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Abstract

Reasoning with counterfactuals is one of the hallmarks of
human cognition, involved in various tasks such as explana-
tion, credit assignment, blame, and responsibility. Counter-
factual quantities that are not identifiable in the general non-
parametric case may be identified under shape constraints on
the functional mechanisms, such as monotonicity. One promi-
nent example of such an approach is the celebrated result by
Angrist and Imbens on identifying the Local Average Treat-
ment Effect (LATE) in the instrumental variable setting. In
this paper, we study the identification problem of more gen-
eral settings under monotonicity constraints. We begin by
proving the monotonicity reduction lemma, which simplifies
counterfactual queries using monotonicity assumptions and
facilitates the reduction of a larger class of these queries to
interventional quantities. We then extend the existing identifi-
cation results on Probabilities of Causation (PoCs) and LATE
to a broader set of queries and graphs. Finally, we develop
an algorithm, M-ID, for identifying arbitrary counterfactual
queries from combinations of observational and experimental
data, which takes as input a causal diagram with monotonic-
ity constraints. We show that M-ID subsumes the previously
known identification results in the literature. We demonstrate
the applicability of our results using synthetic and real data.

1 Introduction
Counterfactual reasoning is essential for human cognition,
underpinning various of our abilities related to understand-
ing, credit assignment, attribution of blame and responsi-
bility, and regret (Pearl 2000; Pearl and Mackenzie 2018;
Starr 2019; Van Hoeck, Watson, and Barbey 2015). In a
structure known as Pearl Causal Hierarchy (PCH), coun-
terfactual knowledge resides at Layer 3, while observational
and interventional knowledge corresponds to Layers 1 and 2
(Pearl and Mackenzie 2018; Bareinboim et al. 2022).

The question of non-parametric identification of causal
queries from one layer of the PCH using data from another
layer has received a lot of attention in the literature. Vari-
ous versions of this problem have been studied extensively,
from Pearl’s celebrated result known as do-calculus to other
more systematic, algorithmic approaches (Pearl 1995; Tian
and Pearl 2002; Shpitser and Pearl 2007; Huang and Valtorta
2006; Bareinboim and Pearl 2012, 2016; Correa and Barein-
boim 2017; Lee, Correa, and Bareinboim 2019; Correa and
Bareinboim 2020; Lee and Bareinboim 2020; Lee, Correa,

and Bareinboim 2020). Specifically, the problem of identi-
fying interventional queries from observational data and the
causal diagram (Layer 2 from Layer 1) has been solved by
the ID algorithm from (Tian and Shpitser 2010) and from a
combination of observations and experiments (Layers 1+2
to Layer 2) (Lee, Correa, and Bareinboim 2019). Simi-
larly, the Ctf-ID algorithm from (Correa, Lee, and Barein-
boim 2021) solves the problem of identifying counterfactual
queries from a combination of observations and arbitrary
experiments (Layer 3 from Layers 1+2). These algorithms
have been shown to be sound and complete.

In contrast, the causal inference literature in economet-
rics and statistics has traditionally considered effect identi-
fication under parametric assumptions. A popular and well-
studied case is effect identification in linear systems (Brito
and Pearl 2002; Tian 2004, 2005; Chen, Pearl, and Barein-
boim 2016; Chen, Kumor, and Bareinboim 2017; Kumor,
Chen, and Bareinboim 2019; Kumor, Cinelli, and Barein-
boim 2020; Shimizu 2014). The literature on this area has
a rich past, rooted in the study of regression (Gauss 1877;
Galton 1886) and instrumental variables (Wright 1928;
Reiersøl 1945). This setting could be seen as the opposite
of non-parametric identification, which makes no assump-
tions about the form of causal mechanisms, whereas the lin-
ear identification setting assumes all mechanisms (globally)
to be linear (see Fig. 1a).

Interestingly, the space between the two extremes of the
spectrum in Fig. 1a has received relatively less attention, and
yet many interesting possibilities exist for considering ef-
fect identification under other functional form assumptions.
These include examples such as additive noise models (Pe-
ters, Janzing, and Scholkopf 2011), models with local para-
metric assumptions (as opposed to linear models where ev-
ery mechanism is assumed to be linear), shape-constrained
models (assuming monotonic or convex/concave functional
forms) (Imbens and Angrist 1994), and many others.

In this paper, we make an important step in this direc-
tion and study the identification of counterfactuals under lo-
cal monotonicity constraints. To illustrate, we begin with the
following example.

Example 1 (Local Average Treatment Effect or LATE (Im-
bens and Angrist 1994)). Consider the instrumental vari-
able setting in Fig. 1b with variables X (binary), Y , and an
instrument Z (binary). The Local Average Treatment Effect
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Figure 1: (a) Spectrum of identification settings for different functional forms. (b) IV Graph. (c) Example of a graph where
LATE is identifiable, but the assumptions of LATE are not satisfied. (d) Standard fairness graph

(LATE) is defined as the effect of X on Y within the group
of units who “comply” with the treatment Z, meaning that
X = 0 in the absence of Z and X = 1 in the presence of
Z, written Xz0 = 0, Xz1 = 1. The LATE quantity can be
written in counterfactual notation as:

LATE = E[Yx1
− Yx0

| Xz0 = 0, Xz1 = 1]. (1)
In the general non-parametric setting, the LATE is not
identifiable (uniquely computable) from observational data.
However, under the monotonicity assumption of Z → X ,
that is if for all individuals Z = z1 produces a greater or
equal outcome in X than Z = z0, written

Xz1(u) ≥ Xz0(u) (2)
for all assignments u of unobserved variables, the quantity
can be computed as:

LATE =
E[Y | Z = 1]− E[Y | Z = 0]

E[X | Z = 1]− E[X | Z = 0]
. (3)

This is a seminal result, widely used in the econometrics lit-
erature (Imbens and Angrist 1994), and is part of the reason
why the original authors were awarded a Nobel Prize.

Various extensions of the basic setting in Fig. 1b have
been studied. Consider for instance the 401k dataset studied
in (Abadie 2003), represented here by the causal diagram
in Fig. 1c, with the following variables: income (W ), 401k
eligibility (Z), 401k participation (X), net financial assets
(M ), and total wealth (Y ). We wish to compute the LATE of
401k participation (X) on total wealth (Y ).

Note that eligibility (Z) cannot serve as an instrument
due to potential confounders like self-employment and pref-
erences for non-financial assets, some of which may be un-
observed, represented as a bidirected edge between Z and
Y . Our goal is to compute the LATE across income groups,

LATE(w) = E[Yx1
− Yx0

| Xz0 = 0, Xz1 = 1, w]. (4)
Applying the classical non-parametric LATE estimator from
(Imbens and Angrist 1994) conditional on W = w,

classic-LATE(w) =
E[Y | z1, w]− E[Y | z0, w]
E[X | z1, w]− E[X | z0, w]

(5)

would, in this context, lead to incorrect conclusions. Simi-
larly, an attempt of conditioning on M before applying the
classical LATE estimator, labeled cond-LATE(w), given by∑

m

P (m | w) E[Y | z1,m,w]− E[Y | z0,m,w]

E[X | z1,m,w]− E[X | z0,m,w]
(6)

would also lead to an incorrect result. Thus, interestingly,
state-of-the-art methods in the econometrics literature can-
not solve the problem at hand. In this paper, we develop a
general, graphical approach to identification under mono-
tonicity and derive the correct identification expression∑

y y ·Q1(y)∑
y ·Q1(y)

−
∑

y y ·Q0(y)∑
y ·Q0(y)

(7)

where, the weights Qi(y) are given by

Qi(y) =
∑
m,z

P (y | w, z,m, xi)P (z | w) (8)[
P (m,xi | w, zi)− P (m,xi | w, z1−i)

]
.

The above example is an initial indication of the usefulness
of the graphical approach to causality. In previous works
in econometrics (Imbens and Angrist 1994; Abadie 2003),
the assumptions used for identification are hard-coded to
a specific setting. In this paper, we show how to encode
shape constraints into causal diagrams and then prove more
general results by algorithmically leveraging the topological
constraints within the graph. In doing so, we challenge the
prior belief in the literature that “causal diagrams have dif-
ficulty coding shape restrictions such as monotonicity” (Im-
bens 2020) and demonstrate the opposite: graphical models
provide a flexible and transparent language for expressing
a broader set of assumptions, leading to novel identification
results. Formally, our contributions are as follows:

(i) We introduce a graphical encoding of monotonicity
(Def. 2) and prove the monotonicity reduction lemma
(MRL) (Lem. 2), which allows us to reduce a broad class
of counterfactual queries to interventional queries.

(ii) Leveraging this result, we extend the identification re-
sults for LATE and Local Natural Direct Effect (LNDE)
to a broader graphical context (Prop. 3 and 4). Addition-
ally, we establish identification conditions of a general-
ization of the probability of necessity (PN) and probabil-
ity of sufficiency (PS) that allow for conditioning on any
post-treatment variable(s) (Prop. 5).

(iii) We then develop a sound algorithm for identifying ar-
bitrary counterfactual queries based on the causal graph
and local monotonicity constraints (Alg. 1).

Finally, in Sec. 4, we demonstrate our methods on both
synthetic and real data (analyzing the data from (Abadie



2003), as mentioned in the example), showcasing their prac-
tical utility. All proofs and expressions for identification (ID
expressions) are provided in Appendix B.

Preliminaries Throughout this work, we use the language
of structural causal models (SCMs) (Pearl 2000). An SCM
is defined as a tuple M := ⟨V,U,F , P (u)⟩, where V
and U are sets of endogenous (observable) and exogenous
(latent) variables, respectively. F is a set of functions fVi ,
one for each Vi ∈ V, where Vi ← fVi(Pa(Vi), UVi), with
pa(Vi) ⊆ V and UVi ⊆ U. P (u) is a strictly positive prob-
ability measure over U. Each SCMM is associated with a
causal diagram G over the node set V, where Vi → Vj if Vi

is an argument of fVj
, and Vi L9999K Vj if UVi

and UVj
are

dependent (Bareinboim et al. 2022). The potential response
Yx(u) is the value of Y when X = x for the unit u, de-
rived by evaluating u in the submodelMx, where equations
associated with X are replaced by X = x.

Related Works (VanderWeele and Robins 2010) intro-
duced strong monotonicity, where a variable has a mono-
tonic relationship with its parents. An edge X → Y is
signed positive or negative based on whether X has a pos-
itive or negative monotonic effect on Y . While they fo-
cus on providing conditions for deriving inequalities in ob-
servational distribution, our work leverages monotonicity
for identifying counterfactual quantities. Identification of
specific quantities like LATE (Imbens and Angrist 1994),
LNDE (Yamamoto 2013), and PN/PS (Pearl 2022) have also
been explored under monotonicity, often with specific distri-
butional assumptions. Our algorithm builds on (Correa, Lee,
and Bareinboim 2021), where the concepts of ctf-factors and
inconsistency were introduced. A ctf-factor is a distribution
of the form P (W1[pa1]

= w1, . . . ,Wl[pal]
= wl), where

each Wi ∈ V and pai are the values of parents of Wi. A
ctf-factor is inconsistent if it has a single c-component and
one of the following holds:

1. (Parent-Child) ∃Wt ∈ W∗, Z ∈ T ∩ V (W∗) such that
z ∈ t, z′ ∈ w∗ and z ̸= z′

2. (Common Parent) ∃Wi[ti],Wj[tj ] ∈W∗ and T ∈ Ti ∩
Tj such that t ∈ t1, t

′ ∈ t2 and t ̸= t′.

(Correa, Lee, and Bareinboim 2021) also showed that
such inconsistencies imply that the ctf-factors are non-
identifiable (non-ID). Later, we demonstrate how mono-
tonicity can resolve certain inconsistencies in a ctf-factor.

2 Extending Identification of Counterfactual
Quantities under Monotonicity

In this section, we explore the concept of local monotonic-
ity in causal graphs, where a variable depends monotonically
only on its parents, and show how these local constraints can
relate to global constraints. While global monotonicity as-
sumptions are often challenging, local monotonicity is more
practical and more accessible to assume.

Definition 1 (Local Monotonicity Property). Let X be a
variable with a parent Z. We say that Z has a positive (neg-
ative) monotonic relationship with X if for all values z, z′

of Z and for all assignment pa− to Pa(X) \ Z, we have

Xz,pa−(u) ≥ Xz′,pa−(u) (9)

whenever z > z′ (z < z′). An edge Z → X is non-
monotonic if Z has neither positive nor negative monotonic
relationship with X . Otherwise, it is called monotonic.

A convenient aspect of such local properties is its ease of
representation in a causal graph, since it is an edge property.
Now, we formally define causal diagrams with monotonicity
assumptions.
Definition 2 (Causal Graph with Monotonicity Assumptions
or CGMA). A CGMA is a tuple ⟨G,M⟩, where
• G is a causal graph, with set of vertices V (G), set of

directed edges ED(G) and bidirected edges EB(G).
• M ⊆ ED × {+,−} is the set of monotonicity assump-

tions, where if ((X,Y ),+) ∈ M , then X is positive
monotonic on Y and if ((X,Y ),−) ∈M , then X is neg-
ative monotonic on Y .

In the following lemma, we explore the relation between
two variables that do not have a parent-child relation.
Lemma 1. If the product of signs over edges along all paths
from Z to X are positive in CGMA G, then the global rela-
tion between Z and X is positive monotonic, that is, for all
assignments u of exogenous variables and for values z, z′ of
Z

Xz(u) ≥ Xz′(u) (10)
whenever z > z′. Conversely, if any path from Z to X in-
cludes a non-monotonic edge, then there exists an SCM con-
sistent with G where Eq. 10 does not hold.

The lemma can be used to identify PoCs in CMGA shown
Fig. 1d. Note that the condition is necessary to guarantee that
all SCMs consistent with the CGMA satisfy Eq. 10. Hence,
we remark that assuming global monotonicity, as done in
previous works including (Pearl 2022), is equivalent to as-
suming these conditions.

In the rest of the paper, we use the term monotonic to
mean positive monotonic unless specified otherwise. We
now introduce a lemma that leverages these monotonicity
constraints to simplify ctf-factors, making previously non-
identifiable counterfactual events identifiable. Let t1, t2 de-
note two assignments of a set of variables T. We say t1 ≤ t2
if for all T ∈ T, we have t ∈ t1, t

′ ∈ t2 and t ≤ t′.
Lemma 2 (Monotonicity Reduction Lemma (MRL)). Let
T,S be a partition of the parents of W . such that T and S
are the set of monotonic and non-monotonic parents of W
respectively. Let P (Y∗,Wt,s = w,Wt′,s = w′) be a ctf-
factor. If W is binary, then we can apply the following rules
to reduce it to a simpler ctf-factor.
1. Simplification Rule: If t ≤ t′, then

(a) P (Y∗,Wt,s = 0,Wt′,s = 0) = P (Y∗,Wt′,s = 0)

(b) P (Y∗,Wt,s = 1,Wt′,s = 1) = P (Y∗,Wt,s = 1)

2. Difference Rule: If t ≤ t′, then

P (Y∗,Wt,s = 0,Wt′,s = 1)

= P (Y∗,Wt′,s = 1)− P (Y∗,Wt,s = 1) (11)
= P (Y∗,Wt,s = 0)− P (Y∗,Wt′,s = 0) (12)



X Y

M

W

Z
+

(a) LNDE setting.

X Y

M

W

Z
+

(b) LNDE+ setting.

Figure 2: Examples related to local average treatment effects (LATE) and Local Natural Direct Effect (LNDE)

In practice, Eq. 11 and 12 are applied in such a way that
the resulting term can be consistent. For instance, if w1 (or
w0) appears in the ctf-expression of its children, we would
use Eq. 11 (or Eq. 12). Consequently, when designing an
algorithm, we will apply Rule 2 first on children and then
on parents. An example of the application of MRL is shown
below:
Example 2. Consider the ctf-factor P (Mx0z = 0,Mx1z =
1, Yx1zm1 = 0, Yx0zm0 = 0) with respect to the causal
graph in Fig. 1d, where X and M are binary. We can sim-
plify this quantity as follows:

P (Mx0z = 0,Mx1z = 1, Yx1zm1
= 0, Yx0zm0

= 0)

= P (Mx0z = 0,Mx1z = 1, Yx1zm1 = 0) (Rule 1)
= P (Mx1z = 1, Yx1zm1

= 0)

− P (Mx0z = 1, Yx1zm1
= 0) (Rule 2)

Now, these simplified terms can be written as

P (m1 | x1, z)P (y0 | x1, z,m1)

− P (m1 | x0, z)P (y0 | x1, z,m1) (13)

In a later section, we will propose an algorithmic ap-
proach for applying these rules to any general ctf-factor. We
will also demonstrate (in Thm. 2) that if we cannot get a
set of consistent ctf-factors by application of MRL, then the
ctf-factor is non-identifiable (non-ID).

At first glance, the binary nature of W may seem limit-
ing. However, note that the lemma can be applied whenever
the domain can be reduced to a binary form. Consider the
counterfactual query P (Xz0 ≤ x < Xz1) in the CGMA in
Fig. 1b. We can treat any value ≤ x as 0 and any value > x
as 1. Then, by applying the difference rule, we obtain:

P (Xz0 ≤ x < Xz1) = P (Xz0 ≤ x)− P (Xz1 ≤ x) (14)
= P (Xz1 > x)− P (Xz0 > x) (15)

We provide a detailed discussion of the application of MRL
to such queries in the non-binary case in Appendix D. For
the next sections, we will use non-identifiable to mean non-
identifiable from observational distribution unless specified
otherwise.

2.1 Identifying Local Effects
Identifying and estimating the Local Average Treatment Ef-
fect (LATE) has been extensively studied in previous liter-
ature (Imbens and Angrist 1994; Angrist and Imbens 1995;
Frölich 2007; Heckman, Urzua, and Vytlacil 2006; Cher-
nozhukov et al. 2018).

LATE Extensions The assumptions for identification, as
proposed in these earlier works, can be restrictive in prac-
tice, with an explicit example presented in Ex. 1 related to
the causal graph in Fig. 1c. In this setting, the assumption
on the existence of valid instrument (Imbens and Angrist
1994) is violated since Yx0 and Yx1 are not independent of
Z. Any attempt to apply the standard LATE formulation or
conditioning on M can lead to incorrect conclusions. Inter-
estingly, P (Yx1

, Xz0 = 0, Xz1 = 1) can be identified by
decomposing the effect into two factors - the effect of X
on M and the effect of X and M on Y . The former can be
identified using Z as an instrument, and the latter is identi-
fiable from observation. Once P (Yx1

, Xz0 = 0, Xz1 = 1)
has been computed, we can identify the query in Eq. 4 of the
introductory example, as stated in the following proposition:

Proposition 3 (LATE Extensions). LATE is identifiable in
the causal graph in Fig. 1c, with local monotonicity of Z →
X , where X is binary. In particular, the same is given by the
expression:∑

w,y y ·Q1(y)P (w)∑
w,y Q1(y)P (w)

−
∑

w,y y ·Q0(y)P (w)∑
w,y Q0(y)P (w)

, (16)

where the weight Qi(y) can be evaluated as follows

Qi(y) =
∑
m,z

P (y | w, z,m, xi)P (z | w)

[
P (m,xi | w, zi)− P (m,xi | w, z1−i)

]
(17)

Similarly, LATE is also ID in the causal graph in Fig. 2b,
with the identification expression given in Appendix B.

We provide further discussion on the algebraic and graph-
ical assumptions needed for the identification of LATE that
addresses the scenarios in Fig. 1c and 2b in Appendix C.2.

Local Effects and Mediation Extensions of LATE have
led to concepts like the Local Natural Indirect Effect (LNIE)
and Local Natural Direct Effect (LNDE) (Yamamoto 2013).
LNIE captures the part of the average treatment effect due
to the mediator within the subpopulation of compliers, while
LNDE represents the portion not attributable to the mediator.
They are defined as follows:

LNIE(x) := E[Yx,Mx1
− Yx,Mx0

| Xz0 = 0, Xz1 = 1]

LNDE(x) := E[Yx1,Mx − Yx0,Mx | Xz0 = 0, Xz1 = 1]

It has been shown that under certain conditions, LNIE
and LNDE could be estimated from the observational dis-
tribution (Yamamoto 2013). However, these assumptions are



non-trivial to check in practice from observational data with-
out the aid of a graphical structure, as many of them are in-
dependence relations in Layer 2 and 3 of PCH. In addition,
they may limit the applicability to many practical scenar-
ios. Consider the graph in Fig. 1c and 2b, which does not
satisfy some of their assumptions, including exclusion re-
striction and conditionally ignorable treatment assignment.
However, the LNDE is identifiable by the use of MRL and
the graphical properties of the causal diagram.

Proposition 4 (LNDE/LNIE Extensions). LNDE and LNIE
are identifiable in the graph in Fig. 2b with local monotonic-
ity of Z → X , where X is binary. In particular, LNDE(x0)
can be computed as:∑

w,y y · T1(y)P (w)∑
w,y ·T1(y)P (w)

−
∑

w,y y · T0(y)P (w)∑
w,y ·T0(y)P (w)

(18)

where the weights Ti(y) can be computed as∑
m,z

P (m | w, z, x0)P (z | w)[
P (y | w,m, xi, zi)P (xi | w, zi)
− P (y | w,m, xi, z1−i)P (xi | w, z1−i)

]
. (19)

The LNIE(x0) can be computed similarly. The addition of
any directed or bidirected edge to the graph makes these
quantities non-ID.

Also, it should be noted that LNDE and LNIE are also
identifiable in the causal graph in Fig. 1c. For further dis-
cussion on LNDE/LNIE identification, refer to Appendix C.

2.2 Queries with Post-Treatment Conditioning
In this section, we demonstrate that certain queries
with post-treatment conditioning, though generally non-
identifiable, can be identified under specific monotonicity
assumptions. Conditioning on post-treatment variables in-
volves computing the effect of a treatment given any of its
descendants (including the treatment itself). Examples in-
clude probability of necessity (PN) and probability of suffi-
ciency (PS).

PN := P (Yx0
= 0 | x1, y1) (20)

PS := P (Yx1
= 1 | x0, y0) (21)

Here, we identify the local monotonicity constraints
needed for identifying PN and PS in graph 1d. By Lem. 1
and (Pearl 2022), we can show that these quantities are iden-
tifiable with monotonicity on X → Y,X →M,M → Y . If
either of these edges is non-monotonic, then PN/PS are non-
ID. PN/PS are not the only quantities of interest with post-
treatment. These quantities have been studied in several ar-
eas, including the study of fairness, in particular, V -specific
effects in (Plečko and Bareinboim 2024), analyzing dangers
of post-treatment bias in designing experiments for political
and social science (Montgomery, Nyhan, and Torres 2018)
and mitigating post-treatment bias (Blackwell et al. 2023).

Consider the standard fairness graph in Fig. 1. Let X de-
note the sex of job applicant, M their PhD status, and Y

Algorithm 1: M-ID
Input: Causal graph with monotonicity constraints ⟨G,M⟩,
set of counterfactual terms X∗ = x∗,Y∗ = y∗, available
distributions Z.
Output: P (Y∗ = y∗ | X∗ = x∗) in terms of available
distributions

1: d∗, D : P (W∗ = w∗) ← CTF-FACTOR(G,Y∗ =
y∗,X∗ = x∗)

2: v∗,Q← M-REDUCE(W∗ = w∗,x∗ ∪ y∗, G,M)
3: for s,T∗ = t∗ ∈ Q do
4: Ci∗ = ci∗ (i ∈ [k]) ← CTF-FACTORIZE(T∗ =

t∗, G)
5: for each Ci do
6: PV\Ci

(Ci)← IDENTIFY(Ci, G,Z)
7: P (Ci∗ = ci∗)← PV\Ci

(Ci)
8: end for
9: P (T∗ = t∗) =

∏
i P (Ci∗ = ci∗)

10: end for
11: if M-REDUCE or IDENTIFY fails, return FAIL
12: D =

∑
w∗\v∗

∑
s,T∗=t∗∈Q s · P (T∗ = t∗)

13: return
∑

d∗\(x∗∪y∗)
D/

∑
d∗\x∗

D

the hiring decision. We might be interested in how sex in-
fluences hiring, given that the applicant has a PhD. The M -
specific effect, m1-TEx0,x1

(y) can then be written as

m1-TE := E[Yx1
− Yx0

| m1] (22)

However, this quantity is not identifiable from observational
distribution. Interestingly, if X → M is monotonic, we
can identify m1-TE from observational distribution. We now
present the following proposition for identifying queries in-
volving post-treatment conditioning in a causal graph:
Proposition 5 (Generalized Post-Treatment Conditioning).
In the causal diagram in Fig. 1d, the following holds for any
set of values y,m to Y,M and x, x′ to X:
1. If X → M is monotonic and M is binary, then P (Yx |

m,x′) and P (Yx | m) are ID.
2. If X → M,X → Y,M → Y are monotonic and M,Y

are binary, P (Yx | x′,m, y) and P (Yx | x′, y) are ID.
If either of the required edges is non-monotonic, then the
effects are non-ID whenever x ̸= x′.

3 M-ID: Algorithmic Identification of
Arbitrary Counterfactual Quantities

In previous sections, we discussed how monotonicity
constraints aid in identifying well-studied counterfactual
queries. However, many graphical structures and counter-
factual queries remain unexplored. In this section, we pro-
pose an algorithm that identifies arbitrary counterfactual
quantities from interventional and observational distribu-
tions, given a causal graph with monotonicity assumptions.
Our approach extends the algorithm from (Correa, Lee, and
Bareinboim 2021) to account for monotonicity constraints.

The algorithm for deriving the ID expression of a coun-
terfactual quantity, given a CGMA, is shown in Algorithm



1. We also assume that the domain of the variables that re-
sult in inconsistency is binary. Given a conditional counter-
factual query, first, M-ID obtains the ctf-factor that needs
to be computed using CTF-FACTOR (Line 1). Then, it re-
duces each ctf-factor using MRL (Line 2) if needed. For
each of the reduced factors, M-ID factorizes them using
CTF-FACTORIZE, based on the c-components (Line 4) in
G[V (W∗)], which is the subgraph containing variables in
W∗. If these factors are not inconsistent, they can be writ-
ten as interventional quantities, which can then be identi-
fied using IDENTIFY (Line 6), adapted from (Tian and Pearl
2002). The details of CTF-FACTOR, CTF-FACTORIZE, and
IDENTIFY are provided in Appendix C.3. We now make the
following claim about M-ID.
Theorem 1. M-ID is sound in identifying a counterfactual
query in terms of available interventional and observational
distributions, given a causal diagram and monotonicity con-
straints.

3.1 Monotonicity Reduction Algorithm
MRL can be applied to the ctf-factor in order to obtain a lin-
ear combination of several simplified ctf-factors. This ideal
is realized in Algorithm 2. The first step of M-REDUCE
rewrites a variable that causes inconsistency as a summation
over its domain, where the domain of V is denoted by D(V )
in Line 4. Then, on Line 8, it checks for any impossibil-
ity imposed by the monotonicity constraint. An impossible
term is one for which the probability of it happening is 0.
The conditions for impossibility are given as follows:
Definition 3 (Impossible ctf-factor). A ctf-factor is impossi-
ble if either of the following conditions holds:
1. There exists w,w′ ∈ w∗ corresponding to the same vari-

able Wt and w ̸= w′

2. There exists Wt1 = w1,Wt2 = w2 ∈ W∗ = w∗, such
that t1 < t2 and w1 > w2.

Once impossible terms have been removed, the algorithm
applies Rule 1 of Lem. 2 in Line 9. After simplifying the
ctf-factors, M-REDUCE checks the non-identification of a
ctf-factor through the conditions of the following Lemma.
Lemma 6. After repeated application of Rule 1 from Lem. 2,
if there exists i, j (i ̸= j) in the ctf-factor P (Y∗,Wt1 =
w1,Wt2 = w2, . . . ,Wtm = wm) such that either of the
following holds
1. t ∈ ti, t

′ ∈ tj , t ̸= t′ for a non-monotonic parent T ,
2. There is no total ordering between ti, tj ,
then the ctf-factor is non-ID.

If conditions of Lem. 6 are satisfied, the ctf-factor is im-
mediately non-ID. Otherwise, if Common-Parent Inconsis-
tency exists for two variables in the same c-component of
G[V (W∗)], then the ctf-factor is also non-ID (Line 11). Af-
ter that, M-REDUCE applies the Difference Rule of Lemma
2 in the reverse topological order so that the application does
not result in any inconsistency. If at any point the condition
of the Rule 2 is satisfied, but the rule cannot be applied be-
cause it will result in inconsistency, the ctf-factor is non-ID
(Line 23). Finally, consider the following proposition.

Theorem 2. If M-REDUCE returns FAIL on a ctf-factor,
then the ctf-factor is non-ID.
This result shows that the algorithm is complete in removing
inconsistencies from a ctf-factor, or in other words, reducing
a ctf-factor to a linear combination of interventional terms.

Algorithm 2: M-REDUCE

Input: Ctf-factor W∗ = w∗, assignments Y∗ = y∗, causal
graph G, monotonicity constraints M .
Output: Q, a list of ctf-factors along with their signs.
Initialize: Q = {+1,W∗ = w∗}, z∗ = y∗,V =
V(W∗)

1: Ci∗ = ci∗ (i ∈ [k])← FACTORIZE(T∗ = t∗, G)
2: for V ∈ V and s,T∗ = t∗ ∈ Q do
3: if V ∈ Ci \Y and causes inconsistency in Cj∗ = cj∗

for any j then
4: Replace (s,T∗ = t∗) in Q with (s,T∗ = t∗(v))

for all v ∈ D(V ) and update z∗ = z∗ ∪D(V )
5: end if
6: end for
7: for s,T∗ = t∗ ∈ Q do
8: if T∗ = t∗ is impossible, remove item from Q
9: Apply Simplification Rule with M for all variables

10: if any condition of Lem. 6 holds, return FAIL.
11: if Common-Parent inconsistency exists for two vari-

ables in the same Ci for any i, return FAIL
12: end for
13: for V in Ci in reverse topological order in G do
14: for s,T∗ = t∗ ∈ Q do
15: if the conditions of Difference Rule are not appli-

cable, continue
16: if there exists V1 ∈ Ch(V ),V1t1 ∈ T∗, such that

V, V1 belongs to same c-component and v ∈ t1,
apply Eq. 11 if v = 1 and Eq. 12 if v = 0 (if no
such child exists apply either Eq. 11 or 12) to get
P (T∗ = t∗) = P (T′

∗ = t′∗)− P (T′′
∗ = t′′∗)

17: if Differene Rule cannot be applied, return FAIL
18: Replace (s,T∗ = t∗) with s,T′

∗ = t′∗ and
(−s,T′′

∗ = t′′∗)
19: end for
20: end for
21: for s,T∗ = t∗ ∈ Q do
22: if any factors in the ctf-factorization of T∗ = t∗ is

inconsistent, return FAIL.
23: end for

4 Experiments
In this section, we demonstrate how our method can be used
in practice to identify counterfactual quantities that would
otherwise be impossible to compute, and how seemingly
natural choices can often lead to incorrect conclusions.

4.1 401k Dataset
In this section, we illustrate how naive estimation of local
effects without considering graphical constraints can lead
to misleading conclusions in real-world data, a problem our
method addresses effectively.
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Figure 3: Experiments comparing the newly proposed method versus different baselines. (a) LATE computed on 401k dataset,
using the causal diagram in Fig. 1c, as discussed in Ex. 1. (b) Effects with post-treatment conditioning, based on simulations
using the causal diagram in Fig. 1d. The ground truth is shown in red, the new method in green, and the baselines in blue/orange.

To evaluate the performance of these methods, we first
discretize income, net financial assets, and total wealth into
groups corresponding roughly to quartiles, with the group
average taken as the representative value. Using this dis-
cretized data, we design a synthetic SCM M that matches
the observational distribution of the original data. The causal
graph corresponding to M is shown in Fig. 1c. We then
generate 30,000 data points from this model to estimate
LATE, naive-LATE, and conditional-LATE, the expressions
for which are shown in Ex. 1. We also show a 95% confi-
dence interval with bootstrapping. The ground truth is also
depicted in Fig. 3a.

4.2 Fair Machine Learning Application
In this part, we discuss an example in the context of fair ma-
chine learning. Consider the causal graph from Fig. 1d with
binary variables Z (age, 0 old, 1 young), X (sex, 0 female,
1 male), M (education, 0 low education, 1 high) and Y (in-
come, 0 low income, 1 high). The functions and distribution
in the SCM are given as follows, where U1

m, U0
m are ternary

with values from {a, c, n}.
Z = UZ ;X = UX , P (UX = 1) = P (UZ = 1) = 0.5

M =

{
1{U1

m = a}+X · 1{U1
m = c} if Z = 1

1{U0
m = a}+X · 1{U0

m = c} if Z = 0

P (U1
m = a) = 0.5, P (U1

m = c) = 0.3

P (U0
m = a) = 0.25, P (U0

m = c) = 0.5

x0,m0 x0,m1 x1,m0 x1,m1

z0 0.1 0.8 0.9 0.6
z1 0.4 0.9 0.1 0.8

Table 1: Distribution of P (Y = 1 | z, x,m) in Sec. 4.2
.

We are interested in understanding the total causal effect
of X on Y , for various subgroups of the population. We be-
gin by computing the total effect (TE), writtenE[Yx1

−Yx0
],

which measures the average effect of changing x0 → x1

(female to male) across all individuals in the population. We
find that TE = 0.175, which means that being male causally
increases the income in the population. We then wish to look
into different age groups to understand if Z modifies the ef-
fect, by computing z-specific total effect

z-TEx0,x1
(y) := E[Yx1

| z]− E[Yx0
| z] (23)

= E[Y | x1, z]− E[Y | x0, z]. (24)

This allows us to quantify discrimination separately for
young and old populations. Furthermore, we believe that
possible discrimination may be specifically different for
highly educated individuals (in each age group), and we are
thus also interested in computing the counterfactual quantity
given by the following (z,m)-specific total effect (Plečko
and Bareinboim 2024):

(z,m)-TEx0,x1(y) = E[Yx1 | z,m]− E[Yx0 | z,m] (25)

Note that this corresponds to a counterfactual question “for
a person of fixed age and education level, how would their
income change if X had been equal male, compared to had
X been equal to female?” Notably, in the absence of mono-
tonicity, this effect is not identifiable since it involves post-
treatment conditioning (M comes after X causally), yet
when assuming X → M monotonicity, we can recover this
term.

The reader may be tempted to use the estimator

(z,m)-TVx0,x1
(y) := E[Y | x1, z,m]− E[Y | x0, z,m]

in place of (z,m)-TEx0,x1
(y). However, the (z,m)-TV

quantity does not equal the (z,m)-TEx0,x1(y) effect, and
using may lead to incorrect conclusions (in fact, in the
graph in Fig. 1, (z,m)-TV is a measure of direct effect,
not total causal effect, which also includes the indirect ef-
fect X →M → Y ).

For the experiment, we sample 10000 data points from
the given SCM and obtain the empirical values for the 3
quantities. Along with these estimates, we also show the
ground truth (z,m)-TE as obtained from the distribution



of the SCM. We also show a 95% confidence interval with
bootstrapping. We present our results in Fig. 3b. More de-
tails about the experiments are in Appendix E.

5 Conclusions
In conclusion, this work represents a significant step toward
encoding and utilizing local monotonicity constraints into
the graphical approach to causality. Our proposed lemmas
and algorithms broaden the scope of identifiable counterfac-
tual queries, extending existing methods to more complex
settings, as also witnessed by real-world examples. Future
work could explore additional shape constraints (e.g., con-
vexity/concavity) to further extend the graphical approach
for query identification under shape constraints.
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Supplementary Material Counterfactual Identification Under Monotonicity Constraints

A Background and Previous Results
A.1 Local Average Treatment Effect
Let X be a binary treatment variable and Y be its effect. Define an instrument variable Z, which is independent of Yx0

, Yx1

and X is dependent on Z. The local average treatment effect is the effect of X on Y for the group of units whose treatments
comply with the instrument Z and is given quantitatively as follows:

LATE := E[Yx1 − Yx0 | Xz0 = 0, Xz1 = 1] (26)

(Imbens and Angrist 1994) shows that under the following two assumptions, LATE is identifiable.

Assumption 1 (Existence of Instruments). Let Z be a random variable such that

1. For all z ∈ D(Z), Yx0
, Yx1

, Xz are jointly independent of Z, and,
2. P (X | Z) is a non-trivial function of Z.

Assumption 2 (Monotonicity). For all units, Xz1 ≥ Xz0 .

Under these two assumptions, we have

E[Y | z1]− E[Y | z0] (27)
= E[Yx1 ·Xz1 + Yx0 · (1−Xz1) | z1]− E[Yx1 ·Xz0 + Yx0 · (1−Xz0) | z0] (28)
(i)
= E[(Xz1 −Xz0) · (Yx1 − Yx0)] (29)
(ii)
= P (Xz1 −Xz0 = 1) · E[Yx1

− Yx0
| Xz1 −Xz0 = 1] (30)

(i) follows from Assumption 1 and (ii) follows from Assumption 2. Hence,

LATE =
E[Y | Z = 1]− E[Y | Z = 0]

E[X | Z = 1]− E[X | Z = 0]
. (31)

For more details, refer to (Imbens and Angrist 1994).

A.2 Assumptions for Identification of LNDE and LNIE
(Yamamoto 2013) proposes that LNDE and LNIE can be identified under the following assumptions, mapped to the notation
used in this paper.

1. Assumption 1: Exclusion Restriction

Mz,x(u) = Mz′,x(u) Yz,x,m(u) = Yz′,x,m(u) (32)

for all z, z′ ∈ {0, 1}, t ∈ {0, 1},m ∈M,u ∈ U

2. Assumption 2: Monotone Treatment Reception

Xz0(u) ≤ Xz1(u) (33)

for all u ∈ U.

3. Assumption 3: Conditionally Ignorable Treatment Assignment

{Yx,m,Mx′ , Xz : x, x′, z ∈ {0, 1},m ∈M} ⊥⊥ Z |W (34)

4. Assumption 4: Conditionally Ignorable Observed Mediator among Compliers

Yx′,m ⊥⊥Mx | X = x,W,Xz0 = 0, Xz1 = 1 (35)

for all x, x′ ∈ {0, 1},m ∈M.



A.3 Counterfactual Identification
In this section, we provide the necessary background needed for understanding counterfactual evaluation and identification.
Most of the results presented here are from (Correa, Lee, and Bareinboim 2021). We first begin by defining counterfactual
distributions:
Definition 4 (Counterfactual Distribution). An SCMM = ⟨U,V,F , P (U⟩ induces a family of joint distributions over coun-
terfactual events yx, . . . ,Zw for any Y,Z, . . . ,X,W ⊆ V

PM(yx, . . . , zw) =
∑

u|Yx=y,
...,Zw=z

P (u) (36)

The above definition describes how counterfactual distributions are defined through the elements of the SCM, namely the
functional mechanisms F and the distribution over the exogenous variables P (u). Since the latent variables U are unobserved,
a key challenge in practice is on how to evaluate the right-hand side of Equation 4 based on observational/interventional
data and the causal diagram (this task is usually called identification). (Correa, Lee, and Bareinboim 2021) proposes ways to
identify counterfactual distributions from observational distributions. Some definitions and background needed to understand
their identification algorithm are provided below.
Definition 5 (Ancestors of a counterfactual). Let YX be a counterfactual term where Y ∈ V,X ⊆ V. Then the set of ancestors
of YX, denoted by An(YX) consists of each WZ, such that W ∈ An(Y )GX

and z = x ∩An(W )GX
.

Similarly, we can define the Parents of a counterfactual to be Wz such that W ∈ Pa(Y )GX
and z = x ∩An(W )GX

.
Definition 6 (Counterfactual Factor (ctf-factor)). A counterfactual factor is a distribution of the form

P (W1[pa1]
= w1, . . . ,Wl[pal]

= wl) (37)

where each Wi ∈ V and Wi can be equal to Wj for some i, j ∈ {1, . . . , l}.

Theorem 3 (Counterfactual factorization). Let P (W∗ = w∗) is a ctf-factor and let W1 < W2 < . . . be a topological order
over the variables in G[V (W)]. If C1,C2, . . . are c-components in the same graph, define Cj∗ = {Wpaw

∈W∗ | W ∈ Cj}
and cj∗ are the values in w∗ corresponding to the values in Cj∗, then

P (W∗ = w∗) =
∏
j

P (Cj∗ = cj∗) (38)

(Correa, Lee, and Bareinboim 2021) introduced the concept of inconsistency in a ctf-factor and shows that if a ctf-factor is
inconsistent, then the ctf-factor is non-ID.
Definition 7 (Inconsistent ctf-factor). P (W∗ = w∗) is an inconsistent ctf-factor if it is a ctf-factor, G[V (W∗)] has a single
c-component, and one of the following conditions hold
1. Parent-Child Inconsistency: there exists Wt ∈W∗, Z ∈ T ∩ V (W∗) such that z ∈ t, z′ ∈ w∗ and z ̸= z′

2. Common Parent Inconsistency: there exists Wi[ti],Wj[tj ] ∈W∗ and T ∈ Ti ∩Tj such that t ∈ t1, t
′ ∈ t2 and t ̸= t′.

The counterfactual query may need to be simplified before it can be represented as a ctf-factor. Unnesting and minimization
are two ways to do that.

Theorem 4 (Counterfactual Unnesting Theorem (CUT)). Let X̂, Ẑ be any natural interventions on disjoint sets X,Z ⊆ V,
and Y ⊆ V be disjoint from X,Z such that X ∈ An(Y). Then P (YX̂,Ẑ = y) is identifiable iff P (YẐ,x = y, X̂ = x) and is
given by

P (YX̂,Ẑ = y) =
∑
x

P (YẐ,x = y, X̂ = x) (39)

Definition 8 (Interventional Minimization). Let ∥Y∗∥ := ∪YX̂∈Y∗ such that
∥∥YX̂

∥∥ := YẐ where Z = X ∩ An(Y )GX̄
and Ẑ

is consistent with
∥∥∥X̂∥∥∥ , ∥x∥ = x and ∥∅∥ = ∅. Then Y∗ = ∥Y∗∥.

If the counterfactual query to be evaluated is in the conditional form, then (Correa, Lee, and Bareinboim 2021) proposes the
following to get the final counterfactual query we need to evaluate.
Definition 9 (Ancestral components). Let X∗,Y∗ be two sets of counterfactual variables and G be the causal diagram. Then
the ancestral components induced by W∗ = X∗ ∪Y∗ given X∗ are sets A1∗,A2∗, . . . that form a partition over An(W∗),
made of the union of ancestral sets An(Wt)GX∗(Wt)

for Wt ∈W∗. Sets An(W1[t1])GX∗(W1[t1])
and An(W2[t2])GX∗(W2[t2])

are

put together if they are not disjoint or there exists a bidirected arrow in G connecting variables in those sets. Here X∗(Wt) =
V (∥X∥∗ ∩An(Wt).



This is used for the following reduction.

Lemma 7 (Conditional Query Reduction). Let X∗,Y∗ be two sets of counterfactual variables and D∗ be the set of variables
in the same ancestral component given X∗ as any variable in Y∗, then

P (Y∗ = y∗ | X∗ = x∗) =

∑
d∗\(y∗∪x∗)

P (∧Dt∈D∗Dpad
= d)∑

d∗\x∗
P (∧Dt∈D∗Dpad

= d)
(40)

where pad is consistent with t and d∗ for each Dt ∈ D∗. Moreover, P (Y∗ = y∗ | X∗ = x∗) is ID iff P (∧Dt∈D∗Dpad
= d)

is ID.

For more details, refer to (Correa, Lee, and Bareinboim 2021).

B Proofs
B.1 Proof of Lem. 1
Proof. Proof of first part: First, we use Theorem 1 from (VanderWeele and Robins 2010) to convert all edges on all paths
from X to Y to be positive monotonic. Consider a particular assignment of exogenous variables u. Suppose X(u) = x0 and
we are changing it to x1. Now, for all children Z of X on a path from X to Y , we have, Zx1

(u) ≥ Zx0
(u).

Consider any node M on the path from X to Y . None of the non-monotonic parents of M gets affected since that would
violate our assumption that all paths from X to Y consist of only monotonic edges. If the monotonic parents Pa(M)x1

(u) ≥
Pa(M)x0

(u), then Mx1
(u) ≥Mx0

(u).
We know the base case is true for children of X . Hence, by induction on the children, we get Yx1

(u) ≥ Yx0
(u). Similarly, it

can be shown when X(u) = x1.

Proof of second part: In this case, we will find an assignment such that when there is a non-monotonic edge, the condition of
monotonicity is violated. Let on the path from X to Y , the edge W → Z is non-monotonic. Let’s call this path P . If a node is
not in P it is just a random coin toss. For all nodes in P except Z, they can be equal to 0, 1 or parent on this path. For Z, it can
be either 0, 1,W, 1−W .

Consider the assignment of exogenous variables u as follows: all nodes in P are equal to their parents, except for Z, which
is 1 −W . Now, Wx1

(u) = 1,Wx0
(u) = 0, which implies Zx1

(u) = 0, Zx0
(u) = 1 and Yx1

(u) = 0, Yx0
(u) = 1, violating

the condition of monotonicity.

Note that the condition of Lem. 1 is not necessary for every SCM to have the global monotonicity, that is, there exists SCMs
which does not satisfy the condition, but can still have global monotonicity. The situation is illustrated through two SCMs
M1,M2 below:

Z = UZ , (both M1,M2) (41)

W =

{
UW · (1− Z) + (1− UW ) · Z (M1)

UW (M2)
(42)

X = 1(UX = 1) + 1(UX = 2) · (W ⊕ Z) (43)

Here UZ , UW are binary with P (UZ = 1) = P (UW = 1) = 0.5. UX is ternary and P (UX = 1) = P (UX = 2) = P (UX =
3) = 1/3. Note that for model M1, Xz0(u) = Xz1(u) implying that Z → X is monotonic. However, in M2

Xz1(UZ , UW = 1, UX = 2) < Xz0(UZ , UW = 1, UX = 2) (44)

implying that Z → Y is not monotonic. Observe that M1,M2 have the same observational and interventional distribution. So,
the two models cannot be distinguished by observations or experiments.

B.2 Proof of Lem. 2
Proof. Let the ctf-factor be of the form P (Y∗,Wt,s = w,Wt′,s = w′) where t′ ≥ t, and W is binary. By definition of
monotonicity, we have

Wt,s(u) ≤Wt′,s(u) (45)

The definition has the following two implications:

1. No u satisfies Wt,s(u) = 1,Wt′,s(u) = 0
2. Wt,s(u) = 0,Wt′,s(u) = 0 ⇐⇒ Wt′,s(u) = 0
3. Wt,s(u) = 1,Wt′,s(u) = 1 ⇐⇒ Wt,s(u) = 1



We will use the above implications to first prove the Simplification Rule and then the Difference Rule.

Proof of Simplification Rule:

P (Y∗,Wt,s = 0,Wt′,s = 0) =
∑
u

P (u)1{Y∗(u) = y∗,Wt,s(u) = 0,Wt′,s(u) = 0) (46)

=
∑
u

P (u)1{Y∗(u) = y∗,Wt′,s(u) = 0) (Definition of Monotonicity) (47)

= P (Y∗,Wt′,s = 0) (48)

P (Y∗,Wt,s = 1,Wt′,s = 1) =
∑
u

P (u)1{Y∗(u) = y∗,Wt,s(u) = 0,Wt′,s(u) = 0) (49)

=
∑
u

P (u)1{Y∗(u) = y∗,Wt,s(u) = 1) (Definition of Monotonicity) (50)

= P (Y∗,Wt,s = 1) (51)

This proves Rule 1 of MRL. Now, we use this to prove the Difference Rule.

Proof of Difference Rule:

P (Y∗,Wt′,s = 1) = P (Y∗,Wt,s = 1,Wt′,s = 1) + P (Y∗,Wt,s = 0,Wt′,s = 1) (52)
= P (Y∗,Wt,s = 1) + P (Y∗,Wt,s = 0,Wt′,s = 1) (Simplification Rule) (53)

This can be rewritten as

P (Y∗,Wt,s = 0,Wt′,s = 1) = P (Y∗,Wt′,s = 1)− P (Y∗,Wt,s = 1) (54)

This proves Eq. 11. Eq. 12 can be proved similarly.

B.3 Proof of Prop. 3
Causal Graph in Fig. 1c

Proof. First, we will show how to compute P (Yx1 , Xz0 = 0, Xz1 = 1) for the causal graph in Fig. 1c. Once we can compute
this term, the claim follows. Note that, An(Yx) = {Yx,Mx,W,Z}, An(Xz) = {Xz,W}.

P (Yx1
= y,Xz0 = 0, Xz1 = 1) =

∑
w,z,m

P (Yx1mzw = y,Mx1w = m,Xz0w = 0, Xz1w = 1, Zw = z,W = w) (55)

(i)
=

∑
w,z,m

P (Yx1mzw = y, Zw = z,W )P (Mx1zw = m,Xz0w = 0, Xz1w = 1) (56)

(ii)
=

∑
w,z,m

P (Yx1mzw = y, Zw = z,W )
[
P (Mx1w = m,Xz1w = 1)− (57)

P (Mx1w = m,Xz0w = 1)
]

(58)

=
∑

w,z,m

P (y, z, w | do(x,m))
[
P (m,x1 | do(w, z1, y))− P (m,x1 | do(w, z0, y)

]
(59)

=
∑

w,z,m

P (y | w, z, x1,m)P (w, z)
[
P (m,x1 | w, z1)− P (m,x1 | w, z0)

]
(60)

(i) follows from counterfactual factorization and (ii) follows from Difference Rule Eq. 11. For clarity, let’s denote

Q1(y) =
∑
m,z

P (y | w, z, x1,m)P (z | w)
[
P (m,x1 | w, z1)− P (m,x1 | w, z0)

]
(61)

Using a similar calculation as above and replacing x1 with x0, and applying Difference Rule Eq. 12 instead of Eq. 11. Then,

Q0(y) =
∑
m,z

P (y | w, z, x0,m)P (z | w)
[
P (m,x0 | w, z0)− P (m,x0 | w, z1)

]
(62)



By definition of expectation, we get

LATE: =

∑
w,y y ·Q1(y)P (w)∑
w,y Q1(y)P (w)

−
∑

w,y y ·Q0(y)P (w)∑
w,y Q0(y)P (w)

, (63)

Causal Graph in Fig. 2b

Proof. We use a similar calculation as in the proof for Fig. 1c.

P (Yx1 , Xz0 = 0, Xz1 = 1) (64)

=
∑

w,z,m

P (Yx1mw,Mx1zw = m,Xz0w = 0, Xz1w = 1, Zw = z, w) (65)

=
∑

w,z,m

P (Yz1mw, Xz0w = 0, Xz1w = 1, w)P (Mx1zw = m,Zw = z) (Ctf-factorization) (66)

=
∑

w,z,m

[
P (Yz1mw, Xz1w = 1, w)− P (Yz1mw, Xz0w = 1, w)

]
P (Mx1zw = m,Zw = z) (Diff. Rule) (67)

=
∑

w,z,m

[
P (y, x1, w | do(z1,m))− P (y, x1, w | do(z0,m))

]
P (m, z | do(w, x0, y)) (68)

=
∑

w,z,m

P (w)
[
P (y | w, z1, x1,m)P (x1 | w, z1)− P (y | w, z0, x1,m)P (x1 | w, z0)

]
P (m | w, x1, z)P (z | w) (69)

For clarity of notation, let’s use:

R1(y) =
∑
m,z

[
P (y | w, z1, x1,m)P (x1 | w, z1)− P (y | w, z0, x1,m)P (x1 | w, z0)

]
P (m | w, x1, z)P (z | w) (70)

Similarly,

R0(y) =
∑
m,z

[
P (y | w, z0, x0,m)P (x0 | w, z0)− P (y | w, z1, x0,m)P (x0 | w, z1)

]
P (m | w, x0, z)P (z | w) (71)

By definition of expectation, we get

LATE: =

∑
w,y y ·R1(y)P (w)∑
w,y R1(y)P (w)

−
∑

w,y y ·R0(y)P (w)∑
w,y R0(y)P (w)

, (72)

B.4 Proof of Prop. 4
Proof. We follow a similar proof technique as employed for Proposition 3.

P (Yx1Mx0
, Xz0 = 0, Xz1 = 1) (73)

=
∑

w,z,m

P (Yx1mw,Mx0zw = m,Xz0w = 0, Xz1w = 1, Zw = z, w) (74)

=
∑

w,z,m

P (Yz1mw, Xz0w = 0, Xz1w = 1, w)P (Mx0zw = m,Zw = z) (Ctf-factorization) (75)

=
∑

w,z,m

[
P (Yz1mw, Xz1w = 1, w)− P (Yz1mw, Xz0w = 1, w)

]
P (Mx0zw = m,Zw = z) (Diff. Rule) (76)

=
∑

w,z,m

[
P (y, x1, w | do(z1,m)− P (y, x1, w | do(z0,m)

]
P (m, z | do(w, x0, y)) (77)

=
∑

w,z,m

P (w)
[
P (y | w, z1, x1,m)P (x1 | w, z1)− P (y | w, z0, x1,m)P (x1 | w, z0)

]
P (m | w, x0, z)P (z | w) (78)



For clarity, let’s call the following quantity T1(y).

T1(y) =
∑
m,z

[
P (y | w, z1, x1,m)P (x1 | w, z1)− P (y | w, z0, x1,m)P (x1 | w, z0)

]
P (m | w, x0, z)P (z | w) (79)

Similarly,

T0(y) =
∑
m,z

[
P (y | w, z0, x0,m)P (x0 | w, z0)− P (y | w, z1, x0,m)P (x0 | w, z1)

]
P (m | w, x0, z)P (z | w) (80)

By definition of expectation, we have

LNDE: =

∑
w,y y · T1(y)P (w)∑
w,y ·T1(y)P (w)

−
∑

w,y y · T0(y)P (w)∑
w,y ·T0(y)P (w)

(81)

LNIE can be obtained similarly or simply by subtracting LNDE from LATE.

In the next part, we show that the addition of bidirected edges to the graph makes LATE non-ID and, as a consequence,
LNDE and LNIE.

Proof. Case 1: Unobserved confounder between Z,X . Define two SCMs M1,M2 as follows:

Z = UZ , P (UZ = 1) = P (UZ = 0) = 0.5 (82)
Y = UY , P (UY = 1) = P (UY = 0) = 0.5 (83)

X =


Z · UZ · UY + (1− UZ · UY ) · UX in M1

Z · (1− UZ) · (1− UY ) + (UZ + UY ) · UX in M2

UX , P (UX = 0) = P (UX = 1) = 0.5 in other cases
(84)

Here P (UX = 0) = 0.5 is there to make the distribution positive. The observational distribution is the same in both the models,
while P 1(Yx1

| Xz0 = 0, Xz1 = 1) = 1 and P 1(Yx1
| Xz0 = 0, Xz1 = 1) = 0.

Case 2: Unobserved confounder between M,Y Define two SCMs M1,M2 as follows, where UM , UX are of canonical types
{a, c, n}

Z = UZ , P (UZ = 1) = P (UZ = 0) = 0.5 (85)
M = (UM = a) + Z · (UM = c) (86)
X = (UX = a) + Z · (UX = c) (87)

Y =


0 if UX = c, UM = c (M1)

M ⊕X if UX = c, UM = c (M2)

UY , P (UY = 1) = P (UY = 0) = 0.5 otherwise
(88)

The observational distribution is the same in both the models, but P 1(Yx1
| UX = c, UM = c) ̸= P 2(Yx1

| UX = c, UM =
c). Hence, LATE is non-ID.

Case 3: Unobserved confounder between X and M . Define two SCMs T1, T2 as follows, where UZ , UM , UX , UY are binary
variables with probability of being 1 is 0.5. Also, M0 and M1 are the first and second elements of M , respectively.

Z = UZ (89)
M = (UZ , UM ) (90)
X = Z · UY · UM + (1− UY · UM ) · UX (91)

Y =
{
M0 if M1 · UY = 1 (T1)X if M1 · UY = 1 (T2)Bernoulli(0.5) otherwise (92)

The observational distribution is the same in both models, since M0 = UZ = Z = X when UM · UY = 1. However,
P 1(Yx1

= 1 | Xz0 = 0, Xz1 = 1) = 0.5 and P 2(Yx1
= 1 | Xz0 = 0, Xz1 = 1) = 1. Similarly, LATE will be 0 in T1 and 1 in

T2.
The proof technique can be extended to other cases as well. A general construction is shown in Sec. B.7.



B.5 Proof of Proposition. 5
When x = x′, then we can write the terms as

P (Yx = y | m,x) = P (y | m,x) (93)

P (Yx = y′ | x,m, y) =

{
1 if y = y′

0 otherwise
(94)

Proof of ID of P (Yx | x′,m)

Proof. In this part, we will consider x ̸= x′.

An(Yx) = {Yx,Mx, Z} (95)
An(X) = {X,Z} (96)
An(M) = {M,X,Z} (97)
An(Y ) = {Y,X,M,Z} (98)

Now, we can write the first quantity as follows:

P (Yx = y,X = x′,M = m) =
∑
m′,z

P (Yx = y,Mx = m′, Z = z,X = x′,M = m) (99)

=
∑
m′,z

P (Yxm′z = y,Mxz = m′, Z = z,Xz = x′,Mx′z = m) (100)

=
∑
m′,z

P (y | x,m′, z)P (z, x′)P (Mxz = m′,Mx′z = m) (101)

Now, P (Mxz = m′,Mx′z = m) can be computed by exploiting the monotonicity of X →M and that M is binary. Without
loss of generality, assume x′ ≥ x. Then, by monotonicity, we have

P (Mxz = 0,Mx′z = 0) = P (Mx′z = 0) = P (m0 | x′, z) (102)

P (Mxz = 0,Mx′z = 1) = P (Mx′z = 1)− P (Mxz = 1) = P (m1 | x′, z)− P (m1 | x, z) (103)
P (Mxz = 1,Mx′z = 0) = 0 (104)
P (Mxz = 1,Mx′z = 1) = P (Mxz = 1) = P (m1 | x, z) (105)

Thus P (Yx = y | x,m) is identifiable for all x,m, y.

Proof of ID of P (Yx | x′, y′,m)

Proof. In this part, we will consider the expression P (Yx = y | x′, y′,m). Similar to the previous proof, we have

P (Yx = y,X = x′,M = m,Y = y′) (106)

=
∑
m′,z

P (Yx = y,Mx = m′, Z = z,X = x′,M = m,Y = y′) (107)

=
∑
m′,z

P (Yxm′z = y,Mxz = m′, Z = z,Xz = x′,Mx′z = m,Yx′mz = y′) (108)

=
∑
m′,z

P (z, x′)P (Mxz = m′,Mx′z = m)P (Yxm′z = y, Yx′mz = y′) (109)

Now, P (Mxz = m′,Mx′z = m) can be computed as shown in the proof of identifiability of P (Yx | x,m). Here, we show
how to compute P (Yxm′z = y, Yx′mz = y′). If (x,m′) < (x′,m), then

P (Yxm′z = 0, Yx′mz = 0) = P (Yx′mz = 0) = P (y0 | x′,m, z) (110)

P (Yxm′z = 0, Yx′mz = 1) = P (y1 | x′,m, z)− P (y1 | x,m′, z) (111)
P (Yxm′z = 1, Yx′mz = 0) = 0 (112)

P (Yxm′z = 1, Yx′mz = 1) = P (Yxm′z = 1) = P (y1 | x,m′, z) (113)
(114)



Similarly, the terms can be derived when (x,m′) > (x′,m). Note that, for cases x > x′,m′ < m or x < x′,m′ > m,
P (Mxz = m′,Mx′z = m) = 0. Hence, P (Yxm′z = y, Yx′mz = y′) need not be computed.

Proof of Necessity of X →M monotonicity:

Proof. Now, we show that the quantity P (Yx,m, x′) is non-ID without the monotonicity on X → M . Consider the sub-
graph without Z. Now, we will define two models M1,M2, which coincides on Layer 1 and Layer 2 distribution, but not on
counterfactual distribution. Define functions such that P (X = 1) = P (X = 1) = 0.5 and the distribution of Y as

P (y1 | x0,m0) = 0.1 (115)
P (y1 | x0,m1) = 0.2 (116)
P (y1 | x1,m0) = 0.3 (117)
P (y1 | x1,m1) = 0.4 (118)

In M1, M = UM and in M2,M = UM ⊕ X . P (UM = 1) = 0.5. The observational and interventional distribution is the
same in all the models as P (x), P (m | x), P (y | x,m) are the same in both the models. Now, P (Yx = y,X = x′,M = m)
can be written as

P (Yx = y,X = x′,M = m) =
∑
m′

P (x′)P (y | x,m′)P (Mx = m′,Mx′ = m) (119)

Now, in M1, the second term is non-zero only when m′ = m and in M2, the second term is non-zero only when m′ ̸= m.
Then the counterfactual evaluation varies in the two models

P 1(Yx = y,X = x′,M = m) = 0.5 · 0.5 · P (y | x,m) (120)

P 2(Yx = y,X = x′,M = m) = 0.5 · 0.5 · P (y | x,m′) (121)

The quantities cannot be equal by our definition of the models.

Proof of necessity of X → M,M → Y,X → Y monotonicity: Now, in the next part, we show that local monotonicity on
all the three edges X → Y,X → M,M → Y are necessary. We will show that if either of them is non-monotonic, the query
at hand becomes non-ID.

Proof. Case 1: X → Y is non-monotonic. Consider the following SCMs M1,M2, where the functions for X,M are the same,
and that of Y is different.

X = UX (122)
M = UM (123)

Y =

{
UY (M1)

X ⊕ UY (M2)
(124)

Here UX , UM , UY are binary and P (UX = 0) = P (UM = 0) = P (UY = 0) = 0.5. Note that the monotonicity conditions
are satisfied as X →M,M → Y trivially. The observational and interventional distribution is the same for both of them since
P (x), P (m | x), P (y | x,m) is the same in both models. However,

P 1(Yx | x′, y) ̸= P 2(Yx | x′, y) and P 1(Yx | m,x′, y) ̸= P 2(Yx | m,x′, y) (125)
where P 1, P 2 denotes the distribution in M1,M2 respectively.

Case 2: M → Y is non-monotonic. Consider the following SCMs M1,M2, where the functions are given as follows

X = UX (126)
M = 1 · {UM = aM}+X · {UM = cM}+ 0 · {UM = nM} (127)

Y =

{
X · {UY = cY }+ 1 · {UY = aY }+ 0 · {UY = nY } (M1)

X · {UY = cY }+M · {UY = aY }+ (1−M) · {UY = nY } (M2)
(128)

UM can be aM , cM , nM with probability of 1/3 each. UY can be aY , cY , nY with probability 1/3. It is easy to see that the
monotonicity constraints are satisfied, and the observational distribution is the same from table 2.



Table 2: P (Y | X,M) distribution for Case 2

X M Y M1 M2

0 0 0 cY + nY cY + aY
0 0 1 aY nY

0 1 0 cY + nY cY + nY

0 1 1 aY aY
1 0 0 nY aY
1 0 1 cY + aY cY + nY

1 1 0 nY nY

1 1 1 cY + aY cY + aY

However, the quantity P (Yx0
= 0, Yx1

= 1) is not identifiable. In M1

P (Yx1
= 1, Yx0

= 0) = P (cY ) (129)

In M2, however,
P (Yx1 = 1, Yx0 = 0) = P (cY ) + P (cM )P (aY ) (130)

Hence,
P 1(Yx | x′, y) ̸= P 2(Yx | x′, y) and also P 1(Yx | m,x′, y) ̸= P 2(Yx | m,x′, y) (131)

Case 3: X →M is non-monotonic. Define the canonical SCM M1,M2 as follows:

X = UX (132)
M = X · {UM = cM}+ (1−X) · {UM = dM} (133)

Now, define the following distribution for the canonical types of Y

Table 3: Each row represents a canonical type for Y

Yx0m0 Yx1m0 Yx0m1 Yx1m1 UY M1 M2

0 0 0 0 u1 p1 p1
0 0 0 1 u2 p2 p2 − ϵ
0 0 1 1 u3 p3 p3 + ϵ
0 1 0 1 u4 p4 p4 + ϵ
0 1 1 1 u5 p5 p5 − ϵ
1 1 1 1 u6 p6 p6

Note that the observational distribution is the same in both models since P (x), P (m | x) are the same and

P (y1 | x0,m0) = p6 (134)
P (y1 | x1,m0) = p4 + p5 + p6 (135)
P (y1 | x0,m1) = p3 + p5 + p6 (136)
P (y1 | x1,m1) = 1− p1 (137)

However, the distribution P (Yx0
= 0, Yx1

= 1) varies in the two models as shown below:

P 1(Yx0
= 0, Yx1

= 1) = P (cM )(1− p1 − p6) + P (dM )(p4) (138)

P 2(Yx0
= 0, Yx1

= 1) = P (cM )(1− p1 − p6) + P (dM )(p4 + ϵ) (139)

Hence,
P 1(Yx | x′, y) ̸= P 2(Yx | x′, y) and P 1(Yx | m,x′, y) ̸= P 2(Yx | m,x′, y) (140)

Cases 1, 2, and 3 demonstrate that all the edges X → Y, Y →M,M → X are necessary.



B.6 Proof of Thm. 1
Proof. In this section, we show that M-ID is sound. From (Correa, Lee, and Bareinboim 2021) and (Tian and Pearl 2002), we
already know that CTF-FACTOR, CTF-FACTORIZE, IDENTIFY are sound. Here, we need to show that M-REDUCE is sound,
that is given a ctf-factor, it returns us an expression over the ctf-factors, which evaluate to the same value, that is

P (W∗ = w∗) =
∑

c,T∗=t∗∈Q

c · P (T∗ = t∗) (141)

Note that the list Q in M-REDUCE is a list of ctf-factors, whose sum (along with their signs) evaluates to the given coun-
terfactual query. In the first part, expanding the summation increases the number of items in the list but does not change the
evaluation. Simplification Rule of Lem. 2 is sound. Hence, its application also does not change the evaluation of each term. If
the algorithm does not return fail, we move on to the application of the Difference Rule.

If the condition of the Difference Rule is satisfied, and it can be applied, then we apply the rule, change the signs accordingly,
and add them to the list. Observe that the evaluation still does not change since the Difference Rule is sound.

∑
c,W∗=w∗∈Q

c · P (W∗ = w∗) =
∑

c,W∗=w∗∈Q\{s,T∗=t∗}

c · P (W∗ = w∗) + s · P (T′
∗ = t′∗) + (−s) · P (T′′

∗ = t′′∗) (142)

Thus, the final evaluation returned by M-REDUCE evaluates to the same expression as its input, proving that the algorithm is
sound.

B.7 Proof of Thm. 2
We assume that all the impossible ctf-factors have been removed, and hence, every ctf-factor in this part of the proof are
possible, that is there exists SCMs where the probability of the ctf-factor is greater than 0. Before, we proceed with the proof,
let us introduce a function, by which a variable depends on its parents and exogenous variables. Let’s call this c-function.

Definition 10 (c-function). Suppose Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm are terms in a ctf-factor. We will call the following
construction of the function for W as c-function. U and R are the exogenous variables for W .

1. Case 1: wi = 0, ∀i ∈ [m], then W = U .
2. Case 2: wi = 1, ∀i ∈ [m], then W =∼ U .
3. Case 3: W = (1− U) · 1{∃j pa(W ) ≥ tj , wj = 1}+ U ·R

Note that the monotonicity of pa(W ) on W holds true by such construction.

Lemma 8. For any possible ctf-factor P (W∗ = w∗), we can have an SCM, such that all endogenous variables are c-functions
and

P (W∗ = w∗) = P (U = 0) (143)

Proof. This follows from the definition of the c-function, which guarantees that U = 0 is the only value that satisfies all the
variables in the ctf-factor W∗ = w∗.

Now, we prove Lem 6, which we will call Multi-Parent Inconsistency.

Proof. Without loss of generality, assume t1, t2 are the values of parents that either of the above condition holds. Let all
variables in V (Y∗) follow the c-functions as described earlier. Note that the graph is essentially Markovian.

Let UW be the set of all exogenous variables corresponding to the monotonic functions of W , and each one occurs with the
same probability in M1. Let W∗ = w∗ be an extension of Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm such that Wt1 = w1,Wt2 =
w2, . . . ,Wtm = wm,W∗ = w∗ corresponds to exactly one u ∈ UW , that is ∗ corresponds to all other assignment of parents of
W . Let u1, u2, u3, u4 be 4 values of UW which corresponds to the following assignments

u0 : Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm,W∗ = w∗

u1 : Wt1 = w′
1,Wt2 = w2, . . . ,Wtm = wm,W∗ = w∗

u2 : Wt1 = w1,Wt2 = w′
2, . . . ,Wtm = wm,W∗ = w∗

u3 : Wt1 = w′
1,Wt2 = w′

2, . . . ,Wtm = wm,W∗ = w∗

Note that such an assignment is possible without violating monotonicity since we have already applied simplification. Define
model M2 such that

P 2(u0) = P 1(u0) + ϵ, P 2(u3) = P 1(u3) + ϵ

P 2(u1) = P 1(u1)− ϵ, P 2(u2) = P 2(u2)− ϵ



Now, consider the observational distribution P (W = wj | tj) when tj ̸= t1, t2

P (W = wj | tj) = P (u0) + P (u1) + P (u2) + P (u3) + P (u : Wtj (u) = wj) (144)

= P 1(Wtj = wj) (145)

= P 2(Wtj = wj) (146)

For tj = t1, P 1(Wt1 = w1) = P 2(Wt1 = w1) = P (u0) + P (u1) + P (u : Wt1(u) = w1)
Note that the L2 distribution is also the same for both models.
How, the counterfactual query, P (Y∗,Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm) is given by

P 1(Y∗,Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm) (147)

= P 1(U∗
Y )(P

1(u0) + P 1(u : Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm)) (148)

< P 2(U∗
Y )(P

2(u0) + P 2(u : Wt1 = w1,Wt2 = w2, . . . ,Wtm = wm)) (149)

Hence, if there is a multi-parent inconsistency, the ctf-factor is non-ID. From here on, we will assume that there is no
multi-parent inconsistency in the ctf-factor. Note that if there are no such inconsistencies, then there can be at most two terms
corresponding to a variable in the CTF-factor, and if there are two terms, they would have different assignments.
Lemma 9 (Common-Parent Inconsistency). If after applying Simplification Rule, there exists Wi[ti],Wj[tj ] (Wi,Wj in the
same c-component of G[V (W∗)]) and T ∈ Ti ∩Tj such that i ̸= j, t ∈ t1, t

′ ∈ t2, t ̸= t′, then the ctf-factor is non-ID.

Proof. Before we proceed with the cases, let’s define another class of functions called v-functions.

Definition 11 (v-function). Let W be a node and U and R, its exogenous variables. Let T be a parent where T → W is
monotonic. Given a ctf-factor, define the function as follows:

1. Case 1: If the ctf-factor has only one term with W , then

W = 0 · {U = n}+ t · {U = c}+ 1 · {U = a}

2. Case 2: If the ctf-factor has two terms, then either
(a) There exists Wt1 ,Wt2 in the ctf-factor, such that t0 ∈ t1, t1 ∈ t2 then

W = 0 · {U = n}+ t · {U = c}+ 1 · {U = a} (150)

(b) There exists Wt1 ,Wt2 in the ctf-factor, such that t0 ∈ t1, t2 and there exists a monotonic parent X , such that x0 ∈
t1, x1 ∈ t2. Then

W = R(X + (1−X) · (0 · {U = n}+ t · {U = c}+ 1 · {U = a})) (151)
where R is a binary exogenous variable which is 1 with probability 0.5.

Note that this definition will also satisfy the actual counterfactual term since we have only applied the simplification rule for
the reduction. The different terms that can be in the ctf-factor corresponding to W and the values of the exogenous variable that
satisfies the condition are shown in table 4.

Table 4: v-function and counterfactual terms

Notation Term Exogenous variables

W cn Wt0 = 0 U = {c, n}
Wn Wt1 = 0 U = {n}
W a Wt0 = 1 U = {a}
W ac Wt1 = 1 U = {a, c}
W c Wt0 = 0,Wt1 = 1 U = {c}
W acr Wt0x0

= 0,Wt0x1
= 1 U = {n, c}, R = 1

Wnr Wt1x0
= 0,Wt1x1

= 1 U = {n}, R = 1

Let the ctf-factor be P (Y∗,W1[t1],Wm[tm]). Let W2, . . . ,Wn−1 be nodes that lie on the bidirected path from W1 to Wm.
Wi’s are in topological ordering. Let T be the parent of W1,Wm such that t ∈ t1, t

′ ∈ tn, t ̸= t′. We will divide the proof into
two cases: Case 1: There is a bidirected edge between W1,Wm, that is, m = 2. Case 2: m > 2.



Case 1: m = 2. Let all nodes in V (Y∗) follow c-functions and W1,W2 follow v-functions of U given the query, which is
the common exogenous variable between W1,W2. We will first propose the assignment for the 3 SCMs M1,M2,M3 as shown
below (superscript denotes the SCM):

P 1(U = u) = 1/9 ∀u ∈ {a, c, n} × {a, c, n} (152)

P 2(U = u) = 1/9 + ϵ ∀u ∈ {ac, cn, na} (153)

P 2(U = u) = 1/9− ϵ ∀u ∈ {ca, nc, an} (154)

P 2(U = u) = 1/9 ∀u ∈ {aa, cc, nn} (155)

P 3(U = u) = 1/9 + ϵ ∀u ∈ {nc, ca} (156)

P 3(U = u) = 1/9− ϵ ∀u ∈ {cc, na} (157)

P 3(U = u) = 1/9 for other u (158)

All other exogenous variables denoted by U∗ are random coin tosses. The counterfactual distributions are then given by:

P (Y∗ = y∗,W
c
1 ,W

c
m) = P (U∗ = 0)P (U = cc) (159)

P (Y∗ = y∗,W
c
1 ,W

nr
m ) = P (U∗ = 0)P (U = cn)P (R2 = 1) (160)

P (Y∗ = y∗,W
acr
1 ,Wnr

m ) = P (U∗ = 0)(P (U = nn) + P (U = cn))P (R1 = 1)P (R2 = 1) (161)

Similarly, it can be shown that for all combination of queries, either P 1(Y∗,W1[t1],Wm[tm]) ̸= P 2(Y∗,W1[t1],Wm[tm]) or
P 1(Y∗,W1[t1],Wm[tm]) ̸= P 3(Y∗,W1[t1],Wm[tm]). Now, we show that the observational distribution is the same under the
three cases.

Subcase 1: W1,W2 follows v-function from Eq. 150. Then, the observational distribution is given by,

P (V,W1,W2) =
∑

U∗,U12

P (U∗)P (U12)
∏
v

P (v | Pa(V ))P (W1 | T,U12)P (W2 | t, U12) (162)

=
∑
U∗

Z ·
∑
U12

P (U12)1(W1 | T,U12) · 1(W2 | T,U12) (163)

It follows from the fact that given U∗, all the variables in Z are independent of U12. The values of U12 and the assignment
of W1,W2 given T and U12 are given in table 5. Note that in M1,M2,M3, the observational distribution is the same.

Table 5: T,W1,W2, U12

T W1 W2 U12

0 0 0 nn, nc, cn, cc
0 0 1 na, ca
0 1 0 an, ac
0 1 1 aa
1 0 0 nn
1 0 1 na, nc
1 1 0 an, cn
1 1 1 aa, ac, ca, cc

Subcase 2: W1 follows Eq. 150, and W2 follows Eq. 151. The observational distribution is then given by

P (V,W1,W2) =
∑

U∗,U12,R2

P (U∗)P (U12)P (R2)
∏
v

P (v | Pa(V ))P (W1 | T,U12)P (W2 | X,T, U12) (164)

=
∑
U∗

Z ·
∑

U12,R2

P (U12)P (R2) · 1(W1 | T,U12) · 1(W2 | X,T, U12, R2) (165)

Observation: When R2 = 0, W2 = 0 and for any assignment of W1, permissible values of U12 are of the form U1×{a, c, n}.
Hence, when R2 = 0, we have the same distribution in M1,M2,M3. When R2 = 1, X = 1, we have a similar situation. When
R2 = 1, X = 0, we have a situation same in Table 5. Note that X can be equal to W1, but it does not change anything in the
analysis. Hence, the observational distribution is the same in the three models.



Subcase 3: Both W1,W2 follows the Eq. 151. The observational distribution is given by

P (V,W1,W2) =
∑

U∗,U12,R1,R2

P (U∗)P (U12)P (R1)P (R2)
∏
v

P (v | Pa(V ))P (W1 | T,U12)P (W2 | X,T, U12) (166)

=
∑
U∗

Z ·
∑

U12,R2

P (U12)P (R1)P (R2) · 1(W1 | T,X,U1, R1) · 1(W2 | Y, T, U2, R2) (167)

Similar to the observation above, when R2 = 0 or R1 = 0, the distribution remains the same in the three models. Similarly,
when R2 = 1, Y = 1 or R1 = 1, X = 1, we have the distribution same in the three models because the permissible values of
U12 are of the form U1×{a, c, n} or {a, c, n}×U2. When R1 = 1, X = 0, R2 = 1, Y = 0, we have the non-trivial case, which
is again similar to Table. 5. Thus, the observational distribution in this case is also the same in the three models M1,M2,M3.
Note that if X = Y , we can just take it as T , or if X,Y is equal to W1 or W2, the analysis does not change.

The interventional distribution is also the same in the three cases, as the permissible values of U12 are the same if the
intervention is on any other node than W1,W2. If it is on W1 or W2, the permissible values are of the for U1 × {a, c, n} or
{a, c, n} × U2.

Case 2: m > 2. Consider the term P (Y∗,W1∗,W2:(m−1)∗,Wm∗). Along with U1, . . . , Um−1 introduce binary exogenous
variables S1, . . . , Sm such that

1. S1 = U1, Sm = Um−1

2. Si = 1{Ui−1 ̸= Ui} for i = 3, . . . , (n− 1)

W1,Wn are v-functions of S1, Sn, and W2, . . . ,Wn−1 are c-functions of S2, . . . , Sn−1.
Similar to the previous section, Assignments 1 and 2 are given by

P 1(S2 = 0 | u1, u2) = 0.5 ∀u1, u2 ∈ {a, c, n} × {a, c, n} (168)

P 2(S2 = 0 | u1, u2) = 0.5 + ϵ ∀u ∈ {ac, cn, na} (169)

P 2(S2 = 0 | u1, u2) = 0.5− ϵ ∀u ∈ {ca, nc, an} (170)

P 2(S2 = 0 | u1, u2) = 0.5 ∀u ∈ {aa, cc, nn} (171)

P 3(S2 = 0 | u1, u2) = 0.5 ∀u ∈ {a, c, n} × {a, c, n} (172)

P 3(S2 = 0 | u1, u2) = 0.5 + ϵ ∀u ∈ {nc, ca} (173)

P 3(S2 = 0 | u1, u2) = 0.5− ϵ ∀u ∈ {cc, na} (174)

P 3(S2 = 0 | u1, u2) = 0.5 for other u (175)

All other exogenous variables are random coin toss. Let’s compute P (s1, . . . , sn) in the three models. Firstly, compute the
number of possible assignments of u1, . . . , um−1 given s1, . . . , sn. The number can be computed using the following tree,
where,

• The root of the tree is um−1

• If vi = 0, ui has only child ui−1 = ui

• If vi = 1, ui has two children ui−1 ̸= ui

Here i ∈ [3 . . .m− 1].If um = u, then the number of leaves with value u is given by dk and those not equal to u is given by
ek.

dk =
2

3
· (−1)k +

1

3
· 2k (176)

ek =
1

2
· (2k − ck) =

1

3
· 2k − 1

3
· (−1)k = dk + (−1)k (177)

Let’s denote ϵ(u1 × u2) =
∑

u12∈u1×u2
P i(S2 = 0 | u12)− P 1(S2 = 0 | u12) where i is 2 or 3. Now,

P i(u1, 0, s, um) =
∑
u

P i(u1, 0, , um | u)P (u) (178)

= P 1(u1, 0, s, um) + C · dk(ϵ(u1 × {a, c, n}) + Z · (−1)k(u1 × {a, c, n} \ um) (179)

The middle term is always 0, and the difference with the model M1 for different assignments of u1, um−1 are shown in
Tab. 6.



Table 6: P (s1, s2 = 0, s, sn)

s1, s2 = 0, s, sn ϵ M1 M2 M3

aa ϵ(ac, an) 0 0 −ϵ
ac ϵ(aa, an) −ϵ 0 ϵ
an ϵ(aa, ac) ϵ 0 0
ca ϵ(cc, cn) ϵ −ϵ 0
cc ϵ(ca, cn) 0 ϵ 0
cn ϵ(cc, ca) −ϵ 0 0
na ϵ(nc, nn) −ϵ ϵ 0
nc ϵ(na, nn) ϵ −ϵ ϵ
nn ϵ(na, nc) 0 0 −ϵ

Table 7: P (s1, s2 = 1, s, sn)

s1, s2 = 1, s, sn ϵ M1 M2 M3

aa ϵ(ac, an) 0 0 ϵ
ac ϵ(aa, an) ϵ 0 −ϵ
an ϵ(aa, ac) −ϵ 0 0
ca ϵ(cc, cn) −ϵ ϵ 0
cc ϵ(ca, cn) 0 −ϵ 0
cn ϵ(ca, cc) ϵ 0 0
na ϵ(nc, nn) ϵ −ϵ 0
nc ϵ(na, nn) −ϵ ϵ −ϵ
nn ϵ(na, nc) 0 0 ϵ

Similarly, for vn−1 = 1, it is exactly the same with the signs changed and shown in table 7.
Now the proof follows similar to Case 1, with u12 replaced by s1ssm, where s1 = u1, sm = u2. For example, the following

counterfactual quantity can be represented by replacing all s with 0 except s1, sm in this case as

P (Y∗ = y∗,W
acr
1 ,Wnr

m ) (180)
= P (U∗ = 0)(P (s1 = n, s2:m−1 = 0, sm = n) + P (s1 = c, s2:m−1 = 0, sm = n))P (R1 = 1)P (R2 = 1) (181)

Observational distributions can be shown to be equal in a similar fashion:

P (V,W1,Wm) =
∑

U∗,s2:m

Z ·
∑

u1,um−1,R1,Rm

P (u1, um−1)P (R1)P (R2) · 1(W1 | T,X,U1, R1) · 1(Wm | Y, T, um−1, R2)

(182)

Similar to Case 1, the observational and interventional distribution is the same in all three models, M1,M2,M3.

Lemma 10 (Parent-Child Inconsistency). Consider a ctf-factor with a single c-component. If there is no Multi-Parent or
Common-Parent Inconsistency in the ctf-factor, and there exists Wt ∈ W∗, Z ∈ T ∩ V (W∗), such that z ∈ w∗, z

′ ∈ t
and z ̸= z′, then the ctf-factor is non-ID.

Proof. Consider the ctf-factor P (Y∗,W1∗,W2:(m−1)∗,Wm∗), where W2, . . . ,Wm lie on the bidirected path from W1 to Wm.
Observation: If there are two terms with W1 in the query then both w1, w

′
1 ∈ W1∗. Apply the Difference Rule. If it is not

applicable, it means w1, w
′
1 occur in the counterfactual worlds of other variables.

1. If w1, w
′
1 occurs in two different variables, it is a Common-Parent Inconsistency and is taken care of earlier.

2. If w1, w
′
1 occurs in Wn, apply the Difference Rule to Wn first so that there are two terms, one with w1 and another with w′

1
and then apply the Difference Rule to W1, as it is applied in reverse topological order, then the inconsistency is removed.

Hence, if we are returning FAIL because of Parent-Child inconsistency after a Difference Rule, then, W1t1 = w1 and Wntn
has w′

1 ∈ tn.
We will divide these into two cases, as above, when m = 2 and m > 2.



Case 1: m = 2. Let W1,W2 are v-functions, the former with no parent and the latter with parent W1. All other nodes are
c-functions, given the query. Define the models M1,M2 as follows:

P 1(U12 = u) = 1/6 ∀u ∈ {a, n} × {a, c, n} (183)

P 2(U12 = u) = 1/6 + ϵ ∀u ∈ {nn, aa} (184)

P 2(U12 = u) = 1/6− ϵ ∀u ∈ {nc, ac} (185)

P 2(U12 = u) = 1/6 for other u (186)

Subcase 1: W2 follows Eq. 150. Then, the counterfactual distributions are given by

P (Y∗,W1 = 0,W2[w1=1] = 1) = P (U∗)(P (U12 = na) + P (U12 = nc)) (187)

P (Y∗,W1 = 0,W2[w1=0] = 0,W2[w1=1] = 1) = P (U∗)P (U12 = nc) (188)

Similarly, it can be shown for combinations that the counterfactual terms vary in models M1,M2. Now, we show that the
observational distribution is the same.

P (V,W1,W2) =
∑

U∗,U12

P (U∗)P (U12)
∏
v

P (v | Pa(V ))P (W1 | T,U12)P (W2 | X,T, U12) (189)

=
∑
U∗

Z ·
∑
U12

P (U12) · 1(W1 | U12) · 1(W2 |W1, U12) (190)

Now, from Table 8, we can see that the observational distribution is the same in both models.

Table 8: Assignment of W2

W1 W2 U

0 0 nn, nc
0 1 na
1 0 an
1 1 aa, ac

Subcase 2: W2 follows Eq. 151. Then again, the counterfactual distributions are given by

P (Y∗,W1 = 0,W2[w1=1,x0] = 0,W2[w1=1,x1] = 1) = P (U∗)P (R1 = 1)(P (U12 = nn) (191)

P (Y∗,W1 = 1,W2[w1=0,x0] = 0,W2[w1=0,x1] = 1) = P (U∗)P (R1 = 1)((P (U12 = an) + P (U12 = ac)) (192)

The observational distribution can be shown to be the same by the following:

P (V,W1,W2) =
∑

U∗,U12,R2

P (U∗)P (U12)P (R2)
∏
v

P (v | Pa(V ))P (W1 | T,U12)P (W2 | X,T, U12, R2) (193)

=
∑
U∗

Z ·
∑

U12,R2

P (U12)P (R2) · 1(W1 | U12) · 1(W2 | X,W1, U12, R2) (194)

We make a similar observation as the last proof. When R2 = 0 or R2 = 1, X = 1, we have the same distribution since
the valid values of U12 are from U1 × {a, , c, n}. For R2 = 1, X = 0, we have the same assignment as Table 8 for W1,W2.
Hence, the distribution is the same in models M1,M2. The interventional distribution is also the same in the two models, as
the permissible values of U12 are the same if the intervention is on any other node than W1,W2. If it is on W1 or W2, the
permissible values are of the for U1 × {a, c, n} or {a, c, n} × U2.

Case 2: We follow the exact same construction as the previous proof and the changes are shown as M3 in Table 6 and 7.
From Case 1, it follows that the observational and interventional distributions are the same in M3,M1, and the counterfactual
distributions are different. An example calculation is shown below:

P (V,W1,Wm) =
∑

U∗,s2:m−1

Z ·
∑

U1,Um,R2

P (U1, Um)P (R2) · 1(W1 | U1) · 1(Wm | X,W1, Um, R2) (195)



C Discussion and Further Examples
C.1 Monotonicity Reduction Lemma
Testability from observations and interventions. Monotonicity is not testable in general from observational and interven-
tional data. Consider the causal graph shown in Fig. 4. If in the observational or interventional data, we see P (y1 | x1) <
P (y1 | x0) or P (Yx1 = 1) < P (Yx0 = 1), we can be sure that X is not positive monotonic on Y . However, if we have
P (y1 | x1) ≥ P (y1 | x0) or P (Yx1 = 1) ≥ P (Yx0 = 1), it is not immediately true that monotonicity holds. To witness,
consider two SCMs as follows: M1,M2. In both M1 and M2, we have

X = UX , P (UX = 1) = P (UX = 0) = 0.5 (196)
Y = 1{UY = a}+X · 1{UY = c}+ (1−X) · 1{UY = d} (197)

In M1, we have P 1(UY = c) = 0.75, P 1(UY = d) = 0.25 and in M2, we have P 2(UY = a) = P 2(UY = n) = 0.25 and
P (UY = c) = 0.5. Note that both observational and interventional distributions induced by M1,M2 are the same, however, the
edge X → Y is non-monotonic in M1, but monotonic in M2.

MRL in Non-binary case: We now explore how Monotonicity Reduction Lemma changes in the non-binary case. First, we
show that for the CGMA in Fig. 4, when Y is not binary, nor can be reduced to binary form in the query (that is some set of
values can be taken to be 0 and another set of values to be 1 for MRL to be applied), then the query is non-ID. Then we propose
a variation of MRL to circumvent this issue. Note that monotonicity for the non-binary case can be defined in many ways, and
in this case we follow the one in Def. 1.

Consider SCMs, M1,M2, where P (X = 1) = P (X = 0) = 0.5 and Y is ternary (values can be 0, 1 or 2). The join
counterfactual distributions in these two models are given by the Table. 9

Yx0 Yx1 P 1(UY ) P 2(UY )
0 0 p1 p1
0 1 p2 p2 + ϵ
1 1 p3 p3 − ϵ
0 2 p4 p4 − ϵ
1 2 p5 p5 + ϵ
2 2 p6 p6

Table 9: Each row represents the probability of canonical type Yx0
= y, Yx1

= y′ in SCM M1 and M2

The observational and interventional distribution for the two models are the same, and the following facts follow:

1. P (Yx0
= y, Yx1

= y′) is non-ID unless y = y′ = 0 or y = y′ = 2, and
2. P (Yx0

≤ y < Yx1
) is ID for all y.

With this observation, we propose MRL for non-binary variables as follows:

Lemma 11 (Monotonicity Reduction Lemma (MRL)). Let T,S be a partition of the parents of W , such that T and S are the
set of monotonic and non-monotonic parents of W , respectively. Let P (Y∗,Wt,s ⋆ w,Wt′,s ⋆ w

′) be a ctf-factor, where ⋆ can
be ≤ or >. Then the following rules can be applied to reduce the query to a simpler ctf-factor.

1. Simplification Rule: If t ≤ t′, w ≤ w′, then
(a) P (Y∗,Wt,s ≤ w′,Wt′,s ≤ w) = P (Y∗,Wt′,s ≤ w)

(b) P (Y∗,Wt,s > w′,Wt′,s > w) = P (Y∗,Wt,s > w′)

2. Difference Rule: If t ≤ t′, then

P (Y∗,Wt,s ≤ w,Wt′,s > w)

= P (Y∗,Wt′,s > w)− P (Y∗,Wt,s > w) (198)
= P (Y∗,Wt,s ≤ w)− P (Y∗,Wt′,s ≤ w) (199)

Proof. By monotonicity, we have for any unit u, Wt,s ≤ Wt′,s. Hence, Wt′,s(u) ≤ w implies Wt,s ≤ w′ for all u. The
simplification Rule follows from this. The Difference Rule can be obtained by binarizing the domain and applying MRL.

C.2 Graphical Conditions
In this section, we discuss how the algebraic conditions for LATE, LNDE and LNIE fail in causal diagrams in Figs. 1c, 2b and
then provide a set of assumptions for identification.
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Figure 4: 2 variables with monotonicity.

Violation of LATE Assumption: Consider Assumption 1 on the existence of instruments. It is not satisfied in Fig. 1c for the
following three reasons:
1. Directed path from Z to Y

2. Unobserved confounder between Z and Y

3. Confounder W between Z and Y

4. Confounder W between Z and X

To illustrate why, consider the following functional forms of Z and Y .

Z = fZ(W,UZ , UWZ , UZY ) (200)
Y = fY (W,Z,X,M,UY , UWY , UZY ) (201)
Yx = fY (W,Z, x,M,UY , UWY , UZY ) (202)

Now, since Yx is still a function of Z,UZY ,W , Yx ̸⊥⊥ Z.

Similarly, the assumption is violated in Fig. 2b because of:
1. Directed path from Z to Y

2. Confounder W between Z and Y

3. Confounder W between Z and X

To illustrate, consider the following functional forms:

Z = fZ(W,UZ , UZM ) (203)
Y = fY (W,X,M,UY , UWY , UXY ) (204)
M = fM (W,Z,X,UM , UZM ) (205)
Yx = fY (W,x,M,UY , UWY , UXY ) (206)

= fY (W,x, fM (W,Z,X,UM , UZM ), UY , UWY , UXY ) (207)

Since, Yx is still a function of Z,W , Yx ̸⊥⊥ Z.

Violation of LNDE/LNIE Assumptions: Consider Fig. 2b and the functional forms shown above:

Z = fZ(W,UZ , UZM ) (208)
Y = fY (W,X,M,UY , UWY , UXY ) (209)
M = fM (W,Z,X,UM , UZM ) (210)
Mx = fM (W,Z, x, UM , UZM ) (211)

(212)

Since, Mx is still a function of Z, the assumption of Conditionally Ignorable Treatment Assignment A.2 is violated since
Mx ̸⊥⊥ Z |W .

Algebraic Assumptions and Graphical Conditions for Identification of LATE: We now provide two sets of assumptions
for identifying LATE. We will assume that W,Z,X,M, Y are in strict topological order. Consider Fig. 1c and the following
conditions:
Assumption 3. 1. No unobserved confounder between W and X , that is Xw ⊥⊥W .
2. No unobserved confounder between W and M , that is Mw ⊥⊥W .
3. No unobserved confounder between Z and X , that is Xzw ⊥⊥ Zw.
4. No direct effect from Z to M , that is Mxzw = Mxw.
5. No unobserved confounder between Z and M , that is Mxw ⊥⊥ Zw.
6. No unobserved confounder between X and Y , that is Yxmzw ⊥⊥ Xzw.
7. No unobserved confounder between M and Y , that is Yxmzw ⊥⊥Mxzw.



It is easy to see that this completely defines the graph in Fig. 1c, as all other edges are present in the graph. We showed
in Sec. B that LATE can be identified in this graph. We now distill the set of assumptions satisfied by this causal graph, and
implied by Assumptions 3, which uniquely identifies LATE.
Assumption 4. If for all values z, x,m of Z,X,M and for all values u of exogenous variables
1. Yxm, Z ⊥⊥ Xz,Mx |W
2. Xz1(u) ≥ Xz0(u) (Monotonicity)

Proposition 12. LATE is identifiable for any structural causal model that satisfies Assumption 4.

Proof. First, we compute P (Yx, Xz0 = 0, Xz1 = 1). Once such terms are available, the LATE can be computed.

LATE :=

∑
y y · P (Yx1

= y,Xz0 = 0, Xz1 = 1)∑
y P (Yx1

= y,Xz0 = 0, Xz1 = 1)
−

∑
y y · P (Yx0

= y,Xz0 = 0, Xz1 = 1)∑
y P (Yx0

= y,Xz0 = 0, Xz1 = 1)
(213)

By monotonicity, we have

P (Yx1
= y,Xz0 = 0, Xz1 = 1) = P (Yx1

= y,Xz1 = 1)− P (Yx1
= y,Xz0 = 1) (214)

Now, we compute P (Yx1
= y,Xz1 = 1). Other terms can be computed similarly.

P (Yx1
= 1, Xz1 = 1) = P (Yx1Mx1

Zx1
= 1, Xz1 = 1) (215)

=
∑
m,z

P (Yx1mz = 1, Xz1 = 1,Mx1
= 1, Z) (Unnesting) (216)

=
∑

m,z,w

P (Yx1mz = 1, Xz1 = 1,Mx1
= 1, z | w)P (w) (Law of total probability) (217)

=
∑

m,z,w

P (Yxmz, z | w)P (Xz1 = 1,Mx1 = 1 | w)P (w) (Assumption 4.1) (218)

=
∑

w,z,m

P (y | do(x,m), w, z)P (z | w)P (w)P (Xz1 = 1,Mx1
= 1 | w) (219)

Consider all possible SCMs for which the Assumption 4 holds.
Observation: The assumption Mx ⊥⊥ Z | W implies that all the directed paths from Z to M go through X and all the

confounding paths are blocked by W . Hence,

P (Xz1 = 1,Mx1
= 1 | w) = P (Xz1 = 1,Mx1z1 = 1 | w) = P (x1,m1 | do(z1), w) (220)

Also, Xz,Mx ⊥⊥ Z | W implies that all confounding paths between by Z and {X,M} are blocked by W . Since, Z is an
ancestor of {X,M}, all directed paths are removed in GZ . Hence, X,M ⊥⊥ Z | W in GZ , which implies by do-calculus that
P (x1,m1 | do(z1), w) = P (x1,m1 | z1, w).

On the other hand, we have Ymx ⊥⊥ Xz,Mx | W , which implies there cannot exist a confounding path between Y and
{X,M} without W or Z. If the confounding path does not contain Z, then it must be blocked by W , or else Ymx ⊥⊥ Xz,Mw |
W will not hold. If the confounding path contains Z, it can be of the form:

• M ← . . . X ← . . .← Z ← . . .← C → . . .→ Y
• X/M ← . . .← C → . . .→ Z → . . .→ Y
• M ← . . . X ← . . .← Z → . . .→ Y
• X/M ← . . .← C → . . .→ Z ← . . .← C ′ → . . .→ Y

All except the last kind of path are blocked by Z. For the last case, there is a confounding path between Z and X (or M ),
so it must be blocked by W . Hence, we have Y ⊥⊥ X,M | Z,W in GXM , which implies P (y1 | do(x,m), w, z) = P (y1 |
w, z, x,m)P (z | w). From this, we derive the final expression for LATE.

Next, we consider Fig. 2b and graphical conditions implied by it:
Assumption 5. 1. No unobserved confounder between W and Z, that is Zw ⊥⊥W .
2. No unobserved confounder between W and M , that is Mw ⊥⊥W .
3. No unobserved confounder between Z and X , that is Xzw ⊥⊥ Zw.
4. No direct effect from Z to Y , that is Yxzmw = Yxmw.
5. No unobserved confounder between Z and Y , that is Yxmw ⊥⊥ Zw.



6. No unobserved confounder between X and M , that is Mxzw ⊥⊥ Xzw.
7. No unobserved confounder between M and Y , that is Yxmzw ⊥⊥Mxzw.

Again, it should be noted that these set of assumptions define the graph in Fig. 2b. We now distill another set of assumptions
satisfied by this causal graph, and implied by Assumptions 5, which uniquely identifies LATE.

Assumption 6. If for all values z, x,m of Z,X,M and for all values u of exogenous variables

1. Mx, Z ⊥⊥ Yxm, Xz |W
2. Xz1(u) ≥ Xz0(u) (Monotonicity)

Proposition 13. LATE is identifiable for any structural causal model that satisfies Assumption 6.

Proof. First, we compute P (Yx, Xz0 = 0, Xz1 = 1). Once, we have computed that LATE can be computed easily. By mono-
tonicity, we have

P (Yx1
= y,Xz0 = 0, Xz1 = 1) = P (Yx1

= y,Xz1 = 1)− P (Yx1
= y,Xz0 = 1) (221)

Now, we compute P (Yx1 = y,Xz1 = 1). The rest of the terms can be computed similarly.

P (Yx1
= 1, Xz1 = 1) = P (Yx1Mx1

= 1, Xz1 = 1) (222)

=
∑
m

P (Yx1m = 1, Xz1 = 1,Mx1
= 1) (Unnesting) (223)

=
∑
m,w

P (Yx1m = 1, Xz1 = 1,Mx1
= 1 | w)P (w) (Law of total probability) (224)

=
∑
m,w

P (Mx = m | w)P (Yxm = 1, Xz1 = 1 | w)P (w) (225)

Observation: Since Z ⊥⊥ Xz | W , all confounding paths between X and Z are blocked by W . Now, consider the assump-
tion Mx ⊥⊥ Xz | W , which implies there are no confounding paths between X and M that do not contain either W,Z. If it
does not contain Z it must be blocked by W . If it contains Z, it must be of the following forms:

• X ← . . .← Z ← . . .← C → . . .→M
• X ← . . .← C → . . .→ Z → . . .→M
• X ← . . .← Z → . . .→M
• X ← . . .← C → . . .→ Z ← . . .← C → . . .→M

The first, second, and third types of paths are blocked by Z. For the fourth type, we note that all confounding paths between
Z and X are blocked by W . Hence all confounding paths between X,M are blocked by Z,W . Hence, X ⊥⊥ M | Z,W in
GX , which implies

P (m | do(x), w) =
∑
z

P (m | x, z, w)P (z | w)

Since Yxm ⊥⊥ Z |W , all directed paths from Z the Y passes through either X or M , and all confounding paths are blocked
by W . Using the fact that M is descendant of X , it follows:

P (Yxm = 1, Xz1 = 1 | w) = P (y1, x1 | do(z,m), w) = P (y1 | do(z,m), x, w)P (x | do(z), w)

Consider the graph GZM . All the directed paths from Z to Y are removed, and all confounding paths between Z and Y are
blocked by W . All the confounding paths between M and Y that do not contain Z are also blocked by W . If this confounding
path contains Z and is not blocked by Z, Z should be a collider, which means the path is of the form M ← . . .→ Z ← . . .→
Y . But we know that confounding paths between Z and Y are blocked by W . Hence, Y ⊥⊥ Z,M | X,W

P (y1 | do(z,m), x, w) = P (y1 | z,m, x, w), P (x | do(z), w) = P (x | z, w) (226)

Putting the values, we have the expression for LATE.

C.3 Algorithmic Identification
In this section, we provide the sub-routines from Algorithm 1, M-ID. CTF-FACTOR is shown in Algorithm 3, CTF-FACTORIZE
is shown in Algorithm 4 and IDENTIFY is shown in Algorithm 6. For more details about the algorithm, please refer (Correa,
Lee, and Bareinboim 2021) and (Tian and Pearl 2002).



Algorithm 3: CTF-FACTOR

Input: Causal Graph G. X∗ = x∗,Y∗ = y∗ are two sets of counterfactual variables and their values.
Output: ctf-factor that needs to be computed and P (W∗ = w∗) and the variables in the summation d∗

1: Let A1,A2, . . . be the ancestral components of X∗ ∪Y∗ given X∗
2: Let D∗ be the union of the ancestral components containing a variable in Y∗ and d∗ be the corresponding set of values.
3: D′

∗ = ∥∪Dt∈D∗Dpad
∥

4: If any term in D′
∗ is not possible return 0

5: Remove repeated terms in D′
∗

6: W∗ ← An(D′
∗) and the corresponding values w∗

7: return d∗, P (W∗ = w∗)

Algorithm 4: CTF-FACTORIZE

Input: Causal Graph G. Ctf-factor W∗ = w∗
Output: Factors in the factorization of P (W∗ = w∗)

1: C1, C2, . . . are the c-components of G[V (W∗)]
2: Cj∗ = {WpaW

∈W∗ |W ∈ Cj} and cj∗ are the values in w∗ corresponding to Cj∗
3: return C1∗,C2∗, . . .

D Further Results
D.1 Multiple Instruments
LATE with Multiple Instruments In Sec. 1, we looked at estimating in IV graphs. Here, we consider cases with multiple
instruments affecting a binary treatment. IV Graphs with multiple instruments (see Fig. 5) have been studied extensively both in
theory and practice (Mogstad, Torgovitsky, and Walters 2019), (Angrist and Imbens 1995). (Angrist and Imbens 1995) studied
estimations with 2SLS under monotonicity assumption and (Mogstad, Torgovitsky, and Walters 2019) have focused on causal
interpretation under similar assumptions. In this section, we provide a characterization of the queries that are identifiable in
the non-parametric setting under the condition that some of the incoming edges are monotonic and some of the edges are
not. One approach is to treat multiple parent variables as a single parent whose values are the Cartesian product of their
domains. For example, if X has two binary parents, Z0, Z1, we can think of it as a single parent Z with values in {0, 1}2.
This allows us to identify a quantity like P (Yx, Xz=00 = 0, Xz=11) using MRL as the domain of z can be treated as binary
for this query. However, complications arise when the values of Z in the counterfactual world are not comparable. making
estimation of queries like P (Yx, Xz=01 = 0, Xz=10) challenging. In the following proposition, we claim that such queries are
not identifiable.

Proposition 14 (Multi-Parent LATE Identification). In the Causal Graph 5, let Z = {Z1, . . . , Zn} be the set of monotonic
parents of X and W = {W1, . . . ,Wm} be the set of non-monotonic parents of X . Let z0, z1 be two sets of values of Z and
w0,w1 be two sets of values of W. The effect P (Yx | Xz0,w0 = 0, Xz1,w1 = 1) is identifiable if and only if z0 ≤ z1 and
w0 = w1 = w and is given by

P (Yxi | Xz0,w0 = 0, Xz1,w1 = 1) (227)

=
P (y, xi | zi,w)− P (y, xi | z1−i,w)

P (xi | zi,w)− P (xi | z1−i,w)
(228)

Algorithm 5: ID
Input: Causal Graph G. C ∈ T ∈ V, Q = Q[T ] = PV\T (T ). Assume G[C], G[T ] is composed of single c-component.
Output: Expression for Q[C] = PV\CP (C) in terms of Q or FAIL

1: A← An(C)G[T ]

2: if A = C, return Q[C] =
∑

t\c Q

3: if A = T , return FAIL
4: if A = C then
5: T ′ be the c-component containing C in G[A]

6: Compute Q[T ′] from Q[A] =
∑

t\a Q

7: return ID(C, T ′, Q[T ′], G)
8: end if



Algorithm 6: IDENTIFY

Input: Causal Graph G. A ctf-factor with a single c-component C∗ = c∗. Available distribution Z.
Output: PV\C)(C)

1: for Z ∈ Z,Z ∩ C = ∅ do
2: Let B be the c-component of GZ̄ such that C ⊆ B, compute PV \B(B) from PZ(V )
3: if ID(C,B, PV \B(B), G) does not FAIL then
4: return ID(C,B, PV \B(B), G)
5: end if
6: end for

X Y
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Zn

. .
.

W1

Wm

. . .

+

+

Figure 5: LATE with multiple instruments

This extends the result in (Imbens and Angrist 1994). The proof follows from Multi-Parent Inconsistency in Proof of
Thm. 2(Sec. B.7).

E Experiment Details
In this section, we provide some more details about the experiments. The experiments are run on an Apple M2 chip with 16GB
of memory.

401k Dataset: We select only a subset of columns, namely income (inc), eligibility in 401k (e401), participation in 401k
(p401), net financial asset (net tfa), and total wealth (tw). Then, we discretize the variables income, net financial assets, and
total wealth, based on the quartiles. For each quartile, we take the mean value to be its representative. For example, the mean
of the four income groups is approximately 12905, 25388, 39277, 71242. Then we design a synthetic SCM that has the same
distribution as this selected dataset. This is used to generate 30000 samples, from which we evaluate the expression given
in Ex. 1. While evaluating the expression in 7, we use add-one smoothing since the dataset is not strictly positive. We use
bootstrapping to get the confidence interval. The ground truth is obtained from the synthetic SCM. The code and dataset are
available in the accompanying repository.

Fair Machine Learning: The expression for E[Yx1
− Yx0

| m1] can be obtained as follows:

E[Yx1 − Yx0 | m1] =
P (Yx1

= 1,m1)

P (m1)
− P (Yx0

= 1,m1)

P (m1)
(229)

We first compute P (YX1
= 1,m1).

P (Yx1 = 1,m1) (230)
= P (Yx1

= 1, x1,m1) + P (Yx1
= 1, x0,m1) (231)

= P (y1, x1,m1) +
∑
m,z

P (Yx1mz = 1,Mx1z = m,Mx0z = 1, Xz = 0, z) (232)

= P (y1, x1,m1) +
∑
z

P (Yx1m1z = 1,Mx1z = m1,Mx0z = 1, Xz = 0, z) (233)

= P (y1, x1,m1) +
∑
z

P (Yx1m1z = 1,Mx0z = 1, Xz = 0, z) (234)

= P (y1, x1,m1) +
∑
z

P (x0, z)P (m1 | x0, z)P (y1 | m1, x1, z) (235)



Now, we compute P (YX0 = 1,m1).

P (Yx0
= 1,m1) (236)

= P (Yx0
= 1, x0,m1) + P (Yx0

= 1, x1,m1) (237)

= P (Yx0 = 1, x0,m1) +
∑
m,z

P (Yx0mz = 1,Mx0z = m,Mx1z = 1, Xz = 1, z) (238)

= P (Yx0
= 1, x0,m1) +

∑
z

P (Yx0m0z = 1,Mx0z = 0,Mx1z = 1, Xz = 1, z) (239)

+
∑
z

P (Yx0m1z = 1,Mx0z = 1,Mx1z = 1, Xz = 1, z) (240)

= P (y1, x0,m1) +
∑
z

[
P (Yx0m0z = 1,Mx1z = 1, Xz = 1, z)− P (Yx0mz = 1,Mx0z = 1, Xz = 1, z)

]
(241)

+
∑
z

P (Yx0m1z = 1,Mx0z = 1, Xz = 1, z) (242)

= P (y1, x0,m1) +
∑
z

P (x1, z)P (y | x0,m0, z)
[
P (m1 | x1, z)− P (m1 | x0, z)

]
(243)

+
∑
z

P (x1, z)P (y | x0,m1, z)P (m1 | x0, z) (244)

Now, the final quantity can be calculated using Eq. 229.
The code for running the experiments is provided in the Supplementary Material and also in the following code repository:

https://anonymous.4open.science/r/M-ID-Experiments/


