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Abstract

A unifying theme in Artificial Intelligence is learning an effective policy to control
an agent in an unknown environment in order to optimize a certain performance
measure. Off-policy methods can significantly improve the sample efficiency dur-
ing training since they allow an agent to learn from observed trajectories generated
by different behavior policies, without directly deploying the target policies in
the underlying environment. This paper studies off-policy evaluation from biased
offline data where (1) unobserved confounding bias cannot be ruled out a priori; or
(2) the observed trajectories do not overlap with intended behaviors of the learner,
i.e., the target and behavior policies do not share a common support. Specifically,
we first extend the Bellman’s equation to derive effective closed-form bounds over
value functions from the observational distribution contaminated with unobserved
confounding and no-overlap. Second, we propose two novel algorithms that use
eligibility traces to estimate these bounds from finite observational data. Compared
to other partial identification methods for off-policy evaluation in sequential envi-
ronments, these methods are model-free and do not rely on additional parametric
knowledge about the system dynamics in the underlying environment.

1 Introduction

A typical reinforcement learning agent learns from past data, i.e., from observed trajectories of
states, actions, and reward signals generated by the agent intervening in the underlying environment.
This data reflects the influence of the decision-making policy used to allocate actions based on the
observed state, which is called the behavior policy. This policy can be selected by the agent in the
past or by a different demonstrator operating in the same environment. Policy evaluation studies the
problem of evaluating the effectiveness of a candidate target policy from the combination of past data
and theoretical assumptions about the environment. When the behavior and target policies coincide,
the evaluation is called on-policy learning, in which the expected return of candidate policies given
the agent’s starting state (i.e., the value function) could be directly estimated with empirical means
[34]. In practice, however, the learner might have to learn about policies different from the currently
deployed one that generated the data, leading to the well-known problem of off-policy learning.

Off-policy learning is a popular area of research in reinforcement learning, as it allows for more
efficient learning by using data from different agents and policies. Several algorithms have been
proposed for off-policy evaluation from finite observations, including Q-learning [38, 37], importance
sampling [35, 12], and temporal difference [28, 21]. These algorithms rely on two critical assumptions
about the behavior policy. First, no unobserved confounder affects the behavior policy’s selected
action and the subsequent state and reward. Second, the behavior policy is stochastic, covering all
intended actions the target policy selects given all observed states. When either of these assumptions
does not hold, the effect of the target policy is generally not identifiable, i.e., the model assumptions
are insufficient to uniquely determine the value function from the offline data [24, 39].
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In recent times, researchers have been using partial identification methods to obtain reliable off-
policy evaluation in situations where there are unobserved confounders, and the behavior and target
policies have no common support [14, 39, 15, 22, 17, 7, 16]. Partial identification is a well-studied
problem in causal inference [2, 40], econometrics [10, 27, 30, 32, 8, 36, 19], and dynamical systems
[1, 23, 9, 20, 5]. It enables the derivation of informative bounds on target effects from confounded
observational data. Despite these developments, researchers often must employ a combination of
approaches and constraints. These include: (1) additional parametric assumptions about the system
dynamics (i.e., reward function, transition distribution, and behavior policy) are invoked under which
bounds are derived [14, 15, 22, 17, 7, 16]; (2) a model-based algorithm is applied, which requires
estimation of the underlying system dynamics [39]; (3) the decision horizon is finite, i.e., the agent
only determines a finite number of actions [14, 39, 22, 17, 16].

This paper studies model-free algorithms for robust off-policy evaluation from confounded offline
data generated by behavior policy with no-overlap support. We propose novel partial identification
algorithms using eligibility traces to obtain informative bounds over the expected return of candidate
policies from offline data generated from an unknown Markov decision process with an infinite
horizon. More specifically, our contributions are summarized as follows. (1) We extend the Bellman
equation that permits one to derive optimal bounds over target value functions from the observational
distribution generated by an unknown behavior policy. (2) We propose a causal off-policy temporal
difference algorithm (C-TD(�)) using eligibility traces to estimate bounds over the state value
function from finite observations contaminated with unobserved confounding and no-overlap. (3)
We introduce an alternative eligibility traces algorithm following tree backup (C-TB(�)) that obtains
bounds over the state-action value function from confounded observations. Finally, we evaluate our
proposed algorithms using extensive simulations in synthetic environments. Due to space constraints,
all proofs are provided in Appendix A; details on the experiment setup are provided in Appendix B.

1.1 Preliminaries

In this section, we introduce the basic notations and definitions used throughout the paper. We use
capital letters to denote random variables (X), small letters for their values (x) and DX for the
domain of X . For an arbitrary set X , let |X| be its cardinality. Fix indices i, j 2 N. Let Xi:j stand
for a sequence of variables {Xi, Xi+1, . . . , Xj}; Xi:j = ; if j < i. We denote by P (X) represents
a probability distribution over variables X . Similarly, P (Y | X) represents a set of conditional
distributions P (Y | X = x) for all realizations x. We will consistently use P (x) as abbreviations
for probabilities P (X = x); so does P (Y = y | X = x) = P (y | x). Finally, 1Z=z is an
indicator function that returns 1 if event Z = z holds true; otherwise, it returns 0.

The basic semantical framework of our analysis rests on structural causal models (SCMs) [24, 3].
An SCM M is a tuple hV ,U ,F , P (U)i, where V is a set of endogenous variables and U is a set
of exogenous variables. F is a set of functions s.t. each fV 2 F decides values of an endogenous
variable V 2 V taking as argument a combination of other variables in the system. That is,
V  fV (PAV ,UV ),PAV ✓ V ,UV ✓ U . Exogenous variables U 2 U are mutually independent,
values of which are drawn from the exogenous distribution P (U). Naturally, M induces a joint
distribution P (V ) over endogenous variables V , called the observational distribution.

An intervention on a subset X ✓ V , denoted by do(x), is an operation where values of X are set to
constants x, replacing the functions {fX : 8X 2 X} that would normally determine their values.
For an SCM M , let Mx be a submodel of M induced by intervention do(x). For a set Y ✓ V , the
interventional distribution Px (Y ) induced by do(x) is defined as the joint distribution over Y in
the submodel Mx, i.e., Px (Y ;M) , P (Y ;Mx). We leave M implicit when it is obvious from the
context. For a detailed survey on SCMs, we refer readers to [24, Ch. 7] and [3].

2 Challenges of Causal Inconsistency

We will focus on the policy evaluation problem of an agent operating in a Markov Decision Process
(MDP) [29] over a series of interventions t = 1, 2, . . . . For every time step t, the agent observes
the current state St, performs an action do(Xt), receives a subsequent reward Yt, and moves to the
next state St+1. Values of the action Xt are selected by sampling from a stationary policy ⇡(x | s),
which is a function mapping from the domain of the observed state St to the probability space over
the domain of action Xt. Let Ut be an unobserved noise independently drawn from an exogenous
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Figure 1: (a) Causal diagram representing the data-generating mechanisms in a Markov Decision
Process (MDP); (b) A windy gridworld environment where the red dot represents the agent and green
square is the goal state; the agent can take five actions - up, down, right, left, and stay-put; the
wind can blow in five direction - north, south, west, east, and no-wind.

distribution P (U). Values of the subsequent reward Yt and the next state St+1 are, respectively,
determined by structural functions yt  fY (st, xt,ut) and st+1  fS(st, xt,ut), taking as input
the current state St, action Xt, and latent noise Ut; values of S1 are drawn from an initial distribution
P (S1). We will consistently use X , S, and Y to denote the domain of every action Xt, state St,
and reward Yt. Like a standard discrete MDP, domains of actions X and states S are assumed to be
finite; rewards are bounded in a real interval Y , [a, b] ⇢ R. Naturally, the agent operating in this
environment defines an interventional distribution P⇡ summarizing the consequences of its actions.

Fig. 1a shows a graphical representation (for now, without the highlighted bi-directed arrows) of this
data-generating process where nodes represent observed variables and directed arrows represent the
functional relationships between them. For every time step t > 1, the current state St “block” all
pathways from previous nodes (e.g., St�1) to the future nodes (e.g., St+1) [24, Def. 1.2.3]. Applying
the d-separation rules leads to the following independence relationships in distribution P⇡ .
Definition 1 (Markov Property [29]). For a joint distribution P⇤ over a sequence of states S1, S2, . . . ,
actions X1, X2, . . . , and rewards Y1, Y2, . . . , the Markov property if for every time step t = 1, 2, . . . ,�
S̄1:t�1, X̄1:t�1, Ȳ1:t�1 ?? X̄t:1, S̄t+1:1, Ȳt:1 | St

�
holds with regard to distribution P⇤.

It follows from Def. 1 that for any horizon T , the distribution generated by a policy ⇡ factories as1

P⇡ (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)
TY

t=1

⇡(xt | st)T (st, xt, st+1)R(st, xt, yt) (1)

where the transition distribution T and the reward distribution R are interventional queries given by

T (st, xt, st+1) = Pxt (st+1 | st) =
Z

ut

1st+1=fS(st,xt,ut)P (ut) (2)

R(st, xt, yt) = Pxt (yt | st) =
Z

ut

1y=fY (st,xt,ut)P (ut) (3)

For convenience, we also write the reward function R(s, x) as the expected value
P

y yR(s, x, y). Fix
a discounted factor � 2 [0, 1] (e.g., the interest rate). A common objective for an agent is to optimize
its cumulative return Rt =

P1
i=0 �

iYt+i. In analysis, we often evaluate the state value function V⇡(s),
which is the expected return given the agent’s starting state St = s. That is, V⇡(s) = E⇡ [Rt | St = s].
A similar state-action value function Q⇡(s, x) is defined as the expected return starting from state
s, taking action x and thereafter following policy ⇡, i.e., Q⇡(s, x) = EXt x,⇡ [Rt | St = s]. One
could recursively evaluate the state value function of any state s using the Bellman Equation [4]:

V⇡(s) =
X

x

⇡(x | s)
 
R(s, x) + �

X

s0

T (s, x, s0)V⇡(s
0)

!
(4)

Similarly, an analogous equation for the state-action value function is

Q⇡(s, x) = R(s, x) + �
X

s0

T (s, x, s0)V⇡(s
0) (5)

1The decomposition holds since state St blocks all backdoor path from action Xt to nodes St+1 and Yt,
i.e., path starting with arrow Xt  St. It follows from Rule 2 of do-calculus [24, Theorem 3.4.1] that
P⇡ (yt | st, xt) = Pxt (st+1 | st) and P⇡ (yt | st, xt) = Pxt (yt | st).
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Off-Policy Evaluation Despite the effectiveness of planning algorithms, they require detailed
parametrization of the transition distribution T and the reward function R, which are not accessible
in many real-world applications. This means that a learning process must take place. A common
approach is off-policy learning, where the agent has access to observed trajectories generated by a
behavioral policy fX , different from the target policy ⇡, operating in the same environment. More
specifically, for every time step t, the behavioral policy selects an action Xt  fX(st,ut) based on
the current state St = st and latent noise Ut = ut. Fig. 1a shows the graphical representation of
the data-generating process of the behavior policy; the added bi-directed arrows, e.g., Xt  ! Yt,
indicate the presence of an unobserved confounder U 2 Ut affecting both the action Xt and outcome
Yt. We summarize observed trajectories of the behavior policy using the observational distribution P .

Off-policy evaluation attempts to estimate the effects of a candidate policy ⇡(x|s) from the observa-
tional data generated by the behavior policy fX . Standard off-policy methods focus on the identifiable
setting where the target transition distribution T and reward function R remain consistent in both the
interventional P⇡ and observational distribution P . Formally,
Definition 2 (Causal Consistency). For an interventional distribution P⇡ and an observational
distribution P satisfying the Markov property (Def. 1), the Causal Consistency holds with regard to
P⇡ and P if the following statement holds, for every time step t = 1, 2, . . . ,

Pxt (st+1 | st) = P (st+1 | st, xt) , and Pxt (yt | st) = P (yt | st, xt) (6)

When Def. 2 holds, the learner could recover the parametrization of the transition distribution T
and reward function R from the observational data, following the identification formula in Eq. (6).
Several off-policy algorithms have been proposed to estimate the effect of candidate policies from
finite observations under causal consistency in this identifiable setting [38, 37, 35, 12, 28, 21].

There exist graphical criteria in the literature [25, 31, 26] to evaluate whether causal consistency
(Def. 2) holds from causal knowledge of the environment, including the celebrated backdoor criterion
[24, Def. 3.3.1]. However, in many practical applications, causal consistency could be fragile and does
not necessarily hold due to some violations in the generative process. These include: (1) there exists
an unobserved confounder affecting the action Xt and subsequent outcomes Yt, St+1 simultaneously
(blue, dashed arrows in Fig. 1a); (2) there is no overlap in the support between the target and behavior
policies, i.e., the propensity score P (xt | st) = 0 for some state-action pair st, xt. When either of
these violations occurs, applying standard off-policy methods may fail to recover the expected return
of the target policy, leading to estimation bias. The following example illustrates such challenges.
Example 1 (Windy Gridworld). Consider a Windy Gridworld described in Fig. 1b, where the red dot
represents the agent and the green square represents the goal state. The agent can take five actions Xt

- up, down, right, left, and stay-put. However, the agent’s movement is affected by the wind;
the direction of the wind Ut includes - north, south, west, east, and no-wind. For every time
step, the agent receives a constant reward Yt  �1. The next state of the agent is shifted by both its
action and the wind direction through the mechanism St+1  St +Xt + Ut.

Our goal is to evaluate the expected return of a target policy ⇡⇤ described in Fig. 2a, which consistently
moves towards the goal state regardless of the wind direction. As an input, we have access to observed
trajectories generated by a behavior policy Xt  fX(St, Ut), which could sense the wind and select
an action accordingly. For example, when the agent is located in the top-left corner (St = (0, 0))
and the wind is blowing south (Ut = (0, 1)), the behavior policy will decide to move right
(Xt = (1, 0)) so that the agent could get close to the center (St+1 = (1, 1)).

Figs. 2b to 2d shows the value function estimation obtained by standard off-policy methods, including
Q-Learning, one-step Temporal Difference (TD), and Eligibility Traces (TD(�)). We also include
in Fig. 2e the ground truth value function computed from the underlying model parameters. The
simulation reveals that standard off-policy evaluation deviates from the ground truth return. In this
observational data, the wind direction Ut is thus an unobserved confounder affecting both the action
Xt and next state St+1, violating causal consistency. See Appendix B for additional discussions.

2.1 Partial Causal Identification in MDPs

For the remainder of this section, we will introduce partial identification methods for off-policy
evaluation that is robust to the unobserved confounding and no-overlap. For every time step t =
1, 2, . . . , let the reward Yt be bounded in a real interval [a, b]. By applying a similar bounding strategy
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(a) Policy ⇡⇤ (b) Q-Learning (c) Off-Policy TD (d) Eligibility Trace (e) V⇡⇤(s)

(f) V⇡⇤(s) (g) V⇡⇤(s) (h) Q⇡⇤(s, x⇤) (i) Q⇡⇤(s, x⇤) (j) Q⇡⇤(s, x⇤)

Figure 2: (a) The target policy ⇡⇤ selecting an action based on the agent’s location. (b - d) Value
function estimation was obtained by standard off-policy methods. (e - g) The ground-truth state
value function computed from the model parametrization and its lower and upper bounds estimated
using the extended Bellman equation in Thm. 1. (h - j) The ground-truth state-action value function
computed from the model parametrization for actions x⇤  ⇡⇤(s) selected by the target policy and
its lower and upper bounds computed from the extended Bellman equation in Thm. 2

in [18, 39, 13], we derive the following bounds over the transition distribution T and reward function
R, for every realization (s, x, s0) 2 S ⇥ X ⇥ S ,

T (s, x, s0) 2
h
eT (s, x, s0)P (x | s), eT (s, x, s0)P (x | s) + P (¬x | s)

i
(7)

R (s, x) 2
h
eR (s, x)P (x | s) + aP (¬x | s), eR (s, x)P (x | s) + bP (¬x | s)

i
(8)

Among the above quantities, P (x | s) stands for the propensity score P (Xt = x | St = s) and
P (¬x | s) = 1 � P (x | s); eT and eR are the nominal transition distribution and reward function
computed from the observational distribution as follows:

eT (s, x, s0) = P (St+1 = s0 | St = s,Xt = x) , eR (s, x) = E [Yt | St = s,Xt = x] (9)
In order to bound the value function V⇡(s) at state s induced by a candidate policy ⇡, one could
minimize/maximize the optimization program using the Bellman’s equation in Eq. (4) as the objective
function, subject to constraints in Eqs. (7) and (8). Interestingly, this optimization problem is
equivalent to a linear program; solving it leads to the following extended Bellman equation.
Theorem 1 (Causal Bellman Equation). For an MDP environment M with reward Yt 2 [a, b] ✓ R,
for any policy ⇡(x | s), its state value function V⇡(s) 2

⇥
V⇡(s), V⇡(s)

⇤
for every state s 2 S , where

bounds V⇡, V⇡ are solutions given by the following dynamic programs,
D
V⇡(s), V⇡(s)

E
=
X

x

P (x | s)
 
⇡(x | s)

✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
D
V⇡(s

0), V⇡(s
0)
E◆

(10)

+⇡(¬x | s)
✓
ha, bi+ �

D
min
s0

V⇡(s
0),max

s0
V⇡(s

0)
E◆!

(11)

Thm. 1 can be seen as an extension of the Bellman equation using the confounded observational
distribution with no-overlap. For instance, in the lower bound V⇡(s), Eq. (10) follows the standard
iterative step in Bellman equation in Eq. (4), measuring the expected return when the target policy’s
action coincides with the observed action selected by the behavior policy; Eq. (11) could be thought
as a regularizing term measuring the uncertainty due to unobserved confounding. Finally, both
terms are weighted by the nominal propensity score P (x | s) = P (Xt = x | St = s). The same
derivation also applies to the upper bound V⇡(s). An analogous extended Bellman equation bounding
the state-action value function from the observational distribution can also be derived as follows.
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Theorem 2 (Causal Bellman Equation). For an MDP environment M with reward signals Yt 2
[a, b] ✓ R, for any policy ⇡(x | s), its state-action value function Q⇡ 2

⇥
Q⇡(s, x), Q⇡(s, x)

⇤
for

any state-action pair (s, x) 2 S ⇥ X , where bounds Q⇡, Q⇡ are given by as follows,

D
Q⇡(s, x), Q⇡(s, x)

E
= P (x | s)

✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
D
V⇡(s

0), V⇡(s
0)
E◆

(12)

+P (¬x | s)
✓
ha, bi+ �

D
min
s0

V⇡(s
0),max

s0
V⇡(s

0)
E◆

(13)

Among the bounds in Thm. 2, Eq. (12) is the standard iterative step of the Bellman equation in Eq. (5),
weighted by the score P (x | s). It estimates the expected return of performing action do(x) at state
s when such action matches the one selected by the behavior policy. Eq. (13) is a regularized term
accounting for uncertainties when the intervention do(x) is not observed in the offline data. Since
Thms. 1 and 2 are closed-form solutions of optimization programs and the observational constraints
in Eqs. (7) and (8) are tight, the extended Bellman’s equation bounds are sharp from offline data and
Markov property. This means they cannot be improved without additional assumptions.
Example 2 (Windy Gridworld Continued). Consider again the Windy Gridworld described in
Example 1. We compute the lower and upper bounds over the state value function following the
extended Bellman equation in Thm. 1, and provide them in Figs. 2f to 2g. We also include in Fig. 2h
the ground truth state-action value function for the action x⇤  ⇡⇤(s) selected by the target policy.
The corresponding lower and upper bounds are shown in Figs. 2i to 2j, following the algorithmic
procedure described in Thm. 2. The analysis reveals that the derived bounds are consistent with the
ground truth value functions, corroborating the sufficiency of our proposed approach.

3 Confounding Robust Eligibility Traces

The extended Bellman equations described so far require one to have precise estimations for the full
models of the nominal transition distribution Tobs, reward function Robs, and the propensity score
P (x | s). This section will introduce novel model-free algorithms, using eligibility traces [33], to
bound value functions from finite observational samples.

We consider the episodic framework, where the agent interacts with the environment for repeated
episodes n = 1, 2, 3, . . . ; each episode contains a finite number of time steps t = 1, 2, . . . , Tn. At
each episode, the environment starts at state s1 following the initial distribution P (S1). At each time
step t, taking the observed state st of the environment as input, the behavior policy selects an action
xt. In response to intervention do(xt), the environment produces a subsequent reward yt and moves
to the next observed state st+1. If the next state st+1 is terminal, the episode terminates at time step
Tn = t+ 1; the learner receives observational data {x̄1:Tn�1, s̄1:Tn , ȳ1:Tn�1}.

3.1 Causal Temporal Difference

S1

X1

S2

s*

X2

S3

s*

⇡

1� ⇡

⇡

1� ⇡

...

Figure 3: Backup di-
agram for C-TD(�).

We first introduce a novel augmentation procedure on the celebrated temporal
difference (TD, [33, 28]) that allows one to estimate the bounds over state
value functions, which we call the causal temporal difference (C-TD). Fig. 3
shows the backup diagram illustrating the idea of our proposed algorithm.
Similar to the standard off-policy TD, our algorithm will update the estimation
of state value functions V⇡, V⇡ using the sampled trajectories of transitions in
the observational data. It could use a finite number of n-step trajectories or
the entire trajectory. Different from the standard off-policy TD, our proposed
algorithm does not weight each step of the transition using importance sam-
pling (or equivalently, inverse propensity weighting) since the true behavior
policy fX (propensity score) is not recoverable from the observational data.
Instead, C-TD weights each transition using the target policy ⇡ and adjusts for
the misalignment between the target and behavior policies using an overes-
timation/underestimation of value function at state s⇤. Such s⇤ is set as the
best-case state associated with the highest value in our current estimation when
computing upper bounds and the worst-case state estimate for lower bounds.
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Algorithm 1 Causal Temporal Difference (C-TD(�))

Require: Observational data D and a candidate policy ⇡(x | s).
1: Update the eligibility traces for all state s,

et(s) =

⇢
��⇡(xt�1 | st�1)et�1(s) if s 6= st
��⇡(xt�1 | st�1)et�1(s) + 1 if s = st

(15)

where � 2 [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error

�t = ⇡(xt | st) (yt + �Vt(st+1)) + ⇡(¬xt | st) (w + �Vt(s
⇤))� Vt(st) (16)

3: Update the value function Vt+1(s) Vt(s) + ↵et(s)�t for all state s.

Algorithm 2 Causal Tree-Backup (C-TB(�))

Require: Observational data D and a candidate policy ⇡(x|s).
1: Update the eligibility traces for all state-action pairs s, x,

et(s, x) =

⇢
��⇡(xt | st)1xt�1=xet�1(s, x) if s 6= st
��⇡(xt | st)1xt�1=xet�1(s, x) + 1 if s = st

(17)

where � 2 [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error for every action x

�t(x) =

⇢
yt + �

P
x0 ⇡(x | st+1)Qt(st+1, x0)�Qt(st, x) if x = xt

w + �
P

x0 ⇡(x0 | s⇤)Qt(s⇤, x0)�Qt(st, x) if x 6= xt
(18)

3: Update the action-value function Qt+1(s, x) Qt(s, x) + ↵et(s, x)�t(x) for all s, x.

To formally introduce the estimation algorithm, we first introduce some necessary notations. Let
N(s) denote the set of indices of episodes containing a state s 2 S, and let tn(s) be the collection
of time steps in the n-th episode such that for every t 2 tn(s), st = s. For any time step t, let
⇡t = ⇡(xt | st) and ¬⇡t = 1� ⇡(xt | st). We iteratively define the estimator for bounds over the
state value function V⇡(s) as follows, for any state s 2 S ,

cV⇡(s) =
1

N

X

n2N(s)

X

t2t(s)

Tn�tX

k=0

�k
⇣
⇡t+kyt+k + ¬⇡t+k

�
w + �V (s⇤)

�⌘ t+k�1Y

i=t

⇡i, (14)

Among the above equation, N represents the total number of occurrences for the even st = s in the
observational data. we set parameters w = a and V (s⇤) = mins V (s) when estimating the lower
bound V⇡(s); parameters w = b and V (s⇤) = maxs V (s) for the upper bound V⇡(s).

An eligibility-trace version of our proposed estimation strategy is described Alg. 1. The algorithm
keeps track of eligibility traces for every state in a similar manner to standard off-policy temporal
difference algorithms. The main difference is that here the eligibility trace is multiplied by the target
policy ⇡(xt�1 | st�1) and a decay-rate �, not including the nominal propensity score P (xt�1 | st�1).
When computing the temporal difference error, the algorithm adjusts for the misalignment between
the target and behavior policies by adding a regularized term w+�Vt(s⇤), weighted by the probability
1 � ⇡(xt | st). We describe in Alg. 1 a version of C-TD(�) using online update. This means that
the bounds estimate over value functions are updated at every time step. The offline version of the
algorithm will use the same temporal difference error and eligibility traces. However, the update only
occurs at the end of each episode; the increments and decrements are accumulated on the side, and
the value function estimates do not change during the episode.
Theorem 3. For any behavior policy, for any choice of � 2 [0, 1] that does not depend on the actions
chosen at each state, let parameters w and s⇤ be defined as follows: (1) Lower Bound V⇡: w = a

and s⇤ = argmins Vt(s); (2) Upper Bound V⇡: w = b and s⇤ = argmaxs Vt(s). Then, Alg. 1 with
offline updating converges with probability 1 to lower bound V⇡ and upper bound V⇡, respectively,
under the usual step-size conditions on ↵.
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The proof of Thm. 3 first shows a contraction property for estimates bV⇡, and then follows an
application of the general convergence theorem introduced in [11].

3.2 Causal Tree Backup

(s, x)

S1

X1

s*
S2

X2

s*
S3

=
x

6=
x

=
x

6=
x

...

Figure 4: Backup di-
agram for C-TB(�).

The algorithm described so far focuses on the estimation of the state value
functions. We next introduce a novel algorithm to bound the state-action value
function Q⇡ from finite observations.

Our algorithm is based on an augmentation on the standard tree backup (TB
[28]), which we call the causal tree backup (C-TB(�)). The main idea of this
new algorithm is illustrated in the backup diagram of Fig. 4. Similar to the
standard tree backup, our algorithm updates the value estimates for the action
selected by the behavior policy at each time step based on the subsequent
reward and the current estimation for the value of the next state. The algorithm
then forms a new estimate for the target value function, using the old value
estimates for the actions not observed in the observational data and the new
estimated value for t-he action taken by the behavior policy. On the other hand,
the main differences include the following. (1) Eligibility traces will not only
be weighted by the target policy ⇡(xt | st) using the observed trajectories,
but also an indicator function 1xt�1=x returning 1 if the previous action xt�1
coincides with the target action x. (2) When the behavior policy takes the same
action xt = x as the target action, the update follows standard TB and uses the
next sampled state st; when the sampled action xt 6= x differs from the target,
our algorithm updates, instead, using the value function associated with the
next worst-case or best-case state s⇤, corresponding to the estimation of the
lower bound and upper bound respectively. The n-step causal tree-backup estimator is defined as

cQ⇡(s, x) =
1

N

X

n2N(s)

X

t2t(s)

�nQ(st+n, xt+n)
t+n�1Y

i=t

⇡i+11xi=x +
t+nX

k=t

�k�t+1
t+k�1Y

i=t

⇡i+11xi=x

·
 
1xk=x

✓
yk +

X

x0 6=x

⇡(x0 | sk+1)Q(sk+1, x
0)

◆
+ 1xk 6=x

✓
w +

X

x0

⇡(x0 | s⇤)Q(s⇤, x0)

◆!
(19)

The above tree backup estimator also has a simple incremental implementation using eligibility traces.
An online version of this implementation is shown in Fig. 4.
Theorem 4. For any behavior policy, for any choice of � 2 [0, 1] that does not depend on the
actions chosen at each state, let parameters w and s⇤ be defined as follows: (1) Lower Bound
Q⇡: w = a and s⇤ = argmins

P
x0 ⇡(x0 | s)Qt(s, x0); (2) Upper Bound Q⇡: w = b and

s⇤ = argmaxs
P

x0 ⇡(x0 | s)Qt(s, x0). Then, Alg. 2 with offline updating converges with probability
1 to lower bound Q⇡ and upper bound Q⇡ , respectively, under the usual step-size conditions on ↵.

The proof of the above theorem relies on a contraction property on the estimates bQ⇡ and follows
from the general convergence theorem in [11].

4 Experiments

We demonstrate our algorithms using different behavior policies in the Windy Gridworld described
in Example 1. Overall, we found that simulation results support our findings, and the proposed
algorithms consistently obtain informative bounds over value functions. Experiment 1 evaluates the
performance of our bounding strategy in the presence of unobserved confounding. Experiment 2 uses
data collected from a deterministic sub-optimal policy, violating the overlap. All experiments use
5⇥104 offline observational samples, meaning that error bars are not significant, hence, not explicitly
shown; the decay factor � = 0.5. See Appendix B for more details on the experimental setup.

Experiment 1. Consider again the learning setting described in Example 1 where the offline data
is contaminated with unobserved confounding bias, and the behavior policy selects actions based
on the agent’s state and the latent wind direction. We apply C-TD(�) to derive bounds over the
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(a) Policy ⇡⇤ (b) C-TD(�) (c) C-TD(�) (d) C-TB(�) (e) C-TB(�)

(f) Behavior Policy (g) Q-Learning (h) Off-Policy TD (i) Eligibility Trace (j) V⇡⇤(s)

(k) C-TD(�) (l) C-TD(�) (m) Q⇡⇤(s, x⇤) (n) C-TB(�) (o) C-TB(�)

Figure 5: Simulation results comparing causally enhanced off-policy algorithms using eligibility
traces (C-TD(�) and C-TB(�)) with standard off-policy methods. The offline data are collected
from (a - e) a confounded behavior policy affected by the unobserved confounder; and (f - o) a
deterministic behavior policy following sub-optimal actions.

state value function V⇡⇤(s) and provide them in Figs. 5b and 5c. We also compute the bounds over
the state-action value function Q⇡⇤(s, x⇤) for actions x⇤  ⇡⇤(s) using C-TB(�); the simulation
results are shown in Figs. 5d and 5e. The analysis reveals that our algorithm consistently recovers the
closed-form bounds containing the ground-truth value functions, as previously shown in Fig. 2.

Experiment 2. For the Windy Gridworld environment described in Example 1, suppose the data
is now collected by a deterministic behavior policy that always first moves towards the center and
then moves down toward the goal; its parametrization is provided in Fig. 5f. This means that the
overlap does not hold when the agent is located on either side of the top half of the board. We apply
standard off-policy algorithms to evaluate the effect of the target policy ⇡⇤ of Fig. 5a and provide their
evaluations in Figs. 5g to 5i. The propensity score is truncated using a small positive real 0 < ✏ < 1 if
P (x | s) = 0. We also compute bounds over the target value functions using our proposed algorithms,
C-TD(�) and C-TB(�), and provide their evaluations in Figs. 5k to 5l and Figs. 5n to 5o respectively.
By comparing with the ground-truth values in Figs. 5j and 5m, we found that C-TD(�) and C-TB(�)
can consistently obtain informative bounds; similar to the previous experiment, standard off-policy
methods are not robust against no-overlap and deviate significantly from the target effects.

5 Conclusion

This paper investigates off-policy evaluation in Markov Decision Processes from offline data collected
by a different behavior policy, where unobserved confounding bias and no-overlap cannot be ruled
out a priori. This leads to violations of causal consistency (Def. 2), which could pose significant
challenges to standard off-policy algorithms. We first extend the celebrated Bellman’s equation
to derive informative bounds over values functions from the observational data, which are robust
against bias due to the presence of unobserved confounding and no-overlap. Based on these extended
equations, we propose two novel model-free off-policy algorithms using eligibility traces – one based
on the standard temporal difference (C-TD(�)), and the other based on the tree-backup (C-TB(�)).
These algorithms permit us to consistently bound value functions from finite observations.
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A Proofs

This section provides proof of the main theoretical results provided in the paper.
Theorem 1 (Causal Bellman Equation). For an MDP environment M with reward Yt 2 [a, b] ✓ R,
for any policy ⇡(x | s), its state value function V⇡(s) 2

⇥
V⇡(s), V⇡(s)

⇤
for every state s 2 S , where

bounds V⇡, V⇡ are solutions given by the following dynamic programs,

D
V⇡(s), V⇡(s)

E
=
X

x

P (x | s)
 
⇡(x | s)

✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
D
V⇡(s

0), V⇡(s
0)
E◆

(10)

+⇡(¬x | s)
✓
ha, bi+ �

D
min
s0

V⇡(s
0),max

s0
V⇡(s

0)
E◆!

(11)

Proof. Following the Bellman equation [4], the state value function at state s 2 S is given by

V⇡(s) =
X

x

⇡(x | s)
 
R(s, x) + �

X

s0

T (s, x, s0)V⇡(s
0)

!
(20)

Among the above quantities, the reward function R is bounded from the observational distribution
[18] as follows,

eR (s, x)P (x | s) + aP (¬x | s)  R (s, x)  eR (s, x)P (x | s) + bP (¬x | s) (21)

where eR is the nominal reward function computed from the observational distribution and is defined
in Eq. (9). Replacing the reward function R in Eq. (20) with the above lower bound gives

V⇡(s) �
X

x

⇡(x | s)
 
eR (s, x)P (x | s) + aP (¬x | s) + �

X

s0

T (s, x, s0)V⇡(s
0)

!

+
X

x

b⇡(x | s)P (¬x | s)
(22)

Similarly, the transition distribution T can be bounded from the observational distribution [18],

eT (s, x, s0)P (x | s)  T (s, x, s0)  eT (s, x, s0)P (x | s) + P (¬x | s) (23)

and eT is the nominal transition distribution computed from the observational distribution defined in
Eq. (9). Minimizing the lower bound in Eq. (22) subject to the above observational constraints in
Eq. (23) and

P
s0 T (s, x, s0) = 1 gives the following lower bound:

V⇡(s) �
X

x

⇡(x | s)P (x | s)
 
eR (s, x) + aP (¬x | s) + �

X

s0

eT (s, x, s0)V⇡(s
0)

!

+
X

x

⇡(x | s)P (¬x | s)
⇣
b+min

s0
V⇡(s

0)
⌘ (24)

The above lower bound is achieved by setting the worst-case transition probability T (s, x, s⇤) =
P (¬x | s) for state s⇤ = argmins0 V⇡(s0) and T (s, x, s0) = eT (s, x, s0)P (x | s) for all the other
state s0 6= s⇤. Note that the second term of the above inequality could be further written as:

X

x

⇡(x | s)P (¬x | s)
⇣
a+min

s0
V⇡(s

0)
⌘

(25)

=
X

x

⇡(x | s) (1� P (x | s))
⇣
a+min

s0
V⇡(s

0)
⌘

(26)

=
X

x

⇡(x | s)
⇣
a+min

s0
V⇡(s

0)
⌘
�
X

x

⇡(x | s)P (x | s)
⇣
a+min

s0
V⇡(s

0)
⌘

(27)

=
X

x

P (x | s)
⇣
a+min

s0
V⇡(s

0)
⌘
�
X

x

⇡(x | s)P (x | s)
⇣
a+min

s0
V⇡(s

0)
⌘

(28)
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The last step holds since for any constant real value C,
P

x ⇡(x | s)C =
P

x P (x | s)C. The above
equation can be further written as

X

x

⇡(x | s)P (¬x | s)
⇣
a+min

s0
V⇡(s

0)
⌘
=
X

x

⇡(¬x | s)P (x | s)
⇣
a+min

s0
V⇡(s

0)
⌘

(29)

Replacing the second term in Eq. (24) gives

V⇡(s) �
X

x

⇡(x | s)P (x | s)
 
eR (s, x) + bP (¬x | s) + �

X

s0

eT (s, x, s0)V⇡(s
0)

!

+
X

x

⇡(¬x | s)P (x | s)
⇣
a+min

s0
V⇡(s

0)
⌘ (30)

After a few simplifications, we obtain

V⇡(s) � P (x | s)
 
⇡(x | s)

✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)V⇡(s
0)

◆

+⇡(¬x | s)
✓
a+ �min

s0
V⇡(s

0)

◆! (31)

Finally, minimizing the value function V⇡ subject to the above inequality gives the lower bound V⇡.
The upper bound V⇡ over the state value function could be similarly derived.

Theorem 2 (Causal Bellman Equation). For an MDP environment M with reward signals Yt 2
[a, b] ✓ R, for any policy ⇡(x | s), its state-action value function Q⇡ 2

⇥
Q⇡(s, x), Q⇡(s, x)

⇤
for

any state-action pair (s, x) 2 S ⇥ X , where bounds Q⇡, Q⇡ are given by as follows,

D
Q⇡(s, x), Q⇡(s, x)

E
= P (x | s)

✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
D
V⇡(s

0), V⇡(s
0)
E◆

(12)

+P (¬x | s)
✓
ha, bi+ �

D
min
s0

V⇡(s
0),max

s0
V⇡(s

0)
E◆

(13)

Proof. Applying Bellman equation [4] allows us to iteratively write the state-action value function
for any state-action pair (s, x) 2 S ⇥ X as

Q⇡(s, x) = R(s, x) + �
X

s0

T (s, x, s0)V⇡(s
0) (32)

where the reward function R is bounded from the observational distribution [18] following Eq. (21).
Replacing the reward function R in the above equation with the corresponding lower bound gives

Q⇡(s, x) � P (x | s)
✓
eR(s, x) + �

X

s0

T (s, x, s0)V⇡(s
0)

◆
+ aP (¬x | s) (33)

Similarly, the transition distribution T can be bounded from the observational distribution [18]
following Eq. (23). Minimizing the lower bound in Eq. (33) subject to the above observational
constraints in Eq. (23) and

P
s0 T (s, x, s0) = 1 gives the following solution:

Q⇡(s, x) � P (x | s)
✓
eR(s, x) + �

X

s0

eT (s, x, s0)V⇡(s
0)

◆
+ P (¬x | s)

⇣
a+min

s0
V⇡(s

0)
⌘

(34)

This lower bound is achieved by setting the worst-case transition probability T (s, x, s⇤) = P (¬x | s)
for state s⇤ = argmins0 V⇡(s0) and T (s, x, s0) = eT (s, x, s0)P (x | s) for all the other state s0 6= s⇤.
Finally, notice that V⇡(s) is a function of Q⇡(s, x) and is given by V⇡(s) =

P
x ⇡(x | s)Q⇡(s, x).

Minimizing the state-action value function Q⇡ subject to the above inequality leads to the lower
bound Q⇡ . The upper bound Q⇡ could be similarly derived.
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Theorem 3. For any behavior policy, for any choice of � 2 [0, 1] that does not depend on the actions
chosen at each state, let parameters w and s⇤ be defined as follows: (1) Lower Bound V⇡: w = a

and s⇤ = argmins Vt(s); (2) Upper Bound V⇡: w = b and s⇤ = argmaxs Vt(s). Then, Alg. 1 with
offline updating converges with probability 1 to lower bound V⇡ and upper bound V⇡, respectively,
under the usual step-size conditions on ↵.

Proof. We will focus on the convergence of lower bound V⇡(s); the proof for the upper bound V⇡(s)
follows analogously. The proof is structured in two stages. First, we consider the truncated lower
bound estimates corresponding to Eq. (14), which sums the adjusted rewards obtained from the
environment for only n steps, then uses the current estimate of the value function lower bound to
approximate the remaining value:

Rt
(n) =

n�1X

k=0

�k
⇣
⇡t+kyt+k + ¬⇡t+k

�
b+ �min

s0
V (s0)

�⌘ t+k�1Y

i=t

⇡i + �nV (st+n)
t+k�1Y

i=t

⇡i (35)

We need to show that Rt
(n) � V⇡ is a contraction mapping in the max norm. If this is true for any

n, then by applying the general convergence theorem, the n-step return converges to V⇡. Then any
convex combination will also converge to V⇡ . For example, any combination using a � parameter in
the style of eligibility traces will converge to V⇡ .

The expected value of the adjusted return with regard to the observational distribution for state s can
be expressed as follows 2:

E
h
Rt

(n) | St = s
i

(36)

=
nX

k=1

X

s̄1:k,x̄1:k,ȳ1:k

P (s̄1:k, x̄1:k, ȳ1:k) �
k�1

⇣
⇡kyk + ¬⇡k

⇣
b+min

s0
V (s0)

⌘⌘ k�1Y

i=1

⇡i (37)

+
X

s̄1:n,x̄1:n

P (s̄1:n, x̄1:n) �
nV (sn)

n�1Y

i=1

⇡i (38)

=
nX

k=1

�k�1
X

s̄1:k,x̄1:k

k�1Y

i=1

eT (si, xi, si+1)P (xi | si)⇡(xi | si) (39)

·
⇣
⇡(xk | sk) eR(sk, xk) + ¬⇡(xk | sk)

⇣
b+ �min

s0
V (s0)

⌘⌘
(40)

+ �n
X

s̄1:n,x̄1:n

n�1Y

i=1

eT (si, xi, si+1)P (xi | si)⇡(xi | si)V (sn) (41)

By applying the extended Bellman equation for the lower bound V⇡ iteratively n times, we obtain:

V⇡(s) =
nX

k=1

X

s̄1:k,x̄1:k

�k�1
k�1Y

i=1

eT (si, xi, si+1)P (xi | si)⇡(xi | si) (42)

·
⇣
⇡(xk | sk) eR(sk, xk) + ¬⇡(xk | sk)

⇣
b+ �min

s0
V⇡(s

0)
⌘⌘

(43)

+ �n
X

s̄1:n,x̄1:n

n�1Y

i=1

eT (si, xi, si+1)P (xi | si)⇡(xi | si)V⇡(sn) (44)

Therefore,

max
s

���E
h
Rt

(n) | St = s
i
� V⇡(s)

���  �max
s

��V (s)� V⇡(s)
�� (45)

This means that any n-step return is a contraction in the max norm, and therefore, by applying [11,
Theorem 1], it converges to V⇡(s).

2We abuse notation a bit and ignore the expected value operator E [·] outside.
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In the second stage, we show that by applying the updates of Alg. 1 for n successive steps, we
perform the same update by using the n-step adjusted return Rt

(n). The eligibility trace for state s
can be written as, for tn 2 t(s),

et(s) = �t�tn
tY

i=tn+1

⇡i. (46)

We have
nX

k=1

et+k�1(s)�t+k�1(s) (47)

=
nX

k=1

�k�1
t+k�1Y

i=t+1

⇡i

⇣
⇡t+k (yt+k + �V (st+k)) + ⇡t+k

⇣
b+ �min

s0
V (s0)

⌘
(48)

� V (st+k�1)
⌘

(49)

=
n�1X

k=0

�k
⇣
⇡t+kyt+k + ¬⇡t+k

�
b+ �min

s0
V (s0)

�⌘ t+k�1Y

i=t

⇡i + �nV (st+n)
t+k�1Y

i=t

⇡i (50)

� V (st) (51)

= Rt
(n) � V (st) (52)

Since C-TD(�) is equivalent to applying a convex mixture of n-step updates, and each update
converges to correct lower bounds V⇡ for the state value functions, Alg. 1 converges to correct lower
bounds as well.

Theorem 4. For any behavior policy, for any choice of � 2 [0, 1] that does not depend on the
actions chosen at each state, let parameters w and s⇤ be defined as follows: (1) Lower Bound
Q⇡: w = a and s⇤ = argmins

P
x0 ⇡(x0 | s)Qt(s, x0); (2) Upper Bound Q⇡: w = b and

s⇤ = argmaxs
P

x0 ⇡(x0 | s)Qt(s, x0). Then, Alg. 2 with offline updating converges with probability
1 to lower bound Q⇡ and upper bound Q⇡ , respectively, under the usual step-size conditions on ↵.

Proof. We will focus on the convergence of lower bound Q⇡(s, x); the proof for the upper bound
Q⇡(s, x) follows analogously. This proof is structured in two stages. Let Qn denote the n-step tree
backup estimator defined in Eq. (19). First we show that E [Qn(s, x)] �Q⇡(s, x) is a contraction
using a proof by induction.

Let Q be the current estimate of the lower bound for the value function. For n = 1,

max
s,x

��E [Q1(s, x)]�Q⇡(s, x)
�� (53)

= max
s,x

����P (x | s)
✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
X

x0

⇡(x0 | s0)Q(s0, x0)

◆
(54)

+ P (¬x | s)
✓
b+ �min

s0

X

x0

⇡(x0 | s0)Q(s0, x0)

◆
(55)

� P (x | s)
✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
X

x0

⇡(x0 | s0)Q⇡(s
0, x0)

◆
(56)

� P (¬x | s)
✓
b+ �min

s0

X

x0

⇡(x0 | s0)Q⇡(s
0, x0)

◆���� (57)

 �max
s,x

��Q(s, x)�Q⇡(s, x)
�� (58)

For the induction step, we assume that

max
s,x

��E [Qn(s, x)]�Q⇡(s, x)
��  �max

s,x

��Q(s, x)�Q⇡(s, x)
�� (59)
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Next we want to show that the same holds for Qn+1(s, x). We can rewrite Qn+1(s, x) as follows,

Qn+1(s, x) = 1xt=x

✓
yt +

X

x0

⇣
1x0 6=x⇡(x

0 | st+1)Q(st+1, x
0) + 1x0=xQn(st+1, x)

⌘◆
(60)

+ 1xt 6=x

✓
w +

X

x0

⇡(x0 | s⇤)Q(s⇤, x0)

◆
(61)

We must have

max
s,x

��E [Qn+1(s, x)]�Q⇡(s, x)
�� (62)

= max
s,x

����P (x | s)
✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
X

x0

⇡(x0 | s0) (63)

1x0 6=xQ(s0, x0) + 1x0=xE [Qn(s
0, x)]

◆
(64)

+ P (¬x | s)
✓
b+ �min

s0

X

x0

⇡(x0 | s0)Q(s0, x0)

◆
(65)

� P (x | s)
✓
eR (s, x) + �

X

s0,x0

eT (s, x, s0)
X

x0

⇡(x0 | s0)Q⇡(s
0, x0)

◆
(66)

� P (¬x | s)
✓
b+ �min

s0

X

x0

⇡(x0 | s0)Q⇡(s
0, x0)

◆���� (67)

 �max
s,x

����P (x | s)�
X

s0,x0

eT (s, x, s0)
X

x0

⇡(x0 | s0)1x0 6=x

�
Q(s0, x0)�Q⇡(s

0, x0)
�

(68)

+ 1x0=xE
⇥�
Qn(s

0, x)�Q⇡(s
0, x0)

�⇤
(69)

+ P (¬x | s)min
s0

X

x0

⇡(x0 | s0)
�
Q(s0, x0)�Q⇡(s

0, x0)
� ���� (70)

 �max
s,x

��Q(s, x)�Q⇡(s, x)
�� (71)

By applying [11, Theorem 1], we can conclude that any n-step adjusted return converges to the
correct lower bound for the state-action value function. Since all the n-step returns converge to Q⇡,
any convex linear combination of n-step returns also converges to Q⇡ .

For the second part of the proof, we show that C-TB(�) with � = 1 for n steps is equivalent to using
Qn. The eligibility trace for a state-action pair (s, x) can be rewritten as:

et(s, x) = �k
t+k�1Y

i=t+1

⇡i+11xi=x. (72)

By adding and subtracting the weighted action value ⇡t+k1xt+k=x for the action taken on each step
from the return, and regrouping, we have

Q(st, x) +
nX

k=1

�k�1
t+k�1Y

i=t+1

⇡i+11xi=x

 
1xt+k=x

✓
yt+k +

X

x0 6=x

⇡(x0 | st+k+1)Q(st+k+1, x
0)

◆

(73)

+ 1xt+k 6=x

✓
w +min

s0

X

x0

⇡(x0 | s0)Q(s0, x0)

◆
�Q(st+k, x)

!
(74)

= Q(st, x) +
nX

k=1

et+k(st, x)�t+k(x) (75)

This concludes the proof.
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Figure 6: Trajectories sampled from the interventional transition distribution T .

B Experimental Setups

In this section, we provide details on the experimental setups and additional discussion on the simula-
tion environment. All experiments were performed on a 2021 MacBook Pro with 16GB memory,
implemented in Python. The simulation environment is built upon the Gymnasium framework [6].
We plan to release the source code with the camera-ready version of the manuscript.

Figure 7: Agent’s
state in Windy Grid-
world environment.

Windy Gridworld Our simulation builds on the Windy Gridworld environ-
ment described in Fig. 1b, where the red dot represents the agent and the green
square represents the goal state. The agent’s location is represented using a
vector (i, j) where i 2 {0, 1, 2} is the column index, and j 2 {0, 1, 2} is the
row index. So the agent’s starting state is (0, 0) and the goal state is (1, 2).
Fig. 7 shows the detailed state representation for each location in the gridworld.

The agent can take five actions x 2 X - up, down, right, left, and
stay-put, corresponding to vector (0,�1), (0, 1), (1, 0), (�1, 0), and (0, 0)
respectively. Meanwhile, the agent’s movement is also affected by a wind;
the wind direction u 2 U include - north, south, east, west, and no-wind,
corresponding to vector (0,�1), (0, 1), (1, 0), (�1, 0), and (0, 0) respectively.
Table 1 summarizes the detailed parametrization for the agent’s action and the wind direction. For
every time step t = 1, 2, . . . , the wind Ut can blow in directions north, south, east, west with
equal probabilities of 10%; otherwise, the weather is nice and there is no-wind. That is,

8i 2 {�1, 1}, P (Ut = (i, 0)) = P (Ut = (0, i)) = 0.1, and P (Ut = (0, 0)) = 0.6 (76)

At every time step t, the agent receives a constant reward Yt  �1. The next state of the agent is
shifted by both its action and the wind direction through the mechanism

St+1  max {min {St +Xt + Ut, (2, 2)} , (0, 0)} . (77)
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Action x up down right left stay-put

Wind u north south east west no-wind

Vector v (0,�1) (0, 1) (1, 0) (�1, 0) (0, 0)

Table 1: Vector representations for the agent’s action X and the wind direction U .

In other words, the agent’s next state St+1 is a vector sum of the agent’s current location St, its action
Xt, and the wind direction Ut, truncated by the board’s boundary i = 0, 2 and j = 0, 2. For instance,
we show in Fig. 6 the system dynamics for the agent’s interactions with the gridworld environment
at from the location s = (0, 0), taking the action down (x = (0, 1)). In this case, when the wind is
blowing towards south (u = (0, 1)), the agent’s location will be shifted by both the action x and the
windy direction u, and moves to the bottom left corner s0 = (0, 2) at the next time step. Since among
all wind directions, u = east is the only latent state moving the agent to the center s0 = (0, 2), we
must have the following evaluation for the interventional distribution PXt (St+1 | St),

PXt (0,1) (St+1 = (0, 2) | St = (0, 0)) = P (Ut = (1, 0)) (78)
= 0.1 (79)

That is, the agent’s transition distribution T (s, x, s0) = 0.1 when starting from s = (0, 1), taking
action x = (0, 1), and moving to the next state s0 = (0, 2).

Confounded Behavior Policy Consider now an off-policy learning task in the windy gridworld,
where the agent’s goal is to evaluate the expected return of a target policy ⇡⇤ described in Fig. 2a.
Following such a policy ⇡⇤, the agent will consistently move towards the goal state s = (1, 2) from
its current location, regardless of the wind direction.

The detailed parametrization of the agent’s system dynamics in the windy gridworld remains unknown.
Instead, its has access to observed trajectories generated by a behavior policy x fX(s, u) which
could sense the wind and select an action accordingly; Fig. 8 provides a detailed description for this
behavior policy. For example, when the agent is located in the top-left corner (s = (0, 0)) and the
wind is blowing south (s = (0, 1)), the behavior policy x fX(s, u) will decide to move right
(x = (1, 0)) so that the agent could get to the center (s0 = (1, 1)).

(a) no wind (b) east (c) south (d) west (e) north

Figure 8: A confounded behavior policy fX selecting values based on the agent’s location S and the
latent wind direction U .

Consequently, the wind direction Ut becomes an unobserved confounder in the generative process for
the offline observational data, affecting the allocated action Xt and the next state St+1 simultaneously.
The presence of unobserved confounders lead to violations of causal consistency (Def. 2). To witness,
Fig. 9 shows observed trajectories in the offline data when the agent starts from state s = (0, 0). When
the weather is nice (no-wind) or the wind u is blowing towards east or west, the behavior policy
selects action x = down, similar to the interventional trajectories of Fig. 6. On the other hand, when
the wind is blowing towards north or south, the behavior policy selects action x = right, moving
the agent towards the center of the board. Among all the possible next state in the observational
data, we find that the agent will never reach the bottom left corner s = (0, 2). This means that when
evaluating the observational distribution P (St+1 | St, Xt), we must have

P (St+1 = (0, 2) | St = (0, 0), Xt = (0, 1)) = 0 (80)
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Figure 9: Trajectories sampled from the observational transition distribution eT induced by a con-
founded behavior policy fX .

In other words, the nominal transition distribution eT (s, x, s0) = 0 when one observes the agent
starting from s = (0, 1), taking action x = (0, 1), and moving to the next state s0 = (0, 2). Comparing
the evaluations in Eqs. (79) and (80), we find that Pxt (st+1 | st) 6= P (st+1 | st, xt), that is, causal
consistency (Def. 2) does not hold between the agent’s system dynamics in windy gridworld and the
observational distribution generated by the confounded behavior policy in Fig. 8.

C Societal Impact

This paper investigates the theoretical framework of robust off-policy evaluation from biased offline
data generated by a different behavior. Since unobserved confounding or no-overlap cannot be
ruled out a priori, the agent’s system dynamics in the environment cannot be fully identified from
the offline data. To address this challenge, we proposed novel off-policy algorithms that allow the
agent to derive informative bounds over value functions induced by a target policy from biased
offline data. A positive impact of this work is that we address the potential risk of policy learning
from offline data with the presence of unobserved confounding. Our framework is inherently robust
against confounding bias and may apply to various consequential domains involving complex human
interactions, including healthcare, marketing, finance, and autonomous driving. More broadly,
automated decision systems using causal inference methods prioritize safety and robustness during
their learning processes. Such requirements are increasingly essential since black-box AI systems are
prevalent, and our understanding of their potential implications is still limited.
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