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Abstract

A commonly accepted belief suggests that, in a real-world environment, one can
only draw samples from observational and interventional distributions, correspond-
ing to Layers 1 and 2 of the Pearl Causal Hierarchy (or PCH). According to this
understanding, Layer 3, representing counterfactual distributions (what would
happen), remains inaccessible by definition. However, Bareinboim, Forney, and
Pearl (2015) introduced a procedure that allows an agent to sample directly from
a counterfactual distribution, opening up the possibility that other counterfactual
quantities can be estimated directly via physical experimentation. In this paper,
we investigate this proposition by introducing a formal definition of realizability,
the ability to draw samples from a distribution, and then developing an algorithm
to determine whether an arbitrary counterfactual distribution is realizable given
fundamental physical constraints, such as the inability to go back in time and
subject the same unit to a different experimental condition. Building on this new
characterization, we further develop an algorithm for an agent to construct an opti-
mal realizable strategy in multi-arm bandit settings. Contrary to general practice
that assumes that an interventional strategy is the best that an agent can achieve,
we show that a counterfactual strategy dominates interventional and observational
ones (i.e. it is as good as or better than), and demonstrate the practical performance
of counterfactual agents in simulations.

1 Introduction

The Pearl Causal Hierarchy, or PCH, is an important recent milestone in our understanding of
causality [27, 5]. The three layers of the PCH represent the distinct regimes of seeing, doing,
and imagining, with regard to an environment. Consider an environment involving a decision
variable X (say, whether a person follows intermittent fasting) and an outcome Y (BMI). Layer 1,
or L1, of the PCH represents distributions from the observational regime, such as P (Y | x): the
distribution of BMI among people who happen to adopt diet x. Layer 2 (L2) represents interventional

distributions , such as the distribution of Y if a person is made to follow diet x, written symbolically as
P (Y ; do(x)). Layer 3 (L3) represents counterfactual distributions dealing with conflicting realities,
such as P (Yx | x0, y0): the distribution of Y had X been fixed as x, given that X,Y were in fact
observed to be x0, y0. Each layer subsumes the one before it, but is under-determined by it [16, 5].

Suppose a scientist were interested in the L3-quantity P (yx | x0), often called the effect of the

treatment on the treated, or ETT [13, 14]. One approach to computing such quantities is through
identification [24, §3.2.4]: leveraging causal knowledge about the environment, typically a causal
graph or parametric assumptions, to infer the higher-layer quantity using lower-layer data. This
approach fails when the quantity is non-identifiable, e.g. ETT in the general case [33, 8].

There is, however, another approach that uses physical experimentation to directly draw samples from
the relevant distribution, P (Yx, X) in the ETT case, and then uses statistical methods to estimate
P (Yx = y,X = x0). This is only possible if there is some sequence of physical actions by which an
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Figure 1: (a,c) Problems with decision variable X , outcome Y , and covariates Z,D; (b,d) Cumulative
regret grows sub-linearly for L3-strategy but linearly for L2 strategy. For details, see Sec. 4.1.

agent can measure these random variables simultaneously for a single unit. It is generally believed
that sampling from a distribution is only feasible when considering L1- and L2-distributions, the latter
by interventions like randomized controlled trials (RCT), à la Fisher [11], and the former by simply
observing the natural behaviour of the system. L3-distributions like P (Yx, X) are deemed non-
realizable in general, as a single unit can only adopt either decision x or x0. However, Bareinboim,
Forney & Pearl have shown it is feasible to draw samples from the ETT distribution through a
novel counterfactual randomization procedure [4, 12]. This leaves open the possibility that other
L3-distributions, say perhaps P (Yx, X, Y ), are also realizable through clever experimental setups,
allowing one to estimate important quantities like the probability of sufficiency, P (yx | y0, x0) [23].

This brings us to the central question motivating this work: from which L3-distributions is it physically

possible to draw samples given the fundamental constraints of nature? More broadly, given that there
are fundamental limitations like the inability to travel back in time and subject the original unit to
a different experimental condition, how far up the PCH can one go via experimental procedures?
Answering these questions has implications for decision-making. For concreteness, consider Fig.
1, showing simulations for two multi-arm bandit (MAB) settings. The standard approach in the
literature uses allocation procedures (e.g., UCB, Thompson Sampling) to discover which arm x
optimizes the expected outcome E[Y | c; do(x)] in Fig. 1(a) and E[Y ; do(x)] in (c), which are both
interventional (L2) strategies [34, 17]. It turns out there are superior strategies based on optimizing
the counterfactual (L3) quantities E[Yx | c, x0] in (a) and E[Yx | x0, dx00 ] in (c) (to be defined).
Dismissing such possibilities leads to regret that grows linearly, since the L2-strategies do not come
asymptotically closer to discovering the optimal arm in each round, as highlighted in Fig. 1(b,d).

Figure 2: Paper’s roadmap.

The conceptual roadmap of this work is shown in Fig. 2 and
its contributions are as follows:

1. We introduce a formal definition for the realizability of an

L3-distribution (Def. 3.4), and develop an algorithm to
decide whether an arbitrary distribution is realizable (Algo.
1). We prove that the algorithm is complete (Thm. 3.5),
and derive important corollaries characterizing realizable
distributions (Cor. 3.7, 3.8).

2. We leverage this result to study realizable decision strate-

gies. We develop a general algorithm by which an agent can
adapt common MAB solvers to enact an optimal counterfactual (L3) strategy in decision problems
with a known causal structure. We prove that this strategy dominates standard interventional (L2)
ones (Thm. 4.1, Cor. 4.2), and empirically validate these results.

Preliminaries. We denote variables by capital letters, X , and values by small letters, x. Bold
letters, X, are sets of variables and x sets of values. P (x) is shorthand for P (X = x). [.] is
the indicator function. We use Structural Causal Models (SCM) to describe the generative process
for a system of interest [5, Def. 1][24]. An SCM M is a tuple hV,U,F , P (u)i. V is the set of
observable variables. U is the set of unobservable variables exogenous to the system, distributed
according to PM(U). F = {fV } is a set of functions s.t. each fV causally generates the value of
V 2 V as V  fV (UV ,PaV ), where UV ✓ U and PaV 2 V \ V . Each M induces a causal

diagram G [5, Def. 13], which is a graph containing a vertex for each V 2 V, a directed edge
from each node in PaV to V , and a bidirected edge between V, V 0 if UV ,UV 0 are not independent.
Given a graph G, GXW is the result of removing edges coming into variables in X, and edges
coming out of W. We use standard terminology like parents, descendants of a node (see App. A).
Our treatment is limited to recursive SCMs, which implies acyclic diagrams, with finite discrete
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domains over V. The do(x) operator indexes a sub-model Mx where the functions generating
variables X are replaced with constant values x. A variable Y 62 X evaluated in this regime is
called a potential response, denoted Yx. (W? = w) denotes an arbitrary counterfactual event, e.g.
(Yx = y ^ Yx0 = y0 ^X = x00). The probability of such an event is given by the L3-valuation [5,

Def. 7]: PM(W? = w) =
P

u

✓Q
Wt2W?

[W?(u) = w]

◆
PM(u), with w taken from w.

2 Data-collection procedures

In this section, we define a procedure, counterfactual randomization, that extends the scope of
traditional Fisherian experimentation (discussed below). Consider a system of interest modeled by
unknown SCM M. Interventions and counterfactual events are typically defined in terms of symbolic

operations on M. To conceptually separate this from the physical constraints experienced by an
agent (natural or artificial), we define the following physical actions that an agent can perform in the
system. These are simply the physical counterparts to symbolic procedures.

We call each discrete episode of the system’s behaviour a unit. Examples of units are patients in a
clinical trial, neighbourhoods in a social science experiment, rounds played on a slot machine etc.
We index units WLOG by i = 1, 2, 3..., which constitute a target population in the system.
Definition 2.1 (Physical actions). (1) SELECT(i): randomly choosing, without replacement, a unit i
from the target population, to observe in the system; (2) READ(V )(i): measuring the way in which
a causal mechanism fV 2 F has physically affected unit i, by observing its realized feature V (i);
(3) RAND(X)(i): erasing and replacing i’s natural mechanism fX for a decision variable X with an
enforced value drawn from a randomizing device having support over Domain(X). ⌅

READ(V )(i) = v and RAND(X)(i) = x are also overloaded to refer to the values read and enforced,
respectively. RAND(X)(i) is the standard Fisherian randomization of a decision variable X , corre-
sponding to the symbolic procedure of a stochastic intervention on X [7].1 As RAND(X)(i) erases the
unit i’s natural decision, READ(X)(i) will yield the value randomly assigned to unit i. The discovery
of this procedure marked an important achievement in the history of science and experiment-design
[10, 11]. Since the use of a randomizing device eliminates by design any confounding between the
assigned decision and the unit’s latent attributes U(i), it allows researchers to estimate causal effects.

X Y

X
x

Y

Figure 3: (Top) Causal dia-
gram with decision variable
X; (Bottom) Schematic il-
lustration of the procedure
of randomizing the actual
decision without erasing the
unit’s natural decision.

The actions in Def. 2.1 are sufficient for an agent to physically draw
samples from any L1- or L2-distribution, as discussed in App. C.4.
Until recently, it was generally presumed these were the only physical
actions possible on units in a system. However, we discuss some
important extensions of experimental capabilities next.
Counterfactual data-collection procedures. In an important work
from the causal reinforcement learning literature, Bareinboim, Forney
& Pearl describe an experimental setting in which it is possible to both
randomize a unit’s actual decision, and also record the natural deci-
sion the unit would have normally taken [4, 12]. This procedure has
subsequently been used to set benchmarks in counterfactual decision-
making [36]. These settings involve an agent introspecting to gauge
their natural choice, or otherwise revealing their natural choice by
some indication, e.g. physical gestures prior to decision-time. Im-
portantly, this form of randomization does not erase the unit’s natural
choice of decision variable X , as schematically illustrated in Fig. 3.

Building on this idea, we note a natural extension to the agent’s capabilities: the ability to intervene
on a decision variable X’s perceived value along a specific path. For concreteness, consider the
L3-quantity known as natural direct effect, or NDE, which tracks the effect of X on Y via a "direct"
path, as opposed to an "indirect" path via a mediator Z [25]. The NDE is generally regarded as
identifiable from experimental data only under certain conditions [26, 8]. The next example illustrates
a procedure by which it is possible to compute the NDE even when these identification conditions are
not met, by randomizing the perception of X .

1Note: if the device used for enforcing the value of X is a constant function, this action simply becomes
WRITE(X : x)(i), corresponding to an atomic intervention do(x).
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Figure 4: (Top) "Expanded"
diagram for traffic camera ex-
ample, where W is counter-

factual mediator for X; (b)
Schematic illustration of ran-
domizing the value of X as
perceived by Y .

Example 1 (Traffic camera) A computer vision company’s tool is
being considered for an automated speeding ticket system that uses
footage from traffic cameras. But the government’s audit team has a
fairness concern: it is possible the model is trained on footage with a
strong correlation between the color of the car and speeding (perhaps
due to color preference of different socioeconomic neighbourhoods),
and unfairly penalizes certain car colors. This amounts to a hypoth-
esis that X (car’s color) affects Y (AI decision to issue a ticket)
via a direct path as opposed to the indirect path via Z (speeding),
as illustrated in Fig 4(Top). The NDE is defined as the following
expression: NDEx,x0(y) = P (yx0Zx)� P (yx) [25].

The second term, P (yx), can be estimated from a Fisherian random-
ization of X (say, an experiment recruiting drivers and assigning
them random cars). But it is not immediate how to estimate the
first term, P (yx0Zx), even with RCT data. However, the audit team
recognizes there exists a special mediator, viz. the features W in the
video which reveal the car’s color to the model (say, RGB values of
pixels in the video frames). They use standard video-editing tools to
randomly swap the color of the car in the footage. By randomly assigning a particular car W  red,
they are able to affect the mechanism fY ’s perception of X:

P (YW=red | X = blue) estimated by Lemma C.14 (1)
=P (YW=red,Z | X = blue) Z : natural value (2)
=P (YW=red,ZX=blue | X = blue) consistency property (3)
=P (YX=red,ZX=blue | X = blue) Def. D.2, X ⌘W (4)
=P (YX=red,ZX=blue) d-separation (5)

Eq. 4 is justified because W controls Y ’s perception of X given a fixed z (formalized in Lemma
D.4). Thus, they are able to directly sample from the L3-distribution P (Yx0Zx , X) via a physical
procedure, and use identification rules to obtain P (yx0Zx). Using the formula for NDE, they can
evaluate whether a car’s color has a direct effect on the odds of getting a speeding ticket. A detailed
version of this example, including a discussion of assumptions involved, is in App. D.4. ⌅
One is able to randomize X as perceived by only one of its children in Example 1, by leveraging the
special variable W (RGB values) that fully encodes information about X (color) and mediates its
effect on Y . Other examples of interventions on "perception" of attributes include changing details on
a job application (name, pronouns, keywords) to simulate a perceived alternate demographic identity
[6], or editing specific portions of text input to a language model [9]. This has also been discussed
in [28, §4.4.4]. We provide a formal treatment in App. D.1 of the structural assumptions involved,
including Def. D.2 of a counterfactual mediator. We also describe another example in App. D.5.

These extensions to experimental capabilities are captured in the following definition of a new
physical action that an agent may be able to perform in an environment.
Definition 2.2 (Counterfactual (ctf-) randomization). CTF-RAND(X ! C)(i): fixing the value of X
as an input to the mechanisms generating C ✓ Ch(X)G using a randomizing device having support
over Domain(X), for unit i, given causal diagram G. ⌅

The essential differences between the Fisherian RAND(X)(i) and CTF-RAND(X ! C)(i) are (1)
CTF-RAND does not erase the unit i’s natural decision X(i)2; and (2) while RAND affects all children
of X , CTF-RAND does not affect Ch(X)\C. CTF-RAND can only be enacted under certain structural
conditions, viz., either in environments which permit the measurement of a unit’s natural decision
while simultaneously randomizing the actual decision [4], or where counterfactual mediators can
be used to alter the value of X as perceived by a subset of children. We provide a systematic
way to translate such structural conditions into a list of the CTF-RAND procedures possible in the
given environment, in Algo. 4. Ctf-randomization makes it possible to physically perform multiple
randomizations involving the same variable X on a single unit i (explained with example in App.
D.2). Further, CTF-RAND may only be performed w.r.t a graphical child variable; it is not possible to
bypass a child and directly affect a descendant’s perception of X (justified in App. D.3).

2Another way of understanding this difference is that the unit’s natural inclination is taken into account.
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3 Counterfactual realizability

Given the ability to perform ctf-randomization, we are interested in knowing which L3-distributions
can be accessed directly by experimentation. In this section, we discuss the physical constraints
imposed by nature on an agent. We formally define realizability and then develop a complete
algorithm to decide whether an L3-distribution is realizable given a set of feasible physical actions.

The most basic constraints experienced by the agent are physical. Each mechanism fV 2 F represents
some physical process that transforms a unit i according to the laws of nature. For instance, taking
a drug, X , produces a side effect in the patient, Y , by a biochemical reaction fY (X,UY ), which
depends on the drug and the patient’s latent health condition, UY . Once patient i has been subjected
to mechanism fY under X = x, there appears to be no way to go back in time and subject the same
patient to mechanism fY under X = x0. Even if technologically feasible to reverse the process (e.g.,
by taking an antidote to the drug), the latent factors U = u might have changed after the experiment
(e.g., the patient could have developed tolerance to the drug). Repeating the experiment on this
patient is tantamount to testing a new unit with unknown latent features U = u0. 3 This observation
can be made more formal through the following assumption.

Assumption 3.1 (Fundamental constraint of experimentation (FCE)). A unit i in the target population
can physically undergo a causal mechanism fV 2 F at most once. ⌅
Remark 3.2. The FCE assumption entails that a unit i can only be submitted to a particular mechanism
fV (PaV ,UV ) under a single set of experimental conditions, received as input to fV . By implication,
the physical actions in Defs. 2.1, 2.2 can only be performed at most once per unit i. ⌅
Once unit i has been subjected to fV , it is not possible to re-run fV with differently fixed inputs.
READ(V )(i) thus only yields one value for i. Although ctf-randomization permits multiple interven-
tions involving the same variable X (App. D.2), each such intervention can only be performed once,
since it impacts different child mechanisms that can each only occur once for unit i. We also assume
that the agent can only perform the physical actions in Defs. 2.1, 2.2, up to isomorphism.

Definition 3.3 (I.i.d sample). Given an L3-distribution Q = P (W?) and a sequence of physical
actions A(i) performed on unit i in an environment modeled by SCM M, producing a vector of
realized values W(i)

? = w for the variables in W?, the vector is said to be an i.i.d sample from Q if
PC(W(i)

? = w | A(i)) = PM(W? = w), 8w, where PC is the probability measure over the beliefs
of exogenous agent C, and the l.h.s is the probability of physical actions A(i) producing the vector w
when performed on some unit i. ⌅
Definition 3.4 (Realizability). Given a causal diagram G and the set of physical actions A, an
L3-distribution P (W?) is realizable given A and G iff there exists a sequence of actions A from
A by which an agent can draw an i.i.d sample (Def. 3.3) from PM(W?), for any M 2M(G), the
class of SCMs compatible with G. ⌅

We emphasize the distinction between realizability and identifiability. Identifiability [24, Def. 3.2.3]
from G states that a distribution (say, P (v; do(x))) can be uniquely computed from the available data
(say, P (v)) for any SCM compatible with the assumptions in G. Realizability of a distribution states
that it is physically possible for an agent to actually gather data samples according to this distribution.

We next develop an algorithm to decide whether a distribution is realizable. For intuition, suppose
that an agent is able to perform CTF-RAND(V ! C), 8V,C 2 Ch(V ), w.r.t an input causal diagram,
and wants to obtain samples from P (Zx,Wt). Consider the diagram G2 in Fig. 5. By performing
CTF-RAND(T !W ) and CTF-RAND(X ! Z), the distribution is realizable. However, suppose the
input diagram is G1. A necessary condition to measure Zx for a unit is for mechanism fA to receive
the natural value of T , illustrated in green. While a necessary condition to simultaneously measure
Wt is for fW to receive At, which in turn requires fA to receive a fixed t, shown in red. This conflict
in necessary conditions renders the query non-realizable.4

3In the philosophy of science literature, this has been discussed under the temporal asymmetry of causation
[30, §III-IV].

4To be clear, the input to the algorithm is a graph and an accurate set of actions the agent can perform in
the environment. If the graph is per G1 in Fig. 5, then CTF-RAND(T ! Z) is not possible in this environment.
Marginalizing out A and providing graph G2 as input does not help. See Remark C.3 and App. D.3.
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Algorithm 1 CTF-REALIZE

1: Input: L3-distribution Q = P (W?); causal
diagram G; action set A

2: Output: I.i.d sample W(i)
? from Q; FAIL if

Q is not realizable given G,A
3: Fix a topological ordering Top(G)
4: SELECT(i) for a new unit i
5: for V in order Top(G) do
6: INTV  ; {Interventions for V }
7: OUTPUTV  ; {Index in output vector}
8: for each term Wt in expression W? do
9: if V 2 An(W )GT

and V 6= W then
10: Call COMPATIBLE(V,Wt) 3
11: end if
12: if V = W then
13: Add {Wt} to OUTPUTV

14: end if
15: end for

16: for each {action : tag} 2 INTV do
17: Perform the randomization on unit i
18: If the random-generated value 6= tag,

discard the unit and return to Line 4
19: end for
20: for each Wt 2 OUTPUTV do
21: if {RAND(V ) : .} 2 INTV then
22: Return FAIL
23: else
24: Perform READ(V )(i) = v0

25: Assign v0 to each index W (i)
t in out-

put vector W(i)
? = w

26: end if
27: end for

28: end for

29: Return i.i.d sample W(i)
? = w

T

t nat.
A

X

W Z

T

t nat.
X

W Z

Figure 5: Evaluating realizability of
P (Zx,Wt) for graphs G1 (left) and G2

(right). G1 yields conflicting requirements.

This "edge-coloring" intuition is formalized in Algo. 1.
The algorithm CTF-REALIZE takes as input an L3-
distribution P (W?), a graph G, and a set of physical
actions A the agent is able to perform in the environ-
ment (viz., the RAND and CTF-RAND actions which are
possible in the environment). It returns an i.i.d sample
if the distribution is realizable, and FAIL otherwise.

The algorithm works as follows. The necessary and
sufficient conditions to measure each potential response
Wt 2W? are [i] T is fixed as t (by intervention) as an
input to all children C 2 Ch(T ) \ An(W ); [ii] each
A 2 An(W )GT

, A 62 {T,W} is received "naturally" (i.e., without intervention) by its children
C 2 Ch(A) \ An(W ); and [iii] fW is not erased and overwritten (by Fisherian intervention). If
these conditions can be met for all the terms in W?, the distribution is realizable. If there is a conflict
in the necessary conditions for evaluating two terms (as we saw for P (Zx,Wt) in Fig. 5, G1), the
query is non-realizable.

The algorithm is general and does not make assumptions about the ability to perform any particular
interventions. If the action set A does not contain counterfactual randomization capabilities, the
algorithm returns FAIL for non-L2 queries. If the agent cannot perform any interventions at all, the
algorithm returns FAIL for non-L1 queries (we assume the ability to READ all variables).

Theorem 3.5 (Correctness and Completeness). An L3-distribution Q = P (W?) is realizable given

action set A and causal diagram G iff the algorithm CTF-REALIZE(Q,G,A) returns a sample. ⌅

A further question we may ask is which L3-distributions are realizable if we assume maximum
experimental capabilities, notably, the ability to perform separate ctf-randomization for each child of
each variable. Given a causal diagram G, we define the maximal feasible action set A†(G) as the set
containing all of the following actions: SELECT(i), READ(V )(i) , 8V , and CTF-RAND(X ! C)(i)

, 8X and C 2 Ch(X). A†(G) thus gives the agent the most granular interventional capabilities.

Definition 3.6 (Ancestors of a counterfactual [8]). Given a causal diagram G and a potential response
Yx, the set of (counterfactual) ancestors of Yx, denoted An(Yx), consists of each Wz s.t. W 2
An(Y )GX , and z = x \ An(W )GX

. For a set W?, An(W?) is defined to be the union of the
ancestors of each potential response in the set. ⌅
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P (Y )
P (X,Y )

P (Y ; do(x))

P (X,Y ; do(z))

P (Yx, X)

Cor. 3.7: An(W?) has
same variable twice

P (Yx, X, Y )

P (U)

Layer 1
(realizable)

P (V): Lem. C.12

Layer 2
(realizable)

P (V; do(x)): Lem. C.14

Layer 3
(partially realizable)

SCM
(unknown)

Figure 6: Pearl Causal Hierarchy (PCH) induced by an unknown SCM M. An L3-distribution is
realizable given a graph G and the maximal feasible action set A†(G) iff the ancestor set An(W?)
does not contain the same variable under different regimes.

Corollary 3.7. An L3-distribution Q = P (W?) is realizable given causal diagram G and action

set A†(G) iff the ancestor set An(W?) does not contain a pair of potential responses Wt,Ws of the

same variable W under different regimes. ⌅

For instance, if W? = {Zx,Wt} w.r.t graph G1 in Fig. 5, then An(W?) = {A, T,At}, which
contains both A,At. Thus, P (W?) is not realizable even with maximal experimentation capabilities.
Cor. 3.7 thus provides a graphical criterion to delineate how far up the PCH an agent can go via
experimental methods, as illustrated in Fig. 6. In App. B.2, we provide further examples of using the
CTF-REALIZE algorithm, and the graphical criterion, to demonstrate the realizability of the ETT
distribution P (Yx, X), the non-realizability of the PS distribution P (Yx, X, Y ).
Corollary 3.8 (Fundamental problem of causal inference (FPCI) [15]). The distribution Q =
P (Yx, Yx0) is not realizable given maximal feasible action set A†(G), for any causal diagram G, and

any variables X,Y 2 Desc(X). ⌅

The FPCI is an influential notion in the literature, and is often taken as a primitive, or in an axiomatic
fashion. We show that it is rather a specific consequence of the more general FCE assumption 3.1,
and follows from Thm. 3.5 and Cor. 3.7. By itself, the FPCI does not translate to an operational
criterion for determining which L3-distributions are realizable (Def. 3.4). For instance, it does not
clarify that a query with potential responses under different regimes like P (Yx, Zx0) may indeed be
realizable via counterfactual randomization, as we show in App. D.5. It also does not tell us that
P (Zx,Wt) may be realizable given causal diagram G2 in Fig. 5, but not realizable given G1.

4 Counterfactual decision-making

X

Z

D

Y

Figure 7: MAB template.

In this section, we study the practical implications of counterfactual
realizability for decision-making. To focus the discussion, we provide a
generic MAB template (Fig. 7) that is representative of a broad class of
multi-arm bandit (MAB) problems in the literature (the discussion can
also be extended to other settings such as sequential or Markov decision
processes). X is the decision variable, Z is a context variable, Y is the
reward, and D is a descendant of X confounded with Y .

Given a decision problem following the MAB template (Fig. 7), a decision strategy ⇡ is a mapping
from a set of variables W? (possibly counterfactual) to a set of actions A involving X . The expected
reward of following this strategy is notated µ⇡ := E[YA | W?], where YA is the potential response
of Y under the actions A. For example, the L1-strategy of merely observing the natural behaviour
of some behavioral agent is ⇡obs : {} 7! {}, which incurs the observational reward of µ⇡obs = E[Y ].
Whereas, the typical approach in the literature is the L2-strategy ⇡int : {z} 7! {WRITE(X : x)},
where x := argmaxx0 E[Yx0 | z]. In words, this strategy involves observing context Z = z for a
each round, and then performing the intervention do(x) that maximizes E[Yx | z] [34, 17].

It was shown in [4, 12, 36] that there exists a superior counterfactual strategy ⇡ett based on based on
maximizing E[Yx | x0, z], related to ETT (discussed in Sec. 1). We improve upon this benchmark
by proving that the following L3-strategy is optimal in an MAB problem, ⇡opt : {X,Z,Dx00} 7!
{CTF-WRITE(x! Y ), CTF-WRITE(x00 ! D)}, where x, x00 := argmaxx,x00 E[Yx | Z,X,Dx00 ].5

5CTF-WRITE is simply the deterministic equivalent of CTF-RAND (Def. 2.2).
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Algorithm 2 MAB-OPT
1: Input: MAB problem following Fig. 7;

MAB solver (e.g. UCB, EXP3, TS); No.
of rounds T ; Obs. data P (v)

2: for each z, x0 do
3: Initialize D-arms x00

4: end for
5: for each z, x0, x00, d do
6: Initialize Y -arms x
7: If x = x0 = x00, hot-start using P (v)
8: end for
9: for t 2 [T ] do

10: Observe x0, z
11: Draw D-arm x00 using MAB solver
12: Perform CTF-WRITE(x00 ! D) and

get Dx00 = d
13: Draw Y-arm x using MAB solver
14: Perform CTF-WRITE(x ! Y ) and

get Yx = y
15: Update D-arms and Y-arms according

to MAB solver rules using y
16: end for

With minor abuse of notation, this is the strategy that
(1) observes Z = z,X = x0 for a round; (2) maps
from {z, x0} 7! x00, to perform the counterfactual in-
tervention CTF-WRITE(x00 ! D) to observe Dx00 =
d; and (3) maps from {z, x0, dx00} 7! x, to perform
the counterfactual intervention CTF-WRITE(x! Y )
that maximizes E[Yx | z, x0, dx00 ]. For each mapping
in (2), (3) yields a local optimum, in expectation over
X,Z,Dx00 . Optimizing over all mappings in (2) yields
a global optimum. Translating this to practice, we pro-
vide a general algorithm (Algo. 2) that adapts any
standard MAB solver to implement the optimal L3-
strategy ⇡opt. We provide examples using Thompson
Sampling in the following section (Algos. 5,6).
Theorem 4.1 (Optimality). Given a decision problem

following the MAB template (Fig. 7), ⇡opt
is an optimal

realizable strategy. I.e., µ⇡opt � µ⇡, 8⇡ 2 ⇧, the

space of realizable strategies. ⌅
Corollary 4.2 (L3-dominance). Given an MAB deci-

sion problem with causal diagram described by the

MAB template (Fig. 7), the optimal L3-strategy ⇡opt

dominates the L1-strategy ⇡obs
and the optimal L2-

strategy ⇡int
. I.e., µ⇡opt � µ⇡obs and µ⇡opt � µ⇡int . ⌅

For decades, the Fisherian RCT methodology used to enact ⇡int was deemed to be the "gold standard"
for decision-making. We show that the L3-strategy ⇡opt is at least as good (and often better) than L2-
strategies. This means that if MAB solvers UCB, EXP3 etc. were deployed to enact an L2-strategy in
an environment where ⇡opt is better, the agent would incur linear cumulative regret, since the learning
approach comes no closer to discovering the optimal strategy as the number of trials increases.

4.1 Experiments

We illustrate the benefits of L3-approaches over purely L2-ones, through two scenarios. We evaluate
four algorithms in simulations: (i) TS: Thompson Sampling optimizing E[Yx | context]; (ii) TSett:
optimizing the L3-quantity E[Yx | x0, context]; (iii) TSopt: optimizing the L3-quantity E[Yx |
x0, dx00 ]; and (iv) TSaug: TS that follows an L2-strategy and treats the natural decision X and Dx00

as merely additional context variables. (ii) and (iii) are detailed in Alg. 5 and 6.

Strategy Avg. Y

L1 0.35

L2 0.6

Naive
mixed
(L1 + L2)

0.63

ETT
[4, 36]
(L3)

0.75

Table 1: Performance of
different strategies in Ex-
periment 1.

Experiment 1 (Algorithmic sentencing). Consider a drug court [20],
where offenders are assigned to undertake either counseling (X = 1)
or peer-support (X = 0), as shown in Fig. 8(a - Top). The outcome
Y is a binary indicator that the individual does not re-offend within 3
months. An experienced judge represents the natural regime (L1), and
an external agent (perhaps a policy-maker) wants to optimize Y . Z is a
binary score summarizing the individual’s risk (1: high risk), based on a
standardized score card. From past observational data, the judge appears
to perform well on high-risk individuals (E[Y | z1] = 0.75), but poorly
on low-risk ones (E[Y | z0] = 0.25). Data from a recent social science
RCT (L2) shows E[Yx1 | z] = 0.6, 8z. This suggests a naive "mixed"
strategy of using the judge for high-risk individuals and the best treatment
recommended by the RCT, for low-risk ones. However, following [4, 36],
the agent can both sample the judge’s natural decision and randomize the
treatment per defendant, leading to a strategy based on ETT-like quantity
E[Yx | x0, z] that yields best results as shown in Table 1. The optimal
strategy turns out to be to follow the judge’s natural decision for high-risk individuals, and flip the
natural decision for low-risk ones. Details of the underlying SCM and discussions are in App. E.1.

Simulations in the online, adaptive setting corroborate this conclusion. Fig. 8(c - Top) shows the
cumulative regret (CR) for 1000 iterations averaged over 200 epochs for TS,TSaug,TSett (CI=95%),
while Fig. 8(d - Top) shows the optimal arm probability (OAP) over time. The L3-strategy in red

8



Figure 8: (Top) Experiment 1; (Bottom) Experiment 2; (a) MAB causal diagram; (b) Illustration of
the optimal L3-decision strategy; (c) Cumulative Regret for algorithms TS,TSaug,TSett,TSopt and
Obs. strategy as baseline; (d) Optimal Arm Probability for all algorithms.

shows the quickest convergence and lowest CR. The L2-strategy in green of using X as merely a
context variable, takes around 200 more iterations for OAP to converge.

Strategy Avg. Y

L1 0.65

L2 0.7

ETT
[4, 36]
(L3)

0.75

Optimal
L3 (this
work)

0.80

Table 2: Performance of
different strategies in Ex-
periment 2.

Experiment 2 (Big Tech surveillance). Alice is a user of a social
networking platform run by Omega, a Big Tech firm that uses surveillance
and predictions to increase user engagement through addictive notifica-
tions and recommendations [38]. Alice chooses every evening whether
to use Omega via desktop (X = 0) or mobile (X = 1). Y is a binary
indicator of whether Alice stays within her self-determined social media
usage limit per day. Alice also notices that she receives ads when she logs
in each evening as D (0: streaming service, 1: food delivery ads). The
usage type X affects D,Y , as shown in Fig. 8(a - Bottom). In reality, the
decisions, covariates and confounders can be high-dimensional.

Omega’s PR department claims an RCT shows that the avg. user sticks to
their self-determined usage limit 70% of the time. Alice verifies that if she
randomizes her daily choice (L2) she indeed incurs E[Yx] = 0.7, 8x. But
she suspects that they are tracking and exploiting her latent preferences
since she normally experiences E[Y ] = 0.65 from following her natural
choices (L1) each day. She then decides to follow an ETT-based strategy (L3) by recording what she
naturally feels like doing each day, and optimizing E[Yx | x0], getting avg. performance of 0.75. At
this point, she realizes can perform another counterfactual randomization, by sampling her natural
choice X , randomly logging in to just see what ads she gets Dx00 , and again randomizing how she
actually uses Omega that day to get Yx. This L3-strategy optimizes E[Yx | x0, dx00 ], which performs
best as shown in Table 2. Detailed discussion of the underlying SCM is in App. E.2.

Simulations in the online setting corroborate this finding. Fig. 8(c,d - Bottom) shows the cumulative
regret (CR) and optimal arm probability (OAP) over 2000 iterations averaged over 200 epochs for
TS,TSaug,TSett, and TSopt (CI=95%). The optimal strategy (purple) performs best, improving on
the baseline performance of the ETT-based strategy (red) in [4, 36]. Indeed, all other algorithms fail
to improve in OAP, and incur constant average regret in the limit.

5 Conclusions

In this paper, we formalize the ability to draw samples from a distribution by direct experimentation,
which we call realizability. We develop a complete algorithm to determine whether a counterfactual
distribution is realizable given certain fundamental constraints of experimentation (FCE). We build
on this to identify an optimal counterfactual decision strategy in a decision problem with a generic
template, and demonstrate how it improves upon a previous baseline in counterfactual decision-
making. We hope these results can help researchers identify novel experiment-design ideas that permit
counterfactual randomization, and thus more powerful, personalized, decision-making strategies.

9



Acknowledgements

This research is supported in part by the NSF, ONR, AFOSR, DoE, Amazon, JP Morgan, and The
Alfred P. Sloan Foundation.

References
[1] Tara V. Anand, Adele H. Ribeiro, Jin Tian, and Elias Bareinboim. Causal effect identification in cluster

dags. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth

Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational

Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023. ISBN 978-1-57735-
880-0. doi: 10.1609/aaai.v37i10.26435. URL https://doi.org/10.1609/aaai.v37i10.26435.

[2] Joshua D. Angrist, Guido W. Imbens, and Donald B. Rubin. Identification of causal effects us-
ing instrumental variables. Journal of the American Statistical Association, 91(434):444–455, 1996.
doi: 10.1080/01621459.1996.10476902. URL https://www.tandfonline.com/doi/abs/10.1080/
01621459.1996.10476902.

[3] Alexander Balke and Judea Pearl. Bounds on treatment effects from studies with imperfect compliance.
Journal of the American Statistical Association, 92(439):1172–1176, 9 1997.

[4] Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
approach. In Advances in Neural Information Processing Systems, pages 1342–1350, 2015.

[5] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s Hierarchy and the
foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea Pearl, pages
507–556. Association for Computing Machinery, New York, NY, USA, 1st edition, 2022.

[6] Marianne Bertrand and Sendhil Mullainathan. Are Emily and Greg more employable than Lakisha and
Jamal? A field experiment on labor market discrimination. Working Paper 9873, National Bureau of
Economic Research, July 2003. URL http://www.nber.org/papers/w9873.

[7] J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal effect identification and
surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York,
NY, 2020. AAAI Press.

[8] Juan Correa, Sanghack Lee, and Elias Bareinboim. Nested counterfactual identification from arbitrary
surrogate experiments. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 6856–6867. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
36bedb6eb7152f39b16328448942822b-Paper.pdf.

[9] Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-Doughty,
Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E. Roberts, Brandon M. Stewart, Victor Veitch,
and Diyi Yang. Causal inference in natural language processing: Estimation, prediction, interpretation
and beyond. Transactions of the Association for Computational Linguistics, 10:1138–1158, 2022. doi:
10.1162/tacl_a_00511. URL https://aclanthology.org/2022.tacl-1.66.

[10] Ronald A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, 1925.

[11] Ronald A. Fisher. The Design of Experiments. Oliver and Boyd, Edinburgh, 1935.

[12] Andrew Forney, Judea Pearl, and Elias Bareinboim. Counterfactual Data-Fusion for Online Reinforcement
Learners. In Proceedings of the 34th International Conference on Machine Learning, 2017. ISBN
9781510855144. doi: http://dx.doi.org/10.1037/a0022750.

[13] James J. Heckman and Richard Robb Jr. Alternative Methods for Evaluating the Impact of Interventions.
In J J Heckman and B Singer, editors, Longitudinal Analysis of Labor Market Data. Cambridge University
Press, New York, NY, 1985.

[14] James J. Heckman and Richard Robb Jr. Alternative Methods for Solving the Problem of Selection Bias in
Evaluating the Impact of Treatments on Outcomes. In H. Wainer, editor, Drawing Inference From Self

Selected Samples, pages 63–107. Springer-Verlag, New York, NY, 1986.

[15] P W Holland. Statistics and Causal Inference. Journal of the American Statistical Association, 81(396):
945–960, 12 1986.

10

https://doi.org/10.1609/aaai.v37i10.26435
https://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476902
https://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476902
http://www.nber.org/papers/w9873
https://proceedings.neurips.cc/paper_files/paper/2021/file/36bedb6eb7152f39b16328448942822b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/36bedb6eb7152f39b16328448942822b-Paper.pdf
https://aclanthology.org/2022.tacl-1.66


[16] Duligur Ibeling and Thomas Icard. Probabilistic reasoning across the causal hierarchy. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34, pages 10170–10177, 2020.

[17] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[18] Ang Li and Judea Pearl. Unit selection based on counterfactual logic. In Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 1793–1799. International
Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/248. URL
https://doi.org/10.24963/ijcai.2019/248.

[19] Ang Li and Judea Pearl. Unit selection with causal diagram. Proceedings of the AAAI Conference

on Artificial Intelligence, 36(5):5765–5772, Jun. 2022. doi: 10.1609/aaai.v36i5.20519. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/20519.

[20] Douglas B. Marlowe, David S. Festinger, Patricia L. Arabia, Karen L. Dugosh, Kathleen M. Benasutti,
Jason R. Croft, and James R. McKay. Adaptive interventions in drug court: A pilot experiment. Criminal

Justice Review, 33(3):343–360, 2008. doi: 10.1177/0734016808320325.

[21] Robert Nozick. Newcomb’s problem and two principles of choice. In Nicholas Rescher, editor, Essays in

Honor of Carl G. Hempel, pages 114–146. Reidel, 1969.

[22] Yushu Pan and Elias Bareinboim. Counterfactual image editing. Technical Report R-103, Causal Artificial
Intelligence Lab, Columbia University, December 2023.

[23] Judea Pearl. Probabilities of causation: Three counterfactual interpretations and their identification.
Synthese, 121(1–2):93–149, 11 1999.

[24] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York, NY,
USA, 2nd edition, 2000. ISBN 978-0-521-89560-6.

[25] Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty in

Artificial Intelligence, pages 411–420. Morgan Kaufmann, San Francisco, CA, 2001.

[26] Judea Pearl. Direct and indirect effects. In Proceedings of the American Statistical Association, Joint

Statistical Meetings, pages 1572–1581. {MIRA} Digital Publishing, Minn., MN, 2005.

[27] Judea Pearl and Dana Mackenzie. The Book of Why. Basic Books, New York, 2018. ISBN 978-0-465-
09760-9.

[28] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A Primer. John
Wiley & Sons, 2016. ISBN 9781119186847.

[29] Drago Plecko and Elias Bareinboim. Causal fairness analysis: A causal toolkit for fair machine learning.
Foundations and Trends in Machine Learning, 17(3):304–589, Jan 2024. ISSN 1935-8237. doi: 10.1561/
2200000106. URL https://doi.org/10.1561/2200000106.

[30] Hans Reichenbach. The Direction of Time. University of California Press, Berkeley, 1956.

[31] Thomas S. Richardson and James M. Robins. Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality. Working Paper 128, Center for the Statistics and
the Social Sciences, 2013.

[32] Ilya Shpitser. Complete Identification Methods for Causal Inference. PhD thesis, Computer Science
Department, University of California, Los Angeles, CA, 4 2008.

[33] Ilya Shpitser and Judea Pearl. Effects of Treatment on the Treated: Identification and Generalization. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec,
2009. AUAI Press.

[34] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 1998.

[35] Kevin Xia and Elias Bareinboim. Neural causal abstractions. Proceedings of the AAAI Conference

on Artificial Intelligence, 38(18):20585–20595, Mar. 2024. doi: 10.1609/aaai.v38i18.30044. URL
https://ojs.aaai.org/index.php/AAAI/article/view/30044.

[36] Junzhe Zhang and Elias Bareinboim. Can humans be out of the loop? In Bernhard Schölkopf, Caroline
Uhler, and Kun Zhang, editors, Proceedings of the First Conference on Causal Learning and Reasoning,
volume 177 of Proceedings of Machine Learning Research, pages 1010–1025. PMLR, 11–13 Apr 2022.
URL https://proceedings.mlr.press/v177/zhang22a.html.

11

https://doi.org/10.24963/ijcai.2019/248
https://ojs.aaai.org/index.php/AAAI/article/view/20519
https://ojs.aaai.org/index.php/AAAI/article/view/20519
https://doi.org/10.1561/2200000106
https://ojs.aaai.org/index.php/AAAI/article/view/30044
https://proceedings.mlr.press/v177/zhang22a.html


[37] Junzhe Zhang, Jin Tian, and Elias Bareinboim. Partial counterfactual identification from observational and
experimental data. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 26548–26558. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/zhang22ab.html.

[38] Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier

of Power. 1st edition, 2018. ISBN 1610395697.

12

https://proceedings.mlr.press/v162/zhang22ab.html


Appendices

Appendix A: Graphical terminology

Appendix B: Details on the CTF-REALIZE algorithm

Appendix C: Structural assumptions and proofs

Appendix D: Details on counterfactual randomization

Appendix E: Experiment details

Appendix F Signature of realizable distributions

Appendix G: Related works

A Graphical terminology

Structural Causal Models (SCM) and causal diagrams are described in the preliminaries in Sec. 1.
See [5] for full treatment. We use the following graphical kinship nomenclature w.r.t causal diagram
G:

• Parent(s) of V , denoted PaV : the set of variables {V 0} s.t. there is a direct edge V 0 ! V
in G. PaV does not include V .

• Children of V , denoted Ch(V ): the set of variables {V 0} s.t. there is a direct edge V ! V 0

in G. Ch(V ) does not include V .
• Ancestors of V , denoted An(V ): the set of variables {V 0} s.t. there is a path (possibly

length 0) from V 0 to V consisting only of edges pointing toward V , V 0 ! ...! V . An(V )
is defined to include V .

• Descendants of V , denoted Desc(V ): the set of variables {V 0} s.t. there is a path (possibly
length 0) from V to V 0 consisting only of edges pointing toward V 0, V ! ... ! V 0.
Desc(V ) is defined to include V .

• Non-descendants of V , denoted NDesc(V ): the set V \Desc(V ). NDesc(V ) does not
include V .

Given a graph G, GXW is the result of removing edges coming into variables in X, and edges coming
out of W.
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B Details on the CTF-REALIZE algorithm

B.1 Sub-routine of CTF-REALIZE algorithm (Algo. 1)

Algorithm 3 COMPATIBLE (sub-routine)

1: Input: V 2 V of G; Wt 2W? of Q
2: for each C 2 Ch(V ) do
3: if C 2 An(W ) then
4: if V 2 T then
5: Let v := value of V in subscript t
6: Find smallest C 3 C s.t.

CTF-RAND(V ! C) 2 A
7: if {CTF-RAND(V ! C) : .} 2

INTV and its label is not "v" then
8: Return FAIL
9: else

10: Add {CTF-RAND(V ! C) : v}
to INTV , with the label "v"

11: end if
12: if no such C 3 C s.t.

CTF-RAND(V ! C) 2 A then
13: if {RAND(V ) : .} 2 INTV and its

label is not "v" then
14: Return FAIL
15: else if RAND(V ) 62 A then
16: Return FAIL
17: else
18: Add {RAND(V ) : v} to INTV ,

with the label "v"
19: end if

20: end if
21: end if
22: if V 62 T then
23: for each C 3 C s.t.

CTF-RAND(V ! C) 2 A do
24: if {CTF-RAND(V ! C) : .} 2

INTV and its label is not "Natural"
then

25: Return FAIL
26: else
27: Add {CTF-RAND(V ! C) :

Natural} to INTV , with the la-
bel "Natural"

28: end if
29: end for
30: if {RAND(V ) : .} 2 INTV and its

label is not "Natural" then
31: Return FAIL
32: else if RAND(V ) 2 A then
33: Add {RAND(V ) : Natural} to

INTV , with the label "Natural"
34: end if
35: end if
36: end if
37: end for

B.2 Examples using the CTF-REALIZE algorithm

Example B.1. (ETT realizability)

Query, Q = P (Yx, X)

Graph, G : Fig. 9

X Y

Figure 9: Graph for Example B.1

Suppose action set A = A†(G) := {CTF-RAND(X ! Y )}

CTF-REALIZE(Q,G,A†(G)) trace:

• Start with X (first in topological order)

• For the first term in W?: Yx

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Yx)
* Y 2 Ch(X) and Y 2 An(Y )

* X 2 subscript of Yx

* CTF-RAND(X ! Y ) 2 A†(G)
* INTX  {CTF-RAND(X ! Y ) : x}
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• For the second term in W?: X

– OUTPUTX  {X}

• Moving to Y (next in topological order)

• For the first term in W?: Yx

– OUTPUTY  {Yx}

• Perform interventions in INTX , followed by READ, and assign output vector based on
OUTPUTX ,OUTPUTY

• Return i.i.d sample

For simplicity, we don’t show the steps SELECT(i) and the rejection sampling involving in the
randomization procedure (steps 17-18 of Algo. 1).

Thus, Q is realizable given G,A†. This is validated by the ancestor set An(Yx, X)G = {Yx, X},
which doesn’t repeat any variables. This is also illustrated in Fig. 10.

fX X

u

fY Yx

u x

CTF-RAND(X ! Y )
= x

READ

Figure 10: P (Yx, X) is realizable given the graph in Fig. 9 and A†(G).

However, suppose the agent’s action set is

A = {RAND(X)}, i.e., does not permit any counterfactual randomization procedures.

In this case,

CTF-REALIZE(Q,G,A) trace:

• Start with X (first in topological order)

• For the first term in W?: Yx

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Yx)
* Y 2 Ch(X) and Y 2 An(Y )

* X 2 subscript of Yx

* RAND(X) 2 A, and no other ctf-randomization procedure
* INTX  {RAND(X) : x}

• For the second term in W?: X

– OUTPUTX  {X}

• Moving to Y (next in topological order)

• For the first term in W?: Yx

– OUTPUTY  {Yx}

• OUTPUTX contains X , but the intervention set INTX contains RAND(X)
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• FAIL (Line 22 of Algo. 1)

⌅

Example B.2. (Probability of sufficiency (PS) realizability)

Query, Q = P (Yx, X, Y )

Graph, G : Fig. 11

X Y

Figure 11: Graph for Example B.2

Suppose action set A = A†(G) := {CTF-RAND(X ! Y )}

CTF-REALIZE(Q,G,A†(G)) trace:

• Start with X (first in topological order)

• For the first term in W?: Yx

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Yx)
* Y 2 Ch(X) and Y 2 An(Y )

* X 2 subscript of Yx

* CTF-RAND(X ! Y ) 2 A†(G)
* INTX  {CTF-RAND(X ! Y ) : x}

• For the second term in W?: X

– OUTPUTX  {X}

• For the third term in W?: Y

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Y )
* Y 2 Ch(X) and Y 2 An(Y )

* X 62 subscript of Y ; X needs to be received naturally
* But INTX already contains {CTF-RAND(X ! Y ) : x} with label x 6= "Natural"
* FAIL (Line 25 of Algo. 3)

Thus, Q is not realizable given G,A†. This is validated by the ancestor set An(Yx, X, Y )G =
{Yx, X, Y }, which contains both Yx, Y . This is also illustrated in Fig. 12.

fX X

u

fY Yx 6= Y

u x

CTF-RAND(X ! Y )
= x

Figure 12: P (Yx, X, Y ) is not realizable given the graph in Fig. 11 and A†(G).

⌅

Example B.3. Query, Q = P (Wxt, Zx0)

Graph, G : Fig. 13

Suppose action set A = A†(G) := {CTF-RAND(T ! A), CTF-RAND(X ! A), CTF-RAND(A !
W ), CTF-RAND(A! Z)}

CTF-REALIZE(Q,G,A†(G)) trace:
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T X

A

W Z

Figure 13: Graph for Example B.3

• Start with X (first in topological order)

• For the first term in W?: Wxt

– Since X 2 An(W ), call Algo. 3 COMPATIBLE(X,Wxt)
* A 2 Ch(X) and A 2 An(W )

* X 2 subscript of Wxt

* CTF-RAND(X ! A) 2 A†(G)
* INTX  {CTF-RAND(X ! A) : x}

• For the second term in W?: Zx0

– Since X 2 An(Z), call Algo. 3 COMPATIBLE(X,Zx0 )
* A 2 Ch(X) and A 2 An(Z)

* X 2 subscript of Zx0 ; X needs to be fixed as x0

* But INTX already contains {CTF-RAND(X ! A) : x} with label x 6= x0

* FAIL (Line 8 of Algo. 3)

Thus, Q is not realizable given G,A†. This is validated by the ancestor set An(Wxt, Zx0)G =
{Wxt, Axt, Zx0 , Ax0}, which contains both Axt, Ax0 . This is also illustrated in Fig. 14.

fT T

u

fX X

u

fA Atx

u t x

CTF-RAND(T ! A)
= t

CTF-RAND(X ! A)
= x

fW Wtx

u Atx

fZ Ztx 6= Zx0

u Atx

Figure 14: P (Wxt, Zx0) is not realizable given the graph in Fig. 13 and A†(G).

⌅

Example B.4. Query, Q = P (Yx, Zx0 ,Wx00)

Graph, G : Fig. 15

Suppose action set A = {RAND(X), CTF-RAND(X ! {Z,W})}
CTF-REALIZE(Q,G,A) trace:
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X

Y Z W

Figure 15: Graph for Example B.4

• Start with X (first in topological order)

• For the first term in W?: Yx

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Yx)
* Y 2 Ch(X) and Y 2 An(Y )

* X 2 subscript of Yx

* RAND(X) 2 A ; no other ctf-randomization procedures affecting Y

* INTX  {RAND(X) : x}

• For the second term in W?: Zx0

– Since X 2 An(Z), call Algo. 3 COMPATIBLE(X,Zx0 )
* Z 2 Ch(X) and Z 2 An(Z)

* X 2 subscript of Zx0

* CTF-RAND(X ! {Z,W}) 2 A ; no smaller ctf-randomization procedures affect-
ing Z

* INTX  INTX [ {CTF-RAND(X ! {Z,W}) : x0}

• For the third term in W?: Wx00

– Since X 2 An(W ), call Algo. 3 COMPATIBLE(X,Wx00 )
* W 2 Ch(X) and W 2 An(W )

* X 2 subscript of Wx00 ; X needs to be fixed as x00

* But INTX already contains {CTF-RAND(X ! {Z,W}) : x0} with label x0 6= x00

* No smaller ctf-randomization procedures affecting W

* FAIL (Line 8 of Algo. 3)

Thus, Q is not realizable given G,A.

However, suppose instead that action set A0 = {RAND(X), CTF-RAND(X !
{Z,W}), CTF-RAND(X ! Z)}
CTF-REALIZE(Q,G,A0) trace:

• Start with X (first in topological order)

• For the first term in W?: Yx

– Since X 2 An(Y ), call Algo. 3 COMPATIBLE(X,Yx)
* Y 2 Ch(X) and Y 2 An(Y )

* X 2 subscript of Yx

* RAND(X) 2 A ; no other ctf-randomization procedures affecting Y

* INTX  {RAND(X) : x}

• For the second term in W?: Zx0

– Since X 2 An(Z), call Algo. 3 COMPATIBLE(X,Zx0 )
* Z 2 Ch(X) and Z 2 An(Z)

* X 2 subscript of Zx0

* CTF-RAND(X ! Z) 2 A
* INTX  INTX [ {CTF-RAND(X ! Z) : x0}

• For the third term in W?: Wx00

18



– Since X 2 An(W ), call Algo. 3 COMPATIBLE(X,Wx00 )
* W 2 Ch(X) and W 2 An(W )

* X 2 subscript of Wx00

* CTF-RAND(X ! {Z,W}) 2 A
* INTX  INTX [ {CTF-RAND(X ! {Z,W}) : x00}

• Moving to Y (next in topological order)

– OUTPUTY  {Yx}

• Moving to Z (next in topological order)

– OUTPUTZ  {Zx0}

• Moving to W (next in topological order)

– OUTPUTW  {Wx00}

• Perform interventions in INTX , followed by READ, and assign output vector based on
OUTPUTY ,OUTPUTZ ,OUTPUTW

• Return i.i.d sample

Thus, Q is realizable given G,A0.

Lastly, it is evident that Q is realizable given G,A†. This is validated by the ancestor set
An(Yx, Zx0 ,Wx00)G = {Yx, Zx0 ,Wx00}, which does not repeat any variables. This is also illus-
trated in Fig. 16.

fX X

u

fY Yx

u x

CTF-RAND(X ! Y )
= x

fZ Zx0

u x0

CTF-RAND(X ! Z)
= x0

fW Wx00

u x00

CTF-RAND(X ! W )
= x00

READ

Figure 16: P (Yx, Zx0 ,Wx00) is realizable given the graph in Fig. 15 and A†(G).

⌅
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C Structural assumptions and proofs

C.1 Structural assumptions

In this section, we gather together all the structural assumptions we make, for ease of reference. We
also include related remarks.

Assumption C.1 (Unobservability). An agent deployed in the environment does not know the
underlying SCM M of the environment, and does not know the latent features U(i) of any unit i in
the target population. ⌅

Assumption C.2 (Feasible actions). Given causal diagram G, the physical actions that an agent can
perform on any unit i in the target population are limited to: SELECT(i), READ(V )(i), RAND(X)(i),
and CTF-RAND(X ! C)(i), for some V,X 2 V and C ✓ Ch(X)G , per Defs. 2.1,2.2. ⌅

Assumption 3.1 (Fundamental constraint of experimentation (FCE)). A unit i in the target population
can physically undergo a causal mechanism fV 2 F at most once.app ⌅

Regarding the structural conditions involving counterfactual randomization (Def. 2.2), we make the
following assumption.

Assumption D.3 (Tree structure). Given a variable X , causal diagram G, and an "expanded" diagram
G+ (Def. D.1) including the set of all the counterfactual mediators W (Def. D.2) of X in the
environment, each W 2 W has only one parent in G+, and each C 2 Ch(X)G has at most one
W 2W as a parent in G+. ⌅

From this assumption, and from the definition of a counterfactual mediator (Def. D.2), we can derive
the following observations:
Remark C.3 (No bypassing children). Given causal diagram G, the procedure CTF-RAND(X ! C),
either by eliciting a unit’s natural decision or via a counterfactual mediator, can only be performed
w.r.t C ✓ Ch(X)G . It cannot by-pass child mechanisms and directly affect a descendant. This is
elaborated in App. D.3, and specifically in Lemma D.7. ⌅

Remark D.6 (Procedure containment). Assumption D.3 implies that if an agent is capable of perform-
ing both CTF-RAND(X ! C)(i) and CTF-RAND(X ! C0)(i) s.t. C 6= C0 and C \C0 6= ;, then
either C ✓ C0 or C0 ✓ C. ⌅

Remark D.5 (Superseding action). Given a decision variable X , the action CTF-RAND(X ! C0)(i)

can supersede the action CTF-RAND(X ! C)(i) if C0 ( C, where supersede means that the
former action CTF-RAND(X ! C0)(i) blocks any effect that the latter action has on the variables C0.
Additionally, the action CTF-RAND(X ! C)(i) supersedes the action RAND(X)(i). ⌅

Counterfactual randomization permits multiple randomizations for the same variable X for a single
unit i. But some randomizations block the effects of others. See App. D.2.

C.2 Proofs for Section 3

Recall, PC(.) is the probability measure from the perspective of an exogenous agent C’s beliefs about
the environment, distinguished by superscript from PM(.), the true unknown distribution.

Since unit selection is randomized, SELECT(i) yields an unbiased sample of a unit with latent features
distributed according to the target population frequency P (u). I.e., PC(U(i) = u | SELECT(i)) =
PM(u).

Lemma C.4 (I.i.d requirement). Consider a sequence of actions A(i)
performed on unit i in the target

population, that yields a vector of realized values W(i)
? . W(i)

? is an i.i.d sample from PM(W?), for

arbitrary M iff
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i. PC(U(i) = u | A(i)) = PM(U = u); and

ii. [W(i)
? = w | A(i),U(i) = u] = [W?(u) = w].

Proof. Recall from Def. 3.3 that W(i)
? being an i.i.d sample from PM(W?) means that

PC(W(i)
? = w | A(i)) = PM(W? = w), 8w (6)

Reverse direction:

We simply multiply respective l.h.s and r.h.s of conditions [i] and [ii] and sum over all u to get
X

u

PC(U(i) = u | A(i)). [W(i)
? = w | A(i),U(i) = u] =

X

u

PM(U = u). [W?(u) = w]

(7)

= PM(W? = w), (8)
which we get from the Layer 3 valuation formula (see preliminaries in Sec. 1). On the l.h.s, we apply
the chain rule to get the result we need.

PC(W(i)
? = w | A(i)) = PM(W? = w) (9)

Forward direction:

Assume Eq. 6.

From Remark C.11, we conclude that condition [i] automatically holds. Since the agent acts
exogenously to the system, PC(U(i) = u | A(i)) = PM(U = u), 8u.

Applying the chain rule on both sides of Eq. 6,
X

u

PC(U(i) = u | A(i)). [W(i)
? = w | A(i),U(i) = u] =

X

u

PM(U = u). [W?(u) = w]

(10)
The probability terms are equal, for each u.

Since the probability terms are free parameters, and we need this equation to hold for any arbitrary
probability simplex, it must be the case that the indicator terms are also equal. Thus begetting
condition [ii].

⌅

Lemma C.5. Given a causal diagram G, for any SCM M compatible with G, the jointly necessary and

sufficient conditions to measure a potential response Wt(u) are [i] T is fixed as t (by intervention) as

an input to all children C 2 Ch(T) \An(W ); [ii] each A 2 An(W )GT
, A 62 {T,W} is received

"naturally" (i.e., without intervention) by its children C 2 Ch(A)\An(W ); and [iii] the mechanism

fW is not erased and overwritten (by a Fisherian intervention).

Proof. Wt is the variable W evaluated in the sub-model Mt, where the equations for T are replaced
by constant values in t.

For any changes to the function for T 2 T, the function fW is only affected by any effect on the
children of T which are also ancestors of W . Any effect of T on some C 0 2 Ch(T ) s.t. C 0 62 An(W )
has no effect on W .

Further, in the submodel Mt there are no interventions on any other ancestors of W in GT, besides
T. Even if there were tnterventions involving some X 62 An(W )GT

, this would have no effect on W
in the sub-model Mt, by Rule 3 of do-calculus.

It is evident that fW evaluated according to the sub-model Mt, and evaluated according to a sub-
model satisfying conditions [i] and [ii] are identical for each u, since the sequence of structural
equations that eventually generate W are the same.

Finally, in order to measure Wt, we need to measure the output of the mechanism fW in the real
world. The mechanism cannot not be erased and overwritten, as per condition [iii]. ⌅
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Lemma C.6. Given a set W? and graph G, where each member Wt 2 W? has its respective

conditions [i-iii] (per Lemma C.5), suppose these conditions introduce conflicts when combined

across W?. Removing X from W? and from all subscripts in W? to get a new set W0
? does not

introduce new conflicts between the terms, if X is first in a topological ordering of G.

Proof. Let us consider the conditions in the necessary-and-sufficient set given in Lemma C.5 for
each Wt 2W?.

Condition [i] add requirements for each t 2 t of some Wt 2W?. Since X is removed from every
subscript, this no longer applies to any term in W0

?.

Condition [ii] requires that if X is an ancestor of some Wt 2W?, and it doesn’t appear in T, then
X must be received without intervention by mediating children. Since X is removed from every
subscript, X not being intervened upon at all meets this condition [ii] for every term W0

?, without
conflicting with condition [i], which no longer applies.

Importantly, even though X is no longer being intervened upon, for each Wt 2 W?, removing
X from T (if it appears) does not add any additional ancestors in GT that need to be tracked for
condition [ii], since X is first in topological order.

Condition [iii] would only apply to X itself, which is not present as a potential response in W0
?. ⌅

Theorem 3.5 :

Let A(i) be a sequence of actions conducted by an exogenous agent to beget a vector of values W(i)
?

for a unit i.

By Lemma C.4, if an agent wants W(i)
? to be an i.i.d sample from P (W?), then for each possible

U(i) = u, the vector W(i)
? needs to be identical to the W?(u) as evaluated according to the SCM.

Essentially, this says that the agent’s actions need to output the same vector W?(u) as if it has been
evaluated according to the SCM.

By Lemma C.5, W?(u) can be evaluated if and only if the following three conditions are met for
each Wt 2W? simultaneously:

i T is fixed as t (by intervention) as an input to all children C 2 Ch(T) \An(W );

ii Each A 2 An(W )GT
, A 62 {T,W} is received "naturally" (i.e., without intervention) by its

children C 2 Ch(A) \An(W ); and

iii The mechanism fW is not erased and overwritten (by a Fisherian intervention).

Inductive hypothesis (IH):

CTF-REALIZE(P (W?),G,A) returns FAIL if and only if conditions [i-iii] are not met simultane-
ously, when combined across all Wt 2W? w.r.t a causal diagram G having  n nodes

Base case:

Consider an SCM with only one variable V 2 V. IH is trivially true, since the conditions are always
met, and since CTF-REALIZE will just return the value READ(V ).

Assume IH is true for any SCM with causal diagram having  n nodes.

n+1 case:

Consider an SCM whose causal diagram G has n+ 1 nodes. Let X be the first in some topological
ordering of G. Consider an action set A that the agent can perform in the environment, and an
arbitrary distribution P (W?).

WLOG, we can begin the outer loop of CTF-REALIZE(P (W?),G,A)) with X (first in topological
order).

• The inner loop calls COMPATIBLE(X,Wt) for each W 2 Desc(X), X 6= W .

22



• It maintains a tracker INTX of the smallest counterfactual interventions needed to satisfy
condition [i] for each Wt, resorting to Fisherian intervention if needed. Note (per Remark
D.6), interventions follow a tree-like structure, so conflicts can be tracked by tagging the
smallest available intervention that is needed for each Wt w.r.t each child of X .

• Note also (per Remark D.5) that if there are two simultaneous interventions added to INTX ,
CTF-RAND(X ! C), CTF-RAND(X ! C0), where C0 ✓ C, then the set C0 is unaffected
by the first procedure.

• This inner loop exactly checks if there are any conflicts in conditions [i-ii] among W?

w.r.t X , by "tagging" each procedure with the fixed value x needed for that intervention
(including the requirement of no intervention).

• Finally the outer loop in Line 20 of Algo. 1 checks if X appears as a potential response
anywhere in W?. If so, INTX cannot contain the requirement of Fisherian RAND(X), since
this violates condition [iii] w.r.t X .

• X does not appear anywhere else in subsequent algorithm iterations.

Thus, we conclude that CTF-REALIZE(P (W?),G,A)) does not return FAIL on the outer loops
evaluated for X , if and only if there are no conflicts in the conditions [i-iii] for W? w.r.t X . In other

words, all conflicts w.r.t X , in the conditions [i-iii] combined across the terms in W?, are identified

in the algorithm steps that involve X .

Next, define the new set W0
? by dropping x from the subscript (if it appears) for each Wt 2W?, and

dropping X from W? (if it appears). Since X is first in topological order of G, this does not add any
new conflicts across conditions [i-iii] induced by each term in W0

? (by Lemma C.6).

It is also clear that if there are conflicts not involving X , that are induced by conditions [i-iii]
across the terms in W?, then these conflicts are also induced by W0

?. Suppose there are two terms
Wt, Yh 2W? s.t. T \X needs to be received as t \X by mediating children (condition [i]) for Wt,
and this conflicts with the requirement that T \X needs to be received as t0 \X (or naturally) by the
same mediating children, for Yh. Removing X does not affect this conflict, since X is topologically
prior.

Next, define the graph G0 as the projection of G that marginalizes out X (and adds bidi-
rected edges if needed). G0 has  n nodes. Therefore, from the IH, we conclude that CTF-
REALIZE(P (W0

?),G0,A) does not return FAIL if and only if there are no conflicts induced by
conditions [i-iii], combined across terms in W0

?.

Now, we note that CTF-REALIZE(P (W?),G,A) is merely CTF-REALIZE(P (W0
?),G0,A), plus

all the steps involving X that we discussed earlier (can be verified from inspecting the algorithm -
the former has an outer loop involving X and then contains the same steps as the latter). Therefore,

all conflicts induced by conditions [i-iii] that involve X and do not involve X are identified in the

algorithm steps when run on G and W?.

Thus, we show that CTF-REALIZE(P (W?),G,A) returns FAIL if and only if conditions [i-iii] are
not met simultaneously, when combined across all Wt 2W? w.r.t a causal diagram having  n+ 1
nodes. The IH stands proved.

By Lemma C.5, we know that conditions [i-iii] are necessary and sufficient to evaluate each term
in W?(u) simultaneously, for any SCM compatible with G. By Lemma C.4, we know that this is
equivalent to drawing an i.i.d sample from P (W?). This gives us the proof of the theorem.

Note: we don’t discuss the rejection sampling steps involved steps 17-18 of Algo. 1 as this is trivially
equivalent to intervening using a fixed value. ⌅

Corollary 3.7 :

The proof intuition is as follows: given a graph G and a potential response Yx, the set of (counter-
factual) ancestors of Yx [8] lists each ancestor of Y and what regime it must be realized in, in order
for Yx to be evaluated. In other words An(Yx) tracks the regimes necessary and sufficient for its
ancestors to be evaluated under to beget Yx.
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For instance, in graph G1 in Fig. 5, in order to evaluate Wt, we need At to be evaluated in the regime
Mt. In order to evaluate Zx, we need A, T to both be evaluated naturally. This reveals a conflict at
the bottleneck fA, which renders the distribution non-realizable.

Thus, Corollary 3.7 provides a sufficient condition to conclude that a distribution is non-realizable,
if An(W?) contains two potential responses of the same variable under different regimes. It also
becomes a necessary condition for non-realizability, if the agent can perform CTF-RAND(X ! C),
separately for each C 2 Ch(X), for all X . I.e., if the action set is A†(G).
The proof steps are similar to Theorem 3.5.

Inductive Hypothesis (IH):
Given a graph G with  n nodes, and an arbitrary distribution W?, CTF-
REALIZE(P (W?),G,A†(G)) if and only if An(W?) does not contain a pair of potential
responses Wt,Ws of the same variable W under different regimes.

Base case:

For a graph containing only one variable Y , this is trivially true. An(Y ) = Y , and the distribution
P (Y ) is realizable.

Assume IH is true for a graph of  n nodes.

n+1 case:

Consider an SCM whose causal diagram G has n+ 1 nodes. Let X be the first in some topological
ordering of G. The agent can perform A† in the environment, and the distribution is some arbitrary
P (W?). WLOG, we can begin the outer loop of CTF-REALIZE(P (W?),G,A)) with X (first in
topological order).

From Lemmas C.5 and C.4, we know that conditions [i-iii] for each Wt 2W?, combined across W?

form a necessary and sufficient set to realize P (W?).

Note that condition [iii] is always satisfied because the agent need never perform a Fisherian RAND(V )
for any V . It can get the same effect by performing CTF-RAND(V ! C) for each C 2 Ch(V ). Step
12 of the sub-routine, Algo. 3 would never be invoked.

From Theorem 3.5, we know that CTF-REALIZE(P (W?),G,A†(G)) returns FAIL if and only if
there are conflicts in conditions [i-ii] when combined across all the terms W?.

Define the new set W0
? by dropping x from the subscript (if it appears) for each Wt 2 W?, and

dropping X from W? (if it appears). Since X is first in topological order of G, this does not add any
new conflicts across conditions [i-ii] induced by each term in W0

? (by Lemma C.6). It also doesn’t
remove any conflicts that are not related to X , as argued in the proof of Theorem 3.5, since X comes
topologically first.

Define the graph G0 as the projection of G that marginalizes out X (and adds bidirected edges if
needed). G0 has  n nodes. From the IH, we conclude that CTF-REALIZE(P (W0

?),G0,A†(G0))
does not return FAIL if and only if An(W0

?) does not contain two potential responses Wt,Ws of the
same variable under different regimes.

However, note that (as discussed in the proof of Theorem 3.5, and from inspecting
the algorithm), the only difference between CTF-REALIZE(P (W?),G,A†(G)) and CTF-
REALIZE(P (W0

?),G0,A†(G0)) is that in the former, the outer loop of CTF-REALIZE first checks
for conflicts in the conditions [i-ii] across W? w.r.t X . After that, the steps for both algorithms are
the identical.

Therefore, any conflicts detected by CTF-REALIZE(P (W?),G,A†(G)) that are not detected by
CTF-REALIZE(P (W0

?),G0,A†(G0)) must be conflicts w.r.t X . By the IH, these additional conflicts
(unrelated to X) cannot be because of a pair of conflicting potential responses in An(W0

?).

We have already established that removing X to make W0
? does not remove or add any conflicting

potential response pairs that don’t involve X . Therefore, our task is to now show that each of
these additional conflicts (involving X) must correspond to at least one conflicting pair of potential
responses in An(W?), that are not present in An(W0

?). And conversely, we need to show that each
pair of conflicting potential responses in An(W?) involving X (i.e., that is not present in An(W0

?))
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corresponds to at least one conflict detected by CTF-REALIZE(P (W?),G,A†(G)) in the outer
loop involving X .

Forward direction:

As discussed in the proof of Theorem 3.5, CTF-REALIZE(P (W?),G,A†(G)) returns FAIL in the
outer loop involving X if and only if the input of X to some C 2 Ch(X) is required to be some x to
satisfy condition [i] w.r.t some Wt 2W?, but also required to be x0 or "natural" to satisfy condition
[i/ii] w.r.t some Yh 2W?.

Note that the action set is A†(G). Therefore step 6 of sub-routine Algo. 3 would always pick only
the procedure CTF-RAND(X ! C) whenever C needs to receive a fixed value. The interventions
affecting other C 0 2 Ch(X) would not affect C.

In this case, it is easy to see that the set An(Wt) must contain Cx... per Def. 3.6, and An(Yh)
must contain Cx0... or a potential response of C without X in the subscript. Thus, if CTF-
REALIZE(P (W?),G,A†(G)) returns FAIL in the outer loop involving X , there must be a pair of
conflicting potential responses in An(W?).

Reverse direction:

Assume there exists a conflicting pair of potential responses At, As 2 An(W?) where x 2 t and s
contains some x0 or does not contain X at all.

This means there is some Wh 2W? s.t. A 2 An(W )GX and some Yj 2W? s.t. A 2 An(Y )GX .
I.e., A mediates the effect of X on W,Y . Further, from Def. 3.6, it means that A needs to be realized
in conflicting regimes w.r.t X .

From Lemma C.5, such conflict happens because for At, condition [i] requires that X is fixed by
intervention to be x for all children C 2 Ch(X) \ An(A). Whereas, for As, condition [i] or [ii]
requires that each child C 2 Ch(X) \ An(A) receives X either fixed as x0, or naturally (as the
case may be, for s). For any such C 2 Ch(X) \An(A), it is clear from the proof of Theorem 3.5
that this conflict will trigger a FAIL from CTF-REALIZE(P (W?),G,A†(G)) in the first outer loop
involving X .

Thus, we have shown that the IH holds for any W? involving a graph with n+ 1 nodes.

Since Theorem 3.5 shows CTF-REALIZE is complete, we have thus proved that W? is realizable
given G and A†(G) if and only if An(W?) does not contain a pair of conflicting potential responses
for the same variable under different regimes.

⌅

Corollary 3.8 :

This follows from Corollary 3.7. For any causal diagram, the ancestral set of {Yx, Yx0} would include
both these potential responses.

Thus, the query is not realizable.

⌅

C.3 Proofs for Section 4

Remark C.7. In order for an agent to enact a non-trivial decision strategy ⇡ : {W? = w} 7! A, we
observe that (1) the distribution P (YA,W?) must be realizable (Def. 3.4); and (2) the agent must be
able to observe W? before performing actions A. We call this a realizable decision strategy, and
notate the space of all realizable strategies in a MAB problem as ⇧ (Fig. 2). ⌅
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Theorem 4.1 :

From Lemma C.8, all strategies involve mappings, where each mapping maps to one of the following 5
possible action sets: (1) {} (no action); (2) WRITE(X : x), for some x; (3) only CTF-WRITE(x! Y )
for some x; (4) only CTF-WRITE(x00 ! D) for some x00; or (5) both CTF-WRITE(x ! Y ),
CTF-WRITE(x00 ! D) for some x, x00.

Define ⇧5 to be the space of strategies where every mapping of each strategy in ⇧5 is mapping to a
pair of actions CTF-WRITE(x! Y ), CTF-WRITE(x00 ! D) for some x, x00. I.e., all mappings only
involve possibility (5) under these strategies, for all any unit encountered in the decision problem.

Let ⇡5 be an optimal strategy in this space. I.e., ⇡5 2 argmax⇡2⇧5 µ⇡ .

By Lemma C.10, ⇡5 is also an optimal strategy in the space of all possible strategies. This means we
only need to consider strategies whose mappings are mappings to a pair of CTF-WRITE procedures.

Let W? be the context used by ⇡5. If W? does not already contain the natural variables X,Z, we
can always define ⇡0

5 that use context W0
? = W? [ {X,Z} s.t. µ⇡0

5
= µ⇡5 , where ⇡0

5 simply ignores
the extra context variable in the mapping.

Such a move would not affect the realizability of ⇡0
5 because CTF-WRITE does not override the

natural value of X , and both X,Z can be observed before decision-making.

Combinatorially, there are only 3 possibilities for picking each mapping in ⇡0
5.

1. Mapping from {x0, z} to a pair of actions {CTF-WRITE(x! Y ), CTF-WRITE(x00 ! D)}
2. Mapping from {x0, z} to some CTF-WRITE(x! Y ), observing Yx = y, and mapping from

{x0, z, yx} to CTF-WRITE(x00 ! D); or
3. Mapping from {x0, z} to some CTF-WRITE(x00 ! D), observing Dx00 = d, and mapping

from {x0, z, dx00} to CTF-WRITE(x! Y )

We can use similar arguments to Lemma C.10, where we restricted our attention to the space of
strategies ⇧5 which could mimic all other optimal strategies.

Possibility 2 can be mimicked by some mapping following possibility 1 which maps to a joint pair of
actions. The two are equivalent in terms of outcome, because conditioning on yx to choose x00 does
not affect the outcome Y . So we can restrict our attention to possibilities 1 and 2.

Each mapping of possibility 1 can be mimicked by possibility 3, where the extra step of conditioning
on dx00 just ignores the extra information about dx00 . Thus, we can replace all mappings in the optimal
strategy ⇡0

5 with mappings of possibility 3, to get a strategy ⇡00
5 that also performs optimally.

Since there are two mappings in ⇡00
5 , they must be the mappings which maximize the outcome.

This is precisely the definition of the strategy ⇡opt given in Sec. 4 and in the description immediately
following it.

⌅

Lemma C.8. Any decision strategy ⇡ for a decision problem having causal structure same as the

MAB template is s.t. each mapping of the strategy maps from domain of the context to one of the

five following possible sets of actions: (1) {} (no action); (2) WRITE(X : x), for some x; (3)

only CTF-WRITE(x ! Y ) for some x; (4) only CTF-WRITE(x00 ! D) for some x00
; or (5) both

CTF-WRITE(x! Y ), CTF-WRITE(x00 ! D) for some x, x00
.

Proof. Since the physical action space only involves doing nothing, WRITE or CTF-WRITE.
Any other combination would be equivalent to one of the 5 above. E.g., WRITE(X : x) and
CTF-WRITE(x00 ! D) is the equivalent to the pair CTF-WRITE(x! Y ) and CTF-WRITE(x00 ! D)
(see Remark D.5).

We ignore randomized actions for simplicity. From standard results in learning theory, there is an
optimum to be found at a simplex corner so we need only search over the space of hard interventions.

⌅
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Lemma C.9. The context W? used in the strategy ⇡ : {W? = w} 7! A can only possibly contain a

subset of X,Z,D,Dx00 for some x00
, and at most one potential response of D.

Proof. There are only 4 variables to consider: X,Y, Z,D.

By the definition of a realizable strategy (Remark C.7), we need P (YA,W?) to be realizable. By
Cor. 3.7 there cannot be two potential responses of the same variable in a realizable distribution. This
rules out any other potential response of Y , and ensures only one each of X,Z,D.

Since the only possible actions are interventions involving X , which do not affect Z and X (natural
variable), these are the only potential responses that could appear involving these variables.

Likewise, with D, D (natural value) and Dx00 are the only possible potential responses that could
appear, and at most one of them can. ⌅

Lemma C.10. If ⇡5 is an optimal strategy in ⇧5, the set of all strategies which map to a pair of

CTF-WRITE procedures, then ⇡5 is also an optimal strategy in the set of all strategies possible in the

MAB decision problem.

Proof. Let ⇧1 be the space of all strategies possible in the problem. Note that ⇧5 ✓ ⇧1. Let ⇡1 62 ⇧5

be an optimal strategy. I.e. ⇡1 2 argmax⇡2⇧1 µ⇡ . If no such ⇡1 the Lemma stands proved.

Let W? be the context used by ⇡1. If W? does not already contain the natural variable X , we can
always define ⇡0

1 that uses context W0
? = W? [ {X} s.t. µ⇡0

1
= µ⇡1 , where ⇡0

1 simply ignores the
extra context variable in the mapping. For now, it doesn’t matter whether such ⇡0

1 is realizable or not.
Just that it is also an optimal strategy.

Each mapping in the strategy ⇡0
1 maps from the domain of W0

? to one of the five possible action
sets mentioned in Lemma C.8. E.g., for some W0

? = w, the strategy ⇡0
1 maps this to w 7! {} or

w 7! WRITE(X).

Consider a mapping in ⇡0
1 from the domain of W0

? = {x0, ...} to possibility (1), empty set of actions
(recall, the context includes natural X). Such a mapping can be mimicked by an equivalent mapping
W0

? = {x0, ...} 7! {CTF-WRITE(x0 ! Y ), CTF-WRITE(x0 ! D)}. By the consistency property if
X(u) = x0, then Yx0(u) = Y (u) and Dx0(u) = D(u).

Thus, we can replace all the mappings in ⇡0
1 that involve a mapping to the empty set of actions, with

an equivalent pair of CTF-WRITE using the natural value of X observed in the context. Call this new
strategy ⇡2. ⇡2 is as good as ⇡0

1 because the mappings are all equivalent. Thus, ⇡2 is also optimal in
⇧1. Again, it doesn’t matter that ⇡2 may not be realizable, just that it is optimal.

Next, consider a mapping in ⇡2 from the domain of W0
? = {x0, ...} to possibility (2), some action

WRITE(X : x). Such a mapping can be mimicked by an equivalent mapping W0
? = {x0, ...} 7!

{CTF-WRITE(x! Y ), CTF-WRITE(x! D)}. The evaluation of fY (x, Z,u) in both scenarios is
the same, with the only difference being that fX is overwritten, which doesn’t affect the outcome Y
for each u. I.e., the outcome Y would be the same for every unit under both strategies.

Thus, we can replace all the mappings in ⇡2 that involve a mapping to some action WRITE(X : x),
with an equivalent pair of CTF-WRITE. Call this new strategy ⇡3. ⇡3 is as good as ⇡2 because the
mappings are all equivalent in terms of outcome. Thus, ⇡3 is also optimal in ⇧1.

Next, consider a mapping in ⇡3 from the domain of W0
? = {x0, ...} to possibility (3), some

action CTF-WRITE(x ! Y ). Such a mapping can be mimicked by an equivalent mapping
W0

? = {x0, ...} 7! {CTF-WRITE(x ! Y ), CTF-WRITE(x0 ! D)} for natural value x0. By the
consistency property, if X(u) = x0 then Dx0(u) = D(u).

Thus, we can replace all the mappings in ⇡3 that involve a mapping to some action CTF-WRITE(x!
Y ), with an equivalent pair of CTF-WRITE. Call this new strategy ⇡4. ⇡4 is as good as ⇡3 because
the mappings are all equivalent in terms of outcome. Thus, ⇡4 is also optimal in ⇧1.

Next, consider a mapping in ⇡4 from the domain of W0
? = {x0, ...} to possibility (4), some

action CTF-WRITE(x ! D). Such a mapping can be mimicked by an equivalent mapping
W0

? = {x0, ...} 7! {CTF-WRITE(x0 ! Y ), CTF-WRITE(x ! D)} for natural value x0. By the
consistency property, if X(u) = x0 then Yx0(u) = Y (u).
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Thus, we can replace all the mappings in ⇡4 that involve a mapping to some action CTF-WRITE(x!
D), with an equivalent pair of CTF-WRITE. Call this new strategy ⇡0

5. ⇡0
5 is as good as ⇡4 because

the mappings are all equivalent in terms of outcome. Thus, ⇡0
5 is also optimal in ⇧1.

However, note that the only possible mappings in ⇡0
5 are possibility (5) involving a pair of CTF-WRITE

actions. Which means ⇡0
5 2 ⇧.

Thus, we show that all optimal strategies in ⇧5 are also optimal in the overall space of strategies. ⌅

Corollary 4.2 : This result follows immediately, by simply recognizing that ⇡int,⇡obs 2 ⇧, the
space of realizable strategies (we assume the agent can perform RAND(X), WRITE(X : x)).

Therefore, µ⇡ctf cannot be less than µ⇡int , µ⇡obs , by Theorem 4.1. ⌅

C.4 Realizability of L1- and L2-distributions

We define the probability measure PC(.) from the perspective of an exogenous agent C’s beliefs
about the environment, distinguished by superscript from PM(.), the true unknown distribution.

Since unit selection is randomized, SELECT(i) yields an unbiased sample of a unit with latent features
distributed according to the target population frequency P (u). I.e., PC(U(i) = u | SELECT(i)) =
PM(u). We also assume that target population size is large enough that SELECT(i) does not
significantly change the distribution of the remaining population.

Further, we assume that the actions READ(V )(i) and RAND(V )(i) do not disrupt any other mechanism
fV 0 for unit i.

Remark C.11. Let A(i) be a sequence of actions taken by agent C on unit i that is not conditional on
any data gathered regarding i. The assumption of C behaving exogenously means that PC(U(i) =
u | A(i)) = PM(u). ⌅

Lemma C.12 (Observational sample). An agent C can draw an i.i.d sample distributed according to

the L1 query P (V) associated with an SCM M, by the following actions:

i. SELECT(i)

ii. READ(V)(i) = v ⇠ P (V)

Given N i.i.d samples, the consistent unbiased estimate of P (v) is

P̂ (v) :=
1

N

X

i

Y

v2v

[READ(V )(i) = v] (11)

Proof. This follows directly from the definitions of the actions. SELECT(i) chooses a unit at random
from the population. By Remark C.11, PC(U(i) = u | SELECT(i)) = PM(u). For randomly
selected unit i,

PC(READ(V)(i) = v | SELECT(i)) (12)

=
X

u

PC(U(i) = u | SELECT(i)). (13)

PC(READ(V)(i) = v | U(i) = u, SELECT(i)) Chain rule

=
X

u

PC(U(i) = u | SELECT(i)). M[V(u) = v] Def. 2.1(ii) (14)

=
X

u

PM(u). M[V(u) = v] Rem. C.11 (15)

= PM(v) Definition (16)
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I.e., this record is an i.i.d. sample from PM(V). Now consider the estimator below.

P̂ (v) :=
1

N

X

n

Y

v2v

C[READ(V )(i) = v] (17)

=
1

N

X

n

X

u

Y

v2v

M[U(i) = u]. M[V (u) = v] (18)

Un-biasedness is established by taking expectation on either side, w.r.t the agent C’s actions (choice
of units to observe):

EC[P̂ (v)] = EC


1

N

X

n

X

u

Y

v2v

M[U(i) = u]. M[V (u) = v]

�
(19)

=
X

u

1

N
EC

X

n

M[U(i) = u]
Y

v2v

. M[V (u) = v]

�
Linearity of expectation (20)

=
X

u

1

N
EC

X

n

M[U(i) = u]

� Y

v2v

M[V (u) = v] V (u) constant wrt C (21)

=
X

u

1

N


N.PM(u)

� Y

v2v

IM[V (u) = v] Def. 2.1(i), Rem. C.11 (22)

= PM(v) Definition (23)

Consistency is established by the fact that as N (target population size)!1, and N (sample size)
!1,

1

N

X

n

IM[U(i) = u]! PM(u) (24)

⌅

Lemma C.13. The L2 distribution of an atomic intervention is equivalent to the L2 distribution of

the corresponding conditional stochastic intervention.

PM(v; do(x)) = PM(v|x;�X) (25)

=
X

u

[V�X(u) = v | X�X = x]| {z }
1�

. P (u)| {z }
2�

(26)

Proof. The step from the r.h.s of Eq. 25 to Eq. 26 is derived as follows: in the submodel M�X , if we
are given that X has been randomly assigned x, then the remaining variables are deterministically
generated as a function of u and x via their respective equations. The probability mass is collected
over all the u which produce the output v over all these equations.

PM(v|x;�X) =
X

u

I[V�X(u) = v | X�X = x].PM(u) (27)

Notice: if v is incompatible with x, the indicator in the r.h.s evaluates to 0. Next, we prove. Eq. 25.

In M�X, as defined, X is assigned according to an independent random vector. Notate this vector as
X�X and let the distribution of this vector be P�X(X), defined by the assignment frequency over the
target population.

M�X is defined such that the target population is split into groups, each assigned (X�X = x) for
some x. Note, the assignment vector X�X is independent of the latent features U across the target
population iff each finite group assigned (X�X = x) has the same distribution of latent features
P (U) as in the overall target population.

The above discussion handles the finite size of the target population. Starting with the r.h.s of Eq. 25,

PM(v|x;�X) =
P (v,x;�X)

P (x;�X)
=

⇢
P (v;�X)/P (x;�X) if v compatible with x
0 otherwise

(28)
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Evaluating for when v is compatible with x:

P (v;�X)

P (x;�X)
=

P (v;�X)

P�X(x)
(29)

=

P
u

✓
P (u)

Q
Vi2V\X P (vi | pai,ui).P�X(x)

◆

P�X(x)
Truncated factorization product

(30)

=
X

u

P (u)
Y

Vi2V\X

P (vi | pai,ui) (31)

= PM(v; do(x)) Truncated factorization product
(32)

Eq. 30 uses the fact that each sub-group assigned (X�X = x), by independence, has the same
frequency of latent features P (u). ⌅

Lemma C.14 (Interventional sample). An agent C can draw an i.i.d sample distributed according to

the L2 query P (V; do(x)) associated with an SCM M, by the following actions:

i. SELECT(i)

ii. RAND(X)(i)

iii. If RAND(X)(i) = x, then READ(V)(i) = v ⇠ P (V; do(x)), else repeat i-iii.

Given Nx i.i.d samples, the consistent unbiased estimate of Eq. 26 is given by

P̂ (v; do(x)) =

1

Nx

X

i| {z }
2�

[READ(V)(i) = v, RAND(X)(i) = x]| {z }
1�

, (33)

Proof. The proof steps are similar to the ones used for the Observational i.i.d sample case. Note that
Remark C.11 still hold since even though the agent is conditioning on the value randomly assigned to
a particular unit i, this value is independent of the unit’s latent features U(i). ⌅
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D Details on counterfactual randomization

In this appendix, we provide a full formal account for the procedure we define in Sec. 2, called
CTF-RAND(X ! C) (Def. 2.2).

• In Sec. D.1, we lay out the structural conditions under which it is possible to perform this
procedure, and we provide an algorithm (Algorithm 4) by which an agent can translate the
structural conditions in the environment into a list of CTF-RAND procedures that it is able
to perform in the given setting.

• In Sec. D.2, we emphasize that it is possible for an agent to enact multiple randomization
procedures involving the same variable X for a single unit i, and illustrate this with an
example.

• In Sec. D.3, we discuss the constraints implied by the assumptions we make. In particular,
we discuss why CTF-RAND(X ! C) can only be performed on some C ✓ Ch(X), and
not by-pass children to directly affect some distant descendants of X .

• In Secs. D.4 and D.5, we provide detailed examples of experiments were the structural
conditions in the environment permit the agent to perform counterfactual randomization.

D.1 Structural conditions required for counterfactual randomization

Counterfactual randomization (Def. 2.2) can be performed under two circumstances:

i. CTF-RAND(X ! Ch(X)) can be performed by eliciting a unit’s natural decision X , while
simultaneously randomizing its actual enforced decision. Thus, the agent can affect the
value of the decision X as received by all the children of X , whilst also recording the natural
realization of X . As discussed in Sec. 2, this was established in [4, 12, 36].

ii. CTF-RAND(X ! C) can also be performed for some C ✓ Ch(X) if there is a special
counterfactual mediator (defined below) by which the mechanisms generating C perceive
the value of X . This counterfactual mediator then allows the agent to intervene on the value
of X as perceived by C, thus mimicking an actual intervention on X .

Definition D.1 (Expanded SCM). Given an SCM M containing observable variables V, we define
an expanded SCM M+ of the same environment to be a model containing a bigger set of observable
variables V+ � V, and which relaxes the positivity requirement. I.e., it is possible that PM+

(v+) =
0, for some v+ in L1. We call the causal diagram of M+ an expanded causal diagram G+. ⌅

Definition D.2 (Counterfactual mediator). Given a variable X in a causal diagram G, we call any
variable W 62 V a counterfactual mediator of X w.r.t Y 2 Ch(X)G if

i. In an "expanded" SCM of the environment M+ (Def. D.1), W is generated according to an
invertible mechanism W  fW (X,UW ) with UW possibly empty, s.t. f�1

W (W ) = X;

ii. It is physically possible to perform RAND(W )(i) (Def. 2.1); and

iii. In M+, Y is generated by the mechanism Y  fY (f
�1
W (W ),A,UY ), where A is the set

PaY \X in G. ⌅

The intuition behind Def. D.2 is that a counterfactual mediator is a real variable in the environment
which fully encodes information about the variable X , and which mediates how Y perceives the value
of X via the "direct" causal path. For instance, in Example 1 (Traffic Camera), the RGB values of the
video frames W are a counterfactual mediator for the mechanism fY (decision to issue a speeding
ticket) to perceive the car’s color X via the "direct" path, not via the actual speeding of the car).

Condition [i] of Def. D.2 divides the domain of W into equivalence classes s.t. each value w belongs
to an equivalence class {w0 : f�1

W (w) = x} for some value x.

Condition [iii] of Def. D.2 essentially says that the mechanism fY only cares about which equivalence
class W belongs to. I.e., Y only cares about what W reveals about X .

Note: these conditions does not require an agent to have full knowledge of the SCM. They are rather
structural assumptions about the underlying mechanisms which can be verified in a given setting. In
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Example 1, treating W as counterfactual mediator means the assumption that (1) the video features
W uniquely map back to the actual color of the car in the footage; and (2) the computer vision system
only cares W reveals about X , and is indifferent to any stochasticity within some equivalence class
{w0 : f�1

W (w) = x}.

Assumption D.3. (Tree structure) Given a variable X , causal diagram G, and an "expanded" diagram
G+ (Def. D.1) including the set of all the counterfactual mediators W (Def. D.2) of X in the
environment, each W 2 W has only one parent in G+, and each C 2 Ch(X)G has at most one
W 2W as a parent in G+. ⌅

Assumption D.3 enforces that each child of X perceives X through at most one proxy pathway. This
assumption rules out possible structures like Fig. 17(a) where a child perceives X through multiple
proxy pathways. If X is a construct like gender identity, then it is possible that a child perceives X via
a cluster of personal attributes W which indicate X . In this case, no single attribute solely satisfies
Def. D.2 of a counterfactual mediator. However, the cluster of attributes W could be collapsed into a
single variable having domain equal to the cartesian product of the sub-domains [1, 35]. This single
node W would indeed satisfy the definition of a counterfactual mediator and would comply with the
tree structure in Assumption D.3. For a comprehensive discussion of the semantics of interventions
on the perception of a compound attribute such as race or gender identity, see [29, App. D.1]. The
following Lemma is the key property that enables path-specific randomization.

Lemma D.4. Given a causal diagram G containing variables X and Y 2 Ch(X)G . Let W be a

counterfactual mediator of X w.r.t Y (Def. D.2). For any value x, we have

Ywa(u) = Yxa(u), 8u, 8w 2 {w0 : f�1
W (w) = x}, (34)

where A := PaY \X in G.

Proof. This follows from Def. D.2. Suppose we are given values (w, x) where f�1
W (w) = x. Let

A := PaY \X in G.

The variable Wx(u) = Wxa(u) = fW (x,u), in the enhanced submodel M+
xa. Adding a to the

subscript does not matter - by Assumption D.3 and Lemma D.7, A cannot be an ancestor of W in
M+.

Since fW is invertible by condition [i] in M+, it is also invertible in submodel submodel M+
xa.

Therefore, we have f�1
W (Wxa(u)) = x.

Ywa(u) = fY (f
�1
W (w), a,u)

= fY (x, a,u)

YWxaa(u) = fY (f
�1
W (Wxa(u)), a,u)

= fY (x, a,u)

The r.h.s is identical, giving us Ywa = YWxaa. Finally, we argue that YWxaa = Yxa.

The counterfactual Yxa is evaluated in a submodel of M+, where fW receives input x and this
value of Wx is an input to fY , while A is fixed to be a. Structurally, this is identical to how the
counterfactual YWxaa = YWxa is evaluated. Therefore, it is evident that YWxa = Yxa. ⌅

Given a variable X , the way an agent actually performs the action CTF-RAND is as follows:

i. Performing CTF-RAND by eliciting natural decision: The agent can perform
CTF-RAND(X ! Ch(X))(i) by randomizing the unit’s decision. The agent can further
perform READ(X)(i) to elicit the unit’s natural decision, which has not been erased. This is
described in in [4, 12, 36].

ii. Performing CTF-RAND using counterfactual mediators: If X has a counterfactual
mediator W in the environment, and C ✓ Ch(X) are the children which perceive X via
W , then the agent can perform CTF-RAND(X ! C)(i) by randomizing W . Each value w
mimics randomizing X as perceived by C, per Lemma D.4. The agent can still perform
READ(X)(i) by measuring X(i) to get the unit’s natural decision, which has not been erased.
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Figure 17: "Expanded" causal diagrams, where counterfactual mediators (labeled Wi) of X have
been marked in red. (a) is not permitted by Assumption D.3. Assume the environment in diagram (b)
permits the agent to elicit the unit’s natural decision X even when randomizing the actual decision.

Having described the structural conditions that permit counterfactual randomization, we want to
abstract away the mediators and succinctly describe the agent’s physical actions via the definition of
CTF-RAND. Given a variable X , and assumptions/knowledge about X in the environment stated in
points [i] and [ii] above, we translate this knowledge into a set of counterfactual randomizations that
the agent is physically able to perform in the environment, using Algorithm 4.

Algorithm 4 CTF-PROCEDURES

1: Input: Causal diagram G with decision variable X; "expanded" diagram G+ (Def. D.1) including
the counterfactual mediators of X in the environment

2: Output: AX - the set of CTF-RAND actions that can be performed involving X

3: AX  ;
4: if environment allows eliciting natural decision X even when randomizing actual decision then
5: if X can be randomized then
6: AX  AX [ {CTF-RAND(X ! Ch(X)G)}
7: end if
8: end if
9: for each counterfactual mediator W of X do

10: Let C := {C | C 2 Ch(X)G and perceives X via W}
11: AX  AX [ {CTF-RAND(X ! C)}
12: end for
13: Return AX

Consider Fig. 17(a-d). (a) is not permitted by Assumption D.3. We assume that in the environment
represented by (b) X can be randomized for a unit in the target population without erasing the unit’s
natural decision, satisfying condition [i] mentioned earlier. Thus, when applying Algorithm 4 to
diagrams (b-d), we get the following resulting set of counterfactual randomization procedures which
are permitted by the structural assumptions made (unit superscript i is omitted for legibility):

(a) {CTF-RAND(X ! {Y, Z})}
(b) {CTF-RAND(X ! Y ), CTF-RAND(X ! {Z, T})}
(c) {CTF-RAND(X ! {Y, Z, T}, CTF-RAND(X ! {Z, T})}

D.2 Multiple simultaneous randomizations are possible, for a single unit

For a particular decision variable X , there could be multiple randomization procedures which an
agent can perform. Consider the example in Fig. 18. The "expanded" diagram on the left shows
two counterfactual mediators, W1,W2 in a causal structure which permit an agent to perform all
of the following randomization procedures: RAND(X)(i), CTF-RAND(X ! {Z, T,B})(i) and
CTF-RAND(X ! {T,B})(i) for the same unit i.

However, if all three actions are performed in parallel, randomizing W1 to enact CTF-RAND(X !
{Z, T,B})(i) will only affect variable Z. This is since the action of randomizing W2 to further
enact CTF-RAND(X ! {T,B})(i) blocks any effect on T,B from the previous action. Similarly,
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RAND(X)(i) ends up affecting only variable Y , because CTF-RAND(X ! {Z, T,B})(i) blocks any
effect from the previous action on Z, T,B. We formalize this observation in Remark D.5.

Remark D.5 (Superseding action). Given a decision variable X , the action CTF-RAND(X ! C0)(i)

can supersede the action CTF-RAND(X ! C)(i) if C0 ( C, where supersede means that the
former action CTF-RAND(X ! C0)(i) blocks any effect that the latter action has on the variables C0.
Additionally, the action CTF-RAND(X ! C)(i) supersedes the action RAND(X)(i). ⌅

X

W1

W2

Y Z T B

x

x0

x00

Y Z T B

Figure 18: (Left) "Expanded" causal diagram
showing counterfactual mediators W1,W2

of X; (Right) Agent performing actions
RAND(X)(i), CTF-RAND(X ! {Z, T,B})(i)
and CTF-RAND(X ! {T,B})(i) all together on
the single unit i.

Further, Assumption D.3 ensures that all such
procedures follow a "nested" structure. I.e.,
given any two randomization procedures involv-
ing the same variable, the sets of children af-
fected by one will be a subset of the set affected
by the other, as shown in Fig. 18.

Remark D.6. (Procedure containment) Assump-
tion D.3 implies that if an agent is capable of
performing both CTF-RAND(X ! C)(i) and
CTF-RAND(X ! C0)(i) s.t. C 6= C0 and
C\C0 6= ;, then either C ✓ C0 or C0 ✓ C. ⌅

D.3 Counterfactual randomization
is only possible for direct children of X

Our definition of CTF-RAND(X ! C)(i), is
only valid for some C ✓ Ch(X) in the causal
diagram (Def. 2.2). This action essentially ran-
domizes the value of decision variable X as an input to the mechanisms generating its causal children
C, while leaving open the possibility of measuring the unit i’s natural decision (what it would have
normally decided in the L1 regime), and also the possibility of separately and in parallel randomizing
the value of X as an input to other causal children C0 = Ch(X) \C.

However, the notion of "child" is an abstraction w.r.t a specific diagram of the environment under
study. Consider Fig. 19(a-Left), where G1 is the diagram of some environment. Assume there exists
a counterfactual mediator W1 of X (Def. D.2) as shown in Fig. 19(a-Middle), which means an agent
is able to perform the physical action CTF-RAND(X ! A)(i), while still being able to measure the
natural value of X for unit i.

Now consider the diagram G2 shown in Fig. 19(b-Left). G2 is a valid projection of G1 obtained by
marginalizing out variable A, and is thus also a valid causal diagram of the environment.

Suppose that there exists a counterfactual mediator W2 as shown in 19(b-Middle). This means that the
agent can also perform CTF-RAND(X ! Z)(i) in the same environment. However, since we are re-
ferring to the same environment, this means that the agent is able to perform CTF-RAND(X ! Z)(i)

w.r.t the diagram G1, where Z is not a child node of X! This would translate to even greater experimen-
tal power w.r.t graph G1, where an agent is able to perform counterfactual randomization of X w.r.t
further descendants like Z and draw i.i.d samples from queries like P (Ax, Zx0) by simultaneously
performing both counterfactual randomizations (i.e. by randomizing W1,W2 simultaneously).

However, this scenario is not possible. Essentially, this would require an "expanded" causal diagram
(Def. D.1) like shown in Fig. 20, where W2 is a counterfactual mediator of X w.r.t Z that comes
after another variable A. If A satisfies positivity w.r.t X , i.e., if PM(x, a) > 0, 8x, a in L1, then W2

cannot be a counterfactual mediator since it cannot be uniquely mapped back to X .

Lemma D.7. Given a causal diagram G of a true SCM M with a variable X and A 2 Desc(X)G
where P (x, a) > 0, 8x, a. There cannot be a variable W in an "expanded" SCM M+

of the

environment (Def. D.1) s.t.

• W 2 Desc(A)G+ , where G+
is the "expanded" causal diagram of M+

; and

• W is invertible to X , i.e. exists f�1
W s.t. f�1

W (W ) = X . ⇤
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(a) : (Left) Graph G1; (Middle) enhanced diagram showing counterfactual mediator of X;
(Right) agent performing CTF-RAND(X ! A)(i) using W1
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(b) : (Left) Graph G2; (Middle) enhanced diagram showing counterfactual mediator of X;
(Right) agent performing CTF-RAND(X ! Z)(i) using W2

Figure 19: Given a causal diagram G1 of the environment, G2 is a valid projection of G1 (marginalizing
A). If A satisfies positivity w.r.t X , then there cannot be a counterfactual mediator W2 as shown in
(b-Middle). Which means an agent cannot perform CTF-RAND(X ! Z)(i) as shown in (b-Right).

Proof. If A satisfies positivity w.r.t X , then a given value w cannot be mapped back to a unique x,
even if we marginalize out A from the SCM.

Note that, by Assumption D.3, a counterfactual mediator has only one parent in the "expanded"
causal diagram (Def. D.1). I.e., if it were a descendant of A, its perception of X is fully mediated by
A.

If f 0
W (X,U) is invertible from W to X , then so is fW � fA(X,U). It is evident that f

0�1
W is well

defined iff f�1
A � f�1

W is well defined.

f�1
A is not defined. The positivity condition entails that a given value a could have been generated by

any value x (when unit is unknown).

Since f 0
W is not invertible, W cannot be a counterfactual mediator. ⌅

Lemma D.7 leads to some important conclusions.

Remark D.8. There cannot be an "expanded" causal diagram (such as in Fig. 20), with a counterfactual
mediator that bypasses a child-node and directly fixes a descendent-node’s perception of X . I.e., an
agent cannot perform CTF-RAND(X ! D)(i) for some D 2 Desc(X) \ Ch(X) [ {X}. ⌅

Remark D.9. Conversely, given a graph like G2 in Fig. 19(b), if we are told that the agent can perform
the action CTF-RAND(X ! Z)(i), then G2 cannot be a projection of G1 (Fig. 19(a)) for the same
environment. ⌅
The upshot of this discussion is that, in general (i.e. without making further assumptions), counterfac-
tual randomization can only be done via counterfactual mediators (Def. D.2) of a decision variable
X , and it can only be performed on the children-nodes of X in the general case.

D.4 Example 1 (Traffic camera) - detailed
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Figure 20: "Expanded" dia-
gram that is needed to sam-
ple directly from P (Ax, Zx0).
This is not possible, per
Lemma D.7.

A computer vision company’s system is being considered by the
New York government for detecting speeding cars and automatically
issuing them speeding tickets based on footage from traffic cameras.
The audit team have a concern about fairness. It is possible, they
argue, that the vision company’s models are trained on footage from
neighborhoods which have a strong correlation between the color of
the car X and speeding, maybe since socioeconomic groups have
different color preferences, thus leading to certain groups being
penalized unfairly. Y represents the AI decision to issue a ticket.
This concern amounts to a hypothesis that X affects Y via a "direct"
path as opposed to the "indirect" path via Z, an indicator of whether
the car was actually speeding (Fig. 21). The indirect path describes
the causal effects of, say, how pedestrians and other drivers react to
a red car and affect its speeding.

The company claims they have conducted an RCT where they re-
cruited drivers and randomly assigned them cars to use normally for
a month, and used the footage solicited from city-wide cameras to
gauge speeding of the drivers in the study over the month. Unbeknownst to the drivers they tracked
the ground truth Z of whether the car was speeding (using the speedometer and a geo-tagged location
of the vehicle), thus begetting the diagram in Fig. 21. Z and Y might be confounded by objects
appearing in the car’s vicinity (because, say, in the training data, speeding was less frequent on roads
with traffic cones).

The government’s audit team assess the dataset from this RCT of video clips of the cars in traffic,
each labeled with ground truth Z, to test the fairness concern. The direct path is formalized via the
natural direct effect, or NDE [25], which tracks the effect on outcome Y of changing its perception
of X from x to x0, while fixing Z to be whatever value it was under x. NDE is defined as follows

NDEx,x0(y) = P (yx0Zx)� P (yx) (35)

The second term in Eq. 35 can be estimated from experimental data using Lemma C.14. But it is
unclear how to estimate first term, even though X could be subjected to a Fisherian RCT. However,
the audit team recognizes there exists a special mediator, viz. the features W in the video footage
which reveal the car’s color to the vision system. W could be the RGB values of the pixels in the
frames of the video footage, that reveals the car color X to the model. They use standard video-editing
tools to randomly swap the color of the car in the footage. By randomly assigning a particular car
W  red, they are able to affect the mechanism fY ’s perception of X .

Verification of structural assumptions: the audit team verifies that W satisfies Def. D.2 of a
counterfactual mediator of X w.r.t Y . Condition [i] says that each w (say, a specific RGB range of
pixels) belongs to an equivalence class that maps back uniquely to a car color x. This can be verified
using the RCT data. Condition [ii] is satisfies since they can do a targeted randomization of W .
Condition [iii] stipulates that fY is not affected by any artefacts introduced by the color-editing tool:
this can be verified, for instance, by swapping a car’s color from x to x0 and then swap it back from
x0 to x, to ensure that the model’s decision Y does not change, thus verifying that the mechanism fY
only cares about what the color features W reveal about X , and not about any image artefacts that
may be introduced by editing.

Thus, they are able to perform the following derivation

P (YW=red | X = blue) Est. via Lemma C.14 (36)
=P (YW=red,Z | X = blue) Z : natural value (37)
=P (YW=red,ZX=blue | X = blue) X = blue =) Z = ZX=blue (38)
=P (YX=red,ZX=blue | X = blue) Lemma D.4 (39)
=P (YX=red,ZX=blue) (40)

Eq. 38 derives from the consistency property [24, Cor. 7.3.2]. Eq. 40 is permitted because of the
d-separation implied by the causal diagram in Fig. 4. Thus, the team is able to directly estimate the
L3-quantity P (yx0Zx) via a physical procedure. Using Eq. 35, they can gauge whether a car’s color
has a direct effect on the odds of getting a speeding ticket. ⌅
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Figure 21: "Enhanced" diagram for traffic camera example, where W is counterfactual mediator for
X

D.5 Example 2 (College admissions)

This example is inspired by an important case study in labor economics [6]. Consider a field
experiment where a team of economists generate fake CVs for applications to a particular college.
The content of the CVs is generated from a set of generic templates that are quality-controlled. Each
unit i is a fictitious applicant. X denotes the applicant’s race, fixed uniformly at random for each i
and uncorrelated with the contents of the CV. The CV goes to two different departments, the financial
scholarship team and the undergrad admissions team. Z, Y denote, respectively, the decision to grant
financial aid and the decision to pass the student through the first stage of CV-screening. Importantly,
these two departments receive separate copies of the same application and don’t interact with each
other regarding their decisions, to avoid any interference. The "expanded" causal diagram is shown
in Fig. 22(Left).

The team wants to study how qualified students are unable to access higher education because of
financial situation, especially across racial groups, and wants to evaluate the counterfactual. In
particular, for a fixed set of qualifications (given by the CV) what would the applicant’s screening
outcome be had they been race x and what would the same applicant’s financial assistance outcome
had been had they been race x? I.e., of interest is the L3 distribution P (Yx, Zx0). This quantity is
non-identifiable from L2 data, due to the confounding between Y and Z.

They make the following modeling assumptions: (1) since the CV body is randomly generated for
each X , there is no indirect effect of X on Z, Y via the body of the CV; (2) for each fictitious
applicant of race X = x, they randomly choose a name from an equivalence class of names which
stereotypically indicate one unique race group x; and (3) Y, Z don’t care about which name in
particular appears on the CV, the reviewers only care about the race "revealed" by that name. These
are strong assumptions needed to make further progress. In particular, (2) can be done using census
data to build an equivalence class of, say, names like Lakisha and Jamal for Black applicants, and last
names like Nguyen and Xi for Asian applicants (cf. [6]), while ignoring ethnically ambiguous names
like John and Jane.

Since Y and Z operate independently, this allows one to identify two counterfactual mediators (Def.
D.2), viz., the names W1,W2 seen by Y, Z respectively, that mediate the direct effect of X on each
department. By separately and simultaneously randomizing W1,W2, the agent is thus able to sample
from the desired L3 distribution

P (YW1=w, ZW2=w0) Est. via Lemma C.14
=P (Yx, Zx0) Lemma D.4,

where w,w0 are randomly chosen names from the equivalence classes of names, s.t. f�1
W1

(w) = x

and f�1
W1

(w0) = x0, and where x, x0 are racial groups that are indicated by names w,w0.

X

W1 W2

Y Z

Xx x0

Y Z

Figure 22: (Left) "Expanded" diagram for the College Admissions example, where W1,W2 are coun-
terfactual mediators for X; (Right) An agent can compute P (Yx, Zx0) by simultaneously randomizing
W1,W2 for each unit.
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E Experiment details

E.1 Algorithmic Sentencing

The SCM used in this hypothetical scenario is as follows:

UZ ⇠ Bernoulli(0.2)

UA ⇠ Bernoulli(0.3)

UB ⇠ Bernoulli(0.3)

✏ ⇠ Bernoulli(0.25)

Z  UZ

Since X,Y are functions of Z,

i. If Z = 0

X  UA

Y  UA �X � ✏ (� is the XOR function)

ii. If Z = 1

X  ¬UB

Y  UB �X � ✏

Z is a propensity score of the defendant’s risk profile, summarizing a high-dimensional set of features
like the defendants history, compliance, urine tests etc.

UA, UB are latent factors that affect the defendant’s recidivism outcome, and which the judge is able
to intuit based on years of experience and use to make her natural decision X . These latent factors
may be the defendant’s speech, mannerism, personality, similarity to previous cases the judge has
seen etc. that reveal, say, the trustworthiness of the individual to commit to a rehab plan.

✏ is an environmental noise factor.

L1-regime: The observational data is summarized in Fig. 23(a). The natural regime suggests that
the judge is rather conservative. For high-risk individuals she makes good decisions (E[Y | Z =
1] = 0.75), but for low-risk individuals, her outcomes are poor (E[Y | Z = 0] = 0.25). Overall, the
outcome is E[Y ] = 0.35, since the study population is 80% low-risk.

L2-regime: Applying the interventions do(x0), do(x1) for each context Z, we can compute the
expected outcome from the SCM as shown in Table 3.

This suggests a sensible strategy of allowing the judge to decide on high-risk cases, and perhaps
use an exogenous RL agent to decide on low-risk cases with the action do(x1). Call this the "naive
mixed" regime, which would incur an expected outcome of

E[Y ; "naive mixed"] = P (z0).E[Yx1 | z0] + P (z1).E[Y | z1] = (0.8)(0.6) + (0.2)(0.75) = 0.63,

which is better than the L1 (observational) expected outcome of 0.35.

L3-regime: In contrast, by counterfactual randomization we can sample from the L3 distribution
P (Yx, X, Z), allowing the exogenous RL agent to observe X = x0, Z = z for a particular study unit
and execute the actions

READ(X) = x0; READ(Z) = z

CTF-WRITE(x! Y ), where x = argmax
x

E[Yx | x0, z]
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(a) (b) (c)
Figure 23: Expected outcomes in Algorithmic Sentencing experiment under (a) Judge-only L1

strategy; (b) RCT L2 strategy; and (c) Naive mixed L1 +L2 strategy of using judge when Z = 1 and
RCT strategy when Z = 0.

Z = 0 Z = 1
do(x0) 0.4 0.4
do(x1) 0.6 0.6

Table 3: Expected outcome E[Yx | z] com-
puted under the interventional regime.

Computing from the SCM directly, this L3 strategy
yields an expected outcome of

X

x0,z

P (x0, z).max
x

E[Yx | x0, z] = 0.75,

outperforming both L1, contextual L2, and the "naive
mixed" L2 strategies. It turns out the best strategy in
this problem is to go with the judge’s natural decision X when the defendant is high-risk (Z = 1),
and to do the opposite of the judge’s recommendation when the defendant is low risk (Z = 0).

Simulations The experiments compare the performance of three algorithms, where TS and TSaug

are the conventional Thompson Sampling algorithms, using context {Z = z} and {Z = z,X = x0}
respectively. Experiments were run for 1000 iterations, 200 epochs.

The third algorithm TSett doesn’t treat {X = x0} merely as another context variable. Rather, the
causal significance of the natural decision is leveraged via the consistency property

E[Yx0 | x0, z] = E[Y | x0, z]

The r.h.s allows us to hot-start the algorithm with observational data for demonstrably lower cumula-
tive regret, as shown in Algorithm 5.

Note on hot-starting It is common practice to hot-start Bandit algorithms with observational data,
expecting faster convergence (e.g. hot starting an A/B testing algorithm with historical observational
data). If this is done heuristically, oblivious to the causal structure and without warrant from inference
rules, there is no guarantee that this speeds up convergence. In fact, hot-starting can be shown to hurt

performance in SCMs where the observational data recommends the wrong arm.

To see why, imagine a simple 2-variable decision problem {X,Y }, where the variables are confounded
in the natural regime. It is possible to define an SCM where P (Y = 1 | X = 0) > P (Y = 1 | X =
1) but where P (Y = 1; do(X = 1)) > P (Y = 1; do(X = 0)).

Hot-starting a Bandit algorithm with observational data would place heavy weight on arm X = 0,
which means it takes longer to discover the optimal arm X = 1.
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Algorithm 5 TSett: Thompson Sampling ETT (Bernoulli-Beta case)

1: Input: No. of timesteps, T ; Observational data, P (v)

2: for z 2 Domain(Z) do
3: for x0 2 Domain(X) do
4: ↵[z][x0] 1
5: �[z][x0] 1 {Initializing priors}
6: end for
7: end for
8: t = 1
9: while t <= T do

10: Perform READ(Z) = z, for unit
11: Perform READ(X) = x0, for unit
12: for i 2 Domain(X) do
13: if xi = x0 then
14: µi  E[Y | x0, z] {Hot-start using obs. data}
15: else
16: µi ⇠ Beta(↵[z][xi],�[z][xi])
17: end if
18: end for
19: Perform CTF-WRITE(x! Y ) where x = xi s.t. i := argmaxi0 µi0

20: Perform READ(Y ) = y, for unit {Get value of Yx}
21: if x 6= x0 then
22: ↵[z][x0] ↵[z][x0] + y
23: �[z][x0] �[z][x0] + 1� y {Update priors}
24: end if
25: t t+ 1
26: end while

E.2 Big Tech surveillance

The name Omega is an homage to the adversary in the (in)famous Newcomb’s Problem [21], a
powerful predictor of the protagonist’s future choices. The SCM used in this hypothetical scenario to
generate data is as follows:

U1 ⇠ Bernoulli(0.5)

U2 ⇠ Bernoulli(0.5)

U3 ⇠ Bernoulli(0.5)

X  U1 � U2 (� is the XOR function)
D  X � U3

Since Y is a function of X , the average outcome is shown below for different realizations of the
latents

i. Avg. Y , when U3 = 0

U3 = 0
U1 = 0 U1 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1
do(x0) 0.6 0.9 0.8 0.5
do(x1) 0.9 0.6 0.5 0.8

Natural choice of X marked bold

ii. Avg. Y , when U3 = 1
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U3 = 1
U1 = 0 U1 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1
do(x0) 0.8 0.7 0.6 0.7
do(x1) 0.7 0.8 0.7 0.6

iii. Avg. Y , with U3 marginalized (consolidating i. and ii.)

U1 = 0 U1 = 1
U2 = 0 U2 = 1 U2 = 0 U2 = 1

do(x0) 0.7 0.8 0.7 0.6
do(x1) 0.8 0.7 0.6 0.7

U1, U2, U3 are latent attributes affecting Alice’s decisions each evening. In particular, U1 indicates
whether she is tired, U2 indicates whether she had a busy day and is distracted, U3 indicates whether
she is hungry, on any given evening.

If Alice is either tired but mentally relaxed (X = 1�0), or if she is physically energetic but distracted
(X = 0� 1), Alice decides to take a walk and use Omega via mobile app. If Alice is neither tired nor
distracted she prefers to continue working on her desktop and uses Omega via desktop app during
breaks (X = 0� 0). If she is both tired and distracted, she also decides to use Omega on her desktop
because she has no energy to take a walk (X = 1� 1).

There are so many possible factors affecting her decisions, Alice is unaware that these are the specific
unconscious causes of her natural choices. However, Omega’s unscrupulous data scientists surveil
U1, U2, U3 (perhaps by tracking Alice’s wearable health monitor and calendar) and predict her natural
choice. Omega then uses behavioural insights to ping Alice with the precise notifications and content
to maximize her time spent on the platform for each realization of U1, U2, U3.

D is the type of ads Alice sees when she logs in to Omega for the day.

L1-regime: The observational data is contained in Table (iii) in the SCM above, where the bold
values correspond to Alice’s natural choices. Given that all combinations of latents happen with
equal probability, it is easy to see that the expected reward in the observational regime is E[Y ] =
(0.25)(0.7 + 0.7 + 0.6 + 0.6) = 0.65.

E[Y ; do(x)]
do(x0) 0.7
do(x1) 0.7

Table 4: Expected outcome E[Yx] com-
puted under the interventional regime.

L2-regime: Applying the interventions
do(x0), do(x1), we can compute the expected
outcome from the SCM as shown in Table 4. This is
simply the average of all the values in Table (iii) of the
SCM above.

An interventional strategy of randomizing ones actions
(or fixing a constant action) outperforms the observa-
tional L1 regime of allowing one’s actions to be deter-
mined by natural inclination.

L3-regime - ETT: By counterfactual randomization Alice can sample from the L3 distribution
P (Yx, X). She records her natural choice X = x0 on a particular evening (what she would have
normally done) and randomizes the choice of X that she actually undertakes, during the explore
phase. Using this distribution, she then performs the following action, for the natural X = x0 that she
observes in the exploit phase:

do(X = argmax
x

E[Yx | x0])

We can compute this from Table (iii) of the SCM. Alice simply chooses to do the opposite of what
she naturally feels like doing (corresponding to the the non-bold cells of the Table). This "ETT" L3

strategy yields an expected outcome of
X

x0

P (x0).max
x

E[Yx | x0] = (0.5)[0.7 + 0.8] = 0.75,
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outperforming both L1 and L2 strategies.

L3-regime - Optimal: Finally, Alice leverages her ability to perform path-specific randomization
to sample from the distribution P (Yx, X,Dx0) in the explore phase. She then performs the following
actions in the exploit phase:

READ(X) = x0

CTF-WRITE(x00 ! D), where x00 = argmax
x00

✓
max

x
E[Yx | x0, Dx00 ]

◆
; READ(D) = d

CTF-WRITE(x! Y ), where x = argmax
x

E[Yx | x0, dx00 ]

In words, during the exploit phase, Alice first obtains Dx00 = d and X = x0, and then performs the
action x which maximizes her outcome Yx. She chooses x00 that gives her the best global optimum of
E[Yx | x0, dx00 ].

Computing this from the SCM, suppose Alice chooses to record Dx0 = 0� U3 = U3.

• When Dx0 = U3 = 0, Alice sees according to Table (i) of the SCM that the optimal strategy
is to choose the opposite of what she naturally feels like doing (the values not in bold),
giving the expected outcome E[Yx | x0, Dx0 = 0], where x 6= x0, as (0.5)[0.9+0.8] = 0.85

• When Dx0 = U3 = 1, Alice sees according to Table (ii) of the SCM that the optimal
strategy is to go with her natural inclination (the values in bold), giving the expected
outcome E[Yx0 | x0, Dx0 = 0] = (0.5)[0.8 + 0.7] = 0.75

• Overall, since both values of Dx0 are equally likely, this strategy yields an expected outcome
of 0.5[0.85 + 0.75] = 0.8, which outperforms L1, L2 and L3-ETT strategies.

Repeating this strategy, except by choosing to measure Dx1 will yield an identical expected outcome,
however Alice’s strategy will be vice-versa. When Dx1 = 0, it is optimal to follow her natural
inclination and when Dx1 = 1 she had best do the opposite of what she feels like.

Simulations The experiment compares the performance of four algorithms, where TS is the
conventional Thompson Sampling algorithm, TSaug is Thompson Sampling using context {X =
x0, Dx00 = d} for some random x00, and TSett is given in Algorithm 5. Experiments were run for
2000 iterations, 200 epochs.

The fourth algorithm TSopt doesn’t treat {X = x0, Dx00 = d} merely as extra context variables, but
makes use of the consistency axiom to hot-start the Bandit algorithm as shown in Algorithm 6.
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Algorithm 6 TSopt: Thompson Sampling OPTIMAL (Bernoulli-Beta case)

1: Input: No. of timesteps, T ; Observational data, P (v)

2: for x00 2 Domain(X) do
3: for x0 2 Domain(X) do
4: ↵D[x00][x0] 1
5: �D[x00][x0] 1 {Initializing D-priors}
6: end for
7: end for
8: for i 2 Domain(X) do
9: for j 2 Domain(X) do

10: for d 2 Domain(D) do
11: for k 2 Domain(X) do
12: ↵Y [xi][xj ][d][xk] 1
13: �Y [xi][xj ][d][xk] 1 {Initializing Y -priors}
14: end for
15: end for
16: end for
17: end for
18: t = 1
19: while t <= T do
20: Perform READ(X) = x0, for unit
21: for j 2 Domain(X) do
22: µD

i ⇠ Beta(↵D[x00][xj ],�D[x00][xj ])
23: end for
24: Perform CTF-WRITE(x0 ! D) for x0 = xj ; j := argmaxj0 µD

j0

25: Perform READ(D) = d, for unit {Get value of Dx00}
26: for k 2 Domain(X) do
27: if xk = x0 = x00 then
28: µY

k  E[Y | x00, d] {Hot-start using obs. data}
29: else
30: µY

k ⇠ Beta(↵Y [x00][x0][d][xk],�Y [x00][x0][d][xk])
31: end if
32: end for
33: Perform CTF-WRITE(x! Y ) for x = xk; k := argmaxk0 µY

k0

34: Perform READ(Y ) = y, for unit {Get value of Yx}
35: ↵D[x00][x0] ↵D[x00][x0] + y
36: �D[x00][x0] �D[x00][x0] + 1� y {Update D-priors}
37: if ¬(x = x0 = x00) then
38: ↵Y [x00][x0][d][x] ↵Y [x00][x0][d][x] + y
39: �Y [x00][x0][d][x] �Y [x00][x0][d][x] + 1� y {Update Y-priors}
40: end if
41: t t+ 1
42: end while

F Signature of realizable distributions

Consider the PCH depicted in Fig. 24. From Corollary 3.7, we know that an L3-distribution is not
realizable given G and A†(G) iff An(W?) contains two potential outcomes of the same variable under
different regimes (depicted in the shaded blue region). In this section, we provide a characterization
of the converse of this corollary. I.e., what is the signature of L3-distributions which are realizable
given G and A†(G)?
First, we introduce the notion of a nested counterfactual [8], and extend the definition of realizability
to accommodate this notion.
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Figure 24: Pearl Causal Hierarchy (PCH) induced by an unknown SCM M. An L3-distribution is
not realizable if An(W?) repeats a variable, per Cor. 3.7 (shaded region). We wish to characterize
the L3-distributions which are realizable given A†(G).
Definition F.1 (Nested potential response). Given SCM M, a nested potential response YW? is
the evaluation of Y in a "derived" model where, for each Wt 2W?, the corresponding structural
equation fW is replaced by the value of fW evaluated in the sub-model Mt. YW? can also be defined
recursively where W? itself contains a nested potential response. ⌅

As an example, in Fig. 25, YAx,Bx0 is the nested potential response according to a "derived" model
where fA is replaced by the value of A evaluated according to Mx and fB by the value of B evaluated
according to Mx0 . Conceptually, this is the value of Y had A been what it would have under a fixed
x and had B been what it would have under a fixed x0. A nested counterfactual distribution is some
distribution P (W?) where W? contains (possibly nested) potential responses. The realizability of a
nested counterfactual distribution can be defined analogously to that of a regular L3-distribution (Def.
3.4): the ability to draw samples from the distribution.

Consider an arbitrary SCM M, with a singleton decision variable X and an outcome variable Y . Let
G be the causal diagra of M. We define the following regular expression.

Realizability signature := P (Y{child-nest},E{child-nest},C,D{child-nest}, X), (41)
with the following auxiliary definitions:

• V{child-nest} denotes the nested potential response VAxPaA
,Bx00PaB

,... where A,B 2 Ch(X)\
An(V );

• E{child-nest} denotes the set {E{child-nest} | E 2 An(Y )GX
[Desc(Y )GX

};
• C denotes the set {C | C 2 NDesc(X)}; and
• D{child-nest} denotes the set {D{child-nest} | D 2 Desc(X) \E};

In words, child-nest denotes the pathways from X to V via children of X . It is the nested potential
response of V in a derived model where each child of X (that is also an ancestor of V ) receives some
fixed input x, while all other inputs as naturally received.

The realizability signature for an SCM with singleton decision variable is a regular expression
that describes realizable counterfactual distributions in the environment. Any (possibly nested)
counterfactual distribution that is realizable given G and A†(G) should fit the template in Eq. 41,
although some terms might be missing.

Consider the diagram in Fig. 25. The terms in the realizability signature for this diagram are:

X A W Y E

C

F

B

D G

Figure 25

• Y{child-nest} : YAxBx0

• E{child-nest} : {EAxBx0 ,WAxBx0 }
• C : {C,F}
• D{child-nest} : {Dx00 , GDx00 } = {Dx00 , Gx00}
• X : natural decision

Any realizable (possibly nested) counterfactual distribution in
this environment contains some or all of these terms.

Examples of distributions which are realizable given A†(G) are
as follows:
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i. ETT: P (Yx, X)

ii. P (Yx, X,Dx00)

iii. P (Y,W,X,D)

Examples of distributions which are not realizable are as follows:

iv. PN/PS: P (Yx, X, Y )

v. P (Yx, X,Dx0 , Gx00)

Example [iv] is not realizable because it has multiple Y terms, which only occurs once in the
realizability signature. And example [v] is not realizable because D{child-nest} as defined in the
signature requires Dx0 and Gx0 to share the same subscript (which can possibly be empty).

Note: the set of subscripts in the definition of the realizability signature in Eq. 41 are limited to
;, x1, x2, ..., xm, where m = |Ch(X)|. I.e., the subscripts in a realizable distribution are either
empty of some x, x00 etc. (of which there can be at most as many as the number of children of X).

G Related works

Decision-making has been studied extensively, but predominantly with an L2 mindset.

Much work has been done in the area of counterfactual (L3) identification and estimation, including
completeness results in the non-parametric setting [32, 8]. Some works have investigated how to
overcome impossibility of identification, by bounding the range of non-identifiable counterfactual
quantities [37], or by making parametric assumptions. As clarified in Sections 1 and 3, our work does
not involve counterfactual identification from available data, but rather completeness results for when
the data can itself be gathered, in the non-parametric setting. An interesting extension to our work
would be to investigate the relationship between realizability and identification, viz., which additional
L3-quantities now become identifiable if the environment permits counterfactual randomization?

In the area of causal decision-making, counterfactual strategies have been studied in the growing field
of causal reinforcement learning (CRL) [4, 12, 36]. The literature currently focuses on ETT-related
strategies where an agent both measures natural decision and randomizes the actual decision for
a single unit. A similar notion has also been described using Single World Intervention Graphs
(SWIG) [31], where the split node in a SWIG could represent the joint measurement of a natural
decision and the randomization of the actual decision for a single unit. We present an important
extension by formalizing counterfactual randomization via counterfactual mediators (Appendix D).
An ETT-based approach only allows one randomization of a variable X , affecting all downstream
mechanisms. Our formalization of counterfactual randomization (Def. 2.2) recognizes the possibility
of path-specific randomization, isolating only certainly causal pathways and granting more granular
experimental capabilities. Using this broader definition, we develop an optimal L3-decision strategy
that outperforms the ETT baseline, as shown in Experiment 2 in Section 4.

Ctf-randomization can be used to gather data from L3-distributions, while identification and bounding
can use this data to shed light on non-realizable L3-quantities, such as the probabilities of causation
[23]. In settings where one cares directly about the canonical type of a unit (i.e., whether the unit is a
"complier", "defier" etc. [2, 3]), such bounds on the probabilities of causation can be informative
about the mixture of these types in a population [18, 19]. Realizability, identification and bounding
thus work synergistically to aid a decision-maker.

The impossibility of measuring certain counterfactual quantities has been discussed in the literature
under the title of the "fundamental problem of causal inference" (FPCI) [15]. We clarify the
connection of our main results to the FPCI in Corollary 3.8.

The notion of "randomizing perception" of an attribute has been discussed in [28, 6]. We describe
the necessary structural conditions under which randomization of a proxy variable (what we call a
counterfactual mediator of the attribute) actually mimics a perceived intervention on the attribute, in
Appendix D, and in particular, in Def. D.2. For a discussion of the semantic interpretation of such
interventions, and a brief survey of related references, see [29, App. D.1].

Our work also complements the counterfactual editing literature in the fields of NLP and Computer
Vision [9, 22].
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