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Abstract

Causal effect identification and estimation are fundamental tasks found throughout
the data sciences. Although causal effect identification has been solved in theory,
many existing estimators only address a subset of scenarios, known as the sequential
back-door adjustment (SBD) (Pearl and Robins, [1995a) or g-formula (Robins),
1986). Recent efforts for developing general-purpose estimators with broader
coverage, incorporating the front-door adjustment (FD) (Pearl, 2000) and others,
are not scalable due to the high computational cost of summing over a high-
dimensional set of variables. In this paper, we introduce a novel approach that
achieves broad coverage of causal estimands beyond the SBD, incorporating various
sum-product functionals like the FD, while achieving scalability — estimated in
polynomial time relative to the number of variables and samples in the problem.
Specifically, we present the class of unified covariate adjustment (UCA) for which
we develop a scalable and doubly robust estimator. In particular, we illustrate
the expressiveness of UCA for a wide spectrum of causal estimands (e.g., SBD,
FD, and others) in causal inference. We then develop an estimator that exhibits
computational efficiency and double robustness. Experiments corroborate the
scalability and robustness of the proposed framework.

1 Introduction

Causal inference is a crucial aspect of scientific research, with broad applications ranging from social
sciences to economics, and from biology to medicine. Two significant tasks in causal inference
are causal effect identification and estimation. Causal effect identification concerns determining
the conditions under which the causal effect can be inferred from a combination of available data
distributions and a causal graph depicting the data-generating process. Causal effect estimation, on
the other hand, develops an estimator for the identified causal effect expression using finite samples.

Causal effect identification theories have been well-established across various scenarios. These
include cases where the input distribution is purely observational (Tian and Pearl, |2003; Shpitser and
Pearl, |2006; [Huang and Valtortal |2006) (known as observational identification or obsID) or a combi-
nation of observational and interventional (Bareinboim and Pearl, [2012a; |Lee et al.,2019) (referred to
as generalized identification or gID); scenarios where the target query and input distributions originate
from different populations (Bareinboim and Pearl| [2012b; Bareinboim et al., | 2014} |Bareinboim and
Pearl, 2016; |Correa et al., 2018} |Lee et al.,[2020) (known as recoverability or transportability); or
cases where the target query is counterfactual (Rung 3) (Correa et al., 2021) (referred to as Ctf-ID)
beyond interventional (Rung 2) of the Ladder of Causation (Pearl and Mackenzie, |2018; Bareinboim
et al.,2020). In these situations, algorithmic solutions have been devised that take input distributions
along with specified target queries and formulate identification functionals as arithmetic operations
(sums/integration, products, ratios) on conditional distributions induced from input distributions.
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Despite all the progress, existing estimators cover only a subset of all identification scenarios.
Specifically, well-established estimators for the back-door (BD) adjustment (Pearl, |1995), represented
as ) E[Y | z, 2] P(z), and sequential back-door adjustment (SBD) (Robins, |1986; Pearl and Robins,
1995b), are known for their robustness to the bias (Bang and Robins| [2005; Robins et al., 2009}
van der Laan and Gruber, 2012; Rotnitzky et al.,|2017; |[Luedtke et al.,|2017; Diaz et al.,2023). These
estimators are also scalable; i.e., evaluable in polynomial time relative to the number of covariates
(|Z]) and capable in the presence of mixed discrete and continuous covariates. However, SBDs only
address a fraction of the broader spectrum of identification scenarios.

Beyond SBD, recent efforts have expanded to developing estimators for the front-door (FD) ad-
justment Zw‘,, E[Y | 2/, 2]P(z | «)P(x') (Pearl,|[1995). At first glance, this adjustment appears
similar to SBD, as both involve the sum-product of conditional probabilities. However, FD involves
treatments variables in dual roles — one being summed (2’ in ), E[Y" | 2/, 2] P(2")) and the other
being fixed (z in P(z | «)). While FD estimators achieving doubly robustness have been developed
(Fulcher et al.,|2019;|Guo et al.| |2023), they lack scalability due to the necessity of summing over the
values of Z (i.e., ) ), thereby limiting its practicality when Z is high-dimensional or continuous.

Similar challenges arise in more general identification scenarios beyond SBD and FD. Recent efforts
have focused on developing estimators for broad causal estimands, such as Tian’s adjustment (Tian
and Pearl, 2002a), which incorporates FD and other cases where causal effects are represented as
sum-product functionals (Bhattacharya et al.,[2022). These efforts also include work on covering any
identification functional (Jung et al.,2021a}|Xia et al.| 2021, 2022; Bhattacharya et al.,[2022; Jung
et al.;|2023a). While these estimators are designed to achieve a wide coverage of functionals, they
lack scalability due to the necessity of summing over high-dimensional variables.

Thus far, we have assessed the pair (functional Coverage Scalability
class, estimator) based on two criteria: (1) cov- Function

erage of the functional class, and (2) scalability class Prior UCA Prior UCA
of the corresponding estimators. Scalable esti-

mators achieving doubly robustness have been BD/SBD v v v v
established predominantly for BD/SBD classes. FD v/ v/ X v/
While recent studies have developed estimators —

with a strong emphasis on coverage (e.g., any Tian’s v v X v
identification functional), less attention has been obsID/gID v A X v
given to achieving scalability. Cti-ID A A 9 v
In this paper, we establish a novel pair of a Transportability A A 2 v

functional class and its corresponding estima-
tion frameworks designed to ensure scalabil- Table 1: Scope. v denotes the addressed area (by UCA
ity while covering a broad spectrum of iden- or prior works). X denotes the unaddressed area. A
tification functionals. Our work strives maxi- denotes the partially addressed area. ? indicates areas
mizing coverage such that scalable estimators Where no known results are present. Compared aspects
with doubly robustness property can be effec- 3¢ across back-door (‘BD/SBD’), front-door (‘FD’),
tively developed. This functional class, termed Tian’s adjustment, obsID/gID, Ctf-ID, transportability.

unified covariate adjustment (UCA), integrates

a sum-product of conditional distributions appearing in many causal inference scenarios such as
BD/FD, Tian’s adjustment, S-admissibility in transportability/recoverability (Bareinboim and Pearl|
2016), effect-of-treatment-on-the-treated (ETT) (Heckman, |1992), and nested counterfactuals (Correa
et al.,[2021). The coverage of the proposed class is further demonstrated through the application
to a novel estimand for the counterfactual directed effect (Ctf-DE) derived from fairness analysis
(Plecko et al., [2024). For the proposed UCA class, we develop a scalable and doubly robust estimator
evaluable computationally efficiently relative to the number of samples. Table[T]visualizes the scope
of our framework. The contributions of this paper are as follows:

1. We introduce unified covariate adjustment (UCA), a comprehensive framework that encompasses
a broad class of sum-product causal estimands. This framework’s expressiveness is demonstrated
across various scenarios beyond SBD, including Tian’s adjustment that incorporates FD and others
as well novel counterfactual scenarios in fairness analysis.

2. We develop a corresponding estimator that is computationally efficient and doubly robust and
provide its finite sample guarantee. We demonstrate scalability and robustness to bias both
theoretically and empirically through simulations.
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Figure 1: (a) Front-door in Example E, (b) Verma in Example |Z, (¢) Napkin, (d) Standard fairness
model in Examplelg}, and (e) Example graph from (Jung et al.|[2021a, Fig. 1b)

Preliminaries. We use (X, X, x, ) to denote a random vector, variable, and their realized
values, respectively. For a function f(z;) fori =1,2,--- ,weuse ) . f(z;) = f(z1) + f(z2)---
Also, for a function f(z), we use >, f(z) to denote the summation/integration over a mixture
of discrete/continuous random variables Z. For example, we write the back-door adjustment as
> L EplY | z,z|P(z) when Z is a mixture of discrete/continuous variables. Given an ordered
set X = {X1,---,X,}, we denote X¥) := {X;,---,X;} and XZ* = {X;41,---,X,,} for

= |X]. For a discrete X, we use 15 (X) as a function such that 1,(X) = 1if X = x; 14(X) =0
otherwise. P (V) denotes a distribution over V and P(v) as a probability at V. = v, We use
Ep[f(V)] and Vp[f(V)] to denote the mean and variance of f(V) relative to P(V). We use

I7lp = /Ep[{f(V)}?] as L2-norm of f with P. If a function £ is a consistent estimator of f
having a rate r,,, we will use f—f= op(ry). We will say f is Lo-consistent if || f — f||p = op(1).
We will use f f=0 p( ) if f f is bounded in probability. Also, f f is said to be bounded in
probability at rate r,, if f — f = Op(ry). [n] := {1, - ,n} is a collection of index. D := {Viy -
i € [n]} denotes a sample set, where V ;) denote the ith sample in D. The empirical average of f(V)
with samples D is Ep[f(V)] == (1/|D]) Xy, en F (Vin)-

Structural causal models. We use structural causal models (SCMs) (Pearl, 2000; Bareinboim
et al.; 2020) as our framework. An SCM M is a quadruple M = (U,V, P(U), F), where U
is a set of exogenous (latent) variables following a joint distribution P(U), and V is a set of
endogenous (observable) variables whose values are determined by functions F = { fv, }v,ev such
that V; < fv,(pa;, u;) where PA; C V and U; C U. Each SCM M induces a distribution P(V)
and a causal graph G = G(M) over V in which directed edges exists from every variable in PA; to
V; and dashed-bidirected arrows encode common latent variables. Performing an intervention fixing
X = x is represented through the do-operator, do(X = x), which encodes the operation of replacing
the original equations of X (i.e., fx(pa,,u;)) by the constant x for all X € X and induces an
interventional distribution P(V | do(x)). For any Y C V, the porential response Yx(u) is defined
as the solution of Y in the submodel My given U = u, which induces a counterfactual variable Y .

Related work. Our work is an extension of existing sequential back-door adjustment (SBD) estima-
tors (Mises| |1947; Bickel et al.,|1993} [Bang and Robins| [2005; [Robins et al., 2009; van der Laan and
Gruberl, 2012; Rotnitzky et al.| 2017; Luedtke et al., [2017; |Diaz et al., |2023) to a broader class of
sum-product functionals, such as the front-door adjustment (FD) and Tian’s adjustment (Tian and
Pearl| [2002a) which generalizes FD and more, and nested counterfactuals, which will be detailed in
later sections. Our work is aligned with recent works of |(Chernozhukov et al. (2022); |Li and Luedtke
(2023); |Quintas-Martinez et al.|(2024), which examined SBD derived from various joint distributions.
Specifically,|L1 and Luedtke (2023) considered the SBD setting where conditional distributions are
induced from different sources. In contrast, we study a broader class of sum-product functionals
from multiple populations. Also, |Quintas-Martinez et al.|(2024) considered the Markovian model
[T, P(V; | PA;) where each P* can be distinct. In contrast, we study a broader class of estimands
that are not confined to conditioning on PA;. On the other hands, (Chernozhukov et al., [2022)
considered the case where covariate distributions are allowed to be changed, and demonstrated that
FD can be captured through this technique. Our work expands on these findings by covering a broader
class, such as the Tian’s adjustment and a nested counterfactual in fairness literature, and by providing
a more formal theory that includes finite sample guarantees and asymptotic analysis.



2 Unified Covariate Adjustment

In this section, we define a class of causal estimands termed unified covariate adjustment (UCA), and
exemplify its expressiveness with various causal scenarios.

Definition 1 (Unified Covariate Adjustment (UCA)). Let U[P; o] denote the following probability
measure over an ordered set V := (C1,Ry,+ ,Cp, Ry, Y := Cpppq): V[P; 0] = P™THY |
Sm) H:il Pl(CZ‘ | Sl‘,l)dhi (Rz | Si \ RZ‘), where

o P :={PYV) :i € [m+1]}is aset of distributions in the form of P{(V) = Q*(V | St_; = st ),
where Q* is a distribution, S?_, is a (potentially empty) set such that S°_; N C=2 = (). Each pairs
P(V) and P¥(V) can be the same (P*(V) = PJ(V)) or distinct (P*(V) # PJ(V)).

* Fori€[m+1],8;_y = (CU-YVURITD)\Sb .

» Each R; is controlled by a pre-specified / known probability measure aﬁi = aﬁi (ri | si \ry)
where Y, og, (ri | si\r;) =1and 0 < o < 1almost surely (e.g., o, = 1, (R;)).

Then, the expectation of Y over V[P; o] is called a Unified Covariate Adjustment (UCA):

m

Yo = Eypio)[V] =Y Epnn [V [ 5] [[ P(ci [ sio1)ok, (ri | si\ 1s). (1)

cUr =1

The UCA-class is a collection of causal estimands expressible in the form of a UCA. The UCA-
class is a sub-class of sum-product functionals composed of {P*(C; | S;_1) : P" € P}, with the
restriction S? N C=2 = () to enable scalable computation (the reason is discussed in Appendix |C.3.2).

At first glance, UCA closely resembles the sequential back-door adjustment (SBD) (Robins}|1986;
Pearl and Robins, |1995b). Indeed, UCA is reduced to SBD in the special case where P* = P(V)
foralli =1,--- ,m+ land o = Lp,(Ry);ie, o = Y Ep[Y | ™ Ur™) [T, P(c; |
c~D U rl=1). However, UCA provides flexibility to represent target estimands beyond SBD
by allowing P’ to be any distribution that aligns with the target estimand, permitting arbitrary
conditional distributions beyond the observational distribution P. To demonstrate, consider the
front-door adjustment (FD) scenario (Pearl, [1995) depicted in Fig. [Ta:

E[Y | do(z)] = Z E[Y | c,2’,2]P(z | ¢, z)P(c,2'). 2)

c,z,x’

Even though FD cannot be expressed using SBD because the treatment variable X is being fixed (in
P(z | ¢,x)) and summed (with ) _,) simultaneously, it can be represented through UCA as follows:
Example 1 (FD as UCA). FD can be written as the expectation of Y over P(Y | Z, X,C)P(Z |
2,C)P(X,C). We set C; = {X,C}, Cy :={Z}, R =10, P1(C;) = P(X,C), P2(Cy | S1) =
P(Z |z, C)withSY = {X},S; = {C}, and P2>(Y | S3) = P(Y | Z,X,C) with Sy = {Z, X, C}.

Next, consider Verma'’s equation (Verma and Pearl, [1990; Tian and Pearl, |2002b) with Fig.

E[Y | do(z)] = Z E[Y | b,a,z]P(b| a,z")P(a | z)P(z'), 3)

b,a,x’

where X is fixed to z in E[Y | z, a,b] and P(a | ) while summed in P(b | a,2’) and P(z’). Similar
to FD, due to the dual role of X, the existing SBD framework is not suitable to express Verma’s
equation, which can be represented through UCA as follows:

Example 2 (Verma as UCA). Verma’s equation is expressible as the expectation of Y over P(Y |
B,A,z)P(B| A, X)P(A| z)P(X). Weset C; = {X}, Co = {A}, C3 = {B}, and R = (). We
map P'(Cy) := P(X), P2(Cy | S;) = P(A | z) withS; =0, S} = {X}, P>(C3|S,) = P(B|
A, X) with Sy = {A, X}, and P*(Y | S3) = P(Y | B, A, ) with S3 = {B, A}, 8§ = {X}.

In both examples, a variable S,’j = { X} is bifurcated, fixed in some conditional distributions (e.g.,
P(z | z,c) in FD) and summed with ) _, in others (e.g., P(y | z,2’,c) in FD). These FD and
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Algorithm 1: Tian-to-UCA(G,V = (Vq, -+, Vg, Y))

Set C1 == (Vi,-++ , Vi1, X), where (V1, - - - , Viy—1) are predecessors of X. If a node V1 located right
nextto X isin Sx (i.e., V41 € Sx), append { Vi1, -+, Vi+i, } to this Cq, where 41 is an index such
that {Vk+1, ce 7Vk+1‘1} C Sx.

Set P1(C;) := P(C4),i:=2and R = (.

while V\ ({Y} U CYY) £ ) do

if C;_1 C Sx, set C; as the next series of vertices in V '\ ({Y'} U C(i_l)) such that C; € Sx;
S; 1 :=CU Y\ {X};and P(C; | Si_1) = P(C; | Si_1,z) with S?_; == {X}.

else, set C; as the next series of vertices in V'\ ({Y'} U CU~) such that C; C Sx; S;_; := CU~1);
and P*(C; | Si—1) = P(C; | Si—1) with 8?_; := 0.

11+ 1

end

Setm < i. IfY € Sx, set S, :== C™, 8% =@, and P (Y | S;n) = P(Y | S,). Otherwise, set
S, = C™\ {X},8% = {X},and P (Y | S;n) = P(Y | S, ).

return Eqp)[Y] where U[P] := P (Y | Sp) [17%, PY(Ci | Si—1).

Verma’s equations are special cases of Tian’s adjustment (Tian and Pearl, [2002a)), which states
that E[Y" | do(x)] is identifiable if X and its children chg(X) in the graph G are not connected by
bidirected edges:

E[Y | do(z)] = Y > Ep[Y [ v5)] H "(v; | VOV, 4)

vizy '

where V = (V1, Vo, - | Vi, Y) is a topologically ordered set with Vi, := X for some k being

the treatment variable X, P’'(v; | v0=Y) == P(v; | v*D 2 0401, ,vi_1) (Le., X is fixed
to x) if V; € Sx where Sx is the set of vertices connected with X through bidirected edges, and
P'(v; | v=D) i= P(v; | vE=D 2’ g yq,- -+ ,v;1) (ie., X is summed with >.)ifVieSx. In

Tian’s adjustment, X is bifurcated into summed through " , and fixed to X = x. We exhibit the
expressiveness of UCA for Tian’s adjustment:

Proposition 1. Tian’s adjustment in Eq. (@) is UCA-expressible through Algo.

Next, we exhibit the coverage of the UCA for a counterfactual quantity in the fairness literature.
Specifically, we focus on the counterfactual directed effect (Ctf-DE) in the Standard fairness model
(SFM) (Plecko et al.,[2024), as illustrated in Fig.[Id. This model includes several key components:
the protected (discrete) attribute (X)), such as race; the baseline covariates (), like age; the mediator
variables (W) affected by X, for example, educational level; and the outcome variable (Y), such as
salary. Consider a scenario where we investigate the the query, “What would be the expected salary
for someone who is Black, but hypothetically of Asian race and had been educated as a White person
typically would be?”. The query is represented as Ctf-DE: E[Yx =z, wy_, | X = 2], where zg, 21,
and x5 correspond to the races Asian, White, and Black, respectively. This query can be identified
through the algorithm in (Correa et al., 2021)) under the SFM in Fig.

E[YX—sowy_,, | X =22] =Y E[Y | X =20,w,2]P(w| X =1,2)P(z | X =22). (5
w,z
This identification functional is UCA-expressible:
Example 3 (Ctf-DE as UCA). The Cif-DE is expressible through the expectation of Y over P(Y |
X =20, W, 2)PW | X, Z)P(Z | X = x2)1,,(X). Set Ry = {X}, 01111 =1,,(X), PL(Cy) =
P(Z | X = x9) with Cy = {Z} and S} = {X}, P2(C2 | S1) = P(W | X, Z) with Cy = {W}
and S1 = {X,Z}, P2(Y | S2) = P(Y | X = 20, W, Z) with S = {W, Z} and S} = {X}.

Beyond Tian’s adjustment and Ctf-DE, more examples estimands, including S-admissibility in
transportability (Bareinboim and Pearl||[2016), effect-of-treatment-on-the-treated (ETT) (Heckman,
1991), off-policy evaluation (Precup, [2000), and a fusion of multiple experimental studies (Jung et al.
(2023blja)), can be expressed through UCA. Detailed examples are provided in Appendix

Clearly not all causal estimand functionals are UCA-expressible. To witness, consider the ‘napkin’
estimand described in (Pearl and Mackenzie| 2018;|Jung et al.,|2021a) with G in Fig. defined as



P(y | do(z)) = % Here, the functional for E[Y" | do(x)] is represented not as the

expectation of a product of conditional distributions, but rather as a quotient of sums of conditional
distributions. The napkin estimand is not UCA-expressible. We provide a detailed analysis on the
cases where a target estimand is not UCA-expressible in Appendix [C.3.

3 Scalable Estimator for Unified Covariate Adjustment

So far, we discussed the coverage of UCA. In this section, we construct a scalable estimator for
UCA that achieves doubly robustness property and provide its finite sample guarantee. We define the
estimator with two sets of nuisance parameters g and 7. p is a collection of regression parameters,
and 7r is a collection of ratio parameters.

To define the regression nuisances, we first define some sets. Set B; := S¢ | NC; fori = 2,--- ,m+1
and B, := (). Define S; := B} U (S; \ (R; UB;)), where B/, is a copy of B, (variables following
the same distribution as B; but independent of B;). Set [ Vm“ =Y.Forit=m,---,1, regression
nuisances are defined as follows:
Mé(si) =Epia [ (Si1) | Si] ©)
/26 ZMO SHI'Z)URL (ri | S i) )

Equipped with the regression nuisances, UCA can be computed as follows:

Proposition 2. UCA in Eq. (1)) can be parameterized as 1o = Ep1 [[i(S1)].

Whenever no variables are being summed and fixed simultaneously (i.e., B; = ) in the UCA
functional, as in Eq. (5) in Ctf-DE, we can estimate p through nested regression methods with off-the-
shelf regression models and compute UCA in Eq. (T as ¢oo = Ep1 [jz$(S1)]. This approach aligns
with existing SBD estimators (Bang and Robins| [2005] |Robins et al.,|2009; van der Laan and Gruber,
2012 Rotmtzky et al., [2017; |[Luedtke et al., [2017; Diaz et al., 2023). For instance, in Ctf-DE in
Example[ (W, Z) =Ep|Y | W, Z,x0], 13(W, Z) = MO(W Z), uy(X, Z) == Ep[a2(W, Z) |
X, Z), ju (Z ) = pd(z1,2), and ¥y = E plit4(Z) | x2]. These nuisances can be estimated efficiently
w1th regression models run in polynomial time relative to the number of variables and samples (e.g.,
neural networks (LeCun et al., [2015) or XGBoost (Chen and Guestrin, [2016)).

Going beyond the SBD framework, regression nuisances in Eq. (6) are capable of representing
functionals in the presence of variables being summed and fixed simultaneously (e.g., FD in Eq. (2)
or Verma in Eq. 9) For example consider FD in Eq. (2) with its UCA representation in Example ]
First, we have p5(Z, X,C) = Ep[Y | Z,X,C] with Sy = {Z, X,C}. Next, we have By =
StNC, = {X} and, therefore, Sy = {Z, X/, C'}, where X' is an independent copy of X. Then,
we have ji2(Z,X',C) = u¢(Z,X’,C). Next, u (C) = Ep[i3(Z, X', C) | z, C). Finally, we have
ud(C) = i (C) since S; = S; = {C'}. We witness that E p[j1$,(C')] correctly specified FD in Eq.
since Ep[fi5(C)] = Ep[Ep[Ep[Y | Z, X', C] | ,C]] where X' is an independent copy of X.

Evaluating regression nuisances may need B/ as an independent copy of B;. Empirically, generating

B!, involves permuting copied samples of B;, an approach used in recent works in (Chernozhukov
et al.| 2022} Xu and Gretton} 2022)). We formally name this approach empirical bifurcation:

Definition 2 (Empirical bifurcation). An empirical bifurcation for B following a distribution P is
the procedure of copying samples of B ~ P and randomly permuting to obtain new samples B’.

In general, the regression nuisances can be estimated from data by employing empirical bifurcation
and off-the-shelf regression models.

Next, we define the ratio nuisance parameters 7. For i € [m], 7(C® U R®) is defined as the
solution to the following equation:

mo(COD URY) : such that Episr [15(CYD URD ) (S:)] = 0. (8)

For the example of FD in Example E, we have Ep[n5(Z, X, C)p5(Z, X,C)] = 32, . .Ep[Y |

z, ', ¢]P(z,2',¢)m3(z,2’,¢). To match this functional to FD adjustment in Eq. ( . we have
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Algorithm 2: DML-UCA({D'}, L)

Sample split: Vi € [m + 1], randomly split D* X Pl into L-fold. D} is the ¢-th partition, and
D', =D\ Di.

Learning fi: Fori = m, - - -, 1, learn a function /1;(S;) by regressing /i, (Si+1) evaluated from
{D?,:j € [m+1]} with Def Ionto samples of S; in D*T!.

Learning 7: For i € [m), learn 7;(C”) UR) using {D’ , : j € [i + 1]} through Egs. @)

Return DML-UCA estimator d
L

T Z > Epsna[mi{ ™ — ] + Epy [fie]. (10)
£ =1

3 (Z,X,C) = % The closed-form solution for Eq. (), with 87* := (S; \ Bi11) UB],, is

PY(Cy \ B[]}, PI(C; | ST o (R | ST\ Ry)
PI(S)) |
1 >2 z . .
For the example of FD, we have 7} = £ (Pcél(g?) ) = PIZ(C%) = PI(DCE| g) with By = {X}. Equipped
with the ratio nuisances, UCA can be computed as follows:

Proposition 3. UCA in Eq. (1)) can be parameterized as 1o = Epm+1 [1f*(C™ U R(M™)Y].

o (COURW) = ©)

Estimating the ratio nuisances may be challenging due to the distribution ratio of continuous/high-
dimensional variables. To address the challenge, we use Bayes’ rule to transform the distribution

ratio into a more tractable form. For example, in FD, if the treatment X is a singleton binary, instead
of estimating 73 = %, an equivalent estimand 73 = % can be estimated. This
approach allows to use off-the-shelf probabilistic classification methods for estimating distribution
ratios, allowing scalable computation. A detailed procedure for ratio estimation is in Appendix [C.2.

Combining regression and ratio-nuisances, we present a double/debiased machine learning (DML)

(Chernozhukov et al., 2018)-based estimator 77/} for the UCA, titled ‘DML-UCA’, in Algo. E We
provide detailed nuisance specification for various examples in Appendix [A and [B]

DML-UCA provides a scalable estimator for functionals within UCA class. When the target query is
BD/SBD, DML-UCA aligns with existing scalable SBD estimators (Bang and Robins| [2005}; Robins
et al.,[2009; \van der Laan and Gruber, 2012; Rotnitzky et al., 2017; Luedtke et al.,[2017; |Diaz et al.|
2023). Going beyond SBD, DML-UCA can be estimated through nested regressions, estimating
distribution ratios, and empirical bifurcation, which can be conducted in polynomial time relative to
the number of variables and samples, ensuring the scalability of DML-UCA:

Theorem 1 (Scalability). Algo. runs in O(m x {Nmax + L X (T, + Tx)}) time, where npax =
max{|D’| :i € [m + 1]}, Ty, = max{Ty; : i € [m],£ € [L]}, Tre = max{T;; : i € [m], £ € [L]},
and Tﬂi} and Tﬁz denote the time complexity for learning and evaluating #, and [i, respectively.

An an example, for XGBoost (Chen and Guestrin, [2016), T = T,, = O(numme x depth
Nmax 10g Nmax ), Where numy.. and depth, .. are the number and depth of trees in XGBoost.

tree

tree

DML-UCA is a novel estimator achieving coverage beyond SBD and also scalability, as illustrated in
Table[T] Existing estimators beyond SBD often lack scalability. For instance, existing FD estimators
(Fulcher et al.;|2019;|Guo et al.,|2023) face exponential time complexity in the dimension of mediators.
This issue also plagues the estimators in (Bhattacharya et al.|[2022; Jung et al.| [2021b)) which cover
Tian’s adjustment and any identification functionals. In contrast, DML-UCA’s polynomial time
complexity positions it as a uniquely scalable solution within the UCA functional class, which
includes FD and Tian’s adjustment as special cases.

3.1 Error analysis

In this section, we show that DML-UCA exhibits doubly robustness, in addition to scalability. Since
UCA is composed of multiple (possibly distinct) distributions, we provide a tool to distinguish them.



Definition 3 (Index set). The index sets Iy, -- , Ik partition {1,--- ,m + 1} such that indices i
and j are in the same set Iy, if and only if P*(V) = P?(V).

We will use P* for k = 1,-- - , K to denote the distribution P’ for i € Z;,. Then,
U[P;o] =V[{PF: k=1,--- ,K}; 0] (11)

Since multiple distributions are involved in UCA, deriving an influence function for each distribution
P¥ becomes necessary. A standard influence functions is typically defined for a single distribution P,
and thus, does not suffice for studying multi-distribution setting. To address the issue, we employ a
partial influence function (PIF) (Pires and Branco, 2002), an influence function defined relative to
each P*. A formal definition is in Appendix For UCA, PIFs are given as follows:

Theorem 2 (PIF for UCA). Assume that % < ooand 0 < mh < oo almost surely fori =1,--- ,m.
Define ng = {ud} and njy == {ml ", piy, iy 'Y fori = 1,--- ;m + 1, and
i—1f~i i—1 e
i (Qi. i m {fy —po b oifi>1
W(Shmg o) =90 N0 P o (12)
SO( Mo ’(/}O) {Mé_wo lf‘Zzl,

where S* := (CU~1D URU—Y), Let V¥ = Ujer, St and nf = User, nb. Then, the k-th PIF for
UCA is ¢ = " (V¥im5,90) = Dicr, ' (S5m0, %o)-
Equipped with PIFs, we provide a finite-sample guarantee for DML-UCA, extending |Chernozhukov
et al.|(2023) which analyzed DML estimators for BDs.

Theorem 3 (Finite sample guarantee). Assume that 1}, /l,; < ooand 0 < w7ty < oo almost
surely for i = 1,--- ,m. Suppose the third moment of ¢ for k=1,--- K exist. Let qbo =

qbk(Vk,nO,wo) andd)@ = gi)k(Vk,ﬁé,wo) Then, the errorlsw Yo = Zk 1Rk+ Ze 1RZ,
where R == (1/L) S/, (Epr[0f] — Epr[0f]), and

RS —ZEW ) — D)+ > B () (R — ) — ),
=2

and, with probability greater than 1 — e, the difference between the cumulative distribution function
(CDF) of R¥ and the standard normal CDF NORMAL(x) is upper bounded as follows:

/| Dk
p* ( | ‘R’f < x) — NORMAL(x)| <

13)

k )
=1 ‘D pioV D]

PE,0

where p. o = Vpi [0E] and K3 = Epr [|0k|?].

This is a novel finite sample guarantee of DML-based estimators for functionals beyond SBD. For
example, only asymptotic analyses were provided for FD (Fulcher et al.,|2019; Guo et al., [2023),
Tian’s adjustment (Bhattacharya et al., 2022), and obsID (Jung et al., 2021b). Thm. E elucidates
that the error can be decomposed into two terms R¥ and RS. The term R} closely approximates a

standard normal distribution variable, and RY, comprises the error of (ﬁ;, 7%[ ) and u exhibiting
doubly-robustness behavior. Specifically, if the nuisance parameters fi%, 7%, and 7 775 ! converge at a
rate of n~'/4 (where n represents the size of the smallest sample set), then DML-UCA converges at
a faster rate of n~'/2. This point becomes evident in the corresponding asymptotic analysis:
Corollary 3 (Asymptotic error). Assume i, ﬂb < oo and 0 < 7w, &Y < oo almost surely.
Suppose the third m()ment of Pk exist. Suppose i and WE{,LLL-H — [} are Lo-consistent. Then,
ni1 —1
b=t = Ypey RE+ 1 300y iy Open (15 — bl (175 — wd | + 175" — 7§ 1)) where RY
is a random variable such that \/|D¥|R¥ converges in distribution to normal(O, pk.70).

4 Experiments

In this section, we demonstrate the scalability and doubly robustness of the DML-UCA estimator,
where nuisances are learned through gradient boosting models called XGBoost (Chen and Guestrin,
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Figure 2: Comparison of DML-UCA (‘DML’) with existing estimators using (Top) running-time-
plots (x-axis: the dimension of summed variables, y-axis: running time); and (Bottom) AAE-plots
(x-axis: the sample size, y-axis: errors). DML-UCA is compared with (a,e) |[Fulcher et al. (2019) for
FD; (b.f) (Jung et al.,[2021a) for Verma’s equation; and (c,f) Jung et al.|(2021a) for Jung’s equation.

2016). We specify an SCM M for FD (Fig.[Ta), Verma (Fig.[Ib), and the example graph in (Jung et al.,
2021a) (Fig. , and generate datasets D* ~ P* from the SCM. For each example, we estimate the
target estimand ¢ (e.g., E[Y | do(z)] in FD and Verma). Details of simulations are in Appendix[F}
Further simulations are provided in Appendix [E.

Scalability. To demonstrate scalability of DML-UCA, we compare the running time with existing
estimators of (Fulcher et al., 2019) (FD) and (Jung et al.,|2021a) (Verma’s equation and the causal
estimand with Fig. —]E[Y | do(z1,29)] = Zri,r,z EplY | r ), 22, 2]P(r | x1,2)P(z,2}) —
which we call ‘Jung’s equation’). For each example, we increment the dimension of the summed
variables, run 100 simulations, take the average of running times, and compare this average. We label
this plot as ‘run-time-plot’, presented in the top side of Fig.[2] In the comparison with (Fulcher et al.|
2019) for FD in Fig.[2a] we fix |C| = 2 and increment |Z| = {2,4, 6, 8,10, 15}. When comparing
with (Jung et al., 20214), for Verma’s equations in Figs. 4?_%‘), we fix |[A] = 2 and increment
|B| = {2,4,6,8,10}. For Jung’s equation in Fig. we fix |Z| = 2 and |R| = {2,4,6,8,10,15}.
For all scenarios, the run-time of existing estimators increases rapidly over dimensions due to the
summation operation, while DML-UCA scales well.

Doubly robustness. To demonstrate doubly robustness, we compare the error of DML-UCA with
existing estimators for FD of |[Fulcher et al. (2019) and for Verma’s and Jung’s equations of Jung
et al. (2021a) We use 9 for est € {DML, Fulcher, Jung} to denote each estimator. We use the
average absolute error (AAE), which is an average of the error of the estimated versus true causal
effect of X = x: W)Tlin(xﬂ 2 xedomain(X) 1 (x) — 1ho(x)|. To witness the fast convergence
of DML-UCA, we enforce the convergence rate of nuisance estimates to be no faster than the
decaying rate n =/ by adding the noise term ¢ ~ normal(n /4 n~1/4) to nuisances, inspired by
the experimental design in (Kennedy|, |[2023). We ran 100 simulations for each number of samples
n = {2500, 5000, 10000, 20000}. We label the plot as ‘AAE-plot’, presented in the bottom side of
Fig. 2] For each example, DML-UCA outperforms other estimators, exhibiting fast convergence.

5 Conclusions

We introduce a framework that encompasses a broad class of sum-product causal estimands, called
UCA class, for which scalable estimators were previously unavailable. We demonstrate the expres-
siveness of the UCA class, which includes not only BD/SBD but also broader classes such as Tian’s
adjustment incorporating FD and Verma, and Ctf-DE, for which the existing SBD-based framework
is not applicable. We develop an estimator for UCA called DML-UCA that can estimate the target
estimand in polynomial time relative to the number of samples and variables, ensuring scalability.
We provide finite-sample guarantees and corresponding asymptotic error analysis for DML-UCA,
demonstrating its fast convergence. These scalability and fast convergence properties are empirically
verified through simulations. Our results pave the way toward developing an estimation framework
maximizing both coverage and scalability in Table
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A Nuisance Specification

A.1 Front-door adjustment in Example]]

First, C; = {X,C}, Cy = {2}, 81 = {C}. 8} = {X}, S, = {Z,X}. Also, B, .= S} N C; =
{X}. R = 0. Then, Sl—Sl—{O}andSQ—{Z X', C}.

The regression nuisances are the followings:

i5(S2) :
16(S1) = po(C) = Ep[ui(Z,X',C) | z,C]
f16(S1) = po(C)

The ratio nuisances are the followings:

P(Z C
ﬁﬁx“%/?&v (A1
1 _ P

The representation for DML-UCA is
Epln5(Z, X, CRY — u(Z, X, C)}]

+Eplmo(C){13(2, X", C) — 1p(C)} |
+Ep[up(C))-

A.2 Verma’s equation in Example

From the fact that Verma’s equation in Eq. (3) is represented as the expectation of Y over P(Y |
B,A,x)P(B| A, X)P(A | 2)P(X). Set

*R=10.
« C, ={X},C, = {4},C; = {B}.

M Sl :®7 SQZ{AvX}7 83:{B7A}

St = {X}, 85 = {x}.

* By = {X}, By = {X}.

SQ = {A,X’} For 7é 2, Sl = Sz

The regression nuisances are the followings:

13(Sa) = (B, A,x) == Ep[Y | B, A,a]

f15(S3) == ug(B, A, z) = Ep[Y | B, A, 2]
15(S2) = pg(A, X) =Ep[ui(B, A, z) | A, X]
[i5(S2) = ug(A, X')
16(S1) = Ep[ug(A, X') | x]

1 = p = Ep[pg(A, X') | x].
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The ratio nuisances are the followings:

P(B|AX"P(A|z) P(B|A X PA|X)

mo(B, A, X') = P(B,A|z) - P(Bui,z) P(Alz)’ (A-3)
> _P(A|2)P(X) _ P(A]|xz)
T2(A, X) = PAX)  ~ PA|X) (A4)

The representation for DML-UCA is
Eplmg(B, A{Y — ug(B, A, 2)} | 2]
+Eplmg (A, X){u3 (B, A, w) — w3 (A, X)}]
+ Ep[ug(z)]-

A.3 Counterfactual directed effect in Example[3]

From the fact that Ctf-DE in Eq. is represented as the expectation of Y over P(Y | X =
20, W, Z)P(W | X, Z)P(Z | X = 23)14,(X). Set
* R, = {X}.
« G ={Z},Cy ={W}
* S ={X, 2}, 8, = {W, 7}
St =10,85 ={X}.
¢S, = S: \ R, forall i

The regression nuisances are the followings:

115(S2) = (W, Z) = Ep[Y | W, 0, Z]

f15(S2) = pg(W, Z) = EP[Y | W, z0, Z]
15(S1) = ng(X, 2) = Eplus(W, 2) | X, Z]
fi(S1) = po (a1, Z).

The ratio nuisances are the followings:

PW |z, Z)P(Z | x2)

72 (W, Z) = POV Z [ o) (A.5)
1., (X)P(Z | 22)
(X, Z) = P 2)P(2) (A.6)

The representation for DML-UCA is
Ep[rd(W, Z){Y — j2(W, X, 2)} | X = 0]
+Ep[rg (X, 2){ug(W. 0, Z2) = g (X, 2)}]
+Ep[ug(x1, 2) | a2].

A4 Example Estimand for Fig. [Te|

Given Fig. [Te] the causal effect is given as

E[Y ‘ do(xla:EQ)] = Z EP[Y ‘ T, $27Z,I/1]P(T' | xlvz)P(I/hZ)a

7,2,
which is the expectation of Y over the probability measure

P(Y | R, X3, Z,X1)P(R | 21, Z)P(X1, Z) 14, (X).
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Set

¢ C; ={X1,Z} and Cy = {R}.

* R; =0 and Ry = { X5} with o, = 1.,(X2).
S ={Z},S: ={R, X2, Z, X1 }.

ST = {X1}.

* By ={X1}.

¢Sy ={R,X|,Z}.S; =S,.

The regression nuisances are the followings:

15(S2) = pg(R, X5, Z, X1) =Ep[Y | R, X5, Z, X{]
f15(S2) = (R, Z, X1) = Ep[Y | R, 2,7, X}]
16(S1) = uo(Z) = Ep[ig(R, Z,X1) | Z]

f16(S1) = 16(2)

The ratio nuisances are the followings:
1.,(X2) P(R|x1,72)
P(XQ | RleaZ) P(R ‘ XlaZ)’
P(Z) P(z)P(2) 1

(X2, R, X1, Z) =

m(2) = - -

P(Z|x) P|2)P(Z) Px|Z)

The representation for DML-UCA is
Ep[mg (X2, B, X1, Z{Y — ug(R, X2, Z,X1)}]
+Ep[ro(2){ig(R, Z, X1) — mp(2)} | X1 = 1]
+Eplup(2))-

B More UCA Examples

B.1 Effect of the treatment on the treated (ETT)

(A7)

(A.8)

Let V = {Z,X,Y} be a set of variables where Z is a covariate, X is a treatment and Y is an

outcome. The target estimand is

7] = ZEP[Y | z,z|P(z | o).

The ETT estimand can be written as an expectation of Y over the probability measure

U =P(Y | X,Z)P(Z | 2')1,(X).

(B.1)

This factorization implies that C; = {Z}, R .=V \ C; U{Y} = {X}, where R; = {X}, and

ok, = 1.(X). Also, S; = {X} U Z. Finally,
PY(Cy) = P(Z|a")
PYY |S:)=P(Y | X,Z).

The regression nuisances are the followings:

10(S1) = pp (X, Z) EplY | X, Z]



The ratio nuisances are the followings:

(X, Z) = P(Z|2)1,(X) P(2'|Z)P(Z) 1,(X) _PE|Z)1,
T P(X,2) B P(x) P(X |Z)P(Z)  P(X|Z) P(z')"

The representation for DML-UCA is
Eplmo(X, Z){Y — uy(X, 2)}] + Eplig(Z) | «'].

B.2 Transportability (S-admissibility)

Let V = {Z,X,Y} be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. Let S denote the domain indicator such that S = 0 means the target domain, and S = 1
denotes the source. The S-admissibility estimand appeared in transportability scenario is

E[Y | do(x ZEPY|x,z,S_1] (z]S=0). (B.2)

The estimand can be written as an expectation of Y over the probability measure
U=PY|X,Z,5=1)P(Z]| S =0)1,(X).

From this factorization, we have C; := Z and Ry := X. Also, set P}(Cy) :== P(Z | S = 0) with
St =5.Set P2(Y |S;)=P(Y | X,Z|S=1)withS} = Sand S; = {X}UZ.

The regression nuisances are the followings:
pd(S1) = pd(X,Z) =Ep[Y | X,Z,S = 1]
fio(S1) = fig(Z) = (2, Z).

The ratio nuisances are the followings:

Tl'é(X, Z) =

The representation for DML-UCA is
Eplmd (X, Z){Y — (X, Z)} | S = 1] + Ep[ib(2) | S = 0].

B.3 Off-policy evaluation

Let V = {Z,X,Y} be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. Let o*(X | Z) denote the behavioral policy that an agent observed; i.e.,

(Z,X,Y)~P(Y | X,Z)0* (X | Z)P(Z). (B.3)

Let 0(X | Z) denote a policy to be evaluated. Then, the effect of the policy o* is given as

ElY | o] == Z]EPY|xz (x| 2)P(z). (B.4)

The policy treatment effect in Eq. (B.4) can be represented as UCA as follow.

C, =7

R; ={X}

or, =0 (X | 2)
S, ={X}UZ.
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Set P1(C,) + P(Z), a};{l (Ry|Zy) < 0(X | Z),and P?(Y | C1,R;) + P(Y | X,Z). Then,
U(Pio):=» Ep[Y|c1,Rylog, P(cy)
c,R
=> Ep[Y | 2,20"(x | 2)P(2)
=E[Y | o] (Eq. (B4).
The regression nuisances are the followings:

po(CHURW) = p
fig(CM) -

(X,Z) =EplY | X,Z]
(Z) =Y up(x, Z)o" (x| Z).

o= OF

i

The ratio nuisances are the followings:

The representation for DML-UCA is
Ep(mo(X, Z{Y — up(X, Z)}] + Eplfig(Z)]-

B.4 Treatment-treatment interactions

Let V = {Z,X,Y} be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. The estimand for treatment-treatment interaction discussed in|Jung et al.|(2023b) is

ElY | do(z1,22)] = ZE[Y | do(22), 2z, 21]P(z | do(21)), (B.5)

which is an expectation of Y over a product of probability measure
P(Y | Zv dO(l‘Q), Xl)P(Z | dO((El))]].rl (Xl)v

which satisfies an additivity. Therefore, E[Y" | do(x1, z2)] is UCA-expressible. Such reduction can
be done since the probability measure satisfies additivity w.r.t. all conditional distributions and the
policy 1, (X71). Specifically, set

Cl = Z
Rl = {Xl}
Sl = {Xl} UZ.
Also, set
PY(Cy) == P(Z | do(x))

P*Y |CLURy) == P(Y | X1,Z,do(x3))
1, (X1).

1
O'Rl
The regression nuisances are the followings:

pd(CHURW)Y = pb (X1, Z) = EplY | X1, Z,do(xs)]
g (CY) = Ep[Y | 21, Z, do(xs)).
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The ratio nuisances are the followings:

1, (X1)P(Z | do(z1))

(X 2) = 5%, | 2. do(e2) P(Z | dol))”

which can be estimated through the density estimation approach using the probabilistic classification
method described in (Diaz et al.| [2023| Sec. 5.4).

The representation for DML-UCA is
Ep[m (X, Z){Y — ny(X, Z)} | do(a2)] + Epljig(Z) | do(x1)].

C More Results

C.1 Formal definition of Partial influence function (PIF)

Definition C.1 (Partial influence function (PIF) (Pires and Branco, 2002)). Let g(P',--- ,PX)
denote a K-multi-distribution functional. For the k-th component, let P¥ = P* 4 t(QF — PF)
for t € [0,1], where QF is an arbitrary distribution absolutely continuous w.r.t. PE. The k-th
partial influence function is a function ¢*(V;n'(P¥), go) such that Epx [¢*(V; 7% (P¥), go)] = 0,
Ver[0" (Vi 0¥ (P¥), 90)] < 00, and G g(P,--- P}, ,PK)[_ = Eqe[0"(Vin (P’“) go)]

C.2 Density Ratio Estimation

Two available approaches for estimating the density ratio are the followings. The first approach is to
apply the Bayes rule for rewriting the density ratio into more tractable form. For example, consider
the problem of estimating 72 for FD, which is given as

, _ P(Z]2,0)
T Pp(Z1X,C)
Suppose Z, C' are high-dimensional random vectors, and X is a binary singleton variable. Then,
P(X | C)or P(X | Z,C) are tractable to estimate compared to P(Z | X,C), since estimating
P(X | -) can be done using off-the-shelf probabilistic classification method. Here, 73 can be written
as a tractable form as follows:
. PZ]2.0)
" P(Z|X,0)
_ P(Z,X,C) P(x|C)P(C)
PX|C)P(C) P(Z,x,0)
_ P(@O) P(Z,C) P(x|C) P(X|2,C)
- P(C)P(Z,C)P(X|C) P(x] 2,C)
P(z|C) P(X|2,0)
P(X|C) P(x|Zz,C)"

The second approach is to recast the density ratio into the classification problem (Diaz et al., 2023,

Sec. 5.4). For example, consider the ratio nuisance appeared in Treatment-treatment interactions:
Lo, (X1)P(Z | do(z1))

P(X1 | Z,do(x2))P(Z | do(x2))

(X, Z) =
Here, % can be estimated as a following procedure. Let Dy ~ P(Z | do(x1) and Dy ~

P(Z | do(x2) denote samples. Let Dy := D; U Ds. Let A denote an indicator such that A = 0 means
samples are from D; and A = 1 means they are from D,. Without loss of generality, |D;| = |Da|.
Then,




Then, instead of estimating the density ratio explicitly as %, we can estimate the equivalent

P(A=0|2)

estimand m

using any off-the-shelf probabilistic classification method.

C.3 Analysis of non-UCA functionals
We consider three cases where a target estimand cannot be expressed through UCA:

1. Case 1. The target estimand is not in a form of the product (e.g., the target estimand is the
quotient of sum-products of two conditional distributions ).

2. Case 2. For a target estimand that is represented as the expectation of Y over the measure
V[P;o] = P (Y | 8;,) [[ P(Ci | So1)ok, (R | 87\ Ry),
i=1
where P'(V) = Q(V | S?_, = s) for some distribution Q?, suppose there exists S/_,
such that S, # (CO~D URE-D)\ Sb_,.

3. Case3. S°NC=22 # ().

In this section, we will provide example functionals that cannot be expressed through UCA.

Since an example for the first case is described (the napkin estimand where P(y | do(z)) =
> P(y,alraw) P(w)

¥ P(alr0) P(w) ), we will only consider Case 2 and Case 3 in this section.

C.3.1 On Case?2

Here, we provide an example that the target estimand cannot be expressed through nested regression
and empirical bifurcation when the estimand is within Case 2. Consider a following functional:

> Ep[Y | ba, 2, 23] P(b | 21) Pla, ). (C.1)
a,x,b

This functional is an expectation of the probability measure Y over P(Y | B, A, X1, Xo)P(B |
x1)P(A, X1)1,,(X5). Based on this probability measure, apply the following setting:

* C; ={A, X }and C, = {B}.

* Ry =0and Ry = {Xo} with 0}, = 1,,(X>).

s PY(Cy) = P(A, X;) with S = 0.

e P?(Cy | 8})=P(B|z;) with S’ = {X,} and S/ = 0.

« P2(Y |S,)=P(Y | B,A, X, X,) with 8§ =0 and S}, := {B, 4, X1, X5}

Here, S, =0 # S; == (CH URWM) \ 8% = {A}, and therefore, Eq. (C.1) is not within UCA-class.

Now, we will witness that the target estimand cannot be correctly represented through the nested
regression and empirical bifurcation. Applying the nested regression, we have

H’%(S/Q) = M(%(BvA7X17X2) = ]EP[Y | B>A7X27X1]
[i5(85 \ Ra) = ji5 (B, A, X1) = Ep[Y | B, A, w2, X1].
Then,

1o(S1) = py = Epliig(B, A, X1) [ @1] = Y Ep[Y | ba,a1,22] P(b| a,21) P(a | 21).
b,a

This representation doesn’t correctly represent the target estimand in Eq. (C.1) because of P(b |
a,x1) # P(b| z1) in general.
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Even if the empirical bifurcation has been used to X (i.e., the independent copy X7 is used)
1o(Sh) = no = Epliig(B, A, X7) | 1] = Y Ep[Y | b,a,2}, 2] P(b ] a,21)P(a | 21)P(2').
b,a,x’
Again, this representation doesn’t correctly represent the target estimand because of P(b | a,z1) #

P(b | 1) in general.

C.3.2 OnCase3

Here, we provide an example that the target estimand cannot be expressed through nested regression
and empirical bifurcation when the estimand is within Case 3. Consider the following functional:

> Ep[Y | b,a',alP(b| z,a)P(z’ | a)Pa] x). (C2)
b,z ,a
This functional is an expectation of Y over the probability measure P(Y | B, X, A)P(B |
x, A)P(X | A)P(A | ). Based on this probability measure, apply the following setting:
« C; ={A},Cy :={X} and C5 := {B}.
R=V\{Y}ucC)=0.
PL(Cy) = P(A| x) with S} = {X}.
P2(Cy | Sy) = P(X | A) with S} = and S; :== C) \ S = {4}.
* P3(C3|8y) = P(B| A, x)withS5 = {X}and S, := C? \ 8% = {A]}.
PYY |S3)=P(Y | B,A, X) with S} = and S3 := C® \ S} = {B, X, A}.

With such mapping, Eq. (C.2) can be represented as the expectation of Y over W[P] := P*(Y |
S3)P*(Cs | S2)P?*(Ca | S1)P'(Cy).

Here, for {X} = S} = S%, and {X} N C=2 # (). That is, a variable X is summed by Y, with
P(z' | a) but fixed at P(b | z,a) and P(a | ).

Applying the nested regression, we have
15(S3) = pg(B, A, X) = Ep[Y | B, A, X]
/1?)(83) = [Lg(Bv A, X) = EP[Y | B, A’X]'

Then, consider p2(S2) = p3(A) = Epliad(B, A, X) | A,z]. It doesn’t correctly specify the
functional, since

EP[,&S(B,A,X) ‘ A,a:] = EP[M%<BvA7X) ‘ A7m]
=Ep[ud(B, A,x) | A,z
=> Ep[Y | b,A,2]P(b| A,x),
b

where X in Ep[Y | b, A, z] is fixed, instead of being summed. Therefore, the empirical bifurcation
should be applied, and set ;3 (S2) = p3(A) = Ep[id(B, A, X') | A, x], where X’ is an independent
copy of X. This gives
Ep[ig(B, A, X') | A,x] = Ep[ud(B, A, X') | A, 2]
= Ep[Y | b,A2'|P(b| A z)Pa | A x)
b,x’
=> Ep[Y | b,A2|P(b| A x)P(z)),

b,x’

where the last equation holds since X' is an independent copy that is independent with other variables.
However, this functional doesn’t correctly specify the target functional, in which P(z’ | a) is summed
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instead of P(2’). In other words, the nested regression with the empirical bifurcation cannot correctly
express this target functional.

To address this issue, a sampler of P(X | A) is needed. Equipped with such sampler, let X" ~
P(X | A). Note that X" is generated only depending on A. Then, set u3(S2) = p2(A) =
Eplid(B, A, X") | A, z]. This correctly specify the nuisance as follows:

Ep[ﬂg(BvAaX//) | A>$] = EP[MS(BvAaXN) | A,ZL‘]
=Y Ep[Y |b,A,2"|P(b| A x)P(a" | A,x)

b,z

=> Ep[Y | b,A,2"|P(b| A,z)P(z" | A).

b,z

Suppose S? N C=2 # (). Specifically, let S* denote a non-empty set defined as S* := S? N C, for
some k > 2. Then, a sampler for P¥(S¥ | S;_1) is required to circumvent this issue.

D Proofs
D.1 Proof for Proposition 2]
The proof for Proposition |2|is in the proof of Lemma|D.1

D.2  Proof for Proposition[3]

EPH»] [ng(c(m) U R(m))Y}
=Epin [ri(C™ UR)Epin [Y | S]]
= ZEPiJrl [Y | Sm]ﬂ'gl(c(m) @] I'(m))PH_l(Sm)

cUr

= CZWEPHI Y| sm}Pi%(sm)PiH(sm) il;[lPi(ci | si,l)aﬁi (r; | si\17)

= Yo.
D.3 Proof for Theorem 1]
1. The sample-splitting takes O((m + 1)nmax)-
2. For the fixed ¢, learning i}, fori = m, - - - , 1 takes O(T}, x m). Therefore, learning all regression-

nuisances takes O(T,, x m x L).

3. For the fixed ¢, learning 7} for i = 1,--- ,m takes O(Tx x m). Therefore, learning all ratio-

nuisances takes O(Tx x m x L).

4. Evaluating the DML estimator in Eq. takes O((m + 1)nmax).

In total, the time complexity is

O((m + 1)nmax) + O(Ty x m x L) + O(Tr x m x L) + O((m + 1)nmax)
=0(m X {nmax + L X (T + Tx)})

D.4 Proof for Theorem 2]

First, u§(S;) = py(CH URW) since P/(C; | S;_1) = P/(C; | CU~D URUD) for all
=1, ,m+1.
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We first show the following:
opP} 0
ot OPf

W(P,... Pl ... Pl o) = Eq:[¢"(CHO URITY ;i ). (D.1)

t=0

For i # m + 1, it holds as follows: (we will abbreviate o (R, | x*~Y U c(®) as ¢* and P* as
Pk(ck | c(k_l),x(k_l)))

oP & }
p(pt... pt... pmtl
at aptz ( ’ Pl ’ ,O') —0
m m m ﬂc(ifl),x(ifl)(c(i_l)aR(i_l)) i i— i—
=Eqi | Y wp(c™,x") [ Pro* {1c,(Ci) = P(c;i | €U~V RUTY)}

i i—1 i—1
B oy Pi(C( ), R( )

i—1 . ) )
i - - - - 1.,(C;) — Pi(c; | CO—D RE-D)

_ . 7 . (i—1) (i—1) k (k—1) (k—=1)\ - k i T i 5

=Eq: E fo(ci, C ,R ) | I P*(Ci | C ,R Jo PHCH-D, RO-D)

L i k=1

= Eq: [{i(CY,RUTD) — g~ (€D, RUZD)}

Therefore, Eq. (D.1) holds. Then,

iy PH(Cy | €40, REZD)ok (R, | RED, CB)
Pi(CG-1, RG-D)

P _
Q\II(Pl’...7pf7...’pK) — 8715 6i\I/(P1,-~-,Ptl,---,Pm+1;0')
ot im0 5 Ot OP; .
=Y Eqi [ (CO, ROt )],
1€y
which completes the proof. -

D.5 Proof for Theorem 3]
Structure of the proof. The structure of the proof is the following.

* Theorem 3] will be proven based on Lemma[D.5] Lemma|[D.7] and Lemma[D.8]

* Lemma|D:3|will be proven based on helper lemmas (D1} [D-2] [D-4).

Therefore, we proceed the proof as follows:

1. We will prove helper lemmas D.2] D.4).

2. Main lemmas in Lemma|D.3] Lemma|[D.7} and Lemma [D.8| will be proved based on the
helper lemmas.

3. Berry-Essen’s inequality (Berry, [1941) will be stated as a preliminary in Prop.[D.]
4. Theorem 3] will be proven based on the main lemmas and Berry-Essen’s inequality.

Notation. First, 1§(S;) = uy(C® UR®) since P1(C; | S;_1) = P/(C; | CU-D URUD)
forall j = 1,---,m 4 1. This equation leads to write 7}, (C; U S) as 74 (C® UR®).

We will use the following notation. For ¢ > 2,

, il i 7l
wi = —2 and Q)= —L (D.2)
0 i—1 £ ~i—17
T s Ty
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and w{ = m} and &} = 7. Then,

7r6 = w(()i) = H wg, (D.3)
j:l
#h= ol = H J. (D.4)

D.5.1 Helper lemmas

We first state and prove helper lemmas.

Lemma D.1.

o) =D Epes [ {5 — 5} + Epa )], (D.5)

Proof of Lemma[D.1| Fori=1,---,m
B OO RO RO < 00 RO
— Bpons [0 (CO, RO) 5 (COHD, RO) — i (O
=Epi+1 w® (C() R )){ 1(c(l+1) R )) m (C(1)7R(1))}]
) ) —
[ )

| )
[
= Episi [Epin [w@(CO, RO {zit (D) RO — 4 (D RO} CHD RO
[
[

0
0
= Epit1[wD(CHD RO)Epin {pirt(ct+D RO C! RV — D (Cc® RO i (CHD RO}

= Epit: [0 (CH RD) i (COD RD) —w®(C® RO i (CH RD)Y
= 0.

Therefore, it suffices to show that
W(P; o) = Epi [i3(Cy)).
It can be shown that
Ep1[fig(Ch)]

—ZMO c1)P(e1)
= Z po(e1, Ri)Pl(er)o' (R | €1)

c, Ry

= Y ic2R)P (e1)P¥ ez | €1, Ry)o (Ry | )
c(2)7R1

= Z p2(ca, R1)PY(c1)P?(cy | ¢, R1)o Ry | ¢1)o?(Ra | ¢@,Ry)
C(2)7x(2)

= Z ey (Cm,R)HPm(Cm | C(m—1)7x(m—1) H R | C(y (G- 1))
cm R 1 e

=V (P;o).
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LemmaD.2. Fori=2,--- ,m,
Epist [0 {5 — AN+ Epo D — 1}] (D.6)
=Epen [0 {uf — 4 Ho" — wi}] + Eps (@D {h — 4"}

Proof of Lemma|D.2] We first rewrite Eq. as follows:

Eq. (D.:6) = Episs [0W {5 — 4'}] (D.7)
+ Eps@ A" — i} (D.8)
+Ep @G — a1 (D.9)
Then, Eq. can be represented as follow:

Eq.

= Ep: [0 D(CtD, RO AHCH ROY) — i (€D RV}
P{CH RO-D)
PiF(CO, RG-D)
Pi(c(i (i—l))
pit1(Cl) R~ 1))
pi(c(i)7R(z 1)) o (Ri | C(i)7R(i—1))
A PiH1(CH, RE-D) Pi+1(R;|CH, RGE-1)
= EPH—l[(:)(i_l)(c(i_l)7R(i_l))wé(c(i), R(i)){/f(C(i), R(i)) — Mg(c(i)’ RU))H (D.10)

= Epi+1 a)(ifl) (C(ifl)’ R(zfl))

{ (C() R- 1)) f)(C(i),R(il))}]

= Epi+1 o':)(i—l) (C(i_l), R(z—l))

i [ (C() R )) 6(0@)7R(i))|C(i)7R(i—1)}:|

— Epinr |@07D(COD RO-D)

(1€, RO) — iy ©. RO

Therefore,
Eq. + Eq.
= Eq. (D.7) + Eq. (D.10)
= EPiH[ g — '} + Eq.
= Epini [0 {u — 4'}] + Eq. (D-10)
= Epint [0 {u — 2} + Epin [0 Vi {i" — pp)]
= Eport [007 D {h — pTH@" — wp}]- (D.11)

Finally,

Eq. = Eq. (D-11) + Eq. (D.9).

26



Lemma D.3. Define the following

(1, o) : ZJEPIH O — 48] + Epr [} (D.12)
=1
(0, o) ZEW S Lastt — b} + Eps ). (D.13)

For k =3,--- ,m, the following holds:
@([L[&) - (I)(IJ’(]?“"’\U)

= D Epen 0y — THE -} B0 )

+ZEPL+1 SO (A — @)] + Epa [ — ).

Proof of Lemma The equation holds for k£ = m. It can be shown as follows:
({'uz ot i = 1,---,m}) —‘I’({Mé’wé ri=1,---,m})

LemmaD.T NOYES i < y
= ZEpi+1[w( ™ = g} + Epr [t — fig]

i=1
= Epmit [a)(m){ﬂglel 'rn}] +Epn [w(nz 1){ m ﬂm—l}] (D.14)
m—2
+ Z Epin @O {1 = 4}] + Epa [ — jid). (D.15)
Then,
Eq. (D.14)
LemmalD.2] ~(m— m A’rn ~m m ~(m— ~m ~Am—
BB Epr [0 gt — 2 HO™ — wit ] + Epm [0V gt — 4. (D.16)
Therefore,
CD({[LZ?@Z 1= 1, am}) - @({#Bawé 1= 13 7m})
m—2
=Eq. O16) + Y Epena[0@ {1 — 4'}] + Epa it — fid]. (D.17)
We make a following induction hypothesis. For any fixed k + 1 € {m,m — 1,--- , 4}, the following
holds:
({” V=1, m}) — @{pb,wh i =1,--- ,m}) (D.18)
Z Epria [0 Dy — p"Ho" — Wi} (D.19)
r=k+1
+ Epm[ D {ag T — i) (D.20)
+ Z Epiei [0D {4 — p*Y) (D.21)
+ Epl it — g (D.22)
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We note that this holds when & = m — 1, as shown in Eq. (D.17). We will now show that it will hold
for k, too. First,

Eq. (D-20) + Eq. (D-21) (D.23)
k—1

Epsa [0 = 1" + D Epn [0 {A ! — 4}
=1

_EP"“[W( ){Nkﬂ z }H‘Epk[ (= 1){M a1 +Z]EP1+1 (){AZH 'y,

B2 o [0 — HN — W]+ B0 (i — p 1}+ZEW@>{A1+1 iy,
(D.24)

Therefore,

d({p' ot i=1,--- ,m}) —d({ub,wh:i=1,---,m})
= Eq. (D.19) + Eq. (D-20) + Eq. (D.21) + Eq. (D.22)
= Eq. (D.19) + Eq. (D24) + Eq. (D22)

m
Y Eprn[@U g — i HO" — wid] + Epen [0F TV {uf — A HN — wp))
r=k+1

+ Epu oD (i - p+1))
k—2

£ Epen o (i — i)

i=1
+ Eq. (D.22)

This means that the induction hypothesis holds for k, too. This completes the proof. O

Lemma D.4. 3
Ep2[@'{fi§ — i'}] = Ep1[i' — fig) = Ep2 [{pg — ' Ho' — wp -

Proof of Lemma
o (G -

=Epe | =t

~ By [ oG i (€1, R0) — f(Ca R G

=Ep2 ) {ﬂl(cl,Rl)#é(Cth)}‘Cl”

:EPZ

(O R) = (€1 Ra))
= Ep2[wy(C1, R1){A' (C1,R1) — p15(C1, Ry)}.
Therefore,
Ep2 [0 {2 — p*}] — Epr it — jig)
=Ep [0 {p — o'} — Epa [t — 3]
= Epe[0M{py — i}] — Epa [ {ud — ']
= Epa[{ug — i Ho' — wi}l.
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D.5.2 Main lemmas

Based on the above helper lemmas in the box, the main lemma is stated and proven as follows:

Lemma D.5 (Decomposition-1). Define the following

(1, ) Zﬂﬂpm @O — i)+ Ep '] (D.25)

® (410, wo) ZEW 5175 — 1)) + Ep [1f)- (D.26)

The following decomposition holds:

m

®(f1, D) — (o, Wo) ZEPH - — "o — whll. (D.27)
Proof of Lemma|D.35|
(1, @) — ©(po, Wo)
LA =D N g 60D (- AT HE" — W} (D.28)
r=3

+Eps[@P{ji§ — i°}] + Ep2[@'{* — p'}] + Epa [3* — fig]
Lemma[D2] “ N “ Al N X .
“E==""Eq. (D28) + Eps [0 {1 — A2 HO? — wi}] + Ep2 [0 (i — 4N + Ep [0 — fig)

= Y e 00 i — P H — )] + Epelo! (i — Y] + Epa [ — ]
r=2

L D4 A (r— T navIs r 1 L
emma Z Epret [0 — A" HO" — wi}] + Epz[{ng — A" Ho' — wg)]
r=2

= S Epra [0V — 7 H" — ).
r=1

O

Lemma D.6 (Decomposition-2). Define the following
®(f1, #) ZEPM FATY = 0] 4 Ep [} (D.29)
®(po, mo) ZEP7+1 [mo o™ — 1o}] + Epr [f1g)- (D.30)

The following decomposition holds:
D1, ) — (10, 0) ZEPTH [{u — 7 HA" = ) (D31)
+ Z Eproifwp{p — i Haw" — w51 (D.32)
r=2
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Proof of Lemma Define A is the term satisfying
®(f, %) — (o, ™) ZEPTH {ug — " HA" = mg}] + A. (D.33)

From Lemma|D.5]and the fact that ®(f1, &) = ®(f1,®) and (o, 7) = P(po, wo) by definition,
we have

®(f1, &) — (po, ™) ZEPM DL — am " — wh] (D.34)
= ZEPH “Huh — prHO = wh}] (D.35)
That is,
A= Bpen [ Hug — W H" —wi}] = Y Eprn[{pg — i HFA" — w5 }] (D.36)
r=1 r=1

I
NIER

(Bpres (37 {uty — 47Y) — Bprns [ ey {1ty — 47}) + Eprns [{uy — 47 HA" — 5})

r=2
(D.37)
= Epe[wh{ph — 4" Hmp = 7. (D.38)
This completes the proof. O

Lemma D.7 (Stochastic Equicontinuity). Let D P LetD= Do U Dy, where n := |Dy|. Let f
be a function estimated from D1. Then, in probability greater than 1 — € for any € € (0, 1),

A< 1=l (D.39)

Ep,—p Hf* NG

which implies that

S I/ = fllp
Ep,—p[|f f|]—0P< Tn >

Proof of Lemma This proof is from (Kennedy et al.,[2020, Lemma 2). Since f is a function of
D,, we will denote fp, . Define a following random variable of interest:

X :=Ep,_plfp, — f]-

Then, the conditional expectation of X given D is zero, since

n

%Zfbl (Vi) ‘ Dl] = ;Z;Ep[fbl )| D1 = ZEP fo.(V) | D1] = Eplfp, (V) | D1,

i=1

Ep

where the third equality holds by the independence of Dy and D;. Therefore,
Ep[X | D1] = Ep[Ep,—plfp, — f]| Di]
= Ep[En,[fp, — 11| Di] —Ep[Ep(fp, — f]] Di]
=Ep[Ep(fp, — f]| D1] = Ep[Ep[fp, — f] | D1] = 0.
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Also,

Vp[X | Di] = Vp[Ep,—plfp, — f]| D1
= Vp[Ep,[fp, — f] | Di]

= YVolfp, — 1 D]
n
1 -
1o — fI3.

n
By applying the (conditional-) Chevyshev’s inequality,

IN

1 1
P(X —Ep[X | Di]| > t| D1) < 5Vp[X | Di] < —5llfp, — fII?-
Then,

P(|X| > t) = P(IX —Ep[X | Di]| > 1)
=Epopy[P(|X —Ep[X | Di]| >t | D1)]

1 2
< @Hfbl — flI®

_ I fo, —fllp

In other words, X < t in probability greater than 1 — L5 | fo, — f |%. If t L=, then
X< % in the probability greater than 1 — € for any € € (0,1). O

Lemma D.8 (Combining concentration inequalities). Suppose P(A, > t) < by /t? for k =
1,---, K. Then,

K 1 K
P(ZAkgtK> zl—t—QZbk.
k=1

k=1

Proof. The event Eszl A, < tK includes the case where A, < ¢t fork = 1,--- , K. Therefore,

K
P(ZAkgtK> >P(A; <tand --- and Ag < t)
k=1
:l—P(A1>tOI'--- OI‘AK>t)
K
>1- P(Ax>1)

k=1

K g
>1->
k:lt

| S

D.5.3 Preliminary Results

Proposition D.1 (Berry—Esseen’s inequality (Berryl |1941; |[Esseen| |1942; |Shevtsova, [2014)). Sup-

pose D = {Xy,---,X,} are independent and identically distributed random variables with
Ep[Xi] = 0, Ep[X2] = 02 and Ep[|X;|*] = k3. Then, for all x and n,
0.4748k3
‘P (ﬁED[X] < x) — D) < —
oo a3\/n
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D.5.4 Proof of Theorem[3|

By Lemma[D.5] we decompose the error as follow:
K
Y —thy = ZEDLM [ng]

+

=
="

ED;C —pk [‘% - ¢>'5}

+

SIES
M-I
M= T

Epoi [@f 0 {uh — b Hok — wi}).
=1 i=1
By Lemma|D.7]
b ! ; 1 |Ig§ — ob112
i QEDL@C_M o 7%]’ ~ t) =P <L ‘ED}?—pk[éf’? *éf)g}‘ > Lt) < FQW
By Lemma [D.§]
L
! : 1 &9 — gz
i k k l 0
F <L > ‘ED%W[@ - ¢0]‘ < Lt) >1- FQZW'
=t =1 ¢
Tk Ak(12
Equivalently, by choosing ¢t = \/ % 25:1 %’
4
Ly e ime | L2 119F — obl1
LS Bl - E Lot s
|Dy|
=1 (=1
Define
Ak = EDk pk [qs(k;]
B = i3 ZED’“—Pk — 6]
=1
1 & )
Ok = f Z ’E'D}f—l’k [d)]g — (bg]
=1
L
L2 N |98 — 6l
A= | —
k € Z ‘Dk
Here,
RF:= A" 4+ B".
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Then,

PF (R* < ) (D.51)
(Em o [0F] + Z]Epk i [0 — o] < x) (D.52)
=P* (A + B <) (D.53)
=P" (A, <z — By) (D.54)
<PF (A <z +Cy) (D.55)
w.pl—e
PR (A <+ Ay). (D.56)
Then,
P (A < 24+ Ay) — @(2)| (D.57)
= [PF (Ap <z + Ag) — @(z + Ap) + (z + Ay) — B(2)] (D.58)
< PP (Ar <2+ Ap) — (x4 Ap)| + |B(z + Ag) — ()| (D.59)
0.4748k3
< ———F—— 4 |P(x + Ag) — P(2)] (Prop.[D.I) (D.60)
pi oV | D*|
474
= 70 ’ 862 |®' (z") Ay (Mean-value theorem) (D.61)
Pk oV D*|
_ 0 474850 1 D62
pi oV |D|
This completes the proof. n

D.6 Proof for Corollary[3]

By Cauchy-Schwartz’ inequality,

L m
L S s ofi 1y — G — ] < L 530 O (I — il — 1)

{=1 i=1 (=1 i=1

|

Given assumption, the upper bound in Eq. converges at opr (1/ ), we conclude that R*

converges in distribution to normal(0, p3 ).

E More Experiments

In this section, we demonstrate the DML-UCA estimator through examples for the ETT, S-
admissibility, FD, Verma’s equation, and Ctf-DE described in Sec.[2] For each example, the proposed
estimator is constructed using a dataset D* following a distribution P*. Our goal is to provide em-
pirical evidence of the fast convergence behavior of the proposed estimator compared to competing
baseline estimators. We consider two standard baselines in the literature: the ‘regression-based
estimator (reg)’ only uses the regression nuisance parameters u, and the ‘ratio-based estimator (ratio)’
that only uses the ratio nuisance parameters 7, while our DML-UCA estimator (‘dml’) uses both.
Details of the regression-based (‘reg’) and the ratio-based (‘ratio’) estimators are provided in Sec. E
Details of experimental setting is provided in Sec.[F] In this experiments, we set all variables other
than the treatment variable X as continuous.

We compare DML-UCA estimator to the regression-based estimator (‘reg’) and the ratio-based
estimator (‘ratio’). In particular, we use 1* for est € {reg, pw,dml} to denote the regression-
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Figure E.3: (a) ETT in Sec. B} (b) Transportability (S-admissibility) in Sec.|B| (c¢) Front-door in
Example (d) Verma in Example (e) Ctf-DE in Example

based, probability-weighting, and DML-UCA estimators. We assess the quality of the estimators by
computing the average absolute error AAE®™ which is defined as follow. For the ETT and Ctf-DE,
AAE® = [4*' — 1)y, where ¢ == E[Yx—o | X = 1] for the ETT and ¢g == E[Yx—o wy_, | X =

2] for the Ctf-DE. For the other examples, AAE®™" := m > wedomain(X) [t () — 2o ()]

where 1o () := E[Y | do(x)], ¥*!(z) is an estimator for o () and dom(X) is a cardinality of the
domain of X. Nuisance functions are estimated using XGBoost (Chen and Guestrin, 2016). We ran
100 simulations for each number of samples n = {2500, 5000, 10000, 20000} and drew the AAE
plot. We evaluate the AAE® in the presence of the ‘converging noise ¢ as in Sec.

Statistical Robustness. The AAE plots for all scenarios are presented in Fig. |[E.3| For all examples,
all the estimators (‘reg’, ‘pw’, ‘dml’) converge as the sample size grows. Furthermore, the proposed
DML-UCA estimator outperforms the other two estimators by achieving fast convergence. This result
corroborates the robustness property in Thm. 3] which implies that DML-UCA converges faster than
the other counterparts.

F Details in Experiments

As described in Sec. E, we used the XGBoost (Chen and Guestrin, [2016) as a model for estimating
nuisances. We implemented the model using Python. In modeling nuisance using the XGBoost, we
used the command xgboost .XGBClassifier(eval_metric=’logloss’ ) to use the XGBoost.
We tuned the parameters for each examples to empirically guarantee the convergence of the regression
and ratio nuisances. For each examples, the same parameters are used globally for implementing
DML-UCA, regression-based estimator, ratio-based estimator, or other competing estimators (Fulcher
et al.,[2019; Jung et al.,[2021a).

Now, we present the structural causal models (SCMs) utilized for generating the dataset. Furthermore,
we include a segment of the code employed to generate the dataset.

F.1 FD (Fig.[1a) for Simulation in Fig.2a]

We define the following structural causal models:

U ~ normal(0.5,0,5),
Uz, ~normal(0,1), fori=1,---,dz
Ci = fc,(U), where C :== {C; :i=1,--- ,dc}
X = fx(C,U),
Z; = fz,(C,X), whereZ :={Z; :i=1,--- ,dz}
Y = fy(C,Z,U),

"Detailed parametrization of parameters including learning rates, maximum depth of the trees,
etc. are explained in https://xgboost.readthedocs.io/en/stable/python/python_api.html#
module-xgboost.training,
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https://xgboost.readthedocs.io/en/stable/python/python_api.html#module-xgboost.training
https://xgboost.readthedocs.io/en/stable/python/python_api.html#module-xgboost.training

where

1
fC1(U) = {1 + exp(0,25UZ + 2U — 1)J ’

1
‘= Bi
fx(C,U) = Binary <1 +exp(2CT1 — 1 + U)> ’

1
) X) :=Bi
fz,(C,X) inary (1 +exp(2X — 1+ 0.5CT1 + Uz))

1

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': O,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4
X

pi_params = {

'booster': 'gbtree',
'eta': 0.3,

'gamma': O,

'max_depth': 10,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic',
'eval_metric': 'logloss',
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}
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F.2 Verma (Fig.[Ib) for Simulation in Fig.

‘We define the following structural causal models:

Uxp ~ normal(1,0,5),

Uay ~ normal(—1,0,5),
Uya ~ normal(0,1)
Up ~ normal(0,1)
X = fx(UxB)
A; = fa,(X,Unay), fori=1,--- ,da
B; = fp,(X,Uxp), fori=1,--- ,dp
Y = fy(B,Uay),

where
fx(UxB) = Bi 1
x(Ux B) := Binary 1+ expUxp—1))
1
(X, U = Bi
fa,(X,Uay) lnary(1+exp(2X—1+UA+UAY)>
1
X, U = Bi
fB,L< ,UxB) lnaIY(1+eXp(2AT11+UB+0~5UXB))
1

B, U = '
fy(B,Uay) 1+exp(2BT1 — 1+ 0.5U4y)

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.35,
'gamma': O,
'max_depth': 6,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,

'alpha': 0.0,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
X

pi_params = {

'booster': 'gbtree',

'eta': 0.1,

'gamma': O,

'max_depth': 10,

'min_child_weight': 1,

'subsample': 0.0,

'colsample_bytree': 1,

'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,

'reg_alpha': 0.0,

'nthread': 4
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F.3 Example estimand (Fig.[Ie) for Simulation in Fig.
We define the following structural causal models:

Ux,,z ~ normal(1,0,5),
Ux,y ~normal(—1,0,5),
(0.5,0.5)
Ugr ~ normal(0, 0.5)
Uz ~ normal(0,0.5)
Ux, ~ normal(0,0.5)

X1 = fx,(Ux,,2,Ux,,v)

Zi = f7,(X1,Ux1,2,Uzy), fori=1,--- ,dy
R; = fr,(Xy),, fori=1,--- ,dg

Y = fy(B,Uay),

Uzy ~ normal

where

1
U ,U = Bi ,
P (U2 U, ) = Binary (1 +exp(2Ux,,z — Ux,,y — ))

= Bi
fr (X1 mary 1+ exp( 2X1—1+UR)>

1
f2.(X1,Ux1,2,Uzy) —Blnary( )

1+exp(dXy —1+Uz+Ux, z+Uzy)

fx,(Z,X;) = Binary

1
1+exp((2X; —1)Z71 — UXQ))
1
1+ exp((l/dR)RTl +2Xo — 1+ Q(le y +Uz y))

fr(R, X2, Ux, v, Uzy) =

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': O,
'max_depth': 8,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 0.8,
'lambda': 0.0,

'alpha': 0.0,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
X

pi_params = {

'booster': 'gbtree',

'eta': 0.1,

'gamma': O,

'max_depth': 10,
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'min_child_weight': 1,

'subsample': 0.75,

'colsample_bytree': 0.75,

'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,

'reg_alpha': 0.0,

'nthread': 4

X

F4 ETT in Sec.[B|for Simulation in Fig.[E.3a

We define the following structural causal models:

Ux ~ normal(0,1)
Uy ~ 0.5 textttnormal(0,1)
Z ~ 0.25normal(0,1,dZ7),

X = fx(Z)
Y = fy(X,Z)
where
. 1
fx(Z) = Binary (1 +exp(2ZT1 — 1+ UX)>

1

fr(Z,X) = L+ exp(ZT1(2X = 1) + Uy)-

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.5,
'gamma': O,
'max_depth': 15,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 1,

'lambda': O,

'alpha': O,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
X

pi_params = {

'booster': 'gbtree',

'eta': 0.3,

'gamma': O,

'max_depth': 10,

'min_child_weight': 1,

'subsample': 1,

'colsample_bytree': 1,

'objective': 'binary:logistic', # Change as per your objective
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'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 1,

'reg_alpha': O,

'nthread': 4

b

F.5 Transportability in Sec.[B|for Simulation in Fig.

We define the following structural causal models:

Ux ~ normal(0,1)
Uy ~ 0.5 textttnormal(0, 1)

Z ~ 0.25normal(0,0.5,dZ) + Snormal(0.1,0.5,dZ)
X = fx(Z)

Y = fy(X,2)

where

. 1
fx(Z) = Binary (1 +exp((1/dZ)(2Z71 — 1) + Ux))

1

Ir(2.X) = 1+exp(ZT1(2X — 1)+ Uy)’

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': O,
'max_depth': 15,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 1,

'lambda': O,

'alpha': O,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
X

pi_params = {

'booster': 'gbtree',

'eta': 0.1,

'gamma': O,

'max_depth': 10,

'min_child_weight': 1,

'subsample': 1,

'colsample_bytree': 1,

'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 1,

'reg_alpha': O,

'nthread': 4
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F.6 FD with continuous mediators for Simulation in Fig.[E.3¢|

We define the following structural causal models:

Uc ~ normal(0, 1,d¢)
U ~ normal(0, 1)

C:= fc(U)

X = fx(U,C)
Z = fz(X,C)
Y = fv(U,Z,C)

where

fc(U) =0.25Uc+2U — 1

' 1

fx(U,C) = Binary (1 +exp((2CT1 - 1) + U)>
1

J2(X,C) = 5 +exp(0.1CT1(2X — 1) + X)

fY(ZaX) = 1

1+exp(CT1+ (2Z — 1)+ U)’

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.01,
'gamma': O,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4
X

pi_params = {

'booster': 'gbtree',
'eta': 0.3,

'gamma': O,

'max_depth': 20,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic',
'eval_metric': 'logloss',
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

40



F.7 Verma’s equation with continuous mediators for Simulation in Fig.
We define the following structural causal models:

Uxp ~ normal(1l,0,5),
Uay ~ normal(—1,0,5),
X = fx(UxB)
A= fa(X,Uasy)
B = fp(X,Uxp)
Y = fy(B,Uay),

where
fx(UxB) = Bi 1
v (Ux ‘= Binary 1—|—eXp(2UXB—1) ,
1
X, U ‘= Bi
fa(X,Uay) lnary<1+exp(2X—1+O-5UAY)>
1
X, U = Bi
f8(X,UxB) lnary<1+exp(2A1+o.5UxB))
1

B, U = ’
fy (B, Uay) 1+ exp(2B — 1+ 0.5U,4Y)

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.35,

'gamma': O,
'max_depth': 6,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,

'alpha': 0.0,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
X

pi_params = {

'booster': 'gbtree',

'eta': 0.1,

'gamma': O,

'max_depth': 10,

'min_child_weight': 1,

'subsample': 0.0,

'colsample_bytree': 1,

'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,

'reg_alpha': 0.0,

'nthread': 4}
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F.8 Ctf-DE in Example 3|for Simulation in Fig.

We define the following structural causal models:

U ~ normal(0,2),
X = fx(U)

Z = fz(U)

W= fw(X,Z2)

Y = f(X,Z,W),

where
: 1
0 if T <0.5
fx(U) = 1if S O.5W <0.8
2if <0.8

o 1
fZ(U)lgrl—%eXp(—L7+—1)

1
W 2) = X =15 2)

1
2, X, W)= '
Fr(2, X, W) 14+exp(3X —1+0.1Z +0.1W + W(X — 1))

1
1+CXp(2UXB—1) .

The parameterization for XGBoost used in g called (mu_params) and 7 called (pi_params) is the
following:

mu_params = {

'booster': 'gbtree',

'eta': 0.3, # vab

'gamma': 0.0,

'max_depth': 6, #vb (same as va)
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,

'lambda': 0.0,

'alpha': 0.0,

'objective': 'reg:squarederror',
'eval_metric': 'rmse',

'n_jobs': 4 # Assuming you have 4 cores
3

pi_params = {

'booster': 'gbtree',

'eta': 0.05,

'gamma': O,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,

'objective': 'multi:softprob', # Change as per your objective
'num_class': 3,
'eval_metric': 'mlogloss', # Change as per your needs

'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}
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