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Abstract

Testing a hypothesized causal model against observational data
is a key prerequisite for many causal inference tasks. A natu-
ral approach is to test whether the conditional independence
relations (CIs) assumed in the model hold in the data. While a
model can assume exponentially many CIs (with respect to the
number of variables), testing all of them is both impractical
and unnecessary. Causal graphs, which encode these CIs in
polynomial space, give rise to local Markov properties that
enable model testing with a significantly smaller subset of
CIs. Model testing based on local properties requires an al-
gorithm to list the relevant CIs. However, existing algorithms
for realistic settings with hidden variables and non-parametric
distributions can take exponential time to produce even a sin-
gle CI constraint. In this paper, we introduce the c-component
local Markov property (C-LMP) for causal graphs with hid-
den variables. Since C-LMP can still invoke an exponential
number of CIs, we develop a polynomial delay algorithm to
list these CIs in poly-time intervals. To our knowledge, this
is the first algorithm that enables poly-delay testing of CIs
in causal graphs with hidden variables against arbitrary data
distributions. Experiments on real-world and synthetic data
demonstrate the practicality of our algorithm.

Code — https://github.com/CausalAILab/
ListConditionalIndependencies

1 Introduction
Causal models are the daily bread of many fields of research
(Pearl 2000; Spirtes, Glymour, and Scheines 2001), but tools
for testing them are lacking. In various studies, researchers
posit a causal model and use it to compute causal effects from
data (Tennant et al. 2020; Hoover 1990; King et al. 2004;
Sverchkov and Craven 2017; Robins, Hernan, and Brumback
2000; Rotmensch et al. 2017). The model imposes testable
constraints on the statistics of the data collected. Before using
the model for causal inference, it’s crucial to test if these
constraints are met, and adjust the model as needed (Pearl
1995, 2000; Bareinboim and Pearl 2016; Malinsky 2024;
Ankan and Textor 2022).

Causal directed acyclic graphs (DAGs) are one popular
model for causal assumptions (Pearl 2000; Spirtes, Glymour,
and Scheines 2001). Conditional independencies (CIs) are the

*These authors contributed equally.

most basic constraint that a DAG imposes on observational
data. The study of CIs in the context of graphical models
dates back to at least the 1980’s (Pearl 1988; Dawid 1979;
Spirtes et al. 1998; Pearl 1998; Pearl and Meshkat 1999; Pearl
2000). A classic problem in this line of research is: given
observational data and a hypothesized causal graph, do all
the CIs implied by this graph hold in the data? If the answer
is no, the DAG must be revised.

A multivariate probability distribution may encode expo-
nentially many CIs with respect to the number of observed
variables. A key idea in the early literature of graphical mod-
els was to use a DAG to represent the constraints of these
distributions. A DAG can encode exponentially many CIs in
polynomial space. The set of all CIs encoded in a DAG, deriv-
able using the d-separation criterion, is known as the global
Markov property (Pearl 1988). There is also a well-known
local Markov property for DAGs (Pearl 1988; Lauritzen et al.
1990). It states that each variable must be conditionally inde-
pendent of its non-descendants given its parents. Since the
CI relation is a semi-graphoid, the linearly many CIs of the
local Markov property span the exponentially many CIs of
the global Markov property. This means that it suffices to per-
form a linear number of CI tests, as given by the local Markov
property, to test a DAG against observational data. For con-
creteness, consider the DAG G1 in Fig. 1a and assume all
variables {A,B, . . . ,H, U1, U2} are observed. Though G1
encodes 9929 CIs, only 9 need testing by the local Markov
property. For example, if we test that C ⊥⊥ {A,E} | {B},
one does not need to test that C ⊥⊥ {A} | {B,E}, since the
former implies the latter by the weak union axiom.

Unobserved confounding is a widespread phenomenon in
real-world settings (Fisher 1936). It occurs when a hidden
variable causally affects two or more observed variables. The
local Markov property can be used to test Markovian causal
DAGs, which represent models without unobserved con-
founding. However, it cannot be used to test semi-Markovian
DAGs, which represent models with unobserved confound-
ing.1 This is because if the parents of a variable are partially

1A causal DAG G with arbitrary unobserved variables can be
‘projected’ onto a semi-Markovian causal DAG G′ which imposes
the same CI constraints on any observational distribution (Tian and
Pearl 2002b). In G′, each unobserved variable is (i) a parent of at
most two observed variables and (ii) made implicit by adding a
dashed bidirected edge between its two children.
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unobserved, we cannot test CIs that require conditioning on
these parents (Fig. 1b). Since the assumption of no unob-
served confounding rarely holds in practice, alternative ways
to test a DAG with unobserved confounders have been devel-
oped (Tian and Pearl 2002b; Kang and Tian 2009; Geiger and
Meek 1998, 1999; Richardson 2003). Despite their power,
these works either (a) make strong assumptions on the DAG
or probability distribution, or (b) do not provide an algorithm
to list their required CI tests in poly-time intervals.

A prominent example that overcomes (a) is the ordered lo-
cal Markov property, or (LMP,≺) (Richardson 2003), which
non-parametrically generalizes the local Markov property
to semi-Markovian DAGs. It can be shown that a semi-
Markovian DAG with n observed variables encodes Θ(4n)
CI constraints (Prop. C.3.1). In this case, (LMP,≺) can in-
voke exponentially many CIs for each variable. Model testing
using (LMP,≺) requires listing the relevant CIs so that they
can be tested against the data. This is an unsolved problem.
Naively following the definition of (LMP,≺) can take ex-
ponential time to output a single CI constraint. Moreover,
(LMP,≺) can invoke exponentially many CIs of the type
X ⊥⊥ ∅ | Z, which need no test.
Summary of contributions. We give the first efficient algo-
rithm for testing causal DAGs with unobserved confounders
via conditional independencies. This enables researchers to
test their causal assumptions using observational data prior
to inference. This result builds on a newer, fine-grained char-
acterization of CIs in graphs based on a new construct called
ancestral c-components (i.e., connected components in the
bidirected skeleton). In particular, we show that O(n2s) CI
tests (Prop. 1) are required to test a DAG on n variables
whose largest c-component has size s. This is an exponential
improvement over naively testing all Θ(4n) CI constraints.
The upshot is largest for DAGs with many variables but small
c-components. For instance, the DAG G2 in Fig. 1b implies
753 CIs, but only 5 really need testing. More specifically, our
contributions are as follows:

1. We introduce the c-component local Markov property, or
C-LMP (Def. 5). We show that C-LMP and the global
Markov property are equivalent, admitting the same set of
probability distributions for a given DAG. We then show
an important property of C-LMP: a one-to-one mapping
between the CI constraints it invokes and ancestral c-
components (Thm. 2).

2. Building on this characterization, we develop the first
algorithm (LISTCI) capable of listing all testable CI
constraints of C-LMP in polynomial delay (Thm. 3).
On a DAG with n nodes and m edges, LISTCI takes
O(n2(n+m)) time to return each new CI constraint, if
one exists, or exit when it has exhausted all CI constraints.

Experiments corroborate the theoretical findings. For the sake
of space, proofs are provided in Appendix C.

2 Preliminaries
Notation. We use capital letters to denote variables (X),
small letters for their values (x), and bold letters for sets of
variables (X) and their values (x). The probability distribu-
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Figure 1: (a) A causal DAG G1 in which the local Markov
property implies the CI: H⊥⊥{A,B,C,E, F} | {D,U1, U2}.
If U1 and U2 are unobserved, we cannot test this CI. (b) We
project G1 onto its observed variables to get G2. In G2, the
c-component local Markov property invokes the testable CI:
H ⊥⊥ {A,E, F} | {B,C,D}.

tion over a set of variables X is denoted by P (X). We consis-
tently use P (x) as abbreviations for probabilities P (X = x).
For disjoint sets of variables X,Y,Z, we use X⊥⊥Y | Z to
denote that X and Y are conditionally independent given Z.

Structural causal models. The basic framework of our
analysis rests on structural causal models (SCMs) (Pearl
2000, Def. 7.1.1). An SCM M is a quadruple M =
⟨V,U,F , P (u)⟩ where V and U are sets of endogeneous
and exogeneous variables, respectively. F is a set of func-
tions: each V ∈ V is a function fV (PAV,UV) of its endo-
geneous and exogeneous parents, PAV ⊆ V and UV ⊆ U
respectively. P (u) is a joint distribution over U. Each SCM
M induces an observed distribution P (v) over V. For a
more detailed survey on SCMs, we refer to (Pearl 2000;
Bareinboim et al. 2022).

Causal graphs. The causal graph G for an SCM M =
⟨V,U,F , P (u)⟩ is constructed as follows: (1) add a vertex
for every V ∈ V (2) add an edge Vi → Vj for every Vi, Vj ∈
V if Vi ∈ PAVj

(3) add a dashed bidirected edge between
Vi, Vj if Ui,Uj are correlated or Ui ∩Uj ̸= ∅. G is said to
be Markovian if it contains only directed edges, and semi-
Markovian otherwise.

We denote the sets of parents, ancestors, and descen-
dants of X (including X itself) in G as Pa(X),An(X), and
De(X), respectively. The set of non-descendants of X in G
is denoted Nd(X) = V \De(X), which does not include X
itself. The set of spouses of X in G is Sp(X) =

⋃
X∈X{Y |

Y ↔ X}. X is said to be an ancestral set if it contains
its own ancestors, i.e., X = An(X). We use GX to denote
the induced subgraph of G on X ⊆ V. A subscript G′, e.g.,
An(X)G′ indicates that the set is computed from the sub-
graph G′. We omit the subscript when clear from context. An
ordering V≺ on variables V is said to be consistent with G
(i.e., a topological ordering) if for any X,Y ∈ V, X ≺ Y im-
plies Y /∈ An(X)G . Let V≤X = {Y | Y ≺ X or Y = X}.

d-separation. A node W on a path π is said to be a collider
on π if W has converging arrows into W in π, e.g.,→W ←
or ↔ W ←. π is said to be blocked by a set Z if there
exists a node W on π satisfying one of the following two
conditions: 1) W is a collider, and neither W nor any of its
descendants are in Z, or 2) W is not a collider, and W is in
Z (Pearl 1988). Given disjoint sets X,Y, and Z in G, Z is
said to d-separate X from Y in G if and only if Z blocks



every path from a node in X to a node in Y according to
the d-separation criterion (Pearl 1988). If Z d-separates X
from Y in G (written X ⊥d Y | Z), then G implies that
X is conditionally independent of Y given Z (Pearl 1988;
Richardson 2003).

Definition 1. (C-component) (Tian and Pearl 2002a) A set
of variables C ⊆ V in a causal graph G is said to be a
confounded component (c-component, for short) if there is a
path of bidirected edges connecting any Vi, Vj ∈ C, and C
is maximal.

For a variable X ∈ V, C(X)G denotes the c-component
containing X in G.

Previously, we have referred to the set of all CIs encoded
in a given DAG. We define this formally.

Definition 2. (Global Markov Property (GMP)) (Pearl 1988;
Geiger, Verma, and Pearl 1989) A probability distribution
P (v) over a set of variables V is said to satisfy the global
Markov property for a causal graph G if, for arbitrary disjoint
sets X,Y,Z ⊂ V with X,Y ̸= ∅,

X ⊥d Y|Z =⇒ X⊥⊥Y|Z in P (v).

Various local Markov properties have been developed
which identify a subset of the CIs invoked by GMP, often
considered a ‘basis’ (Bareinboim et al. 2022), that imply all
others. A prominent example is the local Markov property
for Markovian DAGs.

Definition 3 (The Local Markov Property (LMP) (Pearl 1988;
Lauritzen et al. 1990; Lauritzen 1996)2). A probability dis-
tribution P (v) over a set of variables V is said to satisfy the
local Markov property for a given Markovian DAG G if, for
any variable X ∈ V,

X ⊥⊥Nd({X}) \ Pa({X}) | Pa({X}) \ {X} in P (v).

3 The C-component Local Markov Property
In this section, we motivate and introduce the c-component
local Markov property for causal DAGs with unobserved
confounders. In Sec. 3.1, we demonstrate the limitations of
the traditional local Markov property (LMP) when applied
to semi-Markovian DAGs. In Sec. 3.2, to solve this problem,
we present the c-component local Markov property (C-LMP)
for semi-Markovian DAGs and establish its equivalence with
GMP. In Sec. 3.3, we provide a useful property of C-LMP
that makes its CIs amenable to listing.

3.1 A Naive Approach to Testing Semi-Markovian
Compatibility

First, we show the limitations of applying the well-known
LMP (Def. 3) in the context of testing semi-Markovian DAGs.
For each variable X in a given graph, LMP states that X
is independent of its non-descendants conditioning on its
parents. Intuitively, the parents of X form a minimal set,
conditioning on which is necessary and sufficient to render
X independent of its non-descendants.

2Note that this property is referred as the directed local Markov
property in (Lauritzen et al. 1990).

Example 1. Consider Fig. 1a. The DAG G1 contains only
directed edges; assuming all variables are observed, G1 is
Markovian. LMP invokes 10 CIs for G1: A ⊥⊥ {U1, U2},
B ⊥⊥ {U1, U2} | {A}, C ⊥⊥ {A,E,U2} | {B,U1}, D ⊥⊥
{A,B,E, F, U1} | {C,U2}, E⊥⊥{A,C,D, F,H,U1, U2} |
{B}, F ⊥⊥ {A,B,E,D,H,U1, U2} | {C}, H ⊥⊥
{A,B,C,E, F} | {D,U1, U2}, U1 ⊥⊥ {A,B,E}, U2 ⊥⊥
{A,B,C,E, F, U1}. All 10 CIs are testable using the sam-
ples from the distribution P (a, b, c, d, e, f, h, u1, u2).

LMP provides a way to test Markovian DAGs (Zhang,
Shiragur, and Uhler 2024) with linearly many CIs. However,
it does not extend immediately to semi-Markovian DAGs.
For a trivial counterexample, a variable may be connected
to some non-descendant via a bidirected edge. This can be
seen in Fig. 1b, where H is connected to its non-descendant
C by a bidirected edge and the CI: H ⊥⊥ {C} | {D} (where
{D} = Pa({H})) does not hold.

A possible way around this problem is to apply LMP to
the ‘un-projected graph’ of a semi-Markovian DAG. Given
a semi-Markovian DAG G over a set of variables V, we
thus construct the un-projected graph G′. G′ is a copy of G
except that for each bidirected edge X ↔ Y in G, add an
explicit unobserved variable UXY and two directed edges
UXY → X , UXY → X to G′. Therefore, G′ does not contain
any bidirected edge.

Then, the naive approach is: given a semi-Markovian G,
we first construct the un-projected graph G′ of G. Then, we
get the CI constraints invoked by LMP for G′, and attempt
to test them against the data. The following example shows
why such an approach fails.

Example 2. Continuing Ex. 1. Assume we are given
the semi-Markovian DAG G2 shown in Fig. 1b. The
un-projection of G2 is G1, where the unobserved vari-
ables {U1, U2} have been made explicit. However, since
{U1, U2} are unobserved, only samples from P (v) =∫
u1,u2

P (a, b, c, d, e, f, h, u1, u2)dP (u1, u2) are available,
where V = {A,B,C,D,E, F,H} denotes the set of ob-
served variables.. All 10 CIs invoked by LMP for G1, listed
in Ex. 1, refer to the unobserved variables {U1, U2}. Hence,
none of the 10 CIs can be tested using P (v).

One approach to try re-using this set is to consider the
CIs in which {U1, U2} appear before the conditioning bar. In
such CIs, {U1, U2} can be removed using the decomposition
axiom. However, only two of the ten CIs can be modified in
this way, i.e.,

E ⊥⊥ {A,C,D, F,H} | {B}, (1)
F ⊥⊥ {A,B,E,D,H} | {C}. (2)

These two CIs do not suffice to derive the GMP for G2. To
witness, consider a graph G′ over the same variables as G2 but
with only one edge H → A. Say we have an observational
distribution P (v) faithfully induced by G′. Then, the CIs in
Eqs. (1,2) both hold in P (v). However, G2 implies that

H ⊥⊥ {A,E, F} | {B,C,D} (3)

which does not hold in P (v) since G′ contains an edge H →
A. Only testing the two CIs in Eqs. (1,2) would lead to the



false conclusion that P (v) is consistent with G2. As a result,
it is insufficient to use only those CIs which invoke {U1, U2}
outside the conditioning set.

Filtering out the unobserved variables, as in the example, is
somewhat naive since there are CIs in which the unobserved
variables appear after the conditioning bar, which could lead
to testable CIs over the observables. More systematically, the
semi-graphoid axioms could be applied to the CIs invoked by
LMP for the un-projected DAG. This gives the semi-graphoid
closure of these CIs, equal to the GMP for the un-projected
DAG. From this closure, one may filter out all CIs involving
the unobserved variables, and test the remaining CIs against
the data. The set that remains is equal to the GMP for the
projected DAG, which can invoke Θ(4n) CIs for a DAG with
n variables (Prop. C.3.1). This approach fails to exploit any
locality in the graph, and requires a prohibitive number of CI
tests, many of which are redundant.

This suggests the need for alternative compatibility prop-
erties for semi-Markovian DAGs. We next introduce our
contribution, the c-component local Markov property.

3.2 C-LMP: A Local Markov Property for
Semi-Markovian DAGs

In a semi-Markovian graph, bidirected edges cause devia-
tions from the locality conditions of Markovian graphs. Since
the parents of a variable no longer separate it from its non-
descendants, a surrogate of the parents is needed to restore
locality. The concept of a c-component (Def. 1) was intro-
duced for this purpose (Bareinboim et al. 2022), which we
explain via an example.

Example 3. Continuing Ex. 1, assume {U1, U2} are unob-
served in G1 (Fig. 1a). The second graph G2 (Fig. 1b) is the
semi-Markovian projection of G1. Note that the conditional
independence H ⊥⊥ {A,B,C,E, F} | {D,U1, U2} cannot
be tested from the data since {U1, U2} are not observed. One
can condition on D, the only observed parent of H , but can-
not condition on {U1, U2}, the unobserved parents of H .

This means that a different conditioning set is needed
to make H independent of its non-descendants. One may
consider the other children of {U1, U2}, i.e., {C,D}. These
variables are not separable from H without conditioning
on {U1, U2}, which is not an option. {C,D} have bidi-
rected edges to H in G2 and, then, are in the same c-
component as H: C = C(H)G2 = {H,C,D}. We note
that any paths on which {C,D} are colliders are now ac-
tive. For instance, the paths E ← B → C ← U1 → H
and A → B → C ← U1 → H are now active. To block
some of these paths, we also condition on the (remaining)
parents of {C,D}, i.e., {B}. Conditioning on {B} does not
introduce any new active paths to X . Firstly, conditioning
on {C,D} already makes B and its ancestors active on any
paths where they are colliders; secondly, B is connected to
H when conditioning on {C,D}. Conditioning on {B} ad-
ditionally blocks paths to H containing {B,C,D} on which
at least one of these variables is not a collider. Therefore,
we have the conditioning set Pa(C) \ {H} = {B,C,D}.

The CI over observables H⊥⊥{A,E, F} | {B,C,D} is thus
derived.

Ex. 3 is relatively simple since the c-component of H is
used to generate the given CI. However, the c-components of
a variable do not always give rise to CIs.
Example 4. Consider, as an example DAG, a bidirected path
of the form V1 ↔ V2 · · · ↔ Vn on variables V. For each Vi,
the c-component including Vi is the entire graph. Therefore,
conditioning on the c-component results in the ‘vacuous’
CI: Vi ⊥⊥ ∅ | V \ Vi. Clearly, from this set of vacuous CIs,
we cannot derive non-vacuous CIs encoded the graph, such
as those of the form Vi ⊥⊥ {Vj}, ∀i, j s.t. |i − j| > 1 (e.g.,
V1 ⊥⊥ {V3}).

A useful insight due to (Richardson 2003) is that subsets of
a variable’s c-component can give rise to distinct boundaries
of local influence and then distinct CIs. This is because con-
ditioning on a certain variable in a c-component closes some
paths while opening others. We generalize c-components to
ancestral c-components to define these boundaries.
Definition 4. (Ancestral C-component (AC)) Given a causal
graph G and a consistent ordering V≺, let X be a variable
in V≺. A set of variables C is said to be an ancestral c-
component relative to X if there exists an ancestral set S ⊆
V≤X containing X such that C(X)GS

= C. The collection
of all such C is defined as:

ACX = {C | C is an ancestral c-component relative to X}.
Unlike c-components, there may be many ancestral c-

components with respect to a given variable.
Example 5. Consider the graph G in Fig. 2 and a consistent
ordering A ≺ B ≺ · · · ≺ X ≺ J ≺ K. For the variable
X , {X} is an AC relative to X induced by the ancestral set
S = {X}; {B,X} is an AC relative to X induced by the
ancestral set S = {B,C,D,E,X}. {X,A,D,E} is not an
AC relative to X since the exclusion of B and/or H discon-
nects the variables in question. For the variable J , {J} is
not an AC relative to J since it excludes the ancestor X to
which J is connected by a bidirected edge; {X,J} is an AC
induced by the ancestral set {X, J}.

We use ACs to define the c-component local Markov prop-
erty, which generalizes LMP to semi-Markovian DAGs using
this new notion of local influence.
Definition 5. (The C-component Local Markov Property (C-
LMP)) A probability distribution P (v) over a set of variables
V is said to satisfy the c-component local Markov property
for a causal graph G with respect to the consistent ordering
V≺, if, for any variable X ∈ V≺ and ancestral c-component
C ∈ ACX relative to X ,

X⊥⊥ S+ \ Pa(C) | (Pa(C) \ {X}) in P (v), where

S+ = V≤X \De(Sp(C) \ Pa(C)).

Example 6. Continuing Ex. 5. We give a few examples of
CIs invoked by C-LMP for the variable X .
1. The AC C = {X,B} gives the CI X ⊥⊥ {C,D,E, F} |
{B} (Fig. 2a), since

Pa(C) = Pa({X,B}) = {X,B}
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Figure 2: Three ACs relative to the variable X in the (same) causal DAG G. Assume an ordering A ≺ B ≺ · · · ≺ X ≺ J ≺ K.
The ACs relative to X (excluding {X} itself), shown in blue, separate it from the variables shown in green.

S+ = V≤X \De(Sp({X,B} \ Pa({X,B})))
= {A,B,C,D,E, F,H, I,X} \De({A,H})
= {A,B,C,D,E, F,H, I,X} \ {A,H, I}
= {B,C,D,E, F,X}

2. The AC C = {X,H} gives the CI X⊥⊥{A,D, I} | {H}
(Fig. 2b), since

Pa(C) = Pa({X,H}) = {X,H}

S+ = V≤X \De(Sp({X,H} \ Pa({X,H})))
= {A,B,C,D,E, F,H, I,X} \De({B,E})
= {A,B,C,D,E, F,H, I,X} \ {B,C,E, F}
= {A,D,H, I,X}.

3. The AC C = {X,H,E} gives the CI X ⊥⊥ {A,F, I} |
{H,E} (Fig. 2c), since

Pa(C) = Pa({X,H,E}) = {X,H,E}

S+ = V≤X \De(Sp({X,H,E} \ Pa({X,H,E})))
= {A,B,C,D,E, F,H, I,X} \De({B,D})
= {A,B,C,D,E, F,H, I,X} \ {B,C,D,E}
= {A,E, F,H, I,X}

As a sanity check, let us examine the CIs C-LMP implies
for a Markovian DAG G, where all c-components are single-
tons. There is exactly one AC C = {X} relative to a given
variable X . Moreover, Pa(C) = Pa({X}),Sp({X}) = ∅
and S+ = V≤X \De(∅) = V≤X . Therefore, the CI invoked
by C-LMP for X is

X ⊥⊥V≤X \ Pa({X}) | Pa({X}) \ {X} (4)
Thus, C-LMP reduces to LMP for a Markovian DAG G.3

In semi-Markovian DAGs, c-components are not necessarily
singletons. Comparing the CIs invoked by LMP and C-LMP
for a given variable X , we see that C-LMP generalizes two
concepts:

3A subtle difference is that LMP tests the independence of X
from its all non-descendants, not just V≤X for a given ordering
V≺. Since Nd({X}) =

⋃
≺ ordering of G

V≤X
≺ \ {X}, the CI invoked

by LMP implies the CIs invoked by C-LMP across all possible
orderings by the decomposition axiom.

1. The conditioning set Pa({X}) \ {X} stated in LMP is
replaced with Pa(C) \ {X} in C-LMP, using an AC C
relative to X .

2. The conditioning set Pa(C)\{X} renders X independent
of S+\Pa(C) where S+ = V≤X\De(Sp(C) \ Pa(C)),
as stated by C-LMP. The set S+ \ Pa(C) replaces the set
Nd({X}) \ Pa({X}) in LMP.
In Ex. 3, we provided intuition for the generalised condi-

tioning set Pa(C) \ {X} (Case 1). Next, we explain the
construction of S+ (Case 2) used to compute the maxi-
mal set of variables in V≤X that are independent of X
given Pa(C) \ {X}. Consider what happens to a variable
Y ∈ V≤X \ Pa(C) when conditioning on Pa(C) \ {X}.
• If Y is a descendant (or an ancestor) of some node W ∈
Pa(C), we have a directed path π from W to Y (or vice-
versa). Conditioning on Pa(C) \ {X} blocks π (since
Y ̸∈ Pa(C)), and hence any path from X to Y which
contains π as a sub-path. For example, in Fig. 2a, taking
C = {X,B}, W = B and Y = C, conditioning on {B}
blocks the path X ↔ B → C.

• If Y is connected by a bidirected path to some node in
C, but Y is not in Sp(C), then some node V ∈ Sp(C) \
Pa(C) ‘intercepts’ this path, i.e., V is a closed collider
and thus blocks the path from X to Y . For example, in
Fig. 2a, taking C = {X,B}, V = H and Y = E, H
blocks the path X ↔ H ↔ E.

• If Y is in Sp(C) \ Pa(C), is an active bidirected path
from X to Y when conditioning on C\{X}. For example,
in Fig. 2a, taking C = {X,B} and Y = A, conditioning
on {B} opens the path X ↔ B ↔ A.

Analogous to how, for a given variable X , different con-
ditioning sets give rise to different CIs from X , different
ACs also give rise to different CIs from X . The upshot of
defining ACs is that they carve out a relatively small set of
CIs (commonly known as a ‘basis’ (Bareinboim et al. 2022))
from which all CIs encoded in the given graph can be derived.
The main result of this section, given below, establishes that
GMP and C-LMP are equivalent.
Theorem 1 (Equivalence of C-LMP and GMP). Let G be a
causal graph and V≺ a consistent ordering. A probability
distribution over V satisfies the global Markov property for



G if and only if it satisfies the c-component local Markov
property for G with respect to V≺.

As a corollary of Thm. 1, we can conclude that C-LMP
is equivalent to Richardson’s ordered local Markov property
(Richardson 2003), since the latter is equivalent to GMP
(Richardson 2003, Thm. 2, Section 3.1).
Corollary 1 (Equivalence of C-LMP and the Ordered Local
Markov Property). Let G be a causal graph and V≺ a con-
sistent ordering. A probability distribution over V satisfies
the ordered local Markov property (Richardson 2003) for G
with respect to V≺ if and only if it satisfies the c-component
local Markov property for G with respect to V≺.

In Appendix B, we further develop the connection between
C-LMP and the ordered local Markov property. In fact, in
Thm. B.2.1, we show that these two properties induce the
exact same set of CIs for a given a DAG and a consistent
ordering. Thm. B.2.1 thus provides an alternative way to
prove Thm. 1 as a corollary.

The equivalence of C-LMP and GMP means that the CIs
invoked by C-LMP for a given causal DAG can be used to
test the DAG against observational data.

3.3 Uniqueness Property of C-LMP
By definition, each CI invoked by C-LMP is generated from
an AC. We further show that each CI can be generated from
exactly one AC.
Theorem 2 (Unique AC for each CI Invoked by C-LMP).
Let G be a causal graph, V≺ a consistent ordering, and X a
variable in V≺. For every conditional independence relation
invoked by the c-component local Markov property of the
form X⊥⊥W | Z, there is exactly one ancestral c-component
C ∈ ACX such that W = V≤X\((De(Sp(C) \ Pa(C)))∪
Pa(C)) and Z = Pa(C) \ {X}.

The one-to-one correspondence between ACs and CIs in-
voked by C-LMP allows us to give bounds on the latter num-
ber that are tight in the exponent.
Proposition 1 (Number of CIs Invoked by C-LMP). Given a
causal graph G and a consistent ordering V≺, let n and s ≤ n
denote the number of variables and the size of the largest
c-component in G respectively. Then, the c-component local
Markov property for G with respect to V≺ invokes O(n2s)
conditional independencies implied by G over V. Moreover,
there exists a graph G and a consistent ordering V≺ for which
the property induces Ω(2n) conditional independencies.

This result shows that C-LMP offers an exponential im-
provement on the Θ(4n) CIs invoked by GMP. However,
C-LMP can still invoke an exponential number of CIs. For
example, in Gex (Fig. 3a) with 2n nodes, there are 2n+(n−3)
CIs invoked by C-LMP.

The main upshot of the one-to-one correspondence be-
tween ACs and CIs invoked by C-LMP is that to list such
CIs, it suffices to enumerate ACs. We study the problem of
listing CIs in the next section.

4 Listing CIs
Our goal in this section is to develop an algorithm that lists
CIs invoked by C-LMP. In general, there may exist exponen-
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Figure 3: (a) An example showing that C-LMP may invoke
an exponential number of CIs. (b) A causal graph used for
running LISTCI in Ex. 8.

tially many such CIs, requiring exponential time to list them
all. In such cases, we look for algorithms that run in polyno-
mial delay (Johnson, Yannakakis, and Papadimitriou 1988).
Poly-delay algorithms output the first solution (or indicate
none is available) in poly-time, and take poly-time to output
each consecutive solution.

However, for model testing purposes, it is not desirable
to list all CIs invoked by C-LMP. Some CIs invoked by
(LMP,≺), and equivalently C-LMP, have the form X ⊥⊥ ∅ |
Z, meaning that they are vacuous, there is nothing to test.
Therefore, we further constrain the problem by requiring that
we list only non-vacuous CIs, as defined below.

Definition 6 (Vacuous CI and Admissible AC (AAC)). Given
a conditional independence relation invoked by C-LMP of
the form X ⊥⊥W | Pa(C) \ {X}, where W = S+ \Pa(C)
(by Def. 5), if W ̸= ∅, the conditional independence relation
is said to be non-vacuous and C is said to be an admissible
ancestral c-component relative to X .

Example 7. Consider the causal graph G3 (Fig. 3b). The AC
{J} relative to J is admissible. Given S+ = V \{F,H}, we
have W = S+ \ {J} = {A,B,C,D,E}. However, the AC
{F, J} relative to J is not admissible. Since S+ = {F, J},
W = S+ \ {F, J} = ∅.

The bounds on number of CIs invoked by C-LMP can also
be shown tight for the number of non-vacuous CIs (Prop. 1).
Listing only non-vacuous CIs is important since the number
of vacuous CIs invoked by C-LMP may be exponential. To
witness, consider a bidirected clique on n nodes such that
no two variables are independent of each other given any
conditioning set. Every set Z with ∅ ⊆ Z ⊆ V \ {X} forms
a conditioning set, resulting in Ω(2n) vacuous CIs invoked
by C-LMP (see Ex. D.3.1 in Appendix D.3 for details).

We develop the algorithm LISTCI (Alg. 1) to list all non-
vacuous CIs invoked by C-LMP in poly-delay.

Example 8. Consider the causal graph G3 (Fig. 3b) with
V≺ = {A,B,C,D,E, F,H, J}. LISTCI(G3,V≺) out-
puts 11 non-vacuous CIs invoked by C-LMP, one by one:
C ⊥⊥ {A} | {B}, D ⊥⊥ {A} | {B,C}, E ⊥⊥ {A,B,C} |
{D}, F ⊥⊥ {B} | {A}, F ⊥⊥ {E} | {A,B,C,D}, H ⊥⊥
{A,B,C,D,E} | {F}, J ⊥⊥ {A,B,C,D,E}, J ⊥⊥ {B} |
{A,F}, J⊥⊥{B} | {A,F,H}, J⊥⊥{E} | {A,B,C,D, F},
J ⊥⊥{E} | {A,B,C,D, F,H}. After, LISTCI terminates as
there are no more non-vacuous CIs.



Algorithm 1: LISTCI (G,V≺)

1: Input: G a causal diagram; V≺ an ordering consistent
with G.

2: Output: Listing non-vacuous CIs invoked by C-LMP
for G with respect to V≺.

3: for each X ∈ V≺ do
4: I← C(X)GAn({X}) ,R← C(X)G

V≤X

5: LISTCIX(GV≤X , X,V≤X , I,R)

4.1 Listing CIs for a Given Variable
The algorithm LISTCI iterates over each variable X ∈ V≺

and lists all non-vacuous CIs invoked by C-LMP for X . By
Def. 5 and Def. 6, listing non-vacuous CIs invoked by C-
LMP reduces to enumerating AACs. In this section, we show
how to enumerate AACs relative to a given variable X ∈ V≺

using the procedure LISTCIX (Fig. 5).
LISTCIX adopts a divide-and-conquer strategy similar to

the algorithm presented in (Takata 2010). LISTCIX implic-
itly constructs a binary search tree for X using a depth-first
approach. Tree nodes of the form N (I′,R′) represents the
collection of all AACs C with I′ ⊆ C ⊆ R′. Due to the
construction on line 4 of LISTCI, I is contained in and R
contains all possible AACs relative to X . So, the top-level
call of LISTCIX, at the root node N (I,R), represents all
AACs C relative to X . Thus, the top-level call can generate
all CIs invoked by C-LMP for X . Subsequent recursive calls
expand this tree by shrinking the range one variable at a time.

To ensure that the algorithm runs in poly-delay, we expand
the tree from a nodeN (I′,R′) if and only if the expansion is
guaranteed to produce a non-vacuous CI. Equivalently, there
must exist at least one AAC C such that I′ ⊆ C ⊆ R′. If
there is no such C, we prune the tree and back-track to the
previous tree node. Given I′,R′, to find in poly-time an AAC
C such that I′ ⊆ C ⊆ R′ (or indicate that there is none),
LISTCIX calls the function FINDAAC (Fig. 6). We explain
FINDAAC in the next subsection.

Another requirement of the poly-delay property is that each
AAC should appear exactly once in the enumeration of AACs.
To expand the tree from N (I′,R′), LISTCIX constructs two
‘disjoint’ children (lines 10-11); for some variable S ∈ V≺,
S cannot be in any AAC from the left child, but must be in
every AAC from the right child. Finally, a leaf tree node L
is reached when I = R. LISTCIX outputs a non-vacuous CI
invoked by C-LMP from the AAC C = I using Def. 5.

Example 9. Expanding Ex. 8 to demonstrate the construc-
tion of the search tree T 3 (Fig. 4) generated by running
LISTCI(G3,V≺) for X = J . With I = {J} and R =
{A,C,D, F,H, J} constructed on line 4, the initial search
starts from the root nodeN (I,R) on line 5. On line 3 of LIST-
CIX, FINDAAC returns {J}. With S = F and R′ = {J},
the recursive call LISTCIX(G3, J,V≺, I,R′) is made at
line 10, spawning a child N1({J}, {J}). The search contin-
ues from N1. FINDAAC returns {J}. N1 is a leaf node, and
LISTCIX outputs a CI: J ⊥⊥ {A,B,C,D,E} on line 6. The
rest of the search tree relevant for J is shown in T 3. A full set
of search trees is shown in Fig. F.1.1 in Appendix D.3.

Figure 4: T 3 a search tree illustrating the running of LISTCI
in Ex. 8 for X = J .

4.2 Finding an AAC
In this section, we address the following subproblem, needed
for LISTCIX to run in poly-delay: given a variable X ∈ V≺,
and two ACs I,R relative to X , how do we find an AAC
C such that I ⊆ C ⊆ R (or indicate that there is none) in
poly-time?

The poly-time constraint on solving this subproblem rules
out the brute-force approach: namely, iterating over all sub-
sets C such that I ⊆ C ⊆ R until we find some C that is an
AAC (or conclude that there is none). The key idea behind
our solution, FINDAAC, is that either I itself is admissible, or
if not, there exists such C ⊋ I if and only if C0 constructed
on line 8 of FINDAAC is admissible.

When I is not admissible, no variable D ∈ V≤X \ Pa(I)
is separated from X by the conditioning set Pa(I) \ {X}.
Equivalently, every such D must be in De(Sp(I) \ Pa(I))
(Def. 5). Interestingly, we show that an AAC C under the
constraint I ⊊ C ⊆ R exists if and only if, for some D ∈
V≤X \ Pa(I), there exists any separating set Z of X and D
such that Pa(I) \ {X,D} ⊆ Z ⊆ Pa(R) \ {X,D}. Z need
not be a c-component. We can check if such Z exists (line 6)
in poly-time using the function FINDSEPARATOR (Fig. C.2.2
in Appendix C.2). FINDSEPARATOR is a generalisation of
FINDSEP (van der Zander, Liskiewicz, and Textor 2014) for
ancestral graphs to arbitrary semi-Markovian DAGs.
Example 10. Expanding Ex. 9 to illustrate the usage of
FINDAAC. Let X = J , V≺ = V≤J , I = {J}, and
R = {A,C,D, F,H, J}. FINDAAC(G3, J,V≤J , I,R) re-
turns C = {J} since there exists an AAC C relative to J
with I ⊆ C ⊆ R. With I = {F, J} and R = {F,H, J},
FINDAAC(G3, J,V≤J , I,R) returns ⊥ since none of the
ACs C relative to J with I ⊆ C ⊆ R are admissible.

Lemma 1 (Correctness of FINDAAC). Given a causal graph
G, a consistent ordering V≺, and a variable X ∈ V≺, let
I,R be ancestral c-components relative to X such that I ⊆



1: function LISTCIX(GV≤X , X,V≤X , I,R)
2: Output: Listing non-vacuous CIs invoked by C-LMP

associated with X and AACs C under the constraint
I ⊆ C ⊆ R where I and R are ACs relative to X .

3: if FINDAAC(GV≤X , X,V≤X , I,R) ̸=⊥ then
4: if I = R then
5: S+ ← V≤X \De(Sp(I) \ Pa(I))
6: Output X ⊥⊥ S+ \ Pa(I) | Pa(I) \ {X}
7: return
8: T← R ∩ (Sp(I) \ I), S ← Any node in T
9: I′ ← C(X)GAn(I∪{S}) ,R

′ ← C(X)GR\De({S})

10: LISTCIX(GV≤X , X,V≤X , I,R′)
11: LISTCIX(GV≤X , X,V≤X , I′,R)

12: end function

Figure 5: A function that lists non-vacuous CIs invoked by
C-LMP for a given variable.

R. FINDAAC(GV≤X , X,V≤X , I,R) outputs an admissible
ancestral c-component C relative to X such that I ⊆ C ⊆ R
if such a C exists, and ⊥ otherwise.
Lemma 2 (Correctness of LISTCIX). LISTCIX
(GV≤X , X,V≤X , I,R) enumerates all and only all
non-vacuous conditional independence relations invoked
by the c-component local Markov property associated with
X and admissible ancestral c-components C relative to X
where I ⊆ C ⊆ R. Further, LISTCIX runs in O(n2(n+m))
delay where n and m represent the number of nodes and
edges in G, respectively.

Our results are summarized in the following theorem,
which provides the soundness, completeness, and poly-delay
complexity of the proposed algorithm.
Theorem 3 (Correctness of LISTCI). Let G be a causal
graph and V≺ a consistent ordering. LISTCI(G,V≺) enu-
merates all and only all non-vacuous conditional indepen-
dence relations invoked by the c-component local Markov
property in O(n2(n+m)) delay where n and m represent
the number of nodes and edges in G, respectively.

5 Experiments
In this section, we first demonstrate the runtime of LISTCI
on benchmark DAGs of up to 100 nodes from the bnlearn
repository (Scutari 2010). Next, we apply LISTCI to model
testing on a real-world protein signaling dataset with an
expert-provided graph (Sachs et al. 2005). Third, we pro-
vide analysis of the total number of non-vacuous CIs invoked
by C-LMP, using LISTCI for the analysis. The details of the
three experiments are shown in Appendix F.

Experiment 1 (Comparison of LISTCI with other algo-
rithms). We compare the runtime of LISTCI with two base-
lines: LISTGMP (Fig. E.0.1 in Appendix E) and LISTCIBF
(Alg. B.1.1 in Appendix B.1)4. LISTGMP lists all CIs in-
voked by GMP (Def. 2); LISTCIBF iterates over ancestral

4Our implementation of LISTCIBF can be improved by gener-
ating ancestral sets more efficiently. Regardless, we know LISTCI
performs better in theory (Sec. 3), and have strong evidence that it

1: function FINDAAC(GV≤X , X,V≤X , I,R)
2: Output: An AAC C relative to X under the con-

straint I ⊆ C ⊆ R where I and R are ACs relative to
X , if such C exists; ⊥ otherwise.

3: if ISADMISSIBLE(GV≤X , X,V≤X , I) then
4: return I
5: for each D ∈ De(Sp(I) \ Pa(I)) do
6: Z← FINDSEPARATOR(GV≤X , {X}, {D},

Pa(I), Pa(R))

7: if Z ̸=⊥ then
8: return C(X)GAn(I∪Z)

9: return ⊥
10: end function

Figure 6: A function to find an AAC if one exists or indicates
that there is none.

Figure 7: Plot of runtimes of the algorithms LISTGMP, LIST-
CIBF, and LISTCI on graphs of various sizes. A colored box
indicates the interval of n on which the relevant algorithm
has timed out on some graphs with n nodes. The y-axis uses
a logarithmic scale.

sets to list CIs invoked by the ordered local Markov prop-
erty (Richardson 2003). The algorithms are run on DAGs
that describe real-world scenarios from the bnlearn reposi-
tory. Since the graphs are Markovian, non-Markovian graphs
were generated by randomly assigning U% of nodes to be
unobserved for U ∈ {0, 10, 20, . . . , 90}. For each U , we
generated 10 random samples. For a given graph, algorithm,
and U , if any one sample times out (> 1 hour), no further
samples are tested. Fig. 7 demonstrates average runtime of
the algorithms.

The results corroborate our theoretical conclusion that
LISTCI outperforms the other algorithms. For LISTGMP,
the algorithm did not timeout over graphs with n < 10 nodes.
For LISTCIBF, we have mixed results. The algorithm did

is also superior in practice to this more efficient implementation of
LISTCIBF.



not time out for some graphs with up to n = 35 nodes, but
there were other graphs with n = 25 where the algorithm
timed out. For LISTCI, the algorithm did not timeout for
many graphs up to n = 80, but did time out for some graphs
with n = 70.

Experiment 2 (Application to model testing). A real-
world protein signaling dataset (Sachs et al. 2005) has been
used to benchmark causal discovery methods (Cundy, Grover,
and Ermon 2021; Zantedeschi et al. 2023). The dataset (853
samples) comes with an expert-provided ground-truth DAG
(11 nodes, 16 edges). Using LISTCI, we test to what ex-
tent this graph is compatible with the available data. We use
a kernel-based CI test from the causal-learn package
(Zheng et al. 2024) with p-value p = 0.05 (for the null hy-
pothesis of dependence).

For our chosen topological order, seven out of ten CIs
invoked by C-LMP resulted in p > 0.05. This suggests the
ground-truth DAG may need revision before use as a bench-
mark for structure learning. The exact local CIs that are
violated may guide experts in this revision process.

Experiment 3 (Analysis of C-LMP). We use LISTCI to
understand the total number of non-vacuous CIs invoked by
C-LMP. Let CI denote this number. CI is also the number of
CIs that need to be tested from a given semi-Markovian causal
DAG. Based on experiments with random graphs shown in
Appendix F.3, we conclude that the graph topology associated
with c-components plays a major role in CI. More specif-
ically, two factors related to c-components are of primary
interest:

1. s ≤ n: the size of the largest c-component, and

2. The sparsity of c-components, a proxy for which is the
number of bidirected edges.

As we add bidirected edges, while c-components are
sparse, CI increases exponentially with s, as given by the
bound O(n2s). As c-components become more dense, CI
decays exponentially with the number of bidirected edges.
As an illustrative example, please refer to Fig. F.3.1 and the
discussion on Case 1 in Appendix F.3.

6 Conclusions
In this paper, we introduced a new conditional independence
property for causal models with unobserved confounders,
namely, the c-component local Markov property (C-LMP ,
Def. 5). Given a DAG G, C-LMP identifies a small subset
of conditional independence constraints (CIs) that together
imply all other CIs encoded in G. We showed that C-LMP
is equivalent to the global Markov property (Thm. 1), and
that each CI that C-LMP invokes can be generated from a
unique ancestral c-component (Thm. 2). Building on this
foundation, we developed the first algorithm LISTCI (Alg. 1)
capable of listing all CIs invoked by C-LMP in polynomial
delay (Thm. 3). We hope our work will help researchers test
their causal assumptions using observational data prior to
inference.
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A Background and Previous Work
A.1 Background
In the appendix, for some integer k ≥ 0, we use [k] to denote
the set {1, 2, . . . , k} (with [0] = ∅).

Graph preliminaries. Let X be a set of variables in a DAG
G over variables V. We define four kinship relations:

1. Parents of X, denoted Pa(X): Pa(X) = {Y ∈ V |
Y → X for some X ∈ X} ∪X.

2. Ancestors of X, denoted An(X): An(X) = {Y ∈
V | there is a directed path from Y to X for some X ∈
X} ∪X.

3. Descendants of X, denoted De(X): De(X) = {Y ∈
V | there is a directed path from X to Y for some X ∈
X} ∪X

4. Non-descendants of X, denoted Nd(X): V \ De(X).
Note that Nd(X) does not include X.

Readers may be familiar with spouses of a variable X as
variables Y such that X and Y are both the parent of some
W . We use a different sense of spouse consistent with (Pearl
2000; Richardson 2003), defined in Section 2.

The ordered local Markov property. We define the or-
dered local Markov property (Richardson 2003) for semi-
Markovian causal DAGs and its basic components below.
Definition A.1.1. (Markov Blanket (MB)) (Richardson 2003)
Given a causal graph G and a consistent ordering V≺, let
X be a variable in V≺ and S an ancestral set in G such that
X ∈ S ⊆ V≤X . Then, the Markov blanket of X with respect
to the induced subgraph GS, denoted mb(X,S), is defined as
mb(X,S) = Pa(C(X)GS

)GS
\ {X}.

Definition A.1.2. (Maximal Ancestral Set (MAS)) (Richard-
son 2003) Given a causal graph G and a consistent ordering
V≺, let X be a variable in V≺ and S an ancestral set in
G such that X ∈ S ⊆ V≤X . Then, S is said to be max-
imal with respect to the Markov blanket mb(X,S) if, for
any ancestral set S′ such that X ∈ S ⊆ S′ ⊆ V≤X and
mb(X,S) = mb(X,S′), we have S = S′.

We state Richardson’s ordered local Markov property
(with quantification MASs instead of all ancestral sets
(Richardson 2003, Section 3.1)).
Definition A.1.3. (The Ordered Local Markov Property
(LMP,≺)) (Richardson 2003) A probability distribution P (v)
over variables V is said to satisfy the ordered local Markov
property for G with respect to the consistent ordering V≺ if,
for any variable X and ancestral set S such that X ∈ S ⊆
V≤X and S is maximal with respect to mb(X,S),

X ⊥⊥ S \ (mb(X,S) ∪ {X}) | mb(X,S) in P (v).

Finally, we introduce the following collections to under-
stand the web of ancestral sets, MBs, and MASs.
Definition A.1.4. Given a causal graph G, a consistent order-
ing V≺, and a variable X ∈ V≺, define three collections:
SX = {X ∈ S ⊆ V≤X | S is ancestral },
ZX = {Z | Z = mb(X,S) for some S ∈ SX}, and

S+X = {S+ ∈ SX | S+ is maximal w.r.t. mb
(
X,S+

)
}.

■ Example A.1.1. Consider H in G2 (Fig. 1b). We
have a c-component C(H)G2 = {C,D,H}. The an-
cestral set S = {A,B,C,D,H} induces mb(H,S) =
{B,C,D}. The MAS with respect to this MB is S+ =
{A,B,C,D,E, F,H}, resulting in the CI H ⊥⊥{A,E, F} |
{B,C,D} invoked by (LMP,≺).

It is known that GMP and (LMP,≺) are equivalent: for a
causal graph G and consistent ordering V≺, a probability
distribution satisfies the global Markov property for G if
and only if it satisfies the local Markov property for G with
respect to V≺ (Richardson 2003, Thm. 2, Section 3.1).

The following lemma provides a (poly-time) test for
whether a given set is maximal with respect to the MB that it
induces.
Lemma A.1.1. (Testing Maximality of Ancestral Set)
(Richardson 2003, Lemma. 5) Given a causal graph G and
a consistent ordering V≺, let X be a variable in V≺. An
ancestral set S ∈ SX is maximal with respect to the Markov
blanket mb(X,S) if and only if:

S = V≤X \De(h(X,S))G
where

h(X,S) = Sp(C(X)GS
)G \ (mb(X,S) ∪ {X}).



A note on Markov blankets. We offer some clarifica-
tion on the term ‘Markov blanket’ as used in this paper
(Def. A.1.1), introduced by (Richardson 2003). The more
widely known concept of a Markov blanket is due to (Pearl
1988, Def. 3.12). Given a set of variables V and a variable
X ∈ V, a Pearlian Markov blanket (abbreviated as PMB) is
a set of variables Z ⊆ V \ {X} such that X ⊥⊥V \ ({X} ∪
Z) | Z. Returning to Fig. 1b, the variable H has a PMB
Z1 = {B,C,D, F} since H ⊥⊥ {A,E} | {B,C,D, F}.
Z1 is not an MB (per Def. A.1.1). H has another PMB
Z2 = {B,C,D} since H ⊥⊥ {A,E, F} | {B,C,D}. Z2

is also, coincidentally, an MB, though not all MBs are PMBs.
The key differences between MBs and PMBs are twofold:

1. In the definition of an MB, we choose an ancestral set
S ⊆ V≤X containing X , and require that X⊥⊥S\({X}∪
mb(X,S)) | mb(X,S) holds; the MB separates X from
all other variables in S but not necessarily those in V \X.
The PMB must separate X from all other variables in V.

2. A given ancestral set S induces exactly one MB for a
variable X . However, there may be multiple PMBs for X .
An MB is more akin to the notion of a Markov boundary
(Pearl 1988, Def. 3.12)5, in the sense that it is ‘mini-
mal’; removing any variable Y from the MB mb(X,S)
no longer guarantees the independence X ⊥⊥ S \ ({X} ∪
(mb(X,S) \ {Y })) | mb(X,S) \ {Y }.

MBs, therefore, are closely related to PMBs but with addi-
tional features needed to define and ensure that (LMP, ≺) is
equivalent to GMP.

A.2 Related Work
In this section, we expand on the Markov properties and
algorithms to enumerate them summarised in Table A.2.1.

For model testing, a Markov property which invokes only
a polynomial number of CI tests is ideal. However, currently
known poly-size properties assume either 1) there is no latent
confounding between variables, or 2) the given causal DAG
does not contain any directed mixed cycles, or 3) the obser-
vational distribution satisfies certain additional constraints
(Kang and Tian 2009). Intuitively, a directed mixed cycle
is a cycle formed by walking through arrows in one direc-
tion. For instance, in the causal DAG G2 (Fig. 1b), a path
C → D → H ↔ C is a directed mixed cycle. Directed
mixed cycles are commonly found in semi-Markovian DAGs
– even in the basic bow pattern, in which a variable X is a
cause of Y and X,Y have a latent confounder (Pearl 2000).
There is no known poly-sized Markov property for the gen-
eral setting.

There are two known Markov properties for Markovian
causal DAGs.

1. LMP: The local Markov property (Pearl 1988; Lauritzen
et al. 1990; Lauritzen 1996). LMP specifies a linear num-
ber of CIs in total: one for each variable X , stating that X
is conditionally independent of its non-descendants given
its parents.

5A Markov boundary is a minimal (Pearlian) Markov blanket,
such that any strict subset of the Markov boundary no longer sepa-
rates the variable from all other variables in the graph.

Coverage Scalability

Property Latents Any Prob.
Distr.

Poly-size
CIs Poly-Delay

LMP ✗ ✓ ✓ ✓

PMP ✗ ▲ ✓ ✓

RLMP ▲ ▲ ✓ ✓

(RLMP,≺) ▲ ▲ ✓ ✓

PMP-C ▲ ▲ ✓ ✓

PMP-RS ▲ ▲ ✓ ✓

S-Markov ✓ ✓ ✗ ✗

(LMP,≺) ✓ ✓ ✗ ✗

C-LMP (ours) ✓ ✓ ✗ ✓

Table A.2.1: Summary of properties and algorithms to enumerate
CIs invoked by such properties. The first column denotes if the
property applies to graphs with unobserved confounders; the second,
if it applies to arbitrary observational distributions; the third, if it
invokes a polynomial number of CIs; the fourth, if there is a poly-
delay algorithm to list its invoked CIs. ✓ denotes an addressed area.
✗ denotes an unaddressed area. ▲denotes that DAGs may contain
unobserved variables but not directed mixed cycles (Kang and Tian
2009), or the input is a MAG, a tranformation of a DAG (Richardson
and Spirtes 2002). ▲denotes that further assumptions must be made
on the probability distribution.

2. PMP: The pairwise Markov property (Pearl and Meshkat
1999). For a graph with n variables, PMP invokes O(n2)
CIs: more specifically, one CI for each pair of non-
adjacent variables. PMP assumes that the given proba-
bility distribution is a compositional graphoid: that is,
it additionally satisfies the intersection and composition
axioms.

The intersection and composition axioms do not hold in
arbitrary distributions. The intersection axioms holds, for
example, in distributions which have full support (P (v) > 0
for all v), e.g., a multivariate Gaussian. Composition holds
in multivariate Gaussians and in probability distributions that
are faithful to some DAG.

The following are known Markov properties for semi-
Markovian causal DAGs.

1. RLMP: The reduced local Markov property (Kang and
Tian 2009). RLMP invokes a linear number of CIs in total,
one for each variable. RLMP states that a variable is inde-
pendent of the variables that are neither its descendants
nor the descendants of its spouses, conditioning on its
parents. The property assumes that the given probability
distribution satisfies the composition axiom and the DAG
has no directed mixed cycles.

2. (RLMP,≺): The ordered reduced local Markov prop-
erty (Kang and Tian 2009). Given a specific order-
ing of variables called a c-ordering (Kang and Tian
2009), (RLMP,≺) invokes a linear number of CIs in total.
(RLMP,≺) states that each variable is independent of its
predecessors (excluding its spouses) in a c-ordering, given



its parents. The property assumes that the given probabil-
ity distribution satisfies the composition axiom and the
DAG has no directed mixed cycles.

3. PMP-C: The pairwise Markov property (Kang and Tian
2009). Given a c-ordering, PMP-C invokes O(n2) many
CIs: more specifically, one CI for each pair of non-
adjacent variables. PMP-C assumes that the given proba-
bility distribution satisfies the composition axiom and the
DAG has no directed mixed cycles.

4. PMP-RS: The pairwise Markov property given by
(Richardson and Spirtes 2002). PMP-RS invokes O(n2)
many CIs, one for each pair of non-adjacent variables,
for a given maximal ancestral graph (MAG). A semi-
Markovian DAG can be transformed into a MAG which
encodes exactly the same CIs. It thus suffices to test CIs in
the resultant MAG (Shipley and Douma 2021). However,
the equivalence between this pairwise Markov property
and the global Markov property has only been proved for
probability distributions that are compositional graphoids
(Lauritzen and Sadeghi 2018).

5. S-Markov: The S-Markov property (Kang and Tian 2009).
S-Markov relaxes the assumption of the given graph con-
taining no directed mixed cycles. Still, S-Markov assumes
that the observational distribution satisfies the composi-
tion axiom. For each variables in the graph that can be
c-ordered, S-Markov invokes a linear number of CIs. How-
ever, for variables that are not c-ordered, S-Markov relies
on the ordered local Markov property (LMP,≺), which, as
discussed, is exponential-sized.

CIs are the only type of constraint that Markovian
DAGs impose on the observational distribution. In the non-
Markovian case, however, DAGs may encode more complex
equality and inequality constraints such as Verma constraints
(Verma and Pearl 1990). While such constraints are outside
the scope of this work, there are algorithms that list these
constraints in addition to CIs. However, these algorithms do
not run in poly-delay.

B C-LMP and the Ordered Local Markov
Property

(LMP, ≺) is a well-known Markov property that applies to
arbitrary observational distributions and causal graphs with
unobserved confounders. In this section, we first explain
how naively following the definition of (LMP,≺) can take
exponential time to output just one CI. Next, we characterize
(LMP, ≺) in more depth and show how ACs (Def. 4) can be
used to compute the CIs that (LMP, ≺) invokes.

B.1 Brute-Force Listing of CIs Invoked by
(LMP,≺)

By definition, we can list the CIs invoked by (LMP,≺)
(Def. A.1.3) by enumerating over MASs. However, it is un-
clear how to enumerate over MASs. Each MAS is defined
relative to an MB, and each MB is defined relative to an
ancestral set. Then, an immediate approach is to iterate over
all ancestral sets S, verifying if S is maximal with respect to
mb(X,S) before we output its corresponding CI constraint.

Algorithm B.1.1: LISTCIBF (G,V≺)

1: Input: G a causal diagram; V≺ an ordering consistent
with G.

2: Output: Listing CIs invoked by (LMP,≺) for G with
respect to V≺.

3: for each X ∈ V≺ do
4: for each ancestral set S such that X ∈ S ⊆ V≤X do
5: if S is maximal with respect to mb(X,S)6 then
6: Output X⊥⊥S\(mb(X,S)∪{X})|mb(X,S)

We implement this approach in the algorithm LISTCIBF
(Alg. B.1.1).
■ Example B.1.1. Consider the DAG Ge1 (Fig. B.2.1a)
with consistent ordering V≺ = {A1, A2, A3, B1, B2, B3}.
LISTCIBF(Ge1,V≺) outputs five CIs invoked by (LMP,≺):
A2 ⊥⊥ {A1}, A3 ⊥⊥ {A1, A2}, B1 ⊥⊥ {A1, A2, A3}, B2 ⊥⊥
{A1, A2, A3, B2}, and B3⊥⊥{A1, A2, B1, B2} | {A3}.

In Ex. B.1.1, given X = B3, LISTCIBF(Ge1,V≺) iterates
over 24 different ancestral sets S with B3 ∈ S ⊆ V≤B3 , all
of which produce the same mb(B3,S) = {A3}. However,
only S+ = V≤B3 is maximal with respect to this MB, result-
ing in the CI: B3 ⊥⊥ {A1, A2, B1, B2} | {A3}. LISTCIBF
goes over 24 different ancestral sets to output this CI. Next,
we generalize this example to show that LISTCIBF may iter-
ate over exponentially many ancestral sets (with respect to
the number of variables in G) that produce the same MB.
■ Example B.1.2. In Ge2 (Fig. B.2.1b) with 2n nodes, there
are 2n−1+2n−2−1 ancestral sets and n of them are maximal.

In other words, iterating over all ancestral sets naively is
potentially sub-optimal.

In the following lemma, we make a key observation: while
there may be many ancestral sets producing the same MB
(so that |SX | > |ZX |), exactly one ancestral set is maximal
with respect to this MB. As a result, LISTCIBF may take
exponential time to output just one new CI.
Lemma B.1.1 (One-to-one Correspondence betweenZX and
S+X ). Given a causal graph G and a consistent ordering
V≺, let X be a variable in V≺. There is a bijection f :
ZX → S+X given by f(Z) = S+ where S+ ∈ S+X is an
ancestral set maximal with respect to Z ∈ ZX . The inverse
of f , g : S+X → ZX , is given by g(S+) = mb(X,S+).

■ Example B.1.3. Continuing Ex. B.1.1. Given a variable
B3, there exists only one MAS V≤B3 with respect to the MB
Z = {A3} of B3. We have ZB3

= {{A3}} and S+B3
=

{V≤B3}. V≤B3 maps uniquely to {A3}, and vice versa.

B.2 Computing MBs and MASs using ACs
Listing CIs invoked by (LMP, ≺) is challenging due to the
many-to-one mapping from ancestral sets to CIs. Minimally,
we want to be able to list these CIs without brute-force iter-
ation. Fundamental to our solution is the fact that multiple

6A poly-time test for whether an ancestral set S is maximal with
respect to mb(X,S) is shown in Lemma A.1.1.
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Figure B.2.1: Examples showing that a brute-force approach
(LISTCIBF) may take exponential time to output one CI
invoked by (LMP,≺).

ancestral sets induce the same CI only because they induce
the same AC (Def. 4).

Observe that exponentially many ancestral sets may induce
the same AC. For instance, in Ge1 (Fig. B.2.1a) with X = B3,
24 different ancestral sets S ∈ SB3

induce the same AC,
C(B3)GS

= {A3, B3}.
We show that all ancestral sets inducing the same MB and

MAS must induce the same AC.
Proposition B.2.1 (Equality of MBs Implies Equality of
ACs). Given a causal graph G and a consistent ordering
V≺, for any variable X ∈ V≺ and any ancestral sets
S1,S2 ∈ SX , if mb(X,S1) = mb(X,S2), then C(X)GS1

=

C(X)GS2
.

Moreover, the converse is also true: all ancestral sets in-
ducing the same AC must induce the same MB and MAS. In
particular, for a variable X , given C = C(X)GS

for some an-
cestral set S, we can compute Z = mb(X,S) and the MAS
S+ relative to Z in poly-time without using S. The following
results show how MB and MAS can be computed from AC.
Proposition B.2.2 (Construction of MB from AC). Given
a causal graph G and a consistent ordering V≺, let X be a
variable in V≺. Fix an ancestral c-component C ∈ ACX .
For any ancestral set S ∈ SX such that C(X)GS

= C, we
have mb(X,S) = Pa(C) \ {X}.
Proposition B.2.3 (Construction of MAS from AC). Given
a causal graph G and a consistent ordering V≺, let X be
a variable V≺. Fix an ancestral c-component C ∈ ACX .
For any ancestral set S ∈ SX such that C(X)GS

= C, the
unique ancestral set S+ ∈ S+X maximal with respect to
the Markov blanket mb(X,S) is given by S+ = V≤X \
De(Sp(C) \ Pa(C)).
■ Example B.2.1. Consider the DAG Ge1 (Fig. B.2.1a) with
consistent ordering V≺ = {A1, A2, A3, B1, B2, B3}. Given
a variable B3, C = {A3, B3} is an AC relative to B3. We
compute the MB Z from C as follows: Pa({A3, B3}) \
{B3} = {A3} = Z. For all ancestral sets S ∈ SB3

, we
have mb(B3,S) = Pa(C(B3)GS

)GS
\ {B3} = {A3} =

Z. The MAS S+ relative to Z is given by S+ = V≤B3 \
De(Sp({A3, B3}) \ Pa({A3, B3})) = V≤B3 \ De(∅) =
V≤B3 = S+.

These results, in part, motivate our definition of a local
Markov property via ancestral c-components i.e., C-LMP
(Def. 5). In fact, we can show the following equivalence
between C-LMP and (LMP,≺).
Theorem B.2.1 (Correspondence between C-LMP and
(LMP,≺)). Let G be a causal graph and V≺ a consistent

ordering. The c-component local Markov property and the
ordered local Markov property (Richardson 2003) for G with
respect to V≺ induce an identical set of conditional indepen-
dence relations implied by G over V.

Proof. Given a causal graph G and a consistent ordering V≺,
let LR denote the set of CIs implied by the ordered local
Markov property for G with respect to V≺, and LC the set of
CIs implied by the c-component local Markov property for G
with respect to V≺. We show that LR = LC .

1. (LR ⊆ LC) Consider a CI statement in LR of the form

X ⊥⊥ S+ \ (mb
(
X,S+

)
∪ {X}) | mb

(
X,S+

)
for some variable X ∈ V≺ and an ancestral set S+ ∈
S+X maximal with respect to mb(X,S+). We show that
the same CI statement is also in LC .
Let C = C(X)GS+ . Since S+ is ancestral, C is an AC
relative to X . By Def. 5, the following CI is in LC .

X ⊥⊥ S+′
\ Pa(C) | (Pa(C) \ {X})

where

S+′
= V≤X \De(Sp(C) \ Pa(C))

By Prop. B.2.2, mb(X,S+) = Pa(C) \ {X}. By
Prop. B.2.3, S+ = S+′

. Therefore, the two CI statements
are identical, and the given CI from LR is also in LC .

2. (LC ⊆ LR) Consider a CI statement in LC of the form

X ⊥⊥ S+ \ Pa(C) | Pa(C) \ {X}

where

S+ = V≤X \De(Sp(C) \ Pa(C))

for some variable X ∈ V≺ and AC C ∈ ACX . By
Def. 4, there exists an ancestral set S ∈ SX such that C =
C(X)GS

. By Prop. B.2.2, mb(X,S) = Pa(C) \ {X}. By
Prop. B.2.3, S+ is the unique ancestral set maximal with
respect to mb(X,S). By Def. A.1.3, the following CI is
in LR

X ⊥⊥ S+ \ (mb
(
X,S+

)
∪ {X}) | mb

(
X,S+

)
Therefore, the two CI statements are identical, and the
given CI from LC is also in LR.

The equivalence between C-LMP and GMP (Thm. 1) can
also be proved as a corollary of the above Thm. B.2.1 and the
equivalence between (LMP,≺) and GMP (Richardson 2003,
Thm. 2, Section 3.1).

B.3 Uniqueness Property of ACs
Recall that in (LMP, ≺), multiple ancestral sets can induce
the same MB. Here, we show this can be remedied using
ACs: each MB can be computed from exactly one AC.



Lemma B.3.1 (One-to-one Correspondence between ACX
and ZX ). Let G be a causal graph, V≺ a consistent or-
dering, and X a variable in V≺. Then, there is a bijection
f : ACX → ZX given by f(C) = Pa(C) \ {X} with
C ∈ ACX . The inverse of f , g : ZX → ACX , is given by
g(Z) = C(X)GS

where S is an arbitrary ancestral set in SX
such that Z = mb(X,S).

Both Lemma B.1.1 and Lemma B.3.1 imply a one-to-one
correspondence between ACs and MASs.

Corollary B.3.1 (One-to-one Correspondence betweenACX
and S+X ). Let G be a causal graph, V≺ a consistent
ordering, and X a variable in V≺. There is a bijection
f : ACX → S+X .

Fig. B.4.1 provides an overview of the relationships among
the sets of ancestral sets, ACs, MBs, and MASs. A core im-
plication is that each CI invoked by (LMP,≺) can be derived
from exactly one AC, which we exploit in C-LMP (Def. 5).

B.4 Proofs
We present proofs of the results in Sections B.2 and B.3. We
first prove some technical propositions.

Proposition B.4.1 (AC in Union of Subgraphs). Given
a causal graph G over a set of variables V, for any sub-
sets S1,S2 ⊆ V and a variable X ∈ V, if C(X)GS1

=

C(X)GS2
= C then C(X)GS1∪S2

= C.

Proof. Since S1 ⊆ S1 ∪ S2, we have C ⊆ C(X)GS1∪S2
. To

show the other direction, for any variable U ∈ C(X)GS1∪S2
\

{X}, let π = {X ↔ V1, V1 ↔ V2, . . . , Vk−1 ↔ Vk, Vk ↔
Vk+1 = U} be the bidirected path from X to U in GS1∪S2

(for some k ≥ 0). For each i ∈ [k+1], we have Vi ∈ S1∪S2.
We prove by induction on the index i ∈ [k + 1] that Vi ∈ C
for each i ∈ [k + 1].

Base case. If V1 ∈ S1then X ↔ V1 implies V1 ∈
C(X)GS1

= C. Otherwise, V1 ∈ S2 implies V1 ∈
C(X)GS2

= C.
Inductive hypothesis. If k ≥ 1, assume for some i ∈ [k]

we have Vi ∈ C = C(X)GS1
= C(X)GS2

.
Inductive step. Then, either Vi+1 ∈ S1 or Vi+1 ∈ S2. If

Vi+1 ∈ S1, then Vi ∈ C(X)GS1
(by the induction hypoth-

esis) and Vi ↔ Vi+1 implies Vi+1 ∈ C(X)GS1
. Otherwise,

Vi+1 ∈ S2 and Vi ∈ C(X)GS2
(by the induction hypothe-

sis) Vi ↔ Vi+1 implies Vi+1 ∈ C(X)GS2
. By induction, it

follows that U = Vk+1 ∈ C.

Proof of Prop. B.2.1. Consider S1,S2 ∈ SX . If
mb(X,S1) = mb(X,S2), then mb(X,S1) ⊆ S2 and
mb(X,S2) ⊆ S1 since mb(X,S1) ⊆ S1, mb(X,S2) ⊆ S2.
This implies C(X)GS1

⊆ mb(X,S1) ∪ {X} ⊆ S2

and C(X)GS2
⊆ mb(X,S2) ∪ {X} ⊆ S1. How-

ever, C(X)GS1
⊆ S2 =⇒ C(X)GS1

⊆ C(X)GS2

and similarly, C(X)GS2
⊆ C(X)GS1

. Therefore,
C(X)GS1

= C(X)GSS
.

Proposition B.4.2 (MB in Union of Subgraphs). Given
a causal graph G and a consistent ordering V≺, for any

Figure B.4.1: An overview of the relationships among ances-
tral sets, ACs, MBs, MASs. Exponentially many ancestral
sets may map to one AC, MB, or MAS. On the other hand,
there is a one-to-one-correspondence among ACs, MBs and
MASs.

variable X ∈ V and any ancestral sets S1,S2 ∈ SX , if
mb(X,S1) = mb(X,S2) = Z, then mb(X,S1 ∪ S2) = Z.

Proof. Consider S1,S2 ∈ SX . If mb(X,S1) = mb(X,S2),
then by Prop. B.2.1, we have C(X)GS1

= C(X)GS2
. Since

S1,S2 are ancestral, we have An(S1 ∪ S2)G = An(S1)G ∪
An(S2)G = S1 ∪S2, hence S1 ∪S2 is also ancestral. We get

mb(X,S1 ∪ S2) = Pa
(
C(X)GS1∪S2

)
GS1∪S2

\ {X} (5)

= Pa
(
C(X)GS1

)
GS1∪S2

\ {X}
(By Prop. B.4.1 since C(X)GS1

= C(X)GS2
)

= Pa
(
C(X)GS1

)
G
V≤X

\ {X}
(S1 ∪ S2 ancestral)

= Pa
(
C(X)GS1

)
GS1
\ {X}

(S1 ancestral)
= mb(X,S1) (6)

We now move to our main results in Sections B.2. and B.3.

Proof of Lemma B.1.1. First, we show the mapping f is
well-defined. Given Z ∈ ZX , there exists an ancestral
set S+ ∈ S+X maximal with respect to Z. It remains to
show that there is exactly one such S+. Let S1,S2 ∈ S+X

be ancestral sets maximal with respect to Z. The equality
mb(X,S1) = mb(X,S2) = Z implies mb(X,S1 ∪ S2) =
Z (by Prop. B.4.2). Therefore, S1 ⊆ S1 ∪ S2 and the maxi-
mality of S1 implies S1 = S1 ∪ S2 and S2 ⊆ S1. Similarly,
S1 ⊆ S2. Therefore, S1 = S2.

Finally, g is well-defined. f(g(S+)) = f(mb(X,S+)) =
S+, and g(f(Z)) = Z since f(Z) = S+ is maximal with
respect to Z if and only if mb(X,S+) = Z. Since f has a
two-sided inverse g, f is bijective.

Proof of Prop. B.2.2. For any ancestral set S ∈ SX with



C(X)GS
= C, we have

mb(X,S) = Pa(C(X)GS
)GS
\{X} (7)

= Pa(C)GS
\{X} (By definition of S)

= Pa(C)\{X} (S is ancestral and C ⊆ S)

Proof of Prop. B.2.3. For any ancestral set S ∈ SX
with C(X)GS

= C, let S+ ∈ S+X be an ances-
tral set maximal with respect to mb(X,S). Note that
mb(X,S) = mb(X,S+) by definition. By Prop. B.2.1, we
have C(X)GS+ = C(X)GS

= C. Then, S+ is maximal with
respect to mb(X,S+) if and only if

S+ = V≤X \De
(
Sp
(
C(X)GS+

)
\ (mb

(
X,S+

)
∪ {X})

)
(Lemma A.1.1)

= V≤X \De
(
Sp(C) \ (mb

(
X,S+

)
∪ {X})

)
(8)

= V≤X \De(Sp(C) \ ((Pa(C) \ {X}) ∪ {X}))
(Prop. B.2.2)

= V≤X \De(Sp(C) \ Pa(C)). (9)

The uniqueness of S+ follows from Lemma B.1.1. Note
that S+ depends only on C, not the particular S such that
C(X)GS

= C.

Proof of Lemma B.3.1. First, we show the mapping f is well-
defined. Given C ∈ ACX , by definition, there exists an
ancestral set S ∈ SX such that C = C(X)GS

. Then, f(C) =
Pa(C) \ {X} = mb(X,S) by Prop. B.2.2, so f(C) ∈ ZX

holds.
Next, we show that f is bijective by exhibiting an inverse

g : ZX → ACX . Given Z ∈ ZX , fix any S ∈ SX such that
Z = mb(X,S) (we know such S exists by the definition of
Z) and let g(Z) = C(X)GS

.
To see that g is well-defined, first note that C(X)GS

∈
ACX since S is an ancestral set by assumption. Second,
we need to show that g(Z) is independent of the particular
choice of S (since multiple ancestral sets can induce the same
MB). Consider S1,S2 ∈ SX such that Z = mb(X,S1) =
mb(X,S2). Let C1 = C(X)GS1

and C2 = C(X)GS2
.

We show that C1 = C2. By Prop. B.2.2, mb(X,S1) =
Pa(C1) \ {X} and mb(X,S2) = Pa(C2) \ {X}. From
the equality mb(X,S1) = mb(X,S2), we have Pa(C1) \
{X} = Pa(C2) \ {X} and hence Pa(C1) = Pa(C2).
Since S1,S2 are ancestral, we have Pa(C1) ⊆ S1, and
Pa(C2) ⊆ S2. With Pa(C1) \ {X} = Pa(C2) \ {X},
we have C(X)GS1

= C1 ⊆ Pa(C1) = Pa(C2) ⊆ S2, im-
plying C(X)GS1

⊆ C(X)GS2
. By a symmetric argument, we

get C(X)GS2
⊆ C(X)GS1

. Therefore, C1 = C2.
Finally, we show that g is a two-sided inverse of f . Given

C ∈ ACX , fix some S ∈ SX such that C = C(X)GS
. Then

g(f(C)) = g(Pa(C) \ {X}) (10)
= g(mb(X,S)) (Prop. B.2.2)
= C(X)GS

(By definition of g)
= C (11)

...

X Z

V1
V2

Vk

Y

Figure B.4.2: A causal graph G with consistent ordering
Z ≺ Y ≺ X ≺ V1 ≺ · · · ≺ Vk, inducing Ω(2n) number of
CIs invoked by C-LMP.

Given Z ∈ ZX , fix some S ∈ SX such that Z = mb(X,S).
Then,

f(g(Z)) = f(C(X)GS
) (12)

= Pa(C(X)GS
) \ {X} (13)

= Pa(C(X)GS
)GS
\ {X}

(S is ancestral and C(X)GS
⊆ S)

= mb(X,S) (14)
= Z (15)

Proof of Cor. B.3.1. The result follows from Lemma B.1.1
and Lemma B.3.1, composing the bijective mappings f1 :
ACX → ZX and f2 : ZX → S+X .

C Proofs
C.1 Section 3 Proofs
Proposition C.1.1. Let G be a causal graph and V≺ a con-
sistent ordering. For any variable X ∈ V≺ and any ancestral
c-component C ∈ ACX relative to X ,

X ⊥d V≤X\(De(Sp(C) \ Pa(C))∪Pa(C)) | Pa(C)\{X}.

Proof. Since⊥d satisfies the composition and decomposition
axioms, it suffices to show that X ⊥d {Y } | Pa(C) \ {X}
for every Y ∈ V≤X \ (De(Sp(C) \ Pa(C)) ∪ Pa(C)).

Take a variable Y ∈ V≤X \ (De(Sp(C) \ Pa(C)) ∪
Pa(C)) and some path π = (X,V1, V2, . . . , Vn, Y ) between
X and Y in G for n ≥ 1 (note that X,Y are non-adjacent
by assumption). Let π′ = (X,V1, . . . , Vk) (with k ≤ n)
denote the longest sub-path of π starting from X , not in-
cluding Y , that contains only bidirected edges. If π′ = ∅,
then V1 ≺ X =⇒ V1 ∈ Pa({X}) ⊆ Pa(C), hence π is
blocked. Otherwise, if for some i ∈ [k], Vi ̸∈ An(C), then
Vi blocks π. If every Vi ∈ An(C), since C is an AC, the
existence of π′ implies Vi ∈ C. Then, consider the subpath
of π from Vk to Y . Note that Vk, Y are non-adjacent since



Y ̸∈ De(Sp(C) \ Pa(C)) ∪ Pa(C). The sub-path has ei-
ther Vk ← Vk+1 ◦ −◦ or Vk → Vk+1 →, both of which
are blocked by Pa(C) \ {X}. Therefore, π is blocked, and
X ⊥d {Y } | Pa(C) \ {X}.

Theorem 1 (Equivalence of C-LMP and GMP). Let G be a
causal graph and V≺ a consistent ordering. A probability
distribution over V satisfies the global Markov property for
G if and only if it satisfies the c-component local Markov
property for G with respect to V≺.

Proof. The proof is similar to that of (Lauritzen et al. 1990,
Prop. 4) and (Richardson 2003, Thm. 2), which is based on
the former.

( =⇒ ) Prop. C.1.1 shows that the CIs invoked by C-
LMP are a subset of those invoked by GMP. Therefore, if a
probability distribution P (v) satisfies the GMP for a given
DAG G, it necessarily satisfies the C-LMP for G (with respect
to any given ordering).

( ⇐= ) Next, we show that if a probability distribution
P (v) satisfies the C-LMP for a given DAG G with respect to
a given ordering, it necessarily satisfies the GMP for G. We
show the other direction by induction on the number of nodes.
Let Ik be the statement that for a graph G on k nodes, if a
distribution P (v) satisfies the C-LMP for G, then it satisfies
the GMP for G. The base case is trivial. Assume for some k
that Ij is true for all j ≤ k. We will show this implies Ik+1.
Fix a graph G with k + 1 nodes, a consistent ordering ≺, and
a distribution P (v) which satisfies the C-LMP for G with
respect to ≺. Consider a d-separation X ⊥d Y | Z in G for
disjoint sets X,Y,Z. We need to show that X ⊥⊥Y | Z in
P (v).

We claim we can assume, without loss of generality,
that X ∪ Y ∪ Z = V. First, we show how we can as-
sume An(X ∪Y ∪ Z) = V. Consider G′ = GAn(X∪Y∪Z),
and let ≺′ be the ordering ≺ but removing variables in
V \ An(X ∪Y ∪ Z). Let A = An(X ∪Y ∪ Z)G , so that
P (a) =

∑
v\a P (v). Since G′ is a subgraph on an ances-

tral set, any AC in G′ is an AC in G, it is easy to see that
if P (v) satisfies the C-LMP for G with respect to ≺, then
P (a) satisfies the C-LMP for G with respect to ≺′. Since
X ⊥d Y | Z in G, and G′ contains no more edges than G,
we also have X ⊥d Y | Z in G′. By the inductive assump-
tion for G′, we have X ⊥⊥ Y | Z in P (a), which implies
X ⊥⊥ Y | Z in P (v). Finally, we can extend X,Y so that
An(X ∪Y ∪ Z) = X ∪Y ∪ Z (and reduce to the original
separation statement using the decomposition axiom). For
any V ∈ An(X ∪Y ∪ Z) \X∪Y ∪Z, either V ⊥d Y | Z
or V ⊥d X | Z. Towards contradiction, assume V has an
active path πx to some node in X and an active path πy to
some node in Y when conditioning on Z. Then, adjoining
π = πx∪πy gives an active path between X and Y unless V
is an inactive collider on this path. However, if V ∈ An(X),
the path V ⇝ X to the descendant node X ∈ X, adjoined
with πy, gives an active path between X and Y unless we
condition on some descendant of V ; the same applies if
V ∈ An(Y); and if V ∈ An(Z), clearly, V is active when
conditioning on Z. We thus arrive at a contradiction.

Now, consider a separation X ⊥d Y | Z in G such that
X ∪ Y ∪ Z = V. We need to show that X ⊥⊥ Y | Z in
P (v). Let V ∗ be the final node in the ordering ≺ so that
V≤V ∗

= V. Since V ∈ X ∪Y ∪ Z, there are three cases to
consider:

1. V ∗ ∈ X.
Since X ⊥d Y | Z in G, we have X \ {V ∗} ⊥d Y | Z in
GV\{V ∗}. Since GV\{V ∗} is ancestral, we apply a similar
argument as in justifying the assumption that X∪Y∪Z =
V to get, by the inductive assumption for G′, that

X \ {V ∗} ⊥⊥Y | Z in P (v).

Let C = C(V ∗)GAn(X∪Z)
. By C-LMP, we have V ∗ ⊥⊥V \

(De(Sp(C) \ Pa(C)) ∪ Pa(C)) | Pa(C) \ {V ∗}.
First, note that Y ∩ Pa(C) = ∅. Towards contradiction,
assume that for some Y ∈ Y, there is a path π : Y ◦ →
V1 ↔ V2 ↔ . . . Vk ↔ Vk+1 = V ∗ such that each Vi ∈
C ⊆ An(X ∪ Z). By induction on i ∈ [k + 1], we show
that π is active when conditioning on Z. For the base
case, clearly, the subpath Y ◦ → V1 of π is active when
conditioned on Z. Assume that, for some i ∈ [k + 1],
the sub-path of π from Y to Vi is active. Consider the
inductive step. If Vi = V ∗, we are done. Otherwise, if
Vi ∈ An(Z), then Vi is active in π when conditioning on
Z. If Vi ∈ An(X), then from the inductive assumption,
there is a path from Y to Vi plus a path Vi ⇝ X ′ to some
X ′ ∈ X which is only blocked if De({Vi})∩Z ̸= ∅. This
again implies that V1 is active in π when conditioning on
Z. In either case, the subpath of π from Y to Vi+1 is
active. This contradicts X ⊥d Y | Z in G. Therefore, we
can conclude Y ∩ Pa(C) = ∅.
Second, note that Y ∩De(Sp(C) \ Pa(C)) = ∅. This is
because Sp(C) \ Pa(C) = ∅. For any U ∈ Sp(C), U ∈
X ∪ Z =⇒ U ∈ C by definition of C. Therefore,
U ∈ Sp(C) \ Pa(C) =⇒ U ∈ Y = V \ X ∪ Z.
However, for such U , there is a path π : U ↔ V1 ↔
V2 ↔ . . . Vk ↔ Vk+1 = V ∗ with each Vi ∈ An(X ∪ Z).
By a similar induction as for the claim Y ∩ Pa(C) = ∅,
we can show that π is active when conditioning on Z,
which contradicts X ⊥d Y | Z.
We return to the CI statement
V ∗⊥⊥V\(De(Sp(C) \ Pa(C))∪Pa(C)) | Pa(C)\{V ∗}.
Since V = X∪Y∪Z by assumption and Y∩Pa(C) =
Y∩De(Sp(C) \ Pa(C)) = ∅, we can simplify this state-
ment to
V ∗⊥⊥Y ∪ ((X ∪ Z) \ (De(Sp(C) \ Pa(C)) ∪ Pa(C)))

| Pa(C) \ {V ∗}.
For any variable W ∈ X ∪ Z, W ∈ De(Sp(C)) im-
plies there is some variable B ∈ Sp(C) ∩ An({W}) ⊆
Sp(C) ∩ An(X ∪ Z), hence B ∈ C. Therefore,
De(Sp(C) \ Pa(C)) = ∅. This further implies

V ∗ ⊥⊥Y ∪ ((X ∪ Z) \ Pa(C)) | Pa(C) \ {V ∗}
By the weak union axiom, we get

V ∗ ⊥⊥Y | (X \ {V ∗}) ∪ Z

Applying the contraction axiom to X \ {V ∗} ⊥⊥Y | Z
and V ∗⊥⊥Y | (X\{V ∗})∪Z gives X⊥⊥Y | Z in P (v).



2. V ∗ ∈ Y. This is similar to the case V ∈ X (switching
X,Y in the proof).

3. V ∗ ∈ Z. Since X ⊥d Y | Z in G, we have X ⊥d Y |
Z\{V ∗} in GV\{V ∗}. Since GV\{V ∗} is a subgraph on an
ancestral set, we apply a similar argument as in justifying
the assumption that X ∪ Y ∪ Z = V to get, by the
inductive assumption for G′, that

X⊥⊥Y | Z \ {V ∗} in P (v).

Let C = C(V ∗)G . By C-LMP, we have V ∗ ⊥⊥ V \
(De(Sp(C) \ Pa(C)) ∪ Pa(C)) | Pa(C) \ {V ∗}.
First, we show that either Pa(C) ∩Y = ∅ or Pa(C) ∩
X = ∅. Assume, toward contradiction, that Pa(C)∩Y ̸=
∅ and Pa(C) ∩ X ̸= ∅. Then, there are variables Y ∈
Y, X ∈ X and a path π : Y ◦ → V1 ↔ V2 ↔ . . . Vk ←
◦Vk+1 = X for some k ≥ 0. Let π′ be a subpath of
π such that one endpoint node of π′ is in X, the other
endpoint node in Y, and all intermediate nodes (if any)
are in Z. It is easy to see π′ must exist since π′ = π if for
each i ∈ [k], we have Vi ∈ Z; otherwise, we can construct
π′ by removing variables from π. Then, π′ is active when
conditioning on Z, which contradicts X ⊥d Y | Z.
Moreover, Sp(C)\Pa(C) = ∅ because C is defined over
V = X ∪ Y ∪ Z. Thus, X ∩ De(Sp(C) \ Pa(C)) =
Y ∩De(Sp(C) \ Pa(C)) = ∅.
Return to the CI statement: V ∗ ⊥⊥ V \
(De(Sp(C) \ Pa(C)) ∪ Pa(C)) | Pa(C) \ {V ∗}.
If Pa(C) ∩ Y = ∅, this simplifies to V ∗ ⊥⊥ Y |
X ∪ (Z \ {V ∗}) by an argument similar to Case (1). The
contraction axiom applied to V ∗ ⊥⊥Y | X ∪ (Z \ {V ∗})
and X⊥⊥Y | Z\{V ∗} gives X∪{V ∗}⊥⊥Y | Z\{V ∗}.
Applying the weak union axiom to this last CI, we
get X ⊥⊥ Y | Z. A similar argument applies if
Pa(C) ∩X = ∅.

Corollary 1 (Equivalence of C-LMP and the Ordered Local
Markov Property). Let G be a causal graph and V≺ a consis-
tent ordering. A probability distribution over V satisfies the
ordered local Markov property for G with respect to V≺ if
and only if it satisfies the c-component local Markov property
for G with respect to V≺.

Proof. By Thm. 1, a probability distribution P (v) over V
satisfies the C-LMP for G with respect to V≺ if and only
if it satisfies the GMP for G. By (Richardson 2003, Thm. 2,
Section 3.1), a probability distribution P (v) over V satisfies
the ordered local Markov property for G with respect to V≺

if and only if it satisfies the GMP for G.

Theorem 2 (Unique AC for each CI Invoked by C-LMP).
Let G be a causal graph, V≺ a consistent ordering, and X a
variable in V≺. For every conditional independence relation
invoked by the c-component local Markov property of the
form X⊥⊥W | Z, there is exactly one ancestral c-component
C ∈ ACX such that W = V≤X\((De(Sp(C) \ Pa(C)))∪
Pa(C)) and Z = Pa(C) \ {X}.

Proof. The result follows from Def. 5, Lemma B.3.1, and
Cor. B.3.1.

Proposition 1 (Number of CIs Invoked by C-LMP). Given a
causal graph G and a consistent ordering V≺, let n and s ≤ n
denote the number of variables and the size of the largest
c-component in G respectively. Then, the c-component local
Markov property for G with respect to V≺ invokes O(n2s)
conditional independencies implied by G over V. Moreover,
there exists a graph G and a consistent ordering V≺ for which
the property induces Ω(2n) conditional independencies.

Proof. By Def. 5, the set of CIs invoked by C-LMP for
a variable X ∈ V≺ is in bijection with the set of ACs,
ACX . Therefore, it suffices to bound |ACX |. Recall that
ACX ⊆ P(C(X)G) (where P(·) denotes the power-set op-
eration). Then, |C(X)G | ≤ s =⇒ |P(C(X)G)| ≤ 2s =⇒
|ACX | ≤ 2s. Total number of CIs k invoked by C-LMP for
all variables is thus k ≤ n2s ∈ O(n2s).

Next, consider the graph G shown in Fig. B.4.2 for which
C-LMP invokes Ω(2n) CIs.

Fix Vi, i ∈ [k]. For each C ⊆ {Vj}j<i, we get an AAC
{Vi, X, Z} ∪C relative to Vi inducing the CI: Vi ⊥⊥ {Y } |
{X,Z} ∪C (The definition of admissibility of AC is given
by Def. 6). There are 2i−1 such CIs for each Vi. Then, the
total number of CIs across all such Vi is

k∑
i=1

2i−1 = 2k−1 − 1 = 2n−4 − 1 ∈ Ω(2n)

Since, for any G, we have that s ≤ n, the upper bound O(n2s)
is thus tight ignoring the linear term in n.

C.2 Section 4 Proofs
Notation. For the proofs in this section, given a causal graph
G defined on a set of variables V, and variables X,Y ∈ V,
we use X ∼ Y to denote an arbitrary path (possibly of length
0, when X = Y ) between X and Y in G; X ⇝ Y to denote
a directed path (possibly of length 0, when X = Y ) from X
to Y in G; and X◦ → Y to denote that there is either an edge
X → Y or X ↔ Y in G.
Proposition C.2.1 (Time Complexity of Computing a C-com-
ponent). Given a causal graph G over a set of variables V
and a variable X ∈ V, the c-component C(X)G containing
X in G is computable in time O(n+m), where n and m are
the numbers of nodes and edges in G respectively.

Proof. Using breadth-first search (BFS), compute the set of
nodes reachable from the starting node X by following only
bidirected edges. This takes time O(n+m), the complexity
of BFS.

Lemma C.2.1 (Correctness of ISADMISSIBLE). Given a
causal graph GV≤X , a variable X , and a set of variables
V≤X , let C be an ancestral c-component relative to X . Then,
ISADMISSIBLE returns True if C is admissible, and False
otherwise. ISADMISSIBLE takes O(n+m) time where n and
m represent the number of nodes and edges in G, respectively.

Proof. For correctness, it immediately follows from Def. 5
and Def. 6.

ISADMISSIBLE runs in O(n+m) time since the construc-
tion of the sets S+ and W takes O(n + m) time for each
set.



1: function ISADMISSIBLE(GV≤X , X,V≤X ,C)
2: Output: True if a given AC C relative to X is ad-

missible; False otherwise.
3: S+ ← V≤X \De(Sp(C) \ Pa(C))
4: W← S+ \ Pa(C)
5: if W ̸= ∅ then
6: return True
7: else
8: return False
9: end function

Figure C.2.1: A function that checks if a given AC is admis-
sible.

Lemma C.2.2 (Existence of a Separator). Given a causal
graph G, let I,R,X,Y be sets of nodes with I ⊆ R and
R∩(X∪Y) = ∅. If there exists a set Z0 separating X and Y
in G such that I ⊆ Z0 ⊆ R, then Z = An(X ∪Y ∪ I)G∩R
is such a set.

Proof. Assume there exists Z0 separating X,Y such that
I ⊆ Z0 ⊆ R. For some X ∈ X, Y ∈ Y, consider
a path π from X to Y in G, consisting of nodes {X =
V0, V1, . . . , Vn, Vn+1 = Y } where Vi, Vi + 1 are adjacent
in G for 0 ≤ i ≤ n. Note that we must have n ≥ 1; other-
wise, X,Y are adjacent and cannot be separated.

If none of the variables Vi, i ∈ [n] is a collider, then each
Vi must be in An({X,Y }). If Vi ̸∈ R for any i ∈ [n], then
Vi ̸∈ Z0 ⊆ R for any i ∈ [n], and hence Z0 does not block
π, which is a contradiction. Therefore, there exists Vi such
that Vi ∈ An(X ∪Y ∪ I)G ∩R = Z and hence Z blocks π.

If some Vi is a collider, let C = {Ci1 , . . . , Cik} ⊆
{V1, . . . , Vn} denote the set of colliders on π such that ij <
ij+1 for 1 ≤ j ≤ k−1. If there is a variable C ∈ C such that
Z∩De({C})G = ∅ (in other words, Z does not contain C or
any of its descendants), then Z blocks π due to the inactive
collider C. Otherwise, consider the case that C ⊆ An(Z)G
i.e. for every C ∈ C, either C is in Z or some descendant
of C is in Z, and hence C is active (when conditioning on
Z. Since Z = An(X ∪Y ∪ I)G ∩R ⊆ An(X ∪Y ∪ I)G ,
we have C ⊆ An(Z)G =⇒ An(C)G ⊆ An(X ∪Y ∪ I)G .
For any Vi in π, either Vi ∈ C or Vi ∈ An({X,Y }) or
Vi ∈ An(C); therefore, {Vi}1:n ⊆ An({X,Y } ∪C)G ⊆
An(X ∪Y ∪ I)G . Hence, π is blocked by Z unless every
Vi ∈ R is a collider; that is, {Vi}1:n ∩ R ⊆ C. Assume
toward contradiction that {Vi}1:n ∩R ⊆ C.

We show, by induction on the index ij , j ∈ [k] of C, that
for every j ∈ [k], there exists a variable X0 ∈ X such
that there is an active X0 ∼ Cik ← ◦Vij+1 path when
conditioning on Z0.

Base case. Consider Ci1 ∈ An(X ∪Y ∪ I)G . The sub-
path of π from X to Ci1 is unblocked by Z0 ⊆ R. This is
because for any node V on this sub-path (excluding X and
Ci1), V ̸∈ C by assumption and {Vi}1:n ∩ R ⊆ C =⇒
V ̸∈ R =⇒ V ̸∈ Z0.

• If Ci1 ∈ An(Y)G , there is a directed path π′ from Ci1
to Y ′ for some Y ′ ∈ Y. The X ∼ Ci1 sub-path of π
(which is unblocked by Z0), adjoined with π′, gives an

active path from X ∈ X to Y ′ ∈ Y. For Z0 to block this
path, it must block π′. Hence, Z0 contains a descendant
of Ci1 and Ci1 is active when conditioning on Z0, giving
an active sub-path of π, X ∼ Vi1−1◦ → Ci1 ← ◦Vi1+1.

• If Ci1 ∈ An(X)G , there is a directed path π′ from Ci1 to
X ′ for some X ′ ∈ X. If Z0 contains a descendant of Ci1 ,
then Ci1 is active when conditioning on Z0. Therefore,
the sub-path of π, X ∼ Vi1−1◦ → Ci1 ← ◦Vi1+1 is
active. If Z0 contains no descendants of Ci1 , then π′ is
unblocked by Z0, giving an active X ′ ⇝Ci1 ← ◦Vi1+1

path.
• If Ci1 ∈ An(I)G , since I ⊆ Z0, we condition on a descen-

dant of Ci1 and Ci1 is active, giving an active sub-path of
π, X ∼ Vi1−1◦ → Ci1 ← ◦Vi1+1.

Inductive assumption. Assume for some j ∈ [k − 1], there
is an active X0 ∼ Cij ← ◦Vij+1 path for some X0 ∈ X.

Inductive step. We show this implies the existence of an
active X ′

0 ∼ Cij+1
← ◦Vij+1+1 path for some X ′

0 ∈ X.
Note that the sub-path of π from Cij to Cij+1

is unblocked
by Z0. This is because for any node V on this sub-path
(excluding Cj and Cj+1), V ̸∈ C by assumption and
{Vi}1:n ∩R ⊆ C =⇒ V ̸∈ R =⇒ V ̸∈ Z0.

• If Cij+1 ∈ An(Y)G , there is a directed path π′ : Cij+1 ⇝
Y ′ for some Y ′ ∈ Y. By the inductive assumption, we
get an active path X0 ∼ Cij ← ◦Vij+1◦ → Cij+1

⇝
Y ′. For Z0 to block this path, it must block π′. Hence,
Z0 contains a descendant of Cij+1

and Cij+1
is active

when conditioning on Z0, giving an active X0 ∼ Cij ←
◦Vij+1 ∼ Vij+1−1◦ → Cij+1

← ◦Vij+1+1 path.
• If Cij+1

∈ An(X)G , there is a directed path π′ from Cij+1

to X ′ for some X ′ ∈ X. If Z0 contains a descendant of
Cij+1 , then Cij+1 is active when conditioning on Z0. Us-
ing the inductive assumption, we get an active path X0 ∼
Cij ← ◦Vij+1 ∼ Vij+1−1◦ → Cij+1

← ◦Vij+1+1. If Z0

contains no descendants of Cij+1
, then π′ is unblocked by

Z0, giving an active path X ′ ⇝Cij+1
← ◦Vij+1+1 path.

• If Cij+1
∈ An(I)G , since I ⊆ Z0, we condition on a de-

scendant of Cij+1
and Cij+1

is active. Using the inductive
assumption, we get an active path X0 ∼ Cij ← ◦Vij+1 ∼
Vij+1−1◦ → Cij+1

← ◦Vij+1+1.

By induction, we have an active X0 ∼ Cik ← ◦Vik+1

path for some X0 ∈ X. The Vik+1 ∼ Y sub-path of π is
active when conditioning on Z0. This is because for any
node V on this sub-path (excluding Vik+1 and Y ), V ̸∈ C by
assumption and {Vi}1:n ∩R ⊆ C =⇒ V ̸∈ R =⇒ V ̸∈
Z0. Recall that by assumption, Vik+1 is not a collider. We
thus have an X0 ∼ Y path which is active when conditioning
on Z0. We thus have a contradiction.

Lemma C.2.3 (Correctness of FINDSEPARATOR). Given a
causal graph G, let I,R,X,Y be sets of nodes with I ⊆ R.
FINDSEPARATOR(G,X,Y, I,R) has a non-empty output if
and only if there exists a set Z separating X,Y in G such that
I\(X∪Y) ⊆ Z ⊆ R\(X∪Y). Moreover, any output Z ̸=⊥
satisfies X ⊥G Y | Z and I \ (X∪Y) ⊆ Z ⊆ R \ (X∪Y).
Finally, FINDSEPARATOR runs in time O(n+m), where n
and m are the numbers of nodes and edges respectively in G.



1: function FINDSEPARATOR(G,X,Y, I,R)
2: Output: A set of variables Z d-separating X and Y

in G under the constraint I\(X∪Y) ⊆ Z ⊆ R\(X∪Y)
if such Z exists; ⊥ otherwise.

3: R′ ← R \ (X ∪Y)
4: Z← An(X ∪Y ∪ I)G ∩R′

5: if Z d-separates X,Y in G then
6: return Z
7: else
8: return ⊥
9: end function

Figure C.2.2: A function that finds a separator of a given pair
of sets of variables, if it exists.

Proof. The correctness is immediate from the construction
of FINDSEPARATOR and Lemma C.2.2. For the runtime,
constructing R′ and Z in the algorithm takes time O(n) and
O(n+m) respectively. Verifying whether Z d-separates X
from Y in G or not, as shown in line 5, may be performed
by using the Bayes-Ball algorithm (Shachter 2013) on a
modified graph G′ of G where G′ is constructed as follows:
start from G′ = G, and replace each edge X ↔ Y with
an explicit latent common cause X ← UXY → Y . The
construction of G′ takes O(n+m) time, and the Bayes-Ball
algorithm runs in O(n + m) time. The overall runtime of
FINDSEPARATOR is thus O(n+m).

Since the size of the input graph G is O(n + m), FIND-
SEPARATOR is asymptotically optimal.
Lemma 1 (Correctness of FINDAAC). Given a causal graph
G, a consistent ordering V≺, and a variable X ∈ V≺, let
I,R be ancestral c-components relative to X such that I ⊆
R. FINDAAC(GV≤X , X,V≤X , I,R) outputs an admissible
ancestral c-component C relative to X such that I ⊆ C ⊆ R
if such a C exists, and ⊥ otherwise.

Proof. By assumption, I is an AC relative to X in the desired
range since I ⊆ I ⊆ R. FINDAAC outputs I (at line 4) if
and only if I is admissible. This follows from the correctness
of ISADMISSIBLE (by Lemma C.2.1).

Assume I is not admissible. It remains to show that there
exists an AAC C0 relative to X such that I ⊊ C0 ⊆ R if and
only if there exists a variable D ∈ De(Sp(I) \ Pa(I)) and
a set Z such that Pa(I) \ {X,D} ⊆ Z ⊆ Pa(R) \ {X,D}
and X ⊥G D | Z. Moreover, the output of FINDAAC at line
8 must be an AAC relative to X in the given range.

( =⇒ ) Since I is not admissible, by Def. 6 we have

V≤X \ (Pa(I) ∪De(Sp(I) \ Pa(I))) = ∅ (16)

Since C0 ⊋ I is admissible, by Def. 6 we have

V≤X \ (Pa(C0) ∪De(Sp(C0) \ Pa(C0))) ̸= ∅ (17)

However, I ⊊ C0 =⇒ Pa(I) ⊆ Pa(C0). There-
fore, Eq. (16) and Eq. (17) imply that there exists a vari-
able D ∈ V≤X such that D ∈ De(Sp(I) \ Pa(I)) and
d ̸∈ Pa(C0) ∪ De(Sp(C0) \ Pa(C0)). By the definition
of C-LMP (shown in Def. 5), we have that X ⊥G D |

Pa(C0) \ {X}. Since I ⊆ C0 ⊆ R and D ̸∈ Pa(C0),
we have Pa(I) \ {X,D} ⊆ Pa(C0) \ {X} ⊆ Pa(R) \
{X,D}. Therefore, Z = Pa(C0) \ {X} is a set such that
Pa(I) \ {X,D} ⊆ Z ⊆ Pa(R) \ {X,D} and X ⊥G D | Z.
The correctness of FINDSEPARATOR (Lemma C.2.3) im-
plies that FINDAAC detects the existence of Z and outputs
C = C(X)GAn(I∪Z)

at line 8. In the proof for the reverse
direction, we will show that C thus defined is in fact admissi-
ble.

(⇐= ) Consider some D ∈ De(Sp(I) \ Pa(I)) such that

Z = FINDSEPARATOR(GV≤X , {X}, {D}, Pa(I), Pa(R))

̸=⊥

By the correctness of FINDSEPARATOR (Lemma C.2.3), we
have X ⊥G D | Z. We give a constructive proof of existence
by showing that C = C(X)GAn(I∪Z)

is an AAC relative to X
such that I ⊊ C ⊆ R.

Clearly, C is an AC by construction and I = C(X)GI
⊆ C.

Moreover,

I,Z ⊆ Pa(R) =⇒ I ∪ Z ⊆ Pa(R) (18)
=⇒ An(I ∪ Z) ⊆ An(R) (19)
=⇒ C(X)GAn(I∪Z)

⊆ C(X)GAn(R)
(20)

=⇒ C(X)GAn(I∪Z)
⊆ R (21)

where the last implication follows since R is an AC relative to
X by assumption, implying that R = C(X)GAn(R)

. Moreover,
we claim that C is admissible, i.e.,

S+ = V≤X \ (Pa(C) ∪De(Sp(C) \ Pa(C))) ̸= ∅

We will show that D ̸∈ Pa(C) ∪ De(Sp(C) \ Pa(C)),
hence S+ contains D (and is therefore non-empty). We
know D ∈ V≤X . Assume, towards contradiction, that
D ∈ Pa(C)∪De(Sp(C) \ Pa(C)). Note that I\{X,D} ⊆
Z =⇒ An(I) ⊆ An(Z ∪ {X,D}). Therefore, C ⊆
An(I ∪ Z) ⊆ An(Z ∪ {X,D}). Since X,D are non-
adjacent (because Z separates them), this implies the ex-
istence of a path π of one of the following types:

1. If D ∈ C, then X ↔ V1 · · · ↔ Vn ↔ Vn+1 = D with
n ≥ 1 and each Vi ∈ An(Z ∪ {X,D}) for i ∈ [n+ 1]

2. If D ∈ Pa(C), then X ↔ V1 · · · ↔ Vn ← Vn+1 = D
with n ≥ 1 and each Vi ∈ An(I ∪ Z) for i ∈ [n+ 1]

3. If D ∈ De(Sp(C) \ Pa(C))), then X ↔ V1 ↔ · · · ↔
Vn ↔ Vn+1 = A⇝ D with each Vi ∈ An(Z ∪ {X,D})
for each i ∈ [n+1] with n ≥ 0 and A ∈ Sp(C)\Pa(C).
It is possible that the path A⇝ d has length 0, i.e., A =
D.

We show by induction that there is an active X ∼ Vi ←
◦Vi+1 path for each i ∈ [n] when conditioning on Z.

Base case. We know V1 ∈ An(Z ∪ {X,D}).

• If V1 ∈ An(Z), V1 is active when conditioning on Z,
hence the sub-path X ↔ V1 ← ◦V2 of π is active.

• If V1 ∈ An({D}), then there is a path X ↔ V1 ⇝ D.
Since Z must block this path, we have Z∩De({V1}) ̸= ∅,
hence V1 is active when conditioning on Z and the sub-
path X ↔ V1 ← ◦V2 of π is active.



• If V1 ∈ An({X}), then X ∈ I, V1 ∈ Sp({X}), and
I is an AC implies that V1 ∈ I. Since V1 ̸∈ {X,D},
this implies that V1 ∈ Z. Therefore, V1 is active when
conditioning on Z and the sub-path X ↔ V1 ← ◦V2 of π
is active.

Inductive assumption. Assume, for some i ∈ [n], there is
an active X ∼ Vi ↔ Vi+1 path when conditioning on Z.

Inductive step. We show that there is an active X ∼
Vi+1 ← ◦Vi+2 path when conditioning on Z. We know
Vi+1 ∈ An(Z ∪ {X,D}).

• If Vi+1 ∈ An(Z), Vi+1 is active when conditioning on
Z. Therefore, the inductive assumption gives us an active
path X ∼ Vi ↔ Vi+1 ← ◦Vi+2 when conditioning on Z.

• If Vi+1 ∈ An({D}), then there is a path Vi+1 ⇝ D.
By the inductive assumption, there is an active path
X ∼ Vi ↔ Vi+1 when conditioning on Z. Since Z
must block the path X ∼ Vi ↔ Vi+1 ⇝ D, we have
Z ∩ De({Vi+1}) ̸= ∅, hence Vi+1 is active when condi-
tioning on Z and the path X ∼ Vi ↔ Vi+1 ← ◦Vi+2 is
active.

• If Vi+1 ∈ An({X}), then there is a path X ⇝Vi+1. If
De({Vi+1})∩Z ̸= ∅, then Vi+1 is active when condition-
ing on Z and by the inductive assumption, the path X ∼
Vi ↔ Vi+1 ← ◦Vi+2 is active. If De({Vi+1}) ∩ Z = ∅,
then the path X ⇝Vi+1 ← ◦Vi+2 is active.

Therefore, by induction, there is an active X ∼ Vn ← ◦Vn+1

path when conditioning on Z. If Vn+1 = D, this contradicts
X ⊥G d | Z. Otherwise, if Vn+1 = A⇝ D in Case (3), then
Z must block the path A⇝ D. This implies that A ∈ An(Z);
moreover, A ∈ Sp(C) and C = C(X)GAn(I∪Z)

implies that
A ∈ C, which contradicts the assumption that A ∈ Sp(C) \
Pa(C).

Proposition C.2.2 (Runtime of FINDAAC). Given a causal
graph G, a consistent ordering V≺, and a variable X ∈ V≺,
let I,R be ancestral c-components relative to X such that
I ⊆ R. FINDAAC(GV≤X , X,V≤X , I,R) runs in O(n(n+
m)) time where n and m denote the numbers of nodes and
edges in G respectively.

Proof. A call to the function ISADMISSIBLE in line 3 takes
O(n+m) time (by Lemma C.2.1). FINDAAC computes a
set of variables De(Sp(I) \ Pa(I)) (shown in line 5) only
once, which takes O(n +m) time. There are at most O(n)
iterations of the for loop, within which a call to the function
FINDSEPARATOR (by Lemma C.2.3) and the construction
of a c-component C(X)GAn(I∪Z)

in line 8 (by Prop. C.2.1)
take time O(n+m). Thus, the total runtime of FINDAAC is
O(n(n+m)).

Proposition C.2.3 (Ancestrality of Modified ACs). Given a
causal graph G, a consistent ordering V≺, and a variable
X ∈ V≺, let C be an ancestral c-component relative to X .
For any S ⊆ V≺ such that X ̸∈ De(S), CS = C(X)GC\De(S)

is an ancestral c-component relative to X .

Proof. It suffices to show that CS = C(X)GAn(CS)
. Since

CS ⊆ An(CS) and CS = C(X)GCS
, we have CS ⊆

C(X)GAn(CS)
. To show CS ⊇ C(X)GAn(CS)

, we make use
of two facts. Since CS = C(X)GC\De(S)

, we have CS ∩
De(S) = ∅. This further implies that An(CS) ∩De(S) = ∅
(if some W ∈ An(CS)∩De(S), then ∃S ∈ S such that S ∈
An({W}) ⊆ An(CS) contradicts CS ∩De(S) = ∅). There-
fore, we have C(X)GAn(CS\De(S))\De(S)

= C(X)GAn(CS)
; Let

A = C(X)GAn(CS\De(S))\De(S)
. We now show that CS ⊇ A.

Consider some variable W ∈ A. Then, there exists a variable
Y ∈ CS \De(S) such that W ∈ An({Y }). Moreover, since
Y ∈ CS ⊆ A, we either have W = Y (and hence W ∈ CS)
or a path W = Vk ↔ · · · ↔ V1 ↔ Y for some k ≥ 1 with
Vi ∈ An(CS \De(S)) \ De(S) for each i ∈ [k] (by the
construction of A). We show by induction that Vi ∈ CS for
each i ∈ [k].

Base case. k = 1. Since V1 ∈ An(CS \De(S)) \De(S),
we have {V1} ∩ De(S) = ∅. Moreover, V1 ∈ An(CS) ⊆
An(C) (since CS ⊆ C). Furthermore, Y ∈ CS ⊆ C. So,
Y ∈ C, V1 ∈ An(C), V1 ↔ Y , and C is an AC by assump-
tion implies that V1 ∈ C. Therefore, V1 ∈ C \De(S). Since
Y ∈ CS = C(X)GC\De(S)

, Y ↔ V1, and V1 ∈ C \ De(S),
we get V1 ∈ CS.

Inductive assumption. Assume, for some i ∈ [k − 1], we
have Vi ∈ CS.

Inductive step. By similar reasoning as in the base case,
we show that Vi+1 ∈ CS. Since Vi+1 ∈ An(CS \De(S)) \
De(S), we have {Vi+1} ∩ De(S) = ∅. Moreover, Vi+1 ∈
An(CS) ⊆ An(C). Furthermore, by the inductive assump-
tion, Vi ∈ CS ⊆ C. So, Vi ∈ C, Vi+1 ∈ An(C),
Vi+1 ↔ Vi, and C being an AC implies that Vi+1 ∈ C.
Therefore, Vi+1 ∈ C \ De(S). Since Vi ∈ CS, Vi+1 ↔ Vi,
and Vi+1 ∈ C \De(S), we get Vi+1 ∈ CS.

Therefore, W ∈ CS and since W was chosen arbitrarily
from A, we have A ⊆ CS.

Lemma 2 (Correctness of LISTCIX). LISTCIX
(GV≤X , X,V≤X , I,R) enumerates all and only all
non-vacuous conditional independence relations invoked
by the c-component local Markov property associated with
X and admissible ancestral c-components C relative to X
where I ⊆ C ⊆ R. Further, LISTCIX runs in O(n2(n+m))
delay where n and m represent the number of nodes and
edges in G, respectively.

Proof. We show the correctness of LISTCIX and the running
time that LISTCIX runs in O(n2(n+m)) delay.

• Correctness: We prove correctness by structural induc-
tion on the binary recursion tree for LISTCIX, rooted
at N (I,R). We claim that LISTCIX called at a node
N (I′,R′) enumerates all and only non-vacuous CIs of X
invoked by C-LMP (Def. 5) such that the conditioning set
is of the form Pa(C) \ {X} for some AC C such that
I′ ⊆ C ⊆ R′.



Base case. Consider a leaf node N (I′,R′) 7. Let

C := FINDAAC(GV≤X , X,V≤X , I′,R′).

Since we are at a leaf node, we either have
1. C =⊥, in which case LISTCIX outputs nothing at
N (I′,R′). By the correctness of FINDAAC (Lemma
1) there are no CIs of X invoked by C-LMP such that
the conditioning set is of the form Pa(C) \ {X} for
some AC C such that I′ ⊆ C ⊆ R′. Therefore, the
output is correct.

2. I′ = R′ and hence C = I′. Similarly, by the cor-
rectness of FINDAAC and the definition of C-LMP,
LISTCIX outputs the unique non-vacuous CI of the
desired form at N (I′,R′).

Note that these are the only conditions under which we
are at a leaf node. If C ̸=⊥ and I′ ̸= R′, then T =
R′ ∩ (Sp(I′) \ I′) must be non-empty (because R′ is a
c-component such that R′ ⊋ I′) and we recurse.
Inductive assumption. Assume the claim holds for some
nodes N1(I1,R1), N2(I2,R2).
Inductive step. We show that the claim holds for any node
N0(I

′,R′) whose children are N1(I1,R1),N2(I2,R2).
We first define three collections of ACs relative to X .
Recall that ACX (Def. A.1.4) denotes the set of all ACs
relative to X .

AC0 = {C ⊆ V≤X |C ∈ ACX ,C is AAC,

I′ ⊆ C ⊆ R′}

AC1 = {C ⊆ V≤X |C ∈ ACX ,C is AAC,
I1 ⊆ C ⊆ R1}

AC2 = {C ⊆ V≤X |C ∈ ACX ,C is AAC,
I2 ⊆ C ⊆ R2}

It suffices to show that AC0 = AC1 ∪ AC2, since this
implies that any CI that should be output by LISTCIX
at N0(I

′,R′) is output by LISTCIX at either N1(I1,R1)
or N2(I2,R2). Since LISTCIX at N0(I

′,R′) calls LIST-
CIX at both N1(I1,R1) and N2(I2,R2), we prove the
claim.
By construction at lines 10-11, since N0(I

′,R′) has chil-
dren N1(I1,R1) and N2(I2,R2), we have (without loss
of generality) that (I1,R1) = (C(X)GAn(I′∪{S})

,R′) and
(I2,R2) = (I′, C(X)GR′\De({S})) for some S ∈ T =

R′ ∩ (Sp(I′) \ I′).
First, some technicalities. we want to show that
(I1,R1), (I2,R2) are well-defined and non-vacuous in-
puts to LISTCIX.
– Since S ∈ T ⊆ R′ and I′ ⊆ R′, and R′ is an AC

relative to X , we have I1 = C(X)GAn(I′∪{S})
⊆ R′ =

R1. Furthermore, I1 is an AC by construction.
– Since S ∈ Sp(I′) \ I′ and I′ is an AC, we have
De({S}) ∩ I′ = ∅. Since I′ ⊆ R′, this further im-
plies that I2 = I′ ⊆ R2 = C(X)GR′\De({S}) . Moreover,
R2 is an AC by Prop. C.2.3.

7A leaf node is a node that has no children.

We show the equality of AC0 and AC1 ∪ AC2 in both
directions.

– AC1 ∪ AC2 ⊆ AC0
For any C ∈ AC1 ∪ AC2, we have either

* I1 ⊆ C ⊆ R1 and hence I′ ⊆ C ⊆ R′ since I′ ⊆
I1,R

′ = R1, or
* I2 ⊆ C ⊆ R2 and hence I′ ⊆ C ⊆ R′ since I′ =
I2,R2 ⊆ R′.

Therefore, AC1 ∪ AC2 ⊆ AC0.
– AC1 ∪ AC2 ⊇ AC0

For any C ∈ AC0, we have I′ ⊆ C ⊆ R′. Then, we
have either

* S ∈ C. Therefore, I′ ∪ {S} ⊆ C. Since C is an AC,
we must have C(X)GAn(I′∪{S})

⊆ C (otherwise, there
is an ancestor of I′∪{S} not in C which is connected
by a bi-directed path to some node in I ∪ {S} ⊆ C).
Therefore, we have I1 ⊆ C ⊆ R1 = R′ and hence
C ∈ AC1.

* S ̸∈ C. Since C is an AC, this implies De({S}) ∩
C = ∅. Moreover, C ⊆ R′ further implies that C ⊆
C(X)GR′\De({S}) . Therefore, we have I2 = I1 ⊆ C ⊆
R2, and C ∈ AC2.

Therefore, AC1 ∪ AC2 ⊇ AC0.

Hence, AC0 = AC1 ∪ AC2 and we are done. Since LIST-
CIX enumerates all AACs relative to X correctly, by
Thm. 2, it enumerates all non-vacuous CIs invoked by
C-LMP for X correctly.

• Running time:
Consider the recursion tree for LISTCIX. Whenever a
tree node N (I′,R′) is visited, the function FINDAAC
is called, which takes O(n(n+m)) time (by Lemma 1).
If FINDAAC outputs ⊥, then LISTCIX does not search
further from N because there exists no AAC C relative
to X with I′ ⊆ C ⊆ R′. Otherwise, recursion continues
until a leaf tree node is visited. In each level of the tree, a
single node S is removed from T. Either the variable S, is
added to I, resulting in I′ given at line 9 (by S ∈ Sp(I)\I),
or the variable S is removed from R to construct R′ which
is shown at line 9. Any C is uniquely contained in one
child; therefore, no CI is output more than once. The depth
of the tree is at most n, and the time required to find one
C and output one non-vacuous CI invoked by C-LMP
associated with C (following Def. 5), is O(n2(n+m)).
In the worst case scenario, n branches will be aborted (i.e.,
FINDAAC outputs ⊥ on every level of the tree) before
reaching the first leaf. It takes O(n2(n + m)) time to
produce either the first output or halt.

Theorem 3 (Correctness of LISTCI). Let G be a causal graph
and V≺ a consistent ordering. LISTCI(G,V≺) enumerates
all and only all non-vacuous conditional independence rela-
tions invoked by the c-component local Markov property in
O(n2(n+m)) delay where n and m represent the number
of nodes and edges in G, respectively.



Proof. We show the correctness of LISTCI and the running
time that LISTCI runs in O(n2(n+m)) delay.

• Correctness:
LISTCI(G,V≺) iterates over each variable X ∈ V≺.
For each X , LISTCI constructs two ACs relative to
X: I = C(X)GAn({X}) and R = C(X)G

V≤X
. I is the

minimum-size AC relative to X and R is the maximum-
size AC relative to X . Then, LISTCI calls the function
LISTCIX(GV≤X , X,V≤X , I,R) that outputs all and only
all non-vacuous CIs invoked by C-LMP associated with
X , which is performed by generating all and only all
AACs C relative to X under the constraint I ⊆ C ⊆ R
(by Lemma 2). LISTCI(G,V≺) iterates over each variable
X ∈ V≺, and thus LISTCI(G,V≺) lists all and only all
non-vacuous CIs invoked by C-LMP.

• Running time:
There are two types of worst case scenarios.
1. No CI is invoked by C-LMP.

By the assumption that no CI is invoked by C-
LMP, Def. 5 and Def. 6, none of the ACs C rel-
ative to X for any X ∈ V≺ is admissible. For
each X visited by LISTCI(G,V≺), LISTCI calls the
function LISTCIX(GV≤X , X,V≤X , I,R) at line 5.
LISTCIX spends O(n(n + m)) time and terminates
with no output since LISTCIX calls the function
FINDAAC(GV≤X , X,V≤X , I,R) at line 3, which re-
turns⊥ (by Lemma 1). LISTCI checks the next variable
of X , if any exists. Since |V≺| = n, LISTCI spends
O(n2(n+m)) time and then terminates with no output.

2. No CI invoked by C-LMP exists for all variables X ∈
V≺ except for the last variable Xn in the ordering V≺.
For the first n − 1 variables in V≺, LISTCI spends
O(n2(n + m)) = O(n(n + m) ∗ (n − 1)) time
producing no output. More specifically, for each
variable, LISTCIX spends O(n(n + m)) time and
terminates with no output since LISTCIX calls
FINDAAC(GV≤X , X,V≤X , I,R) at line 3, which re-
turns ⊥. When X = Xn, LISTCI calls the function
LISTCIX(GV≤X , X,V≤X , I,R) at line 5 where LIST-
CIX spends O(n2(n + m)) time to output one non-
vacuous CI invoked by C-LMP that is associated with
Xn. In total, LISTCI spends O(n2(n + m)) time to
produce an output.

C.3 Appendix Proofs
Proposition C.3.1 (Total Number of CIs Invoked by GMP).
Given a causal graph G over a set of variables V with
n = |V|, the global Markov property for G invokes O(4n)
number of conditional independence relations. Moreover,
there exists a causal graph G for which the bound is tight,
that is, the global Markov property for G implies Ω(4n) num-
ber of conditional independence relations.

Proof. Each CI invoked by GMP is given by a choice of dis-
joint sets X,Y,Z ⊆ V where X,Y ̸= ∅ and a d-separation

statement X ⊥d Y | Z. The number of such statements is
upper-bounded by

d(n) =
1

2

n∑
i=1

(
n

i

) n−i∑
j=1

(
n− i

j

) n−i−j∑
k=0

(
n− i− j

k

)
(22)

=
2n(2n − 1)

2
− 3n + 2n (23)

where we divide the quantity by 2 to avoid double-counting
the following two symmetrical statements: X ⊥d Y | Z
and Y ⊥d X | Z (since d-separation is symmetric). We first
simplify the inner-most sum.

n−i−j∑
k=0

(
n− i− j

k

)
= 2n−i−j (24)

This gives

d(n) =
1

2

n∑
i=1

(
n

i

) n−i∑
j=1

(
n− i

j

)
2n−i−j (25)

We then simplify the second nested sum. Note that by the
binomial theorem,

3n−i = (2 + 1)n−i (26)

=

n−i∑
j=0

(
n− i

j

)
2n−i−j1j (27)

= 2n−i +

n−i∑
j=1

(
n− i

j

)
1j2n−i−j (28)

Therefore,

d(n) =
1

2

n∑
i=1

(
n

i

)
(3n−i − 2n−i) (29)

=
1

2

(
n∑

i=1

(
n

i

)
3n−i −

n∑
i=1

(
n

i

)
2n−i)

)
(30)

=
1

2
((4n − 3n)− (3n − 2n))

(Binomial theorem for (1 + 3)n, (1 + 2)n)
(31)

=
1

2
(4n + 2n)− 3n ∈ O(4n). (32)

Moreover, for G given by the independent set on n vari-
ables (i.e., G contains no edges), every possible d-separation
holds, therefore we get d(n) ∈ Ω(4n) number of CIs implied
by GMP.

D Discussion and Examples
D.1 Explaining Markov properties
A causal DAG on n variables may encode Θ(4n) CIs
(Prop. C.3.1). In this section, we explain how a subset of
these CIs, often considered a ‘basis’ (Bareinboim et al. 2022),
may imply all others.



The CI relation is a semi-graphoid (Pearl 1986, 1988).
Given an arbitrary probability distribution P (v) over a set
of variables V, CIs in P (v) must exhibit certain properties.
Specifically, for disjoint sets of variables X,Y,W,Z, where
X,Y ̸= ∅, the probability axioms can be used to show that
the following properties hold:
1. Symmetry: X⊥⊥Y | Z ⇐⇒ Y ⊥⊥X | Z
2. Decomposition: X⊥⊥Y ∪W | Z =⇒ X⊥⊥Y | Z and

X⊥⊥W | Z
3. Weak union:X ⊥⊥Y ∪W | Z =⇒ X ⊥⊥Y | Z ∪W

and X⊥⊥W | Z ∪Y

4. Contraction: X ⊥⊥ Y | Z and X ⊥⊥W | Z ∪ Y =⇒
X⊥⊥Y ∪W | Z

We give an example to show how these axioms can be
applied.
■ Example D.1.1. The DAG G (Fig. D.1.1a) encodes 5
CIs, but the colored subsets of CIs can be used to derive all
others, as shown in Fig. D.1.1b. For one example, the CI
X4 ⊥⊥ {X1, X2} implies all others. In the context of testing
G against observational data, it suffices to test only X4 ⊥⊥
{X1, X2}. For another example, X4⊥⊥X2 and X1⊥⊥X4 | X2

together imply X4 ⊥⊥ {X1, X2} by the contraction axiom,
and hence all other CIs. Therefore, it suffices also to only test
X4 ⊥⊥X2 and X1 ⊥⊥X4 | X2.

In the given example, scrutiny revealed which CIs are suffi-
cient to derive others via the semi-graphoid axioms. Markov
properties, however, provide a systematic way to identify
such CIs. The semi-graphoid axioms can be used to show
equivalence between Markov properties: for example, be-
tween the local Markov property and GMP for Markovian
DAGs (Pearl 1988; Lauritzen et al. 1990; Lauritzen 1996),
and between (LMP,≺) and GMP for semi-Markovian DAGs
(Richardson 2003).

D.2 C-LMP and the Semi-Markov Factorisation
In this section, we develop a connection between Markov
properties and a related notion of compatibility between
causal graphs and observational data – the factorisation that
the distribution should admit. This offers another perspective
on the combinatorial explosion in the number of CIs invoked
by C-LMP in the semi-Markovian case, compared with the
Markovian case.

An observational distribution P (v) over a set of variables
V factorizes, according to the chain rule, as

P (v) =
∏

Vi∈V

p(vi | v1, . . . , vi−1)

However, if we know P (v) is compatible with a graph G,
CIs implied by G can be used to simplify the factorisation
above to a Markov factorisation. We first define the Markov
factorisation for Markovian DAGs.
Definition D.2.1 (Markov Relative (Bareinboim et al. 2022)).
An observational distribution P (v) is said to be Markov
relative to a graph G (over a set of variables V) if, for a given
ordering V1, . . . , Vn consistent with G, P (v) factorizes as

P (v) =
∏

Vi∈V

p(vi | pa−i ) (33)

X1 X2 X3 X4
(a) A causal DAG G.

X4 ⊥⊥X2 X4 ⊥⊥X1

X4 ⊥⊥ {X1, X2}

X1 ⊥⊥X4 | X2 X2 ⊥⊥X4 | X1

decomposition

weak union

contraction contraction

(b) CIs encoded in G.

Figure D.1.1: A causal DAG G and a hyper-graph depicting
all the CIs encoded in G. An edge indicates that we can derive
the CIs at the arrowheads from the CIs at the tails using the
semi-graphoid axioms. The highlighted subsets of CIs in blue,
orange, and pink are each sufficient to derive all other CIs in
the graph.

where Pa−i = Pa({Vi})G \ {Vi}.
For example, in the simple three-node graph X → Y → Z,

the observational distribution P (x, y, z) factorizes as

P (x)P (y | x)P (z | y, x) = P (x)P (y | x)P (z | y)

By means of this factorisation, a graph imposes CI con-
straints on the distribution P (v): in our example, Z⊥⊥X | Y .
This gives an equivalent definition of ‘Markov relative’: P (v)
is Markov relative to G if, for a given ordering V≺ consistent
with G, and for each Vi ∈ V,

Vi ⊥⊥V≤Vi \ Pa(Vi) | Pa(Vi) \ {Vi}

Notice how this set of CI constraints is identical to C-
LMP in the Markovian case (Eq. (4)), discussed in Section 3.
Therefore, if P (v) is Markov relative to a given G, all the CI
constraints encoded in G must hold in P (v).

If G contains bidirected edges, the factorisation in
Def. D.2.1 no longer applies. For instance, a variable Vi

may be connected to a non-descendant Vj by means of a bidi-
rected edge, Vi is not independent of Vj when conditioning
on the (observed) parents Pa−i . This leads to the more gen-
eral definition of compatibility for semi-Markovian graphs,
given below.

Definition D.2.2 (Semi-Markov Relative (Bareinboim et al.
2022)). An observational distribution P (v) is said to be
Semi-Markov relative to a graph G (over a set of variables
V) if, for every ordering V1, . . . , Vn consistent with G, P (v)
factorizes as

P (v) =
∏

Vi∈V

p(vi | pa+i ) (34)

where Pa+i = Pa
(
C(Vi)G

V≤Vi

)
G \ {Vi}.
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(a) X is separated from C but not
A when conditioning on B.
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(b) X is separated from A but not
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(c) X is separated from F, I but not
D when conditioning on {H,E}.

Figure D.2.1: Fig. 2 reproduced for convenience. Three ACs relative to the variable X in the (same) causal DAG G. Assume
an ordering A ≺ B ≺ · · · ≺ X ≺ J ≺ K. The ACs relative to X (excluding {X} itself), shown in blue, separate it from the
variables shown in green.

■ Example D.2.1. Consider the semi-Markovian graph G in
Fig. D.1.1a. There are 12 possible orderings of the 4 nodes;
each ordering induces a factorisation of P (v) in Def. D.2.2.
We give four examples.

1. X1 ≺ X2 ≺ X3 ≺ X4. This implies Pa+({X1}) =
∅, Pa+({X2}) = {X1}, Pa+({X3}) =
{X1, X2}, Pa+({X4}) = {X1, X2, X3}. The re-
sultant semi-Markov factorisation is p(x1, x2, x3, x4) =
p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3). This is
equivalent to the factorisation given by the chain rule, and
implies no CI constraints.

2. X1 ≺ X2 ≺ X4 ≺ X3. This implies Pa+({X1}) =
∅, Pa+({X2}) = {X1}, Pa+({X3}) =
{X1, X2, X4}, Pa+({X4}) = ∅. The resultant
semi-Markov factorisation is p(x1, x2, x3, x4) =
p(x1)p(x2 | x1)p(x4)p(x3 | x1, x2, x4), which implies
the CI constraint X4 ⊥⊥ {X1, X2}.

3. X2 ≺ X4 ≺ X1 ≺ X3. This implies
Pa+({X2}) = ∅, Pa+({X4}) = ∅, Pa+({X1}) =
{X2}, Pa+({X3}) = {X1, X2, X4}. The resul-
tant semi-Markov factorisation is p(x1, x2, x3, x4) =
p(x2)p(x4)p(x1 | x2)p(x3 | x1, x2, x4), which implies
the CI constraints X4 ⊥⊥ {X2} and X1 ⊥⊥ {X4} | {X2}.

4. X4 ≺ X1 ≺ X2 ≺ X3. This implies
Pa+({X4}) = ∅, Pa+({X1}) = ∅, Pa+({X2}) =
{X1}, Pa+({X3}) = {X1, X2, X4}. The resul-
tant semi-Markov factorisation is p(x1, x2, x3, x4) =
p(x4)p(x1)p(x2 | x1)p(x3 | x1, x2, x4), which implies
the CI constraints X1 ⊥⊥ {X4} and X2 ⊥⊥ {X4} | {X1}.

The CIs induced by the first ordering (namely, none) are
clearly insufficient to derive all CIs encoded in G, similar to
Ex. 4. The four orderings above are chosen to be representa-
tive. Each of the eight remaining orderings induces exactly
the same CIs as one the four orderings.

We define the exact set of CI constraints implied by the
semi-Markov factorisation below.

Definition D.2.3 (Semi-Markov Relative CI Constraints).
Let G be a causal graph over variables V and P (v) a proba-
bility distribution over V that is semi-Markov relative to G.
Then, the conditional independence constraints encoded in

the factorisation of P (v) are given by: For every ordering
V≺ consistent with G, for every variable Vi ∈ V,

Vi ⊥⊥V≤Vi \ (Pa+({Vi}) ∪ {Vi}) | Pa+({Vi})

where Pa+({Vi}) = Pa
(
C(Vi)G

V≤Vi

)
G
V≤Vi

\ {Vi} and

V≤Vi depends on the ordering V≺.

Note that we take a union over all orderings in Def. D.2.3.

■ Example D.2.2. Continuing Ex. D.2.1. The set of CIs in-
duced by the semi-Markov factorization for G (Fig. D.1.1a) is
the union of all CIs listed in Ex.D.2.1: X4⊥⊥{X1, X2}, X4⊥⊥
{X2}, X1 ⊥⊥ {X4} | {X2}, X1 ⊥⊥ {X4}, X2 ⊥⊥ {X4} |
{X1}.

Ex. D.2.1 and Ex. D.2.2 show an important contrast be-
tween the Markovian and semi-Markovian cases. In the
Markovian case, we can fix an arbitrary ordering: compatibil-
ity requires that P (v) factorize according to the product in
Def. D.2.1 for any one ordering. In the semi-Markovian case,
we cannot fix an arbitrary ordering; the ordering X1 ≺ X2 ≺
X3 ≺ X4 in Ex. D.2.1 provides no CI constraints. Coinci-
dentally, the ordering X1 ≺ X2 ≺ X4 ≺ X3 does suffice to
derive all CIs encoded in G from X4 ⊥⊥{X1, X2}, as seen in
Fig. D.1.1b. However, no method is known for choosing an
ordering (or subset of orderings) that a priori guarantees that
all CIs encoded in the graph can be derived from the resulting
factorisation(s). Therefore, in the semi-Markovian case, it
is required that P (v) factorizes according to the product in
Def. D.2.2 for all possible orderings.

Applying Def. D.2.3 to a Markovian graph G reveals why
considering all orderings is not necessary in the Markovian
case. We make two observations for Markovian G:

1. Each c-component in G is a singleton. This means
C(Vi)G

V≤Vi
= {Vi}.

2. The parents of a variable precede it in every order-
ing, and do not depend on the ordering. This means
Pa({Vi})G

V≤Vi
= Pa({Vi})G .

Therefore, for any ordering V≺ and any variable Vi ∈ V,
the set Pa+({Vi}) simplifies to Pa(Vi)G \ {Vi}. The set of
CIs induced by Def. D.2.3 contains: for every ordering V≺



consistent with G, for every variable Vi ∈ V,

Vi ⊥⊥V≤Vi \ Pa(Vi)G | Pa(Vi)G \ {Vi} (35)

Let Φ denote this set of CIs. The set of CIs induced by the
Markov factorisation for G (Def. D.2.1) – which fixes one
ordering – is a subset of Φ. Moreover, contrast Φ with the set
of CIs induced by LMP. LMP abstracts away the ordering of
variables. Since Nd({Vi}) =

⋃
≺ ordering of G

V≤Vi
≺ \{Vi}, LMP

tests the CI: Vi ⊥⊥Nd({Vi}) \ Pa(Vi)G | (Pa(Vi)G \ {Vi}).
This CI implies the CI in Eq. (35) for every possible ordering
by the decomposition axiom.

Therefore, we have another perspective on the combinato-
rial explosion of the number of CIs in the semi-Markovian
case, relative to the Markovian case. This explosion was intro-
duced in Section 3, and characterised in terms of ACs. Here,
we understand it through the many possible orderings of a
given graph. To tie together these two concepts, we show an
equivalence between C-LMP and the CI constraints invoked
by the semi-Markov factorization.

Proposition D.2.1. Given a causal graph G over a set of
variables V and a consistent ordering V≺, let LC denote
the set of conditional independence constraints that the c-
component local Markov property invokes for G with respect
to V≺ and LP denote the set of conditional independence
constraints that the semi-Markov factorisation induces for
G. Then, LC ⊆ LP . Moreover, there exists G,V≺ for which
LC ⊊ LP .

Proof. Consider a CI statement in LC of the form

X ⊥⊥ S+ \ Pa(C) | Pa(C) \ {X}, where

S+ = V≤X
≺ \De(Sp(C) \ Pa(C))

for some variable X ∈ V≺ and AC C ∈ ACX . By
Def. 4, there exists an ancestral set S ∈ SX such that
C = C(X)GS

. By Props. B.2.3 and B.2.1, S+ is ancestral
and C = C(X)GS+ .

First, we construct an ordering V≺∗ under which C =
C(X)G

V
≤X
≺∗

using a ‘pivot’ technique about X . Given≺∗,S+,

initialise ≺∗=≺. We re-order ≺∗ as follows. Let the pivot
P = X . For each Y ∈ V≤X

≺ \S+ in order of ≺, move Y to
immediately succeed P in≺ and update P = Y . Then,≺∗ is
a valid ordering since S+ is ancestral. Moreover, S+ = V≤X

≺∗
and hence C = C(X)G

V
≤X
≺∗

.

By definition, LP contains the CI

X ⊥⊥V≤X
≺∗ \ (Pa+({X}) ∪ {X}) | Pa+({Vi})

where Pa+({Vi}) = Pa

(
C(Vi)G

V
≤Vi
≺∗

)
G
V

≤Vi
≺∗

. Thus, the

given CI from LC has an identical counterpart in LP .
The graph G in Fig. D.1.1a with the ordering X1 ≺

X2 ≺ X4 ≺ X3 provides an example where LC ⊊ LP .
We have LC = {X4 ⊥⊥ {X1, X2}}. However, LP =
{X4 ⊥⊥ {X1, X2}, X4 ⊥⊥ {X2}, X1 ⊥⊥ {X4} | {X2}, X1 ⊥⊥
{X4}, X2 ⊥⊥ {X4} | {X1}}, as shown in Ex. D.2.2.

We reproduce Fig. D.2.1 to demonstrate the ‘pivot’ tech-
nique used in the proof above.
■ Example D.2.3. Continuing Ex. 6, we demonstrate the
construction used in the proof of Prop.D.2.1 for the graph G
in Fig. D.2.1. We fix the ordering A ≺ B ≺ C ≺ D ≺ E ≺
F ≺ H ≺ I ≺ X ≺ J ≺ K for C-LMP.
1. Fig. D.2.1a depicts the CI X⊥⊥{C,D,E, F} | {B}. Here,

C = Pa(C) = {X,B},S+ = {B,C,D,E, F,X}. We
construct the ordering ≺∗: B ≺ C ≺ D ≺ E ≺ F ≺
X ≺ A ≺ H ≺ I ≺ J ≺ K.

2. Fig. D.2.1b depicts the CI X ⊥⊥ {A,D, I} | {H}. Here,
C = Pa(C) = {X,H},S+ = {A,D,H, I,X}. We
construct the ordering ≺∗: A ≺ D ≺ H ≺ I ≺ X ≺
B ≺ C ≺ E ≺ F ≺ J ≺ K.

3. Fig. D.2.1c depicts the CI X⊥⊥{A,F, I} | {H,E}. Here,
C = Pa(C) = {X,H,E},S+ = {A,E, F,H, I,X}.
We construct the ordering ≺∗: A ≺ E ≺ F ≺ H ≺ I ≺
X ≺ B ≺ C ≺ D ≺ J ≺ K.

Each ordering ≺∗ constructed for the given C,S+ implies
V≤X

≺∗ = S+ and Pa+({X}) = Pa(C) \ {X} in Def. D.2.3.

Prop. D.2.1 thus implies the following corollary.
Corollary D.2.1. Let G be a causal graph, V≺ a consistent
ordering, and P (v) a probability distribution over the set of
variables V. Then, the following conditions are equivalent.

(G) P (v) satisfies the global Markov property for G.
(L) P (v) satisfies the c-component local Markov property
for G with respect to V≺.
(F) P (v) is semi-Markov relative to G.

Proof. The equivalence of (G) and (L) follows from Thm. 1.
(G) =⇒ (F). Given a DAG G and a distribution P (v),

we need to show P (v) factorizes according to Def. D.2.2
for every ordering V≺ consistent with G. Fix an arbitrary
ordering V≺. Using the chain rule, we factorize

P (v) =
∏

Vi∈V≺

p(vi | v1, . . . , vi−1)

Then, let Pa+({Vi}) = Pa
(
C(Vi)G

V≤Vi

)
G
V≤Vi

\ {Vi}. It
suffices to show that

Vi ⊥d V≤Vi \ (Pa+({Vi} ∪ {Vi}) | Pa+({Vi} in G
Since V≤Vi is an ancestral set, C = C(Vi)G

V≤Vi
is an AC

relative to Vi. By definition, Sp(C) \C = ∅, hence V≤Vi \
De(Sp(C) \ Pa(C)) = V≤Vi . By Prop. C.1.1, we get the
required d-separation. Since P (v) satisfies the global Markov
property for G, this d-separation implies that

Vi ⊥⊥V≤X \ (Pa+({Vi} ∪ {Vi}) | Pa+({Vi} in P (v).

This allows us to simplify the factorisation of P (v) to

P (v) =
∏

Vi∈V≺

p(vi | pa+i )

(F) =⇒ (C). If P (v) is semi-Markov relative to G, then
each of the semi-Markov relative CIs of G (Def. D.2.3) must
hold in P (v). Since the C-LMP CIs of Gwith respect to V≺

are a subset of the semi-Markov relative CIs (Prop. D.2.1),
the C-LMP CIs must necessarily hold in P (v).



D.3 Examples

The following example shows that total number of vacuous
CIs invoked by C-LMP may be exponential with respect to
the number of nodes in a graph.

■ Example D.3.1. Consider the three causal graphs in
Fig. D.3.1 comprising a bidirected clique on n nodes and
no CI is invoked by C-LMP. In Gb1 shown in Fig. D.3.1a,
there exist 7 vacuous CIs invoked by C-LMP: A1 ⊥⊥∅, A2 ⊥⊥
∅, A2 ⊥⊥ ∅ | {A1}, A3 ⊥⊥ ∅, A3 ⊥⊥ ∅ | {A1}, A3 ⊥⊥ ∅ |
{A2}, A3 ⊥⊥ ∅ | {A1, A2}. In Gb2 presented in Fig. D.3.1b,
one variable A4 is added to Gb1 with three bidirected edges
A4 ↔ Ai for i = [1, 3]. 15 vacuous CIs are present. If
we add another variable A5 to Gb2 with four bidirected
edges A5 ↔ Ai for i = [1, 4], then 31 vacuous CIs ex-
ist. As shown in Fig. D.3.1c with similar pattern with nodes
{A1, · · · , An} with bidirected edges between every Ai and
Aj for 1 ≤ i, j ≤ n, i ̸= j, there are 2n − 1 vacuous CIs
invoked by C-LMP.

The following example is an expansion of Ex. 9 that was
shortened due to space constraints. We demonstrate a part
of running of LISTCI(G3,V≺) with G3 shown in Fig. 3b
and V≺ = {A,B,C,D,E, F,H, J}. A full search tree that
demonstrates the running of LISTCI (in Ex. 8) is shown in
Fig. F.1.1.

■ Example D.3.2. Expanding Ex. 9. Let G3 be the causal
graph shown in Fig. 3b and V≺ = {A,B,C,D,E, F,H, J}.
We show a part of running LISTCI(G3,V≺) with X = J
starting from the root node N ({J}, {A,C,D, F,H, J}) to
the leaf node L({A,F, J}, {A,F, J}).

Initially, the search starts from N which is constructed
at line 5 of LISTCI with X = J , I = {J} and R =
{A,C,D, F,H, J}. At line 3 of LISTCIX, FINDAAC re-
turns {J}. With s = F and R′ = {J}, the recursive call
LISTCIX(G3, J,V≺, {J}, {J}) is made at line 10, spawn-
ing a child N1({J}, {J}). The search continues from N1.
FINDAAC returns {J}. N1 is a leaf node, and LISTCIX
outputs a CI: J ⊥⊥ {A,B,C,D,E} at line 6.

After, LISTCIX backtracks to the parent N . Then,
with I′ = {F, J} constructed at line 9, a recursive call
LISTCIX(G3, J,V≺, {F, J}, {A,C,D, F,H, J}) is made
at line 10, spawning a childN2({F, J}, {A,C,D, F,H, J}).
At N2, FINDAAC returns {A,F, J}. With s = A
and R′ = {F,H, J}, another recursive call LIST-
CIX(G3, J,V≺, {F, J}, {F,H, J}) is made at
line 10, spawning a child N3({F, J}, {F,H, J}).
At N3, FINDAAC returns ⊥, backtracking to
N2. with I′ = {A,F, J}, a recursive call LIST-
CIX(G3, J,V≺, {A,F, J}, {A,C,D, F,H, J}) cre-
ates a child N4({A,F, J}, {A,C,D, F,H, J}). The
recursion continues in the following order: N4 adds
a child N5({A,F, J}, {A,F,H, J}) with s = C
and R′ = {A,F,H, J}, and N5 adds a child
N6({A,F, J}, {A,F, J}) with s = H and R′ = {A,F, J}.
N6 = L is a leaf node and FINDAAC returns {A,F, J}.
Finally, LISTCIX outputs a CI: J ⊥⊥ {B} | {A,F} at
line 6.

A1

A2 A3

(a) Gb1

A1 A2

A3 A4

(b) Gb2

...

...

A1

A2 A3

A4 An

(c) Gb3

Figure D.3.1: Three examples to demonstrate that total num-
ber of vacuous CIs invoked by C-LMP may be exponential
with respect to the number of nodes in a graph.

1: function LISTGMP(G,V)
2: Output: Listing CIs invoked by GMP for G over V.
3: for each X with ∅ ⊂ X ⊂ V do
4: for each Y with ∅ ⊂ Y ⊆ V \X do
5: for Z with ∅ ⊆ Z ⊆ V \ (X ∪Y) do
6: Output X⊥⊥Y | Z
7: end function

Figure E.0.1: A function that lists all CIs invoked by GMP.

E Further Results
We present a procedure LISTGMP (Fig. E.0.1) that lists
all CIs invoked by GMP for a causal graph G over a set
of variables V. The following result states that LISTGMP
correctly lists all such CIs.

Lemma E.0.1 (Correctness of LISTGMP). Given a causal
graph G over a set of variables V, LISTGMP(G,V) lists all
and only all conditional independence relations invoked by
the global Markov property for G.

Proof. The proof follows by construction from Def. 2.

F Experimental Details
All experiments were run on a machine with CPU: Apple
M2 Chip, 16GB of RAM, and macOS operating system. We
used a single core for the experiments. The algorithms are
implemented in Python.

This section is organized as follows. Section F.1 presents
details of the runtime of LISTCI and other algorithms. Sec-
tion F.2 shows detailed result on testing a hypothesized model
against a real-life dataset. Section F.3 provides detailed analy-
sis of the total number of non-vacuous CIs invoked by C-LMP.
We use LISTCI for the analysis.

F.1 Comparison of LISTCI with Other Algorithms
We compare the runtime of LISTCI with other two algo-
rithms: LISTGMP and LISTCIBF over bnlearn instances.
The runtime of the algorithms across different levels of pro-
jection U ∈ {0, 20, 40, 60, 80} respectively, are shown in
Tables F.3.1 - F.3.5.



(a) A set of search trees, one for each X ̸= J (b) A search tree for X = J

Figure F.1.1: A set of search trees illustrating the running of LISTCI in Ex. 8.

F.2 Application to Model Testing
In this section, we provide more details on our application of
LISTCI to the task of model testing in Section 5. Recall that
we test an expert-provided ground-truth DAG (11 nodes and
16 edges, shown in Fig. F.2.1) against a real-world protein
signaling dataset with 853 samples (Sachs et al. 2005). We
present the details in the following example.
■ Example F.2.1. Let G be the ground-truth DAG
shown in Fig. F.2.1, and fix the consistent order-
ing V≺ = {PKA,PIP3, P lcg, Akt, PIP2, PKC,Raf,
P38, Jnk,Mek,Erk}. GMP invokes 76580 CIs for G. A
naive approach would be to test all these CIs against the data.
In contrast, C-LMP invokes 10 CIs for G with respect to V≺,
which together imply all CIs of the GMP. Therefore, C-LMP
makes it possible to test the CIs encoded in G against the
data. The full list of CIs that C-LMP invokes is shown in
Table F.2.1.

To generate and test these CIs, we call LISTCI(G,V≺)
and use a kernel-based CI test from the causal-learn
package (Zheng et al. 2024) with p-value p = 0.05 (for the
null hypothesis of dependence).

As shown in Table F.2.1, seven out of ten CIs invoked by
C-LMP resulted in p > 0.05.

The test results show that G may need to be revised, and
the exact list of CIs that are violated may help experts in the
revision process. However, we note that significance testing
(whether rejecting the null hypothesis or not) has its own
limitations. For example, selection of the level of significance
impacts the probability of Type I error, and sample size of
the dataset affects the likelihood of Type II error, especially
for small datasets.

F.3 Analysis of C-LMP
In this section, we use LISTCI to understand the total number
of non-vacuous CIs invoked by C-LMP. Let CI denote this

Akt

Erk

PKA

Mek
Jnk

PKC

Raf

P38

PIP2

PIP3

Plcg

Figure F.2.1: The ground-truth DAG (known as a protein-
signaling network) shown in (Sachs et al. 2005, Fig. 2).

number. We showed that CI is bounded by Θ(n2s) for a
DAG with n nodes whose largest c-component has size s.
While we give a concrete DAG to show this bound is tight,
our hope is to empirically evaluate how often this worst-case
arises, and CI in the ‘average case’ using random graphs.
LISTCI makes such empirical analysis of C-LMP possible
by giving a way to efficiently compute CI.

Hypothesis. We hypothesize that the following two param-
eters are key in determining CI for a DAG G:

1. mu: the number of bidirected edges in G, and

2. s: the size of the largest c-component in G.

Intuitively, both the size of c-components in G and their
sparsity, which depends on mu, are important indicators of



CIs implied by G p-value

PIP3⊥⊥ PKA 0.175

Plcg ⊥⊥ PKA | PIP3 0.081

Akt⊥⊥ Plcg | PIP3, PKA 0.370

PIP2⊥⊥Akt, PKA | PIP3, P lcg 0.648

PKC ⊥⊥Akt, PIP3, PKA | PIP2, P lcg 0.318

Raf ⊥⊥Akt, PIP2, P IP3, P lcg 0.036
| PKA,PKC

P38⊥⊥Akt, PIP2, P IP3, P lcg,Raf 0.680
| PKA,PKC

Jnk ⊥⊥Akt, P38, P IP2, P IP3, P lcg,Raf 0.002
| PKA,PKC

Mek ⊥⊥Akt, Jnk, P38, P IP2, P IP3, PKA, 0.544
PKC,P lcg | Raf

Erk ⊥⊥Akt, Jnk, P38, P IP2, P IP3, PKC, 0.000
Plcg,Raf | Mek, PKA

Table F.2.1: Summary of results on testing a ground-truth
DAG against a protein-signaling dataset. A kernel-based CI
test was used to test the set of CIs (invoked by C-LMP) on
the dataset. P-value is rounded to the nearest three digits after
the decimal point.

CI. Both parameters control the number of subsets of the c-
component that result in admissible ancestral c-components.

Random graphs. We run LISTCI on random graphs to
understand CI in the average case. In particular, we use a
minor variant of Erdős-Rényi random graphs to include both
directed and bidirected edges. We define a random causal
DAG as G(n, pd, pb) where pd (pb) represents the probability
of a directed (bidirected) edge between a given pair of nodes.
Each possible edge is an independent Bernoulli.

Experimental design. For each experiment, we fix our
controls: n, the number of nodes, and md, the number of
directed edges, in G. We test md = 0, n, 2n for select n ∈
[10, 50]. Then, we change mu, and observe s and CI. For
each n and md, we ran each experiment on 100 sample
graphs. Each run of LISTCI was given an hour until timeout.
Only complete runs are shown.

Results and discussion.
1. Case 1: md = 0. First, for simplicity, we work with small

graphs containing no directed edges. Starting from pb = 0
(or mu = 0), we incrementally add bidirected edges until
reaching full capacity, i.e., pb = 1 or mu = n(n−1)

2 .
Then, an interesting trend emerges as shown in Fig. F.3.1a.
Roughly speaking, there are two phases seen on the curve.

(a) Phase 1 on the left half of the curve. As more bidi-
rected edges are added (i.e., pb increases), CI grows
exponentially up to a certain peak region.

(b) Phase 2 on the right half of the curve. After reaching
this peak, CI decreases exponentially as more bidi-
rected edges are added.

(a) pb and CI
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Figure F.3.1: Illustration of results in Case 1 (md = 0).
(a) displays two-phase transitions: as pb increases, CI grows
rapidly up to a certain point (Phase 1) but shrinks after (Phase
2). (b) shows that s correlates with CI only within Phase 1.
The red box indicates the ‘critical region.’

A possible explanation for the pattern shown in Phase 1
is that larger c-components tend to be constructed as pb
increases. Then, s increases in general. As given by the
bound O(n2s) (Prop 1), CI increases exponentially with
a linear increase in s. The curve in Fig F.3.1b showing this
relationship corresponds to Phase 1. Intuitively, a linear
increase of the size of the largest c-component C (of size
s) implies an exponential increase of total combination
of subsets of C (i.e., MBs). As shown by Lemma B.3.1
and Thm. 2, each MB maps uniquely to each CI invoked
by C-LMP. Thus, the total number of MBs is the sum of
the numbers of vacuous and non-vacuous CIs, which is
represented by the “sum” of both curves: one curve in
Fig. F.3.1a and the other curve in Fig. F.3.2a, respectively.

On the other hand, in Phase 2, when even more bidirected
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Figure F.3.2: Illustration of results in Case 1. (a) Total number
of vacuous CIs increases as G becomes more dense with
respect to bidirected edges. (b) Two-phase transitions are not
fully observable for n ≥ 20. he red box indicates the ‘critical
region.’

edges are added to G, large c-components (or in fact, the
largest and only c-component of size n) may become
more dense in terms of bidirected edges. In the extreme
case with pb = 1, G becomes a bidirected clique of size n.
With more bidirected paths between nodes, the number of
d-separations in the graph decreases, leading to a decrease
in CI. Conceptually, the total number of MBs increases as
c-components get more dense. However, the ratio of MBs
that result in non-vacuous CIs to total MBs decreases at
a higher rate than the rate of increase of the number of
MBs. We observe the difference by comparing Fig. F.3.1a
and Fig. F.3.2a. This results in the decrease in CI.

In Fig F.3.1b, a vertical line where s stays constant, i.e.,
s = n, corresponds to Phase 2. We note that s being
a constant is a natural consequence of the experimental
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Figure F.3.3: Illustration of results in Case 1 within Phase
1. LISTCI starts timing out at approximately mu = 30 or
greater.

setup. When pb continues to increase from 0, all nodes
in G will eventually become connected to one another,
and thus s converges to n. Once the point with s = n
is reached, s stays constant even with further addition
of bidirected edges since the entire set of nodes in G is
the largest and the only c-component in G. When pb is
further increased, the largest c-component in G becomes
more dense, which explains the decrease in CI. Therefore,
s may be a good indicator of CI in Phase 1, but not
necessarily in Phase 2.

Another subtlety to note is the rate of growth of CI with
respect to n. Within a “critical region” shown in Fig F.3.1a,
observe gaps between the curves for each n. Even as n
increases by two from n = 10, CI in this middle region
grows exponentially. This may not be immediate as the
bound on CI is linear in n. However, in the peak region
of the curve, we have s ≈ n, thus making CI exponential
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Figure F.3.4: Illustration of results in Case 2 (md = n).
Overall, similar patterns are shown as in Case 1 (Fig. F.3.1).
However, the rate of growth of CI with respect to n is lower
than in Case 1. he red box indicates the ‘critical region.’

in n. This makes it infeasible to observe phase transitions
over larger n in graphs without directed edges.
We verify the claim that phase transitions may not be
fully observable for larger n. Bidirected edges are added
slowly until LISTCI starts timing out. The results are
shown in Fig. F.3.3a. We see that mu = 30 is an ap-
proximate threshold after which LISTCI may spend more
than an hour . Given mu = 30, the threshold values
of pb that correspond to each n ∈ {20, 30, 40, 50} are
0.158, 0.069, 0.038, and 0.024 respectively. Based on the
curves shown in Fig. F.3.1a, it is possible LISTCI times
out before the peak. All curves for large n live within
Phase 1.
Additionally, we present Phase 2 for n ∈
{10, 15, 20, 25, 30} in Fig. F.3.2b. Starting from
pb = 1, we keep removing bidirected edges (i.e.,
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Figure F.3.5: Illustration of results in Case 2 by adding bidi-
rected edges to a graph G across varying n. LISTCI starts
timing out at approximately mu = 50 or greater.

decreasing pb) until LISTCI starts timing out. For n = 20,
LISTCI times out with pb < 0.7. For n = 30, pb < 0.85
and for n = 40, pb < 0.9. All fraction of the curves
represent some fraction of Phase 2.
Returning to s, we show the relationship between s and
CI in Fig F.3.3b. As in the case for small n, CI is expo-
nential in s during Phase 1.
It may seem that LISTCI is not feasible on larger graphs.
However, Case 1 considers an edge case with no directed
edges where all subsets of nodes are ancestral. The prob-
lem is highly unconstrained. Most real-world graphs are
not this sparse, which makes CI less sensitive to changes
in mu, as we explain in the next part.

2. Case 2: md = n. We use a similar setup as in Case 1,
except that we add n directed edges on a wider range
of graph sizes. When we incrementally add bidirected
edges to G from pb = 0 up to pb = 1, a pattern identical
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Figure F.3.6: Illustration of results in Case 3 (md = 2n).
Overall, the patters are similar as shown in Case 1 and Case
2 (Fig. F.3.1 and Fig. F.3.4). The rate of growth of CI with
respect to n is lower than those in Case 1 and Case 2. he red
box indicates the ‘critical region.’

to Case 1 (Fig. F.3.1a) arises in Case 2 (Fig. F.3.4a). A
notable difference, however, is the rate of growth of CI
with respect to n. For example, let n = 20. In Case 1
(Fig. F.3.3a), with increasing mu > 20, CI increases
to 104 and beyond until LISTCI times out. On the other
hand, in Case 2 (Fig. F.3.4a), CI does not exceed 103

for any mu (or pb). Still, the two-phase transition is not
observable for larger n, i.e., n ∈ {30, 40, 50}. Similarly,
as in Fig. F.3.1b, we observe an exponential relationship
between s and CI (Fig. F.3.4b) in for s < n.

Next, we let n ∈ {30, 40, 50}. The results are shown in
Fig. F.3.5. We have a similar conclusion as in Case 1, ex-
cept that an approximate threshold for mu until LISTCI
times out is increased to 50. Given mu = 50, the values
of pb that map to each n ∈ {30, 40, 50} are 0.115, 0.064,

Graphs Runtime (mm:ss)

Name n m LISTGMP LISTCIBF LISTCI

asia 8 8 03:49 00:00 00:00
cancer 5 4 00:00 00:00 00:00
earthquake 5 4 00:00 00:00 00:00
sachs 11 17 - 00:00 00:00
survey 6 6 00:01 00:00 00:00

alarm 37 46 - - 00:01
barley 48 84 - - 00:01
child 20 25 - 00:46 00:00
insurance 27 52 - 00:54 00:00
mildew 35 46 - 04:10 00:00
water 32 66 - - 00:00

hailfinder 56 66 - - 00:01
win95pts 76 112 - - 00:02

Table F.3.1: Summary of running time of algorithms over var-
ious graph instances. Algorithms were run over the original
Markovian graphs provided by bnlearn package. Runtime
is rounded to a nearest integer (second). A symbol “-” indi-
cates that the algorithm has spent more than an hour over at
least one sample graph.

and 0.041 respectively. The larger threshold can be ex-
plained by the correspondence between ancestral sets and
MBs. Since adding directed edges exponentially reduces
the number of ancestral sets, this can only reduce the num-
ber of MBs, and hence CI. Inspecting the curves shown
in Fig. F.3.4a, it is likely that LISTCI starts timing out
before CI peaks.

3. Case 3: md = 2n.
We continue the set up of Cases 1 and 2, now adding
2n directed edges to small-to-medium sized graphs. As
shown in Fig. F.3.6a, we see phase transitions for n up
to 40. Comparing to Case 2 where md = n, the rate of
growth of CI with mu is lower in general. For example,
let n = 20. In Case 2 (Fig. F.3.4a), CI reaches approx-
imately 103. However, in Case 3 (Fig. F.3.6a), CI does
not reach 102, even in the peak. The relationship between
s and CI seen in Cases 1 and 2 (Figs. F.3.1b and F.3.4b)
– with two patterns corresponding to the two phases – is
reproduced in Case 3 (Fig. F.3.6b).

Summarizing experimental findings from Cases 1, 2, and
3, we conclude that both the size s of the largest c-component
C in G and the sparsity of C determined by the number of
bidirected edges play a key role in CI. The reproducibility
of the phase transitions and relationships between s,mu, and
CI across different combinations of md and n lends credence
to this conclusion.

G Frequently Asked Questions
Q1. Is it reasonable to expect that the causal graph is available?

How do you get the graph?
Answer. The assumption of the causal diagram is made
out of necessity; without causal assumptions, causal infer-



Graphs Runtime (mm:ss)

Name n m LISTGMP LISTCIBF LISTCI

asia 7 7 00:14 00:00 00:00
cancer 4 3 00:00 00:00 00:00
earthquake 4 3 00:00 00:00 00:00
sachs 9 14 - 00:00 00:00
survey 5 5 00:00 00:00 00:00

alarm 30 40 - - 00:00
barley 39 88 - - 00:01
child 16 24 - 00:05 00:00
insurance 22 57 - 00:06 00:00
mildew 28 45 - 00:29 00:00
water 26 78 - 13:22 00:01

hailfinder 45 84 - - 06:06
win95pts 61 111 - - 00:35

Table F.3.2: Summary of running time of algorithms over
various graphs. For each graph, 20 percent of variables were
randomly chosen as latent, and the graph was projected over
the remaining observed variables. Runtime is rounded to
a nearest integer (second). A symbol “-” indicates that the
algorithm has spent more than an hour over at least one
sample graph.

ences are almost never possible (e.g., see the Causal Hier-
archy Theorem in (Bareinboim et al. 2022, Section 1.3)).
In the real world, data scientists engage in causal model-
ing and leverage their background knowledge about the
problem to construct a causal model (e.g., graph). Cele-
brated results in the literature, such as Pearl’s do-calculus,
were designed to take advantage of this knowledge in or-
der to generate quantitative understanding of the system
that was previously unknown to the data scientist. Part of
the main theme in the field is about how to infer new facts
given a collection of causal assumptions.
Against this context, the main goal of our work is to
provide a set of tools to evaluate whether the assump-
tions encoded in a causal model are plausible, or formally
compatible with the observed data. It is not easy to char-
acterize or to list all of such assumptions, as discussed
formally in Section 3 and empirically in Appendix F. We
provide the first algorithm for listing a small set of CI
assumptions in poly-delay, using which a model can be
tested in settings with non-parametric distributions and
arbitrary unobserved variables.
Finally, the task known as causal discovery aims to a
coarser representation of the causal model from data,
including from observational (Verma and Pearl 1992;
Spirtes, Glymour, and Scheines 2001; Pearl 2000) and
interventional data (Kocaoglu, Shanmugam, and Barein-
boim 2017; Kocaoglu et al. 2019; Jaber et al. 2020; Li,
Jaber, and Bareinboim 2023).

Q2. Can this result be used to evaluate the quality of a learned
model, e.g., a partial ancestral graph (PAG) (Zhang 2008)?
Answer. Yes. If the learned model is a Markov equiva-
lence class (MEC) of DAGs, for e.g., a PAG, all DAGs in

Graphs Runtime (mm:ss)

Name n m LISTGMP LISTCIBF LISTCI

asia 5 6 00:00 00:00 00:00
cancer 3 2 00:00 00:00 00:00
earthquake 3 2 00:00 00:00 00:00
sachs 7 12 00:02 00:00 00:00
survey 4 4 00:00 00:00 00:00

alarm 23 35 - - 00:00
barley 29 91 - 02:29 00:01
child 12 25 - 00:01 00:00
insurance 17 65 - 00:06 00:02
mildew 21 39 - 00:04 00:00
water 20 78 - 00:21 00:01

hailfinder 34 67 - - 00:12
win95pts 46 98 - - 02:07

Table F.3.3: Summary of running time of algorithms over
various graphs. For each graph, 40 percent of variables were
randomly chosen as latent, and the graph was projected over
the remaining observed variables. Runtime is rounded to
a nearest integer (second). A symbol “-” indicates that the
algorithm has spent more than an hour over at least one
sample graph.

the MEC imply exactly the same set of CIs. Therefore, an
observational dataset is consistent with the MEC if and
only if it is consistent with some (or every) DAG in the
MEC. To test the learned MEC, one can choose any DAG
in the MEC, and apply our result to this DAG.

Q3. What’s the difference between (LMP,≺) and C-LMP?
Since they output an identical list of CIs, aren’t they the
same?
Answer. It is true that (LMP,≺) and C-LMP invoke
the same set of CIs. Since LISTCI lists CIs invoked
by C-LMP, it thus equivalently lists CIs invoked by
(LMP,≺). There is nothing inherent in the definition of
(LMP,≺) (Def. A.1.3) that makes it impossible to list
the CIs it invokes in poly-delay. However, in Def. A.1.2
and Def. A.1.3, MASs are defined non-constructively.
Def. A.1.2 leaves it open whether there is exactly one
MAS relative to an MB, and how to construct such an
MAS. Therefore, each CI in (LMP,≺) is also defined non-
constructively. The only object with a constructive defi-
nition is the ancestral set, which is used to define MASs
using universal quantifiers. This considerable degree of
indeterminacy leads to the brute-force approach we de-
velop in Section B.1. In contrast, the definition of C-LMP
(Def. 5) is entirely constructive, and abstracts away the
complexities of MASs and MBs. We give an explicit one-
to-one mapping between ACs and CIs (Thm. 2) that does
not need any universal quantifiers, except over the space
of ACs. Therefore, the definition of C-LMP provides a
natural path to enumerating the invoked CIs by enumer-
ating ACs. Moreover, the explicit one-to-one mapping
between ACs and CIs allows us to derive tight bounds on
the number of CIs invoked by C-LMP (and equivalently,
(LMP,≺)) by reasoning about connected components in



Graphs Runtime (mm:ss)

Name n m LISTGMP LISTCIBF LISTCI

asia 4 3 00:00 00:00 00:00
cancer 2 1 00:00 00:00 00:00
earthquake 2 1 00:00 00:00 00:00
sachs 5 7 00:00 00:00 00:00
survey 3 2 00:00 00:00 00:00

alarm 15 27 - 00:10 00:00
barley 20 80 - 04:18 00:01
child 8 15 - 00:00 00:00
insurance 11 47 - 00:00 00:00
mildew 23 20 - 00:03 00:00
water 13 47 - 00:01 00:00

hailfinder 23 42 - - 00:01
win95pts 31 53 - - 00:14

Table F.3.4: Summary of running time of algorithms over
various graphs. For each graph, 60 percent of variables were
randomly chosen as latent, and the graph was projected over
the remaining observed variables. Runtime is rounded to
a nearest integer (second). A symbol “-” indicates that the
algorithm has spent more than an hour over at least one
sample graph.

the graph, an approach that would not be clear from a
non-constructive definition of CIs.

Q4. What happens if the total number of CIs invoked by C-
LMP is exponential? Do we have to wait until LISTCI
outputs the full list of CIs?
Answer. First, we note that C-LMP provides an exponen-
tial improvement over the global Markov property (GMP)
with respect to number of CIs invoked. In contrast with
the Θ(4n) many CIs invoked by GMP (Prop. C.3.1), C-
LMP invokes O(n2s) number of CIs given a DAG on n
variables whose largest c-component has size s (Prop. 1).
The upshot is largest for a DAG with large n but small
c-components. For instance, for the DAG G2 in Fig. 1b,
GMP invokes 753 CIs but C-LMP invokes only 5. For the
real-world protein-signaling network in Fig. F.2.1, GMP
invokes 76580 CIs but C-LMP invokes only 10.
Even when C-LMP invokes exponentially many CIs,
LISTCI outputs all such CIs in poly-delay (Thm. 3). This
is the first known algorithm that runs in poly-delay where
the associated Markov property is applicable to arbitrary
data distributions and DAGs with latent variables. Poly-
delay property allows researchers to test the subset of CIs
listed in the available time, which enables partial testing
of the model. This is not possible with an algorithm that
takes exponential amount of time to output one CI, or
even all CIs at once. Please refer to Appendix A.2 for
more details on related work in the literature.

Q5. How well does LISTCI scale?
Answer. LISTCI scales well and is currently the most
efficient algorithm that enumerates all CIs invoked by
a Markov property which is applicable to arbitrary data
distributions and DAGs with latent variables. The plot in

Graphs Runtime (mm:ss)

Name n m LISTGMP LISTCIBF LISTCI

asia 2 1 00:00 00:00 00:00
cancer 1 0 00:00 00:00 00:00
earthquake 1 0 00:00 00:00 00:00
sachs 3 2 00:00 00:00 00:00
survey 2 1 00:00 00:00 00:00

alarm 8 10 - 00:00 00:00
barley 10 23 - 00:01 00:01
child 4 6 00:01 00:00 00:00
insurance 6 20 00:02 00:00 00:00
mildew 7 14 00:19 00:00 00:00
water 7 12 00:49 00:00 00:00

hailfinder 12 24 - 00:05 00:00
win95pts 16 18 - 02:14 00:01

Table F.3.5: Summary of running time of algorithms over
various graphs. For each graph, 80 percent of variables were
randomly chosen as latent, and the graph was projected over
the remaining observed variables. Runtime is rounded to
a nearest integer (second). A symbol “-” indicates that the
algorithm has spent more than an hour over at least one
sample graph.

Fig. 7 shows that LISTCI takes more than an hour over
some graphs with n >= 70 nodes. Here, we note that
n is not the only factor in the running time of LISTCI.
In fact, as shown in Appendix F.3, the graph topology
associated with c-components plays a major role in the
number of CIs invoked by C-LMP. Two factors related to
c-components are of major interest:

(a) s ≤ n: the size of the largest c-component, and
(b) Sparsity of c-components with respect to the number

of bidirected edges

Let CI be the total number of non-vacuous CIs invoked
by C-LMP. In summary, when c-components are sparse,
CI increases exponentially in term s, given by the bound
O(n2s). However, as c-components become denser, CI
decays in exponential term. For illustration, please refer
to the discussion on Case 1 in Appendix F.3 (Fig. F.3.1).
Graph topology may vary across different graphs with
different sizes. For example, large graphs can have many,
small c-components. In this case, s may be small. Then,
an exponent s in the bound O(n2s) is small, and thus
total number of CIs invoked by C-LMP may not be large.
Even when large graphs have large c-components, if such
c-components are dense, then total number of CIs invoked
by C-LMP could be smaller in an order of magnitude, as
oppose to the case where the c-components are sparse.
Next, there may exist exponentially many CIs invoked by
C-LMP (with respect to n), requiring exponential time
to list them all. In such cases, one guarantee we can pro-
vide is the poly-delay property, which holds for LISTCI
(Thm. 3).


