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Abstract

Graphical models have been widely used as parsimonious en-
coders of constraints of the underlying probability models.
When organized in a structured way, these models can facil-
itate the derivation of non-trivial constraints, the inference of
quantities of interest, and the optimization of their estimands.
In particular, causal diagrams allow for the efficient represen-
tation of structural constraints of the underlying causal sys-
tem. In this paper, we introduce an efficient graphical con-
struction called Ancestral Multi-world Networks that is sound
and complete for reading counterfactual independences from
a causal diagram using d-separation. Moreover, we introduce
the counterfactual (ctf-) calculus, which can be used to trans-
form counterfactual quantities using three rules licensed by
the constraints encoded in the diagram. This result gener-
alizes Pearl’s celebrated do-calculus from interventional to
counterfactual reasoning.

1 Introduction

Counterfactuals form the basis of important notions across
human cognition that require retrospective thinking, where
one must compare what did happen in the real world ver-
sus what would have happened under some different hypo-
thetical conditions. Given the impossibility of observing an
alternative outcome once an action is taken, counterfactuals
evoke “what if?” questions whose answers can only be ap-
proached by imagining hypothetical conditions contrary to
this factual evidence. For instance, questions such as “what
would be the death rates had the vaccination started two
weeks earlier?” or “given that I arrived late, would I have
been on time had I taken the subway instead of the taxi?”
require us to carry out a mental experiment where we re-
cover some state of affairs, perform a change in the sequence
of events, and let a hypothetical situation to play out. More
generally, counterfactuals are an important component in the
construction of explanations regarding why certain events
occurred the way they did (Pearl 2000; Pearl and Mackenzie
2018; Bareinboim et al. 2020).

One fundamental topic of study in counterfactual reason-
ing is understanding the various quantities, the constraints
on their relation, and the types of inferences allowed across
various counterfactual worlds. Specifically, counterfactual
quantities evoke hypothetical conditions that could contra-
dict the factual evidence, underpinning different applications
involving blame and responsibility, credit assignment, and
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Figure 1: A causal diagram over three variables.

more individualized types of decisions (Pearl 2000). Exam-
ples of such quantities include the effect of treatment on the
treated (Heckman 1992; Pearl 2000), path-specific effects
(Pearl 2001; Avin, Shpitser, and Pearl 2005), and causal and
spurious variations (Zhang and Bareinboim 2018; Plečko
and Bareinboim 2024). There are also quantities such as the
probability of necessity (PN), probability of sufficiency (PS),
and the probability of necessity and sufficiency (PNS) that
relate to fundamental aspects of how events are related and
can explain the other. For example, consider the causal di-
agram in fig. 1 over the variables age, treatment, and sur-
vival. The counterfactual event (Yx = 1 | X = x

0) refers
to the survival of a person (Y = 1) that gets a treatment
X = x when they would naturally decide not to get treated
(x0). Such queries depict a quintessential counterfactual sit-
uation, since we aim to evaluate a world that contradicts the
factual one in which the person was not treated.

In the first part of our paper, we revisit and generalize
counterfactual constraints – exclusion and independence re-
strictions, and consistency (Pearl 2000) – and show how
they follow from the Structural Causal Model semantics.
Specifically, we introduce a new graphical representation
that encodes independences between counterfactual random
variables, which we call Ancestral Multi-World Network
(AMWN). Based on this new data structure, we formally
show that the d-separation criterion is complete for reading
such constraints based on a causal graph and a set of coun-
terfactual variables. Compared with the prior literature, the
newly proposed method improves over the Twin Networks
(Balke and Pearl 1994), for which d-separation is not com-
plete, and from Single World Intervention Graphs (Richard-
son and Robins 2013), which consider a single interven-
tion at a time. AMWN also differs from Multi-Networks
and Counterfactual Graphs (Shpitser and Pearl 2007), which
were conjectured to be complete but require constructing



a possibly exponential number of graphs to test separation
among counterfactual variables rather than events.

In the second part of the paper, and building on the
constraints and AMWN construction, we formulate a set
of three rules for counterfactual inference called Counter-
factual Calculus (ctf-calculus). Compared with the litera-
ture, our rules are more general than Pearl’s celebrated do-
calculus (Pearl 1994, 1995) for interventional reasoning,
since it allows for the transformation of counterfactual quan-
tities to infer the implied equality constraints. Moreover, we
show that the counterfactual calculus is complete for identi-
fying counterfactuals from observational and interventional
distributions. This set of rules also differs from the Poten-
tial Outcome Calculus (po-calculus) (Malinsky, Shpitser,
and Richardson 2019), which has been shown to hold if
and only if the corresponding do-calculus rules hold. While
po-calculus rules require counterfactual variables to follow
certain patterns in terms of interventions and require pre-
processing steps to be used for certain identification tasks,
we propose rules supporting more general mixes of interven-
tions that combined with probability axioms are sufficient
for counterfactual deciding identification.

More specifically, our contributions are as follows:

1. Graphical criteria: a sound, complete, and efficient pro-
cedure to test conditional independences among counter-
factual variables using d-separation on a modified causal
diagram.

2. Inference rules: a set of inference rules for counterfac-
tual reasoning that are sound and complete for counter-
factual identification from observational and experimen-
tal distributions.

Proofs can be found in the supplemental material.

Definitions and Background. We denote variables by
capital letters, X , and values by small letters, x. Bold let-
ters, X represent a set of variables and x a set of values. The
domain of a variable X is denoted by Val(X). Two values
x and z are consistent if they share the common values for
X \ Z. We also denote by x \ Z the value of X \ Z consis-
tent with x and by x \ Z the subset of x corresponding to
variables in Z. We assume the domain of every variable is
finite.

We represent qualitative assumptions using causal graphs,
denoted with a calligraphic letter, e.g., G, etc. Given a graph
G, GWX is the result of removing edges coming into vari-
ables in W and going out from variables in X. G[W] de-
notes a vertex-induced subgraph, which includes W and
the edges among its elements. We use kinship notation for
graphical relationships such as parents, children, descen-
dants, and ancestors of a set of variables.

We base our analysis on the Structural Causal Model
(SCM) paradigm (Pearl 2000, Ch. 7). An SCM M is a 4-
tuple hU,V,F , P (u)i, where U is a set of exogenous (la-
tent) variables; V is a set of endogenous (observable) vari-
ables; F is a collection of functions such that each variable
Vi 2 V is determined by a function fi 2 F . Each fi is a
mapping from a set of exogenous variables Ui ✓ U and a
set of endogenous variables Pai ✓ V \ {Vi} to the domain

SCM

L1: P (V)

L2: P (Vx)

L3: P (V1[x1],V2[x2], . . .)

Figure 2: Every SCM induces different distributions in each
layer of the PCH.

of Vi. Uncertainty is encoded through a probability distribu-
tion over the exogenous variables, P (U).

An SCM M induces a causal diagram G where V is the
set of vertices, there is a directed edge (Vj ! Vi) for every
Vi 2 V and Vj 2 Pai, and a bidirected edge (Vi L9999K Vj)
for every pair Vi, Vj 2 V such that Ui \ Uj 6= ; (Vi and Vj

have a common exogenous parent) (Bareinboim et al. 2020).
We assume that the underlying model is recursive. That is,
there are no cyclic dependencies among the variables.

SCMs allow us to define counterfactual quantities with
precision based on the Pearl’s Causal Hierarchy (PCH)
(Pearl and Mackenzie 2018; Bareinboim et al. 2020). This
hierarchy is divided into three layers (fig. 2): the first one
(L1) captures the notion of “seeing,” that is, observing a cer-
tain phenomenon or reality and possibly making inferences
about it. The second (L2) allows one to represent the notion
of “doing”, that is, intervening (or deliberately acting) in the
environment to bring about a certain state of affairs. Modi-
fying an SCM gives natural valuations for quantities of this
kind, as defined next.
Definition 1 (Submodel). Let M be a causal model, X a
set of variables in V, and x a particular realization of X. A
submodel Mx of M is the causal model

Mx = hU,V,Fx, P (U)i, where (1)

Fx = {fi : Vi /2 X} [ {X x}. (2)
That is, performing an external intervention (or action) is

modeled through the replacement of the original (natural)
mechanisms associated with some variables X with a con-
stant x, which is represented by the do-operator. The impact
of the intervention on an outcome variable Y is commonly
called the potential response:
Definition 2 (Potential Response). Let X and Y be two sets
of variables in V, and u be a unit. The potential response
Yx(u) is defined as the solution for Y of the set of equations
Fx with respect to SCM M (for short, YMx(u)). That is,
Yx(u) = YMx(u).

In other words, YMx(u) is obtained through the com-
putation of Y(u) in the submodel Mx. On the other hand,
the meaning of every term in the counterfactual layer (L3)
can be directly determined from a fully specified structural
causal model, as described in the sequel:
Definition 3 (Counterfactual Distribution Valuation). An
SCM M = hU,V,F , P (U)i induces a family of joint dis-
tributions over counterfactual events Yx, . . . ,Zw, for any
Y,Z, . . . ,X,W ✓ V, PM(yx, . . . , zw) is given by:

X
u
1[Yx(u) = y, . . . ,Zw(u) = z ] P (u). (3)



Let W⇤ = {(W1)T1 , (W2)T2 , . . .} represent an arbitrary
set of counterfactual variables such that Wi 2 V and Ti ✓
V for i = 1, . . . , l. We assume throughout this paper that all
the distributions generated by the models to be positive.

2 Counterfactual Constraints

We begin by stating three types of constraints that hold over
counterfactuals random variables: consistency (section 2.1),
exclusion (section 2.2), and independence (section 2.3),
which we detail in the following subsections.

2.1 Consistency Constraints

Consistency constraints relate to the interplay between ob-
serving a variable taking a particular value and the effect
of an intervention that fixes this variable to the same value.
To ground this idea, consider an SCM M over endogenous
variables V = {X,Y, Z} and suppose we are interested in
studying the joint counterfactual event (Yx = y,X = x).
Following the proper semantics (definition 2), the value of
variable X is given by the solution of the system of equa-
tions F associated with M, X(u), for each unit U = u.
Similarly, the value of Yx is given by the solution of the sys-
tem Fx, Yx(u), for the same unit. The event X = x occurs
for u whenever the solution of fx is equal to x. While fx is
fixed as a constant x in Fx (as illustrated in fig. 3(a)), for
any unit U = u for which X = x, the result of these two
systems of equations coincide.

Both models will match in the value of every observable,
i.e., for u0 = {u | X(u) = x},

X(u0)=Xx(u
0)=x, Y (u0)=Yx(u

0), Z(u0)=Zx(u
0). (4)

Moreover, the probability of the corresponding random vari-
ables follows from averaging P (U) for those u, and then:

P (Yx = y,X = x)

=
X

u
1[Yx(u) = y,X(u) = x] P (u) (5)

=
X

u
1[Y (u) = y,X(u) = x] P (u) (6)

= P (Y = y,X = x). (7)

Again, this is so because Yx(u) = Y (u) for those u for
which X(u) = x. More generally, when considering all the
endogenous variables, we have:

P (Yx, Zx, X = x) = P (Y, Z,X = x), (8)

In other words, once we restrict our attention to the set of
units that generate X = x, then the variations of Yx, and Zx

are consistent with the variations of Y , and Z, respectively.
Intuitively, once X takes the value x, naturally, other vari-

ables in the model behave the same as if X had been fixed
to x by intervention, for instance, Yx = Y .1

More broadly, consistency does not depend on the inde-
pendence structure among the exogenous variables, P (U),

1One way to interpret such a statement is through the indepen-
dence of the mechanisms that give value to each of the endogenous
variables in the system in conjunction with the locality of the inter-
vention.

(u | X = x)
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(a) Mechanisms involved in
generating the event (Yx, X =
x).
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(b) The variable YXz results
from forcing X to take the
value Xz(u) for every u.

Figure 3: Representation of the mechanism involved in gen-
erating counterfactual events.

and follows from the relationships within the structural
mechanisms F .

The following characterizes this family of constraints
across endogenous variables:

Lemma 1 (Consistency). Given SCM M and X,Y 2 V,
T,R ✓ V, and let x be a value in the domain of X . Then,

P (YT⇤ , XT⇤ = x) = P (YT⇤x, XT⇤ = x), (9)

where T⇤ represent any combination of counterfactuals
based on T.

As suggested by the term T⇤ in lemma 1, consistency
between observations and interventions not only occurs for
interventions that fix a variable to a constant value (e.g.,
do (X = x)) but is also true with interventions that set a
variable to match another counterfactual variable, as dis-
cussed next.

Nested Counterfactuals So far we have considered coun-
terfactuals of the form Yx, where the subscript x indicates
that an intervention do (X = x) has been performed in the
system. We turn our attention to interventions that could be
expressed as do (X = Xz), and represent settings where the
variable X is set to behave as another counterfactual vari-
able, say Xz . This operation is illustrated in fig. 3(b). In
other words, the value of Xz is computed in a sub-model Fz

(figure’s r.h.s.) and used to replace the natural mechanism
fx (in the l.h.s.). A random variable Y in such a system is
represented with a counterfactual of the form YXz , which is
called a nested counterfactual.

The nesting means the target counterfactual internally
refers to another nested world (possibly multiple times).

Corollary 1 (Counterfactual Unnesting (CU)). Let Y,X 2
V, T,Z ✓ V, and let z be a set of values for Z. Then, the
nested counterfactual P (YT⇤Xz = y) can be written with
one less level of nesting as:

P (YT⇤Xz = y) =
X

x
P (YT⇤x = y,Xz = x). (10)



This statement follows from the law of total probability
and consistency itself, i.e.:
P (YT⇤Xz = y)

=
X

x
P (Y

T⇤ Xz
=y, Xz =x) (sum over Xz) (11)

=
X

x
P (Y

T⇤ x
=y,Xz= x ) (consistency). (12)

These two steps allow us to reason about nested counter-
factuals and transform them into non-nested ones.

2.2 Exclusion Constraints

Although the semantics of counterfactuals allows one to
consider a variable Yt for arbitrary Y 2 V and T ✓ V,
some counterfactual variables are not entirely free to vary
depending on the topology and the sparsity of the causal
system. For example, consider the simple chain graph in
fig. 4(a) and the counterfactual variables Yz and Yzx. To un-
derstand the relationship between these two variables, we
write the corresponding sub-models Mz and Mzx:

Fz=

8
><

>:

Xz  fX(Ux)

Zz  z

Yz  fY (z, Uy)

Fzx=

8
><

>:

Xzx  x

Zzx  z

Yzx  fY (z, Uy),

(13)

and P (U) = P (Ux)P (Uz)P (Uy). Note that for each unit
U = u, the variables Yz and Yzx are the same. Intuitively,
once the value of Z is fixed to z by intervention, the only
source of variation for the variable Y in both Mz and Mzx

comes from Uy , so intervening on X is irrelevant. In some
sense, the intervention on X can be excluded without any
changes in the value of Y , which gives the name exclusion
restriction.

In graphical terms, an intervention on a variable X could
affect another variable Y only if there exists a causal (di-
rected) path from X to Y in G.2 Although in fig. 4(a) there
is such path, the same is severed once Z is intervened on.
This observation can be stated more generally in the form
of an operator used to exclude interventions from a given
counterfactual variable as follows:
Lemma 2 (Exclusion operator). Let Yx be a counterfactual
variable, G a causal diagram, and

Yz such that Z = X \ An(Y )GX
and z = x \ Z. (14)

Then, Yz = Yx holds for any model compatible with G.
Moreover, this transformation is denoted as kYxk:= Yz.

Note that by keeping X\An(Y )GX
(eq. (14)), the exclu-

sion operator removes from the counterfactual’s antecedent
(i.e., subscript) variables that are not ancestors of Y (vari-
ables without causal paths to Y ) as well as those ancestors
that once do (X) is performed are no longer ancestors of Y .

For a set Y⇤, define kY⇤k=
S

Yt2Y⇤
kYtk. The result of

applying the exclusion operator to Yx, kYxk, is always equal
to Yx or an equivalent counterfactual variable with fewer
variables in its antecedent.

One interesting feature of exclusion constraints is that
they are derivable from the order relative to the mechanisms,
F , of the underlying SCM, M⇤. Other invariances from M⇤

come from sparsity in P (U), as discussed in the sequel.
2In terms of SCM, this means there is a sequence of functional

substitutions such that X may appear in the argument set of Y .

ZX Y

(a) Chain causal structure.

Z

WX Y

(b) Causal diagram over 4 variables.

Figure 4: Graphical structures used to illustrate exclusion
and independence constraints.

2.3 Independence Constraints and the

Counterfactual d-separation Criterion

The ability to represent multiple worlds simultaneously is a
fundamental aspect that sets apart the third layer of the PCH
from the others. One could therefore consider a probability
expression involving variables from multiple worlds, such as
Yx and Zx0 when x 6= x

0.
At the structural level, multiple interventions entail dif-

ferent copies of the mechanisms F of the SCM, each for
a different world (syntactically represented by a different
subscript), but all sharing the same P (U). As implied by
eq. (3), a counterfactual distribution can be evaluated by
passing the set of exogenous variables U through the dif-
ferent versions of those mechanisms, depending on which
hypothetical world one aims to evaluate. This process can be
mimicked and represented at the graphical level by a “meta”
diagram incorporating different instances of the endogenous
variables produced by the various mechanisms and connect-
ing different worlds through the U variables. This idea al-
lows the evaluation of separation statements among nodes
representing counterfactual variables, which in turn imply
conditional independences among the corresponding vari-
ables in the underlying distribution.

For concreteness, consider whether the causal graph in
fig. 4(b) implies that (Yxw,Wx0 ?? X | Z

0
x). Figure 5(a)

shows a natural generalization of the twin network to 3
worlds, a 3-plet network, for this graph and question. Note
that the variables in the query involve three submodels:
M,Mx0 , and Mxw, all depicted in the network sharing ex-
plicit unobservable variables.

While it seems that X is d-connected to Yxw given Zx0 in
fig. 5(a), due to the active path X  Z  Uz ! Zxw !
Yxw, the exclusion operator reveals Zx0 = kZx0k= Z. This
means that conditioning on Zx0 is the same as conditioning
on Z and the separation holds.

In this sense, we should merge the nodes Z, Zx0 , and Zxw

due to the deterministic relationship among them. It is also
convenient to ignore nodes of variables fixed by intervention
and reduce every variable with the exclusion operator. This
results in the 3-plet network shown in fig. 5(b). In this new
graph, d-separation can be used to tell that X and Yxw = Yw

are separated given Zx0 = Z.
More generally, we can construct twin networks, 3-plet

networks, or k-plet networks depending on the number of
interventions in the separation statement. Then, use the ex-
clusion operator to merge nodes corresponding to variables
that are deterministically the same. This method, however,
includes many variables in the graph that we do not need
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Figure 5: Based on the causal diagram in fig. 4(b) and inter-
ventions do (x,w), do (x0), and do (;): 3-plet network (a),
3-plet network + exclusion. (c) AMWN with the ancestors
of variables Yxw,Wx0 , X and Z.

to check. To improve efficiency, as we will show later, we
discuss the concept of ancestors of a counterfactual.

Definition 4 (Ancestors (of a counterfactual) (Correa, Lee,
and Bareinboim 2021a)). Let Yx be such that Y 2 V,X ✓
V. Then, the set of (counterfactual) ancestors of Yx, denoted
by An(Yx), consist of each Wz such that W 2 An(Y )GX

\X
(which includes Y itself), and z = x \ An(W )GX

.

For a set of variables W⇤, we define An(W⇤) as the
union of the ancestors of each variable in the set. That is,
An(W⇤) =

S
Wt2W⇤

An(Wt). For example, in fig. 4(b),
An(Yxw) = {Yw, Z},An(Wx0) = {Wx0},An(X) =
{X,Z}.

We describe a graphical construction called the Ancestral
Multi-World Network (AMWN), denoted GA(G,Y⇤). This
data structure is a function of the original causal diagram G
and the counterfactual variables Y⇤ in the separation state-
ment to be evaluated. Algorithm 1 describes the procedure
for creating an AMWN.

For concreteness, let us consider again the evaluation of
the separation query (Yxw,Wx0 ??X) using the causal dia-
gram in fig. 4(b). In line 1, the procedure computes An(Y⇤),
which will be added as nodes in the AMWN.

The associated directed arrows witness the ancestrality of
the variables involved. For instance, Z is an ancestor (par-
ent) of Yw, hence Z and the arrow Z ! Yw must be present
in the graph. Note that, at this point, the resulting graph is a
subgraph of fig. 5(b), but it the rest of the graph is not rele-
vant to evaluate the separation statement with d-separation.
That is, (Xt??Yr | Z⇤) can be judged using d-separation on
top of GA(Xt, Yr,Z⇤).

The second part of algorithm 1 explicitly adds latent vari-
ables U to facilitate reasoning about the relations among
variables appearing more than once in the graph with differ-
ent subscripts and variables originally connected by latent

W
Z

Y

X

(a)

W
Z

Yxw

X

Zw
Uz

Uzx

(b)

Figure 6: To judge the separation statement (Yxw ?? X |
Z,W ) in (a), we construct AMWN (b) and use d-separation.

Algorithm 1: AMWN-CONSTRUCT(G,Y⇤)
Input: Causal diagram G and a set of counterfactual variables Y⇤.
Output: GA(Y⇤) the AMWN of G and Y⇤.
1: Initialize a network G0 adding the variables in An(Y⇤) to-

gether with the directed arrows witnessing the ancestrality.
2: for each edge V 2 V appearing more than once in G0

do

3: Add a node UV and an edge UV ! Vx for every instance
of Vx of V .

4: end for

5: for each bidirected V L9999K W where V and W are in G0
do

6: Add a node UV W and edges from it to Vx and Wx, for every
instance of Vx of V or Wx of W in G0.

7: end for

8: return G0.

confounding.3
For instance, consider the causal diagram in fig. 6(a) and

whether (Yxw??X | {Z,W}). The relevant set of ancestors
is An(Yxw, X, Z,W ) = {Yxw, Zw, X, Z,W}. The corre-
sponding AWMN is shown in fig. 6(b). The node Uz has
been added and connected to Z and Zw (line 3), which come
from the same original variable. There is also the node Uzx,
that is connected to Z, Zw and X due to the bidirected ar-
row Z L9999K X in G (line 6). By the d-separation criterion,
the path X L9999K Zw ! Yxw is active given {Z,W}, which
leads to the conclusion that (Yxw ?6?X | Z,W ), as stated in
the sequel.
Theorem 1 (Independence Constraints — Counterfactual
d-separation). Consider a causal diagram G and a col-
lection of counterfactual distributions, P???, induced by
the SCM associated with G. For counterfactual variables
Xt, Yr,Z⇤,

(kXtk??kYrk
�� kZ⇤k)GA ! (kXtk??kYrk

�� kZ⇤k)P??? .

In words, if kXtk and kYrk are d-separated given kZ⇤k in
the diagram GA(Xt, Yr,Z⇤), then Xt and Yr are indepen-
dent given Z⇤ in every distribution P??? compatible with the
causal diagram G.

Now, we examine the time complexity of constructing an
AMWN. Let z be the number of different interventions in
the separation query, and n, m are the number of nodes and

3The exogenous variables shared across worlds are precisely
the anchors of invariance in these settings. They represent precisely
the identity of the units submitted to these different counterfactual
conditions.



edges, respectively. In line 1, the set of counterfactual ances-
tors can be computed in time linear to the size of the graph,
for each intervention appearing in Y⇤; hence the step takes
time O(z(n+m)). Due to line 3, no more than n latent nodes
and zn edges are added. Line 5 adds m latent nodes and 2zm
edges at most. Overall, the construction takes O(z(n+m)),
which is polynomial in the size of G and Y⇤.

The resulting graph GA has O(z(n+m)) nodes and edges,
hence running d-separation on top of it takes O(z(n +m))
time (van der Zander, Liskiewicz, and Textor 2014). Com-
pared with the classical d-separation criterion, the time re-
quired to use AMWN increases by a factor of z, the number
of different worlds involved in the query. Table 1 summa-
rizes the methods discussed, in terms of whether they allow
for checking any separation constraints (among any counter-
factual in the considered worlds), if d-separation is complete
for them, and the time complexity of the construction of
the graph and checking the constraint.4 Overall, the method
based on AMWN is more general and efficient than previous
algorithms in the literature.

3 The Counterfactual Calculus

Building on our understanding of the constraints discussed
earlier, this section introduces the counterfactual calculus
and how it can be used for counterfactual inference based
on the assumptions encoded in a causal diagram.

In the spirit of Pearl’s celebrated interventional calculus
(do-calculus), its counterfactual counterpart allows one to
transform expressions in the form P (y⇤ | x⇤) to other coun-
terfactual quantities, including in observational (P (y | x))
and experimental (P (y | do (x))) forms, as licensed by the
constraints encoded in the causal diagram. The counterfac-
tual calculus consists of three inference rules based on the
three types of constraints discussed earlier.
Theorem 2 (Counterfactual Calculus (ctf-calculus)). Let G
be a causal diagram, then for Y,X,Z,W,T,R ✓ V, the
following rules hold for the probability distributions gener-
ated by any model compatible with G:
Rule 1 (Consistency rule — Obs./intervention exchange)

P (yT⇤x,xT⇤ ,w⇤) = P (yT⇤ ,xT⇤ ,w⇤) (15)

Rule 2 (Independence Rule — Adding/removing counter-
factual observations)

P (yr | xt,w⇤) = P (yr | w⇤)

if (Yr ??Xt | W⇤) in GA, (16)

Rule 3 (Exclusion Rule — Adding/removing interventions)

P (yxz,w⇤) = P (yz,w⇤)

if X \ An(Y) = ; in GZ, (17)

where GA is the counterfactual ancestral graph GA(G,Yr [
Xt [W⇤).

4Further details on this comparison are given in appendix C.1.
5
n,m, z, and d refer to the number of nodes, edges, (different)

interventions, and maximum cardinality of any observable variable
in G, respectively.

Method Any sep. Complete Time Complexity5

Twin Network Yes No O(n+m)
SWIG No Yes O(n+m)
Multi-Networks Yes Conjectured O(dn(n+m))
k-plet Network (ours) Yes Yes O(zn(n+m))
AMWN (ours) Yes Yes O(z(n+m))

Table 1: Comparison of counterfactual independence graph-
ical constructions.

The first rule of the calculus, consistency, was discussed
in section 2.1. One distinct feature of this rule is that it does
not depend on the graphical structure and allows for adding
or removing interventions whenever a specific observational
context and the antecedent of the counterfactual (subscript)
match. As mentioned earlier, consistency is essentially the
probabilistic instantiation of the invariances that follow from
the modularity and stability of the causal mechanisms of the
underlying system.

The second rule, independence (section 2.3), corresponds
to a generalized version of d-separation for counterfac-
tual events. Syntactically, it permits the addition/removal of
counterfactual evidence in a probability distribution.

The third rule, exclusion (section 2.2), follows from the
idea that interventions on variables without a causal path to
the observed variable do not affect this variable and, there-
fore, can be dismissed.6

For concreteness, we illustrate next the use of the ctf-
calculus rules for counterfactual identification tasks through
a few examples.
Example 1 (ETT in the Backdoor diagram). Consider the
causal diagram in fig. 1 and the observational distribution as
input, and the counterfactual distribution P (yx | x0) as the
query. Using the ctf-calculus, we can then write:

P (yx | x0)

=
X

z
P (yx | z, x0)P (z | x0)

(Conditioning on Z) (18)

=
X

z
P (yx | zx, x0)P (z | x0)

(R3: {X} \ An(Z) = ;) (19)

=
X

z
P (yxz | zx, x0)P (z | x0)

(R1: (Zx = z ) Yx = Yxz)) (20)

=
X

z
P (yxz | z, x0)P (z | x0)

(R3: {X} \ An(Z) = ;) (21)

=
X

z
P (yxz | z, x)P (z | x0)

(R2: (X ?? Yxz | Z) in GA (fig. 7(a))) (22)

=
X

z
P (y | z, x)P (z | x0)

(R1: (Z = z,X = x) Yxz = Y )) (23)

6We provide a comparison of ctf-calculus and do-calculus in
appendix C.2.
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Figure 7: (a) An AMWN based on fig. 1 and variable set
Y⇤ = {Yxz, X, Z} used in the derivation of example 1. (b)
causal diagram used in example 2.

The effect of treated on the treated is then identifiable
from P (x, z, y) and G. ⌅
Example 2 (Natural Direct and Indirect Effects). Consider
the causal diagram in fig. 7(b) and suppose we wish to eval-
uate the natural direct (NDE) to understand how exercising
(X) affects cardiovascular disease (Y ) by means other than
affecting the cholesterol level (W ), that acts as a mediator of
this relationship. The NDE can be written in counterfactual
language as

NDEx,x0(y) = P (yx0,Wx)� P (yx). (24)

The derivation of the first term of the NDE expression goes
as follows:

P (yx0Wx)

=
X

w
P (yx0w, wx)

(CU, cor. 1: sum over Wx + consistency) (25)

=
X

w
P (yx0w | wx)P (wx)

(Chain rule) (26)

=
X

w
P (yx0w | wx0)P (wx)

(R2: (Yx0w ??Wx,Wx0) in GA (fig. 8(a))) (27)

=
X

w
P (yx0w | wx0 , x

0)P (wx)

(R2: (Yx0w ??X | Wx0) in GA (fig. 8(b))) (28)

=
X

w
P (yx0w | w, x0)P (wx)

(R1: (X = x
0 )Wx0 = W )) (29)

=
X

w
P (y | w, x0)P (wx)

(R1: (W = w,X = x
0 ) Yx0w = Y )). (30)

Here, P (wx) cannot be further reduced to an expression
in terms of observational distributions.

For the baseline P (yx), the derivation goes as follows:

P (yx)

=
X

w
P (yx | wx)P (wx)

(Condition on Wx) (31)

=
X

w
P (yx | wx, x)P (wx)

(R2: (Yx ??X | Wx) in GA (fig. 8(c))) (32)

Wx

Wx0 Yx0w

(a)

X

Wx0

Yx0w

(b)

X

Wx

Yx

(c)

Figure 8: Causal diagrams used in derivation in example 2.

=
X

w
P (y | w, x)P (wx)

(R1: (X = x)Wx = W,Yx = Y )). (33)

Finally, we get

NDEx,x0(y)=
X

w

(P (y|w, x0)�P (y|w, x))P (wx). (34)

by putting eqs. (30) and (33) together. ⌅
The calculus guarantees the correctness of the reduction

whenever such a derivation from a counterfactual query to
the probabilities over the observed distributions is available.
Theorem 3 (Soundness and Completeness for Counterfac-
tual Identifiability). A counterfactual quantity Q = P (y⇤ |
x⇤) is identifiable from a given combination of observational
and experimental distributions and a causal diagram G if
and only if there exists a sequence of applications of the
rules of ctf-calculus and the probability axioms that reduces
Q into a function of the available distributions.

In other words, if any counterfactual identifiable from cer-
tain observational (L1) and interventional (L2) distributions,
there must exist a sequence of applications of ctf-calculus
that witnesses the mapping from the available distributions
and the target effect.

4 Conclusions

In this paper, we first established consistency (lemma 1),
exclusion (lemma 2), and independence constraints (theo-
rem 1) following from the SCM semantics. We showed that
d-separation is complete for obtaining independence con-
straints from the causal diagram using an efficient graphi-
cal construction called Ancestral Multi-World Network (al-
gorithm 1). This constitutes the first efficient procedure for
reading counterfactual independence. We then introduced
a set of rules called counterfactual calculus (theorem 2),
which can be used to transform target counterfactual quan-
tities based on the constraints encoded in the diagram. Fi-
nally, we showed that counterfactual calculus is sound and
complete for identifying counterfactuals from an arbitrary
combination of observational and experimental distributions
(theorem 3). We hope the results in this paper can further our
understanding and expand the toolbox for performing causal
reasoning, closing a journey that started with Pearl’s funda-
mental results on d-separation for observational distributions
(circa 1986) and the do-calculus for interventional reasoning
(1995). We now have more general machinery that allows
for reasoning across the three layers of the causal hierarchy,
including the very top: counterfactual relations.
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