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Abstract

As society increasingly relies on AI-based tools for decision-making in socially
sensitive domains, investigating fairness and equity of such automated systems has
become a critical field of inquiry. Most of the literature in fair machine learning
focuses on defining and achieving fairness criteria in the context of prediction,
while not explicitly focusing on how these predictions may be used later on in
the pipeline. For instance, if commonly used criteria, such as independence or
sufficiency, are satisfied for a prediction score S used for binary classification, they
need not be satisfied after an application of a simple thresholding operation on S (as
commonly used in practice). In this paper, we take an important step to address this
issue in numerous statistical and causal notions of fairness. We introduce the notion
of a margin complement, which measures how much a prediction score S changes
due to a thresholding operation. We then demonstrate that the marginal difference
in the optimal 0/1 predictor Ŷ between groups, written P (ŷ | x1) − P (ŷ | x0),
can be causally decomposed into the influences of X on the L2-optimal prediction
score S and the influences of X on the margin complement M , along different
causal pathways (direct, indirect, spurious). We then show that under suitable
causal assumptions, the influences of X on the prediction score S are equal to
the influences of X on the true outcome Y . This yields a new decomposition of
the disparity in the predictor Ŷ that allows us to disentangle causal differences
inherited from the true outcome Y that exists in the real world vs. those coming
from the optimization procedure itself. This observation highlights the need for
more regulatory oversight due to the potential for bias amplification, and to address
this issue we introduce new notions of weak and strong business necessity, together
with an algorithm for assessing whether these notions are satisfied. We apply our
method to three real-world datasets and derive new insights on bias amplification
in prediction and decision-making.

1 Introduction

Automated systems based on machine learning and artificial intelligence are increasingly used for
decision-making in a variety of real-world settings. These applications include hiring decisions,
university admissions, law enforcement, credit lending and loan approvals, health care interventions,
and many other high-stakes scenarios in which the automated system may significantly affect the
well-being of individuals [16, 21, 8]. In this context, society is increasingly concerned about the
implications and consequences of using automated systems, compared to the currently implemented
decision processes. Prior works highlight the potential of automated systems to perpetuate or even
amplify inequities between demographic groups, with a range of examples from decision support
systems for (among others) sentencing [4], face-detection [9], online advertising [33, 13], and
authentication [31]. Notably, issues of unfairness and discrimination are also pervasive in settings
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in which decisions are made by humans. Some well-studied examples include the gender pay gap,
supported by a decades-long literature [6, 7], or the racial bias in criminal sentencing [34, 24], just
to cite a few. Therefore, AI systems designed to make decisions may often be trained with data
that contains various historical biases and past discriminatory decisions against certain protected
groups, constituting a large part of the underlying problem. In this work, we specifically focus on
investigating when automated systems may potentially lead to an even more discriminatory process,
possibly amplifying already existing differences between groups.

Within this context, it is useful to distinguish between different tasks appearing in the growing
literature on fair machine learning. One can distinguish three specific and different tasks, namely
(1) bias detection and quantification for exisiting outcomes or decision policies; (2) construction of
fair predictions of an outcome; (3) construction of fair decision-making policies that are intended to
be implemented in the real-world. Interestingly, a large portion of the literature in fair ML focuses
on the second task of fair prediction, and what is often left unaddressed is how these predictions
may be used later on in the pipeline, and what kind of consequences they may have. For instance,
consider a prediction score S for a binary outcome Y that satisfies well-known fairness criteria,
such as independence (demographic parity [12]) or sufficiency (calibration [11]). After a simple
thresholding operation, commonly applied in settings with a binary outcome, the resulting predictor
is no longer guaranteed to satisfy independence or sufficiency, and the previously provided fairness
guarantees may be entirely lost. The same behavior can be observed for numerous other measures.

These difficulties do not apply only to statistical measures of fairness. Recently, a growing literature
has explored causal approaches to fair machine learning [19, 17, 22, 37, 36, 35, 10, 30, 27], which
have two major benefits. First, they allow for human-understandable and interpretable definitions
and metrics of fairness, which are tied to the causal mechanisms transmitting the change between
groups. Secondly, they offer a language that is aligned with the legal notions of discrimination, such
as the disparate impact doctrine. In particular, causal approaches allow for considerations of business
necessity – which aim to ellucidate which covariates may be justifiably used by decision-makers
even if their usage implies a disparity between groups. However, causal approaches to fairness also
suffer from the above-discussed issues – namely, a guarantee of absence of a causal influence from
the protected attribute X onto a predictor S need not hold true after the predictor is thresholded [27].
Therefore, within the causal approach, there is also a major need for a better understanding of how
probabilistic predictions are translated into binary predictions or decisions.

In this work, we take an important step in the direction of addressing this issue. We work in a
setting with a binary label Y , and the goal is to provide a binary prediction Ŷ or a binary decision D.
Our approach is particularly suitable for settings in which the utility of the decision is monotonic
with respect to the conditional probability of Y being positive, written P (Y | covariates), but the
developed tools also have ramifications more general utilities. Examples that fall under our scope are
numerous; for instance, the utility of admitting a student to the university (D) is often monotonic in
the probability that the student successfully graduates (Y ). In the context of criminal justice, decisions
of detention (D) are used to prevent recidivism, and the utility of the decision is monotonic in the
probability that the individual recidivates (Y ). Finally, various preventive measures in healthcare (D,
such as vaccination, screening tests, etc.) are considered to be best applied to individuals with the
highest risk of developing a target disease or suffering a negative outcome (Y ). We now provide an
example that illustrates one of the key insights of our paper:
Example 1 (Disparities in Hiring). Consider a company deciding to hire employees using an
automated system for the first time. From a previous hiring cycle when humans were in charge, the
company has access to data on gender X (x0 for female, x1 for male) and the hiring outcome Y (y1
for being hired, y0 otherwise). The true underlying mechanisms of the system are given by:

X ← 1(UX < 0.5) (1)

Y ←
{

1(UY < p0) if X = x0

1(UY < p1) if X = x1
(2)

where UX , UY ∼ Unif[0, 1]. In words, an applicant is female with a 50% probability, and the
probability of being hired as a female x0 is p0, whereas for males x1 the probability is p1. The
company finds the optimal prediction score S to be S(x) = px. The optimal 0/1 predictor Ŷ , which
will also be the company’s decision, is given by Ŷ (x) = 1(S(x) ≥ 1

2 ), meaning that the company
will threshold the predictions at 1

2 . Suppose that p0 = 0.49, p1 = 0.51, and consider the visualization
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Figure 1: Visualization of hiring disparities from Ex. 1.

in Fig. 1. The probability p0 = 0.49 means that 49 out of 100 females were hired, while 51 were not.
After thresholding, Ŷ (x0) = 1(p0 ≥ 1

2 ) = 0 for each female applicant, meaning that the thresholding
operation maps the prediction of each individual to 0, even though 49/100 would have a positive
outcome (Fig. 1 right). Similarly, for p1 = 0.51, we have that 51/100 male applicants would be hired,
resulting in a thresholded predictor Ŷ (x1) = 1 for all the applicants, even though 49/100 would not
have a positive outcome (Fig. 1 left). Therefore, the gender disparity in hiring after introducing the
automated predictor Ŷ is 100%, compared to a 2% disparity in the outcome Y before introducing Ŷ .
Formally, the disparity in the optimal 0/1 predictor P (ŷ | x1)−P (ŷ | x0) = 1(p1 ≥ 1

2 )−1(p0 ≥
1
2 )

can be decomposed as:

P (ŷ | x1)− P (ŷ | x0) = p1 − p0︸ ︷︷ ︸
Term I

+(1(p1 ≥
1

2
)− p1)− (1(p0 ≥

1

2
)− p0)︸ ︷︷ ︸

Term II

. (3)

Term I measures the disparity coming from the true outcome Y (2% disparity), which is equal to the
disparity in the prediction score S, written P (s | x1)− P (s | x0). Term II measures the contribution
coming from thresholding the prediction score to obtain an optimal 0/1 prediction (98% disparity). □

The above example illustrates a canonical point in a simple setting: a small disparity in the outcome
Y , and consequently the prediction score S, may result in a large disparity in the optimal 0/1 predictor
Ŷ , a case we call bias amplification. Contrary to this, a large disparity in S may also result in a small
disparity in Ŷ , a case we call bias amelioration.

In the remainder of the manuscript, our goal is to provide a decomposition of the disparity in a
thresholded predictor Ŷ into the disparity in true outcome Y and the disparity originating from
optimization procedure, but along each causal pathway between the protected attribute X and the
predictor Ŷ . In particular, our contributions are the following:

(1) We introduce the notion of margin complement (Def. 1), and provide a path-specific decom-
position of the disparity in the 0/1 predictor Ŷ into its contributions from the optimal score
predictor S and the margin complement M (Thm. 1),

(2) We prove that under suitable assumptions, the causal decomposition of the optimal prediction
score S is equivalent with the causal decomposition of the true outcome Y (Thm. 2). This
allows us to obtain a new decomposition of the disparity in Ŷ into contributions from Y and
the margin complement M (Cor. 3),

(3) Motivated by the above decompositions, we introduce a new concept of weak and strong
business necessity (Def. 3), highlighting a new need for regulatory instructions in the context
of automated systems. We provide an algorithm for assessing fairness under considerations
of weak and strong business necessity (Alg. 1),

(4) We provide identification, estimation, and sample influence results for all of the quantities
relevant to the above framework (Props. 4, 5). We evaluate our approach on three real-world
examples (Ex. 2-3) and provide new empirical insights into bias amplification.

Our work is related to the previous literature on causal fairness and the causal decompositions appear-
ing in this literature [37, 27]. However, our approach offers an entirely new causal decomposition
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into contributions from the true outcome Y and the margin complement M . Our work is also related
to recent results showing that focusing purely on prediction, and ignoring decision-making aspects,
may lead to inequitable outcomes and cause harm to marginalized groups [27, 23, 28], highlighting a
need to expand focus from narrow statistical definitions of fair predictions to a more comprehensive
understanding of equity in algorithmic decisions. Finally, our work is also related to the literature
auditing and assessing fairness of decisions made by humans [26, 18], and understanding how AI
systems may help humans overcome their biases [14].

1.1 Preliminaries

Z

X

W

Y

Ŷ

Figure 2: Standard Fairness Model.

We use the language of structural causal models (SCMs) [25].
An SCM is a tupleM := ⟨V,U,F , P (u)⟩ , where V , U are sets
of endogenous (observable) and exogenous (latent) variables,
respectively, F is a set of functions fVi

, one for each Vi ∈
V , where Vi ← fVi

(pa(Vi), UVi
) for some pa(Vi) ⊆ V and

UVi
⊆ U . P (u) is a strictly positive probability measure over

U . Each SCMM is associated to a causal diagram G [5] over
the node set V where Vi → Vj if Vi is an argument of fVj

, and Vi L9999K Vj if the corresponding
UVi

, UVj
are not independent. An instantiation of the exogenous variables U = u is called a unit.

By Yx(u) we denote the potential response of Y when setting X = x for the unit u, which is the
solution for Y (u) to the set of equations obtained by evaluating the unit u in the submodelMx,
in which all equations in F associated with X are replaced by X = x. Throughout the paper, we
assume a specific cluster causal diagram GSFM known as the standard fairness model (SFM) [27]
over endogenous variables {X,Z,W, Y, Ŷ } shown in Fig. 2 (see also [3]). The SFM consists of the
following: protected attribute, labeled X (e.g., gender, race, religion), assumed to be binary; the set
of confounding variables Z, which are not causally influenced by the attribute X (e.g., demographic
information, zip code); the set of mediator variables W that are possibly causally influenced by
the attribute (e.g., educational level or other job-related information); the outcome variable Y (e.g.,
GPA, salary); the predictor of the outcome Ŷ (e.g., predicted GPA, predicted salary). The SFM also
encodes the lack-of-confounding assumptions typically used in the causal inference literature. The
availability of the SFM and the implied assumptions are a possible limitation of the paper, while we
note that partial identification techniques for bounding effects can be used for relaxing them [38].

2 Margin Complements

We begin by introducing a quantity that plays a key role in the results of this paper.
Definition 1 (Margin Complement). Let U = u be a unit, and let S denote a prediction score for a
binary outcome Y . Let the subscript C denote a counterfactual clause, so that ZC denotes a potential
response. The margin complement M of the score S for the unit U = u and threshold t is defined as:

M(u) = 1(S(u) ≥ t)− S(u). (4)

A potential response of M , labeled MC , is given by MC(u) = 1(SC(u) ≥ t)− SC(u).

In words, the margin complement for a unit U = u represents the difference in the score after
thresholding vs. the score that would happen naturally.
Example 1 (Disparities in Hiring continued). Consider the hiring example with the SCM in Eqs. 1-2
with p0 = 0.49, p1 = 0.51. The unit (UX , UY ) = (0, 0) corresponds to a male applicant (X(u) = 1)
who was hired (Y (u) = 1). We have S(u) = p1 = 0.51, and M(u) = 1(S(u) ≥ 0.5) −
S(u) = 1− 0.51 = 0.49. For this u, the margin complement indicates that the predicted outcome
Ŷ (u) = 1(S(u) ≥ 0.5) is 49% greater than the predicted probability S(u). The same computation
can be done for a female X(u′) = 0, in which case M(u′) = 1(px0 ≥ 0.5)−px0 = −0.49, meaning
that the predicted outcome Ŷ (u′) is 49% smaller than the predicted probability S(u′). □

Given a prediction score S and a threshold t, the margin complement M tells us in which direction the
thresholded version 1(S(u) ≥ t) moves compared to the score S(u). A positive margin complement
indicates that a thresholded predictor is larger than the probability prediction, and a negative margin
complement the opposite. A similar reasoning holds for the potential responses of the margin
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complement MC : we are interested in what the margin complement would have been for an individual
U = u under possibly different, counterfactual conditions described by C. As we demonstrate shortly,
margin complements (and their potential responses) play a major role in explaining how inequities are
generated between groups at the time of decision-making. In this section, our key aim is to analyze
the optimal 0/1 predictor Ŷ and provide a decomposition of its total variation measure (TV, for short),
defined as TVx0,x1(ŷ) = P (ŷ | x1)− P (ŷ | x0). When working with the causal diagram in Fig. 2,
we can notice that the TV measure comprises of three types of variations coming from X: the direct
effect X → Ŷ , the mediated effect X →W → Ŷ , and the confounded effect X L9999K Z → Ŷ . Our
goal is to construct a decomposition of the TV measure that allows us to distinguish how much of
each of the causal effects is due to a difference in the prediction score S, and how much due to margin
complements M . To investigate this, we first introduce the known definitions of direct, indirect, and
spurious effects from the causal fairness literature:
Definition 2 (x-specific Causal Measures [37, 27]). The x-specific {direct, indirect, spurious} effects
of X on Y are defined as x-DEx0,x1

(y | x) = P (yx1,Wx0
| x) − P (yx0

| x), x-IEx1,x0
(y | x) =

P (yx1,Wx0
| x)− P (yx1

| x), and x-SEx1,x0
(y) = P (yx1

| x0)− P (yx1
| x1), respectively.

Armed with these definitions, we can prove the following result:

Theorem 1 (Causal Decomposition of Optimal 0/1 Predictor). Let Ŷ be the optimal predictor
with respect to the 0/1-loss based on covariates X,Z,W . Let S denote the optimal predictor with
respect to the L2 loss. The total variation (TV, for short) measure of the predictor Ŷ , written as
P (ŷ | x1) − P (ŷ | x0), can be decomposed into direct, indirect, and spurious effects of X on the
score S and the margin complement M as follows:

TVx0,x1
(ŷ) = x-DEx0,x1

(s | x0) + x-DEx0,x1
(m | x0) (5)

−
(
x-IEx1,x0

(s | x0) + x-IEx1,x0
(m | x0)

)
(6)

−
(
x-SEx1,x0(s) + x-SEx1,x0(m)

)
. (7)

The above theorem is the first key result of this paper. The disparity between groups with respect to
the optimal 0/1-loss predictor, measured by TVx0,x1(ŷ) can be decomposed into direct, indirect, and
spurious contributions coming from (i) the optimal L2-loss predictor S (e.g., term x-DEx0,x1

(s | x0)),
and (ii) the margin complement M (e.g., term x-DEx0,x1

(m | x0)). This provides a unique capability
since for each causal pathway (direct, indirect, spurious) the contribution coming from the probability
prediction S can be disentangled from the contribution coming from the optimization procedure itself
(i.e., the rounding of the predictor). The former, as we will see shortly, is simply a representation of
the bias already existing in the true outcome Y , whereas the latter represents a newly introduced type
of bias that is the result of using an automated system. The contribution of the margin complement
may act to both ameliorate or amplify an existing disparity, a point we investigate later on.
Example 1 (Disparities in Hiring extended). Consider the hiring example from Ex. 1 extended with a
mediator W indicating whether the applicant has a PhD degree (W = 1) or not (W = 0). Suppose
the augmented SCM is given by:

X ← 1(UX < 0.5) (8)
W ← 1(UW < 0.5 + λX) (9)
Y ← 1(UY < 0.1 + αX + βW ), (10)

and P (UX , UW , UY ) is such that UX , UW , UY are independent Unif[0, 1] random variables. The
coefficients satisfy the constraints α, λ > 0, 0.4 < β < 0.9−α

1+λ . The optimal probability predictor
is S(x,w) = 0.1 + αx + βw. The TV measure of the optimal 0/1 predictor be computed as
TVx0,x1

(ŷ) = α
β + λ. Using Thm. 1 we can decompose it as:

TVx0,x1
(ŷ) = α︸︷︷︸

x-DEx0,x1
(s|x0)

+
α

β
− α︸ ︷︷ ︸

x-DEx0,x1
(m|x0)

− (−λβ)︸ ︷︷ ︸
x-IEx1,x0 (s|x0)

− (λ− λβ)︸ ︷︷ ︸
x-IEx1,x0 (m|x0)

. (11)

Along the direct effect, there is a difference of α between the groups in the probability predictor
S(x,w) that is amplified by α

β − α by the margin complement, and since β < 1 we always have bias
amplification. Along the indirect effect, there is an initial difference of λβ, amplified by an additional
λ − λβ, again amplifying bias. The decomposition provides a breakdown of the disparity of the
optimal 0/1 predictor into its constitutive parts. □
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We next consider a crucial point mentioned above. The disparity observed in the optimal L2 score S is
simply a representation of the disparity existing in the real world, under suitable causal assumptions:
Theorem 2 (Relationship of L2-score S and Outcome Y Decompositions). Let M be an SCM
compatible with the Standard Fairness Model, and let S be the optimal L2 prediction score.
Then, the causal decompositions of the score S and the true outcome Y are symmetric, mean-
ing that x-DEx0,x1

(s | x0) = x-DEx0,x1
(y | x0), x-IEx1,x0

(s | x0) = x-IEx1,x0
(y | x0), and

x-SEx1,x0
(s) = x-SEx1,x0

(y).

Based on this result, we can see that the causal influences from X on the true outcome Y are
equivalent to the causal influences from X on the optimal prediction score S. Combining this insight
with Thm. 1 leads to the following result:
Corollary 3 (Causal Decomposition of Optimal 0/1 Predictor). Under the Standard Fairness Model,
the TV measure of the optimal 0/1-loss predictor Ŷ can be decomposed into contributions from the
true outcome Y and the margin complement M :

TVx0,x1(ŷ) = x-DEx0,x1(y | x0) + x-DEx0,x1(m | x0)−
(
x-IEx1,x0(y | x0) + x-IEx1,x0(m | x0)

)
(12)

−
(
x-SEx1,x0(y) + x-SEx1,x0(m)

)
. (13)

This corollary provides an important insight compared to Thm. 1: the disparity in the optimal predictor
Ŷ can be decomposed into the contribution inherited from the true outcome Y and the contribution
that arises from the optimization procedure (rounding of the predictor).

3 Weak and Strong Business Necessity

In law, questions of fairness and discrimination can be interpreted based on the disparate treatment
(DT) and disparate impact (DI) doctrines of Title VII of the Civil Rights Act of 1964 [2]. The DT
doctrine, when interpreted causally, can be seen as disallowing a direct type of effect from X onto
the outcome. The DI doctrine, however, is more broad, and may prohibit any from of discrimination
(be it direct, indirect, or spurious) that results in a large disparity between groups. The core of this
doctrine is the notion of business necessity (BN), which allows certain variables correlated with
the protected attribute to be used for prediction due to their relevance to the business itself [1] (or
more broadly the utility of the decision-maker). Based on the decomposition from Cor. 3, new BN
considerations emerge:
Definition 3 (Weak and Strong Business Necessity). LetM be an SCM compatible with the Standard
Fairness Model. Let CE denote a causal pathway (DE, IE, or SE). If a causal pathway does not fall
under business necessity, then we require:

x-CEx,x′(s | x′′) = x-CEx,x′(m | x′′) = 0. (14)

A pathway is said to satisfy weak business necessity if:

x-CEx,x′(s | x′′) = x-CEx,x′(y | x′′), x-CEx,x′(m | x′′) = 0. (15)

A pathway is said to satisfy strong business necessity if:

x-CEx,x′(s | x′′) = x-CEx,x′(y | x′′), x-CEx,x′(m | x′′) unconstrained. (16)

The above definition distinguishes between three important cases, and sheds light on a new aspect
of the concept of business necessity. According to the definition, there are three versions of BN
considerations: (1) A causal pathway is not in the BN set, and is considered discriminatory. In
this case, both the contribution of the prediction score S and the margin complement M need to
be equal to 0 (i.e., no discrimination is allowed along the pathway); (2) A causal pathway satisfies
weak BN, and is not considered discriminatory. In this case, the effect of X on the prediction score
S needs to equal the effect of X onto the true outcome Y along the same pathway [29]. However,
the contribution of the margin complement M along the pathway needs to equal 0; (3) A causal
pathway satisfies strong BN, and is not considered discriminatory. Similarly as for weak necessity,
the effect of X on S needs to equal the effect of X on Y , but in this case, the contribution of the
margin complement M is unconstrained. The distinction between cases (2) and (3) opens the door for
new regulatory requirements and specifications. In particular, whenever a causal effect is considered
non-discriminatory, the attribute X needs to affect S to the extent to which it does in the real world.
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Algorithm 1: Auditing Weak & Strong Business Necessity

Input: data D, BN-Set ⊆ {DE, IE,SE}, BN-Strength, predictor Ŷ , score S, SFM
Output: SUCCESS or FAIL of ensuring that disparate impact and treatment hold under BN

1 foreach CE ∈ {DE, IE, SE} do
2 Compute the effects x-CE(y), x-CE(m), x-CE(s), x-CE(ŷ)
3 if CE ∈ Strong-BN then
4 Assert that x-CE(s) = x-CE(ŷ), otherwise FAIL
5 else if CE ∈ Weak-BN then
6 Assert that x-CE(s) = x-CE(ŷ) ∧ x-CE(m) = 0, otherwise FAIL
7 else
8 Assert that x-CE(ŝ) = x-CE(m̂) = 0, otherwise FAIL

9 if not FAIL return SUCCESS

However, the system designer also needs to decide whether a difference existing in the predicted
probabilities S is allowed to be amplified (or ameliorated) by means of rounding. The latter point
distinguishes between weak and strong BN, and should be a consideration of any system designer
issuing binary decisions. In Alg. 1, we propose a formal approach for evaluating considerations of
weak and strong BN for any input of a predictor Ŷ and a prediction score S.

4 Identification, Estimation, and Sample Influence

In Thm. 1 and Cor. 3 the observed disparity in the TV measure of the optimal 0/1 predictor is
decomposed into its constitutive components. The quantities appearing in the decomposition are
counterfactuals, and thus the question of identification of these quantities needs to be addressed. In
other words, we need to understand whether these quantities can be uniquely computed based on the
available data and the causal assumptions. The following is a positive answer:
Proposition 4 (Identification and Estimation of Causal Measures). LetM be an SCM compatible
with the Standard Fairness Model, and let P (V ) be its observational distribution. The x-specific
direct, indirect, and spurious effects of X on the outcome Y , predictor Ŷ , prediction score S, and
the margin complement M are identifiable (uniquely computable) from P (V ) and the SFM. Denote
by f(x, z, w) estimator of E[T | x, z, w], and by P̂ (x | v′) the estimator of the probability P (x | v′)
for different choices of v′. For T ∈ {Y, Ŷ , S,M}, the effects can be estimated as:

x-DEest
x0,x1

(t | x0) =
1

n

n∑
i=1

[f(x1, wi, zi)− f(x0, wi, zi)]
P̂ (x0 | wi, zi)

P̂ (x0)
(17)

x-IEest
x1,x0

(t | x0) =
1

n

n∑
i=1

f(x1, wi, zi)
[ P̂ (x0 | wi, zi)

P̂ (x0)
− P̂ (x1 | wi, zi)

P̂ (x1 | zi)
P̂ (x0 | zi)
P̂ (x0)

]
(18)

x-SEest
x1,x0

(t) =
1

n

n∑
i=1

f(x1, wi, zi)
[ P̂ (x1 | wi, zi)

P̂ (x1 | zi)
P̂ (x0 | zi)
P̂ (x0)

− P̂ (x1 | wi, zi)

P̂ (x1)

]
. (19)

The proof of the proposition, together with the identification expressions for the different quantities
can be found in Appendix B. We next define the sample influences for the different estimators:
Definition 4 (Sample Influence). The sample influence of the i-th sample on the estimator x-CEest

of the causal effect CE is given by corresponding term in the summations in Eqs. 17-19. For instance,
the i-th sample influence on x-DEest

x0,x1
(t | x0) is given by (and analogously for IE, SE terms):

SI-DE(i) = [f(x1, wi, zi)− f(x0, wi, zi)]
P̂ (x0 | wi, zi)

P̂ (x0)
. (20)

The sample influences tell us how each of the samples contributes to the overall estimator of the
quantity. These sample-level contributions may be interesting to investigate from the point of view
of the system designer, including identifying any subpopulations that are discriminated against. For
direct sample influences, the following proposition can be proved:
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Figure 3: Causal decomposition from Cor. 3 and sample influence on the MIMIC-IV dataset.

Proposition 5 (Direct Effect Sample Influence). The SI-DE(i) in Eq. 20 is an estimator of

E[Tx1,Wx0
− Tx0

| x0, zi, wi]
P (wi, zi | x0)

P (wi, zi)
, (21)

where E[Tx1,Wx0
− Tx0

| x0, zi, wi] is the (x0, zi, wi)-specific direct effect of X on T .

Prop. 5 demonstrates an important point – namely that the sample influences along the direct path
are not just quantities of statistical interest, but also causally meaningful quantities. In particular,
the influence of the i-th sample is proportional to the direct effect of the x0 → x1 transition for
the group of units u compatible with the event x0, zi, wi. The influence is further proportional to
P (wi, zi | x0)/P (wi, zi) that measures how much more likely the covariates zi, wi of the i-th sample
are in the X = x0 group (for which the discrimination is quantified) vs. the overall population.
Therefore, practitioners also have a causal reason for investigating these sample influences.

5 Experiments

We analyze the MIMIC-IV (Ex. 2), COMPAS (Ex. 3), and Census (Ex. 4, Appendix C) datasets.
Example 2 (Acute Care Triage on MIMIC-IV Dataset [15]). Clinicians in the Beth Israel Deaconess
Medical Center in Boston, Massachusetts treat critically ill patients admitted to the intensive care
unit (ICU). For all patients, various physiological and treatment information is collected 24 hours
after admission, and the available data consists of (grouped into the Standard Fairness model):
protected attribute X , in this case race (x0 African-American, x1 White), set of confounders Z =
{sex, age, chronic health status}, set of mediators W ={lactate, SOFA score, admission diagnosis,
PaO2/FiO2 ratio, aspartate aminotransferase}.

Clinicians are interested in patients who require closer monitoring. They want to determine the
top half of the patients who are the most likely to (i) die during their hospital stay; (ii) have an
ICU stay longer than 10 days. This combined outcome is labeled Y . These high-risk patients
will remain in the most acute care unit. To predict the outcome, clinicians use the electronic
health records (EHR) data of the hospital and construct score predictions S and a binary predictor
Ŷ = 1(S(x, z, w) > Quant(0.5;S)) that selects the top half of the patients.

To investigate the fairness implications of the new AI-based system, they use the decomposition
described in Cor. 3 to investigate different contributions to the resulting disparity. The decomposition
is shown in Fig. 3(a), and uncovers a number of important effects. Firstly, along the direct effect,
x-DEx0,x1

(y) and x-DEx0,x1
(m) are larger than 0, meaning that minority group individuals have a

lower chance of receiving acute care (purely based on race). Along the indirect and spurious effects,
the situation is different: x-IEx1,x0

(y) and x-SEx1,x0
(y) and their respective margin complement

contributions are different than 0 and negative – implying that minority group individuals have a
larger probability of being given acute care as a result of confounding and mediating variables.
Finally, the direct effect sample influences (Fig. 3(b)) highlight that the margin complements are large
for a small minority of individuals, requiring further subgroup investigation by the hospital team. □

Example 3 (Recidivism Prevention on the COMPAS Dataset [20]). Courts in Broward County,
Florida use machine learning algorithms, developed by a private company called Northpointe, to
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Figure 4: Application of Alg. 1 on the COMPAS dataset.

predict whether individuals released on parole are at high risk of re-offending within 2 years (Y ).
The algorithm is based on the demographic information Z (Z1 for gender, Z2 for age), race X (x0

denoting White, x1 Non-White), juvenile offense counts J , prior offense count P , and degree of
charge D. The courts wish to know which individuals are highly likely to recidivate, such that their
probability of recidivism is above 50%. The company constructs a prediction score ŜNP and the
court subsequently uses this for deciding whether to detain individuals at high risk of re-offending.

After a court hearing in which it was decided that the indirect and spurious effects fall under business
necessity requirements, a team from ProPublica wishes to investigate the implications of using the
automated predictions ŜNP . They obtain the relevant data and apply Alg. 1, with the results shown
in Fig. 4. The team first compares the decompositions of the true outcome Y and the predictor
ŜNP (Fig. 4(a)). For the spurious effect, they find that x-SEx1,x0

(y) is not statistically different from
x-SEx1,x0(ŝ

NP ), in line with BN requirements. For the indirect effects, they find that the indirect
effect is lower for the predictor ŜNP compared to the true outcome Y , indicating no concerning
violations. However, for the direct effect, while the x-DEx0,x1

(y) is not statistically different from 0,
the predictor ŜNP has a significant direct effect of X , i.e., x-DEx0,x1(ŝ

NP ) ̸= 0. This indicates a
violation of the fairness requirements determined by the court.

After comparing the decompositions of ŜNP and Y , the team moves onto understanding the contribu-
tions of the margin complements (Fig. 4b). For each effect, there is a pronounced impact of the margin
complements. For the direct effect (not under BN), the non-zero margin complement contribution
x-DEx1,x0(m) ̸= 0 represents a violation of fairness requirements. For the indirect and spurious
effects, the ProPublica team realizes the court did not specify anything about margin complement
contributions – based on this, for the next court hearing they are preparing an argument showing that
the effects x-IEx1,x0

(m) and x-SEx1,x0
(m) are significantly different from 0, thereby exacerbating

the differences between groups. Finally, based on sample influences (Fig. 4c), they realize that the
direct effect is driven by a small minority of individuals, and they decide to investigate this further. □

6 Conclusion

In this paper, we developed tools for understanding the fairness impacts of transforming a continuous
prediction score S into binary predictions Ŷ or binary decisions D. In Thm. 1 and Cor. 3 we showed
that the TV measure of the optimal 0/1 predictor decomposes into direct, indirect, and spurious
contributions that are inherited from the true outcome Y in the real world, and also contributions
from the margin complement M (Def. 1) arising from the automated optimization procedure. This
observation motivated new notions of weak and strong business necessity (BN) – in the former
case, differences inherited from the true outcome Y are allowed to be propagated into predictions or
decisions, while any differences resulting from the optimization procedure are disallowed. In contrast,
strong BN allows both of these differences and does not prohibit possible disparity amplification.
In Alg. 1, we developed a formal procedure for assessing weak and strong BN. Finally, real-world
examples demonstrated that the tools developed in this paper are of genuine importance in practice,
since converting continuous predictions into binary decisions may often result in bias amplification in
practice – highlighting the need for this type of analysis, and the importance of regulatory oversight.
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Technical Appendices for Mind the Gap: A Causal Perspective on
Bias Amplification in Prediction & Decision-Making

The source code for reproducing all the experiments can be found in the anonymized code repository.
The code is also included with the supplementary materials, in the folder source-code. All
experiments were performed on a MacBook Pro, with the M3 Pro chip and 36 GB RAM on macOS
14.1 (Sonoma). All experiments can be run with less than 1 hour of compute on the above-described
machine or equivalent.

A Proofs of Key Theorems

Thm. 1 Proof: Notice that by definition we have

MC(u) = 1(SC(u) ≥
1

2
)− SC(u) ∀u ∈ U . (22)

Now, let E be any observed event, and let C be a counterfactual clause representing a possibly
counterfactual intervention. Note that we can write:

E[ŶC | E]
(def)
=

∑
u

ŶC(u)P (u | E) =
∑
u

1(SC(u) ≥
1

2
)P (u | E) (23)

=
∑
u

(
1(SC(u) ≥

1

2
)− SC(u) + SC(u)

)
P (u | E) (24)

=
∑
u

(
1(SC(u) ≥

1

2
)− SC(u)

)
P (u | E) +

∑
u

SC(u)P (u | E) (25)

=
∑
u

MC(u)P (u | E) +
∑
u

SC(u)P (u | E) (26)

=E[MC | E] +E[SC | E]. (27)

Now, we can expand the TV measure of Ŷ as follows:

TVx0,x1(ŷ) = E[Ŷ | x1]−E[Ŷ | x0] (28)

= E[Ŷx1
| x1]−E[Ŷx1

| x0] (29)

+E[Ŷx1
| x0]−E[Ŷx1,Wx0

| x0] (30)

+E[Ŷx1,Wx0
| x0]−E[Ŷx0

| x0] (31)

= E[Sx1
| x1]−E[Sx1

| x0] +E[Mx1
| x1]−E[Mx1

| x0] (32)
+E[Sx1

| x0]−E[Sx1,Wx0
| x0] +E[Mx1

| x0]−E[Mx1,Wx0
| x0] (33)

+E[Sx1,Wx0
| x0]−E[Sx0 | x0] +E[Mx1,Wx0

| x0]−E[Mx0 | x0] (34)

= −x-SEx1,x0
(s)− x-SEx1,x0

(m) (35)
− x-IEx1,x0

(s | x0)− x-IEx1,x0
(m | x0) (36)

+ x-DEx0,x1
(s | x0) + x-DEx0,x1

(m | x0), (37)

completing the proof.

Thm. 2 Proof: LetM be an SCM compatible with the SFM in Fig. 2 as per theorem assumption. Let
the optimal L2 prediction score S be given by S(x, z, w) = E[Y | x, z, w]. More precisely, we can
let fS be the structural mechanism of S, taking X,Z,W as inputs. The structural mechanism of S is
then given by:

fS(x, z, w) = E [Y | x, z, w] . (38)

Therefore, the score S is a deterministic function of X,Z,W , and we can add it to the standard
fairness model as shown in Fig. 5a. Now, note that for a potential outcome E[Sx,Wx′ | x′′] we can
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Figure 5: Graphs used in proofs of Thm. 2 and Prop. 4.

write:

E[Sx,Wx′ | x′′] =
∑
z

E[Sx,Wx′ | x′′, z]P (z | x′′) (39)

=
∑
z,w

E[Sx,w,z1(Wx′ = w) | x′′, z]P (z | x′′) (40)

=
∑
z,w

E[Sx,w,z | x′′, z]E[1(Wx′ = w) | x′′, z]P (z | x′′) (41)

=
∑
z,w

E[Sx,w,z]P (Wx′ = w | x′′, z)P (z | x′′) (42)

=
∑
z,w

E[Yx,w,z]P (Wx′ = w | x′′, z)P (z | x′′) (43)

=
∑
z,w

E[Yx,w,z1(Wx′ = w) | x′′, z]P (z | x′′) (44)

=
∑
z

E[Yx,Wx′ | x′′, z]P (z | x′′) = E[Yx,Wx′ | x′′], (45)

where Eq. 41 is using the independence Sx,z,w⊥⊥Wx′ | X,Z, and Eq. 44 is using the independence
Yx,z,w⊥⊥Wx′ | X,Z, both of which are implied by the standard fairness model extended with the
node S above. Based on the equality E[Sx,Wx′ | x′′] = E[Yx,Wx′ | x′′] for arbitrary values x, x′, x′′,
the claim follows from the appropriate choices: for instance, taking {x = x1, x

′ = x0, x
′′ = x0} and

{x = x0, x
′ = x0, x

′′ = x0}, it follows that

x-DEx0,x1
(s) = E[Sx1,Wx0

| x0]−E[Sx0,Wx0
| x0] (46)

= E[Yx1,Wx0
| x0]−E[Yx0,Wx0

| x0] = x-DEx0,x1(y). (47)

Similarly, analogous choices of x, x′, x′′ can be used to show the equality for indirect and spurious
effects.

B Proofs related to Identification & Estimation

Prop. 4 Proof: Consider the x-specific {direct, indirect, spurious} effects of X on a random variable
T given by:

x-DEx0,x1
(t | x0) = P (tx1,Wx0

| x0)− P (tx0
| x0) (48)

x-IEx1,x0
(t | x0) = P (tx1,Wx0

| x0)− P (tx1
| x0) (49)

x-SEx1,x0
(t) = P (tx1

| x0)− P (tx1
| x1). (50)

We first demonstrate why each of the potential outcomes appearing is identifiable under the Standard
Fairness Model. Consider the potential outcome Tx1,Wx0

| X = x0. For proving its identifiability,
we make use of the counterfactual graph [32] in Fig. 5b. We can expand P (Tx1,Wx0

= t | x0) as
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follows:

=
∑
w

P (Tx1,w = t,Wx0
= w | x0) (Counterfactual Un-nesting) (51)

=
∑
z,w

P (Tx1,w = t,Wx0
= w | z, x0)P (z | x0) (Law of Total Probability) (52)

=
∑
z,w

P (Tx1,w = t | z, x0)P (Wx0
= w | z, x0)P (z | x0) (Tx1,w⊥⊥Wx0

| Z,X) (53)

=
∑
z,w

P (Tx1,w = t | z, x0)P (W = w | z, x0)P (z | x0) (Consistency) (54)

=
∑
z,w

P (Tx1,w = t | z, w, x0)P (W = w | z, x0)P (z | x0) (Tx1,w⊥⊥W | Z,X) (55)

=
∑
z,w

P (Tx1,w = t | z, w, x1)P (W = w | z, x0)P (z | x0) (Tx1,w⊥⊥X | Z) (56)

=
∑
z,w

P (T = t | z, w, x1)P (W = w | z, x0)P (z | x0) (Consistency) (57)

=
∑
z,w

P (t | z, w, x1)P (w | z, x0)P (z | x0). (58)

Using a similar but simplified argument, we also obtain that:

P (Tx1
= t | x0) =

∑
z

P (t | x1, z)P (z | x0), (59)

and since P (Tx = t | x) = P (t | x), all the terms in Eqs. 48-50 can be computed based on
observational data.

We next move onto the estimation part of the proof. We again focus on the quantity P (Tx1,Wx0
= t |

x0). Suppose that we have:

f(x1, z, w)
P−→ E[T | x1, z, w] ∀z, w (60)

P̂ (x0 | w, z)
P−→ P (x0 | w, z) ∀z, w (61)

P̂ (w, z)
P−→ P (w, z) ∀w, z (62)

P̂ (x0)
P−→ P (x0) (63)

where f, P̂ (x0 | w, z) are estimators, and P̂ (w, z), P̂ (x0) are the empirical distributions:

P̂ (w, z) =
1

n

n∑
i=1

1(Zi = z,Wi = w) (64)

P̂ (x0) =
1

n

n∑
i=1

1(Xi = x0). (65)

Now, note that we can re-write the identification expression from Eq. 58 as:∑
z,w

P (t | z, w, x0)P (z, w)
P (x0 | z, w)

P (x0)
. (66)

By a coupling of quantities in Eqs. 60-63 to a joint probability space and an application of the
continuous mapping theorem we obtain that∑

z,w

f(x1, z, w)P̂ (z, w)
P̂ (x0 | z, w)

P̂ (x0)

P−→
∑
z,w

P (t | z, w, x1)P (z, w)
P (x0 | z, w)

P (x0)
. (67)
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Figure 6: Causal decomposition from Cor. 3 and sample influence on the Census 2018 dataset.

Finally, note that we have∑
z,w

f(x1, z, w)P̂ (z, w)
P̂ (x0 | z, w)

P̂ (x0)
=

∑
z,w

f(x1, z, w)
( n∑

i=1

1(Zi = z,Wi = w)

n

) P̂ (x0 | z, w)
P̂ (x0)

(68)

=
1

n

n∑
i=1

f(x1, zi, wi)
P̂ (x0 | zi, wi)

P̂ (x0)
. (69)

The remaining identification expression are derived based on the same technique, completing the
proof of the proposition.

Prop. 5 Proof: Consider the direct effect sample influence of the i-th sample given by

SI-DE(i) = [f(x1, wi, zi)− f(x0, wi, zi)]
P̂ (x0 | wi, zi)

P̂ (x0)
. (70)

By assumption, we know that

f(x, z, w)
P−→ E[T | x1, z, w] ∀x, z, w (71)

P̂ (x0 | w, z)
P−→ P (x0 | w, z) ∀z, w (72)

P̂ (w, z)
P−→ P (w, z) ∀w, z (73)

P̂ (x0)
P−→ P (x0) (74)

Therefore, by a coupling of the above quantities to a joint probability space and an application of the
continuous mapping theorem, we have that

SI-DE(i) P−→
[
E[T | x1, wi, zi]−E[T | x0, wi, zi]

]
× P (x0 | wi, zi)

P (x0)
. (75)

Note that

P (x0 | wi, zi)

P (x0)
=

P (x0, wi, zi)

P (wi, zi)P (x0)
=

P (wi, zi | x0)

P (wi, zi)
, (76)

completing the proof of the proposition.

C Census 2018 Example

In this appendix, we analyze the Census 2018 dataset, demonstrating an application in the context of
labor and salary decisions:
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Example 4 (Salary Increase on the Census 2018 Dataset [27]). The United States Census of 2018
collected broad information about the US Government employees, including demographic information
Z (Z1 for age, Z2 for race, Z3 for nationality), gender X (x0 female, x1 male), marital and family
status M , education information L, and work-related information R. The US Government wishes
to use this data prospectively to decide whether a new employee should receive a bonus starting
package upon signing the employment contract. To determine which employees should receive such a
bonus, a Government department decides to predict which of the employees should earn a salary
above the median (which is $50,000/year). They construct a machine learning prediction score S
that predicts above-median earnings (Y ), and the department decides to allocate the bonus to all
employees who are predicted to be above-median earners with a probability greater than 50% (i.e.,
Ŷ = 1(S ≥ 0.5)).

A team of investigators within the Government is in charge of assessing what the impacts of this AI
system are on the gender pay gap. They collect the required data and perform the decomposition
from Cor. 3, shown in Fig. 6(a). The decomposition indicates strong direct effects x-DEx0,x1

(y) and
x-DEx0,x1

(m), which imply that men are more likely to receive a starting bonus than women. The
indirect effects x-IEx1,x0(y), x-IEx1,x0(m) are both negative, with the latter effect of the margin
complement not being significant. These effects, however, also mean that men are more likely to
receive a bonus due to mediating variables. Finally, for the spurious effects, the effects are not
significantly different from 0. Based on these findings, the team decided to return the predictions
to the original department, with the requirement that the direct effect of gender on the margin
complement, x-DEx0,x1

(m), must be reduced to 0, to avoid any possibility of bias amplification. □
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