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Abstract

Considering various data modalities, such as images, videos, and text, humans
perform causal reasoning using high-level causal variables, as opposed to operating
at the low, pixel level from which the data comes. In practice, most causal reasoning
methods assume that the data is described as granular as the underlying causal
generative factors, which is often not the case in various AI applications. In this
paper, we acknowledge this issue and study the problem of causal disentangled
representation learning from a combination of data gathered from various hetero-
geneous domains and assumptions in the form of a latent causal graph. To the
best of our knowledge, the proposed work is the first to consider i) non-Markovian
causal settings, where there may be unobserved confounding, ii) arbitrary distribu-
tions that arise from multiple domains, and iii) a relaxed version of user-chosen
disentanglement. Specifically, we introduce graphical criteria that allow for dis-
entanglement under various conditions. Building on these results, we develop an
algorithm that returns a causal disentanglement map, highlighting which latent
variables can be disentangled given the combination of data and assumptions. The
theory is corroborated by experiments.

1 Introduction

Causality is fundamental throughout various aspects of human cognition, including understanding,
planning, decision-making. The ability to perform causal reasoning is considered one of the hallmarks
of human intelligence [1–3]. In the context of AI, the capability of reasoning with cause-and-effect
relationships plays a critical role in various challenging tasks, including explainability, fairness,
decision-making, robustness, and generalizability. One key assumption of most methods currently
available in the literature is that the set of (endogenous) variables is at the right level of granularity.
However, this is not the case in many AI applications, where various modalities, such as images, and
text, come into play [4].

In machine learning, the representation learning literature is concerned with finding useful represen-
tations from data [5]. One important line of work traces back to linear ICA (independent component
analysis) [6], where one attempts to disentangle latent variables assuming a linear mixing function.
The literature has also considered settings where the mixing function is nonlinear [7, 8]. It has been
understood that nonlinear-ICA is, in general, not identifiable (ID) given only observational data [9].
Different routes have been taken to circumvent such impossibilities. For instance, one might assume
parametric families (e.g., exponential), and auxiliary variables as input, which can be thought of as
non-stationary times-series implying certain new invariances that can be exploited [7, 8, 10].
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Work
Input Output

Assumptions Data Identifiability GoalNon-Markovian Non-parametric Interventions Multiple Domains Distr. Reqs.
[6, 11–14] 7 7 X 7 1 per node Scaling, Mixture or Affine Transformation

[7, 8, 10, 15, 16] 7 7 7/X 7/X 2|V|+ 1 Scaling
[17, 18] 7 X X 7 1 per node Scaling
[19, 20] 7 X 7/X 7/X 1 per node Scaling

[21] 7 X X 7 1 per node Scaling or Ancestral Mixture
[22] 7 X 7 X 2|V|+ |MG|+ 1 Scaling or Mixture

This work X X X X General Causal Disentanglement Map

Table 1: A non-exhaustive list of identifiability results given knowledge of the latent graph
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Figure 1: Dimensions of causal disentan-
glement representation learning tasks.

Interestingly, the machinery developed in this context can
be applied to causal settings with multimodal data, where
there is a mismatch between the causal variables and the
granularity at which they are represented in the data. The
key observation that links these two worlds is that an
underlying causal system generates the data at such gran-
ularity (images, texts). Acknowledging this connection
leads to various possibilities regarding learning, or dis-
entangling the causal variables from data, similar to the
initial ICA-like literature. First, the assumption that the
features underlying a signal are independent needs to be
relaxed since it is arguably too stringent, a priori ruling
out almost any interesting causal system. So, we should
consider different assumptions regarding the structure of
the underlying generative model. One initial relaxation is
that this model is Markovian, where the features need not
be independent, and causal relationships are allowed across features. In the context of computer
vision, for example, one might assume a specific structure on the latent variables where the style
and content of the images are separated and augmented data is leveraged to disentangle these two
components [18]. Generalizing this idea to more relaxed causal settings, one can show ID up to
certain indeterminancies given observational across multiple domains, or interventional data [21, 22].
Another approach allows for certain parametric mixing functions, which could lead to new ID results
[11, 14]. These results have been applied and advanced across various downstream tasks [23–29].

Considering this background, we study three axes within the different types of input and expected
outputs of the causal disentanglement representation learning task, as summarized in Table 1. What
we refer to as the input can be partitioned into qualitative and quantitative components. In terms of
the qualitative aspect of the input, we consider different assumptions about the underlying generative
processes, including non-parametric, in contrast to, for example, linear or Gaussian. As alluded to
earlier, we also account for systems with richer causal topologies than ICA (independent features)
while generalizing the Markovian setting. In particular, we do not rule out a priori the existence of
unobserved confounding among features, which is a challenge pervasive throughout causal inference
in the empirical sciences. Regarding the quantitative part of the output, we consider data gathered
from arbitrary combinations of interventions and domains. The recent literature on this distinction
acknowledges key differences [30–35], while the prior literature often assumes that data comes
from different interventions in the same domain or from various (observational) distributions from
different domains. In fact, it is feasible that data spawns various interventions and domains in a less
well-structured manner. We discuss the nuances of interventions vs domains in Section Domains vs
Interventions. In terms of the expected output, current methods often aim for a full disentanglement,
while we consider more relaxed types of disentanglement.

For concreteness, consider a hypothetical latent graph depicted in Fig. 2 in the context of epilepsy
research [36–44]. In terms of assumptions, hospitals in different countries ⇧i and ⇧j will differ in
the amount of sleep (V1) patients get (represented by the S-node S

i,j ! V1). Now suppose sleep
(V1) affects the efficacy of the drug treatment (V2), and the drug helps epilepsy patients control their
seizures (V3). The quality of sleep and the type of drug treatment are confounded by socioeconomic
factors (V1 L9999K V2). Clinicians are then given electroencephalogram (EEG) data from each
hospital where they know different drug treatments were administered. The EEG X is a nonlinear
(nonparametric) transformation of latent V = {V1, V2, V3} via fX . Their goal is to generate realistic
EEG data to understand how different drugs affect EEG patterns. This requires a general output
representation that disentangles sleep from drug as it is understood that sleep affects EEG [45];
we are not as interested in disentangling the drug treatment and outcomes because it is known the
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Figure 2: Data generating model and the goal of learning disentangled causal latent representations.

drug treatments will impact the outcomes. One could leverage state-of-the-art generative modeling
techniques and train a self-supervised learning model to learn a representation of the EEG that they
then perturb to generate new instances of EEG [46–48]. However, there are no guarantees that the
representation, or interventions in the latent space will generate realistic EEG. In this case, drug and
sleep might remain entangled in the learned representation, which is potentially harmful, since it may
lead to unrealistic EEG data that contains visual differences due to sleep rather than the drug. More
formally, given an input set of distributions and knowledge of the latent variable causal structure, the
goal is to learn the inverse of the mixing function bf�1

X and a representation bV = {cV1,
cV2,
cV3}, where

V2 is disentangled from V1
1.

In this paper, we develop graphical and algorithmic machinery to determine whether (and how) causal
representations can be disentangled from heterogeneous data and assumptions about the underlying
causal system, which might help improve various downstream tasks. Our contributions are as follows:

1. Graphical criteria for determining the disentangleability of causal factors. We formalize
a general version of the causal representation learning problem and develop methods to
determine if a pair of (user-chosen) variables are disentangled in a non-Markovian setting
with arbitrary distributions from multiple heterogeneous domains (Props. 3,4, and 5)2.

2. An algorithm to learn the causal disentanglement map. Leveraging these new conditions,
we develop an algorithmic called CRID, which systematically determines whether two
sets of latent variables are disentangleable given their selection diagram and a collection of
intervention targets (Thm. 1). The theoretical findings are corroborated with simulations.

Preliminaries. We introduce basic definitions used throughout the paper. Uppercase letters (X)
represent random variables, lowercase letters (x) signify assignments, and bold letters (X) indicate
sets. For a set X, |X| denotes its dimension. Denote P (X) as a probability distribution over X
and p(x) as its density function. The basic semantic framework of our analysis rests on structural
causal models (SCMs) [1, Ch. 7]. An SCM is a 4-tuple hU,V,F , P (U)i, where (1) U is a set of
background variables, also called exogenous variables, that are determined by factors outside the
model; (2) V = {V1, V2, . . . , Vd} is the set of endogenous variables that are determined by other
variables in the model; (3) F is the set of functions {fV1 , fV2 . . . , fVd} mapping UVj [PaVj to Vj ,
where UVj ✓ U and PaVj ✓ V\Vj ; (4) P (U) is a probability function over the domain of U.

Each SCM induces a causal diagram G, which is a directed acyclic graph where every Vj is a vertex.
There is a directed arrow from Vj to Vk if Vj 2 PaVk . There is a bidirected arrow between Vj

and Vk if UVj and UVk are not independent [3]. Variables V can be partitioned into subsets called
c-components [55]. The c-component of X , denoted as C(X), is a set of variables connected to
X by bidirected paths. The c-component of a set X, denoted as C(X), is defined as the union of
the c-component of every X 2 X. We will use Pa(X) or PaX to denote parents of X in G. Let
Pa(X) = Pa(X) [X , which includes X itself. A subgraph over X ✓ V in G is denoted as G(X)
and GX denotes the subgraph by removing arrows coming into nodes in X.

1We separate the tasks of disentanglement and structural learning, and consider the latent causal graph as
input of our task. Still, there are works in the literature that study both tasks simultaneously [13, 22, 49–54].

2All proofs are provided in Appendix C.
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A soft intervention on a variable X , denoted �X , replaces fX with a new function f
0
X of Pa0 ⇢ V

and variables U0
X [56, 57]. For interventions on a set of variables X ✓ V, let �X = {�X}X2X, that

is, the result of applying one intervention after the other. Given an SCM M, let M�X be a submodel
of M induced by intervention M�X . The observational distribution can be thought of as the result of
a special class of soft interventions, called idle intervention. Specifically, an idle intervention leaves
the function as it is, which means �X = {}. Another special class of soft interventions, called hard
(or perfect) interventions [21, 49] and denoted as do(X), such that Pa(X) = ; and U0

X \U = ;.
This implies that the modified diagram induced by M�X is GX. We assume soft interventions that
are not hard do not change the structure of the graph 3. Namely, the diagram induced by M�X is the
same with G.

2 Modeling Disentanglement Representation Learning (General Case)

In this section, we formalize the disentangled representation learning task in causal language. We
leverage Augmented SCMs to model the generative process over latent causal variables V.

Definition 2.1 (Augmented Structure Causal Model). An Augmented Structure Causal Model
(ASCM) over a generative level SCM M0 = h{U0,V0,F0, P

0(U0)}i is a tuple M =
hU, {V,X},F , P (U)i such that (1) exogenous variables U = U0; (2) V = V0 = {V1, . . . , Vd}
are d latent endogenous variables; X is an m dimensional mixture variable; (3) F = {F0, fX},
where fX : Rd ! Rm is a diffeomorphic 4 function that maps from (the respective domains of) V to
X. 9 h = f

�1
X such that V = h(X); and (4) P (U0) = P

0(U0).

In words, an ASCM M describes a two-stage generative process involving latent generative factors
V and high-dimensional mixture X (e.g., images, text). First, the latent generative factors V 2 Rd

are generated by an underlying SCM. The causal diagram induced by M0 over V is called a latent
causal graph (LCG), denoted as G. Next, a nonparametric diffeomorphism fX mixes V to get the
high-dimensional mixture X 2 Rm. An important aspect of fX is that it is invertible regarding
V, which implies that the generative factors V are recognized in a given X 5. We do not restrict
the function of the underlying mechanisms F0 in SCMs, or the mixing function fX, and focus on
the non-parametric setting. This assumption is commonly in the non-linear ICA and representation
learning literature [9, 10, 17, 58].

The initial disentangled representation learning setting can be traced back at least to linear/nonlinear
ICA [7–9], where G is assumed to have no edges (V are independent of each other) and Markovian
(no bidirected edges in the LCG). More recently, allowing latent variables to have edges in the
LCG was studied, albeit still under the Markovian assumption [11, 13, 14, 21, 22, 49, 53]. We
relax this assumption and allow unoberserved confounding to exist between V, which we call
non-Markovianity6.

Domains. We address the general setting of distributions that arise from multiple domains. Fol-
lowing [30–33, 61, 62], we define the so-called latent selection diagram that represents a collection
of ASCMs to formally model the multi-domain setting. Selection diagrams enable us to compactly
represent causal structure and cross-domain invariances 7.

Definition 2.2 (Latent Selection Diagrams). Let M = hM1,M2, ...,MN i be a collection of
ASCMs relative to N domains⇧ = h⇧1,⇧2, ...,⇧N i, sharing mixing function fX and LCG, G. M
defines a latent selection diagram (LSD) GS , constructed as follows: (1) every edge in G is also an
edge in G

S ; (2) GS contains an extra node S
i,j and corresponding edge S

i,j ! Vk whenever there
exists a discrepancy f

i
Vk
6= f

j
Vk

, or P i(Uk) 6= P
j(Uk) between Mi and Mj .

3In general, soft interventions can arbitrarily change the graph by adding or removing edges. We do not
consider this setting, and refer the readers to [1, 56, 57] for a general discussion on soft interventions.

4A diffeomorphism is a bijective function fX such that both fX and f�1
X are continuously differentiable [25]

5Further discussion on the invertibility and non-parametric assumption is provided in Appendix A.2.
6To our knowledge, this is the first work in disentangled causal representation learning to relax Markovianity,

which we believe is important since a significant challenge in causal inference stems from the existence of
confounding bias traced back to Rubin [59], Pearl [1, 60], and more recently data fusion [34].

7See [30, 31] and Appendix Sec. A.3 for a more detailed discussion on the fundamental differences between
interventions and domains, and why modeling their distinction is fundamental for this task.
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Domain Observational Interventional
⇧1 P 1

{}(X) P 1
vi

(X) P 1
vj

(X) P 1
vi,vj

(X) . . .

⇧2 P 2
{}(X) P 2

vi
(X) P 2

vk
(X) P 2

vi,vk
(X) . . .

...
...

...
...

...
...

⇧N PN
{}(X) PN

vl
(X) PN

vm
(X) PN

vl,vj
(X) . . .

Table 2: Possible distributions observed for any given causal representation learning task - Each
domain⇧ = {⇧1

,⇧2
, ...,⇧N} may contain observational and interventional distributions over latent

variables V, which are mixed via fX to generate X 2 Rm. The first row and column are studied in
the existing literature under the lens of the multi-domain intervention exchangeability assumption
[30]. Prior work also requires distributions across the entire column (i.e. many domains must be
observed), or entire row (i.e. an intervention per latent variable). This paper discusses a more general
disentangled representation learning setting when an arbitrary combination of distributions from
interventions and domains can be input (i.e. any combination of cells in yellow, and green).

S-nodes indicate possible differences over V due to changes in the underlying mechanism or exoge-
nous distributions across domains. For example, consider the LSD in Fig. 2. The S-node S

i,j implies
that V1 possibly changes from domain ⇧i to ⇧j , while the mechanisms of V2 and V3 are assumed to
be invariant. Note no S-node points to X since fX is shared across M.

Interventions. A set of interventions ⌃ = {�(k)}Kk=1 are applied across domains ⇧, where
k is an index from 1 to K. The corresponding domains that ⌃ are intervened in is denoted as
⇧⌃ = {⇧(k)}Kk=1 (the domains associated with each �(k) 2 ⌃). We study a general setting where
each intervention can be applied to any subset of nodes and in any domain, which can be seen as a
generalization of the more restricted settings in prior work (see Appendix E).

The intervention targets collection of these K interventions {�(k)}Kk=1 is denoted as = {I(k)}Kk=1.
Each intervention target I(k) is given in the form of {V ⇧(k),{b},t

i , V
⇧(k),{b0},t0
j , . . . }, which indicates

the intervention �(k) changes the mechanism of {Vi, Vj , . . . } in domain ⇧(k). The superscript {b}
indicates the mechanism of the intervention on the same node. The mechanisms of V {1}

i and V
{2}
i are

different while the mechanism on different nodes (V {1}
i and V

{1
j }) is default different; the superscript

t = do indicates the intervention is hard. When {b} or t is omitted, the intervention is assumed
to be different mechanisms, or not hard, respectively. When I(k) is an idle intervention in ⇧n (i.e.,
observational), it is denoted as {}n. The set do[I(k)] is a set of variables with hard interventions in
�
(k).  T is a subset of such that T ✓ do[I(j)] for every I(j) 2  T, which implies I(j) contains

hard interventions on T; see Fig. S1 and Ex. 1 for an illustration of the notation.
Example 1. Let an intervention target collection be

 = {I(1) = {{}⇧1}, I(2) = {V ⇧1,{1}
1 }, I(3) = {V ⇧2,{2}

1 , V
⇧2,{1},do
2 }, I(4) = {V ⇧2,{1}

1 , V
⇧2,do
2 }}

(1)
In words, indicates 4 different interventions ⌃ = {�(k)}4k=1:
�
(1): an idle intervention is applied resulting in an observational distribution in the domain ⇧1.
�
(2): a soft intervention with mechanism {1} is applied to V1 in domain ⇧1.
�
(3): an intervention is applied to V1 and V2 in domain ⇧2, where the mechanism of V1 is different

from �
(2) and the intervention on V2 is hard.

�
(4): an intervention is applied to V1 and V2 in domain ⇧2, where the mechanism of V1 is the same

with �(2) and the mechanism of V2 is different from �
(3).

do[I(3)] = {V2}: �(3) perfectly intervenes on {V2}.
 V2 = {I(3), I(4)}; the interventions targets that contain hard interventions on V2.  {} =  .

Domains vs Interventions. In previous studies, there has been a tendency to conflate the notions of
interventions and domain shifts [63–67]. However, it is essential to recognize their distinctiveness,
particularly when considering various real-world examples spanning different scientific domains
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that utilize observational and interventional data. The differentiation between interventions and
domains is not only conceptually significant but have implications for causal inference and the
characterization of corresponding causal structures as discussed in depth by [30]. Moreover, it is
crucial to avoid conflating these qualitatively distinct concepts of interventions and domains, as
highlighted in transportability analysis [61]. Pearl and Bareinboim have introduced clear semantics
for (S) nodes (environments), presenting a unified representation in the form of selection diagrams
[31, 33, 34].

By recognizing these differences, this work leverages any combination of observational and/or
interventional data arising from multiple domains to present a general approach to disentanglement
learning compared to the literature (see Table 2). Specifically, prior work generally considered either
interventions in a single domain (top row in ⇧1), where there must be an intervention per latent
variable [14, 21], or observational distributions from many domains ⇧1

,⇧2
, ...,⇧N (first column

under "Observational"). However, we examine the a general setting, where an arbitrary collection of
interventions, or observations from any combination of domains is available (green section).

previously I think we assume the indepandent assumption so we do not need to worry. But you
are right, it can raise concerns

If you enforce V_4 in the linear system (even it canceled),

 

 

 

 

 

 

 

brehmer2022weakly

 

 

�

̂� � 
̂� GS

̂V tar = �(V\Ven)̂V � tar = �� (V\Ven)

Data distribution Relationship between and ̂V V

Structural assumptions Space of  a collection of ASCMs

Figure 3: General ID/disentangleability
(Def. 2.3).

Observed Distributions. The interventions ⌃ =
{�(k)}Kk=1, induce distributions P = {P (k)}Kk=1 in multi-
domains, where P

(k) = P
⇧(k)

(X;�(k)). Considering an
arbitrary pair of distributions P (j)

, P
(k) 2 P , we assume

P
(j) is sufficiently different from P

(k) (formally defined
in Assumption. 7), unless explicitly stated otherwise 8.

Suppose the underlying true model M induces the LSD
G

S and a collection of distributions P over X is given
according to a corresponding collection of interventions
⌃. The goal of this paper is to learn a disentangled repre-
sentation bV of the latent generative factors V in M. In
other words, our goal is to estimate the inverse of the true
mixing function fX and determine the latent variables V up to indeterminacies. In the literature,
every variable Vi 2 V is required to be disentangled from all other variables [7, 21] or some special
subset (e.g. non-ancestors of Vi) [21, 22]. However, as illustrated in Fig. 2, sometimes only the target
variables (Vtar ✓ V) is needed to be disentangled from some user-chosen entangled variables (Ven).
We formally define this type of general indeterminacy next as well as the formal version of our ID
task.

Problem Statement
Definition 2.3 (General Identifiability/Disentangleability (ID)). Let a collection of ASCMs, M =
hM1, . . . ,Mni that induces an LSD G

S , and a set of distributions P = {P (k)}Kk=1 resulting from
K intervention sets ⌃. Consider target variables Vtar 2 V, and Ven ✓ V\Vtar. The set Vtar is
said to be identifiable (disentangled) with respect to (from) Ven if there exists a function ⌧ such that
bVtar = ⌧ (V\Ven) for any collection of ASCMs, cM = hcM1, . . . ,

cMni, that is compatible with
G

S and P cM = P . For short, Vtar is said to be ID w.r.t. Ven.

To illustrate, consider a target variable Vtar such that one aims to obtain a representation that is
disentangled from another subset variables Ven. The above definition states that Vtar is disentangled
from Ven (or is ID w.r.t. Ven) if the learned representations bVtar in cM is only a function of
V\Ven for any cM that matches with the LSD G

S and distribution P9. Def 2.3 is illustrated in
Fig. 3. Following the example illustrated in Fig. 2, suppose the user wants V3 to be disentangled from
V1 while considering the entanglement between V2 and V3 acceptable. If bV 3 = ⌧(V 2

, V
3) for any

ASCM cM that matches the distributions and LSD, V3 is ID w.r.t. V1. Def. 2.3 is more relaxed than
the full disentanglement (which means any Vi is disentangled from other variables) since any target
Vtar and Ven can be chosen. It can be reduced to existing identifiability definitions (as discussed in
Appendix E.2).

8A formal version of "sufficiently different" (Assumption 7), as well as other technical assumptions are stated
and discussed in Appendix A.2.

9In general, this definition is considered after a permutation of variables; for details, refer to Sec. A.4.
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Example 2 (Formal ID task). Suppose the pair of underlying ASCMs hM1,M2i
induces the LSG G

S in Fig. 2 and distributions P = {P (1)
, P

(2)
, P

(3)
, P

(4)}
= {P⇧1(X), P⇧2(X), P⇧2(X;�V3), P

⇧2(X;�V4)} from interventions ⌃ =
{�(1)

,�
(2)

,�
(3)

,�
(4)} = {{}, {},�V3 , do(V2)}. Given intervention targets  =

{I(1), I(2), I(3), I(4)} = {{}⇧1 , {}⇧2 , V
⇧2
3 , V

⇧1,do
2 } and G

S , the task is to determine whether (and
how) {V2, V3} is ID w.r.t. V1, and V1 is ID w.r.t {V2, V3}. The answer will be provided in the next
two sections.

3 Graphical Criterion for Causal Disentanglement

In this section, we study identifiability criteria given general assumptions and input distributions.
More specifically, we connect latent variables V and a representation bV by comparing distributions
in Sec. 3.1. Leveraging this connection (Eq. 11), we introduce in Sec. 3.2 three graphical criteria
(Prop. 3, 4 and 5) to check the identifiability of a target representation.

3.1 Latent variable factorization and invariances

First, we revisit the factorization of distributions induced by non-Markovian models [3, Def. 15].
Specifically, consider PT(V) induced by an ASCM M after a hard intervention on T. Then, given a
topological order < of G, PT(V) can be factorized as follows:

PT(V) =
Y

Vi2V

PT(Vi|PaT+
i ), (2)

where PaT+
i = Pa({V 2 C(Vi) : V  Vi}) \ {Vi} is the extended parents set of Vi in GT.

For example, the factorization of P (V) according to the causal graph shown in Fig. 2 is
P (V1)P (V2 | V1)P (V3 | V2) (3)

with the order V1 < V2 < V3 and T = {}. Unlike the standard factorization in Markovian settings,
the factorization takes the extended parents (PaT+

i ) as the conditioning part, not Pai in GT. The
following example illustrates such differences.
Example 3. Consider a collection of ASCMs, M = hM1, . . . ,Mni induces the LSD shown in
Fig. 4(c). Given order A: V1 < V2 < V3 < V4, P (V) can be factorized as:

P (V) = P (V1)P (V2 | V1)P (V3 | V2, V1)P (V4 | V3) (4)
Notice that the conditioning part of V3 includes {V2, V1}, which are not parents of V3. Choosing
order B: V1 < V3 < V2 < V4, P (V) can be factorized as:

P (V) = P (V1)P (V2 | V1, V3)P (V3)P (V4 | V3) (5)
The conditioning part of V2 and V3 are different from Eq. (4) and (5). Note that if the bidirected
arrow V2 L9999K V3 is replaced with a directed arrow V2 ! V3, the model would be Markovian, and
then the observation distribution would factorize as:

P (V) = P (V1)P (V2 | V1)P (V3 | V2)P (V4 | V3) (6)
which is clearly different from both Eqs. (4) and (5).

Armed with this new factorization, the representation bV in cM and the true underlying variables V in
M can be related by comparing distributions as follows.
Proposition 1 (Distribution Comparison). Consider a collection of ASCMs M = hM1, . . . ,Mni
that induces collection distribution P with interventions ⌃ and LSD G

S . Consider comparing two
distributions P⇧(j)

(X;�(j)), P⇧(k)

(X;�(k)) 2 P with intervention targets I(j) and I(k). Suppose
I(j) and I(k) both contain a hard intervention mechanism on T. If another collection of ASCMs,
cM = hcM1, . . . ,

cMni, matches with distribution P and LSG G
S , then

dX

i

log p(j)T (vi | paT+
i )� log p(k)T (vi | paT+

i ) =
dX

i

log p(j)T (bvi | cpaT+
i )� log p(k)T (bvi | cpaT+

i ),

(7)
where p

(j)
T (·), p(k)T (·) are density functions.
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V1 V3V2

S
1,2

(a)

V1 V3V2

{Si,j}8i,j2[5]

(b)

V1 V3V2 V4

(c)

Figure 4: LSDs in Ex. and Exps. (a) chain, (b) collider and (c) non-markovian graphs.

To illustrate, Prop.1 shows that if M and cM agree the given distributions over observed X and the
LSG, then the connection between unobserved V and bV can be built upon Eq. (7). More specifically,
the left (right) side of Eq. (7) is the difference of P (V) (P (bV)) when the intervention and domain
changes from �

(k) to �(j) and ⇧(k) to ⇧(j). In addition, both P (V) and P (bV) can be factorized
through Eq. (2) since M and cM are compatible with G.

Example 4. (Example 2 continued.) Consider cM that agrees on P and G
S introduced in Example 2.

According to Prop. 1, comparing P
(2) and P

(1) under T = {}, we can write

p
(2)(v1)� p

(1)(v1) + p
(2)(v2 | v1)� p

(1)(v2 | v1) + p
(2)(v3 | v2)� p

(1)(v3 | v2)
= p

(2)(bv1)� p
(1)(bv1) + p

(1)(bv2 | bv1)� p
(1)(bv2 | bv1) + p

(1)(bv3 | bv2)� p
(1)(bv3 | bv2)

(8)

To illustrate, first, p(2)(v) � p
(1)(v) are equal to p

(2)(bv) � p
(1)(bv) since M and cM agree on P .

Second, p(v) and p(bv) can be both factorized with Eq. (3) since M and cM agree on G
S . Finally,

this connection is built with the change of factors p(v1), p(v2 | v1), and p(v3 | v2).

Example 5. (Example 3 continued.) Consider the pair M and cM that induces the diagram in
Fig. 4(c) and agrees on two distributions P (1)

, P
(2) 2 P with intervention targets I(1) = {}⇧1 and

I(2) = {V ⇧1
2 }. According to Prop. 1 and Eq. (4),

p
(2)�(1)(v1) + p

(2)�(1)(v2 | v1) + p
(2)�(1)(v3 | v1, v2) + p

(2)�(1)(v4 | v3)
= p

(2)�(1)(bv1) + p
(2)�(1)(bv2 | bv1) + p

(2)�(1)(bv3 | bv1, bv2) + p
(2)�(1)(bv4 | bv3)

(9)

where p
(2)�(1)(·) denotes p(2)(·) � p

(1)(·). The connection between V and bV is built with factor
p(v1), p(v2 | v1), p(v3 | v1, v2) and p(v4 | v3). With another order and factorization of Eq. (5), we
have

p
(2)�(1)(v1) + p

(2)�(1)(v2 | v1, v3) + p
(2)�(1)(v3) + p

(2)�(1)(v4 | v3)
= p

(2)�(1)(bv1) + p
(2)�(1)(bv2 | bv1, bv3) + p

(2)�(1)(bv3) + p
(2)�(1)(bv4 | bv3)

(10)

The connection V and bV is built with factor p(v1), p(v2 | v1, v3), p(v3), and p(v4 | v3).

However, not all factors necessarily contribute to Eq. (7). For example, in the Markovian setting,
only one factor pT(vi | pai) will possibly change when comparing the observational to a singleton
interventional distribution in the same domain. Other invariant factors will be canceled out in Eq. (7).
The following result generalizes finding invariant factors when comparing distributions from different
domains and interventions in non-Markovian settings.
Proposition 2 (Invariant Factors). Consider two distributions P (j)

, P
(k) 2 P with intervention

targets �(j) and �(k) containing do(T). Construct the changed variable set �V[I(j), I(k), GS ] (for
short �V(j),(k) or �V if index not needed) with target sets I(j), I(k) as follows. Add variable Vl to
�V if,

1. Vl 2 �V if V ⇡l,{bl},tl
l 2 I(j) but V ⇡0

l,{bl},t
0
l

l 62 I(k), and vice versa;

2. Vl 2 �V if (i) S⇧(j),⇧(k)

point to Vl, (ii) V ⇡l,{bl},tl
l 62 I(j), (iii) V ⇡l,{bl},tl

l 62 I(j).

If Vi 2 V\C�(�V), then p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ), which will be denoted as invariant
factors, where C�(�V) are variables in the same C-Component with �V and not before �V in
the topological order for factorization.
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Prop. 2 states that factors pT(vi | paT+
i ) are guaranteed to be invariant if Vi is not in the C�(�V),

which are variables in the same C-Component with changed variable set �V and not before �V
in the order. �V[I(j), I(k), GS ] contains the variables that are intervened differently in I(j), I(k) as
well as the variables pointed by S-node, Sj,k 10.
Example 6. (Ex. 2 and 4 continued.) The changed variable set�V[I(2), I(1), GS ] = {V3} since the
S-node points to V3 in G

S and �V[I(3), I(1), GS ] = {V3} since V3 2 I(3) while V3 62 I(1). Thus,
comparing P

(2) and P
(3) with the baseline P

(1), p(v2 | v1) and p(v1) are invariant factors while
p(v3 | v2) changes.
Example 7. (Ex. 3 and 5 continued.) Consider the diagram in Fig. 4(c) and two distributions
P

(1)
, P

(2) 2 P with intervention targets I(1) = {}⇧1 , and I(2) = {V ⇧1
2 }. The changed variable set

�V(2),(1) = {V2, V3} since V2 2 I(2), V2 62 I(1), and C(V2) = {V2, V3}. Thus, comparing P
(2)

with P
(1) following topological order A (V1 < V2 < V3 < V4) in Ex. 3, factors p(v1), p(v4 | v2, v1)

are invariant, whereas p(v2 | v1), p(v3 | v2, v1) change. Following another topological order
B (V1 < V3 < V1 < V4) in Ex. 3, the invariant factors are p(v1), p(v3), p(v4 | v2, v1) while
p(v2 | v1, v3) changes.

With Prop. 2, Eq. (7) naturally keeps factors only in the C�(�V), i.e.,
X

Vi2Ṽ

log p(j)T (vi | paT+
i )� log p(k)T (vi | paT+

i ) =
X

Vi2Ṽ

log p(j)T (bvi | cpaT+
i )� log p(k)T (bvi | cpaT+

i )

(11)
where Ṽ = C�(�V[I(j), I(k), GS ]). For example, according to Ex. 6, Eq. (8) can be simplified as:

p
(2)(v3 | v2)� p

(1)(v3 | v2) = p
(2)(bv3 | bv2)� p

(1)(bv3 | v2) (12)
Similarly, according to Ex. 5, Eq. (9) and (10) are simplified as:

p
(2)�(1)(v2 | v1) + p

(2)�(1)(v3 | v1, v2) = p
(2)�(1)(bv2 | v1) + p

(2)�(1)(bv3 | bv1, bv2) (13)

p
(2)�(1)(v2 | v1, v3) = p

(2)�(1)(bv3 | bv1, bv2) (14)

These equality constraints follow from the non-Markovian factorization hint that the learned repre-
sentation bV (r.h.s of Eq. (11)) is a function of variables that appear on the l.h.s. The next definition
formalizes the possible change variables between r.h.s and l.h.s of Eq. 11.
Definition 3.1 (�Q Set). Given two distributions P (j)

, P
(k) with interventions targets �(j) and �(k)

containing do(T), the �Q[I(j), I(k),T, G
S ] set (for short: �Q(j),(k), or �Q if index not needed)

of the target sets I(j), I(k) is the remaining variables after comparison (i.e. Eq. 11),

�Q[I(j), I(k),T, G
S ] = Ṽ [PaT+(Ṽ), (15)

where Ṽ = C�(�V[I(j), I(k), GS ]).

To illustrate, the �Q set encompasses all variables in l.h.s of Eq. (11), including Ṽ and its extended
parents. These variables come from factors that possibly change and are kept in Eq. (11). The set
V\�Q is called canceled variables since the invariant factors are canceled from the comparison.
Continuing Example 6, �Q = {V3, V2} since the changed factors is p(v3 | v2) and invariant factors
are canceled out. Continuing Ex. 7, �Q = {V1, V2, V3} given either topological order 11.

The next examples illustrate how this factorization and �Q-set plays a role in disentangling latent
variable representations.
Example 8 (Observational data in two homogenous domains). Consider the LSD over two domains
⇧1,⇧2 shown in Fig. 4(c), where there is no S-node edge and two distributions P

(1)
, P

(2) 2 P
with intervention targets I(1) = {}⇧1 and I(2) = {}⇧2 . The domains are completely invari-
ant with respect to each other. The changed variable set �V(2),(1) = {} since �V = {}, and
C({}) = {}. Thus, comparing P

(2) with P
(1) (following topological order A in Ex. 3), all factors

p(v1), p(v2|v1), p(v3|v2, v1), p(v4|v3) are invariant across domains.
10Notice that the same intervention mechanism will dominate the domain changes, which means when the

intervened mechanism of Vl is the same between I(j) and I(k), the discrepancy of Vl due to the change of
domain between ⇧(j) and ⇧(k) will be canceled. See Appendix A.3 for an example.

11The �Q sets resulting from different topological order are guaranteed to be the same, as elaborated in D.3.
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Observational data in two homogenous domains is similar to the setting where only observational
data is given. As acknowledged in nonlinear ICA cases, ID is in general not feasible [9].
Example 9 (Observational data in two completely heterogenous domains). From Fig. 4(c), consider a
modified LSD, GS over two domains ⇧1,⇧2 with an S-node pointing to each variable V1, V2, V3, V4,
and two distributions P (1)

, P
(2) 2 P with intervention targets I(1) = {}⇧1 and I(2) = {}⇧2 . The

changed variable set �V[I(2), I(1), GS ] = {V1, V2, V3, V4} since the S-node points to all variables
in G

S . Thus �Q = {V1, V2, V3, V4}. Comparing P
(2) with P

(1) (order A in Ex. 3), all factors
p(v1), p(v2|v1), p(v3|v2, v1), p(v4|v3) change, which means nothing is invariant across domains.

Our approach to disentangled representation learning leverages comparisons of distributions. The two
example above illustrate that nothing is disentanglable in a fully non-parametric setting when all latent
variables are invariant factors (no discrepancies exist), or when all latent variables change between
two distributions (no commonalities exist). There is a distinct trade-off in leveraging distributions
with both invariant factors and changed variable sets. We will explore this interplay between invariant
and changed factors across distributions to achieve identifiability and disentangled representation in
the next section.

3.2 Graphical Criteria for Disentanglement

First, to motivate the disentanglement results, we derive a novel disentanglement result in a simple
setting with three latent variables.
Example 10 (Deriving disentanglement with three distributions). Consider the identification task in
Ex. 2, where G

S is shown in Fig. 2 and the distributions P = {P (1)
, P

(2)
, P

(3)} with intervention
targets I(1) = {}⇧1 , I(2) = {}⇧2 , I(3) = {V3}⇧2 are available. We demonstrate that these distribu-
tions allow the disentanglement of {V2, V3} with respect to V1, which has not been acknowledged in
the literature.

First, let us take the difference between the three distributions, treating P
(1) as a "baseline". The

connection between V and bV is built in the form of Eq. (12). Next, we can take the first order
partial derivative w.r.t. V3. The l.h.s will go to 0, as there is no dependency on V3. The r.h.s contains
dependencies, as each representation bVi (i = 2, 3) may be a function of Vj (j = 1, 2, 3). After
applying the multivariate chain-rule, namely:

0 =
@ log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv2
@bv2
@v1

+
@ log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv3
@bv3
@v1

0 =
@ log p(3)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv2
@bv2
@v1

+
@ log p(3)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv3
@bv3
@v1

(16)

We note that Eq. (16) is a linear of equations with unknown @ bv3
v1

and @ bv2
v1

. According to Assumption
7, the coefficients matrix A is full rank, where

A =

 
@ log p(2)(bv3|bv2)�log p(1)(bv3|bv2)

@bv2
@ log p(2)(bv3|bv2)�log p(1)(bv3|bv2)

@bv3
@ log p(3)(bv3|bv2)�log p(1)(bv3|bv2)

@bv2
@ log p(3)(bv3|bv2)�log p(1)(bv3|bv2)

@bv3

!
(17)

Then we have
@bv2
@v1

= 0,
@bv3
@v1

= 0 (18)

Then cV2 = ⌧2(V2, V3) and cV3 = ⌧3(V2, V3) meaning {V2, V3} is ID w.r.t V1.

This example demonstrates some of the principles behind disentanglement, which we will now
formalize.

Leveraging the comparisons among distributions in P (Eq. 11), we next develop three criterion for
disentanglement within the set V. First, we can disentangle canceled variables from�Q set since the
difference of density over representations bV in the �Q set (r.h.s of Eq. (11)) is irrelevant to canceled
variables (l.h.s of Eq. (11)).
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Proposition 3 (ID the �Q set w.r.t Canceled Variables). Consider variables Vtar =
{V tar

1 , V
tar
2 , . . . , V

tar
d0 } ✓ V. if there exists a subset of P , PT = {P (a0), P (a1), . . . , P (aL)} ✓ P

with intervention target sets  T = {I(a0), I(a1), . . . , I(aL)} such that

[1] (All distributions contain hard intervention on T) 8 l 2 [L], T = do[I(a0)] ✓ do[I(al)] 12.

[2] (The union of all �Q sets is Vtar)
S

l2[L]�Q[I(al), I(a0),T, G
S ] = Vtar.

[3] (Each V
tar
i changes once) there exists {a01, . . . , a0|Vtar|} ✓ {a1, . . . , aL} such that for all

V
tar
i 2 Vtar

, V
tar
i 2 �Q[I(a

0
i), I(a0),T, G

S ].

then Vtar is ID w.r.t V\Vtar.

Prop. 3 disentangles target variables Vtar constructed by�Q sets from canceled variables according
to Eq. (11). To illustrate, it considers to find a collection of L distribution {P (a1), . . . , P (aL)} to
compare with the baseline P (a0) such that (1) the hard intervention variables set of {I(a1), . . . , I(aL)}
contains the hard intervention variables set of the baseline I(a0), (2) the union of �Q induced by
comparison is equivalent to Vtar, and (3) each V

tar
i can be covered by different �Qs. Then, if such

a collection exists, then Vtar can be ID wrt V\Vtar.
Example 11. (Example 6 continued.) Consider Vtar = {V2, V3}, Ven = V\{V2, V3} = {V1}.
When comparing {P (2)

, P
(3)} with the baseline P

(1), T = do[I(1)] = {}, and then

�Q[I(2), I(1),T, G
S ] = �Q[I(3), I(1),T, G

S ] = {V2, V3} (19)

{P (2)
, P

(3)} satisfies condition [1] in Prop. 3, since the hard intervention variable set is {}. They
also satisfies condition [2], since�Q(2),(1) = �Q(3),(1) = Vtar. Condition [3] are satisfied since
V2 2 �Q(2),(1) and V3 2 �Q(3),(1) Thus, Vtar is ID w.r.t Ven by Prop. 3. This demonstrates that a
variable V2 can be disentangled from another variable that is in the C-component (V1). See Appendix
Ex. 22 for a detailed derivation.
Example 12. (Ex. 7 continued.) Suppose P = {P (1)

, P
(2)

, P
(3)

, P
(4)} with intervention targets

I(1) = {}⇧1 , I(2) = {V2}⇧1 , I(3) = {V3}⇧1 , I(4) = {V1}⇧1 (20)

Consider Vtar = {V1, V2, V3} and Ven = V\{V1, V2, V3} = {V4}. Comparing {I(2), I(3), I(4)}
with the baseline I(1), the hard intervention variables are T = do[I(1)] = {}. Then we have�Q sets:

�Q(2),(1) = {V1, V2, V3},�Q(3),(1) = {V1, V2, V3},�Q(4),(1) = {V1}. (21)

Condition [1] and [2] in Prop. 3 are satisfied straightforwardly. Condition [3] are also satisfied since
V1 2 �Q(4),(1)

, V2 2 �Q(2),(1) and V3 2 �Q(3),(1) Thus, Vtar is ID w.r.t Ven by Prop. 3. See
App. Ex. 23 for a detailed derivation.

The second result disentangles variables within �Q sets leveraging conditional independence among
variables within the �Q set.
Proposition 4 (ID of variables within�Q sets). Consider the variables Vtar ✓ V. For any pair
of Vi, Vj 2 Vtar such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V

tar), if there exists PT that satisfies
conditions [1-2] in Prop. 3 and the following condition [4].

[4] (Enough changes occur across distributions) there exists {a01, . . . , a02d0+|E|} 2 {a1, . . . , aL}
such that for all V tar

i 2 Vtar
, V

tar
i 2 �Q(a0

i),(a0)], V tar
i 2 �Q(a0

d0+i),(a0) and for all
✏j 2 E , ✏j ✓ �Q(a0

2d0+j),(a0), where d
0 = |Vtar| and

E ={✏j = {Vk, Vr} | i) 9al, {Vk, Vr} 2 �Q(al),(a0);

Vk is connected to Vr conditioning Vtar\{Vk, Vr} in GT(V
tar)}

(22)

, then Vi is ID w.r.t Vj .

12Recall we use the notation do[I] to denote that all variables that perfectly interventions on in I.
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Prop. 4 disentangles target variables Vi and Vj both in �Q sets. To illustrate, it considers a set of
distributions that satisfies conditions [1] and [2] as Prop. 3 and a new condition [4]. Condition (4)
states that each V

tar
i can be covered twice by first 2d0 different �Qs, and {Vk, Vr} 2 E can be

covered by other different �Qs.
Example 13. Suppose LSD given G

S is the graph shown in (Fig. 2). Suppose the 9 given intervention
targets are

 ={{}⇧1 , {V ⇧1
1 }⇥ 4, {V ⇧1

2 , V
⇧1
3 }⇥ 4} (23)

, which implies that all interventions are applied in the same domain ⇧1. More specifically, the
first intervention �(1) is an idle intervention (P (1) is an observational distribution). �(2) to �(5)

is an intervention on V1. �(6) to �(9) is an intervention on V2 and V3. Consider T = {}. Let
Vtar = {V1, V2, V3}. Then V1 ?? V3 | {V2} in G. Choose I(1) = {}⇧1 as the baseline. Based on
Def. 3.1,

�Q(2),(1) = · · · = �Q(5),(1) = {V1, V2}
�Q(6),(1) = · · · = �Q(9),(1) = {V1, V2, V3},

(24)

and we have

E = {{V1, V2}, {V2, V3}} (25)

Now we check if condition [4] is satisfied. From

V1 2 �Q(2),(1)
, V1 2 �Q(3),(1)

,

V2 2 �Q(4),(1)
, V2 2 �Q(6),(1)

,

V3 2 �Q(7),(1)
, V3 2 �Q(8),(1)

{V1, V2} ✓ �Q(5),(1)

{V2, V3} ✓ �Q(9),(1)

(26)

, we know the condition (4) is satisfied. Then V1 is ID w.r.t V3 and V3 is ID w.r.t V1 according to
Prop 4. Using the previous Prop. 3, we can only get V1 is ID w.r.t V3 while now we also have V3 is
ID w.r.t V1. In contrast, if the 9 given intervention targets are

 ={{}⇧1 , {V ⇧1
1 }⇥ 7, {V ⇧1

2 , V
⇧1
3 }⇥ 2}, (27)

then we cannot use Prop 4 since condition [4] will not be satisfied. The reason is that we cannot find
three �Q to cover V3 two times and cover {V2, V3} at the same time.

We establish the following corollary that can be more commonly used according to Prop. 3.
Corollary 1 (ID of variables within�Q sets). Consider the variables Vtar ✓ V, PT that satisfies
conditions (1) in Prop. 3 and �Q(al),(a0) = Vtar, for l 2 [L]. For any pair of Vi, Vj 2 Vtar

such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V
tar), Vi is ID w.r.t Vj if L � 2|Vtar| + � 6?, where � 6?

is the number of pair Vk, Vr 2 Vtar such that Vk and Vr are connected given Vtar\{Vk, Vr} in
GT(V

tar).

To illustrate, if one can find a set of distributions that satisfies conditions (1) as Prop. 3 and let all
�Q are equivalent to Vtar and Vi, Vj 2 Vtar are conditionally independent given all other variables
in Vtar, then Vi can be disentangled from Vj . Here, the condition (2) and (4) in Prop. 4 reduce to
this equivalence condition.
Example 14. Suppose LSD given G

S is a collider graph (Fig. 4(b)). Suppose the given intervention
targets are = {{}⇧1 , {}⇧2 , {}⇧3 , {}⇧4 , {}⇧5}, which means that observational distributions are
available in each domain. Consider T = {}. Let Vtar = {V1, V3}. Then V1 ?? V3 in G(V1, V3).
Based on Def. 3.1,�Q[Ij , I1,T, G

S ] = {V1, V3} for j = 2, 3, 4, 5. Then the number of distributions
used for comparing (i.e., four) is not smaller than the required (2 ⇥ 2 + 0), which means V1 is ID
w.r.t. V3 and V3 is ID w.r.t. V1 by Corol. 4. See App. Ex. 25 for a derivation.

With these existing disentanglements from Props. 3 and 4, the following Proposition considers an
inverse direction, which identifies canceled variables w.r.t. �Q sets 13.

13Recall that ID is one-way. ID of Vi wrt Vj does not imply Vj is ID wrt Vi.
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Algorithm 1 CRID: Algorithm for determining causal representation identifiability - GS is the
LSD; is the intervention target sets; GV,bV is the output bipartite graph (i.e. CDM).

Input: GV, and intervention target sets .
Output: CDM GV,bV

1: GV,bV  FullyConnectedBipartiteGraph(V, bV) . Initialize GV,bV with Alg. F.2
2: while GV,bV is updated in the last epoch do
3: HARD = {T1,T2, . . . ,Ts | do(Ti) 2  . Get hard intervention variables sets.
4: for all T 2 DO do
5:  T   . Collect intervention targets that contain hard intervention variables T
6: for all I 2  T such that do[I] = T do . Iterate intervention targets as the baseline
7: Q = {Q1, . . . ,Q| T\I|}, where Qk  �Q[J(k)

, I,T, G
S ] . Construct �Q sets.z

8: for all Q such that Q =
S

Ql2Q Ql ⇢ V do . Iterate the union of �Q factorsx
9: GV,bV  Dis�QFromCancel(Q, GV,bV, GT, T, I,Q) . Alg. F.3 and Prop. 3

10: GV,bV  DisWithin�Q(Q, GV,bV, GT, T, I,Q) . Alg. F.6 and Prop. 4
11: for all T 2 HARD do
12: GV,bV  DisCancelFrom�Q(GV,bV, GT) . Alg. F.8 and Prop. 5
13: return GV,bV

V1

V2

V3

bV1

bV2

bV3

(a) Initialization.

V1

V2

V3

bV1

bV2

bV3

(b) 1st epoch, Step 11.

V1

V2

V3

bV1

bV2

bV3

(c) 1st epoch, Step 14.

V1

V2

V3

bV1

bV2

bV3

(d) 2nd epoch, Step 11.

Figure 5: Process of removing edges from CDM GV,bV using Alg. 1 in Ex. 16. (d) is the final output.

Proposition 5 (ID of canceled variables w.r.t. �Q sets). Suppose  contains do(T). Given
V\V tar is ID w.r.t. a single variable V tar, V tar is ID w.r.t. V\V tar if V tar ?? V\V tar in GT.

To illustrate, Prop. 5 states: if V\{V tar} is already disentangled from V
tar, then V

tar can ID wrt
V\{V tar} if a hard intervention on T exists to separate V

tar and V\{V tar} in GT. Prop. 5 does
not compare distributions but relies on existing disentanglement and independence. See the following
example.
Example 15. (Example 11 (continued).) Consider Vtar = {V1}. From Ex. 6, we have {V2, V3} is
ID w.r.t. V1 by comparing {P (2)

, P
(3)} with P

(1) according to Prop. 3. Now we will leverage P
(4)

with intervention target I(4) = {V ⇧1,do
2 }. Consider T = {V2} (from I(4)). Since V1 ?? {V2, V3} in

GV2
, then V1 is ID w.r.t {V2, V3} according to Prop. 5.

We illustrate and provide additional comparisons with existing work in Appendix Section E.

4 Algorithmic Disentanglement of Causal Representations

In this section, we develop an algorithmic procedure for determining whether any Vtar and Ven are
disentangleable given the LSD G

S and interventions sets .

The whole algorithm CausalRepresentationID (CRID, for short) is described in Alg. 1. We start
by introducing a bipartite graph GV,bV, called Causal Disentanglement Map (CDM) (which was
informally shown in Fig 2 (right)). In words, the absence of the edge Vi 6! bVj implies Vj is ID w.r.t
Vi. If each bVi is only pointed by Vi, then we have full disentanglement of V. If bVi is pointed by
V ⇢ bVi, then we have partial disentanglement of Vi.

CRID proceeds by first constructing the fully connected CDM in Step 1. In each iteration, the hard
intervention set T and the baseline intervention target set I (Steps 4 and 6) are enumerated. For each
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T and baseline, all �Q sets are constructed based on Def. 3.1 and put into a collection Q (Steps 7).
After the union of�Q sets (denoted as Q) is chosen (Step 8) iteratively, Props. 3 and 4 are leveraged
in two procedures (Step 9 and 10) to check the identification of Q w.r.t. V\Q and the identification
within Q. The disentanglements in CDM at the current stage are leveraged to reduce the required
number of distributions (see details in Alg. F.3 and F.6). At the end of the iteration, Prop. 5 is used
for identifying V\Q from Q leveraging current disentanglement in CDM (Step 11-12). The CRID
algorithm iterates through the application of each of Props. 3, 4, and 5

Example 16. (Ex. 2 continued.) Consider the selection diagram (Fig. 2) and the intervention target
sets in Ex. 2 The hard intervention variable sets are the empty set {} and {V3}. First, T is chosen as
{} and then T =  . Choosing the baseline I = I(1), the �Q collection: Q = {Q1,Q2,Q3} =
{{V2, V3}, {V2, V3}, {V1, V2}}. We consider the Q as {V2, V3} and {V1, V2}. For Q = {V2, V3},
leveraging Step 9 (Prop. 3), the edges from V1 to {bV2,

bV3} are removed (See Ex. 11 for details)
and Step 10 (Prop. 4) does not remove further edges. However, for Q = {V1, V2}, no edge can be
removed, since it at least needs two comparisons for claiming disentanglement.

Choosing {}⇧2 or V ⇧2
3 or V ⇧1,do

2 as the baseline, no new Q can be constructed. Thus no further edges
are removed. When T is chosen as {V2}, the comparison does not work since only one distribution is
available. At the end of this iter, with the fact that {V2, V3} is ID wrt V1 and V1 ?? {V2, V3} in GV2

,
Step 12 (Prop. 5) removes edges from V2 to bV1 and V3 to bV1. See Ex. 15 for details.

In the second iteration, the algorithm repeats the choice of T and the baseline. At this iteration, for
Q = {V1, V2}, the edge from V3 to bV2 is removed since V3 to bV1 has already been removed in CDM
and only 1 comparison is needed now. At the end of this epoch no further can be removed by Alg. F.8.
In the third epoch, GV,bV is not updated and the process of CDM returned is shown in Fig. 5.

After obtaining GV,bV from CRID, the identifiability of target variables Vtar wrt Ven can be inferred
through the absence of edges in GV,bV. The following theorem indicates the soundness of CRID.

Theorem 1 (Soundness of CRID). Consider a LSD G
S and intervention targets . Consider the

target variables Vtar and Ven ✓ V\Vtar. If no edges from Vtar points to bVen in the output causal
disentanglement map (CDM) from CRID, GV,bV , then Vtar is ID w.r.t Ven.

5 Experiments

We corroborate the theoretical findings through simulations. We consider LSDs shown in Fig. 4 with
different collection of distributions P = {P (k)(X;�(k))}Kk=1 and the results are presented in Fig. 6.
For the evaluation, we follow a standard evaluation protocol in prior work [18], where we take the
latent representations bV and compute their mean correlation coefficient (MCC) wrt the latent V. We
compare MCC with what is expected from CRID.

5.1 Synthetic data-generating process

We generate data according to latent causal diagrams shown in Fig. 4. Specifically, we analyze the
chain graph V1 ! V2 ! V3, and collider graph V1 ! V2  V3 with different input distributions.

Each graph is constructed according to an ASCM, where the latent variables are related linearly:

Vi :=
X

j2Pai

↵i,jVj + ✏i

where linear parameters are drawn from a uniform distribution ↵i,j ⇠ U(�a, a), and the noise is
distributed according to the standard normal distribution ✏i ⇠ N (0, 1).

Generating Multiple Domains To generate a new domain, where S
i,j ! Vi indicates a change in

mechanism for Vi due to the change in ASCMs between M
i and M

j , we start from the first ASCM
generated, and then we modify the distribution of the noise variable with a mean-shift.
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Generating Interventions Within Each Domain To generate interventional datasets within each
domain ⇧i 2 ⇧, we modify the Mi 2M by additionally modifying the SCM, and shifting its mean
for a variable. Therefore for distribution k in ⇧i, with hard intervention I, we will have:

Vk := ✏
0
k, with ✏0k ⇠ N (µk,�k), 8Vk 2 I (28)

such that µk is not within +/ � 1 of any other distribution for variable Vk 2 V. This ensures the
Assumption of Generalized Distribution Change (Assump. 7). With a soft intervention J that is not
hard:

Vk :=
X

j2Pak

↵i,jVk + ✏
0
k, with ✏0k ⇠ N (µk,�k), 8Vk 2 J (29)

For each distribution over V 2 Rd, we generate 200,000 data points resulting in d⇥ 200, 000 data
points in total for N total distributions.

We modify the mean and the variance to ensure that the Assumption of distribution change is met
(Assump. 7).

Mixing function In order to generate the low-level data X, we will apply a mixing function fX

to the generated latent variables V. Following [21, 49], to generate an invertible mixing function,
we will use a multilayer perceptron fX = � �AM � ... � �A1, where AM 2 Rd⇥d for m 2 [1,M ]
denotes invertible linear matrices and � is an element-wise invertible nonlinear function. In our case,
we will use the tanh functio as done in [68]:

�(x) = tanh(x) + 0.1x (30)

In addition, each sampled matrix Ai is re-drawn if | detAi| < 0.1. This ensures that the linear maps
are not ill-conditioned and close to being singular. Once the mixing function is drawn for a given
simulation, it is fixed across all domains and interventions according to Assump. 4, and then P is
drawn according to all ASCMs instantiated.

5.2 Model

We train invertible MLPs with normalizing flows. The parameters of the causal mechanisms are
learned while the causal graph is assumed to be known. We leverage the implementation in [21], and
extend it for our experiments.

The encoder is trained with the following objective that estimates the inverse function f
�1, and the la-

tent densities P (V) reproducing the ground-truth up to certain mixture ambiguities (c.f. Lemmas 3, 7).
The encoder parameters is estimated by maximizing the likelihood..

Normalizing flows We use a normalizing flows architecture [69] to learn an encoder g✓ : Rd ! Rd.
Therefore, the observations X will be the result of an invertible and differentiable transformation:

X = g✓(V) (31)

Specifically, g✓ will comprise of Neural Spline Flows [70] with a 3-layer feedforward neural network
with hidden dimension 128 and a permutation in each flow layer.

Base distributions Normalizing flows require a base distribution. We leverage one baseline
distribution per sampled dataset, (p̂k✓)k2[d] over the base noise variables V. The conditional density
of any variable is given by:

p̂
k
✓(vi|Pai) = N

✓ X

j2Pai

↵̂i,jvj , �̂i

◆
(32)

where the parameters are replaced by their corresponding counterparts if there is a change-in-domain,
or an intervention applied. When a hard intervention is applied, we have that:

p̂
k
✓(vi) = N (µ̂i, �̂i) (33)
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(a) (b) (c) (d)

CRID Output

Disentangled

Entangled

Figure 6: Correlation of learned latent representations with true latent variables from Fig. 4 are
analyzed with: the chain graph (a) with ⌃ = {�{},�3,�3} chain graph, (b) an extra hard intervention
⌃ = {�{},�3,�3, do(V2)}, the collider graph (c) with ⌃ = {�{},�1,3,�1,3,�1,3,�1,3}, and (d) the
non-Markovian graph with ⌃ = {do(V3), do(V3)}.

5.3 Training details

We use the ADAM optimizer [71].We start with a learning rate of 1e-4. We train the model for 200
epochs with a batch size of 4096.

The learning objective is expressed as:

✓
⇤ = argmax

✓

NX

k=0

� 1

nk

nkX

n=1

log pk✓(X
(k))
�

(34)

where nk represents the size of the dataset P k, which is 200,000 in our simulations. We perform
10 training runs over different seeds for each experiment, and show the distributions of the mean-
correlation coefficient (MCC). Using the output of Alg. 1, we compare variables that are expected to
be entangled and disentangled. We use NVIDIA H100 GPUs to train the neural network models.

5.4 Evaluation metrics

The output of our trained model is V̂ = g✓(X), which is a d-dimensional representation. We will
compare this representation with our ground-truth latent variable distributions V by computing the
mean correlation coefficients (MCC) between the learned and ground-truth latents. We expect there
to be an overall lower MCC for variables that are predicted to be disentangleable by Alg. 1 relative to
variables that are not deemed disentangleable.

Note that our algorithm is not shown to be complete, so there may be variables that are disentangled
at the end of our training process that are not captured by the output of Alg. 1. Characterizing when
this occurs and coming up with a complete theoretical characterization of disentanglement is a line
for future work.

For the evaluation, we follow a standard evaluation protocol taken in prior work [18]. We expect low
MCC values when predicting variables that are disentangled, and higher MCC values when predicting
variables that are still entangled.

5.5 Results

Chain Graph Fig. 4(a). Fig. 6(a) shows ID of V3 wrt {V1} using input distributions P with inter-
ventions⌃ = {�{},�

{1}
3 ,�

{2}
3 } because MCC(bV3, V1) is relatively low compared to MCC(bV3, V3),

which is consistent with CRID. The ID results of [21] states V3 would still be entangled with V1

because V1 2 Anc(V3). Fig. 6(b) shows ID of V1 wrt {V2, V3} by adding an extra hard intervention
on V2. Interestingly, we do not even have to intervene on V1 to obtain full disentanglement.

Collider Graph Fig. 4(b). Fig. 6(c) shows V1 and V3 are ID wrt V2 and each other because
MCC(bV3, V3) > MCC(bV3, Vi) and MCC(bV2, V2) > MCC(bV2, Vi), which is consistent with
CRID. There are distributions from four domains that have a change-in-mechanism on {V1, V3}
(represented by the S-node). According to [22], since V1 and V3 are adjacent in the Markov Network,
V1 and V3 are not disentangleable.

16



Non-Markovian Graph Fig. 4(c). Fig. 6(d) shows V3 is ID wrt {V1, V2, V4} with interventions⌃ =
{do{1}(V3), do{2}(V3)}, which is consistent with CRID. No prior results achieve disentanglement
with confounding among V.

6 Conclusions

This work introduces theory and a practical ID algorithm for determining which latent variables are
disentangleable from a given set of assumptions in the form of a LSD, and input distributions from
heterogenous domains. This brings us one step closer to building robust AI that can causally reason
over high-level concepts when only given low-level data, such as images, video, or text.
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A Background and Assumptions

A.1 Notations

Symbol Description
[d] {1, 2, . . . , d}
G Latent Causal Graph (LCG) over V induced by an M
M An ASCM (Def. 2.1) describes the data generation process of d latent

variables V 2 Rd and an observed high-dimensional mixture X 2 Rm.

G Latent Causal Diagram (LCG) over V induced by an M
Pa(V),PaV The union of parents of V and V itself

C(V) C-Component of V (Def.6.1).

M A set of N ASCMs hM1, . . . ,MN i (shared mixing function fX)
relative to domains⇧ = h⇧1, . . . ,⇧N i

G
S Latent Selection Diagram (LSG, Def 2.2) induced by M

⌃ = {�(k)}Kk=1 A set of K >= N interventions applied to M. Each intervention �(k)

can be idle, hard, or other soft interventions that do not alter the
structure of G

⇧⌃ = {⇧(k)}Kk=1 The corresponding domains of interventions ⌃. �(k) is applied in ⇧(k)

 = {I(k)}Kk=1 The collection of intervened target sets of the intervention collection ⌃.

I(k) = {V ⇧(k),{b},t
i , . . . } The intervention target set of �(k)

{b} The mechanism of intervention. Default as interventions have different
mechanisms if b is ignored. Also, the mechanism od different variables
are different. The mechanism of V {1}

1 is not equal to V
{1}
2 .

t Whether an intervention is hard or not. t = do means it is hard. Default
as not hard if t is ignored.

do[I(k)] Variables that are perfectly intervened on in �(k).

 T The collection of intervention target sets that contain a hard intervention
on T.

P = {P (k)}Kk=1 Set of distributions induced by M resulting from collection of
interventions ⌃. P (k) = P

⇧(k)

(X;�(k))

PaT+(V),Pa
T+
V Extended parents from factorization Eq. (2).

�V[I(j), I(k), GS ] Changed variable sets constructed in Proposition 2. For short,�V or
�V(j),(k) when index is needed.

Ṽ The C-Component of �V[I(j), I(k), GS ]. The factor P (vi | paT) for
Vi 2 V\Ṽ remains invariant in Eq.( 7).

�Q[I(j), I(k),T, G
S ] �Q set defined in Def. 3.1. Variables in �Q set remains from Eq.( 7)

to Eq.( 11). For short, �Q or �Q(j),(k) when index is needed.

Canceled variables The complement of �Q, which is V\�Q.

L Number of distributions used to compare in Proposition 3 and 4.

Figure S1: Table of Notations
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A.2 Discussion on Assumptions

In this paper, we make a few key assumptions about interventions and the differences in domains.
We leverage many similar assumptions to the setting proposed in the literature related to causal
representation learning, and handling of multiple domains and interventions [21, 22, 30, 49]. We
discuss those assumptions and their implications here.

Assumptions for ASCMs Here we discuss more about the invertibility assumption for the mixing
function fX in an ASCM.
Assumption 1 (The invertibility of mixing function). Assume that the mixing function fX is invertible.

The mapping from generative factors V to high dimensional mixture X is a one-to-one mapping.
Consider images. In one direction, V constructs the image through a mixing tool fX (such as a
camera lens). In the reverse direction, these generative factors V can be uniquely labeled through
f
�1
X . We take images example in Sec. D.1 as an example. The generative factors Gender,Age and
Haircolor are directly expressed through pixels in images. Given an image, the values of these
generative factors are uniquely determined. This assumption is commonly used in non-linear ICA
and representation learning literature [9, 10, 17, 58].
Assumption 2 (Unobserved confounders are not part of the high-dimensional mixing function).
Assume that for all unobserved confounders U in the ASCM M , fX is not a function of U. That is
the unobserved confounders do not show up in the function signature of the mixing function gX .

This assumption is a technical one, which assumes the unobserved confounders in the LCG (rep-
resented as bidirected edges), do not directly influence the high-dimensional mixture X, but only
through the latent causal variables V. An example of when this can occur in the real-wordl is when
modeling high-dimensional T1 MRI scans. Let the LCG comprise of Drug Treatment! Outcome,
but they are confounded by socioeconomic status (Drug Treatment$ Outcome). The drug treatment
and outcome are assumed to be visually discernable on the MRI. However, the socioeconomic status
does not directly impact how the MRI appears, except through how it impacts the drug treatment
efficacy or outcome.

Assumptions for Domain Changes We discuss assumptions related to domain changes here. The
next assumption simplifies the effect of S-nodes when considering the selection diagram.
Assumption 3 (Shared causal structure). Assume that each environment’s ASCM shares the same
latent causal graph. That is, the S-nodes do not change the underlying structure of the causal diagram
among the latent variables.

This means that the S-nodes will not represent structural changes such as when Vi has a different
parent set across domains 14.
Assumption 4 (Mixing function is shared across all domains). Assume that fX is shared for all
ASCMs Mi 2 M. That is, there is no S-node that points to X such that the mixing function is
different across any two domains ⇧i 6= ⇧j 2 ⇧.

This assumption characterizes the generative model that we consider. Sharing of the mixing function
is needed for the multi-domain setting because if everything may change across environments, the
domains can only be analysed in isolation, and thus unable to leverage the changes (and similarities)
across domains.

Assumptions for Interventions We discuss assumptions related to interventions here.
Assumption 5 (Soft interventions without altering the causal structure). Assume that interventions
do not alter the causal diagram. That is for each intervention set in the tuple of interventions I 2  ,
a soft intervention that is not hard does not remove, or add any edges to the graph.

14The assumption that there are no structural changes between domains can be relaxed and is considered in
the context of inference, as discussed in [31]. This is an interesting topic for future explorations, and we do not
consider this avenue here.
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This assumption precludes any soft interventions that modify the graphical structure of the causal
diagram. This work does allow both hard (can also be called perfect) interventions that cut all
incoming parent edges, and soft interventions that preserve all parent edges. However, more general
interventions may arbitrarily change the parent set for any given node [57]. We do not consider
such interventions, and leave this general case for future work. Note Assumption 5 does not mean
that interventions cannot occur with the same mechanism across domains. For example, consider
two hospitals ⇧1 and ⇧2. Treating epilepsy in each of these hospitals can have outcomes differ
vastly due to the differences in domains [36, 37, 39]. This is represented graphically in G

S with
S
1,2 ! outcome. However, if a neurologist that controls every aspect of his treatment procedure

treats patients in both hospitals herself for the purposes of an experiment, then the outcomes will
not differ in distribution. This is represented graphically as S1,2 6! outcome with the S-node being
removed from "outcome" variable. Thus if a pair of interventions occurring in different domains are
deemed to have the same mechanism, then the S-node (if one is pointing to the intervened variable) is
removed when comparing these two distributions.

Another assumption we make is that all interventions have known-target.

Assumption 6 (Known-target assumption). Assume for any I(k) 2  , all interventions occur with
known-target.

That is, for each interventional distribution we have, we know the interventions that occurred and at
which node(s) they occurred. This assumption allows us to reduce the permutation indeterminacy
that would arise if we did not know the intervention targets. In this work, we also are not concerned
with permutation indeterminacy for variables we do not necessarily intervene on because we will
mostly be concerned with disentanglement wrt the intervened variables (see Appendix Section A.4).
It would be interesting for future work to consider unknown intervention targets.

Assumptions for Distributions In Sec. 2, we discuss that each distribution resulting from an
intervention is sufficiently distinct from another distribution Assumption 7. Here we formally define
and illustrate what is "change sufficiently".

Assumption 7 (Changing Sufficiently). Consider a collection of ASCMs M and a set of distribution
P induced by M from a collection of interventions ⌃. Let the LSG induced by M be G

S . Let
PT = {P (a0), P (a1), . . . , P (aL)} ✓ P be any collection of distributions such that T = do[I(a0)] ✓
do[I(al)] for l 2 [L], meaning for the baseline distribution all hard interventions must be exactly
on T, and all other distributions must at least contain T in their hard interventions. Let Q =S

l2[L]�Q[I(al), I(0),T, G
S ] (Def. 3.1). It is assumed:

1. The probability density function of V is smooth and positive, i.e. p(al)
T (v) is smooth and

p
(al)
T (v) > 0 almost everywhere.

2. First-order discrepancy. If there exists {a01, . . . , a0|Q|} ✓ {a1, . . . , aL} such that for all

Vq 2 Q, Vq 2 �Q[I(a
0
q), I(a0),T, G

S ], then {!1(v, a1),!1(v, a2), . . . ,!1(v, aL)} are
linearly independent, where

!1(v, al) =

✓
� (

@ log p(al)
T (v)� log p(a0)

T (v)

@vq
)Vq2Q

◆
(35)

3. Second-order discrepancy. Let a set E consist of pairs of (Vp, Vq) such that (Vp, Vq) appears
at least in one �Q and Vp is connected with Vq conditioning on V\{Vp, Vq} in GT (Q).
Namely,

E = {✏j = {Vp, Vq} |i) 9al, {Vp, Vq} 2 �Q(al),(a0);

ii) Vp 6?? Vq | Vtar\{Vp, Vq} in GT(V
tar)}

(36)

If there exists {a01, . . . , a02|Q|+|E|} 2 {a1, . . . , aL} such that for all V tar
i 2 Vtar

, V
tar
i 2

�Q(a0
i),(a0)], V tar

i 2 �Q(a0
|Q|+i),(a0) and for all ✏j 2 E , ✏j ✓ �Q(a0

2|Q|+j),(a0), then

25



{!2(v, a1),!2(v, a2), . . . ,!2(v, aL)} are linearly independent, where

!2(v, al) =

✓
� (

@ log p(al)
T (v)� log p(a0)

T (v)

@vq
)Vq2Q,

� (
@
2 log p(al)

T (v)� log p(a0)
T (v)

@v2q

)Vq2Q,

� (
@
2 log p(al)

T (v)� log p(a0)
T (v)

@vpvq
)(Vp,Vq)2E(GT (Q))

◆
(37)

At a high level, this assumption will be naturally satisfied if the ASCMs and interventions are
randomly chosen and only will be violated if the probability density of P (j) and P

(k) are fine-tuned
to each other [49]. This kind of assumption is generally included in the causal representation learning
literature, such as the "genericity" assumption [49], the "interventional discrepancy" assumption [21],
and the "sufficient changes" assumption [10, 22].

To illustrate, the assumptions contain two linear independence constraints. Specifically, the first-order
and second-order partial derivatives of the log discrepancy from P

(al) to P
(a0) should be independent

of each other. Specifically, The two conditions are made because of necessity, since the linear
independence constraints can hold only if these conditions hold. The following example illustrates
the necessity of first order condition:
Example 17. Consider �Q obtained after comparisons as

�Q(1),(0) = {V1},�Q(2),(0) = {V1},�Q(1),(0) = {V1, V2, V3}, (38)

Let Q = {V1, V2, V3}. We have

log p(1)T (v)� log p(0)T (v)

@v2
= 0 (39)

Since V2 62 �Q(1),(0). Similarly, we know

!1(v1, v2, v3, 1) = (
@ log p(1)T (v)� log p(0)T (v)

@v1
, 0, 0)

!1(v1, v2, v3, 2) = (
@ log p(2)T (v)� log p(0)T (v)

@v1
, 0, 0)

!1(v1, v2, v3, 3) = (
@ log p(3)T (v)� log p(0)T (v)

@v1
,
@ log p(3)T (v)� log p(0)T (v)

@v2
,
@ log p(3)T (v)� log p(0)T (v)

@v3
)

(40)

And this implies !1(v1, v2, v3, 1),!1(v1, v2, v3, 2),!1(v1, v2, v3, 3) are for sure not linearly inde-
pendent.

On the other perspective, violating these assumptions is like stating the probability densities are
fine-tuned to each other [49]. Here we give an example of how this assumption can be violated.
Example 18 (Distributions do not change sufficiently). Consider intervention targets

 = {I(1) = {{}⇧1}, I(2) = {V ⇧1,{1}
1 }, I(3) = {V ⇧1,{2}

2 }, I(4) = {V ⇧1,{1}
1 , V

⇧1,{2}
2 }} (41)

Choosing I(1) as the baseline, T = {}. The corresponding �Q sets are {{V1}, {V2}, {V1, V2}}. Let
Q be the union of �Q sets, which is {V1, V2}. One can verify

!1(v, 2) + !1(v, 3) = !1(v, 4) (42)

since I(4) is designed as a combination of I(2) and I(3).

We provide the following Lemma to justify Assumption 7 formally.
Lemma 1. Assumption 7 almost surely holds.
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A.3 Domains vs Interventions

Example 19 (Example illustrating CRID with domains). Consider the LSD shown in Fig. 4(a).
We have the following distributions P = {P (1)

, P
(2)} = {P⇧1(X), P⇧2(X) from interventions

⌃ = {�(1)
,�

(2)} = {{}, {}}. Applying CRID algorithm, we can determine that V1 is ID wrt V2 and
V3.

This example illustrates that observational data in two domains can help disentangle a root variable
(V1) from all its descendants.
Example 20 (Example illustrating CRID with interventions across domains with different mech-
anisms). Consider the LSD shown in Fig. 4(a). We have the following distributions P =
{P (1)

, P
(2)} = {P⇧1(X), P⇧2(X) from interventions ⌃ = {�(1)

,�
(2)} with targets  =

{{V2}⇧1 , {}⇧2 . Applying CRID algorithm, we can determine that V2 and V1 is ID wrt V3.

This example demonstrates that when comparing observational data from domain ⇧1 with in-
terventional data from a different domain ⇧2, the only invariant factor is P (V3|V2), with
�V [{{V2}⇧1 , {}⇧2 , G

S ] = {V1, V2}. The canceled variable is V3, and thus we achieve our identifia-
bility result.
Example 21 (Example illustrating CRID with interventions across domains with the same
mechanisms). Consider the LSD shown in Fig. 4(a). We have the following distribu-
tions P = {P (1)

, P
(2)

, P
(3)} from interventions ⌃ = {�(1)

,�
(2)

,�
(3)} with targets  =

{{V [i]
1 , V2}⇧1 , {}⇧2 , {V [i]

1 }⇧2 . Applying CRID algorithm, we can determine that V1 is ID wrt
{V2, V3}, and V2 is ID wrt {V3}.

Even with an intervention that changes both V1, V2. When comparing the distributions P (1) and P
(3),

the P (V1) term becomes an invariant factor because the intervention has the same mechanism. This
removes the possible difference encoded by the S-node on V1 between domains ⇧1

,⇧2.

These examples further demonstrates the importance of distinguishing domains and interventions
because a difference in mechanism is present when comparing all distributions between a pair of
domains, ⇧i 6= ⇧j . This in principle, results in additional variables in the �Q set. However,
interventions may allow us to remove variables from this set by increasing the number of invariant
factors.

A.4 Permutation Indeterminancy

In the context of causal representation learning, permutation indeterminacy is a significant challenge
that arises when attempting to identify latent variables from observed data. This phenomenon occurs
when the ordering of latent variables is not uniquely determined, leading to multiple equivalent
representations (i.e. permutations of the latent variables) that can explain the observed data equally
well.

In the earliest results of disentangled representation learning, linear ICA was known to be identifiable
only up to permutation and scaling indeterminacies [6]. Permutation indeterminacy is still present in
nonlinear ICA [7], since the independent components may be permuted arbitrarily.

Interestingly, when generalizing the problem to the Markovian setting where latent variables have
causal structure (i.e. edges in a causal graph), permutation indeterminacy can be reduced to a graph
isomorphism in certain cases. That is, latent variables are exchangeable with other latent variables that
preserve the topological ordering of the latent causal graph (rather than permuted with any arbitrary
latent variable) [13, 22, 49]. When the interventions occur with known targets on the latent space,
and intervention occurs uniquely on every latent variable, then there is no permutation indeterminacy
[21].

In this work, we assume intervention targets are known, but do not necessarily occur on all latent
variables, and they may occur on multiple variables at once. For variables that are intervened on
uniquely (i.e. one intervention applied on only that variable), there is no permutation ambiguity. For
variables that are intervened on in groups, or not intervened on at all, there still exists permutation
ambiguity:

1. (Grouped variables) These variables are all intervened on in the same group. In the context
of our paper, these variables are consistently in the same �Q set. For example, consider the
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following LCG V1 ! V2  V3. If we have distributions arising only from interventions
on {V1, V3} and the observational distribution, and assume the learned representation is
fully disentangled, then the learned representation still has a permutation indeterminacy wrt
{V1, V3}. That is, V̂1 could be the representation for V1, or V3 and similarly for V̂3 (See why
permutation can hold for details in Example 25).

2. (Non-intervened variables) These variables do not contain any interventions. Then there is
still permutation ambiguity among these variables. However, instead of a graph isomorphism
ambiguity, these variables form a subgraph isomorphism problem because there may be other
variables that change across distributions (i.e. via interventions, or changes in domains),
which are not permutable with respect to these invariant variables.

Specifically, the identifiability we talk about (Def. 2.3) is considered after a subgraph isomor-
phism permutation. For example, in the collider example setting where permutation can happen
between V1 and V3. The "V1 is ID w.r.t {V2, V3}" should implies there exists a function ⌧ such that
⇡(V)[V1] = ⌧(⇡(V)[V1]), where ⇡(V)[Vi] means variable Vi after the permutation on V and ⇡
denotes a permutation only in this text. In our paper, we are primarily concerned with disentangle-
ment and determining if the learned representation is disentangled in some general sense, and the
permutation part is out of our scope.
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B CRID Algorithm Details

Here, we provide additional pseudocode for the CRID Alg. 1.

First, the following algorithm illustrates how to initialize a fully connected bipartite graph GV,bV. In
the initial GV,bV, the true underlying factors V points to representations each bVi 2 bV, which means
each variable Vi 2 V is entangled with all other variables.

Algorithm F.2 FullyConnectedBipartiteGraph: Initialization step - Initialize a fully connected
bipartite graph.

Input: V, bV
Output: GV,bV

1: Initialize an empty graph GV,bV
2: for Vi in V do
3: for Vj in V̂ do
4: Add edge (Vi, Vj) to GV,bV

Then, after constructing Q from comparisons of distributions, the Alg. F.3 illustrates the details to
check whether V\Q can be disentangled from Q according to Proposition 3. To illustrate, each
variable Z 2 V\Q is checked one by one. The variables that have already been disentangled
from Z are collected in the list Mem through procedure CheckMemoize. Next, check if there is
a sub-collection of Q that satisfy the [1-3] conditions in Proposition 3. The checking procedure is
shown in Alg.F.5. If conditions are satisfied the edges from Z to bQ are removed to demonstrate
disentanglement. Based on the Lemma 2, the condition [3] in Prop. 3 can be reduced to a weaker
condition [3’] leveraging existing disentanglements in CDM.

Lemma 2. Consider variables Vtar ✓ V and Z 2 V\Vtar. Suppose Mem = {Vj 2 Vtar |
Vj is ID w.r.t. Z}. Consider, PT and its corresponding intervention targets that hold conditions [1-2]
in Prop. 3. If the new version of condition [3] is also satisfied:

[3’] there exists {a01, . . . , a0|Vtar|} ✓ {a1, . . . , aL} such that for all V
tar
i 2

Vtar\Mem, V
tar
i 2 �Q[I(a

0
i), I(a0),T, G

S ].

then Vtar is ID w.r.t Z.

To illustrate, the above lemma indicates not all variables in Vtar needed to be covered uniquely.
Variables that have been already disentangled (in Mem) do not need to be considered.

Algorithm F.3 Dis�QfromCancel - Check whether canceled variables V\Q can be disentangled
from the LQ factors Q. GV,bV is the current bipartite graph; GT is the LCG after the hard intervention
on T; X is the intervened sets that contains hard interventions on X; I 2  T is the chosen baseline
distribution; Q is the collection of�Q sets after comparing intervention targets J 2  X\I with the
baseline.
Input: Q, GV,bV, GX, X, I,Q
Output: GV,bV

1: for all Z 2 V\Q do
2: Mem CheckMemoize(GV,bV, Z,Q) . Variables in Q has been already ID w.r.t. Z.
3: if CheckConsition3(Q,Q,Mem) then . Check conditions in Prop. 3 and Lem. 3
4: remove edge Z ! bQ in GV,bV

5: return GV,bV
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Algorithm F.4 CheckMemoize: Memoization step - The variables in Q is ID w.r.t Z already.
Input: GV,V̂ , Z, Q
Output: Mem

1: Mem {}
2: for all bV 2 Q do
3: if Z ! bV 62 GV,bV then
4: Mem.append(V )

5: return Mem

Algorithm F.5 CheckCondition3: Check conditions in Proposition 3 and Lemma 2. Q is the
collection of�Q sets; Q are target variables;Mem are variables in Q have already been disentangled.
Input: Q, Q, Mem
Output: True or False

1: L {}
2: for Qk 2 Q do
3: if Qk ✓ Q then
4: L.append(Qk)

5: Qre = {Q1, . . . , Qd0} Q\Mem, d0  |Qre|
6: if Q1 2 L1, Q2 2 L2, . . . , Qd0 2 Ld0 after a permutation of L then
7: return True

8: return False

Algorithm F.6 DisWithin�Q - Check the disentanglement of variables within Q. GV,bV is the
current bipartite graph; GT is the LCG after the hard intervention on T; T is the intervened sets
that contains hard interventions on X; I 2  T is the chosen baseline distribution; Q is the collection
of �Q sets after comparing intervention targets J 2  X\I with the baseline.
Input: Q, GV,bV, GT, T, I,Q
Output: GV,bV

1: for for all pair Vi, Vj 2 Q do
2: if Vi ? Vj | Q\{Vi, Vj} then
3: Memi  CheckMemoize(GV,bV, Vi,Q) . Variables in Q is ID w.r.t Vi already.
4: Memj  CheckMemoize(GV,bV, Vj ,Q) . Variables in Q is ID w.r.t Vj already.
5: if CheckConsition4(Q,Q,Memi,Memj , GT) then . Check conditions in Prop. 4

and Lem. 3
6: remove edge Z ! bQ in GV,bV

7: return GV,bV

Next, the Alg. F.6 illustrates the details to check whether Vi, Vj 2 Q such that Vi and Vj are
independent of each other conditioning on other variables in Q can be disentangled according to
Proposition 4. To illustrate, two lists of variables that have already been disentangled from Vi and Vj

are constructed as Memi and Memj respectively through CheckMemoize. Next, check if there
is a sub-collection of Q that satisfy the [1-3] conditions in Proposition 3. The checking procedure
is shown in Alg.F.7. If conditions are satisfied the edges from Z to bQ are removed to demonstrate
disentanglement. Based on the Lem. 3, the condition [4] in Prop. 4 can be reduced to a weaker
condition [4’] leveraging existing disentanglements in CDM.

Lemma 3 (ID of variables within �Q sets). Consider variables Vtar ✓ V. For any pair of
Vi, Vj 2 Vtar such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V

tar), let Memi be a list of variables in
Q that have been ID w.r.t. Vi and let Memj be a list of qvariables in Q that have been ID w.r.t. Vj .
If there exists PT that satisfies conditions [1-2] in Prop. 3 and the following condition [4’].
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[4’] (Enough changes occur across distributions) Let Qre = Vtar\(Memi
S

Memj) and
d
0 = |Qre|. And

Eij ={✏j = {Vk, Vr} | i) 9al, {Vk, Vr} 2 �Q(al),(a0);

ii) Vk is connected toVr conditioning Vtar\{Vk, Vr} in GT(V
tar)

iii) Vk, Vr /2Memi [Memj}
(43)

there exists {a01, . . . , a02d0+|E|} 2 {a1, . . . , aL} such that for all Qi 2 Qre
, Qi 2

�Q(a0
i),(a0)], Qi 2 �Q(a0

d0+i),(a0) and for all ✏l 2 Eij , ✏l ✓ �Q(a0
2d0+l),(a0).

, then Vi is ID w.r.t Vj .

Algorithm F.7 CheckCondition4: Check conditions in Proposition 4 and 3. Q is the collection
of �Q sets; Q are target variables;Memi are variables in Q have already been disentangled with
Vi;Memj are variables in Q have already been disentangled with Vj ; GT is the diagram after
removing incoming edge to T.
Input: Q, Q, Memi, Memj , GT
Output: True or False

1: L {}
2: for Qk 2 Q do
3: if Qk ✓ Q then
4: L.append(Qk)

5: E  {}
6: for {Vk, Vr} ✓ Q do
7: if (i) 9L 2 L such that {Vk, Vr} ✓ L (ii) Vk is conditionally connected to Vl (iii) {Vk, Vr} 6✓

Memi [Memj then
8: E .append((Vk, Vr)) . Construct E according to Lem. 3
9: Qre+ = {Q1, . . . , Qd0} (Q\(Memi [Memj)) [ E , d+  |Qre|

10: if Q1 2 L1, Q2 2 L2, . . . , Qd0 2 Ld0 after a permutation of L then
11: return True

12: return False

Lastly, we leverage the independence and current disentangled results stored in GV,bV. Canceled
variables with V\Q can be disentangled with each other according to Proposition 5. The following
algorithm illustrates this step.

Algorithm F.8 Dis�QFromCancel - Disentangle canceled variables from �Q. GV,bV is the current
bipartite graph; GT is the LCG after the hard intervention on T.

Input: Q, GV,bV, GX

Output: GV,bV
1: for for all Z such that Z ? V\Z in GT do
2: if there are no edges from V\Z to Z then
3: remove edges from Z to V\Z
4: return GV,bV
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C Proofs

Here, we provide the detailed proofs of theoretical results in the main paper.

C.1 Distribution comparison - Proof of Proposition 1

Proposition 1 (Distribution Comparison). Consider a collection of ASCMs M = hM1, . . . ,Mni
that induces collection distribution P with interventions ⌃ and LSD G

S . Consider comparing two
distributions P⇧(j)

(X;�(j)), P⇧(k)

(X;�(k)) 2 P with intervention targets I(j) and I(k). Suppose
I(j) and I(k) both contain a hard intervention mechanism on T. If another collection of ASCMs,
cM = hcM1, . . . ,

cMni, matches with distribution P and LSG G
S , then

dX

i

log p(j)T (vi | paT+
i )� log p(k)T (vi | paT+

i ) =
dX

i

log p(j)T (bvi | cpaT+
i )� log p(k)T (bvi | cpaT+

i ),

(7)
where p

(j)
T (·), p(k)T (·) are density functions.

Proof. According to the ASCM definition Def .2.1, the mapping from V to X, and the mapping X
to bV can be expressed as:

bV = bf�1
X (X) = bf�1

X (fX(V)) (44)
Then based on the change variable formula, we have

p(v) = p(bv)|J�| (45)

where � = bf�1
X � fX and J� is the Jacobian matrix of �. Leveraging the factorization in Eq. 2 and

taking log of the above equation,

dX

i=1

log pT(vi | paT+) =
dX

i=1

log pT(bvi | cpaT+) + log |J�| (46)

Subtract the above factorization of density function induced by I(j) and I(k), and we have Eq.( 7).

Eq 7 naturally gives a connection from V to bV. Comparing two factorization for Fig. 4(c),
the connection connections are made from P (v1), p(v2 | v1), p(v3 | v2, v1), P (v4 | v3) or
P (v1), p(v3), p(v2 | v1, v3), P (v4 | v3).

C.2 Invariant factors - Proof of Proposition 2

Proposition 2 (Invariant Factors). Consider two distributions P (j)
, P

(k) 2 P with intervention
targets �(j) and �(k) containing do(T). Construct the changed variable set �V[I(j), I(k), GS ] (for
short �V(j),(k) or �V if index not needed) with target sets I(j), I(k) as follows. Add variable Vl to
�V if,

1. Vl 2 �V if V ⇡l,{bl},tl
l 2 I(j) but V ⇡0

l,{bl},t
0
l

l 62 I(k), and vice versa;

2. Vl 2 �V if (i) S⇧(j),⇧(k)

point to Vl, (ii) V ⇡l,{bl},tl
l 62 I(j), (iii) V ⇡l,{bl},tl

l 62 I(j).

If Vi 2 V\C�(�V), then p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ), which will be denoted as invariant
factors, where C�(�V) are variables in the same C-Component with �V and not before �V in
the topological order for factorization.

Proof. Consider an arbitrary Vi 2 \C>(�V). First, based on the proposition, �V[I(j), I(k), GS ]
includes all variables that the mechanism fV or exogenous U possibly change when the intervention
changes from I(k) to I(j). In other words, for any Vl 2 V\�V[I(j), I(k), GS ], fVl and exogenous Ul

are invariant.

Second, consider variables Z that and are in the same C-component with Vi and also are before Vi

in the topological order. Then we have, Z \C�(�V) = ;. The reason is that (1) if Vi 2 C(�V)

32



but Vi has a strictly lower order than �V, then Z also have strictly lower order than �V); (2) if
Vi 62 C(�V), C(Vi) \C(�V) = ;. According to the definition of PaT

+

i , we know PaT
+

i \Z =
Pa({Vi} [ Z). We have

P
⇧(k)

T (Vi | PaT+
i ;�(k)) = P

⇧(k)

T (Vi,Z | Pai({Vi} [ Z);�(k))/P⇧(k)

T (Z | Pai({Vi} [ Z);�(k))
(47)

Since the mechanism and exogenous variables will not change, the numerator P
⇧(k)

T (Vi,Z |
Pai({Vi} [ Z);�(k)) also does not change. This is because Z = fZ(PaZ , UZ) and UZ | PaZ for
any Z 2 {Vi} [ Z. The denominator is an integral of the numerator thus the denominator also does
not change. Then the corresponding density function will remain the same, namely,

p
(j)
T (vi | paT+

i ) = p
(k)
T (vi | paT+

i ) (48)

C.3 ID �Q w.r.t Canceled Factors - Proof of Proposition 3 and Lemma 2

Proposition 3 (ID the �Q set w.r.t Canceled Variables). Consider variables Vtar =
{V tar

1 , V
tar
2 , . . . , V

tar
d0 } ✓ V. if there exists a subset of P , PT = {P (a0), P (a1), . . . , P (aL)} ✓ P

with intervention target sets  T = {I(a0), I(a1), . . . , I(aL)} such that

[1] (All distributions contain hard intervention on T) 8 l 2 [L], T = do[I(a0)] ✓ do[I(al)] 15.

[2] (The union of all �Q sets is Vtar)
S

l2[L]�Q[I(al), I(a0),T, G
S ] = Vtar.

[3] (Each V
tar
i changes once) there exists {a01, . . . , a0|Vtar|} ✓ {a1, . . . , aL} such that for all

V
tar
i 2 Vtar

, V
tar
i 2 �Q[I(a

0
i), I(a0),T, G

S ].

then Vtar is ID w.r.t V\Vtar.

Proof. We denote Vtar as Q for convenience. Notice that the Assumption 7 will be used in the
proof.

Comparing P
⇧(al)(V;�(al)) with P

⇧(a0)

(V;�(a0)), we have
X

Vi2Ṽ

log p(al)
T (vi | paT+

i )� p
a0)
T (vi | paT+

i ) =
X

Vi2Ṽ

log p(al)
T (bvi | cpaT+

i )� log p(a0)
T (bvi | cpaT+

i )

= log p(al)
T (bv)� log p(a0)

T (bv)
(49)

from Eq. (11).

Notice that the left side only involves variables in Q =
S

l2[L]�Q[I(al), I(a0),T, G
S ] based on the

Def. 3.1. Thus, for any Z 2 V\Q,

8l 2 [L],
@ log p(al)

T (bv)� log p(a0)
T (bv)

@bz = 0 (50)

Take partial of the above equation w.r.t. Z, we have:

8l 2 [L], 0 =
X

vi2V

@ log p(al)
T (bv)� log p(a0)

T (bv)
@bvi

@bvi
@z

(Chain Rule) (51)

=
X

vq2Q

@ log p(al)
T (bv)� log p(a0)

T (bv)
@bvq

@bvq
@z

(Eq.( 50)) (52)

15Recall we use the notation do[I] to denote that all variables that perfectly interventions on in I.
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Eq. (52) is a linear system for unknowns {@ bVq/@Z}Vq2Q. When distribution changes sufficiently,
namely under Assumption 7, the row factor of the coefficient matrix of the linear system is linearly
independent. When L � |Q| (implied by condition [3]), the matrix is full rank, thus,

8 Vq 2 Q,
@bvq
@z

= 0 (53)

Recall that Vq = �Vq
(V). For any Z 2 V\Q, Eq.( 53) holds. Thus, Q is enough to be the input of

�Vq
, which means there exists Vq = �Vq

(Q).

Lemma 2. Consider variables Vtar ✓ V and Z 2 V\Vtar. Suppose Mem = {Vj 2 Vtar |
Vj is ID w.r.t. Z}. Consider, PT and its corresponding intervention targets that hold conditions [1-2]
in Prop. 3. If the new version of condition [3] is also satisfied:

[3’] there exists {a01, . . . , a0|Vtar|} ✓ {a1, . . . , aL} such that for all V
tar
i 2

Vtar\Mem, V
tar
i 2 �Q[I(a

0
i), I(a0),T, G

S ].

then Vtar is ID w.r.t Z.

Proof. For all Vm 2 Mem, @Vm/@Z = 0. Thus, the unknown in Eq.( 52) exclude @vm
@z . Then,

when [3’] holds, the system will have zero solutions and Eq.( 53) will hold.

C.4 ID within �Q set - Proof of Proposition 4 and Lemma 3

The next result provides us an additional way of disentangling latent variables within the same
�Q-factor leveraging second-order conditions and conditional independence. The assumption made
in the result is the assumption of generalized distributional change (see Assump. 7).
Proposition 4 (ID of variables within�Q sets). Consider the variables Vtar ✓ V. For any pair
of Vi, Vj 2 Vtar such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V

tar), if there exists PT that satisfies
conditions [1-2] in Prop. 3 and the following condition [4].

[4] (Enough changes occur across distributions) there exists {a01, . . . , a02d0+|E|} 2 {a1, . . . , aL}
such that for all V tar

i 2 Vtar
, V

tar
i 2 �Q(a0

i),(a0)], V tar
i 2 �Q(a0

d0+i),(a0) and for all
✏j 2 E , ✏j ✓ �Q(a0

2d0+j),(a0), where d
0 = |Vtar| and

E ={✏j = {Vk, Vr} | i) 9al, {Vk, Vr} 2 �Q(al),(a0);

Vk is connected to Vr conditioning Vtar\{Vk, Vr} in GT(V
tar)}

(22)

, then Vi is ID w.r.t Vj .

Proof. We denote Vtar as Q for convenience. Notice that Assumption 7 will be used in the proof.
From Eq. 11, we have
X

Vi2Ṽ

log p(al)
T (vi | paT+

i )� p
a0)
T (vi | paT+

i ) =
X

Vi2Ṽ

log p(al)
T (bvi | cpaT+

i )� log p(a0)
T (bvi | cpaT+

i )

= log p(al)
T (bv)� log p(a0)

T (bv)
(54)

Notice that the left side only involves variables in Q =
S

l2[L]�Q[I(al), I(a0),T, G
S ] based on the

Def. 3.1.

We first argue that if Vi ?? Vj |Q\{Vi, Vj} in GT then Vi 62 Pa
T+
j , Vj 62 Pa

T+
i and Vi, Vj 62 Pa

T+
m

where Vm 2 Q.

First, since Vi ?? Vj |Q\{Vi, Vj}, Vi and Vj cannot be directly connected by edges in GT, which
implies Vi 62 C(Vj) and Vi 62 PaT+(Vj). Also, the outgoing edge from Vi and Vj cannot point to the
same C-component. Otherwise, the path is active from Vi and Vj is active when conditioning on other
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variables (collider structure). Thus, Vi 62 Pa
T+
j , Vj 62 Pa

T+
i and Vi, Vj 62 Pa

T+
k where Vk 2 Q.

This implies Vi and Vj will not appear to the same factor p(al)
T (vm | paT+

m ) for any Vm 2 Ṽ. Thus,

@
2 log p(al)

T (vm | paT+
m )

@vivj
= 0 (55)

Thus, for any pair of Vk, Vr such that Vk ?? Vr|Q\{Vk, Vr},

8l 2 [L],
X

Vm2Ṽ

@
2 log p(al)

T (bvm | paT+
m )

@bvkbvr

=
@
2 log p(al)

T (bv)� log p(a0)
T (bv)

@bvkbvr
= 0

(56)

On the other hand, when either Vk or Vr is in Q\�Q(al),(a0) for l 2 [L],

8l 2 [L], =
@
2 log p(al)

T (bv)� log p(a0)
T (bv)

@bvkbvr
= 0 (57)

since
@p

(al)
T (bv)� log p(a0)

T (bv)
@bvk

= 0 or
@p

(al)
T (bv)� log p(a0)

T (bv)
@bvr

= 0 (58)

Upon Eq. (55), taking the second partial derivative on both sides of Eq. (54), the left side will be 0,
and then 8 l 2 [L], we have

0 =
X

Vk,Vr2Q

@ log p(al)
T (bv)� log p(a0)

T (bv)
@bvkbvr

@bvk
@vi

bvr
@vj

Chain Rule

(59)

=
@
2 log p(al)

T (bv)� log p(a0)
T (bv)

@bv2i
@bvi
@vi

@bvi
@vj

+
@
2 log p(al)

T (bv)� log p(a0)
T (bv)

@bv2j
@bvj
@vi

@bvj
@vj

+
X

Vq2Q

@
2 log p(al)

T (bv)� log p(a0)
T (bv)

@bv2q
@bvq
@vi

@bvq
@vj

+
X

Vq2Q

@ log p(al)
T (bv)� log p(a0)

T (bv)
@bvq

@
2bvq

@vivj

+
X

(Vk,Vr)2E

@ log p(al)
T (bv)� log p(a0)

T (bv)
@bvkbvr

@bvk
@vi

bvr
@vj

Eq. (56) and (56)

(60)

Eq.( 60) is also a linear system. When distribution changes sufficiently, namely under Assumption
7, the row factor of the coefficient matrix of the linear system is linearly independent. When
L � 2|Q|+ � 6? (implied by condition 4), the matrix is full rank, thus,

@bvi
@vi

@bvi
@vj

= 0,
@bvj
@vi

@bvj
@vj

= 0 (61)

Then we have
@bvi
@vj

= 0,
@bvi
@vj

= 0 (62)

up to a permutation of Vi and Vj . This implies that Vi is ID w.r.t Vj and Vj is ID w.r.t Vi.

Lemma 3 (ID of variables within �Q sets). Consider variables Vtar ✓ V. For any pair of
Vi, Vj 2 Vtar such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V

tar), let Memi be a list of variables in
Q that have been ID w.r.t. Vi and let Memj be a list of qvariables in Q that have been ID w.r.t. Vj .
If there exists PT that satisfies conditions [1-2] in Prop. 3 and the following condition [4’].
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[4’] (Enough changes occur across distributions) Let Qre = Vtar\(Memi
S

Memj) and
d
0 = |Qre|. And

Eij ={✏j = {Vk, Vr} | i) 9al, {Vk, Vr} 2 �Q(al),(a0);

ii) Vk is connected toVr conditioning Vtar\{Vk, Vr} in GT(V
tar)

iii) Vk, Vr /2Memi [Memj}
(43)

there exists {a01, . . . , a02d0+|E|} 2 {a1, . . . , aL} such that for all Qi 2 Qre
, Qi 2

�Q(a0
i),(a0)], Qi 2 �Q(a0

d0+i),(a0) and for all ✏l 2 Eij , ✏l ✓ �Q(a0
2d0+l),(a0).

, then Vi is ID w.r.t Vj .

Proof. The unknown in the linear system

@bvq
@vi

@bvq
@vj

= 0, (63)

if Vp is ID w.r.t Vi or Vq is ID w.r.t Vj .
@
2bvq

@vivj
= 0 (64)

If Vq is ID w.r.t Vi or Vj . Even these terms are excluded in [4’], the system still has the zero solutions.

Corollary 1 (ID of variables within�Q sets). Consider the variables Vtar ✓ V, PT that satisfies
conditions (1) in Prop. 3 and �Q(al),(a0) = Vtar, for l 2 [L]. For any pair of Vi, Vj 2 Vtar

such that Vi ?? Vj |Vtar\{Vi, Vj} in GT(V
tar), Vi is ID w.r.t Vj if L � 2|Vtar| + � 6?, where � 6?

is the number of pair Vk, Vr 2 Vtar such that Vk and Vr are connected given Vtar\{Vk, Vr} in
GT(V

tar).

Proof. the proof of this Corollary comes directly from Prop. 4. Taking let each condition [2] and [3]
are satisfied when �Q(a1),(a0) = · · · = �Q(aL),(a0)Vtar when L � 2|Vtar|+ |E |

C.5 ID-reverse of existing disentangled variables - Proof of Proposition 5

The next Proposition provides an additional tool to achieve identifiability and leverages the fact
that other variables may have previously been disentangled and independence relationships in the
factorization.
Proposition 5 (ID of canceled variables w.r.t. �Q sets). Suppose  contains do(T). Given
V\V tar is ID w.r.t. a single variable V tar, V tar is ID w.r.t. V\V tar if V tar ?? V\V tar in GT.

Proof. We first introduce a lemma for distribution preserving from [20].

Lemma 4 (Lemma 2 of [20]). Let A = C = R and B = Rn. Let f : A⇥B ! C be differentiable.
Define differentiable measures PA on A and PC on C. Let 8b 2 B, f(·, b) : A ! C be measure-
preserving. Then f is constant in b.

Denote V\Vtar as Z. V tar ?? Z in GT implies that

PT(V) = PT(V
tar)PT(Z) (65)

With the change of variable formulation and taking log:

log pT(v
tar) + log pT(z) = log pT(bvtar) + log pT(bz) + log |J�| (66)

Since Z is ID w.r.t V tar, @bZ/@Vtar = 0. In other words, the elements @�Z/@V
tar = 0 for every

Z 2 Z in Jacobian matrix are 0, where �Z is a function mapping from V to bZ. Then

log |J�| = log |JZ|+ log |JVtar | (67)
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where |JZ| =

2

664

@�Z1/@z1 @�Z1/@z2 . . . @�Z1/@zd�1

@�Z2/@z1 @�Z2/@z2 . . . @�Z2/@zd�1
...

...
. . .

...
@�Zd�1/@z1 @�Zd�1/@z2 . . . @�Zd�1/@zd�1

3

775 and log |JVtar | =

|@�V tar/@v
tar|.

Again, since Z is ID w.r.t Vtar, bZ = �Z(Z). Thus,

log pT(z) = log pT(bz) + log |JZ| (68)

Subtracting this to Eq. (66)

log pT(v
tar) = log pT(bvtar) + log |JVtar | (69)

Denote �Vtar (z, ·) as �z
Vtar (·), which is the function �Vtar fixing value Z = z mapping from Vtar

to bV. This suggests for every z,

PT(bV tar) = PT(�
z
V tar (V tar)) (70)

Apply Lemma 2 of [20], �V tar should be a constant regarding Z. Thus,

8 Z 2 Z,
@V

tar

@Z
= 0 (71)

C.6 Soundness of LatentID Algorithm - Proof of Thm. 1

The following provides the proof of the soundness of our proposed graphical algorithm for determining
whether or not two variables are disentangleable given a collection of distributions from multiple
domains and interventions.
Theorem 1 (Soundness of CRID). Consider a LSD G

S and intervention targets . Consider the
target variables Vtar and Ven ✓ V\Vtar. If no edges from Vtar points to bVen in the output causal
disentanglement map (CDM) from CRID, GV,bV , then Vtar is ID w.r.t Ven.

Proof. In LatentID, for each epoch, we iterate to choose T and the baseline distribution to execute
procedure Alg. F.3 and Alg. F.6. Any time an edge is removed, Proposition 3 and/or 4 are applied. At
the end of epoch, Alg. F.8 is executed and edges will be removed only if Proposition 5 is applied.
Thus the edge removals are all sound. The algorithm will stop when no edge will be removed,
and terminate giving the causal disentanglement map GV,V̂ , which is a valid summary of what is
disentangleable.
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Figure S3: Latent causal graph and the desired causal disentanglement map.

D Discussion and Examples

D.1 Additional Example Illustrating Motivation of Causal Disentangled Learning

In the introduction, we illustrated a medical example for why it is important to learn disentangled
representations.

Require  to be disentangled from Age Gender

Do not require  being disentangled from Age Haircolor

C
ha

ng
e 

G
en

de
r

Figure S2: The disentanglement requirements
in face examples

An additional motivating example can be seen
through the lens of generating realistic face images
[25]. Consider an image dataset of human faces.
Based on our understanding of anatomy and facial
expressions, we know that both Gender and Age are
not causally related, while age does directly affect
HairColor. There is a strong spurious correlation
between age and gender, where there are many old
males and young females in the dataset. In addition,
let there be face images from both a senior and teen
center building. The change in domain (i.e. popula-
tion center) impacts the age distribution, as senior cen-
ter faces are older than teen center faces. Given these
images and knowledge of the latent causal graph, one
would ultimately like to generate realistic face images
given perturbations of Age. If the variable represen-
tations are entangled, then it is possible for changes in age to also spuriously change gender. This
is undesirable, and thus our goal is to achieve disentanglement of age and gender. Note that we
do not require Age to be disentangled from HairColor necessarily since changing Age and also
simultaneously changing Haircolor would be a realistic image generation. Here, we would seek a
causal disentanglement map shown in Fig. S3.

If we could get the causal disentanglement map, then we know that when the representations are fully
learned, we can intervene on Age without changing the Gender of the face. This motivates the need
for a general approach to identifiability, compared to the scaling indeterminacy in Def. 6.4, which
requires all variables to be disentangled from each other.

D.2 Examples for non-Markovian Factorization

In this section, we centralize theoretical results in relation to the theory presented in this paper.

Unless specified, we denote the natural log as log.

We first provide more discussion about non-Markovian factorization Eq. (2). First, the concept
C-component is formally defined as follows:
Definition 6.1 (Confounded Component). Let {C1,C2, . . . ,Ck} be a partition over the set of
variables V, where Ci is said to be a confounded component (for short, C-component) of the
selection diagram GV if for every Vi, Vj 2 Ci there exists a path made entirely of bidirected edges
between Vi and Vj in GV , and Ci is maximal.

This construct represents clusters of variables that share the same exogenous variations regardless of
their directed connections. The selection diagram in Figure 2 has a bidirected edge indicating the
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Figure S4: Causal graph with four C-components.

presence of unobserved confounders affecting the pairs (V1, V2) and contains two C-components,
namely, C1 = {V1, V2},C2 = {V3}.

Akin to parents within a Markovian SCM, the c-components play a fundamental role in factorizing
the joint distribution of the observed variables V.

Let < be a topological order V1, . . . , Vn of the variables V in G
S . Then define the PaT+

i =
Pa({V 2 C(Vi) : V  Vi})\{Vi}. The Pa+(Vi) set consists of the nodes in the same c-component
that are "" in topological order as Vi, their corresponding parents, minus the node Vi itself. For
instance, in Fig. S4, Pa

+(E) = {D,C,A} and Pa
+(D) = {B,C,A}.

The general factorization formula Eq. (2) factorizes not only the joint observational distribution
related to a causal graph, but also interventional distributions. With a hard intervention on T, the
factorization follows the corresponding graph is GT, where the incoming arrows towards T are cut.
This factorization encompasses both Markovian and non-Markovian SCM models. When there are
no bidirected edges in the diagram, PaT+

i reduce to Pa in FT.

Next, we introduce the Markov blanket, a fundamental idea in characterizing certain conditional
independences in a causal graph [72, 73].
Definition 6.2 (Markov Blanket). Let G be a causal graph over variables V. A Markov blanket of a
random variable Y 2 V is any subset V1 ✓ V such that conditioned on V1, Y is independent of all
other variables.

Y ?? V\V1|V1

The Markov blanket is an important object that captures conditional independences between variables
when conditioned on all other variables in the graph.
Definition 6.3 ("Global" Markov property of DAGs [74]). Consider a joint probability distribution,
P over a set of variables V satisfies the Markov property with respect to a graph G = (V [L,E) if
the following holds for, (X,Y,Z) disjoint subsets of V:

P (y|x, z) = P (y|z) if Y ?? X|Z in G (that is Y is d-separated from X given Z)

The global Markov property maps graphical structure in causal directed acyclic graphs (DAGs) to
conditional independence (CI) statements in the relevant probability distributions from data. The
distributions we consider P are considered Markov wrt the graph, thus mapping d-separations in the
graph to conditional independences in the distributions. This allows us to leverage factorizations,
such as the one presented in Section 2.

D.3 Discussion about �Qs resulting from different topological order

Here we revisit the definition of �Q set.
Definition 3.1 (�Q Set). Given two distributions P (j)

, P
(k) with interventions targets �(j) and �(k)

containing do(T), the �Q[I(j), I(k),T, G
S ] set (for short: �Q(j),(k), or �Q if index not needed)

of the target sets I(j), I(k) is the remaining variables after comparison (i.e. Eq. 11),

�Q[I(j), I(k),T, G
S ] = Ṽ [PaT+(Ṽ), (15)
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where Ṽ = C�(�V[I(j), I(k), GS ]).

With the definition of �Q set (Def. 3.1), we have shown that comparing I(2) and I(1) in Ex. 7,
�Q[I(1), I(2),T, G

S)] is {V1, V2, V3} no matter what topological order is used in the factorization.
The following lemma argues that �Q will not be influenced by the topological order.

Lemma 5 (The invariance of�Q w.r.t order). Given two distributions P (j)
, P

(k) with interventions
targets �(j) and �(k) containing do(T). Let A and B be two different orders for factorizing P (V).
�Q(j),(k) are equivalent derived using A and B.

Proof. Let the�QA be the result derived from order A and�QB be the result derived from order B.
More specifically,

�QA = C�A(�V[I(j), I(k), GS ]) [Pa
T+
A (C�A(�V[I(j), I(k), GS ]))

�QB = C�B (�V[I(j), I(k), GS ]) [Pa
T+
B (C�B (�V[I(j), I(k), GS ]))

(72)

Notice that the order only has influence on the extended parents set and C�. Recall the extended
parents PaT+

i = Pa({V 2 C(Vi) : V  Vi}) \ {Vi}. We will discuss the following two cases.

First Case. C�A(�V) = C�B (�V) = Z. Then,
S

Z2Z{V 2 C(Z) : V A Z} is equivalent toS
Z2Z{V 2 C(Z) : V B Z}. Thus, Pa

T+
A (Z) = Pa

T+
B (Z).

Second Case. C�A(�V) 6= C�B (�V). W.L.O.G, assume W 2 C�A(�V) but W 62 C�B (�V).
This implies W is before �V. Then W must be in Pa

T+
B (C�B (�V)). Thus, �QA = �QB .

This lemma guarantees that our identifiability result does not depend on the factorization order.
Otherwise, with the same input  and G

S , the CDM can be different.

D.4 The detailed examples of Proposition 3 and 4

Proposition 3 and 4 disentangle variables through comparing distributions. With enough distributions,
one can build a linear system (illustrated in Appendix C.3 and C.4).
Example 22. (details for Example 11).

Suppose the pair of underlying ASCMs hM1,M2i induces the LSG G
S in Fig. 2 and distributions

P = {P (1)
, P

(2)
, P

(3)
, P

(4)} = {P⇧1(X), P⇧2(X), P⇧2(X;�V3), P
⇧2(X;�V4)} from interven-

tions ⌃ = {�(1)
,�

(2)
,�

(3)
,�

(4)} = {{}, {},�V3 , do(V2)}. Suppose we are given intervention
targets = {I(1), I(2), I(3), I(4)} = {{}⇧1 , {}⇧2 , V

⇧2
3 , V

⇧1,do
2 } and G

S .

Consider Vtar = {V2, V3}, Ven = V\{V2, V3} = {V1}. When comparing {P (2)
, P

(3)} with the
baseline P

(1), T = do[I(1)] = {}, and then

�Q[I(2), I(1),T, G
S ] = �Q[I(3), I(1),T, G

S ] = {V2, V3} (73)

{P (2)
, P

(3)} satisfies condition [1] in Prop. 3, since the hard intervention variable set is {}. They
also satisfies condition [2], since�Q(2),(1) = �Q(3),(1) = Vtar. Condition [3] are satisfied since
V2 2 �Q(2),(1) and V3 2 �Q(3),(1) Thus, Vtar is ID w.r.t Ven by Prop. 3. This demonstrates that a
variable V2 can be disentangled from another variable that is in the C-component (V1).

By comparing distribution resulting from �
(2) and �(3) with the baseline �(1),

log p(2)(v3 | v2)� log p(1)(v3 | v2) = log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2) (74)

log p(3)(v3 | v2)� log p(1)(v3 | v2) = log p(3)(bv3 | bv2)� log p(1)(bv3 | bv2) (75)

Taking the first order partial derivative w.r.t. V1:

0 =
@ log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv2
@bv2
@v1

+
@ log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv3
@bv3
@v1

0 =
@ log p(3)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv2
@bv2
@v1

+
@ log p(3)(bv3 | bv2)� log p(1)(bv3 | bv2)

@bv3
@bv3
@v1

(76)
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In this system, notice that

log p(2)(bv3 | bv2)� log p(1)(bv3 | bv2) = log p(2)(bv1, bv2, bv3)� log p(1)(bv1, bv2, bv3) (77)

Then since the coefficient is linear independent assumed in Assumption 7, we have

@bv2
@v1

= 0,
@bv3
@v1

= 0 (78)

Then V2 = ⌧2(V2, V3), and V3 = ⌧3(V2, V3).

First, this example shows we can disentangle two variables in the same C-component (V1, V2).
Second, compared with the baseline, one can disentangle variable Vi 2 V with its descendants when
soft interventions are given per node, and Vi is considered to be still entangled with its ancestors (see
Sec. E.6). The above result shows that it is possible to disentangle variables from their ancestors using
only soft interventions. More interestingly, no intervention is performed on V2 while we disentangle
V2 from V1. Compared with [22], one can disentangle V1 and V3 using 10 distributions and we
demonstrate 3 distributions are enough.
Example 23. (details for Example 12).

Consider the diagram in Fig. 4(c).

Suppose P = {P (1)
, P

(2)
, P

(3)
, P

(4)} with intervention targets

I(1) = {}⇧1 , I(2) = {V2}⇧1 , I(3) = {V3}⇧1 , I(4) = {V1}⇧1 (79)

Consider Vtar = {V1, V2, V3} and Ven = V\{V1, V2, V3} = {V4}. Comparing {I(2), I(3), I(4)}
with the baseline I(1), the hard intervention variables are T = do[I(1)] = {}. Then we have�Q sets:

�Q(2),(1) = {V1, V2, V3},�Q(3),(1) = {V1, V2, V3},�Q(4),(1) = {V1}. (80)

Condition [1] and [2] in Prop. 3 are satisfied straightforwardly. Condition [3] are also satisfied since
V1 2 �Q(4),(1)

, V2 2 �Q(2),(1) and V3 2 �Q(3),(1) Thus, Vtar is ID w.r.t Ven by Prop. 3.

Choosing order V1 < V3 < V2 < V4.

P (V) = P (V1)P (V3)P (V2 | V1, V3)P (V4 | V3) (81)

as the factorization. By comparing distribution resulting from �
(2) and �(3) with the baseline �(1),

log p(2)(v2 | v1, v3)� log p(1)(v2 | v1, v3) = log p(2)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3) (82)

log p(3)(v3)� log p(1)(bv3) + log p(3)(v2 | v1, v3)� log p(1)(v2 | v1, v3) =
log p(3)(bv3)� log p(3)(bv3) + log p(2)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3) (83)

log p(4)(v1)� log p(1)(v1) = log p(4)(bv1)� log p(1)(bv1) (84)

Taking the first order partial derivative w.r.t. V4:

0 = h2,1
@bv1
@v4

+ h2,2
@bv2
@v4

+ h2,3
@bv3
@v4

0 = h3,1
@bv1
@v4

+ h3,2
@bv2
@v4

+ h3,3
@bv3
@v4

0 = h4,1
@bv1
@v4

(85)

where

h2,i =
@ log p(2)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3)

@bvi
for i = 1, 2, 3

h3,i =
@ log p(3)(v3)� log p(1)(bv3) + log p(3)(v2 | v1, v3)� log p(1)(v2 | v1, v3)

@bvi
for i = 1, 2, 3

h4,1 =
@p

(4)(bv1)� log p(1)(bv1)
@bv1

(86)
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Then since the coefficient is linear independent assumed in Assumption 7, we have
@bv1
@v4

= 0,
@bv2
@v4

= 0,
@bv3
@v4

= 0 (87)

Then V1 = ⌧1(V1, V2, V3), and V2 = ⌧2(V1, V2, V3) and V3 = ⌧3(V1, V2, V3).

Then, we move to the examples of derivations of Prop. 4. The following example shows how variables
within the �Q set can be disentangled from each other.
Example 24. (Example 13 (continued).) Recall the given LSD G

S is shown in Fig. 2. and the 9
given intervention targets are

 ={{}⇧1 , {{V ⇧1
1 }⇥ 4, {V ⇧1

2 , V
⇧1
3 }⇥ 4} (88)

Comparing P
(2)

, . . . , P
(9) with P

(1), we have

log p(i)�(1)(v1) + log p(i)�(1)(v2 | v1) = p
(i)�(1)(bv1) + log p(i)�(1)(bv2 | bv1) (89)

log p(j)�(1)(v2 | v1) + log p(j)�(1)(v3 | v2) = log p(j)�(1)(bv2 | v1) + log p(j)�(1)(bv3 | bv2) (90)
where i = 2, 3, 4, 5, j = 6, 7, 8, 9,. Taking the second order partial derivative w.r.t. V1 and V3:

0 =
X

p=1,2

h
0
i,p

@
2bvp

@v1@v3
+
X

p=1,2

h
00
i,p
@bvp
@v1

@bvp
@v3

+ h
00
i,1,2(

@bv1
@v1

@bv2
@v3

+
@bv2
@v1

@bv1
@v3

)

0 =
X

p=1,2,3

h
0
j,p

@
2bvp

@v1@v3
+

X

p=1,2,3

h
00
i,p
@bvp
@v1

@bvp
@v3

+ h
00
i,2,3(

@bv2
@v1

@bv3
@v3

+
@bv3
@v1

@bv2
@v3

)

(91)

where i = 2, 3, 4, 5, j = 6, 7, 8, 9, and k = 10, 11, 12, 13, and the following are defined accordingly

h
0
i,p =

@ log p(i)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3)
@bvp

for p = 1, 2, 3

h
00
i,p =

@
2 log p(i)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3)

@bv2p
for p = 1, 2, 3

h
00
i,1,2 =

@
2 log p(i)(bv2 | bv1, bv3)� log p(1)(bv2 | bv1, bv3)

@bv1@bv2

h
0
j,p =

@ log p(j)(v3)� log p(1)(bv3) + log p(3)(v2 | v1, v3)� log p(1)(v2 | v1, v3)
@bvp

for p = 1, 2, 3

h
00
j,p =

@ log p(j)(v3)� log p(1)(bv3) + log p(3)(v2 | v1, v3)� log p(1)(v2 | v1, v3)
@bv2p

for p = 1, 2, 3

h
00
j,2,3 =

@ log p(j)(v3)� log p(1)(bv3) + log p(3)(v2 | v1, v3)� log p(1)(v2 | v1, v3)
@bv2@bv3

(92)

There are 8 unknowns that come from Eqn. 91. We can write that as a vector � 2 R12.

� = [
@
2bv1

@v1@v3
,
@
2bv2

@v1@v3
,
@
2bv3

@v1@v3
,
@bv1
@v1

@bv1
@v3

,
@bv2
@v1

@bv2
@v3

,
@bv3
@v1

@bv3
@v3

(
@bv1
@v1

@bv2
@v3

+
@bv2
@v1

@bv1
@v3

), (
@bv2
@v1

@bv3
@v3

+
@bv3
@v1

@bv2
@v3

)]

(93)

Rewriting Eq. (91), we have a linear system
0

BBBB@

h
0
2,1 h

0
2,2 0 h

00
2,1 h

00
2,2 0 h

00
2,1,2 0

...
...

...
...

...
...

...
...

h
0
6,1 h

0
6,2 h

0
6,3 h

00
6,1 h

00
6,2 h

00
6,3 h

00
6,1,2 h

00
2,2,3

...
...

...
...

...
...

...
...

1

CCCCA
� = 0 (94)
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The coefficient matrix is assumed with linear independent rows in Assumption 7. Since there are 8
rows, then the matrix is full rank, and we know � = 0. Then.

@bv1
@v1

@bv1
@v3

= 0,
@bv3
@v1

@bv3
@v3

= 0 (95)

Then since @bv1
@v1
6= 0,

@bv1
@v3

= 0,
@bv3
@v1

= 0 (96)

which implies that V3 is ID w.r.t V1 and V1 is ID w.r.t V3.

The following example illustrates the linear system built in Corol. 1.
Example 25. The factorization based on G

S choosing T = {} is

P (V) = P (V1)P (V3)P (V3 | V1, V2) (97)

By comparing distribution resulting from �
(2) and �(3) with the baseline �(1), for j = 2, 3, 4, 5

log p(j)(v1) + log p(j)(v3)� log p(1)(v1)� log p(1)(v3) (98)

= log p(j)(bv‘) + log p(j)(bv3)� log p(1)(bv1)� log p(1)(bv3) (99)

Taking the second order partial derivative w.r.t. V1, V3:

0 =
@
2 log p(j)(bv1)p(j) � log p(1)(bv1)

@bv21
@bv1
@v1

@bv1
@v3

+
@
2 log p(j)(bv3)p(j) � log p(1)(bv3)

@bv23
@bv3
@v1

@bv3
@v3

+
@ log p(j)(bv1)p(j) � log p(1)(bv1)

@bv1
@
2bv1

@v1@V3
+
@ log p(j)(bv3)p(j) � log p(1)(bv3)

@bv3
@
2bv3

@v1@v3
(100)

Then since the coefficient is linear independent assumed in Assumption 7, we have

@bv1
@v1

@bv1
@v3

= 0,
@bv3
@v1

@bv3
@v3

= 0 (101)

Then after permutation,
@bv1
@v3

= 0,
@bv3
@v1

= 0 (102)

which implies that V3 is ID w.r.t V1 and V1 is ID w.r.t V3.
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E Related Work

Disentangled representation learning aims to obtain approximations bV = {bV1, . . . ,
bVd} that separate

the distinct, informative generative factors of variations [5] from the observations of X and inductive
bias of M. In other words, the learning goal is an unmixing function bf�1

X that maps from X to bV
(namely bV = bf�1

X (X)), where bVi is some transformation of W ✓ V. The goal of disentangled
representation learning is to have bVi be a function only of Vi, i.e. W = {Vi}. This is not always
possible, and different assumptions, data and relaxed versions of disentanglement may be studied
to theoretically ground representation learning. The disentangled representation learning tasks
are studied with various assumptions and input. In the following, we discuss related tasks and
identifiability results in context of this paper. We also present a few case studies on the nuances
between Markovian and non-Markovian ASCM setting.

First, we review the main goal of identifiability in all prior works. It is what is known as scaling
identifiability. A special case of our ID definition in Def. 2.3.
Definition 6.4 (Scaling indeterminancy). Consider a collection of ASCM M that induces an LSD
G

S and a collection of distribution P . We say V is identifiable up to scaling indeterminacy if for every
cM matches with the G

S and P , there exists functions {h1, . . . , hd} such that bVi = hi(Vi), i 2 [d],
where hi is a diffeomorphism in R.

E.1 Causal representation learning with unknown latent causal structure

In many prior works, the goal has been not only identifiability of the underlying latent variables, but
also the discovery of the causal relationships among the latent variables [4, 22, 49]. That is, the latent
causal graph is unknown. The work proposed in this paper is a foundation for the first step of causal
representation learning, i.e. identifying the distributions of the latent causal variables. It would be
interesting future work to explore how the results proposed in this paper extend to the case when the
latent causal graph is unknown.

E.2 Comparisons with other identifiability criterion

We also consolidate other definitions of identifiability from the literature using the notion of an
ASCM. We have already defined identifiability up to scaling ambiguity in Def. 6.4.
Corollary 2 (Scaling ID is a case in general ID). Let M be a collection of ASCM with G

S the LSD
over the latent causal variables V. If Ṽ ✓ V is identifiable up to scaling indeterminacy, then it is
identifiable wrt V\Ṽ .

Proof. The proof follows from the application of Def. 2.3 and Def. 6.4.

Definition 6.5 (Identifiability up to ancestral mixtures [21]). Let M be a collection of ASCM with
G

S the LSD over the latent causal variables V. We say a variable Ṽ 2 V is identifiable up to
ancestral mixtures if for every cM matches with the G

S and P , there exists functions {h1, . . . , hd}
such that bVi = hi(Anc(Vi)), i 2 [d].
Corollary 3 (Ancestral ID is a case in general ID). Let M be a collection of ASCM with G the
LSD over the latent causal variables V. If Ṽ ✓ V is identifiable up to ancestral mixtures, then it is
identifiable wrt V\Anc(Ṽ ).

Proof. The proof follows from the application of Def. 2.3 and Def. 6.5.

The following definitions are inspired by the identifiability results from [22].
Definition 6.6 (Intimate Neighbor Set). We say  Vi := {Vj | j 6= i, but Vj is adjacent to Vi and all
other neighbors of Vi in MG.

The intimate neighbor set for a variable dictates a set of neighbors that are adjacent to all of that
variable’s neighbors. It is used in the following definition from [22].
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Definition 6.7 (Identfiability up to intimate neighbor set of Markov Network [22]). Let M be a
collection of ASCM with G

S the LSD over the latent causal variables V. We say a variable Ṽ 2 V
is identifiable up to intimate neighbors in the Markov Network if for every cM matches with the G

S

and P , there exists functions {h1, . . . , hd} such that bVi = hi( (MG, Vi)), i 2 [d], and MG is the
Markov network of G and  (MG, Vi) is the intimate neighbor set of Vi in MG.
Corollary 4 (Intimate Neighbor Markov Network ID is a case in general ID). Let M be a collection
of ASCM with G the LSD over the latent causal variables V. If Ṽ ✓ V is identifiable up to intimate
neighbor set of the Markov Network, then it is identifiable wrt V\�(MN(G); Ṽ ).

Proof. The result follows from the application of Def. 2.3 and Def. 6.7.

Thus, we showed that each of these identifiability definitions imply a general ID for a non-trivial
subset of latent variables Ṽ ✓ V with respect to Ven ⇢ V.

E.3 Challenges for disentanglement in non-Markovian settings

Prior results suggest that in a Markovian setting, given a hard intervention on every node, the latent
variables V are ID up to scaling indeterminancies according to Def. 6.4 [14, 21].

One would suspect that ID may still hold in non-Markovian ASCMs, but the following result states
that even with one hard intervention per node, it is not possible to disentangle latent variables within
the same c-component.
Lemma 6 (Challenges of identifability in non-Markovian causal models). Consider the ASCM
M that induces the diagram V1 $ V2. Suppose the intervention set includes an observational
distribution, and hard interventions on both V1 and V2:  = h�{}, do({V1}), do({V2})i. Then V1 is
not ID w.r.t V2 and vice versa.

Proof. We prove this by construction of a counter-example.

Consider an ASCM M
⇤ that is constructed as follows:

F⇤ =

8
<

:

V1  U1,2

V2  U1,2 + UV2

X1  V1, X2  V2

U1,2 ⇠ N (0, 1), UY ⇠ N (0, 3)

�V1 = P (ŨV1), ŨV1 ⇠ N (0, 2)

�V2 = P (ŨV2), ŨV1 ⇠ N (0, 7)

Consider a separate ASCM M
(1) that is constructed as follows:

F (1) =

8
>>>>><

>>>>>:

V
(1)
1  �U (1)

1,2

V
(1)
2  0.5U (1)

1,2 + 1.5UY

X1  1/3V (1)
1 + 2/3V (1)

2 ,

X2  2/3V (1)
1 � 2/3V (1)

2

U
(1)
1,2 ⇠ N (0, 3), U (1)

V2
⇠ N (0, 1)

�V1 = P (ŨV1

(1)
), Ũ (1)

V1
⇠ N (0, 6)

�V2 = P (ŨV2

(1)
), Ũ (1)

V2
⇠ N (0, 7)

M
⇤ and M

(1) induce the same observational distribution P (X) ⇠ N (0,


1 1
1 4

�
), and interventional

distributions P (X;�V1) ⇠ N (0,


2 0
0 4

�
), P (X;�V2) ⇠ N (0,


1 0
0 7

�
)
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However, V (1)
1 = V1 � V2, which implies V (1)

1 is not ancestral mixture or rescaling of the original
V1. Therefore, V1 is not identifiable up to ancestral mixtures, or rescaling.

E.4 ID within c-components

Lemma 6 shows that even with one hard intervention on each node, it is not possible to disentangle
variables within the same c-component. The next lemma provides a means of doing so using two hard
interventions on the same node. This provides some intuition for the usefulness of hard interventions
in the CRID setting.
Lemma 7 (Two hard interventions can disentangle within a c-component). Let GS be the LSD
induced from a collection of ASCM M. Suppose Vi, Vj 2 V are in the same c-component, and there
are L+1 hard interventions distributions PVi = {P (a0), P (a1), . . . , P (aL)} such that Vi 2 do[I(al)]
and�Q[I(al), I(a0), Vi, G

S ] are equivalent (denoted as Q) for l 2 [L]. When Vj /2 Q and if L � |Q|,
Vi is identifiable wrt Vj . When Vj 2 Q and if L � 2|Q|+ � 6?, Vi is identifiable wrt Vj .

Proof. The result follows from the application of Proposition 3 and Proposition 4.

Example 26. In most simple case. Let’s have do[I(j)] = do[I(k)] = Vi and �Q = Vi. Let
Vi, Vj 2 Ck be two arbitrary latent variables in the same c-component. By comparing distributions,
we have

p
(2)
Vi

(vi)� p
(1)
Vi

(vi) = p
(2)
Vi

(bvi)� p
(1)
Vi

(bvi) (103)
Taking partial w.r.t. Vj , we have

0 =
p
(2)
Vi

(bvi)� p
(1)
Vi

(bvi)
bvi

bvi
vj

(104)

which implies bvi
vj

= 0.

Notice that this is not the only way to disentangle to variables in the C-Component. In Example 16,
V1 and V2 are disentangled from each other without leveraging two hard interventions.

E.5 Case study on disentangling variables in a Markovian setting

This next example works out the algebraic derivations for analyzing Fig. 4(a). This derivation is
provided to provide additional intuition on the theory presented in Section 3, and how these concepts
apply in a simple 3-dimensional latent causal graph.
Example 27 (Algebraic derivation of disentanglement in a simple 3-node chain graph). Given the
graph shown in Figure 4(a), we can factorize the joint observational distribution of the latent variables

P (V) = P (V3|V2)P (V1|V2)P (V2) (105)

By the probability transformation formula, we can similarly write the distribution in terms of its
estimated sources via function � = f̂

�1
X � fX for its distribution Q.

P (V) = P (�V3(V)|�V2(V))P (�V1(V)|�V2(V)P (�V2(V))|detJ�| (106)

Now, consider the interventional distributions: P (V;�
V (1)
3

) and P (V;�
V (2)
3

). Here, we will use
shorthand �i to indicate �Vi(V). Similarly, we can factorize the distribution P (V;�

V (1)
3

):

P (V;�
V (1)
3

)

= P (V3|V2;�V (1)
3

)P (V1|V2;�V (1)
3

)P (V2;�V (1)
3

) (Conditional independence)

= P (�3|�2;�3(1))P (�1|�2;�V (1)
3

)P (�2;�V (1)
3

)|detJ�| (Probability transformation formula)

Similarly, we can decompose the interventional distribution P (V;�
V (2)
3

). Now, comparing the log
observational distribution with the log intervention �

V (i)
3

, we get:

46



log p(V;�
V (i)
3

)� log p(V)

= log p(V3|V2;�V (i)
3

) + log p(V1|V2;�V (i)
3

) + log p(V2;�V (i)
3

)

� log p(V3|V2)� log p(V1|V2)� log p(V2)

= log p(V3|V2;�V (i)
3

)� log p(V3|V2)

Where the last line applies the invariance of P (Vi|Vj ;�Vk) = P (Vi|Vj) if (Vi ?? Vk|Vj)GV
V3

. In
the space mapped by �, we similarly get:

log p(�;�
V (i)
3

)� log p(�)

= log p(�3|�2;�3(i)) + log p(�1|�2;�V (i)
3

) + log p(�2;�V (i)
3

)

� log p(�3|�2)� log p(�1|�2)� log p(�2)

= log p(�3|�2;�3(i))� log p(�3|�2)

When comparing the distributions of bV, interestingly the log of the determinant of the Jacobian
cancels out. Combining the two, we get:

log p(V3|V2;�V (u)
3

)� log p(V3|V2) = log p(�3|�2;�3(u))� log p(�3|�2) (107)

Taking the partial derivative now with respect to V1, we get that the LHS equals 0 and the RHS
becomes:

0 =
@

@V1
log p(�3|�2;�3(i))� log p(�3|�2)

=
@ log p(�3|�2;�3(i))

@�3

@�3

@V1
+
@ log p(�3|�2;�3(i))

@�2

@�2

@V1

� @ log p(�3|�2)
@�3

@�3

@V1
� @ log p(�3|�2)

@�2

@�2

@V1
(Chain rule)

=
@�3

@V1

✓
@ log p(�3|�2;�3(i))

@�3
� @ log p(�3|�2)

@�3

◆

+
@�2

@V1

✓
@ log p(�3|�2;�3(i))

@�2
� @ log p(�3|�2)

@�2

◆
(Collect terms)

Thus, we have two unknowns @�2

@V1
and @�3

@V1
. Given the two interventions with different mechanisms

on V3 compared to the observational distribution, we have two equations that result in a 2-dimensional
linear system. We are able to determine that @�2

@V1
= @�3

@V1
= 0 thus demonstrating that our approach

disentangles V̂3 = �3(V) and V̂2 = �2(V) from V1.

E.6 Comparing different identifiability results

In this section, we explicitly compare and discuss our work compared to a non-exhaustive list of
related disentangled learning in the setting of causally related latent components. Different from
previous literature, we do not make common assumptions such as (1) each intervention is applied to a
single node [53]; (2) idle interventions (observational distribution) are present within each domain
[21, 22]; (3) exactly one intervention is applied per node [13]; (4) at least one intervention is applied
per node [21, 53].
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Figure S5: Reproduced Fig. 4 for convenience.

Causal component analysis [21] The closest work to ours is [21], which also presupposes knowl-
edge of the latent causal graph and focuses solely on learning the unmixing function and the
distributions of the causal variables. In [21], the results emphasized the need for interventions that
occur only on a single node in the latent causal graph. However, Lemma 6 demonstrates challenges
that are not addressed in the prior work. In addition, in our work, we propose a more general concept
of identifiability in Def. 2.3. As a result, Thm. 1 makes significantly weaker assumptions to still
achieve identifiability. Exs.2-6 illustrate also the nuances addressed by our work, but not in [21].

Another interesting concept introduced by [21] is the "fat-hand" interventions, which intervene on
groups of variables within different groups, and the concept of "block-identifiability".

Here, we illustrate some examples and discussion on how our work compares with that of [21] that
also provides sufficient conditions for identifiability given a causal graph over the latent variables.
One key difference between our work is that we do not assume Markovianity in the underlying SCM,
whereas they do.
Example (Ex. 16 cont.). This example continues off of Ex. 16. Consider the motivating example in
healthcare depicted in Fig. 2. In hospitals from different countries ⇧i and ⇧j , drug treatment (V1)
affect length of ICU stay (V2), and ultimately whether or not the patient lives or dies (V3). Our task is
to learn representations of the high-level latent variables (V1, V2, V3) that are not collected given a
collection of low-level input such as EMRs, imaging and bloodwork data (high-dimensional data
X). In existing work [21], there are no guarantees that variables {V2, V3} are disentangled from their
ancestor V1 from soft interventions per nodes. However, Proposition 3 demonstrates two comparisons
are enough to disentangle both V2 and V3 from their ancestor V1.

Even in the Markovian setting, where the LSG does not contain bidirected edges, our results can also
guarantee identifiability in this setting.
Example 28 ([21] approach). Given the graph shown in Figure 4(a), [21] requires an observational,
and tuple of intervention sets = h{}, {V1}, {V2}, {V3}i. Provided these four distributions, there is
still no disentanglement of V̂3 with respect to any variables, Vi 2 V.

Causal Representation Learning from Multiple Distributions: A General Setting [22] Another
approach to achieving disentanglement among the latent variables is similar to nonlinear-ICA, but
leverages the conditional independence properties within a Markov Network of the causal graph.
Then the proof strategy of [22] considers the second order derivative, which leverages the conditional
independence constraints.

However, this results in a required 2d+ |E(MG)|+ 1 number of distributions that satisfy Assump. 7.
In addition, this strategy states that in a collider graph V1 ! V2  V3, that V1 is not ID wrt V2, and
V3 is not ID wrt V2.

Another example, continues off of Ex. 16.
Example (Ex. 16 cont.). This example continues off of Ex. 16. Consider the motivating example in
healthcare depicted in Fig. 2. In hospitals from different countries ⇧i and ⇧j , drug treatment (V1)
affect length of ICU stay (V2), and ultimately whether or not the patient lives or dies (V3). Our task is
to learn representations of the high-level latent variables (V1, V2, V3) that are not collected given a
collection of low-level input such as EMRs, imaging and bloodwork data (high-dimensional data
X). According to [22], 10 distributions can disentangle V3 from V1 when V3 ?? V1 | V2. However,
Proposition 3 demonstrates two comparisons are enough to disentangle both V2 and V3 from their
ancestor V1.
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Linear ICA Linear ICA has been extensively studied over decades, and is applied in magnetic
resonance imaging (MRI) [75], astronomy [76], image processing [77], finance [78] and document
analysis [79]. In linear ICA settings, the generative factors are assumed to be independent of each
other and the mixture function fX) is considered to be an invertible matrix A 2 Rd⇥d. Formally, the
mechanism F and the distribution P (U) of the true ASCM M⇤ are written as:

8
<

:

Vj  fj(Uj), 8j 2 [d]

X AV

Ui ? Uj , 8i, j 2 [d]

(108)

Notice that X is d dimensional variable here and Xi  
Pd

j=1 aijVj = aiV, 8i 2 [d]. Given the
observational distribution P (X), the goal of linear tasks is to learn bA such that bVj is a scaling of a
true underlying generative factors Vi, where bV = bA�1X. The scaling and permutation identifiability
is defined as follows to denote the achievability of linear ICA tasks.

Definition 6.8 (Scaling and Permutation Identifiability). The representation bV is said to be identifiable
up to scaling and permutation V(2) = CPV(1) if for every pair of ASCM M(1) and M(2) such that
(1) PM(1)

(X) = P
M(2)

(X), PM(1)

(X;�vk) = P
M(2)

(X;�vk);
(2) M(1) and M(2) are constrained by the modeling process in Eq. 108,
where C = diag(c1, . . . , cd) is a scaling diagonal matrix and P is a permutation matrix.

Def. 6.8 says that if every pair model M(1) and M(2) in linear ICA settings match the observational
distributions, the generative variables can be transformed by permutation and scaling. This implies
once one finds a proxy ASCM M that matches P (X), bV is guaranteed to be a scale and permutation
representation of the true generative variable if the identifiability is achieved. The next example
illustrates ASCMs in linear ICA settings and Def. 6.8.
Example 29 (ICA Identifiability Is Not Achieved). We consider the three augmented generative
processes M⇤, M(1) and M(2) with linear ICA constraints.

⇢
V1  U1, V2  U2

X1  V1, X2  V2

U1, U2 ⇠ N (0, [1, 0; 0, 1])

M⇤

(
V

(1)
1  U1, V

(1)
2  U2

X1  2V (1)
1 , X2  0.5V (1)

2

U1, U2 ⇠ N (0, [1/4, 0; 0, 4])

M(1)

8
><

>:

V
(2)
1  U1, V

(2)
2  U2

X1  
p
2
2 V

(2)
1 +

p
2
2 V

(2)
2

X2  
p
2
2 V

(2)
1 �

p
2
2 V

(2)
2

U1, U2 ⇠ N (0, [1, 0; 0, 1])

M(2)

It is verifiable that X1, X2 ⇠ N (1, 0; 0, 1) induced by all three models. The latent generative variables
in M(1) are scaled and permuted representations of the true factors M⇤, namely V

(1)
1 = 2V (2)

2

and V
(1)
2 = 0.5V (1)

2 . In other words, V (1) and V
(2) distinctly represents V2 and V1 respectively.

However, the representations V (2)
1 and V

(2)
2 in M(2) are mixture of true generative factors V1 and

V2, i.e.,

V
(2)
1 =

2

2
V1 +

2

2
V2

V
(2)
2 =

2

2
V1 �

2

2
V2

(109)

which implies this is not a scaling and permutation transformation. Thus, M(2) demonstrates that the
scaling and permutation identifiability is not achieved in this setting.

The above example shows a famous result of linear ICA: the representations are not identifiable if
generative factors follow a multi-gaussian distribution. This result comes from the symmetricity
of gaussian distributions: any white gaussian variables are still white gaussian after an orthogonal
transformation. However, orthogonal transformations are not guaranteed to be a scaling or permutation
thus a proxy model may have generative factors that are mixtures of the true V (V(2) in Example 29).
Further, the identifiability result can be concluded as follows with the non-Gaussian assumption.
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Nonlinear ICA [7, 10] Compared to linear ICA, nonlinear ICA assumes the mixing function is a
nonlinear bijective function (i.e. invertible and differentiable).

In linear ICA settings, the generative factors are assumed to be independent of each other and the
mixture function fX) is considered to be an invertible matrix A 2 Rd⇥d. Formally, the mechanism
F and the distribution P (U) of the true ASCM M⇤ are written as:

8
<

:

Vj  fj(Uj), 8j 2 [d]

X fX(V)

Ui ? Uj , 8i, j 2 [d]

(110)

The traditional approaches for proving identifiability from [7, 8, 10] has the following settings:

• (Assumptions) A parametric exponential family is assumed in [7]. In addition, the causal
assumptions of the latent variables is fully disconnected graph, where all variables are
mutually independent. Our work assumes a nonparametric mixing model, and only requires
the mixing function to be a bijection. In addition, we allow a non-Markovian causal model
among the latent variables, which is the first to our knowledge to analyze identifiability in
this general setting.

• (Data) Nonlinear ICA assumes that 2d+1 number of distributions with mechanism changes
of the latent variables such that a version of the Assump. 7 holds. One instantiation of
this in real-world data is time-series with non-stationary changes. Our work leverages
arbitrary combinations of interventional data arising from multiple domains, and also does
not necessarily require observational data.

• (Output) The focus of nonlinear ICA was typically on achieving disentanglement of la-
tent variables up to scaling indeterminancy (Def. 6.4). Our work approaches the goal of
identifiability from a more general setting according to Def. 2.3.

Interventional causal representation learning [50] Another potentially promising approach to
improving identifiability results lies in assuming a parametric form to the mixing function. [50]
considers the setting of having a mixing function that is a composition of polynomial functions (i.e. a
polynomial decoder).

Thus, [50] is able to achieve identifiability of latent variables up to an affine transformation:

V̂ = AV + c

where A 2 Rd⇥d and c 2 Rd make up an invertible affine transformation of the true latent variables V.
In our work, we consider a nonparametric form of the mixing function. However, future work could
consider relaxing this assumption in the direction of a parametric mixing function with polynomial
functions.

F Experimental Results

F.1 Discussion of Results

In Fig. S7, we show the MCC values for each learned latent representation V̂ and the corresponding
ground-truth latents V for the three different LSDs shown in Fig. 4. Based on the causal disentan-
glement map (CDM) output from the CRID algorithm, the disentangled variables are shown in red,
while the entangled variables are shown in gray.

In Fig. S7(a), the MCC(V̂3, V1) is low relative to the MCC(V̂3, V3), which is predicted by the CRID
algorithm’s CDM output (right plot). This suggests that V1 is disentangled from V3. In addition, we
observe that all MCC values wrt V̂1 are relatively similar, which makes sense as we do not obtain any
disentanglement wrt V1 (left plot). CRID also predicts that V2 is ID wrt V1 (middle plot). However,
we observe quite a large range of MCC values, possibly due to variance, default hyperparameter
settings, or insufficient sample size. Importantly, this experiment verifies that two soft interventions
on V3 in the chain graph of Fig. 4(a) can ID V3 wrt V1, whereas previous literature suggested that V3

is not ID wrt V1 because V1 2 Anc(V3) [21].
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In Fig. S7(b), we now have an observational, two soft interventions on V3, and a hard intervention
on V2. In addition to ID V2 wrt V3 (middle plot), we are also able to obtain full disentanglement of
V1 from {V2, V3} (left plot). Interestingly, we are able to fully disentangle the representation for V1

without intervening on it. This is the first theoretical (and empirical) result to our knowledge that
shows this in a causal representation learning setting.

In Fig. S7(c), we have an observational and four interventional distributions applied on {V1, V3}
all with different mechanisms. We observe that V1 and V3 are fully disentangled. MCC(V̂3, V3) >
MCC(V̂3, {V1, V2}), and MCC(V̂1, V1) > MCC(V̂1, {V2, V3}). CRID does not predict disentan-
glement for the V2 representation (middle plot), yet interestingly we still see some disentanglement.
[21] analyzes a similar setup using "fat-hand interventions", and the corresponding theory does
predict V1 and V3 is ID wrt V2. However, we also disentangle V1 and V3 from each other using
many interventions. [22] presents a similar approach by leveraging 2d+ |E(MG)|+ 1 distributions
that "sufficiently change" (i.e. Assumption 7) to disentangle variables. However, the corresponding
theory suggests that V1 and V3 are still entangled because they are adjacent in the Markov Network
of G (MG). These results demonstrate theoretically (and empirically) that V1 and V3 are in fact
disentangled from each other in a fundamentally important causal graph (i.e. the collider).

In Fig. S7(d), we consider disentanglement in a non-Markovian LSD. We leverage two hard inter-
ventions on V3 (c.f. Lemma 7), and verify that even without observational distributions and the
challenging setting of confounding among the latent variables, we can achieve disentanglement of V3

wrt all other variables. MCC(V̂3, V3) > MCC(V̂3, {V1, V2, V4}), which is predicted by the CRID
algorithm’s CDM output (3rd plot from left). As expected, V1 and V2 are still fully entangled with all
other variables (1st and 2nd plot from left).

51



(a)

(b)

(c)

(d)

Figure S7: Mean correlation coefficient (MCC) of latent ground truth variables with the learned
representation V̂, and expected disentanglement (red) according to the CRID algorithm. Each plot
corresponds to an experimental setting using the graphs shown in Fig. 4: chain graph with two
interventions on V3 (a). chain graph with two interventions on V3 and a hard intervention on V2 (b),
collider graph with four interventions on {V1, V3} (c) and the non-markovian graph with two hard
interventions on V3 (d).
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G Broader Impact and Forward-Looking Statements

The development of learning disentangled causal representations has the potential to improve our
understanding of complex systems, and to help identify the generative factors for many important
problems. By improving our ability to leverage observational and interventional data across multiple
domains, this work could ultimately lead to more realistic generative AI. Beyond the machine learning
and causal inference community, we expect that our results will enable fundamental contributions in
various fields, including biology [80], epidemiology [81], economics [35] and neuroscience [36].

H Frequently Asked Questions

Q1. What’s the learning goal of the paper? This work claims to be causal representation learning,
but why do we not learn the structure over the latent variables while assuming it as given?
Answer. Causal representation learning may comprise of two parts: i) learning the distribu-
tions of the latent variables and ii) learning the causal structure among these latent variables.
Learning the distribution over latent variables is a non-trivial problem, especially in the
context of non-Markovian ASCMs and the general multi-domain context. For example,
consider nonlinear ICA, where the structure of the latent variables is the fully disconnected
graph. It was shown to be non-ID with only iid data [9]. Although ID results eventually
came about for nonlinear ICA, it was nontrivial to derive. In the same spirit, we seek to
analyze the most general setting possible when assuming knowledge of the causal structure.
This is analogous to the causal inference task of identification [82, 83], where the goal is
to determine if a causal effect over observed variables is estimable given infinite data from
some given distributions on the observed variables. Put similarly, our work’s goal is to
determine if a latent variable Vi 2 V is disentangleable given infinite data from some given
distributions over the observed variables X. In traditional causal inference, when the causal
graph is unknown, then one is typically interested in causal discovery, or structure learning
of the graph over the observed variables given distributions over the observed variables.
Future work may assume that even the latent causal structure is unknown, and pursue the
structure learning of the LCG given distributions over the observed variables.

Q2. Is it reasonable to expect that the causal diagram is available? How do you get the graph?
Answer. The assumption of the causal diagram is made out of necessity. Even existing
methods is able to learn the casual diagram at the same time, however, the setting is more
restricted. For example, the SCM should be Markovian and the intervention data per node
should be given. In our setting, the underlying SCM can be non-Markovian and the given
data can be any observational and interventional data from an arbitrary domain. In the
general setting, even when the generative factors are all observed, learning the causal
diagram task (structural learning task) is still difficult. Interestingly, recovering the full
true diagram is even impossible, and existing works aim to recover an equivalence class of
diagrams [30, 84–86]. Thus, in this general setting for causal representation learning, we
first provide identification results given a causal diagram and leave structure learning for
future work.
We follow closely to the disentangled representation learning works that assume the causal
diagram is given. ICA/Nonlinear ICA assumes the diagram G is given and restricts the
setting where no edges are in G. Later, [18] assumes focus on disentangling the content
variable from the style variable and assumes the knowledge of the diagram is given (Content

is the ancestral of Style). Recently, [21] focuses on the setting that the given diagram is
Markovian. We extend the setting to non-Markovain settings. Notice that our generalization
is not only related to diagram assumption but involves more general assumption, data, and
output (please see Sec. 1, Tab. 1 and Tab. 2 for details.)
In practice, knowledge of the latent causal graph is typically provided by domain experts, or
a modeling assumption. As an example of a realistic setting where the latent causal graph
can be assumed, consider generating realistic face images [25]. Here, the latent causal
structure comprises of Gender, Age, and Hair Color. Knowledge of the graph is provided
due to our understanding of what comprises realistic changes in a face. For a detailed
discussion on this, see Appendix Section D.1.
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Q3. Why CRID (Alg. 1) only takes intervention targets and LSG G
S as input? Do you need

distributions P? If not, how do you learn representations?
Answer. CRID leverages the intervention targets  and the LSG G

S to determine the
invariant and changing factors when considering the generalized factorization of probability
distributions Markov relative to the provided graph. These invariant and changing factors
are what give rise to the theory we develop in Section 3. The CRID algorithm leverages this
theory to provide an identifiability algorithm, which answers the question: If we fully learn
a representation V̂ (given the diagram and the distributions), which variables are expected
to be disentangled with which variables? This is an asymptotic question and assumes the
representation is fully learned.
To fully learn the representations, one can search a proxy model that matches P and GS and
the bV. Then the proxy model is the learned representation. We do this in the Experiments
Section, but note we do not claim that this method of learning the representations is superior
to any prior work. Specifically, we implement an approach to train a neural model that is
compatible with the diagram to match the given distribution based on normalizing flows.
Recently, many graphical constraints proxy neural models have been proposed, and they
are trained to fit the given distribution for causal representation learning and downstream
tasks [20, 25, 53, 87–89]. Without our work, one can still try to use these models to learn
representations. However, there is no guarantee about how these learned representations is
entangled with each other. Our work is the first one to provide general answers for this
identification problem. This process can be compared with the identification and estimation
problem in classic causal inference. The identification of a specific query given a causal
diagram can be answered in symbolic ways [82, 90–94], and then if the query is identifiable,
one can take the distribution (or data) as input and use estimation methods to obtain the
estimated query. Without the identifiability result, there are no guarantees for the estimation.

Q4. Why not just use observational distributions in each domain as the baseline in the CRID
algorithm described in Section 4?
Answer. One may surmise that this is not efficient and propose to choose the observational
distribution in each domain alternatively. However, we argue that this enumeration is needed
from two perspectives. First, the observational distributions, namely the idle interventions,
are not always given. Second, comparing with observational distributions is not guaranteed
to offer diverse �Q sets. For example, consider intervention targets I(1) = {}⇧1 , I(2) =

{V ⇧1,[1]
1 , V

⇧1,[1]
2 }, I(3) = {V ⇧1,[1]

1 , V
⇧1,[2]
2 } all applied to the same domain ⇧1. Choosing

T = {} and comparing I(2) and I(3) with the idle intervention I(1),

�Q[I(2), I(1),T] = �Q[I(3), I(1),T] = {V1, V2}. (111)

Comparing I(1) and I(3) with the idle intervention I(2),

�Q[I(1), I(2),T] = �Q[I(3), I(2),T] = {V2}. (112)

Then using Proposition 3, it is possible to disentangle V2 from V1 with the latter choice. This
demonstrates that the observational distribution is not always necessarily the best baseline.
Furthermore, consider the challenge of disentangling V1 from V2 in the LCG V1 L9999K V2.
As Lemma 7 demonstrates, one can compare two hard intervention distributions on V1 to
achieve ID of V1 wrt V2. In this case, one would not even need the observational distribution.

Q5. Why distinguish domains and interventions? Are they not the same thing?
Answer. The literature has typically conflated domains and interventions in the context of
causal inference.
Many examples across scientific disciplines demonstrate that the notions of do-
main/environment and interventions are distinct. For example, when making inferences
about humans based on data from bonobos, this distinction becomes clear. The difference
between the two species is depicted as the environment/domain in this context. A scientist
might perform an intervention on a bonobo’s kidney (specifically, what we’re representing
as Z), and try to determine the effect of medication (X) on fluid equilibrium in the body
(Y ). Although we could intervene on Z in bonobos and observe its effect on X and Y ,
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our ultimate goal might be to understand the effect of X on Y in humans. It’s generally
invalid to conflate these two qualitatively different indices, a point first noted by [61] in
the context of transportability analysis. The distinct environments exist regardless of any
intervention, such as medication. Also, an intervention on kidney function is different across
the two species. [61] formalized this setting, introducing clear semantics for the S-nodes
(environments) that essentially offer a combined representation for both environments. With
this foundation, we can now address the more general problem of analyzing data generated
from interventions across multiple domains in the latent space.
We point the reader to Appendix Section A.3 for a discussion and some examples of how
CRID leverages this distinction.

Q6. Is the relaxation of Markovianity important? Since all V are already latent, can one
regard the confounding U as V to transfer the model in the non-Markovianity setting to a
Markovanity model?
Answer. Yes, the distinction between Markovianity and non-Markovianity is important both
qualitatively and quantitatively.
Qualitatively, consider the following example in healthcare, where one has access to high-
dimensional T1 MRI scans. Let the LCG comprise of Drug Treatment ! Outcome, but
they are confounded by socioeconomic status (Drug Treatment L9999K Outcome). The
drug treatment and outcome are visually discernable on the MRI. However, socioeconomic
status does not directly impact how the MRI appears, except through how it impacts the
drug treatment efficacy or outcome. The socioeconomic status is therefore an unaccounted
confounder in the LCG, and it is important to model this spurious association. If unac-
counted for, one may assume that it is possible to disentangle Drug Treatment and Outcome
leveraging existing ID results in the literature [11, 13, 14, 21, 22] even if the results do not
apply in this setting.
Regarding modeling, an ASCM with confounding cannot be reduced to a Markovian ASCM.
Although U and V are both latent, every U is not the direct parents of X, which means U
cannot be uniquely determined by value of X. Take the example where V1 L9999K V2 is
the LCG G. Since U12 does not point to X, we cannot let U12 be another latent generative
factor V.
Regarding results, we point the reader to Lemma 6, where it is shown that even with one
hard interventions per node, it is not possible to disentangle variables within the same
c-component. This in contrast with results in the Markovian setting, where it is shown in
[21] that one hard intervention per latent variable allows us to achieve full identifiability of
every latent variable up to scaling indeterminancies.
More broadly, it is noteworthy that transitioning causal reasoning from Markovian to non-
Markovian settings was not trivial. For example, it is known that interventional distributions,
such as P (y | do(x)), are always identifiable from the causal graph and observational
distribution in Markovian settings in all models. Moving to non-Markovian settings, the
celebrated do-calculus is developed primarily to address the decision problem of whether
an interventional distribution can be uniquely computed from a combination of causal
assumptions (in the form of a causal diagram) and the observational distribution [60].
Naturally, the issue of non-identifiability is much more acute in this setting, due to the
existence of unobserved confounding.
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