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ETH Zürich
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Princeton University

Elias Bareinboim
Columbia University

Abstract
Estimation and identification of causal e!ects are core tasks of causal inference. Within the po-

tential outcomes framework, the two tasks are usually solved jointly, and a range of estimation

techniques have been developed, in which identification of causal e!ects usually rests upon assess-

ing assumptions encoded in algebraic form. On the other hand, within the framework of graphical

causal models, questions of identification and estimation are more clearly delineated, and the

framework o!ers a more systematic approach to e!ect identification. One of the famous examples

is the back-door criterion, which allows one to assess the identification of a causal e!ect, and also

choose an appropriate adjustment set for estimation. Back-door type of adjustments, interestingly,

lead to the same estimation methods that are used in the PO framework. The back-door criterion,

however, is not complete, and thus more general identification approaches were developed in the

literature. These approaches allow one to identify various instances of causal e!ects not covered by

back-door adjustment, o!ering identification of e!ects not covered in the PO framework. In light

of this, proponents of the PO framework argue that instances that go beyond the back-door identi-

fication are unlikely to occur in practice, and that general identification strategies of the graphical

approach do not constitute a major advantage. In this work, we take a probabilistic approach to

analyzing this issue, focusing on the task of non-parametric identification from observational data.

In particular, we consider a setting in which the causal graph G of a Semi-Markovian model is

sampled at random, while the treatment X and the outcome Y are singletons drawn uniformly at

random. We compute the probability that the e!ect of X on Y is (back-door) identifiable from

observational data and the graph G, for di!erent sampling models. For the case when both the

observed and unobserved structure are sampled from an Erdős–Rényi model, we compute the exact

probability of back-door identification, together with upper and lower bounds for complete identi-

fication, via dynamic programming. We confirm our theoretical findings empirically for this class

of models, and extend the discussion to other random graph models, including uniformly sampled

and scale-free graphs, and graphs in which the unobserved confounding structure is generated by

projecting out (or hiding) variables. Our results show that for the majority of considered models,

more than 85% of all identifiable cases can be identified through the back-door criterion.

1. Introduction

Estimation of causal e!ects is one of the key building blocks of causal inference. Although randomized
control trials (RCTs) (Fisher, 1936) are still considered to be the gold standard for estimating causal
e!ects in many applied sciences, a substantial part of the literature on causal inference is concerned
with the estimation of causal e!ects from observational studies. In such settings, however, the
estimation of causal e!ects may not always be possible, even if an unlimited amount of data was
available. Therefore, the question of when and under which assumptions causal e!ects can be

1

TECHNICAL REPORT
R-125

May, 2025



computed from the data has been studied under the rubric of causal e!ect identifiability (Pearl,
2000), representing an important aspect of causal e!ect estimation as a broader concept.

There are two main, sometimes perceived as competing, frameworks concerned with the inference
of causal e!ects. The first is known as the potential outcomes (PO) framework, associated with
the works of Donald Rubin and colleagues (Rubin, 2005), building on pioneering ideas of Jerzey
Neyman (Neyman, 1923). Within this framework, assumptions are encoded in a more algebraic
form, in terms of conditional independence statements across potential outcomes. The questions of
identification and estimation are not entirely separate in the framework, and a range of techniques for
estimating the causal e!ects have been developed, such as inverse-propensity weighting (Rosenbaum
and Rubin, 1983), matching (Rosenbaum et al., 2010), and doubly-robust methods (Robins et al.,
1994, 1995; Bang and Robins, 2005), just to name a few (see (Imbens, 2004) for a review). Often
these estimation techniques rest upon assessing some form of unconfoundedness, usually encoded in
ignorability assumptions (Rubin, 1978; Rosenbaum and Rubin, 1983).

The second, alternative framework, rooted in early ideas from the fields of genetics (Wright,
1921b) and econometrics (Wright, 1921a, 1934; Haavelmo, 1944), and nowadays popular in the
computer science literature, is the structural-graphical approach to causality, pioneered by Judea
Pearl (Pearl, 2000). Unlike the PO framework, this framework employs an explicit graphical
representation of the underlying causal model, in which variables are represented as nodes in a
directed acyclic graph (DAG). When it comes to causal e!ect identification, instead of assess-
ing ignorability assumptions, the graphical approach introduces general machinery for analyzing
causal queries, including the well-known do-calculus (Pearl, 1995). One of the famous identifi-
cation methods in this context is the back-door criterion, in which a set of variables Z causally
preceding both the treatment variable X and the target variable Y are selected for adjustment,
to block spurious correlations between X and Y . This approach o!ers a human-understandable
way of selecting the adjustment set and can be used even in cases where some of the variables Z

are not observed. Interestingly, when performing an estimation after applying the backdoor cri-
terion, the graphical approach builds on the estimation techniques from the PO literature, such
as matching, weighting, or doubly robust approaches (Imbens, 2004), while providing a systematic
way to choose the exact adjustment set. However, the identification machinery in the graphi-
cal approach does not end with the back-door criterion. Examples of DAGs in which a causal
e!ect may be identified, but no back-door adjustment set exists, have been brought forward.

X Z Y

Figure 1: Graphical model of the
front-door example.

The first discovered example of this is the so-called front-door
adjustment setting (Fig. 1). In this case, the back-door type of
adjustment for the e!ect of X on Y fails, since the confounders
between X and Y are unobserved (indicated by the dashed,
bidirected arrow), but the e!ect is still identifiable due to the
existence of a mediator Z on a pathway X → Y , which is not
a!ected by the unobserved confounders. As subsequent works
demonstrated, the graph in Fig. 1 is not just an idiosyncrasy,
but a whole range of identifiable examples exists in which back-door adjustment fails, but the target
e!ect can be identified. This led to the development of a general algorithmic approach to identi-
fication that include complete algorithms (Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang
and Valtorta, 2012; Bareinboim and Pearl, 2012b; Lee et al., 2020b), which recover identification
expressions whenever this is possible. Building on these results, the do-calculus was shown to be
complete, meaning that its rules can be used for identifying an e!ect, whenever this is possible.
These developments have closed the open questions of non-parametric identification of interven-
tional distributions from combinations of experimental and observational data within the graphical
framework for causality.

When considering the identifiable functionals beyond the back-door criterion, proponents of the
PO framework argue that graphical models requiring more sophisticated adjustment methods than
the back-door are unlikely to occur in practice. For example, (Cox et al., 1995, p.689) argue that
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the diagram in Fig. 1 is unrealistic, due to the requirement that the unobserved confounder U which
a!ects X,Y does not a!ect the mediator Z. More recently, Imbens (2020) also discussed the front-
door setting, raising several concerns about its applicability for identifying the e!ect of smoking
on lung cancer1. At the same time, however, (Pearl and Mackenzie, 2018, p.231) argues that the
front-door approach may eventually become a serious competitor to randomized controlled trials, as
it allows one to control for confounders which are unobserved or even entirely unknown. Currently,
however, there are few applied studies in the literature that use identification techniques beyond
the back-door, with some interesting exceptions such as (Glynn and Kashin, 2018; Piccininni et al.,
2023; Inoue et al., 2022).

Interestingly, to the best of our knowledge, few formal mathematical arguments have been given
in the above debate, and it seems that the applicability of identification methods beyond the back-
door adjustment is a matter of opinion. In this manuscript, we add to this discussion by taking
a probabilistic approach to this question. In particular, by putting a probability measure over the
space of all possible Semi-Markovian causal graphs, we ask the following types of questions: given
a randomly chosen graph G and two randomly chosen variables X,Y , what is the probability that
the causal e!ect of X on Y is identifiable (i) using back-door adjustment; (ii) using an instrumental
variable approach; (iii) using the complete identification algorithm? Such questions motivate the
concept of probabilities of identification. For instance, we are interested in, writing informally for
now, P (BD ID), P (IV ID), and P (ID), and how large the gaps are between them. These quantities,
for di!erent random models over the space of causal graphs, will allow us to answer how much
there is to be gained from more fine-grained identification approaches compared to only back-door
identification, from a probabilistic standpoint. In particular, our contributions are the following:

(i) We introduce the formal notions of probabilities of identification (Def. 12),

(ii) For the case when the observed structure of the graph is drawn from an Erdős-Rényi model
G(n, p), and the latent structure of bidirected edges is drawn from an Erdős-Rényi model
G(n, q), using dynamic programming we compute:

(a) the exact probability of identification for the back-door algorithm (Thm. 2, Lems. 1, 2),

(b) the upper and lower bounds for the probability of complete identification (Thms. 4, 6,
Lems. 4, 5),

(iii) We confirm our findings empirically through simulation, and extend the discussion to other
random graph models, including uniform DAGs, scale-free DAGs (Bollobás et al., 2003), and
graphs in which the unobserved structure is generated by projecting out variables with a fixed
probability.

A probabilistic approach to questions in causal inference is not entirely new. For example, Uhler
et al. (2013) consider randomly sampled linear structural causal models to answer how likely it is
that a faithfulness assumption is satisfied, showing that faithfulness is violated on a measure-zero
set, while strong-faithfulness is violated on a set with a positive measure. Furthermore, several works
investigate the sizes and properties of (interventional) Markov equivalence classes (Katz et al., 2019)
using a random-graphs perspective. Another work, related in spirit, investigates causal discovery
in graphs where edges exist probabilistically, and attempts to recover the most probable graph
for which a given causal query is identifiable (Akbari et al., 2022). However, to the best of our
knowledge, a random graphs approach has not yet been employed for the questions we investigate
in this manuscript.

Finally, after clarifying what is discussed in the manuscript, we mention some aspects that go
beyond its content. Firstly, as noted earlier, assessing ignorability assumptions does not provide a

1. This discussion is a continuation of previous criticism of the smoking and lung cancer example, found in (Koller
and Friedman, 2009).
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systematic way of finding valid adjustment sets, as opposed to the structural/graphical approach
and the back-door criterion, which allow one to choose adjustment sets that possibly result in
improved sample e”ciency. However, more fundamentally, having a specified graphical model is
required for the latter approach, which may be non-trivial to obtain, especially in cases with a large
number of variables. Secondly, we focus on the setting with X,Y variables being singletons, while
these variables could in general be sets. Thirdly, the issues explored in this manuscript relate to
identifying interventional distributions from observational data, and do not cover other interesting
settings where the gap between the two frameworks of causality may exist. Such settings include
the identification of interventional or counterfactual distributions from arbitrary combinations of
observational and interventional data (Shpitser and Pearl, 2007; Lee et al., 2020a; Correa et al.,
2021; Correa and Bareinboim, 2025).

1.1 Organization of the Manuscript

The rest of the manuscript is organized as follows. Sec. 2 introduces important notions from the
causal inference literature related to identifiability. In Sec. 3, the concept of probability of iden-
tification is formally defined. Then, we compute the exact value for the probability of back-door
identification P (BD ID), and upper and lower bounds for probabilities of identification P (ID), using
chained sequences of dynamic programs, for the model in which directed edges are drawn indepen-

dently with a probability p (i.e., from a directed
↑→
G(n, p) model), and bidirected edges are drawn

independently with a probability q (i.e., from a G(n, q) model). These theoretical results are also
verified through simulation. In Sec. 4, we extend our simulation results to other generating mod-
els, including scale-free and uniformly-sampled graphs, and also cover di!erent ways of generating
the confounding structure, by projecting out or “hiding” observed variables from the model. In
Sec. 4.1, some of the methods usually associated with the potential outcomes framework (such as
instrumental variables and conditional ignorability) are discussed, and we analyze their probabilities
of identification. In Sec. 5 we give an interpretation of the results and some concluding remarks.

2. Prior Art

The first basic concept of causal inference we introduce is the structural causal model (SCM):

Definition 1 (Structural Causal Model (SCM) (Pearl, 2000)) A structural causal model M
is a 4-tuple ↓V, U,F , P (u)↔, where

1. U is a set of exogenous variables, also called background variables, that are determined by
factors outside the model;

2. V = {V1, ..., Vn} is a set of endogenous (observed) variables, that are determined by variables
in the model (i.e. by the variables in U ↗ V );

3. F = {f1, ..., fn} is the set of structural functions determining V , vi ↘ fi(pa(vi), ui), where
pa(Vi) ≃ V \ Vi and Ui ≃ U are the functional arguments of fi;

4. P (u) is a distribution over the exogenous variables U .

↭
The SCM contains the “ground truth” about the underlying causal phenomenon. In particular, the
assignment mechanisms F determine how each of the observed variables Vi attains its value, based
on other observed variables and the latent variables U . Together with the probability distribution
P (u) over the exogenous variables U , it specifies the entire behavior of the underlying phenomenon.
In particular, the SCM also specifies the observational distribution of the underlying phenomenon,
defined through:
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Definition 2 (Observational Distribution (Bareinboim et al., 2022)) An SCM M that is a
4-tuple ↓V, U,F , P (u)↔ induces a joint probability distribution P (V ) such that for each Y ≃ V ,

P
M(y) =

∑

u

1
(
Y (u) = y

)
P (u), (1)

where Y (u) is the solution for Y after evaluating F with U = u. ↭

A further important notion building on the concept of the SCM is that of a submodel, which is
defined next:

Definition 3 (Submodel (Pearl, 2000)) Let M be a structural causal model, X a set of variables
in V , and x a particular value of X. A submodel Mx (of M) is a 4-tuple:

Mx = ↓V, U,Fx, P (u)↔ (2)

where
Fx = {fi : Vi /⇐ X} ↗ {X ↘ x}, (3)

and all other components are preserved from M. ↭

In words, the SCM Mx is obtained from M by replacing all equations in F related to variables X
by equations that set X to a specific value x. This corresponds to setting the value of X = x in the
model, and is also abbreviated with do(X = x). Related to the concept of a submodel, we introduce
next the important concept of an interventional distribution:

Definition 4 (Interventional Distribution) Let X,Y ≃ V be disjoint sets of variables in an
SCM M. Then, the interventional distribution P (Y | do(X = x)) denotes the distribution of Y in
the submodel Mx. ↭

Finally, there is one more prerequisite notion for our discussion. The mechanisms F and the distri-
bution over the exogenous variables P (u) are almost never observed. However, to perform causal
inference, we need a way of encoding assumptions about the underlying SCM. A common way of
doing so is through an object called a causal diagram, which is defined next:

Definition 5 (Causal Diagram (Pearl, 2000; Bareinboim et al., 2022)) Let an SCM M be
a 4-tuple ↓V, U,F , P (u)↔. A graph G is said to be a causal diagram (of M) if:

(1) there is a vertex for every endogenous variable Vi ⇐ V ,

(2) there is an edge Vi → Vj if Vi appears as an argument of fj ⇐ F ,

(3) there is a bidirected edge Vi ↫↬↬↬↬⊜ Vj if the corresponding Ui, Uj ⇒ U are correlated or the
corresponding functions fi, fj share some Uij ⇐ U as an argument.

↭

Note that while the SCM contains explicit information about all structural mechanisms (F) and
distribution over the exogenous variables (P (u)), the causal diagram requires much weaker informa-
tion. The directed edges encode information about which functional arguments are possibly used as
inputs to the functions in F , while the bidirected edges encode which exogenous variables share in-
formation, i.e., where unobserved confounding is present. Based on the causal diagram, following the
usual notation, we will write pa(Vi), ch(Vi), an(Vi), and de(Vi) for the parents, children, ancestors,
and descendants of Vi, respectively. 2

2. We note for readers less familiar with causal inference that bidirected edges are not considered when judging
relationships of ancestrality and descendancy.
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(a) Diagram of Ex. 1.

X Y

(b) Bow graph.

X Y

(c) No-bow graph.

Figure 2: Causal diagrams in Sec. 2.1.

Example 1 (Causal Inference Blocks) Consider the following structural causal model (SCM):

F , P (u) :






X ↘ UX

W ↘ ↑X + UW

Y ↘ X +W + UY .

UX , UW , UY ⇑ N(0, 1).

(4)

(5)

(6)

(7)

The causal diagram associated with this SCM is shown in Fig. 2a. The edge X → W exists because
X is a functional argument of the fw mechanism in Eq. 5. Similarly, the X → Y,W → Y edges
exist since X,W are arguments of fy in Eq. 6. The observational distribution is given by

(X,W, Y ) ⇑ N

(


0
0
0



 ,




1 ↑1 0
↑1 2 1
0 1 2




)
. (8)

The interventional distribution can be obtained from the submodel Mx, which is computed by replac-
ing Eq. 4 with X ↘ x. Thus, we can compute the interventional distribution as

(X,W, Y ) | do(X = x) ⇑ N

(


x

↑x

0



 ,




0 0 0
0 1 1
0 1 2




)
. (9)

↭

2.1 Identification

After introducing the basic building blocks of causal inference, We now move onto the task of
identification. As was noted earlier in the text, a very common quantity of interest in causal inference
is known as the average treatment e!ect, which, for a single binary variable X ⇐ x0, x1 is written
as:

ATEx0,x1(y) = [Y | do(X = x1)]↑ [Y | do(X = x0)]. (10)

In non-parametric estimation from observational data, our ability to compute quantities like the
ATE depends on recovering the interventional distribution P (Y | do(X = x)). Therefore, from this
point onwards, we focus on the task of recovering distributions of the form P (Y | do(X = x)). To
this end, we first define what it means for P (Y | do(X = x)) to be identifiable:

Definition 6 (Identification (Pearl, 2000)) An interventional distribution P (Y | do(X = x)) is
said to be identifiable if it can be uniquely computed from the observational distribution P (V ) and
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the causal diagram G. Formally, P (Y | do(X = x)) is identifiable if, for all M1,M2 compatible with
P (v) and G, we have

P
M1(Y | do(X = x)) = P

M2(Y | do(X = x)). (11)

↭

We now ground the notion of identifiability through an example.

Example 2 (Lack of Identification) Consider the structural causal model (SCM) parameterized
by ω, ε, given as follows:

F , P (u) :






X ↘ UX

Y ↘ ωX + UY .

(
UX

UY

)
⇑ N

((
0
0

)
,

(
1 ε

ε 1

))
.

(12)

(13)

(14)

The parameter ω measures the strength of the causal e!ect, whereas the ε parameter measures the
correlation of the noise terms UX , UY (which in this case one would call hidden confounding). The
SCM is compatible with the causal diagram shown in Fig. 2b, known as the bow graph. The bidirected
arrow between X and Y indicates that the noise variables may be correlated (which is the case
whenever ε ⇓= 0).

We can further compute that the observational distribution is given by

(X,Y ) ⇑ N

((
0
0

)
,

(
1 ω+ ε

ω+ ε 1 + 2ωε+ ω
2

))
, (15)

whereas the interventional distribution after setting X = x is given by

(X,Y ) | do(X = x) ⇑ N

((
x

ωx

)
,

(
0 0
0 1

))
. (16)

We are now interested in inferring the distribution in Eq. 16, but we only have access to the ob-
servational distribution in Eq. 15. Def. 6 is concerned with the question if this computation can be
done uniquely. Suppose that we observed that

(X,Y ) ⇑ N

((
0
0

)
,

(
1 1

2
1
2 1

))
. (17)

Then, one can find that

(ω, ε) =

0,

1

2


,

ω, ε


=


1,↑

1

2


(18)

both generate the observational distribution in Eq.17, but the corresponding interventional distribu-
tions Y | do(X = x) are equal to,

N(0, 1) and N(x, 1), (19)

respectively, and thus di!er for any x ⇓= 0. Therefore, we say that P (Y | do(X = x)) is not
identifiable. ↭
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In the above example, we have chosen a specific parametric family (a linear model with Gaussian
noise) to illustrate the issue of identifiability in a familiar setting, and to leverage the reader’s
intuition on the non-identifiability of statistical parameters. As the example also showed, the bow
graph in Fig. 2b may produce non-identifiable instances of interventional distributions.

In general, Def. 6 is concerned with a more involved task of non-parametric identification, in
which we do not assume a parametric family for the SCM (like we did in Eqs. 12-14) and we do
not attempt to infer the true parameters of the SCM. Instead, we are interested in deriving gen-
eral, non-parametric identification expressions that connect the interventional and the observational
distributions by leveraging the knowledge in the causal diagram, as in the following basic example:

Example 3 (Identification) Consider any SCM compatible with the causal graph in Fig. 2c, and
let P (x, y) denote its observational distribution. For any such SCM, the interventional distribution
P (y | do(x)) can be uniquely computed as

P (y | do(x)) = P (y | x), (20)

that is, intervening to set X = x is equal to conditioning on X = x. Going back to Ex. 2, the
additional information o!ered by the graph in Fig. 2c compared to Fig. 2b is that the former precludes
the possibility of the correlation parameter ε ⇓= 0. ↭

As the above example shows, the simple graph in Fig. 2c can never cause issues with respect to
identifying interventions. In the following sections, we start introducing general graphical conditions
which ensure that an interventional distribution can be uniquely computed from the graph and the
observational distribution.

2.2 Back-door Identification

A well-known and widely used strategy for determining whether an interventional distribution is
identifiable is the back-door criterion. Before we explain the back-door criterion, we introduce the
basic idea of d-separation, which allows one test whether a path carries any information over it:

Definition 7 (d-separation) A path p is said to be blocked (or d-separated) by a set of nodes Z if
and only if

(i) there is a chain along p of the form i → m → j or i ↘ m → j such that m ⇐ Z,

(ii) there is a chain along p of the form i → m ↘ j with a collider m such that {m, de(m)}⇔Z = ↖,
where de(m) is the set of descendants of m.

↭

There are two ways a path can be blocked: (i) there is a non-collider m which is included in Z; (ii)
there is a collider m which is not in Z, and neither are any of its descendants. Intuitively, for paths
of the form i → m → j or i ↘ m → j conditioning on m will block the flow of information between
i, j and make them independent. However, conditioning on a collider m (or any of its descendants)
in a structure i → m ↘ j will in fact entangle i, j and make them dependent, whereas if m is
ignored, they would be independent. Based on this notion, we can now state the famous back-door
criterion:

Definition 8 (Back-door Criterion (Pearl, 2000)) A set of variables Z satisfies the back-door
criterion relative to an ordered pair of variables (X, Y ) in a causal diagram G if:

(i) no node in Z is a descendant of X,

(ii) Z blocks every path between X and Y that contains an arrow into X.
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Z1 Z2

X W Y

(a) Graph with a back-door.

Z1 Z2

X Y

(b) Graph with M-bias.

Z1 Z2

X Y

(c) Graph with no back-door.

Figure 3: Causal graphs from Ex. 4.

↭
Based on the definition of the back-door criterion, the following important result can be obtained:

Proposition 1 (Back-door Adjustment (Pearl, 2000)) If a set of variables Z satisfies the back-
door criterion relative to (X,Y ), then the distribution P (Y | do(X = x)) is identifiable from obser-
vational data. ↭

Example 4 (Back-door ID) Consider the diagram in Fig. 3a. Then, the set {Z1, Z2,W} does
not satisfy the back-door criterion, since it includes W ⇐ de(X). Furthermore, the set {Z1} also
does not satisfy the back-door criterion, because the path X ↘ Z2 → Y remains open. Finally, one
can check that the set {Z1, Z2} satisfies the back-door criterion.

Based on the above, one may be tempted to think that including all variables which causally
precede X is a good idea. Consider now the graph in Fig. 3b. The set {Z1, Z2} is not a back-door
set, since Z1 is a collider on the path X ↫↬↬↬↬⊜ Z1 ↫↬↬↬↬⊜ Y and we are conditioning on it. However,
the set {Z2} is a back-door set.

Of course, graphs with no back-door sets also exist. Consider the graph in Fig. 3c, in which
neither of ↖, {Z1}, {Z2}, {Z1, Z2} satisfy the back-door criterion. In this case, the e!ect of X on Y

is not identifiable via the back-door. ↭
In general graphs, there may be a large number of sets Z that could possibly satisfy the back-door
criterion for identifying the causal e!ect of X on Y , seemingly creating a problem for verifying
whether a valid back-door set exists. However, the following result helps us avoid searching over a
large number of possible adjustment sets:

Proposition 2 (One-shot Back-door Identification) Let (X,Y ) be an ordered pair of variables
in a causal graph G, and let F denote the set of variables that lie on any directed path X → · · · → Y .
If a back-door set for (X,Y ) exists, then the set an(X ↗Y ) \F is also a back-door set for (X,Y ). ↭
The above proposition can be seen as very useful from a computational point of view. Instead of
having to check every possible back-door set, we can simply verify whether an(X ↗ Y ) \ F is a
back-door set.

We remark here that back-door types of adjustment are similar to identification performed based
on the ignorability assumption in the potential outcomes literature. However, judging the ignorabil-
ity assumption with a causal graph may be di”cult in practice (as the example in Fig. 3b illustrates).
Nonetheless, for the purposes of our discussion, we assume that the back-door identification strategy
is in common to both the graphical approach and the potential outcomes approach.

We come back to the back-door identification in Sec. 3, but for now, move to more general
identification strategies, which go strictly beyond the identification strategies of the PO literature.

2.3 Identifying P (V \X | do(X = x))

In this manuscript, we are interested in identification of interventional distributions P (Y | do(X =
x)) where X,Y variables are singletons. However, in the literature, there is a useful strategy for
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X W Y

(a) Front-door graph.

Z1

Z2

X Y

(b) Napkin graph.

Z1

Z2

Y

X

(c) Graph with a hedge.

Figure 4: Causal graphs from Ex. 4.

identifying the causal e!ects of the form P (V \X | do(X = x)), that is, the interventional distribution
of all other variables (and not just Y ) when setting X = x. We note that if one can recover
P (V \X | do(X = x)), then the distribution P (Y | do(X = x)) follows easily, since we can simply
marginalize out all the variables V \ {X,Y }, i.e.

P (y | do(x)) =
∑

v\{x,y}

P (v \ x | do(x)). (21)

The first preliminary notion for building such stronger identification strategies is that of a C-
component.

Definition 9 (Confounded Component (Tian and Pearl, 2002)) Let G be a causal graph of
a Semi-Markovian model. A confounded component (C-component) C of G is any maximal subset
of the observables V in which any two variables Vi, Vj ≃ C are connected through a path consisting
of only bidirected edges. ↭

It is not di”cult to show that the set of C-components forms a partition of the set of observables
V . We further ground the notion through an example:

Example 5 (C-component) Consider the graph in Fig. 3a that has no bidirected edges. Then,
the C-components are all the singleton variables. In Fig. 3b the C-components are {X,Z1, Y } and
{Z2}, which is also the case in Fig. 3c. ↭

Based on the notion of a C-component, Tian and Pearl (2002) showed a seminal result on identifia-
bility of the queries of the form P (V \X | do(X = x)):

Proposition 3 (P (V \X | do(X = x)) Identification (Tian and Pearl, 2002)) The interventional
distribution P (V \X | do(X = x)) is identifiable from observational data if and only if there is no
bidirected path in G connecting X to any of its children. ↭

We now revisit an example from the beginning of the manuscript:

Example 6 (Front-door Identification) Consider the front-door graph in Fig. 4a. Due to the
bidirected edge X ↫↬↬↬↬⊜ Y , we note that no set Z can be back-door for X,Y . Thus, back-door
identification fails in this instance. However, observe that there is no bidirected path from X to
W (its only child), and thus by Prop. 3 the distribution P (W,Y | do(X = x)) is identifiable from
observational data. ↭

As the above example illustrates, we now have a second strategy for verifying identification of causal
e!ects, which is more powerful than the back-door criterion.

Towards a lower bound. The graphical criterion in Prop. 3 provides another easily verifiable
strategy for determining whether causal e!ects are identifiable. As it turns out, the identification of
P (Y | do(X = x)) is una!ected if we restrict our attention only to the subgraph consisting of nodes
an(Y ). Thus, our strategy will be to:
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1. Consider the subgraph over the nodes an(Y ), labeled G[an(Y )],

2. Check if there exists a bidirected path in G[an(Y )] between X and any of its children.

However, as witnessed by the following example, this identification strategy is still not perfect:

Example 7 (Lack of completeness) Consider the causal graph in Fig. 4b. The bidirected path
X ↫↬↬↬↬⊜ Z1 ↫↬↬↬↬⊜ Y connects X to its child Y . Therefore, Prop. 3 cannot guarantee that the distribu-
tion P (Y | do(X = x)) is identifiable. However, as it turns out, there exists an expression connecting
the interventional and the observational distributions, given by

P (y | do(x)) =


z1
P (x, y | z1, z2)P (z1)

z1
P (x | z1, z2)P (z1)

. (22)

↭

We omit the proof of Eq. 22, as it requires tools of the celebrated do-calculus (Pearl, 1995), which is
beyond the scope of our discussion. The main takeaway for the reader is that our second identification
strategy which looks for a bidirected path between X and its children, can in fact be improved
upon. Thus, our strategy provides a “lower bound” for general identification, or a su”cient but not
necessary condition for identification. We will make this notion formal shortly, after discussing the
complete identification strategy.

2.4 Complete Identification of P (Y | do(X = x))

We now move onto describing a general and complete criterion for identification. We first consider
definitions of C-trees and C-forests:

Definition 10 (C-tree and C-forests (Shpitser and Pearl, 2006)) A graph G is called a C-
tree if its nodes form a C-component, each node has at most one child, and all nodes are ancestors
of a single root node. A graph G is called a C-forest if its nodes form a C-component, and each node
has at most one child. ↭

These structures are further grounded in the following example:

Example 8 (C-trees and C-forests) Consider the graph in Fig. 3c. The set {X,Y, Z1} forms a
C-tree rooted in Y , since it is a C-component and every node has at most one child. It is also a
C-forest, since any C-tree is also a C-forest.

Consider the graph in Fig. 4b. The graph over nodes {X,Y, Z1, Z2} does not form a Y -rooted C-
tree, since Z2 is not in the same C-component as {X,Y, Z1}. However, {X,Y, Z1} form a C-forest,
where each of the nodes X,Y , and Z1 are roots. ↭

Based on the notion of C-forests, the lack of identifiability of a causal e!ect will be witnessed by the
existence of a structure known as a hedge:

Definition 11 (Hedge (Shpitser and Pearl, 2006)) Let X,Y be sets of variables in G. Let
F0, F1 be two C-forests in G with the set of root nodes R, such that:

(i) F0 is a subgraph of F1 (F0 ⊋ F1),

(ii) X and F0 are disjoint (X ⇔ F0 = ↖),

(iii) X and F1 are not disjoint (X ⇔ F1 ⇓= ↖),

(iv) R ⇐ anGX
(Y ), where GX denotes the graph where incoming arrows into X are deleted.

Then F0, F1 are said to form a hedge for the distribution P (Y | do(X = x)). ↭
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Now, building on the notion of hedges, we can state the general identification result for interventional
distributions, which is known to be complete:

Proposition 4 (Identification Criterion (Shpitser and Pearl, 2006)) The interventional dis-
tribution P (Y | do(X = x)) is identifiable from observational data P (v) and the graph G, written
P (Y | do(X = x)) ↙id G, if and only if no two subgraphs F0, F1 exist which form a hedge for
P (Y | do(X = x)). ↭

Two things are needed to check if an e!ect of X on Y is identifiable. First, we need to find a smaller
C-forest, rooted in an(Y ), that does not contain X. Then, we need to “grow” this forest further
(while retaining the same set of roots), until we have a larger forest that does contain X. If we
manage to do so, then the e!ect is not identifiable. Conversely, if we fail in this exercise, then the
e!ect is identifiable, i.e., the condition is complete.

Example 9 (Hedges and Identifiability) Consider the causal graph in Fig. 4b. Recall that,
since a bidirected path between X its child Y exists (X ↫↬↬↬↬⊜ Z1 ↫↬↬↬↬⊜ Y ), we cannot guarantee
identifiability of P (Y | do(X = x)) based on Prop. 3. Thus, we now attempt to find a hedge for this
query.

Firstly, we note that the only possible C-forest rooted in an(Y ) that does not contain X is just
{Y }. Thus, the smaller forest of a possible hedge is fixed, and it remains to check whether we can
extend this forest to find a larger forest that does include X. The candidates for the larger forest are
considered in order. Firstly, the set {X,Y } does not form a C-forest, since X,Y are not connected
with a bidirected graph in the subgraph induced by X,Y . Further, {X,Y, Z2} also do not form a
C-forest, since they are not connected. Finally, {X,Y, Z2, Z1} is still not a C-forest, since it is not
a single C-component. Thus, we conclude P (Y | do(X = x)) is identifiable in this graph.

We next consider the causal graph in Fig. 4c. Then, take {Z2} as a Z2-rooted C-forest, and note
it can be extended to {Z2, Z1, X}, thus giving a hedge, and showing non-identification of the query.
Similarly, in the bow graph from Fig. 2b, we can take {Y } and {X,Y } as the smaller and larger
C-forests, and show non-identification of the e!ect. ↭

Hedges provide us with a necessary and su”cient graphical criterion for determining if an interven-
tional distribution is identifiable. However, the number of sets which could form a hedge could in
principle be large, and navigating this space may be a non-trivial exercise.

Towards an upper bound. For our previous two identification strategies, the back-door and
the P (V \X | do(X = x)) strategy, there was a simple test for verifying whether the strategy can
guarantee identification. For finding hedges, no such criterion is known to exist. For purposes of our
investigation, we are therefore interested in a graphical structure which ensures that a hedge exists
but is not necessary for it, and that can be easily verified from the graph. This is encapsulated in
the following theorem.

Theorem 1 (0th and 1st Order Hedges – Upper Bounds) Let anGX
(Y ) be the set of ances-

tors of Y in the graph GX obtained by removing all the incoming arrows into X. Then, if there is
a bidirected path in G[anGX

(Y )] from X to any of its children, there exists a hedge for the query
P (Y | do(X = x)). We say this is a 0th order hedge.

Furthermore, let pa→(X) be the parents of X that are not in anGX
(Y ). Let pa→→(X) be the subset

of pa→(X) such that {X, pa→→(X)} form a C-component in the induced subgraph G[{X, pa→(X)}].
Then, if there exists a bidirected path between {X, pa→→(X)} and any child of X in the graph
G[{anGX

(Y ), pa→→(X)}], then there exists a hedge for the query P (Y | do(X = x)). We say this
is a 1st order hedge. ↭

The above theorem gives two ways of ensuring that a hedge exists. The first way is to add X to a
bidirected path in G[anGX

(Y ) \X] that originates in some ch(X) (what we call a a 0th order hedge).
The second strategy is to add not just X, but rather X and some of its select parents pa→→(X) (what
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(a) Napkin graph first variation.
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X

Y

(b) Napkin graph second variation.

Figure 6: Causal graphs from Ex. 10.

we call a a 1st order hedge). We now give the proof of the theorem (see the mental picture shown
in Fig. 5 for an illustration of the setting).
Proof Suppose that S1 ⇐ ch(X) is such that a bidirected path exists from S1 to X only through
G[anGX

(Y )]. Let S1 ↫↬↬↬↬⊜ . . . ↫↬↬↬↬⊜ Sk ↫↬↬↬↬⊜ X be this path. Notice that {S1, . . . , Sk} form a C-
component (since they lie on a bidirected path), and thus they form a {S1, . . . , Sk}-rooted C-forest.
We can then add X to {S1, . . . , Sk}, to obtain a larger C-forest with the same set of roots that
contains X, thus guaranteeing a hedge. We call this the 0-th order approximation. The second part
is similar but slightly more involved. Instead of having a path starting in S1 and entering from Sk

directly to X, we now allow it to enter into a parent of X, which then has a subsequent bidirected
path to X only along pa→(X). Then, instead of adding just X to S1, . . . , Sk as in the 0-th order
approximation, we add X and all of its parents that are in the same C-component in the subgraph
induced by X, pa→(X), which were labelled pa→→(X) in Thm. 1. Once again, we can see that this
structure forms a hedge.

. .
.

ch(X) ⇔ an(Y )

Y

X

pa
→(X)

anGX
(Y ) \X

Figure 5: Mental picture of Thm. 1.

The above theorem provides an easily verifiable cri-
terion that guarantees the existence of a hedge for an
identification query of interest. Therefore, whenever the
condition from Thm. 1 is satisfied, the query cannot be
identified. In other words, the criterion cannot give us
any false negatives with respect to identification – there
is no query that is identifiable while Thm. 1 claims it is
not identifiable. However, the theorem provides an upper
bound, since it allows for the possibility of false positives
with respect to identification – there may be queries that
are not identifiable but the graph does not contain a 1st

order hedge. This is investigated in the following example:

Example 10 (Hedges Upper Bound) Consider the Napkin diagram in Fig. 4b and the query
P (Y | do(X = x)). As discussed in Ex. 9 there is no hedge for this query and therefore it is
identifiable. When applying Thm. 1, we first find that pa→(X) = Z2, and pa→→(X) = ↖. Therefore,
the graph G[{anGX

(Y ), pa→→(X)}] is just X → Y , and there is no bidirected path from X to Y in
this graph, making the query identifiable according to the theorem.

Now, consider a variation of the Napkin graph in Fig. 6a. Note that F0 = {Y }, F1 = {Y,X,Z2, Z1}

is a hedge for the P (Y | do(X = x)) query, making the query non-identifiable. However, when
applying Thm. 1, we obtain the same result as before, namely pa→(X) = Z2, pa→→(X) = ↖ and
G[{anGX

(Y ), pa→→(X)}] equal to X → Y , which means there is no bidirected path from X to its child
Y . Here, Thm. 1 would mistakenly imply the query is identifiable, giving a “false positive”.

Finally, consider another variation of the Napkin graph in Fig. 6b. Again, F0 = {Y }, F1 =
{Y,X,Z2, Z1} form a hedge for the P (Y | do(X = x)) query. However, with Thm. 1 we obtain that
pa→(X) = Z1, pa→→(X) = ↖, and thus G[{anGX

(Y ), pa→→(X)}] is X → Z2 → Y with a bidirected edge
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X ↫↬↬↬↬⊜ Y . In this graph, there is no bidirected path between X and its child Z2, and thus the query
would be deemed identifiable according to Thm. 1, even though a hedge exists. This o!ers another
example of a “false positive” with respect to identification produced by Thm. 1. ↭

Towards Probabilities of Identification. Based on the identification strategies discussed so
far, we can motivate the notion of a probability of identification (defined formally in Sec. 3). The
key idea is that we will think of sampling causal diagrams G at random, from a sampling model.
Furthermore, the treatment variable X and the outcome variable Y will be chosen at random from
the set of observed variables V . Under such random sampling, we will quantify how likely di!erent
strategies for identification are to identify the query P (Y | do(X = x)). In particular, we are
interested in probabilities of back-door identification P (BD ID), joint identification P (Joint ID),
complete identification P (ID), and 1st order hedge identification P (1st OH ID). Another important
strategy we mention is that of 0 ID, which checks if there are any causal paths from X to Y in
the graph G – if there are none, the strategy identifies the query P (Y | do(X = x)) as P (Y ), and
gives a negative answer otherwise. We note that, strictly speaking, back-door identification does not
encompass 0 ID, since back-door type of adjustment always provides an identification expression of
the form

P (Y | do(X = x)) =
∑

z

P (Y | X = x, Z = z)P (Z = z), (23)

which, semantically, cannot produce the answer P (Y ) obtained from 0 ID (unless additional assump-
tions are made). However, for simplicity of the exposition, when we write BD ID, we assume that
both 0 ID and back-door ID are included in the strategy. Importantly, the following set of relations
holds for di!erent probabilities of identification, regardless of the sampling model chosen:

P (0 ID) ∝ P (BD ID) ∝ P (Joint ID) ∝ P (ID) ∝ P (1st OH ID). (24)

Non-ID + ID

1st OH ID

ID

Joint ID

0 + Backdoor ID

0 ID

!

Figure 7: Hierarchy of identification strategies.

A visualization is given in Fig. 7, which shows
the space of graph-query pairs, defined by the
triplet (G, X, Y ). Di!erent ID strategies form
a hierarchy, in the sense that 0 ID is encom-
passed by 0 + Backdoor ID, which is encom-
passed by Joint ID of P (V \ X | do(X = x)),
which is encompassed by complete ID, further
encompassed by 1st OH ID. These inclusion re-
lations imply the inequalities in Eq. 24.

We can now summarize our strategy for
the remainder of the manuscript, as shown in
Tab. 1. In Sec. 2.2 we discussed the back-door
identification strategy, and in Prop. 2 we stated
a one-shot verification for the existence of a back-door set. In the sequel, in Thm. 2 we will compute
exactly (via dynamic programming) the probability that the query P (Y | do(X = x)) is identifiable

in a randomly sampled causal graph, where the directed part is drawn from
↑→
G(n, p), and the bidi-

rected part from G(n, q). Further, in Sec. 2.3 we discussed a criterion for checking the identification
of P (V \X | do(X = x)), which further allows us to compute our query of interest (Prop. 3). We will
compute in Thm. 4 the exact probability for this to occur, which will serve as a lower bound for the
probability of complete identification. Finally, in Sec. 2.4 we discussed the graphical criterion called
a hedge, which represents a necessary and su”cient condition for verifying identifiability. However,
the exact probability of this event may be di”cult to compute, so we will instead compute its upper
bound (see Thm. 6 in the sequel), based on the notion of a 1st order hedge from Thm. 1.
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ID Strategy Probability of ID Section Key Result P(event)

Back-door P (BD ID) Sec. 2.2 Prop. 2 Thm. 2

P (V \X | do(X = x))
(Lower Bound)

P (Joint ID) Sec. 2.3 Prop. 3 Thm. 4

Hedges (Complete) P (ID) Sec. 2.4 Prop. 4 ✁

1st Order Hedge
(Upper Bound)

P (1st OH ID) Sec. 2.4 Thm. 1 Thm. 6

Table 1: Summary of the paper organization.

As we will witness, the displayed identification strategies are in fact, probabilistically, rather
close together. Furthermore, the upper and lower bounds for complete identification are remarkably
similar.

3. Probabilities of Identification

In this section, we move to the theoretical analysis of the questions of identifiability, when the causal
graph G, and variables X,Y are chosen at random. We denote by G = (V, Ed, Eb) the causal graph,
with V being the set of vertices, Ed the set of directed edges, and Eb the set of bidirected edges. For
simplicity, from now on, we assume that the vertices of G are labelled 1, . . . , n, and the numbering
also represents a fixed ordering over the vertices. By GSM

n we denote the space of all Semi-Markovian
models over n vertices. The set {1, . . . , i} is abbreviated with [i], and the subgraph of G induced
by the vertices V

↑ is denoted by G[V ↑]. The random variable IX taking values in [n] denotes the
index of the treatment variable, that is X = VIX . Similarly, IY denotes the index of the outcome
variable, such that Y = VIY . Further, we label the interventional distribution P (Y | do(X = x))
with Q(IX , IY ), with Q(i, j) indicating the interventional distribution P (Vj | do(Vi = vi)). We write
Q(IX , IY ) ↙A

id G = 1 if the query is identifiable from observational data and the graph G, where A

indicates an identification strategy. Otherwise Q(IX , IY ) ↙A
id G = 0.

Di!erent identification strategies are listed in Tab. 1. We first compute the probability of back-
door identification, for which we use the notation ↙

bd
id (and abbreviate the strategy BD ID). Then, we

will compute the probability of identifying P (V \X | do(X = x)) in the subgraph G[an(IY )], which is
abbreviated as Joint ID (since the joint distribution V \X is identified in this strategy). This strategy
provides a lower bound for complete identification, and we use the notation ↙

jid
id . Similarly, we will

also compute the probability of the 1st order hedge criterion from Thm. 1, and use the notation
↙
1oh
id (the strategy is abbreviated as 1st OH ID). Note that this strategy provides an upper bound

for complete identification (meaning that Q(IX , IY ) ↙id G = 1 =′ Q(IX , IY ) ↙
1oh
id G = 1). The

probability of complete identification, for which we simply use ↙id, will not be computed explicitly,
but we will instead resort to its upper and lower bounds.

Equipped with the necessary notation, we begin by providing a general definition of a probability
of identification:

Definition 12 (Probability of Identification) Let µ be a probability measure over the space of
Semi-Markovian models GSM

n . Let IX , IY be two randomly drawn subsets of {1, . . . , n} according
to a probability measure ϑ. Further, let A denote an identification strategy. We then define the
probability of identification with respect to (µ,ϑ,A) as

Pω,µ(A ID)
!
= ω,µ(Q(IX , IY ) ↙

A
id G = 1). (25)

↭
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1 2

(a) P = (1→ p)(1→ q).

1 2

(b) P = p(1→ q).

1 2

(c) P = (1→ p)q.

1 2

(d) P = pq.

Figure 8: Causal diagrams in Sec. 2.

The provided definition allows for very general probabilities of identification, and some simplification
is in order. Firstly, for the rest of the manuscript, we focus on identifying the causal e!ects of
singleton variables X on singleton variables Y . In particular, since for the identification of P (Y |

do(X)) the non-ancestors of Y can be ignored, we assume that Y is the last variable in the graph,
meaning that IY = n, and X is chosen uniformly over the remaining n↑ 1 variables. Furthermore,
for the theoretical analysis of this section, we restrict the measure µ such that edges Ed are drawn
independently with probability p, and edges Eb independently with probability q. Therefore, our
choice of ϑ, µ yields:

(a) restricting ϑ so that IY = {n} with probability 1, and IX chosen uniformly over {1, . . . , n↑1},
i.e.,

(IX = i) =
1

n↑ 1
∞i ⇐ {1, . . . , n↑ 1}, (26)

(IY = n) = 1. (27)

(b) restricting µ so that

((i, j) ⇐ Ed) = p, (28)

({(i, j), (j, i)} ⇐ Eb) = q, (29)

independently for each i, j such that i < j.

Eq. 28 corresponds to sampling edges from a directed Erdős–Rényi model
↑→
G(n, p), whereas Eq. 29

corresponds to sampling from an undirected Erdős–Rényi model G(n, q). We now give an illustration
for graphs over two nodes:

Example 11 (Two Node Graphs) Consider the 4 possible graphs over two nodes in Fig. 8. The
empty graph (a) occurs when the directed edge is not sampled (with probability 1 ↑ p), and the
bidirected edge is not sampled either (with probability 1 ↑ q). The graph (b) occurs with probability
p(1↑q) since the directed edge is sampled, and the bidirected is not. Similarly for graph (c). Finally,
in graph (d), both edges are sampled, which happens with probability pq. ↭

For the remainder of this section, we are concerned with computing the values of Pω,µ(BD ID),
Pω,µ(Joint ID) and Pω,µ(1st OH ID) for the specific choice of µ and ϑ given above. In Section 4, we
consider other interesting choices of µ. The main question we are trying to answer is the following:
if we sample a causal graph at random, how likely are di!erent identification strategies to work?

3.1 Computing Pω,µ(BD ID)

In this section, we show how to e”ciently compute the probability of identification for the back-
door criterion for the above-described random graph model. We begin by proving the following
theorem, which gives a way to compute this quantity, although it is not immediately clear whether
the computation can be performed e”ciently. In the subsequent lemmas following the theorem, we
show that this is indeed the case.
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Theorem 2 (Probability of Back-door Identification) Let G, IX , IY be sampled according to
Eq. 26-29. Further, define the random variables S1 := |an(n) ⇔ [i ↑ 1]|, S2 := |an(n) ⇔ de(i)|, S3 :=
|an(n) ⇔ {i, . . . , n}|, and let P (S1, S2, S3) denote their joint distribution. Then,

(Q(i, n) ↙bd
id G = 1) =

i↓1∑

ε=0

n↓i+1∑

j=1

n↓i+1∑

k=j

ε+k↓j∑

c=0

(
ϖ+ k ↑ j

c

)
pc+1,q(1↑ q)(c+1)(ε+k↓j↓c)(1↑ q)(c+1)(j↓1)

· P (S1 = ϖ, S2 = j, S3 = k)

+ P (S2 = 0), (30)

where pc,q is the probability that a randomly drawn undirected Erdős-Renyi graph G(c, q) is connected.
Therefore, the probability of back-door identification can be computed as

(Q(IX , n) ↙bd
id G = 1) =

1

n↑ 1

n↓1∑

i=1

(Q(i, n) ↙bd
id= 1).

(
ϖ+ k ↑ j

c

)
(31)

↭

Proof According to Prop. 2, for identification of the e!ect of i on n we need to verify whether the
set Z = an(i ↗ n) \ F satisfies the back-door criterion, where F are the variables on causal paths
i → · · · → n. Therefore, F is the set an(n) ⇔ de(i) \ {i, n}. First, note that if there are no variables
in an(n)⇔ de(i), then there is no causal path from i to n, and the e!ect is trivially identifiable (this
case corresponds to the term P (S2 = 0) in Eq. 30). Further, assume now that S2 > 0, i.e., there is a
causal path from i to n. Notice that variables that are not in an(n) can be ignored since they cannot
lie on an open back-door path from i to n, or a causal path from i to n. Now, let F+n = F ↗ {n}.
Suppose there is a bidirected path from i to any element of F+n, going through an(n) \ F+n only.
Let this path be denoted by i ↫↬↬↬↬⊜ s1 ↫↬↬↬↬⊜ . . . ↫↬↬↬↬⊜ st, where st ⇐ F+n. Then, since all the nodes
s1, . . . , st↓1 are in the Z set, and there is a directed path from st to n (or st = n), this creates an
open path not blocked by Z. Therefore, Z is not a back-door set for (i, n) (and hence by Prop. 2
there is no back-door set). Conversely, suppose that there is no bidirected path from i to F+n, going
through an(n) \ F+n only. Take any path from i to F+n, going through nodes i, s1, . . . , st, where
st ⇐ F+n, {s1, . . . , st↓1} ⇐ an(n) \ F+n. Since the path i, s1, . . . , st cannot consist of only bidirected
edges, it must contain a directed edge, between st0 and st0+1 say. However, both st0 and st0+1 are
in the Z set, and at least one of these is not a collider on the path, so the path is necessarily blocked
(one may also additionally check then special cases when the directed edge is the edge i ↘ s1 or
st↓1 → st, where in the former case s1 is a non-collider in the Z set, while in the latter it is st↓1).
Therefore, any back-door path between i and F+n is blocked by the Z set, in turn implying that
every back-door path from i to n is also blocked.

Now, we condition on the event S1 = ϖ, S2 = j, S3 = k. We wish to compute the probability
that i can reach F+n via nodes an(n) \ F+n using bidirected edges. Let C denote the set of nodes
in an(n) \ de(i) that can be reached from i in the subgraph G[an(n) \ de(i)] using only bidirected
edges, and let |C| = c. There are

ε+k↓j
c


di!erent choices for the set C, and the probability that i

can reach C and no other node in G[an(n) \ de(i)] by bidirected edges equals

pc+1,q  
C,{i} connected

∈ (1↑ q)(c+1)(ε+k↓j↓c)

  
other ε+k↓j↓c nodes not reached

. (32)

Since exactly c nodes can be reached from i, it remains to ensure that none of the nodes C↗{i} have
a bidirected edge into F+n, which satisfies |F+n| = j↑1, yielding an additional term (1↑q)(c+1)(j↓1).
Summing over di!erent values of c, ϖ, j, k yields Eq. 30.

Following the approach of (Gilbert, 1959), the probability pc,q can be computed recursively for any
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c as

1↑ pc,q =
c↓1∑

r=1

(
c↑ 1

r ↑ 1

)
pr,q(1↑ q)r(c↓r)

, (33)

with the initial value p1,q = 1. To see why this holds, consider conditioning on the size of the
connected component of some node in a graph drawn from G(c, q) (component size is denoted by
r). Then, the set of nodes in the connected component can be chosen in

c↓1
r↓1


ways, pr,q guarantees

that the r vertices in the connected component are indeed connected, and (1↑q)r(c↓r) ensures there
are no nodes from the connected component of size r to any of the remaining c ↑ r nodes. Then,
Eq. 33 follows from the law of total probability.

Therefore, Thm. 2 allows us to compute the probability of back-door identification, provided we
can recover the joint distribution over S1 = |an(i)|, S2 = |an(n) ⇔ de(i)|, S3 = |an(n)|. To do so, we
first find the joint distribution over the S2 = |an(k)⇔de(1)|, S3 = |an(k)| for a graph of size k, which
can be computed in polynomial time.

Lemma 1 (Recovering P (S2, S3)) Let G be drawn from
↑→
G(n, p). Define the random variables

S2 := |an(n) ⇔ de(1)|, S3 := |an(n)|. Then, the joint distribution P (S2, S3) over S2, S3, can be
computed in polynomial time with complexity O(n5). ↭

Proof Denote by G[[i]] the graph consisting of all edges with both endpoints at most i and by
G↑G[[i]] the graph of all edges touching {i+1, . . . , n}. We shall calculate the distribution of (S2, S3)
using dynamic programming, whereby in step i we expose the edges from vertices 1, . . . , i ↑ 1 to
vertex i, thus after i steps we have exposed G[[i]]. The crucial idea is, after exposing the edges to
vertex i, to also “decide” whether or not i will be in an(n). Then, after i steps, we distinguish four
types of vertices. Each vertex j ⇐ [i], can either be:

• unreachable if j /⇐ de(1),

• mandatory if j ⇐ de(1) and in G ↑ G[[i]] there must be a path from j to n,

• ensured if j ⇐ de(1) and j has an edge to a vertex j
↑ with j < j

↑
∝ i for which we have decided

that j↑ will be in an(n) (implying that j↑ is now either mandatory or ensured),

• or forbidden if j ⇐ de(1), but we have decided that j will not be in an(n).

Informally speaking, after exposing the edges to vertex i, if it is in de(1), we make two separate
guesses: one that i will be in an(n) and one that i will not be in an(n). While running the dynamic
program, we only keep the sets of guesses which are consistent with G[[i]], the graph exposed so far.
A set of guesses becomes invalidated if we have guessed that i will be in an(n) and there is an edge
from a forbidden vertex j < i to i. Additionally, if a vertex j ∝ i is ensured, then by definition,
there is a vertex j

↑ such that j → j
↑ and j

↑ will be in an(n), hence it is irrelevant whether or not j
can reach n in G ↑ G[[i]]. Finally, when we reach i = n, we must make sure that all our guesses were
correct, i.e. every vertex which is still mandatory, must have an edge toward n while no forbidden
vertex can have an edge toward n.

To devise a polynomial time algorithm, what is left to observe is that at some point i, we only
need to keep track of the number of vertices of each type and not the precise sets of vertices of each
type.

Now, we formally describe the algorithm. To this end, given the entire graph G and a vertex
i ⇐ [n] contained in a path from 1 to n, let nxt(i) denote the smallest j > i such that i → j and j

can reach n, that is j is the smallest possible vertex after i in a path from i to n.

Let f(i, U,M,E, F ) with i = U +M + E + F denote the probability that the following holds:

• there are precisely U vertices in [i] which are not reachable from 1;
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• there are precisely M vertices j ⇐ [i] that are contained in a path from 1 to n and have
nxt(j) > i;

• there are precisely E vertices j ⇐ [i] that are contained in a path from 1 to n and have
nxt(j) ∝ i;

• there are precisely F vertices in [i] that are reachable from 1 but cannot reach n;

conditioned on the probability that for given specific disjoint subsets SM and SF of [i] containing M

and F vertices, respectively, in the graph G↑G[[i]], every vertex in SM can reach n, while no vertex
in SF can reach n. The variables U,M,E, F correspond to the number of unreachable, mandatory,
ensured and forbidden vertices after step i, respectively.

In the definition, we are implicitly using that the probability we condition on is the same for any
choice of SM and SF .

We calculate f(i, U,M,E, F ) using dynamic programming with the start case f(1, 0, 1, 0, 0) =
f(1, 0, 0, 0, 1) = 1 and f(1, 1, 0, 0, 0) = f(1, 0, 0, 1, 0) = 0.

The transitions are as follows. At each step, we decide whether the new vertex i is reachable
from 1 and if it is whether it can reach n. Then, expose the edges from [i↑ 1] to i and this gives us
the new values of U,M,E, F. To avoid writing edge cases, we define f(i, U,M,E, F ) to equal 0 for
any undefined values where one of the parameters is negative or when i ⇓= U +M +E +F. We then
formally have for any i ∋ 2:

f(i, U,M,E, F ) =f(i↑ 1, U ↑ 1,M,E, F ) · [Bin(M + E + F, p) = 0]+

f(i↑ 1, U,M,E, F ↑ 1) · [Bin(M + E + F ↑ 1, p) > 0]+

f(i↑ 1, U,M ↑ 1, E, F ) · [Bin(M,p) = 0] · [Bin(F, p) = 0] · [Bin(E, p) > 0]+

E∑

k=1

f(i, U,M + k ↑ 1, E ↑ k, F ) · [Bin(M,p) = k] · [Bin(F, p) = 0].

The first line corresponds to vertex i not being reachable from 1; the second line to vertex i being
reachable from 1 but it cannot reach n; the third line to vertex 1 being on a path from 1 to n with
no incoming edges from the set of vertices j with nxt(j) > i ↑ 1 (hence it must have an edge from
one of the E vertices with nxt(j) ∝ i↑ 1); the fourth line corresponds to i having k ∋ 1 edges from
vertices j < i with nxt(j) > i↑ 1.

Let S2 := |an(n)⇔ de(1)| denote the number of vertices which lie on some path from 1 to n in G.
Let S↑

3 := |de(1)|, and S3 = |an(n)|. Then, for any m ∝ n:

P (S2 = 0, S↑
3 = m) =

∑

U

f(n↑ 1, U, 0, 0,m)(1↑ p)m. (34)

For any 1 ∝ j ∝ m and 0 ∝ m ∝ n:

P (S2 = j, S
↑
3 = j +m) =

∑

U,M,E:M+E=j↓1

f(n↑ 1, U,M,E,m)pM (1↑ p)m. (35)

Finally, due to the symmetry of the ancestrality and descendency in the problem, we have that
P (S2 = j, S

↑
3 = k) = P (S2 = j, S3 = k), concluding the proof.

After recovering the joint distribution P (S2, S3) in polynomial time, we can now reconstruct the
distribution P (S1, S2, S3) appearing in Thm. 2, using the P (S2, S3) distribution as a boundary
condition:
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Lemma 2 (Recovering P (S1, S2, S3)) Let G be drawn from
↑→
G(n, p). Fix i ⇐ [n ↑ 1], and define

the random variables S1 = |an(i)|, S2 = |an(n) ⇔ de(i)|, S3 = |an(n)|. The distribution P (S1, S2, S3)
can be recovered in polynomial time with complexity O(n4), given the distribution P↓↔

G(k,p)
(S2, S3) as

a boundary condition for various values of k ∝ n. ↭
Proof We start from the subgraph over the nodes i, . . . , n, and expose the outgoing edges from
nodes i↑1, i↑2, . . . , 1 in that order. Let f(t, a, b, c) denote the probability that S1 = a, S2 = b, S3 = c

in the graph with the outgoing edges from all nodes with an index ∋ t exposed. Then, note that we
have the following transition:

f(t, a, b, c) = f(t↑ 1, a↑ 1, b, c) · (1↑ (1↑ p)a↓1+c)  
t↗an(n)

+ f(a↑ 1, a, b, c) · (1↑ p)a+c

  
t/↗an(n)

, (36)

and the boundary condition f(i, 0, b, c) = P↓↔
G(n↓i+1,p)

(S2 = b, S3 = c), with the complexity of the

dynamic program of O(n4).

We can now tie together the results of Thm. 2, Lem. 1, and Lem. 2, to complete the theoretical
discussion on probabilities of back-door identification. The formal result is given in the following
corollary.

Corollary 3 (E!cient Computation of Probability of Back-door Identification) Let G,
IX , and IY be sampled according to Eq. 26-29. Then, the probability of back-door identification
(Q(IX , IY ) ↙

bd
id G = 1) can be computed in polynomial time, with computational complexity of

O(n5). ↭
Proof First, based on Thm. 2, the expression for (Q(IX , IY ) ↙bd

id G = 1) given in Eq. 31 has O(n)
terms, and each of terms can be computed in O(n4) (see Eq. 30) steps provided pc,q and P (S1, S2, S3)
and are available. This computation thus takes O(n5) steps. Furthermore, based on the recursion
in Eq. 33, probabilities pc,q can be computed in O(n2) for all c ∝ n. Furthermore, in Lem. 1, we
showed how the joint distributions P (S2, S3) for all graph sizes n0 ∝ n can be computed in O(n5)
steps. Using the distributions P (S2, S3), Lem. 2 shows how P (S1, S2, S3) can be computed in O(n4).
Therefore, it follows that probabilities of back-door identification can be computed e”ciently, with
a computational cost of O(n5).

3.2 Computing Pω,µ(Joint ID) (Lower Bound)

Our next task is to e”ciently compute the lower bound for the probability of complete identification.
We follow a similar approach as in Sec. 3.1. First, we give the general theorem which allows us to
compute the lower bound for the probability of identification, and then show via subsequent lemmas
that this can be done e”ciently.

Theorem 4 (Probability of Identification Lower Bound) Let G, X, Y be sampled according
to Eq. 26-29. Fix some i ⇐ [n↑1] and define the random variables T1 := |an(n)|, T2 := |ch(i)⇔an(n)|.
Let P (T1, T2) denote their joint distribution. Then, we have that:

(Q(i, n) ↙lb
id G = 1) =

n↓i↓1∑

k=1

n∑

j=k

j↓k↓1∑

r=0

(
j ↑ k ↑ 1

r

)
pr,k,q(1↑ q)(r+k)(j↓k↓r)

· P (T1 = j, T2 = k)

+ P (T2 = 0), (37)

where pr,k,q is the probability that a set of k nodes is connected to the remaining r nodes in a graph
sampled from the undirected Erdős-Rényi model G(r + k, q). It follows that the lower bound for the
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probability of identification can be computed as:

(Q(IX , n) ↙lb
id G = 1) =

1

n↑ 1

n↓1∑

i=1

(Q(i, n) ↙lb
id= 1). (38)

↭

Proof [Thm. 4] First, note that if T2 = 0, the query Q(i, n) is trivially identifiable. Now, we fix
i ⇐ [n ↑ 1] and condition on the event T1 = j, T2 = k. Based on Prop. 3, the query Q(i, n) is
identifiable if and only if there is no bidirected path through an(n) from i to any of its k children
that are in an(n). Now, let the set R denote the vertices in an(n) \ ch(i) that are reached from the
k children of i in an(n) via bidirected paths within the subgraph over an(n) \ {i} (as before, vertices
not in an(n) can be ignored), and let C = an(n) \ {i, ch(i)}. We further condition on |R| = r, and
note that the r vertices can be chosen in

j↓k↓1
r


ways, since the vertices are chosen from C which

satisfies |C| = j ↑ k ↑ 1. Then, the term pr,k,q ensures the k sources are connected to R, while the
term (1↑ q)(r+k)(j↓k↓1↓r) ensures that the k sources and the set R are not connected to any other
node in C. An additional term (1↑q)r+k is necessary to ensure that there is no bidirected edge from
i to ch(i)⇔ an(n) or R, which guarantees identifiability. Summing over the values of r, j, k yields the
result in Eq. 37.

The first step towards using Thm. 4 to e”ciently compute the lower bound for the probability of
identification is to recover the probabilities pr,k,q, as shown in the following supporting lemma:

Lemma 3 The probability pr,k,q defined in Thm. 4 satisfies the recursion

1↑ pr,k,q =
r↓1∑

r0=0

(
r

r0

)
pr0,k,q(1↑ q)r0(r↓r0)(1↑ q)k(r↓r0), (39)

with p0,k,q = 1. ↭

Proof Let r0 denote the number of points reached from the k sources, which can be chosen in r
r0


ways, and are connected to k sources with probability pr0,k,q. Further, term (1 ↑ q)r0(r↓r0)

ensures there are no connections between the remaining r↑ r0 points and the r0 reached points, and
(1↑ q)k(r↓r0) ensures no edges between the j sources and r↑ r0 remaining points. The law of total
probability yields Eq. 39.

Given the above lemma, it remains to recover the joint distribution P (T1, T2) from Thm. 4. This is
achieved as follows:

Lemma 4 (Recovering P (T1, T2)) Let G be drawn from
↑→
G(n, p). Fix i ⇐ [n ↑ 1] and define the

random variables T1 := |an(n)|, T2 := |ch(i) ⇔ an(n)|. Then, the joint distribution P (T1, T2), can be
computed in polynomial time with time complexity O(n3). ↭

Proof We will use a multiple exposure argument in which we will gradually expose the outgoing
edges from nodes n ↑ 1, n ↑ 2, . . . , 1 in that order. Let f(t, a, b) denote the probability that T1 =
a, T2 = b in the graph in which we exposed only the outgoing edges from the vertices with an index
∋ t. Then, we obtain the following transitions:

f(t, a, b) =






f(t+ 1, a↑ 1, 0) · (1↑ (1↑ p)a↓1) + f(t+ 1, a, 0) · (1↑ p)a if t > i, b = 0,

f(t+ 1, a, 0) · (1↑ p)a if t = i, b = 0,

f(t+ 1, a↑ 1, 0) ·
a↓1

b


p
b(1↑ p)a↓b↓1 if t = i, b > 0,

f(t+ 1, a↑ 1, b) · (1↑ (1↑ p)a↓1) + f(t+ 1, a, b) · (1↑ p)a if t < i,

(40)

and the boundary condition f(n, 1, 0) = 1. The complexity of the dynamic program is O(n3).
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Equipped with the above lemmas, we are now able to e”ciently compute the probability of identifi-

cation for the model in which the observed structure is sampled from
↑→
G(n, p), while the unobserved

structure is sampled from a G(n, q) model:

Corollary 5 (E!cient Computation of Lower Bound for Probability of Identification) Let
G, IX , and IY be sampled according to Eq. 26-29. Then, the lower bound for the probability of identifi-
cation, (Q(IX , IY ) ↙lb

id G = 1), can be computed in polynomial time, with computational complexity
of O(n4). ↭

Proof First, based on Thm. 4, the expression for (Q(IX , IY ) ↙id= 1) given in Eq. 38 has O(n)
terms, and each of terms can be computed in O(n3) steps (see Eq. 37) provided pr,k,q and P (T1, T2)
are available. This computation thus takes O(n4) steps. Furthermore, based on the recursion in
Eq. 39, probabilities pr,k,q can be computed in O(n3) for all r, k ∝ n. Furthermore, in Lem. 4, we
showed how the joint distribution P (T1, T2) can be recovered in O(n3) steps. Therefore, it follows
that the lower bound for the probability of identification can be computed e”ciently, with a com-
putational cost of O(n4).

3.3 Computing Pω,µ(1st OH ID) (Upper Bound)

After computing the lower bound for the probability of identification, we now move onto computing
the upper bound. We proceed similarly, and prove the expression for its value in the following
theorem:

Theorem 6 (Probability of Identification Upper Bound) Let G, IX , IY be sampled according
to Eq. 26-29. Fix some i ⇐ [n ↑ 1] and define the random variables M1 := |anGi

(n) \ {i}|,M2 :=
|ch(i)⇔an(n)|,M3 := |pa→→(i)|, where pa→→(i) follows the definition from Thm. 1. Let P (M1,M2,M3)
denote their joint distribution. Then, we have that:

(Q(i, n) ↙ub
id G = 1) =

n↓i↓1∑

k=1

n↓1∑

j=k

j↓k∑

r=0

i↓1∑

ε=0

(
j ↑ k

r

)
pr,k,q(1↑ q)(r+k)(j↓k↓r)(1↑ q)(r+k)(ε+1)

· P (M1 = j,M2 = k,M3 = ϖ)

+ P (M2 = 0), (41)

where pr,k,q is the probability that a set of k nodes is connected to the remaining r nodes in a
graph sampled from the undirected Erdős-Rényi model G(r + k, q). It follows that the probability of
identification can be computed as:

(Q(IX , n) ↙ub
id G = 1) =

1

n↑ 1

n↓1∑

i=1

(Q(i, n) ↙ub
id= 1). (42)

↭

Proof [Thm. 6] First, note that ifM2 = 0 (i has no children that are ancestors of n), the queryQ(i, n)
is trivially identifiable. Now, we fix i ⇐ [n↑ 1] and condition on the event M1 = j,M2 = k,M3 = ϖ.
Let A = anGi

(n) \ {i} be the set of ancestors of n in the graph where incoming arrows into i are
removed (and we further remove i from this set). A visualization is shown in Fig. 5. Now, denote
by R the set of nodes in A that are not in ch(i) ⇔ an(n) that can be reached by bidirected edges
from the k nodes in ch(i) ⇔ an(n). Say r = |R|, and note that these r nodes can be chosen in

j↓k
r



ways. Note that conditioning on the event M3 = ϖ involves bidirected edges, and hence some care
needs to be taken for the remainder of the proof. However, this event depends only on the incoming
directed edges from pa→(i) (the set of parents of i which are not an(n)) into i, and the bidirected
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edges within the set {i, pa→(i)}. This, in turn, implies that conditioning on M3 = ϖ is independent of
the bidirected edges touching A. Thus, the term pr,k,q ensures that all of the nodes in R are reached
from ch(i)⇔an(n) while staying only in the set A. Furthermore, the term (1↑q)(r+k)(j↓k↓r) ensures
that the remaining j ↑ k ↑ r nodes in A are not reached from ch(i) ⇔ an(n). Finally, if any node in
{i, pa→→(i)} can be reached from either R or ch(i)⇔an(n) then the procedure returns a negative result
(according to Thm. 1). Thus, to avoid any such edge, we add an additional term of (1↑q)(r+k)(ε+1),
since ϖ + 1 is the size of the set {i, pa→→(i)}. Summing over the values of r, j, k yields the result in
Eq. 41.

To complete our argument, we need to show how the joint distribution P (M1,M2,M3) can be
recovered e”ciently:

Lemma 5 (Recovering P (M1,M2,M3)) Let G be drawn from
↑→
G(n, p). Fix i ⇐ [n↑ 1] and define

the random variables M1 := |anGi
(n) \ {i}|,M2 := |ch(i) ⇔ an(n)|,M3 := |pa→→(i)|. Then, the joint

distribution P (M1,M2,M3), can be computed in polynomial time with time complexity O(n4). ↭

Proof We will again use a multiple exposure argument and gradually expose the outgoing edges from
nodes n↑ 1, n↑ 2, . . . , 1 in that order. Let M ↑

3 = pa→(i), that is the set of parents of i which have a
directed path to n only through i. We first compute the joint distribution of P (M1,M2,M

↑
3) and then

transform it to P (M1,M2,M3). Let f(t, a, b, c) denote the probability that M1 = a,M2 = b,M
↑
3 = c

in the graph in which we exposed only the outgoing edges from the vertices with an index ∋ t. Then,
we obtain the following transitions:

f(t, a, b, c) =






f(t+ 1, a↑ 1, 0, 0) · (1↑ (1↑ p)a↓1) + f(t+ 1, a, 0, 0) · (1↑ p)a t > i, b = c = 0,

f(t+ 1, a, 0, 0) ·
a
b


p
b(1↑ p)a↓b

t = i, c = 0

f(t+ 1, a↑ 1, b, 0) · (1↑ (1↑ p)a↓1) + f(t+ 1, a, b, 0) · (1↑ p)a+1
t < i, c = 0,

f(t+ 1, a↑ 1, b, c) · (1↑ (1↑ p)a↓1) +

f(t+ 1, a, b, c↑ 1) · (1↑ p)ap+ f(t+ 1, a, b, c) · (1↑ p)a+1
t < i, c > 0.

(43)

and the boundary conditions f(n, 1, 0, 0) = 1 and f(t, a, b, c) = 0 ∞ t ∋ i; c > 0; a, b ∋ 0. The
complexity of the dynamic program is O(n4). Finally, we need to compute f

→(a, b, d) = P (M1 =
a,M2 = b,M3 = d) from the obtained f . This can be done as follows:

f
→(a, b, d) =

i↓1∑

c=d

f(1, a, b, c)

(
c

d

)
pd,1,q(1↑ q)(d+1)(c↓d)

∞a, b, d. (44)

The term
c
d


chooses d elements out of c = |pa→(i)| that end up in pa→→(i). The term pd,1,q ensures

that i has a path to all the d nodes using bidirected edges (in the induced subgraph G[{i, pa→(i)}]),
and the term (1 ↑ q)(d+1)(c↓d) ensures that the remaining c ↑ d nodes are not in pa→→(i). This
additional computation also has a complexity of O(n4), so recovering P (M1,M2,M3) requires O(n4)
steps altogether.

Equipped with the above lemma, we are now able to e”ciently compute the upper bound for the

probability of identification for the model in which the observed structure is sampled from
↑→
G(n, p),

while the unobserved structure is sampled from a G(n, q) model:

Corollary 7 (E!cient Computation of Upper Bound for Probability of Identification)
Let G, X, and Y be sampled according to Eq. 26-29. Then, the upper bound for the probability of
identification, (Q(IX , IY ) ↙ub

id G = 1), can be computed in polynomial time, with the computational
complexity of O(n5). ↭
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Proof Based on Thm. 6, the expression for (Q(IX , IY ) ↙ub
id= 1) given in Eq. 42 has O(n) terms,

and each of terms can be computed in O(n4) steps (see Eq. 41) provided pr,k,q and P (M1,M2,M3)
are available. This computation thus takes O(n5) steps. Furthermore, based on the recursion in
Eq. 39, probabilities pr,k,q can be computed in O(n3) for all r, k ∝ n. Furthermore, in Lem. 5, we
showed how the joint distribution P (M1,M2,M3) can be recovered in O(n4) steps. Therefore, it
follows that the upper bound for the probability of identification can be computed e”ciently, with
a computational cost of O(n5).

3.4 Empirical Verification

We now verify the theoretical results obtained in Sec. 3.1, 3.2 and 3.3 through simulation. The
generating model for our random graphs is specified by the parameters (p, q, n). Thus, for each
choice of (p, q, n), we sample M = 104 Semi-Markovian graphs at random, and sample the values
of IX , IY as described in Sec. 3 (i.e., IY = n, IX ⇐ [n ↑ 1] uniformly). For each randomly sampled
graph and values of IX , IY , we check whether the causal e!ect of X on Y is back-door identifiable,
and whether it is identifiable with the general ID algorithm. Let (Gm, IXm , IYm)Mm=1 denote the
samples. Our empirical estimators are then given by

Pp,q,n(BD ID) =
1

M

M∑

m=1

1(Q(IXm , IYm) ↙bd
id Gi), (45)

Pp,q,n(Joint ID) =
1

M

M∑

m=1

1(Q(IXm , IYm) ↙jid
id Gi), (46)

Pp,q,n(1
st OH ID) =

1

M

M∑

m=1

1(Q(IXm , IYm) ↙1oh
id Gi). (47)

Notice that the empirical estimators are averages of independent Bernoulli samples, so we can obtain
confidence intervals for the true values of P (BD ID), P (Joint ID), and P (1st OH ID) using a Gaus-
sian approximation. The exact true values can be computed via the dynamic programs introduced
in Sec. 3.1, 3.2, and 3.3 and are labeled Pp,q,n(A ID) for identification strategy A. In Fig. 9, we plot
the 99% confidence intervals obtained through simulation, and also the exact values computed by
the dynamic programs, over a range of values of (p, q, n), thereby verifying the correctness of our
theoretical approach. Furthermore, we also test the correctness of our approach formally. For each
combination of (p, q, n), and a strategy A, we know that

Pp,q,n(A ID)↑ Pp,q,n(A ID)
Pp,q,n(A ID)(1↑ Pp,q,n(A ID)) 1

M

⇑ N(0, 1), (48)

which allows us to compute a p-value associated with each pair Pp,q,n(A ID), Pp,q,n(A ID), label

vp,q,n. Under the null hypothesis that Pp,q,n(A ID) is an average of Bernoulli variables with a
parameter Pp,q,n(A ID), the p-values vp,q,n should be uniformly distributed. Using Fisher’s method
of aggregating p-values (Fisher, 1928), we know that ↑2


p,q,n log vp,q,n ⇑ ϱ

2
2T , where T is the

number of hypothesis tests performed. This allows us to compute an overall p-value for whether
our dynamic programs are correct, and this value equals 0.11 meaning the null-hypothesis is not
rejected.
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Figure 9: Empirical verification of the theoretical results from Sec. 3. The shaded area represents
the 99% confidence intervals for the true value obtained from 104 samples, whereas the
points are the true values obtained from the dynamic programming approach from Sec. 3.
Values of P (Joint ID) and P (1st OH ID) overlap.

4. Further Models

In the previous section, we successfully computed the exact probabilities of identification for the

combination of
↑→
G(n, p) and G(n, q) models. However, there are also other random graph models

that are possibly interesting to investigate. In this section, we extend the empirical analysis of
Sec. 3.4 to cover some other models. In particular, we investigate three di!erent ways of generating
the observed structure, and two ways of generating the latent, unobserved structure. We consider
each combination of generating the observed and unobserved structure, resulting in six di!erent
random graph models from which the Semi-Markovian graphs are sampled. In particular, for the
observed structure, we consider the following three models:

(A) directed Erdős–Rényi model, labeled
↑→
G(n, p), already introduced in Sec. 3,

(B) Uniform DAG model, in which the graph is chosen uniformly across the space of all DAGs
on n vertices, labeled UG(n),

(C) Price model (Price, 1965), which generates scale-free random graphs on n vertices using
linear preferential attachment (Albert and Barabási, 2002), parameterized by the value m

corresponding to the number of edges added in each step. For constructing the graphs, we
initialize the procedure with the fully connected graph on 2m + 1 nodes, as this ensures the
average out-degree at each step is m (Evans et al., 2020). This model is labeled PM(n,m).

After specifying the models determining the observed structure, we consider two ways of generating
the unobserved structure:
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Adjacency
Confounding G(n, q) IP(q)

↑→
G(n, p) HM = {p ⇐ [0, 1], q ⇐ [0, 1]} HM = {p ⇐ [0, 1], q ⇐ [0, 1]}

UG(n) HM = {q ⇐ [0, 1]} HM = {q ⇐ [0, 1]}

PM(n,m) HM = {m ∝ 2n+ 1 ⇐ , q ⇐ [0, 1]} HM = {m ∝ 2n+ 1 ⇐ , q ⇐ [0, 1]}

Table 2: Overview of models M and the associated hyperparameter ranges HM .

(1) Erdős–Rényi model, labeled G(n, q), (see Sec. 3 for more details),

(2) Independent Projection model, labeled IP(q), which takes as an input a DAG on n ver-
tices, and independently with probability q marks each of the variables in the graph as un-
observed. The unobserved variables then generate the structure of bidirected edges, following
the graphical rules of projecting out variables (see (Tian, 2002) for details on projection rules).

In this section, we adopt an informal notation for the models. For example, we write
↑→
G(n, p)+G(n, q)

to indicate the model M in which a directed
↑→
G(n, p) model is used for the observed structure, and an

undirected G(n, q) for the unobserved structure. Other models are indicated similarly. Furthermore,
for each model, we denote by HM the set of valid hyperparameters for the model. For example, the

model
↑→
G(n, p) + G(n, q) has hyperparameters p, q, with HM being p ⇐ [0, 1], q ⇐ [0, 1] (for ease of

notation, graph size n is not considered as a hyperparameter). Therefore, each choice h ⇐ HM is
associated with a measure µh over the space of Semi-Markovian models GSM

n . 3 Each measure µh is
further associated with the values of Pµh(Q(IX , IY ) ↙A

id G) for di!erent identification strategies A,
where Pµh indicates that G is sampled according to µh.

Several ways of quantifying the gap between the identification strategies exist (visually, we are
interested in determining how large of an area is contained between consecutive ellipses in Fig. 7).
We focus on two quantification approaches. We start by computing the probabilities of identification
over a range of parameters for di!erent models M . Throughout, we focus mostly on smaller graph
sizes, and in places run experiments for up to n = 50. 4 After probabilities of identification, we
discuss the so-called coverage probabilities which tell us the proportion of all identifiable cases that
a specific strategy A can identify.

Pointwise Probabilities of Identification. In our first experiment, the probabilities of iden-
tification are computed over a range of parameter values and graph sizes for each model M . We
estimate the values of P (BD ID), P (ID) by sampling 104 graphs G and variables X,Y , for each
value on a grid in HM . A representative set of results for di!erent model choices and graph sizes
5 ∝ n ∝ 10 is presented in Fig. 10. We also provide an exhaustive set of experiments in Appendix A.
The second column of Tab. 3 provides a summary of figures that report the results on probabilities
of identification across di!erent models. Two main observations ensue from these results. Firstly,
graphs with a more dense observed and unobserved structure have lower probabilities of identifica-
tion, for any method. This reflects the well-known fact that a dense structure of edges implies that
causal diagrams encode few assumptions. Fewer assumptions, of course, lead to fewer identifiable
instances. Secondly, the results also demonstrate that the gap between back-door and complete
identification does not seem large in any of the models under investigation. This aspect is explored
explicitly in the sequel.

3. We note that when the IP(q) model of confounding is used, the associated measure µh is over the space →n
i=0GSM

i
of all Semi-Markovian graphs of size less than or equal to n.

4. Generally, in this manuscript, we are less interested in the asymptotic behavior as the number of nodes n ↑ ↓.
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Figure 10: Probabilities of identification over six di!erent graph-generating models for graph size n

in the range 5 ∝ n ∝ 10.

Model Probabilities of ID Coverage Probabilities
↑→
G(n, p) +G(n, q) Fig. 18 Fig. 24
↑→
G(n, p) + IP(q) Fig. 19 Fig. 25

UG(n) +G(n, q) Fig. 20 Fig. 11

UG(n) + IP(q) Fig. 21 Fig. 26

PM(n,m) +G(n, q) Fig. 22 Fig. 27

PM(n,m) + IP(q) Fig. 23 Fig. 28

Table 3: Summary of the empirical analyses across models.

Back-door and Lower Bound Coverage. We now introduce a measure for summarizing the
di!erence between identification strategies. The measure we introduce is called strategy coverage,
and is defined as follows:

Definition 13 (Strategy Coverage) Let M be a random model of Semi-Markovian graphs. Then,
the strategy coverage is defined as

A-coverageM =
P(A ID)

P (ID)
. (49)

Similarly, the definition of zero-ID-adjusted coverage of a strategy is given by:

A-coverageZAM =
P(A ID)↑ P (0 ID)

P (ID)↑ P (0 ID)
. (50)

27



Figure 11: Coverage of Strategies for the UG(n) + G(n, q) model over a range of parameters.

↭

The intuition behind the strategy coverage measure is simple. We wish to know what proportion of
instances that are identifiable through a complete algorithm will also be identifiable using a simpler
strategy. Additionally, we may be interested in removing all instances in which there is no causal
path between X and Y since these instances are trivially identifiable (and therefore such graphs
are unlikely to be the object of interest in the first place). The third column of Tab. 3 provides a
summary of the figures that contain the empirical results. In the main text, we report the results for
the model UG(n)+G(n, q), shown in Fig. 11. From the figure, we see that the back-door coverage is
always above 70% and often much larger than that. This observation is also true for other models,
see Appendix B. Interestingly, the lower bound covers > 99% of all identifiable cases, uniformly
across all models and graph sizes that we explored.

4.1 Expanding to Potential Outcomes Methods

The discussion so far revolved around the graphical notions of identification, such as back-door
identification, identification of P (V \X | do(X = x)), and complete identification. In this section,
we try to find further comparisons between the two frameworks of causality. In particular, we focus
on two of the most common ways for inferring causal e!ects in the PO literature: via ignorability
assumptions and via instrumental variables.

Ignorability. We mentioned in the introduction that methods of causal e!ect inference in the
PO framework (such as matching, inverse propensity weighting, etc.) can often be used for e!ect
estimation when identification is licensed by the back-door criterion. However, in the PO literature,
the back-door criterion is rarely used to license identification. Instead, the criterion known as
conditional ignorability is more commonly invoked:
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Definition 14 (Ignorability) Let P (V ) be a probability distribution, and denote by Yx the poten-
tial outcome of Y subject to X = x. Conditional ignorability is said to hold if:

Yx△△X | Z. (51)

↭
The above definition is a well-known building block in the PO literature, and many debates over
this definition have ensued between the proponents of the PO framework and those of the graphical
framework. However, for brevity we do not expand on this well-known discussion, since this topic
deserves a dedicated manuscript (Bareinboim and Plecko, 2024). Instead, we focus on suggesting
a mental construct in the graphical framework that is most similar to the notion of ignorability in
the PO framework. We begin by taking a deeper look at how ignorability statements are assessed
in practice. Firstly, three distinct blocks are evoked in the analysis, replicated below for visual
convenience:

Yx
block B1

△△ X
block B2

| Z
block B3

.

The separation of the ignorability statement in blocks is useful to better understand the mental
construct evoked by scientists when judging the plausibility of such statements. The block B1

considers the variable Y under the hypothetical regime do(X = x), B2 the treatment variable X

itself, and B3 the set of covariates Z. The key question under investigation is whether block B1 is
independent of block B2 given the block B3. Based on this mental picture, we propose the construct
called graphical ignorability:

Definition 15 (Graphical Ignorability (Bareinboim and Plecko, 2024)) Let M be an SCM
over variables V , and suppose a topological order over the variables is fixed. Let pre(X) denote all
variables that precede X in the topological ordering, Vi < X. Denote pre(X) by Z, and consider the
causal diagram constructed in the following way:

(i) Project out all variables that do not precede X that are di!erent from Y ,

(ii) Group all variables in Z to a single variable.

Let CG3 be the causal diagram obtained in this way, with nodes Z,X, Y . Graphical ignorability
(G-ignorability, for short) is said to hold for a pair (X,Y ) if Z is back-door for X,Y in CG3. ↭
The graphical ignorability criterion from the above definition attempts to mimic the ignorability
construct in a graphical setting. Firstly, all variables that come after the treatment X are projected
out (or unobserved). After this, all pre-treatment variables Z are put into a single group5. Following
this, a causal diagram with three nodes, corresponding to X,Y and Z is constructed. For assessing
whether Z is a valid adjustment set, we use the back-door criterion in this simplified graph, called
CG3. It is important to note that the CG3 diagram may be much easier to construct than the initial
causal diagram G over all variables. In other words, this diagram is more easily attainable than the
full diagram, and requires fewer assumptions.

Example 12 (Graphical Ignorability) Consider the causal diagram G in Fig. 12a. The CG3

diagram corresponding to this example is shown in Fig. 12b. For the directed arrows, note that from
the set Z there are edges into both X,Y . For the bidirected edges, note that X ↫↬↬↬↬⊜ Z1 implies an
edge X ↫↬↬↬↬⊜ Z in CG3. Similarly, Z1 ↫↬↬↬↬⊜ Y implies an edge Z ↫↬↬↬↬⊜ Y in CG3. Therefore, since
the back-door criterion is not satisfied for the graph in Fig. 12b, the pair (X,Y ) does not satisfy
graphical ignorability given the set Z.

5. Formally, this construction represents a cluster causal diagram. For details, we refer the reader to (Anand et al.,
2023).
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Z1

Z2

X Y

(a) G-Ignorability example G.

Z

X Y

(b) CG3 of G.

Z

X Y

(c) CG3 of G \ {Z1 ↫↬↬↬↬⊜ Y }.

Figure 12: Causal diagrams from Ex. 12.

Z X Y

(a) Classic IV setting.

W

Z X Y

(b) Conditional IV setting.

Z2

W

Z1

X Y

(c) Non-ancestral IV setting.

Figure 13: Causal diagrams for instrumental variable examples.

Consider now the causal diagram in Fig. 12a with the edge Z1 ↫↬↬↬↬⊜ Y removed, denoted by
G \ {Z1 ↫↬↬↬↬⊜ Y }. The construction of the CG3 graph corresponding to this graph remains similar
as above, with the di!erence in the edge Z ↫↬↬↬↬⊜ Y that is absent, since there is no bidirected edge
between {Z1, Z2} and Y . In this CG3, the back-door criterion is satisfied, and the pair (X,Y )
satisfies graphical ignorability given Z. ↭

The following proposition, given without proof, justifies the construct of graphical ignorability:

Proposition 5 (G-Ignorability =′ Ignorability) Let M be an SCM over variables V . Graph-
ical ignorability of (X,Y ) with respect to Z implies conditional ignorability Yx△△X | Z. ↭

For the purpose of our discussion, we investigate how G-ignorability compares to the back-door
criterion in terms of its coverage (Def. 13), that is, what proportion of identifiable cases can be
solved using G-ignorability. A summary of the exhaustive set of results can be found in the third
column of Tab. 3. Similar to the back-door coverage, we once again observe that a simple strategy
such as G-ignorability has a rather large coverage compared to complete identification across a range
of models and their parameter values.

Instrumental Variables. The second strategy for causal e!ect inference popular in the PO lit-
erature is that of instrumental variables (IVs). The usage of IV dates back to (Wright, 1928). The
typical IV graph is shown in Fig. 13a. In this graph, the causal e!ect of X on Y is not identifiable
using any of the standard methods (e.g., no back-door adjustment set exists). Under the assumption
of linearity, however, one can regress X on Z, and compute the fitted values of this regression, X̂.
These fitted values X̂ are “deconfounded”, since as a function of Z, they are not a!ected by the
latent variable U a!ecting X,Y . In the second stage, one can obtain the correct causal coe”cient
of X on Y by regressing Y onto X̂. This well-known method is referred to in the literature as the
two-stage least squares approach.

In our context, we will focus on the conditional version of instrumental variables. Here, we make
use of the graphical definition of conditional IV as proposed by (Pearl, 2000):

Definition 16 (Conditional IV (Pearl, 2000)) Z is said to be a conditional instrument relative
to X → Y if there exists a set W such that:

(a) Z correlates with X conditional of W ,
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(b) W d-separates Z and Y in G \ {X → Y },

(c) W consists of non-descendants of Y .

↭

Example 13 (Conditional IV) Consider the example in Fig. 13a. We can verify that Z correlates
with X (due to the Z → X arrow). Further, the empty set ↖ d-separates Z and Y in G \ {X → Y }.
Therefore, Z is a conditional IV for X → Y given W = ↖.

Consider the example in Fig. 13b. We can verify that Z correlates with X (due to the Z → X

arrow). Further, the set W d-separates Z and Y in G \ {X → Y }. Therefore, Z is a conditional IV
for X → Y given W , which consists of non-descendants of Y . ↭

Finding conditional IVs turns out to be a non-trivial matter. For this reason, Van der Zander et al.
(2015) propose a slightly constrained version of the conditional IV:

Definition 17 (Ancestral Conditional IV (Van der Zander et al., 2015)) Z is said to be an
ancestral instrument relative to X → Y if there exists a set W such that:

(a) Z correlates with X conditional of W ,

(b) W d-separates Z and Y in G \ {X → Y },

(c) W consists of ancestors of Y or Z which are non-descendants of Y .

↭

The usefulness of the ancestral IV concept stems from the following proposition:

Proposition 6 (▽ Conditional IV =′ ▽ Ancestral IV (Van der Zander et al., 2015)) A con-
ditional IV Z for the pair (X,Y ) exists if and only if an ancestral IV Z

↑ exists for (X,Y ). ↭

Example 14 (Ancestral and Non-ancestral Conditional IVs) Consider the causal diagram
in Fig. 13b, in which Z is a conditional IV for (X,Y ) given W . Since W ⇐ an(Z) and W ⇐ an(Y ),
Z is an ancestral IV with respect to the pair (X,Y ) and the conditioning set W .

Consider the causal diagram in Fig. 13c. Here, Z2 correlates with X conditional on W . Fur-
thermore, W d-separates Z2 from Y in the graph where X → Y edge is removed. W is also a
non-descendant of Y , and thus Z2 is a conditional IV for (X,Y ) given W . However, W ⇐ de(Z2)
and therefore Z2 is not an ancestral IV for (X,Y ) given W . According to Prop. 6, the existence of
a conditional IV implies the existence of an ancestral IV. One can easily verify that Z1 given ↖ is
an IV for (X,Y ), and that this IV is also ancestral. ↭

Prop. 6 shows that our attention can be turned to searching for ancestral IVs, since one is guaranteed
to exist whenever a conditional IV exists. Van der Zander et al. (2015) also introduce an e”cient
algorithm for finding ancestral IVs, which we implement. This allows us to compute the probabilities
of identification for the conditional IV strategy.
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Figure 14: Comparison on how useful complete and conditional IV identification strategies are com-

pared to the basic ignorability strategy in the
↑→
G(n, p) +G(n, q) model.

Extension Ratios. Using probabilities of conditional IV identification, we can perform the fol-
lowing experiment. We first compute, across di!erent parameter values of a graph-generating model,
and di!erent graph sizes, how much the complete identification strategy extends the number of iden-
tifiable cases compared to the basic graphical ignorability criterion from Def. 15. The quantity we
compute is given by:

P (ID)

P (G-Ign ID)
. (52)

In words, this quantity tells us how many more cases (in terms of proportion) an analyst using com-
plete identification can solve compared to an analyst using only the ignorability criterion. Crucially,
we can compare this quantity to the quantity:

P (cond-IV + G-Ign ID)

P (G-Ign ID)
. (53)

Similarly, this quantity tells us how much the conditional IV approach improves upon the basic

ignorability strategy. The comparison of these two quantities for the
↑→
G(n, p) + G(n, q) model is

shown in Fig. 14. Interestingly, the conditional IV criterion seems to provide a somewhat larger
improvement than complete identification, when compared to the ignorability criterion. However,
the improvements resulting from conditional IV and complete identification are comparable.
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Figure 15: Schematic representation of the discussion (Sec. 5).

5. Discussion & Conclusion

In this manuscript, we investigate the question of identifying causal e!ects through the lens of
probabilistic modeling. A schematic overview of our approach is shown in Fig. 15, and the figure
provides the structure for the discussion that follows. The space of all possible causal models is
labeled #, corresponding to all causal models that exist in the real world. In practice, when one
formulates a research question and focuses on a certain aspect of reality, Nature can be thought
of as “sampling” from the space # and producing an instance of a model, labeled M , which the
scientist seeks to understand by eliciting assumptions and drawing inferences. While the underlying
sampling model from # to specific instances M is unknown (that is, it is not know a priori how
Nature generates models), in this work, we consider di!erent sampling schemes that randomly
generate a model represented through a Semi-Markovian causal diagram. For the directed structure
of the causal diagram, we considered (a) the directed Erdős–Rényi model, (b) the uniform model
across DAGs, and (c) the scale-free Price model. For generating the unobserved structure in a causal
diagram, we considered (1) an undirected Erdős–Rényi model that generates bidirected edges, and (2)
a projection model in which the unobserved structure is generated by “unobserving” or projecting out
variables from an initial directed graph. Of course, these are just some possible sampling strategies,
and we do not know if Nature samples the models of reality in some other, specifically fine-tuned
way. 6 For each of these graph-generating models (six combinations in total), we considered whether

6. There is ample discussion in the physical sciences about fine-tuned constants of the universe, such as the grav-
itational constant, Planck’s constant, the fine-structure constant, and the cosmological constant, whose precise
values appear to be necessary for the emergence of complex structures, from atomic stability to galaxy formation
(Barrow and Tipler, 1988; Carr et al., 1979). Planck’s constant, for example, determines the scale of quantum
e!ects, setting fundamental limits on precision and influencing everything from atomic energy levels to the struc-
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the interventional distribution P (Y | do(X = x)) (query) was identifiable in a randomly sampled
graph G, with the singleton indices IX , IY of X,Y sampled uniformly at random from the set of
all nodes. In practice, after specifying the query under investigation, scientists aim to elicit causal
knowledge in order to determine whether the query can be identified (that is, uniquely computed
from the assumptions and the available data).

As the output of the identification decision problem, a binary outcome is obtained – a positive
or a negative answer, depending on the identification strategy employed. In the discussion that
follows, we analyze these two cases separately. The first case, which we call the Identifiable Case,
occurs when the e!ect is identifiable, meaning that one of the complete identification algorithms
will be able to decide favorably when the causal diagram is provided. This case occurs with a
probability P (ID), which depends on the underlying sampling process. The complement of this
case is the Non-Identifiable Case, in which a complete identification algorithm returns a negative
answer (meaning that there are two models that could equally well explain the observed data, are
compatible with the specified causal diagram, but have di!erent estimates of the e!ect measure).
This case occurs with a probability P (non-ID) = 1↑ P (ID). In the discussion that follows, we first
discuss the values of the P (ID) probability for di!erent sampling processes. Then, we discuss the
implications of our results for the ID Case, in particular focusing on how the probability of complete
identification P (ID) compares to simpler strategies such as graphical ignorability (G-Ign, for short)
or the back-door (BD) criterion. Finally, we also discuss the implications of our results for the
Non-ID Case.

On the Probabilities of Identification. We start with the probabilities of identification, which
represent the proportion of causal e!ect queries that would be identifiable, assuming a probabilistic
sampling model. The second column of Tab.3 provides a summary of figures reporting the results on
probabilities of identification across di!erent models and graph sizes (see Figs.18-23). Our results
confirm some well-known facts and introduce new ones to the literature. First, note that causal
assumptions are encoded in the absence of edges, not in their presence. Any edge could encode any
e!ect, including zero, while a missing edge guarantees that the e!ect is zero. Therefore, fewer edges
mean that a causal diagram implies stronger assumptions, which, in turn, increases the probability of
identification. This trend is evident in the empirical results. For instance, as the parameter p, which

determines the probability of adding a directed edge in a
↑→
G(n, p) model, the probability of identifica-

tion decreases monotonically (Fig. 18). Similarly, as the q parameter, which governs the probability
of sampling a bidirected edge in a G(n, q) model, increases, the probability of identification de-
creases monotonically (Fig. 18). Therefore, in graph-generating settings where the observed and
unobserved structures are sparse, the probabilities of identification are relatively high; conversely, in
settings where the observed and unobserved structures are dense, the probabilities of identification
are significantly lower. Naturally, our ability to identify causal e!ects depends on the strength of
the assumptions available in our causal models and the proportion of relevant variables recorded in
the data. A larger discrepancy between our understanding of the underlying structure and what is
available in the data (reflected in a larger number of unobserved variables) reduces the likelihood
of identification. For instance, if only the treatment and outcome variables X,Y are observed, it
is unlikely that the e!ect would be identifiable. Conversely, if all relevant variables are observed –
making the system essentially Markovian – e!ects are always identifiable. These observations can
be seen as a special case of the Causal Hierarchy Theorem Bareinboim et al. (2022) [Thm. 1], which
states that the true underlying collection of mechanisms can almost never (i.e., with measure zero)
be recovered from observational or interventional data alone, which includes causal e!ects.

ture of matter itself. This fine-tuning has been widely explored in the context of fundamental physics, including
quantum mechanics, general relativity, and the Standard Model of particle physics, raising deep questions about
the underlying principles that govern these constants (Weinberg, 1987; Susskind, 2005). This may be interpreted
as Nature not merely sampling randomly but rather following an underlying structure that governs how reality
emerges. In our discussion, we are oblivious to this fact, and pursue a purely probabilistic argument.
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5.1 The Identifiable Case

On the Ignorability & Back-door Coverage. We now discuss the so-called coverage probabil-
ities (Def. 13) of di!erent identification strategies. Coverage is defined as the proportion of all cases
identifiable by a strategy A among all identifiable cases. A back-door coverage of 90% indicates that
when selecting queries and graphs at random, and finding an identifiable query, 90% of such cases
will be identifiable using the back-door adjustment. A graphical ignorability coverage of 90% has
an analogous interpretation. The third column of Tab. 3 provides a summary of figures that report
the results on coverage probabilities across di!erent models and graph sizes (see Figs. 11, 24-28).
These figures highlight a key finding: the probabilities of back-door and conditional ignorability
coverage exceed 70% across all considered models and sometimes surpass 90%, given our samplig
scheme. This suggests that when identification is possible, it is likely achievable through back-door
or graphical ignorability type of adjustment. In other words, if a query is identifiable, it is often
also identifiable using simple strategies. Additionally, since some of these strategies do not require
a full causal diagram, constructing relaxed causal diagrams, such as cluster diagrams (Anand et al.,
2023; Bareinboim and Plecko, 2024), may serve as a powerful practical tool. However, these findings
need to be interpreted with care, since the probability P (ID) can be rather low in some settings. In
such cases, graphical ignorability or back-door adjustment would also fail (see Sec. 5.2 for a more
detailed discussion). In other words, even though the backdoor may cover 90% of the identifiable
cases in a particular setting, perhaps only 10% of the overall cases are identifiable, implying that the
backdoor is still unlikely to work. This implies that a more comprehensive approach to evaluating
identification is still needed.

On the Gap Between Joint and Complete Identification. Another interesting aspect of our
analysis is the comparison of the joint identification strategy (lower bound from Sec. 3.2) with a
complete identification strategy. The joint identification strategy starts by identifying P (V \ X |

do(X = x)) in the ancestral graph G[an(Y )], a seemingly more demanding task than identifying
the marginal distribution P (Y | do(X = x)). This strategy also provides a much simpler graphical
criterion for determining identification (Prop. 3) compared to the complete criterion (Prop. 4). This
is also reflected in simpler identification expressions. In fact, the observational distribution can be
factorized into the so-called C-factors (corresponding to C-components from Def. 9), and can be
written as

P (v) =


Qi, (54)

where each Qi is a C-factor corresponding to a C-component (Tian and Pearl, 2002). If the distri-
bution P (v | do(x)) can be recovered by this strategy, then its expression is given by

P (v | do(x)) =
P (v)

QX

∑

x

Q
X
. (55)

The final expression for P (y | do(x)) can be obtained by marginalizing out all variables V \ {X,Y }:

P (y | do(x)) =
∑

v\{x,y}

P (v | do(x)). (56)

Interestingly, from a theoretical viewpoint, the gap between recovering P (v | do(x)) and P (y | do(x))
may seem substantive. However, the coverage of the joint identification strategy is extremely high
across experiments with di!erent random models, as we did not find any models where it was less
than 99%. This may suggest that the practical gap between the lower bound and the complete
identification strategy may be rather small. Although the theoretical gap between the lower bound
strategy and complete identification exists (see, e.g., the discussion around the napkin graph in
Ex. 9), based on the sampling models considered in this manuscript, the lower bound strategy could
be described as “nearly” complete from a probabilistic viewpoint.
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Figure 16: Instrumental variable (IV) and the front-door settings.

On the Usefulness of Techniques Beyond the Back-door. Coverage probabilities o!er a
possible way to assess the benefit of using the complete identification approach compared to sim-
pler identification strategies. When taking a probabilistic perspective on this question, graphical
ignorability coverage exceeded 70% across settings, given our sampling model. Therefore, a natural
question remains: how much practical advantage does the full set of tools in the graphical approach
to causality o!er compared to a more modest strategy, such as graphical ignorability?

There are di!erent techniques that can be applied beyond the back-door approach. One of these
methods is known as the front-door identification method (Pearl, 2000), which is just the first setting
learned after the back-door, and technique within the larger class of methods covered by do-calculus
(Pearl, 1995). Since these methods are still relatively unknown to a large portion of researchers,
there is a noticeable absence of applied papers on the topic (with some interesting exceptions such as
(Glynn and Kashin, 2018; Piccininni et al., 2023; Inoue et al., 2022)). One important consideration
is that they require a causal model to be explicitly articulated, whereas the current practice in
many applied fields often involves articulating back-door/ignorability assumptions without a proper
model. If one technique is perceived as requiring additional modeling e!ort while the weaknesses of
alternative methods remain unknown, it is natural that the simpler approach will prevail.

On the Comparison with Instrumental Variables. One point that corroborates this argument
– low awareness about the method implies less reported use cases – is the pervasiveness of a technique
known as instrumental variables (IVs). We now compare the IV methodology with the complete
identification algorithms, first through a probabilistic lens, and then theoretically.

In Sec. 4.1, we investigated how much IV methods add to identification, compared to only using
the graphical ignorability criterion. For this, we used the extension ratio in Eq. 53. For instance, an
extension ratio of 1.3 tells us that 30% more of cases become identifiable when adding the conditional
IV strategy to the standard graphical ignorability criterion. For comparison, we also computed the
extension ratio comparing complete identification with graphical ignorability. These extension ratios,
for the setting where both directed and undirected edges are sampled from an Erdős–Rényi model,
are summarized in Fig. 14. Perhaps surprisingly, Fig. 14 illustrates that the proportion of extra
cases identified by IVs is somewhat similar to the proportion of extra cases gained using complete
identification methods. From the viewpoint of probabilistic modeling used in this paper, one would
perhaps expect the two approaches to be equally useful.

Another possible way to compare methods is through the lens of the assumptions that are
required. The IV method requires assumptions about missing edges, similar to methods for complete
identification. Consider the representation of the IV setting shown in Fig. 16a, where the variable
Uxyz is unobserved. The required edge absences for the method are highlighted in red. The exclusion
restriction is represented by the absence of the edge Z → Y , which in counterfactual notation can
be written as Yxz = Yx. Furthermore, the exogeneity of the instrument is represented through the
missing edge Uxyz → Z, which implies the counterfactual independence Yz△△Z. Assuming linearity,
these two conditions imply that the causal e!ect of X on Y can be identified from observational
data. It is interesting to draw a comparison with the front-door setting, represented in Fig. 16b.
Analogous to the IV setting, the edge X → Y must be absent, which implies the exclusion constraint
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Yxz = Yz. Further, the absence of the Uxyz → Z edge is required, which implies the counterfactual
independencies Zx△△X and Yz△△Zx. These two edge absences imply that the causal e!ect of X on
Y is identifiable from observational data (in Appendix A, we provide a more detailed comparison
of the IV and front-door settings). Therefore, when taking this perspective, the IV and front-door
settings seem to require equally stringent assumptions from a theoretical viewpoint.

However, at the same time, the IV approach has been widely adopted and shown useful in many
practical applications, such as (Angrist, 1990; Card, 2001; Acemoglu et al., 2015; Levitt, 1996) (to
name a few), while front-door identification is still largely missing from the applied literature. This
observation suggests that more detailed identification strategies could be useful once practitioners
become more familiar with such methods and attempt to apply them in practice. Furthermore,
the observation may also suggest that the sampling of causal models from the underlying reality
happens in specifically fine-tuned ways (see also footnote 6). Importantly, however, we remark that
the results discussed so far do not suggest that a graphical model is unnecessary for identifying
causal e!ects, as we discuss in the next section.

5.2 The Non-Identifiable Case

The results from the first part of our discussion on the ID Case indicate that whenever an identifi-
cation expression can be derived, it can likely also be obtained using a simple identification strategy
such as the back-door criterion or graphical ignorability. The latter approach is characterized by
conditioning on the set of all pre-treatment covariates. However, our results do not indicate that
conditioning on pre-treatment covariates always provides the correct answer for identification, as
the probability of non-identification P (non-ID) may be high. For the same reason, our results also
do not imply that a graphical model – an encoder of structural assumptions – can be sidestepped
when assessing identification. In particular, whenever the query is non-identifiable (which may occur
with a large probability depending on the context), applying pre-treatment conditioning may lead
to misleading results. We next discuss the implications of our findings for the Non-ID Case.

Need for systematic assessment of identifiability. The probability of identification depends
on the strength of the available assumptions, or the density of edges in the underlying causal diagram.
Our results show that, in some contexts, the P (ID) may be rather small, and consequently, the
P (non-ID) may be quite large. Therefore, it is important to develop a language that systematically
allows one to assess whether a query of interest is identifiable. In this work, we discussed several
strategies for identification, including the back-door criterion, complete ID algorithms, and graphical
ignorability. All of these strategies are model-based, meaning that the evaluation of identifiability
is based on the causal diagram. Interestingly, the traditional approach in the potential outcomes
(PO) literature aims to assess ignorability statements using a model-free approach, in absence of
a graphical model. Recent works, however, show that assessing ignorability in a model-free way is
far more challenging than commonly assumed (Bareinboim and Plecko, 2024). In light of this, and
following (Bareinboim and Plecko, 2024), instead of considering model-free ignorability statements,
we discussed the concept of graphical ignorability in Sec. 4.1, which provides a graph-based criterion
for verifying if the set of all pre-treatment covariates provides a valid adjustment set. While G-Ign
is, in spirit, related to the ignorability notion of the PO framework, it is nonetheless a model-based
approach and should therefore not be equated with traditional usage of ignorability. In summary,
while the ignorability notion suggests a useful strategy of pre-treatment conditioning (which is likely
to work if a query is identifiable), its operationalization in the PO framework may not be the best
tool for determining when pre-treatment conditioning actually fails.

Can we always condition on pre-treatment covariates? An important question to consider
is whether simply conditioning on all the pre-treatment covariates is su”cient for causal e!ect ad-
justment in general. Counterfactually speaking, if this were the case, it would also imply that
observational studies can replace experimental studies, such as randomized controlled trials. Our
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results, however, indicate that across models the probabilities of identification vary substantially,
and in models with dense directed and confounded structure, none of the identification strategies
are likely to work (that is, no strategy provides a positive identification answer). In such instances,
conditioning on all pre-treatment variables would lead to biased estimates, and possibly erroneous
conclusions. This once again emphasizes the need for a proper language for assessing identifica-
tion. In such non-identifiable settings, one must resort either to partial identification techniques
(also known as bounding), or to the usage of external data (such as data from di!erent environ-
ments, or experimental studies) (Bareinboim and Pearl, 2016). The fact that the probability of
non-identification P (non-ID) can be high, together with the observation that coverage probabilities
of simpler strategies are often high, emphasizes the importance of research in sensitivity analysis
(VanderWeele and Ding, 2017; Cinelli and Hazlett, 2020; Cinelli et al., 2019) and partial identifica-
tion (Zhang et al., 2022; Zhang and Bareinboim, 2021). Such methods may help address settings
where assumptions do not license point identification of the causal query of interest, and allow
researchers to perform partial inference. The discussion in this paper is based on the task of iden-
tifying an interventional distribution from observational data, which is a prototypical and simplest
type of causal inference. A more realistic and similar discussion could be considered for various
other settings, including when considering identification from a combination of observational and
interventional distributions (Bareinboim and Pearl, 2012b; Lee et al., 2020b; Correa et al., 2019a),
non-atomic interventions (Correa and Bareinboim, 2020), counterfactual distributions (Correa et al.,
2021), selection bias (Bareinboim and Pearl, 2012a; Correa et al., 2018, 2019b), to cite a few.
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Béla Bollobás, Christian Borgs, Jennifer T Chayes, and Oliver Riordan. Directed scale-free graphs.
In SODA, volume 3, pages 132–139, 2003.

David Card. Estimating the return to schooling: Progress on some persistent econometric problems.
Econometrica, 69(5):1127–1160, 2001.

Bernard J. Carr, Bernard J. Carr, and Martin J. Rees. The anthropic principle and the structure
of the physical world. Nature, 278:605–612, 1979. URL https://api.semanticscholar.org/
CorpusID:4363262.

Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: Extending omitted variable bias.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(1):39–67, 2020.

Carlos Cinelli, Daniel Kumor, Bryant Chen, Judea Pearl, and Elias Bareinboim. Sensitivity analysis
of linear structural causal models. In International conference on machine learning, pages 1252–
1261. PMLR, 2019.

J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal e!ect identification
and surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
New York, NY, 2020. AAAI Press.

J. Correa, J. Tian, and E. Bareinboim. Generalized adjustment under confounding and selection
biases. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages 6335–6342,
New Orleans, LA, 2018. AAAI Press.

J. Correa, J. Tian, and E. Bareinboim. Adjustment criteria for generalizing experimental findings.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 1361–1369, Long Beach, CA, 2019a. PMLR.

J. Correa, J. Tian, and E. Bareinboim. Identification of causal e!ects in the presence of selection
bias. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pages 2744–2751,
Honolulu, Hawaii, 2019b. AAAI Press.

Juan Correa, Sanghack Lee, and Elias Bareinboim. Nested counterfactual identification from arbi-
trary surrogate experiments. Advances in Neural Information Processing Systems, 34:6856–6867,
2021.

Juan D Correa and Elias Bareinboim. Counterfactual Graphical Models: Constraints and Inference.
In Proceedings of the 42nd International Conference on Machine Learning, 2025.

39



David R Cox, Nanny Wermuth, AP Dawid, SE Fienberg, C Glymour, P Spirtes, D Freedman,
GW Imbens, DB Rubin, JM Robins, et al. Discussion - causal diagrams for empirical research.
Biometrika, 82(4):669–710, 1995.

Tim S Evans, Lucille Calmon, and Vaiva Vasiliauskaite. The longest path in the price model.
Scientific reports, 10(1):10503, 2020.

Ronald Aylmer Fisher. Statistical methods for research workers. Oliver and Boyd, 1928.

Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1(3923):554, 1936.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Adam N Glynn and Konstantin Kashin. Front-door versus back-door adjustment with unmeasured
confounding: Bias formulas for front-door and hybrid adjustments with application to a job
training program. Journal of the American Statistical Association, 113(523):1040–1049, 2018.

Trygve Haavelmo. The probability approach in econometrics. Econometrica: Journal of the
Econometric Society, pages iii–115, 1944.

Yimin Huang and Marco Valtorta. Pearl’s calculus of intervention is complete. arXiv preprint
arXiv:1206.6831, 2012.

Guido W Imbens. Nonparametric estimation of average treatment e!ects under exogeneity: A
review. Review of Economics and statistics, 86(1):4–29, 2004.

Guido W Imbens. Potential outcome and directed acyclic graph approaches to causality: Relevance
for empirical practice in economics. Journal of Economic Literature, 58(4):1129–1179, 2020.

Kosuke Inoue, Beate Ritz, and Onyebuchi A Arah. Causal e!ect of chronic pain on mortality through
opioid prescriptions: Application of the front-door formula. Epidemiology, 33(4):572–580, 2022.

Dmitriy Katz, Karthikeyan Shanmugam, Chandler Squires, and Caroline Uhler. Size of interven-
tional markov equivalence classes in random dag models. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 3234–3243. PMLR, 2019.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Sanghack Lee, Juan D Correa, and Elias Bareinboim. General identifiability with arbitrary surrogate
experiments. In Uncertainty in artificial intelligence, pages 389–398. PMLR, 2020a.

Sanghack Lee, Juan D Correa, and Elias Bareinboim. Identifiability from a combination of ob-
servations and experiments. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 13677–13680, 2020b.

Steven D Levitt. The e!ect of prison population size on crime rates: Evidence from prison over-
crowding litigation. The quarterly journal of economics, 111(2):319–351, 1996.

Jerzy Neyman. On the application of probability theory to agricultural experiments. essay on
principles. Ann. Agricultural Sciences, pages 1–51, 1923.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York,
2000. 2nd edition, 2009.

40



Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and e!ect. Basic
books, 2018.

Marco Piccininni, Tobias Kurth, Heinrich J Audebert, and Jessica L Rohmann. The e!ect of mobile
stroke unit care on functional outcomes: an application of the front-door formula. Epidemiology,
34(5):712–720, 2023.

Derek J de Solla Price. The scientific foundations of science policy. Nature, 206:233–238, 1965.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coe”cients when
some regressors are not always observed. Journal of the American statistical Association, 89(427):
846–866, 1994.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Analysis of semiparametric regression
models for repeated outcomes in the presence of missing data. Journal of the american statistical
association, 90(429):106–121, 1995.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal e!ects. Biometrika, 70(1):41–55, 1983.

Paul R Rosenbaum, P Rosenbaum, and Briskman. Design of observational studies, volume 10.
Springer, 2010.

Donald B Rubin. Bayesian inference for causal e!ects: The role of randomization. The Annals of
statistics, pages 34–58, 1978.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-
markovian causal models. In Proceedings of the National Conference on Artificial Intelligence,
volume 21/2, page 1219. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

Ilya Shpitser and Judea Pearl. What counterfactuals can be tested. In Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI’07, page 352–359, Ar-
lington, Virginia, USA, 2007. AUAI Press. ISBN 0974903930.

Leonard Susskind. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design.
Little, Brown, New York, 2005. ISBN 978-0316155793.

Jin Tian. Studies in causal reasoning and learning. University of California, Los Angeles, 2002.

Jin Tian and Judea Pearl. A general identification condition for causal e!ects. In Aaai/iaai, pages
567–573, 2002.
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Appendix A. Instrumental Variables & the Front-Door Criterion

In this appendix, we discuss the strength of the causal assumptions required for e!ect identification
in (i) the setting of instrumental variables (IV) and (ii) the front-door identification setting. In
particular, for both settings, our goal is to determine the number of edge absences (corresponding
to assumptions) in a causal diagram that are su”cient to yield the target e!ect identifiable. In this
way, we can make a comparison of the IV and the front-door settings. Throughout, we are interested
in identifying the e!ect of treatment X on the outcome Y .

There are two possible ways to count the number of missing edges required for identification,
depending on the structure of the latent variables. The first option is to consider a single latent
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confounding variable Uxyz that could possibly influence X,Y, Z. The IV graph corresponding to this
representation is shown in Fig. 17a. Required edge absences are highlighted in red. The exclusion
restriction is represented by the absence of the edge Z → Y , which in counterfactual notation can
be written as Yxz = Yx. Furthermore, the exogeneity of the instrument is represented through the
missing edge Uxyz → Z, which implies the counterfactual independence Yz△△Z. Assuming linearity,
these two conditions imply that the causal e!ect of X on Y can be identified from observational
data.

The front-door setting is represented in Fig. 17b. Analogous to the IV setting, the edge X → Y

must be absent, which implies the exclusion constraint Yxz = Yz. Further, the absence of the
Uxyz → Z edge is required, which implies the counterfactual independencies Zx△△X and Yz△△Zx.
These three conditions (resulting from two edge absences) imply that the causal e!ect of X on Y is
identifiable from observational data. Therefore, when taking this perspective, the IV and front-door
settings seem to require equally stringent assumptions.

The second option is to consider a latent confounding variables Uxy, Uxz, Uyz for each pair of
observed variables X,Y, Z. The IV graph corresponding to this representation is shown in Fig. 17c.
As before, the edge Z → Y must be absent, which implies that Yxz = Yx. The edge Uyz → Y must
be absent, which implies that Yz△△Z. Again, assuming linearity, these two conditions (resulting
from two edge absences) imply identification of the target e!ect. We note here that edges Uxz → Z

and Uxz → X are allowed to be present, since the condition Xz△△Z is not required for identification.
When considering latent variables for each pair of observables, the front-door setting can be

represented as in Fig. 17d. The absence of the X → Y edge implies that Yxz = Yz. Further, the
absence of the Uxz → Z edge is required, which implies that Zx△△X. The absence of Uyz → Y edge
is also required, implying that Yz△△Z. These three conditions (resulting from the absence of three
edges) imply the identification of the target e!ect. When viewed from a graphical perspective, the
IV setting appears to require slightly weaker assumptions (two) compared to the front-door setting
(three), in addition to linearity or other parametric assumptions when considering the IV model.
In terms of counterfactual assumptions, both interpretations lead to the same number of algebraic
constraints.

A.1 Further Considerations

To complete the analysis, some remarks beyond the graphical structure are provided.

Relevance and Linearity. The IV setting requires a structural assumption of linearity, which
may be a strong requirement. Furthermore, in finite samples, the IV setting also requires the so-
called relevance assumption, which means that the instrument Z needs to have a correlation with
the treatment X su”ciently di!erent from zero. At the same time, the front-door setting does not
require such structural assumptions.

Possibility of Randomization. Another aspect worth considering is the possibility of aiding
identification by means of randomization. As pointed out by Imbens (2020), in the IV setting, if one
were to randomize the instrument Z, the assumption Yz△△Z would be satisfied by design, alleviating
the strength of the assumptions required for identification. At the same time, no such analogous
randomization of the mediators Z is possible in the front-door setting.

In conclusion, the assumptions required for the IV setting seem to be comparable in strength
to those for the front-door setting. However, while the IV approach has been widely applied in
practice, the front-door setting remains underutilized. This disparity raises an important question:
would the front-door method prove more practical if data scientists were more familiar with it and
trained to recognize opportunities for its application.
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Appendix A. Probabilities of Identification – Supplementary Figures
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Figure 20: Probabilities of Identification for the UG(n) + G(n, q) model over a range of parameters.

Figure 21: Probabilities of Identification for the UG(n) + IP(q) model over a range of parameters.
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Appendix B. Coverage Probabilities – Supplementary Figures
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Figure 26: Coverage of Strategies for the UG(n) + IP(q) model over a range of parameters.
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