX(z,Ux,Uxz) | Z = z,(20)

which is implied by the independence of exogenous vari-
ables Uy →→ Ux,Uxz , and the fact that Z ↘ fZ(Uz,Uxz)
is observed (i.e., conditioned on). Eq. 20 is an equivalent
representation of the ignorability statement Yx →→X | Z ,
but expressed at the level of the structural causal model.

This offers an alternative perspective: the language of
structural causality provides a basis for assessing ignor-
ability statements, where the necessary assumptions are
elicited through the notion of a cluster diagram over three
nodes, CG(3). Motivated by these observations, we can
finally define the notion of structural ignorability:

DEFINITION 12 (Structural Ignorability). Consider
an SCM M over observables Z , X , and Y , and assume
that no element of Z is a descendant of X or Y , and that

X is not a descendant of Y . Let U denote the set of exoge-
nous variables. We say that structural ignorability (Str-
Ign, for short) holds if the following conditions hold:

(i) There exists no Uxy ⇐ U such that Uxy is an argu-
ment of both the fX and fY mechanisms.

(ii) There exists no pair U1,U2 ⇐ U such that U1 is an
argument of both fX and fZi for some Zi ⇐ Z , and
U2 is an argument of both fY and fZj for some
Zj ⇐ Z . ⊜

This is a fundamental notion as it provides proper seman-
tics for assessing ignorability-type statements in the lan-
guage of structural causality. 5

Since the SCM M is not generally observable, struc-
tural ignorability is not directly testable. In practice, how-
ever, this definition can be assessed empirically by graph-
ical means — specifically, by evaluating the back-door
criterion in the corresponding CG(3), as discussed next.

PROPOSITION 4 (Back-door in CG(3) =⇓ Structural
Ignorability). If the set Z satisfies the back-door crite-
rion relative to an ordered pair (X,Y ) in a CG(3) di-
agram, then (X,Y ) satisfies the structural ignorability
criterion conditional on Z . Specifically, if the following
conditions hold:

(a) There is no bidirected edge X ↭↫↫↫↫↬ Y in CG(3),
and

(b) There is either no bidirected edge Z ↭↫↫↫↫↬X or no
bidirected edge Z ↭↫↫↫↫↬ Y in CG(3),

then structural ignorability holds in the underlying struc-
tural causal model. ⊜

5For simplicity, we did not explicitly list the case in which correla-
tion among exogenous variables in U may exist even when no common
cause relates them. For instance, the first condition could be replaced
with the following alternative (similar to (ii)):

(i’) There exists no pair Ux,Uy ↑ U such that Ux is an argument
of fX , Uy is an argument of fY , and Ux and Uy are not independent.
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Therefore, the CG(3) class of models can be used to infer
whether structural ignorability holds based on the back-
door criterion. In this way, we obtain a straightforward
operational method for assessing structural ignorability.
The process of evaluating whether structural ignorabil-
ity holds then corresponds to the route R3 highlighted in
Fig. 1. This proposal leverages the CG(3) representation
of the causal diagram instead of the full causal diagram it-
self, since the former may be easier to obtain in practice.

3.1.1 Relationship to Coarsening of Conditional Ig-
norability Finally, a crucial connection can be drawn be-
tween the notions of structural ignorability and condi-
tional ignorability, as shown below (all proofs are pro-
vided in Supplement A).

PROPOSITION 5 (Str-Ign =⇓ C-Ign). Let M be an
SCM over observables Z , X , and Y , and assume that no
element of Z is a descendant of X or Y , and that X is
not a descendant of Y . If structural ignorability holds in
M , written Str-Ign(M) = 1, then conditional ignorability
also holds; that is,

Str-Ign(M) = 1 =⇓ Yx →→X | Z.(21)

⊜

The reverse implication does not hold, however. That is,
structural ignorability is a more restrictive notion than
conditional ignorability. To illustrate this, we recall the
discussion of cases (c) and (d) from Fig. 5. In particular,
both of these cases map to the same CG(3) model, which
contains bidirected arcs X ↭↫↫↫↫↬ Z and Y ↭↫↫↫↫↬ Z , and
corresponds to the shaded blue area in Fig. 4(b). For this
CG(3) model, the set Z does not satisfy the back-door
criterion for (X,Y ), and hence structural ignorability is
not implied, according to Prop. 4.

As discussed earlier in Sec. 3, however, conditional ig-
norability does hold in case (c), but not in case (d). This
is visually depicted in Fig. 4(b), where the ignorability
boundary cuts through the blue region corresponding to
the CG(3) model in Fig. 8(b), placing the causal diagrams
(c) and (d) onto opposite sides of the boundary. This high-
lights that, in general, assessing conditional ignorability
requires a highly granular understanding of the underly-
ing system. In the particular example, to evaluate whether
ignorability holds, one must know whether variables Z1

and Z2 are confounded or in some other causal relation –
something that may be challenging to determine in prac-
tice.

Following these observations — in particular, the fact
that the conditional ignorability boundary cuts through a
single CG(3) model (Fig. 4(b)) — it becomes clear that
no function defined solely over CG(3) diagrams can re-
liably determine whether conditional ignorability holds.
We state this result formally below:

PROPOSITION 6 (No Function from CG(3) to Con-
ditional Ignorability). Let ! be the space of structural
causal models over n ↙ 4 endogenous variables V =
{Z1, . . . ,Zn↓2,X,Y }, with X and Y labeling the last
two variables in topological order. Let A :!↑ {0,1} be
the adjustment validity operator, indicating whether the
conditional ignorability statement Yx →→ X | Z holds in
the SCM M ⇐!. Let ϑ :!↑CG(3) be the mapping from
an SCM M to its corresponding CG(3) cluster diagram.
Then, there exists no function Acoarse such that

(22) Acoarse(ϑ(M)) =A(M) for all M ⇐!.

⊜

In words, for any function defined over CG(3) dia-
grams, there exists a model M such that, once its details
are abstracted away (i.e., when only the CG(3) represen-
tation ϑ(M) is used), it becomes impossible to recover the
correct conditional ignorability assessment A(M) using
any function Acoarse. This means that, after abstraction,
no such function can correctly assess conditional ignor-
ability. Therefore, the notion of conditional ignorability
is not compatible with the level of abstraction at which
one can realistically operate, such as the CG(3) represen-
tation. In contrast, the notion of structural ignorability is
explicitly constructed to be compatible with the level of
abstraction used in the CG(3) representation, and it can
be viewed as a natural construct in light of the following
result:

PROPOSITION 7. Let ! be the space of SCMs, µ a
strictly positive measure over !, A :!↑ {0,1} the con-
ditional ignorability indicator, ϑ : ! ↑ CG(3) the map-
ping from an SCM to its corresponding CG(3) cluster di-
agram, and A :!↑ {0,1} a function. If A satisfies:

(i) A(M)∝A(M) for all M ,
(ii)


! |A⇑A|dµ is minimal,

(iii) There exists a function Acoarse : CG(3) ↑ {0,1}
such that Acoarse(ϑ(M)) =A(M) for all M ,

then A corresponds to structural ignorability. ⊜

Requirement (i) stipulates that the function A is conser-
vative, meaning that it is always smaller than A. In other
words, A never provides a positive answer for ignorabil-
ity’s assessment if conditional ignorability does not hold
(that is, A gives no false positives with respect to A). The
requirement (ii) stipulates that A needs to be tight, that
is, as close as possible to A, with the equality A(M) =
A(M) holding whenever possible. Finally, requirement
(iii) stipulates that A must be CG(3)-preserving, so that
a function Acoarse exists, which can be applied to the
CG(3) projection ϑ(M) of an SCM M in order to ob-
tain the value of A(M). This final condition requires that
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the evaluation of A can be obtained by operating at the
CG(3) level of abstraction – which we argued is the level
of knowledge at which data analysts can realistically op-
erate. The above three conditions lead to structural ignor-
ability, showing that structural ignorability is a rather nat-
ural notion, corresponding to the maximal lower bound
(envelope) of conditional ignorability that can be evalu-
ated based on the CG(3) projection of M .

As mentioned, structural ignorability intentionally ab-
stracts away the internal structure of Z , making no claims
about causal relationships within it. In our running exam-
ples, this means that cases (c) and (d) in Fig. 5 become
indistinguishable under the CG(3) representation, falling
into the same equivalence class. This is not a shortcom-
ing but a deliberate feature: the method’s scope is explicit
and transparent, grounded in the language of structural
causality.

Structural ignorability combines advantages from both
the graphical and potential outcomes traditions:

(I) It substantially reduces the modeling burden com-
pared to constructing a full causal diagram;

(II) The CG(3) template guides assumption elicitation
through three clear questions (existence of bidi-
rected edges X ↭↫↫↫↫↬ Y , X ↭↫↫↫↫↬ Z , Y ↭↫↫↫↫↬ Z),
aiding transparency; and

(III) It delineates more realistic cases where adjustment
is justified, avoiding hidden commitments that re-
quire overly detailed system knowledge.

The first point improves on classical graphical methods,
while the latter two address limitations in the traditional
potential outcomes perspective. Moreover, the broader
lesson – that assessing counterfactual independence with-
out a graphical model is limited – extends beyond ig-
norability to settings such as instrumental variables (see
Supplement B). Finally, the CG(3) approach is a special
case of the more general framework for clustered causal
diagrams introduced in [1] and further discussed in [5,
Sec. 5.7.2].

4. CONCLUSIONS

The potential outcomes (PO) framework, widely used
in empirical disciplines, centers its identification strat-
egy on conditional ignorability assumptions of the form
Yx →→ X | Z . This formulation enables causal reasoning
without explicit modeling of the underlying causal mech-
anisms. In practice, such statements are often interpreted
as depending on broad categories of variables —- treat-
ment X , outcome Y , and covariates Z — suggesting a
kind of reasoning in blocks (i.e., grouping variables into
modular units without specifying internal causal struc-
ture). While this abstraction is appealing, we show that it
can be misleading: the validity of ignorability may hinge

on fine-grained structural relationships within the covari-
ates Z that are typically left unspecified. (Indeed, assess-
ing ignorability may implicitly require reasoning over an
exponential number of structural configurations – on the
order of 4n

2

– which are rarely made explicit by analysts.)
Our examples (e.g., Fig. 5) demonstrate that ignoring in-
ternal structure, even when the variable blocks are fixed,
can lead to systematically incorrect causal conclusions.

Graphical models offer a contrasting perspective. Rooted
in traditions from genetics, econometrics, and, more re-
cently, computer science, this approach begins with the
notion of mechanisms — formalized as structural causal
models (SCMs) — from which one can derive a directed
acyclic graph (DAG) and apply graphical criteria (e.g.,
the back-door criterion) to systematically evaluate iden-
tification strategies. In theory, this framework provides
transparency and rigor. In practice, however, it requires
the data scientist to specify a full causal diagram, includ-
ing all direct causal and confounding relationships among
observed variables. This task can be nontrivial, especially
in high-dimensional settings or when domain knowledge
is limited. Even though the DAG is already a coarsening
of the underlying SCM, it often remains too fine-grained
to be reliably elicited.

To address these limitations, we propose a new ap-
proach: instead of partitioning the space of SCMs ! at
the level of individual variables, according to a traditional
DAG construction, we consider a coarser partition based
on clusters of variables. Specifically, we introduce the
class of cluster causal diagrams (CG(3)), which group the
covariates Z and focus attention on the high-level depen-
dencies among X , Y , and Z . This leads to a new semantic
notion — structural ignorability — which offers a struc-
tural counterpart to conditional ignorability. Although de-
fined over the full SCM space !, structural ignorabil-
ity can be assessed using back-door–style reasoning ap-
plied to the coarser CG(3) diagrams. By abstracting away
internal structure within Z , this framework aligns more
closely with the level of knowledge typically available to
practitioners, while retaining a clear causal interpretation
grounded in structural semantics.

Importantly, we show that conditional ignorability itself
cannot be reliably assessed at the level of CG(3) abstrac-
tion. That is, no function defined over CG(3) diagrams
can reproduce the judgments required for conditional ig-
norability across the SCM space. This impossibility result
(Prop. 6) highlights the mismatch between the assump-
tions of the PO framework and the abstraction level at
which analysts often operate. Structural ignorability, by
contrast, is constructed to be compatible with this abstrac-
tion — it deliberately relaxes internal commitments while
retaining testability via graphical tools. This result under-
scores the importance of aligning the level of abstraction
in modeling with the level at which assumptions can be
meaningfully articulated and judged.
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In this way, structural ignorability strikes a balance
between the PO and graphical frameworks: it avoids
the hidden commitments of block-based conditional ig-
norability while requiring fewer assumptions than full
DAG-based modeling. Crucially, it emphasizes that every
ignorability-type assumption must rest on explicit struc-
tural semantics, grounded in assumptions about the un-
derlying data-generating mechanisms. This principle re-
alizes Haavelmo’s foundational insight that “the model
chosen must reflect, in a simplified form, the actual mech-
anism of the system investigated” [15]. Structural ignor-
ability operationalizes this view by making such assump-
tions transparent and testable, thereby linking counterfac-
tual independence with the logic of structural causality.6
We believe the CG(3) approach offers a principled, oper-
ationally viable framework at a coarser modeling level —
particularly appealing to practitioners who seek practical
guidance without sacrificing formal guarantees.
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APPENDIX A: PROOFS

PROOF OF PROP. 4. Suppose that for an SCM M structural ignorability does not hold, which can happen for two
reasons. Firstly, it may be due to the existence of a latent Uxy affecting both X,Y . In this case, there exists a bidirected
edge X ↭↫↫↫↫↬ Y , and therefore Z is not back-door for (X,Y ). Secondly, it may be that case that there exists a pair U1,U2

such that U1 is an argument of both fX , fZ , while U2 is an argument of fY , fZ . In this case, the existence of such U1

implies the bidirected edge X ↭↫↫↫↫↬ Z , while U2 implies the bidirected edge Y ↭↫↫↫↫↬ Z . Therefore, we again conclude
Z is not back-door for (X,Y ), since conditioning on Z would leave the path X ↭↫↫↫↫↬ Z ↭↫↫↫↫↬ Y open. Thus, we can
conclude that the back-door criterion in CG(3) implies structural ignorability.

PROOF OF PROP. 6. To prove that no function Acoarse exists, consider the following construction of two SCMs
M1,M2 over n↙ 4 variables {Z1, . . . ,Zn↓2,X,Y }. For both SCMs, each Zi for 1∝ i∝ n⇑ 2 is an input of fX , fY . In
the SCM M1, there is a shared noise variable U1,X that is an input to fZ1 , fX ; there is also a noise variable Un↓2,Y that
is an input to fZn→2 , fY . In M1, no other exogenous Ui is an input to more than one causal mechanism. In M2, however,
there are additional noise variables Ui,i+1 that are inputs to fZi , fZi+1 , for each 1 ∝ i ∝ n ⇑ 3. First, note that both
M1,M2 correspond to the same CG(3) model, namely in Fig. 8(b). The bidirected edge X ↭↫↫↫↫↬ Z exists in both cases
due to the existence of the noise variable U1,X ; the edge Y ↭↫↫↫↫↬ Z exists due to Un↓2,Y . Crucially, however, conditional
ignorability holds in M1, since conditioning on Z blocks all the back-door paths. In M2, however, conditioning on Z

opens the path X ↭↫↫↫↫↬ Z1 ↭↫↫↫↫↬ . . . ↭↫↫↫↫↬ Zn↓2 ↭↫↫↫↫↬ Y , and therefore conditional ignorability does not hold. Therefore,
no mapping Acoarse satisfying the required properties can exist since ϑ(M1) = ϑ(M2) but A(M1) ⇔=A(M2).

PROOF OF PROP. 7. Denote by ϑ1, . . . ,ϑ8 the eight CG(3) diagrams in Figs. 8(a)-8(h). Suppose that M1,M2 are such
that ϑ(M1) = ϑ(M2) = ϑi. Then, the existence of Acoarse such that Acoarse(ϑ(M)) = A(M) implies that A(M1) =
A(M2). Therefore, the function A is constant along each set ϑ↓1(ϑi), where ϑ

↓1 denotes the preimage of ϑ.
For each ϑ1, . . . ,ϑ8, we now consider two cases. In the first case, suppose that for ϑi there exists M such that ϑ(M) = ϑi

and A(M) = 0 (meaning that conditional ignorability does not hold for the SCM M ). Due to the requirement A(M)∝
A(M) ′M , it follows that A(M) = 0. Using the fact that A must be constant along ϑ

↓1(ϑi), it follows that A(M) =
0 ′M ⇐ ϑ

↓1(ϑi). In the second case, suppose that for ϑi for each M such that ϑ(M) = ϑi we have A(M) = 1 (meaning
that conditional ignorability holds for each SCM M ). Then, by the condition that


! |A⇑A|dµ is minimal, we can see

that we must have A(M) = 1 ′M ⇐ ϑ
↓1(ϑi), since otherwise


! |A⇑A|dµ can be made smaller.

Therefore, A evaluates to 0 along ϑ
↓1(ϑi) whenever the set has an element with A(M) = 0; it evaluates to 1

whenever each element of it satisfies A(M) = 1. It remains to verify which values A takes on each of the sets
ϑ
↓1(ϑ1), . . . ,ϑ↓1(ϑ8). For ϑ↓1(ϑ1), . . . ,ϑ↓1(ϑ5) with corresponding CG(3) models in Figs. 8(a)-8(e), it is not difficult

to construct a model M such that ϑ(M) = ϑi and A(M) = 0 (we omit the full details of these constructions, since the
key ideas appear in the main text and the proof of Prop. 6). Therefore, we conclude that A= 0 on ϑ

↓1(ϑ1), . . . ,ϑ↓1(ϑ5).
For ϑ↓1(ϑ6),ϑ↓1(ϑ7),ϑ↓1(ϑ8) corresponding to CG(3) models in Figs. 8(f)-8(h), we can see that for each M in these
sets, in ϑ(M) the back-door criterion is satisfied; implying that A(M) = 1 for any such M . Therefore, we conclude
A= 1 on ϑ

↓1(ϑ6),ϑ↓1(ϑ7),ϑ↓1(ϑ8). This construction determines the values of A on the entire space !, and we can
see that A corresponds exactly to the notion of structural ignorability.

APPENDIX B: STRUCTURAL ACCOUNT OF INSTRUMENTAL VARIABLES

In this section, we extend the argument in the main text to the setting of instrumental variables. In the context of
a conditional instrument, we show that evaluating the independence restriction Yx →→ Z | W — where X and Y are
the treatment and outcome variables, Z is the instrument, and W is a set of covariates — faces essentially the same
challenges as assessing confounding in the classic setting discussed in the main body, as illustrated next.

EXAMPLE 5. Consider the models in Fig. 9(a–d), where X is the treatment, Y the outcome, Z the instrument, and
W1,W2 observed confounders. The goal is to assess whether the independence constraint Yx →→ Z |W holds in each
scenario. In this case, a cluster causal diagram over four blocks (denoted CG(4)) may be considered, with

B1 = {Y }, B2 = {X}, B3 = {Z}, B4 = {W1,W2}.(23)

We analyze the pairwise relations between blocks B1-B4 for each model to determine the corresponding cluster diagram
CG(4). In all models, the edges X ↑ Y , X ↭↫↫↫↫↬ Y , W ↑X , W ↑ Y , W ↑ Z , and Z ↑X are present. For models
(a) and (b), the edges Z ↑ Y , Z ↭↫↫↫↫↬W , and Y ↭↫↫↫↫↬W are absent. Therefore, both models (a) and (b) map to the
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X Y

W1 W2

Z

(a): Yx →→Z |W
X Y

W1 W2

Z

(b): Yx →→Z |W
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W1 W2

Z

(c): Yx →→Z |W
X Y

W1 W2

Z

(d): Yx →⇔→Z |W

Figure 9: Causal diagrams (a)–(d).

X Y

W

Z

(a) Model (a)

X Y

W

Z

(b) Model (b)

Figure 10: Cluster diagrams discussed in the example, where (a) represents causal diagrams in Fig. 9(a-b), and (b) the
ones in Fig. 9(c-d).

same CG(4) model shown in Fig. 10(a), where W is a cluster consisting of W1,W2. This occurs because all inter-block
relationships are identical for the two models.

In both models (a) and (b), the independence constraint holds. This follows from the back-door criterion applied to the
mutilated graph GX , obtained by removing all outgoing edges from X . The result is invariant to the internal relationship
between W1 and W2 since they are treated as a single block B4 in CG(4). Graphically, the shaded area over W1 and
W2 indicates that the modeler remains agnostic to their mutual dependence.

Consider now the models in Fig. 9(c–d). For these models, moving to the CG(4) representation requires adding the
edges Z ↭↫↫↫↫↬W (due to Z ↭↫↫↫↫↬W1) and Y ↭↫↫↫↫↬W (due to Y ↭↫↫↫↫↬W2). Therefore, both models (c) and (d) correspond
to the same CG(4) model shown in Fig. 10(b). The relations within the shaded area remain unchanged: in models (a)
and (c), W1 and W2 are independent, whereas in models (b) and (d), they share an unobserved common cause (dashed
arrow W1 ↭↫↫↫↫↬W2).

When analyzing cases (c) and (d), one might be tempted to abstract away the structure between W1 and W2 (within
block B4), as was done successfully in cases (a) and (b). However, this abstraction fails here. In model (c), conditioning
on W blocks all back-door paths between Z and Y , whereas in model (d), conditioning on W leaves the path Z ↭↫↫
↫↫↬W1 ↭↫↫↫↫↬W2 ↭↫↫↫↫↬ Y open. Consequently, the independence Yx →→ Z |W holds in model (c) but not in model (d).
The critical observation is that the inter-block relationships are identical in models (c) and (d), yet the independence
constraint holds only in (c). The difference lies entirely within block B4, which the statement Yx →→ Z | W fails to
capture. As expected, the corresponding CG(4) in Fig. 10 properly reflects this subtlety. ⊜

As the above example illustrates, the key observation in the main text, namely, that ignorability cannot account for fine-
grained structure, is not limited to adjustment settings, but applies more broadly to the assessment of counterfactual
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relationships expressed as independencies. Once again, our proposal is to use a template model over four nodes (labeled
CG(4)) and assess the following:

(i) whether a directed edge Z ↑ Y exists,
(ii) whether a bidirected edge Z ↭↫↫↫↫↬ Y exists,

(iii) whether a bidirected edge Z ↭↫↫↫↫↬W exists,
(iv) whether a bidirected edge Y ↭↫↫↫↫↬W exists.

Eliciting assumptions through these steps provides a natural, transparent way to encode causal knowledge, and a simple
application of the back-door criterion then determines whether the independence constraint holds, based on the cluster
diagram CG(4).

APPENDIX C: ON THE NON-LOCAL NATURE OF IGNORABILITY STATEMENTS

There is a common belief that the lack of unobserved confounding between variables X and Y implies the correspond-
ing ignorability statement (such as in Eq. 10), but this perspective is inaccurate. This is so since ignorability is a global
statement between the treatment and the outcome variables, while confounding is a more local and fine-grained property
of the causal system. To illustrate this point, we revisit the previous examples through structural lenses.

EXAMPLE 6. We consider again the causal diagrams in Fig. 5(a-d) and the following SCMs M(i) with structural
mechanisms F :

(24)

(25)

(26)

(27)

F :






Z1 ↘fZ1(UZ1)

Z2 ↘fZ2(UZ2)

X ↘fX(Z1,Z2,UX)

Y ↘fY (X,Z1,Z2,UY ),

where the distributions over the exogenous variables P (i)(UZ1 ,UZ2 ,UX ,UY ) factorize in each model as:

M(1) : P (1)(UZ1)P
(1)(UZ2)P

(1)(UX)P (1)(UY ),(28)

M(2) : P (2)(UZ1 ,UZ2)P
(2)(UX)P (2)(UY ),(29)

M(3) : P (3)(UZ1)P
(3)(UZ2)P

(3)(UX |UZ1)P
(3)(UY |UZ2),(30)

M(4) : P (4)(UZ1 ,UZ2)P
(4)(UX |UZ1)P

(4)(UY |UZ2).(31)

In the model M(1) corresponding to Fig. 5(a), it follows through Eq. 28 that all unobserved factors are marginally inde-
pendent. In particular, since UX and UY are marginally independent in this case, this means that there is no unobserved
confounding between X and Y . The same holds true with Z1 and Z2, following from the independence of their exogenous
variables UZ1 and UZ2 .

To further understand the implications of such independences, we consider the factual and counterfactual variables
involved in the independence relation that is being evaluated in the ignorability case, namely:

X ↘fX(Z1,Z2,UX)(32)

Yx ↘fY (x,Z1,Z2,UY )(33)

Now we re-write these expressions replacing the confounders with the corresponding exogenous variables (i.e., substi-
tuting Eqs. 24-25 into Eqs. 32-33) which leads to:

X ↘fX(fZ1(UZ1), fZ2(UZ2),UX)(34)

Yx ↘fY (x, fZ1(UZ1), fZ2(UZ2),UY ).(35)

Note that the source of randomness for the factual X and the counterfactual Yx comes from the distribution of exogenous
variables (UZ1 ,UZ2 ,UX) and (UZ1 ,UZ2 ,UY ), respectively. It is then immediate to see that despite the fact that UZ1 →→
UZ2 and UX →→ UY hold in this case, the variables X and Yx share certain exogenous variations, namely, UZ1 ,UZ2 ,
which means that a priori they are not independent.
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Interestingly, there is no unobserved confounding between X and Y , but still, they share sources of exogenous varia-
tions through Z1,Z2. We note through Eq. 34 that what precludes ignorability, Yx →→X , is not the relationship between
UX and UY in this case, since these are independent, but the variations coming from Z1,Z2. Therefore, to control for
these confounding variations, we need to condition on variables Z1,Z2, which could imply that Yx →→X | Z = z. To
show this is the case, we will show that

P (X = x
↑
, Yx = y | Z = z) = P (X = x

↑ | Z = z)P (Yx = y | Z = z).(36)

In doing so, we wish to leverage the independences implied by the factorization of the distribution over the exogenous
variables, P (u). In particular, model M(1) implies:

P (ux, uy, uz) = P (ux)P (uy, uz),(37)

P (ux, uz) = P (ux)P (uz).(38)

Using the definition of conditional probabilities, l.h.s. of Eq. 36 can be written as

P (X = x
↑
, Yx = y | Z = z) =

P (X = x
↑
, Yx = y,Z = z)

P (Z = z)
.(39)

Based on Def. 7, the numerator P (X = x
↑
, Yx = y,Z = z) can be expanded as

∑

u

(
(Z(u) = z) (X(u) = x

↑) (Yx(u) = y)
)
P (u)(40)

=
∑

u

(
(Z(uz) = z) (X(z,ux) = x

↑) (Yx(uz, uy) = y)
)
P (u) (using the specific SCM)(41)

=
∑

u

(
(X(z,ux) = x

↑) (Yx(z,uy) = y) (Z(uz) = z)
)
P (ux)P (uz, uy) (Eq. 37)(42)

=
∑

ux

(X(z,ux) = x
↑)P (ux)

︸ ︷︷ ︸
Term I

∑

uz,uy

(Yx(uz, uy) = y) (Z(uz) = z)P (uz, uy)

︸ ︷︷ ︸
Term II

(factorizing).(43)

Using Def. 7 we can recognize Term II as P (Yx = y,Z = z) . We next multiply Term I with P (Z = z) and obtain

Term I ∞ P (Z = z) =
∑

ux

(X(z,ux) = x
↑)P (ux)

∑

u↑
z

(Z(u↑
z) = z)P (u↑

z)(44)

=
∑

ux,u↑
z

(
(X(z,ux) = x

↑) (Z(u↑
z) = z)

)
P (ux)P (u↑

z)(45)

=
∑

ux,u↑
z

(
(X(z,ux) = x

↑) (Z(u↑
z) = z)

)
P (ux, u

↑
z) (Eq. 38)(46)

=
∑

ux,u↑
z

(
(X(u↑

z, ux) = x
↑) (Z(u↑

z) = z)
)
P (ux, u

↑
z) (using the specific SCM)(47)

= P (X = x
↑
,Z = z).(48)

Thus, Term I equals P (X = x
↑ | Z = z), and plugging it back into Eq. 39 yields

P (X = x
↑
, Yx = y | Z = z) =

P (Yx = y,Z = z)

P (Z = z)
P (X = x

↑ | Z = z)(49)

= P (X = x
↑ | Z = z)P (Yx = y | Z = z),(50)

which shows that ignorability holds. Interestingly, the independences in Eqs. 37-38 used above also hold for the model
M(2) corresponding to Fig. 5(b), and therefore the same proof can be used for verifying ignorability in the model M(2).

Now, for the models M(3), M(4) in Fig. 5(c), (d), the independence statements in Eqs. 37-38 do not hold. However,
for the model M(3), we know that

P (uz1 , uz2 , ux, uy) = P (uz1 , ux)P (uz2 , uy),(51)

P (uz1 , uz2) = P (uz1)P (uz2).(52)
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Using these independences, a slightly different approach is possible:
∑

u

P (u)
(

(X(u) = x
↑) (Yx(u) = y) (Z(u) = z)

)
(53)

=
∑

u

P (u)
(

(X(z,ux) = x
↑) (Yx(uz, uy) = y) (Z1(uz1) = z1) (Z2(uz2) = z2)

)
(54)

(using the specific SCM)

=
∑

u

P (ux, uz1)P (uz2 , uy)
(

(X(z,ux) = x
↑) (Yx(z,uy) = y) (Z1(uz1) = z1) (Z2(uz2) = z2)

)
(55)

(Eq. 51)

=
∑

ux,uz1

P (ux, uz1)
(

(X(z,ux) = x
↑) (Z1(uz1) = z1)

)

︸ ︷︷ ︸
Term III

(56)

∈
∑

uz2 ,uy

P (uz2 , uy)
(

(Yx(uz, uy) = y) (Z2(uz2) = z2)
)

︸ ︷︷ ︸
Term IV

.

Now, with almost the same reasoning as in Eqs. 44-48, we can show that

Term III ∞ P (z2) = P (X = x
↑
,Z1 = z1,Z2 = z2)(57)

Term IV ∞ P (z1) = P (Yx = y,Z1 = z1,Z2 = z2).(58)

Therefore, it follows that

P (X = x
↑
, Yx = y | Z = z) =

P (X = x
↑
,Z = z)P (Yx = y,Z = z)

P (Z1 = z1)P (Z2 = z2)P (Z = z)
(59)

=
P (X = x

↑
,Z = z)

P (Z = z)

P (Yx = y,Z = z)

P (Z = z)
(60)

= P (X = x
↑ | Z = z)P (Yx = y | Z = z)(61)

also using that P (Z = z) = P (Z1 = z1)P (Z2 = z2) in M(3). Therefore, ignorability also holds in the model M(3),
although for a different reason. Independences in Eqs. 51-52, however, do not hold for the model M(4), and therefore
the same proof does not apply, and the ignorability statement Yx →→X | Z = z does not hold. ⊜

This example illustrates an important point, namely that the confounding structure as described by the bidirected edges
is a local property, while ignorability evokes a more intricate, non-local type of judgement involving constraints related
to other variables, in this case Z1 and Z2. This line of reasoning can be extended naturally, for more general graphs, as
done formally in the following proposition:

PROPOSITION 8 (Adjustment Validity and Ignorability). Let n be the space of Semi-Markovian causal diagrams G
over n endogenous variables V = {Z1, . . . ,Zn↓2,X,Y }, with X,Y labeling the last two variables in G. Let A : n ∋↑
{0,1} be the adjustment validity operator indicating if ignorability holds in a diagram G. Let B = (B1,B2,B3) =
({Z1, . . . ,Zn↓2},X,Y ) represent the block structure following the ignorability statement in Eq. 10. Let B(G) ⇐ B
represent the block specification for the diagram G, which determines, for each pair of blocks Bi,Bj , (i) whether there
is a directed edge between Bi,Bj in G; (ii) whether there is hidden confounding between the Bi,Bj , i.e., if there is a
bidirected arrow between Bi,Bj in G. Six possible relations are considered (three possible directed arrows, and three
possible confounding arrows), and thus the space of block specifications = {0,1}6.

Then, for any number of endogenous variables |V |= n↙ 3, the following statements hold:

(a) △ B(i) ⇐ such that

△G1,G2 such that(62)
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B(G1) = B(G2) = B(i)(63)

A(G1) ⇔=A(G2).(64)

Therefore, there is no valid mapping from the space of block-specifications to the adjustment validity decisions
{0,1}.

(b) △ B(i) ⇐ such that

′G1,G2 : B(G1) = B(G2) = B(i) =⇓ A(G1) =A(G2).(65)

⊜

The significance of the proposition can be understood as follows. We consider all diagrams over n variables, assuming
that treatment X and outcome Y are the last two variables in the topological order, preceded by a set of confounders
Z1, . . . ,Zn↓2 (see Fig. 7 as an illustration). The first assertion (a) shows that two graphs G1,G2 can always be found such
that they have the same block specification, but disagree on the assessment of ignorability. This implies mathematically
that no valid mapping from the space of block specifications to adjustment validity decisions exists, generally. In other
words, when abstracting away the structure within blocks, we sometimes may be mixing instances in which ignorability is
true with those where it is not. This was the case with models in Fig. 5(c) and (d), which have the same block specification
but differ with respect to ignorability.

The second assertion of the proposition, in (b), shows that for some specific block specifications (labeled B(i)), it may
happen that all graphs G compatible with B(i) actually agree on the ignorability assessment. In other words, for some
block specification, abstracting away the structure within block may still be sufficient for assessing ignorability, i.e., there
is no loss of information in the abstraction process. Mathematically, this means there may be a locally valid mapping,
that maps B(i) to a correct adjustment validity decision in {0,1}. Importantly, though, this is not always the case. This
was the case with models in Fig. 5(a) and (b), which have the same block specification and also agree on the ignorability
statement.


