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Abstract

Imitation learning enables an agent to learn from expert demonstrations when the
performance measure is unknown and the reward signal is not specified. Standard
imitation methods do not generally apply when the learner and the expert’s sen-
sory capabilities mismatch and demonstrations are contaminated with unobserved
confounding bias. To address these challenges, recent advancements in causal
imitation learning have been pursued. However, these methods often require access
to underlying causal structures that might not always be available, posing practical
challenges. In this paper, we investigate robust imitation learning within the frame-
work of canonical Markov Decision Processes (MDPs) using partial identification,
allowing the agent to achieve expert performance even when the system dynamics
are not uniquely determined from the confounded expert demonstrations. Specifi-
cally, first, we theoretically demonstrate that when unobserved confounders (UCs)
exist in an MDP, the learner is generally unable to imitate expert performance. We
then explore imitation learning in partially identifiable settings — either transi-
tion distribution or reward function is non-identifiable from the available data and
knowledge. Augmenting the celebrated GAIL method (Ho & Ermon, 2016), our
analysis leads to two novel causal imitation algorithms that can obtain effective
policies guaranteed to achieve expert performance.

1 Introduction

Children often learn how to behave in an unfamiliar environment by imitating adults. Imitation
learning (IL) enables a learning agent to behave in an unknown environment by observing expert
demonstrations. It provides a viable approach for policy learning from demonstrations when the
reward function is not fully known and reward signals are not specified [28, 2, 8, 18, 29]. Imita-
tion learning has been widely applied across disciplines, such as autonomous driving [37], civil
engineering [11], robotics [16], and chronic disease management [46].
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Figure 1: A multi-armed bandit model.

It has been acknowledged in the literature that imitation
learning could face significant challenges when unob-
served confounding bias in expert demonstrations cannot
be ruled out a priori [15, 50, 25, 38]. For illustration with
simplicity, consider a Multi-Armed Bandit (MAB) model
[26] described in Fig. 1; X 2 {0, 1} is a binary action, and
Y is the reward; U is a latent covariate (to the imitator)
uniformly drawn over a binary domain {0, 1}. Values of
the reward are decided by a reward function Y  X � U where � is a “xor” operator. An expert
demonstrator, having access to covariate U , selecting action based on an expert policy X  ¬U .
Evaluating the expert’s performance gives E[Y ] = E[¬U � U ] = 1. On the other hand, an imitator,
mimicking the expert’s behavior, will follow a policy ⇡(X) = P (X) = 0.5, selecting action uni-
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Identifiable Reward Non-Identfiable Reward
Identifiable Transition Standard IRL (e.g., GAIL[17]) CAIL-R (Alg. 1 in Sec. 3.1)

Non-Identfiable Transition CAIL-T (Alg. 2 in Sec. 3.2) Inimitable (Thm. 1 in Sec. 2.1)

Table 1: Summary of main contributions in this paper, including the analysis and proposed algorithms.

formly at random. Evaluating the imitator’s performance gives E⇡ [Y ] =
P

x ⇡(x)E[x� U ] = 0.5,
which is far from the expert’s performance E[Y ] = 1.

Causal Inference (CI) addresses the challenges of unobserved confounding bias within the observa-
tional data [30, 42]. It leverages causal knowledge integral to the data generation process, typically
represented as a causal diagram or potential outcomes [30, 39, 5]. More recently, incorporating
causal inference methods into the imitation learning paradigm, causal imitation learning has evolved
into a critical area of research [14, 50, 25, 7, 44, 38]. To compensate for the presence of unobserved
confounding bias, these methods rely on additional structural or parametric knowledge about causal
relationships among variables in the environment. By utilizing such domain knowledge, the imita-
tor is able to recover the underlying system dynamics (i.e., causal effect) from confounded expert
demonstrations and, in turn, obtain an imitating policy that can achieve the expert’s performance.

By and large, the combination of causal knowledge and observational data does not always allow one
to point-identify the causal effect, called the non-identifiable. That is, more than one parametrization
of the target effect is compatible with the same observational data and model assumptions [30,
Def. 3.2.2]. For instance, in the MAB environment described previously, the imitator’s performance
E⇡ [Y ] is not identifiable from the confounded observational distribution P (X, Y ) [30, Thm. 3.4.1].
Partial identification methods concerned with inferring about target causal effects in non-identifiable
settings, and has been a target of growing interest in the domains of causal inference [3, 10, 35, 12, 51],
econometrics [19, 33, 36, 43], and more recently, in machine learning [23, 22, 21]. Among these
works, two approaches are often employed: (1) bounds are derived for the target effect under minimal
assumptions, or (2) additional untestable assumptions are invoked under which the causal effect is
identifiable, and then sensitivity analysis is conducted to assess how the target causal effect varies as
the untestable assumptions are changed. Despite their effectiveness in addressing data bias, partial
identification has still been rarely explored in the context of imitation learning.

This paper studies the partial identification for imitation learning in a generalized sequential decision-
making environment of Markov Decision Processes (MDPs, [34]). The imitator must determine a
sequence of actions, while unobserved confounders cannot be ruled out a priori in expert demon-
strations. We discuss the solutions on a case-by-case basis, depending on the identifiability of the
underlying system dynamics from the confounded data, including the reward function R and the
transition distribution T . Specifically, our contributions can be summarized as follows. (1) We
theoretically prove that when unobserved confounders generally exist, it is infeasible to learn a robust
policy that is guaranteed to achieve expert performance from the demonstration data. (2) When only
the transition distribution T is identifiable, we propose a novel imitation algorithm that leverages
the bounds over the non-identifiable reward R; by matching the weighted occupancy measure, the
imitator is able to obtain a policy that can outperform the expert. (3) We propose an alternative
algorithm when the reward R is identifiable, but there is unobserved confounding affecting the transi-
tion T . Our proposed algorithms could be implemented by augmenting the celebrated generative
adversarial imitation learning framework (GAIL, [17]). Table 1 briefly summarizes this paper’s main
contributions. Due to space constraints, all proofs are provided in Appendices A and B.

1.1 Preliminaries

This section introduces the basic notations and definitions used throughout the paper. We use capital
letters to denote random variables (X), small letters for their values (x), and DX for the domain
of X . For an arbitrary set X , let |X| be its cardinality. Fix indices i, j 2 N. Let Xi:j stand for a
sequence of variables {Xi, Xi+1, . . . , Xj}; for consistency, the sequence Xi:j = ; if j < i. We
denote by P (X) represents a probability distribution over variables X , and will consistently use
P (x) as abbreviations for probabilities P (X = x). Finally, 1{Z = z} is an indicator function that
returns 1 if event Z = z holds true; otherwise, it returns 0.
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The basic semantical framework of our analysis rests on structural causal models (SCMs) [30, 4].
An SCM M is a tuple hV ,U , F , P (U)i, where V is a set of endogenous variables and U is
a set of exogenous variables. F is a set of functions s.t. each fV 2 F decides values of an
endogenous variable V 2 V taking as argument a combination of other variables in the system.
That is, V  fV (PAV ,UV ),PAV ✓ V ,UV ✓ U . Exogenous variables U 2 U are mutually
independent, values of which are drawn from the exogenous distribution P (U). Naturally, M induces
a joint distribution P (V ) over endogenous variables V , called the observational distribution. An
intervention on a subset X ✓ V , denoted by do(x), is an operation where values of X are set to
constants x, replacing the functions {fX : 8X 2 X} that would normally determine their values.
For an SCM M , let Mx be a submodel of M induced by intervention do(x). For a set Y ✓ V , the
interventional distribution Px (Y ) induced by do(x) is defined as the joint distribution over Y in
the submodel Mx, i.e., Px (Y ;M) , P (Y ;Mx). We leave M implicit when it is obvious from the
context. For a detailed survey on SCMs, we refer readers to [30, Ch. 7] and [4].

2 Challenges of Unobserved Confounding

We focus on the sequential decision-making setting of an agent operating in a MDP environment [34]
over a series of interventions t = 1, 2, . . . . At each time step t, the agent observes the current state
St, performs an action do(Xt), receives a subsequent reward Yt, and moves to the next observed
state St+1. Values of the action Xt are selected by sampling from a stationary policy ⇡(x | s), which
is a function mapping from the domain of the observed state St to the probability space over the
domain of every action Xt. Let Ut be an unobserved noise independently drawn from an exogenous
distribution P (U). Values of the subsequent reward Yt and the next state St+1 are, respectively,
determined by structural functions yt  fY (st, xt,ut) and st+1  fS(st, xt,ut), taking as input
the current state St, action Xt, and latent noise Ut. The initial state S1 is drawn from an initial
distribution P (S1). We will consistently use X , S, and Y to denote the domain of action Xt, state
St, and reward Yt. Like a standard discrete MDP, domains of actions X and states S are assumed to
be finite; rewards are bounded in a real interval Y , [0, 1] ⇢ R. Naturally, the agent operating in this
environment defines an interventional distribution P⇡ , summarizing the consequences of its actions.

Fig. 2a shows a graph describing this generative process; where nodes represent observed variables
and directed arrows represent the functional relationships between them. For every time step t > 1,
the current state St “blocks” all pathways from previous nodes (e.g., St�1) to the future nodes (e.g.,
St+1) [30, Def. 1.2.3]. Applying d-separation rules leads to the following independence.
Definition 1 (Markov Property [34]). For a joint distribution P⇤ over sequences of states S1, S2, . . . ,
actions X1, X2, . . . , and rewards Y1, Y2, . . . , the Markov property holds with regard to distribution
P⇤, if for every time step t = 1, 2, . . . ,

�
S̄1:t�1, X̄1:t�1, Ȳ1:t�1 ?? X̄t:1, S̄t+1:1, Ȳt:1 | St

�
.

It follows from Def. 1 that for any horizon T , the joint distribution P⇡

�
X̄1:T , S̄1:T , Ȳ1:T

�
generated

by a policy ⇡(X | S) factorizes as follows,1

P⇡ (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)
TY

t=1

⇡(xt | st)T (st, xt, st+1)R(st, xt, yt), (1)

where the transition distribution T and the reward distribution R are interventional queries given by
T (st, xt, st+1) = Pxt (st+1 | st) =

Z

ut

1 {st+1 = fS(st, xt,ut)} P (ut) (2)

R(st, xt, yt) = Pxt (yt | st) =

Z

ut

1 {y = fY (st, xt,ut)} P (ut) (3)

For analytical clarity, we define reward function R(s, x) as the expected value
P

y yR(s, x, y). Fix
the discounted factor � 2 [0, 1]. A common objective for an agent to optimize is the cumulative
return Rt = Yt + �Yt+1 + �2Yt+2 + · · · =

P1
k=0 �

kYt+k.

Imitation Learning. When a detailed parametrization of the transition distribution T and the reward
function R is available, the agent can obtain an optimal policy using standard planning algorithms

1The decomposition holds since state St blocks all backdoor paths from action Xt to nodes St+1 and
Yt, i.e., path starting with arrow Xt  St. It follows from Rule 2 of do-calculus [30, Theorem 3.4.1] that
P⇡ (yt | st, xt) = Pxt (st+1 | st) and P⇡ (yt | st, xt) = Pxt (yt | st).
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Figure 2: Causal diagrams where St represents the state, Xt represents the action (shaded blue) and
Yt represents the latent reward (shaded red). (a) MDPexp describes the imitator’s interaction with the
environment; (b) MDPobs shows the data-generating process for the expert demonstrations.

[34, 6]. However, in many practical applications, complete knowledge of these parametrizations
is often unavailable, necessitating a learning process. In this paper, we consider the imitation
learning setting, where the agent has access to observed trajectories generated by the expert. More
specifically, at each time step t, the expert selects an action Xt  fX(st,ut) based on the current
state St = st and latent noise Ut = ut. Fig. 2b shows the graphical representation of the data-
generating process of the expert; the highlighted bi-directed arrows, e.g., Xt $ Yt, indicate the
presence of an unobserved confounder U 2 Ut affecting both the action Xt and outcome Yt. We
summarize the expert trajectories using the observational distribution P (X,S,Y ) over sequences
of variables X = {X1, X2, . . . }, S = {S1, S2, . . . }, and Y = {Y1, Y2, . . . }. It is verifiable from
Fig. 2b that Markov property holds with regard to distribution P (X,S,Y ). For any horizon T ,

P (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)
TY

t=1

P (xt | st)eT (st, xt, st+1) eR(st, xt, yt) (4)

where eT and eR are the expert’s nominal transition distribution and reward function computed from
the observational distribution as follows:

eT (s, x, s0) = P (St+1 = s0 | St = s, Xt = x) , eR (s, x) = E [Yt | St = s, Xt = x] (5)

By convention in imitation learning, we assume the rewards Yt are generally unobserved to the learner;
instead, it has access to a parametric family R containing the expert’s nominal reward function
E [Yt | st, xt]. Given the expert demonstrations D sampled from P (X1, X2, . . . , S1, S2, . . . ) and
the parametric reward family R, the imitator attempts to learn policy ⇡ that can achieve expert
performance, i.e., E⇡

⇥P1
t=1 �

t�1Yt

⇤
� E

⇥P1
t=1 �

t�1Yt

⇤
. Standard imitation methods focus on the

identifiable setting where the imitator’s transition distribution T and reward function R is consistent
with the expert’s nominal transition eT and reward eR. Formally,
Definition 2 (Causal Consistency). For an interventional distribution P⇡ and an observational
distribution P satisfying the Markov property (Def. 1), Causal Consistency is said to hold with
respect to P⇡ and P if the following statement is true, for every time step t = 1, 2, . . . ,

Pxt (st+1 | st) = P (st+1 | st, xt) , and Pxt (yt | st) = P (yt | st, xt) (6)

When the invariances of Def. 2 hold, the learner could recover the parametrization of the transition
distribution T from observational data P (X,S) and infer about the reward function R from the
parametric family R. An imitating policy ⇡ is obtainable by solving the following minimax program,

⌫⇤ = min
⇡

max
R2R

X

s,x

R(s, x) (P (x | s)⇢(s)� ⇡(x | s)⇢⇡(s)) (7)

where the imitator’s ⇢⇡ and the expert’s ⇢ occupancy measures are defined as, respectively, ⇢⇡(s) =P1
t=0 �

tP⇡ (St = s) and ⇢(s) =
P1

t=0 �
tP (St = s). The solution ⇡ is guaranteed to achieve expert

performance when the gap ⌫⇤  0. This means that the imitator following policy ⇡ performs as
well as the expert, even in the worst-case environment instance compatible with the demonstration
data and model assumption. Several imitation learning algorithms have been proposed to solve the
optimization problem in Eq. (7), including [1, 45, 17].

Graphical criteria exist [31, 41, 32] to examine whether causal consistency (Def. 2) holds from causal
knowledge of the environment, including the celebrated backdoor condition [30, Def. 3.3.1],[13]. In
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MDPs, this means that the causal links between the latent noise Ut and action Xt are not effective
- the graphical representation of the imitator’s (Fig. 2a) and the expert’s (Fig. 2b) data-generating
process coincide. However, in practice, causal consistency could be fragile and does not necessarily
hold due to the presence of unobserved confounders in the demonstration data [50, 37]. The remainder
of this paper studies imitation learning when violations occur in the invariance relationships of Eq. (6).

2.1 Imitation with Non-Identifiable Transition and Reward

We first consider the imitation setting described in Fig. 2b where unobserved confounders generally
exist in the expert demonstrations; both the transition distribution T and reward function R are not
identifiable from Eq. (6). Here, we will show that expert performance is not imitable by constructing
worst-case MDP instances where the expert always outperforms the imitator.

The state value function V⇡(s) is defined as the expected return given the imitator’s starting state
St = s following a policy ⇡, i.e., V⇡(s) = E⇡ [Rt | St = s]. For any policy ⇡, the imitator’s
performance can be written as E⇡ [R1] =

P
s1

P (s1)V⇡(s1). The value function of any state s can
thus be recursively defined using the celebrated Bellman Equation [6]:

V⇡(s) =
X

x

⇡(x | s)

 
R(s, x) + �

X

s0

T (s, x, s0)V⇡(s
0)

!
(8)

where � denotes the discount factor. While the transition distribution T and the reward function R
are not uniquely discernible from the observational distribution due to the unobserved confounding,
it is still possible to learn about them from demonstrations using partial identification. Without loss
of generality, the reward Yt is normalized in a real interval [0, 1]. Through rigorous adaptation of
the bounding strategies established in [27, 48], we successfully derive the bounds for the transition
distribution T and reward function R, for every realization (s, x, s0) 2 S ⇥ X ⇥ S ,

T (s, x, s0) 2
h
eT (s, x, s0)P (x | s), eT (s, x, s0)P (x | s) + P (¬x | s)

i
(9)

R (s, x) 2
h
eR (s, x)P (x | s), eR (s, x)P (x | s) + P (¬x | s)

i
(10)

Among the above quantities, eT and eR are the expert’s nominal transition distribution and reward
function in Eq. (5); P (x | s) stands for the propensity score P (Xt = x | St = s) and P (¬x | s) =
1 � P (x | s). We can then construct a worst-case MDP for any policy ⇡ at state s by solving the
following optimization program: minimize the Bellman’s equation in Eq. (8) as the objective function,
subject to the observational constraints in Eqs. (9) and (10).
Theorem 1. Given any positive observational distribution P (X,S,Y ) > 0, there exists an MDP
model M̂ compatible with the causal graph of Fig. 2b such that P (X,S,Y ; M̂) = P (X,S,Y )
and for any policy ⇡, any time step t = 1, 2, . . . , any state s 2 S ,

V⇡

⇣
s; M̂

⌘
< E

h
Rt | St = s; M̂

i
. (11)

In other words, there always exists a candidate MDP instance M̂ compatible with the demonstration
data such that an imitator is always unable to achieve expert performance (r.h.s. in Eq. (11)), regardless
of the deployed policy ⇡. It follows from Thm. 1 that there is no policy ⇡ learnable from confounded
demonstrations that is guaranteed to perform at least as the expert in all possible scenarios. This
means that expert performance is not imitable when unobserved confounding generally exists. The
following example demonstrates the challenges of unobserved confounding in a single-stage MDP.
Example 1 (Single-Stage MDP). Consider a 1-stage MDP model with horizon T = 1. For any policy
⇡(X1 | S1), the imitator’s expected return is E⇡ [Y1] =

P
s1,x1

R(s1, x1)⇡(x1 | s1)P (s1). It follows
from the tight lower bound in Eq. (10) that there exists an worst-case MDP model M̂ compatible
with the observational distribution P (X1, S1, Y1) such that R(s1, x1) = E [Y1 | s1, x1]P (x1 | s1).
In this MDP instance M̂ , the imitator’s expected return can be further written as

E⇡ [Y1] =
X

s1,x1

E[Y1 | s1, x1]P (x1|s1)⇡(x1|s1)P (s1) <
X

s1,x1

E[Y1 | s1, x1]P (x1|s1)P (s1) (12)

The last step holds since probabilities of the policy ⇡(x1 | s1) 2 [0, 1] and
P

x1
⇡(x1 | s1) = 1.

Marginalizing the above equation gives E⇡ [Y1] < E[Y1] - the imitator is unable to achieve expert
performance regardless of the deployed policy ⇡. This analysis applies analogously to the MAB
model in Fig. 1, which can be thought of as a 1-stage MDP with no initial state S1 = ;.
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Figure 3: (a) MDPobs-Y shows a data-generating process for expert demonstrations where only the
reward Yt is confounded with the action Xt; (b) MDPobs-S shows a data-generating process for expert
demonstrations where only the next state St+1 is confounded with the action Xt.

3 Partial Identification for Robust Imitation
The impossibility results in Thm. 1 imply that robust imitation cannot be guaranteed when unobserved
confounders generally exist in the demonstration data. This means we must explore alternative
assumptions to learn an imitating policy guaranteed to achieve expert performance. Meanwhile,
standard imitation methods apply when causal consistency of Def. 2 holds, and no unobserved
confounder affects the transition or reward function. A natural question at this point arises: whether
robust imitation is feasible for settings between the unconfounded (Fig. 1b) and fully confounded
cases (Fig. 1a), where unobserved confounding bias affects only either the transition distribution or
reward function? This section aims to answer this question.

3.1 Imitation with Identifiable Transition and Non-Identifiable Reward

We first examine the setting graphically described in Fig. 3a where the reward function is confounded,
while the transition distribution is identifiable from the demonstration data. In this case, the first
equation of Def. 2 holds while the second one fails. To initiate the discussion, we write the expected
return of a candidate policy ⇡ in an MDP environment as follows [34],

E⇡ [R1] =
X

s,x

R (s, x)⇡(x | s)⇢⇡(s) (13)

Among quantities in the above equation, the state occupancy measure ⇢⇡(s) =
P1

t=0 �
tP⇡ (St = s)

is a function of the initial state distribution P (s) = P (S1 = s) and the transition distribution T .
Specifically, ⇢⇡(s) can be recursively written as ⇢⇡(s) = P (s)+�

P
s0,x T (s0, x, s)⇡(x | s0)⇢⇡(s0).

When the transition distribution is unconfounded (Fig. 3a), one could recover its parametrization
T (s, x, s0) following the first formula of Def. 1. Therefore, what remains undetermined in Eq. (13)
is the non-identifiable reward function R. It follows from Eq. (10) that parametrization of R(s, x)
can be bounded from the observational distribution. The imitator’s expected return could thus
be lower bounded as E⇡ [R1] �

P
s,x
eR (s, x)P (x | s)⇡(x | s)⇢⇡(s), where eR is the nominal

reward function defined in Eq. (5). Similarly, the expert’s expected return could be decomposed as
E [R1] =

P
x,s
eR(s, x)P (x | s)⇢(s), where ⇢(s) =

P1
t=0 �

tP (St = s) is the expert’s occupancy
measure. Optimizing the worst-case gap between the imitator E⇡ [R1] and expert E [R1] leads to a
minimax optimization problem, the solution of which leads to a possible imitating policy.
Theorem 2. Given an MDP M compatible with the causal graph of Fig. 3a, let R be a parametric
family containing the conditional reward E[Yt | st, xt]. Consider the following optimization program,

⌫⇤ = min
⇡

max
eR2R

X

s,x

eR(s, x)P (x | s) (⇢(s)� ⇡(x | s)⇢⇡(s)) (14)

When the gap ⌫⇤  0, the solution ⇡⇤ is an imitating policy satisfying E⇡⇤ [R1] � E[R1].

In other words, Thm. 2 computes an imitating policy within the environment depicted in Fig. 3a by
finding a policy maximizing the worst-case reward function compatible with the demonstration data
and the expert’s nominal reward. Later in Sec. 4, we will demonstrate that such a solution exists and
robust imitation learning is feasible in Fig. 3a.

The optimization program in Thm. 2 could be solved by augmenting some standard imitation learning
such as GAIL [17]. To make the argument more precise, let the parametric family R be a set of reward
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Algorithm 1: Causal GAIL with Confounded Reward R (CAIL-R)
1: Input: Expert demonstrations D = {(Si, Xi)}Ni=1
2: for iteration k = 0, 1, 2, . . . do
3: Collect expert trajectories from D
4: Collect imitator trajectories based on the policy ⇡k(x | s)
5: Update the parameters w of discriminator Dk with gradient

Ê[rw log(Dk(s, x))] + Ê⇡k [rwP (x | s) log(1�Dk(s, x))] (15)

6: Update the policy ⇡k+1 = argmin⇡ E⇡[P (x | s) log(1�D(s, x))] using any forward RL
algorithm

7: end for

function R(s, x) taking values in the real space R. We penalize the complexity of a reward function
R by subtracting a convex regularization function  (R) from Eq. (14); the detailed definition of
 (R) is given by [17, Eq. 13]. Solving the optimization program of Eq. (14) is equivalent to matching
weighted occupancy measures between the imitator and the expert, shown in Appendix B,

⌫⇤ = min
⇡
 ⇤ (P (x | s)⇢(s)� P (x | s)⇡(x | s)⇢⇡(s)) (16)

= min
⇡

max
D2(0,1)S⇥X

E[log(D(S, X))] + E⇡ [P (x | s) log(1�D(S, X))] , (17)

where  ⇤ = maxR a>R�  (R) is a conjugate function of  ; function D 2 S ⇥ X 7! (0, 1) is a
discriminator classifier (e.g, a neural network). The above optimization problem is in the form of
two neural networks competing against each other in a zero-sum game. The detailed implementation
of our proposed algorithm, called CAIL-R, is provided in Alg. 1. Compared to the standard GAIL
algorithm, Alg. 1 adds weight to the signal generated by the discriminator for the imitator and then
attempts to match the distribution between the weighted samples and expert demonstrations.

3.2 Imitation with Non-Identifiable Transition and Identifiable Reward

In this section, we examine the MDPobs-S environment as graphically depicted in Fig. 3b, where the
reward function is unconfounded, but UCs affect the action Xt and the next state St+1 simultaneously.
In this setting, the second equation of Causal Consistency (Def. 2) is satisfied, aligning the reward
function R with the expert’s nominal reward function. However, the first equation of Def. 2 does not
generally hold due to confounding bias, making the transition distribution T not identifiable from
demonstrations. Despite these challenges, we utilize partial identification techniques to bound the
transition function T , and subsequently estimate the imitator’s performance.

More precisely, consider again the expected return decomposition in Eq. (13). The identifiable
reward function R must be contained in the parametric space of the expert’s nominal reward R. The
transition distribution T can be bounded from the demonstration data using Eq. (9). One could thus
obtain a lower bound over the imitator’s performance by reasoning about the worst-case occupancy
measure compatible with demonstrations. Formally, with the fixed reward function R and the fixed
policy ⇡, the imitator’s return E⇡ [R1] is bounded by:

E⇡ [R1] � min
T ,⇢⇡

X

s,x

R(s, x)⇡(x | s)⇢⇡(s) (18)

s.t.: ⇢⇡(s) � 0,
X

s

⇢⇡(s) =
1

1� � , and ⇢⇡ (s) = P (s) + �
X

s0,x

T (s0, x, s)⇡(x | s0)⇢⇡(s
0)

Obs. Constraints T :

(P
s T (s0, x, s) = 1, and T (s, x, s0) � eT (s, x, s0)P (x | s)

T (s, x, s0)  eT (s, x, s0)P (x | s) + P (¬x | s)
(19)

The above optimization problem is similar to the classical linear program for planning in MDPs
[34]. The main difference is that the transition distribution T is no longer fixed but bounded in a
convex space T specified from the observational data. Therefore, we develop an imitating policy by
minimizing the performance gap between the imitator and the expert in the worst-case environment
compatible with the observational data and prior knowledge.
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Algorithm 2: Causal GAIL with Confounded Transition T (CAIL-T )
1: Input: Expert demonstrations D = {(Si, Xi)}Ni=1
2: for iteration k = 0, 1, 2, . . . do
3: Collect expert trajectories from D
4: Collect imitator trajectories based on the policy ⇡k(x | s) from the worst-case occupancy

measure by solving the optimization problem presented in Eq. (18) and Eq. (19)
5: Update the parameters w of discriminator Dk with gradient

Ê[rw log(Dk(s, x))] + Ê⇡k [rw log(1�Dk(s, x)); T ] (20)

6: Update the policy ⇡k+1 = argmin⇡ E⇡[log(1�D(s, x)); T ] with any forward RL algorithm
7: end for

Theorem 3. Given an MDP M compatible with the causal graph of Fig. 3b, let R be a paramet-
ric family containing the conditional reward E[Yt | st, xt], and T be a parametric family over
conditional probabilities P (st+1 | st, xt) defined in Eq. (19). Consider the following program,

⌫⇤ = min
⇡

max
R2R

max
T 2T

X

s,x

R(s, x) (P (x | s)⇢(s)� ⇡(x | s)⇢⇡ (s; T )) (21)

When the gap ⌫⇤  0, the solution ⇡⇤ is an imitating policy satisfying E⇡⇤ [R1] � E[R1].

We solve the optimization program in Thm. 3 by augmenting GAIL, a standard imitation method
[17]. By penalizing the complexity of a reward function R using a convex regularization function
 (R) from Eq. (14), Eq. (21) is reducible to the following distribution matching problem,

⌫⇤ = min
⇡

max
D2(0,1)S⇥X

max
T 2T

E[log(D(S, X))] + E⇡ [log(1�D(S, X)); T ] , (22)

We present the step-by-step implementation of our imitation method, CAIL-T , in Alg. 2. It is similar
to the standard GAIL [17]; however, a significant distinction arises at step 4, where the imitator
collects trajectories from the worst-case occupancy measure as presented in Eq. (18) and Eq. (19). We
refer readers to Appendix B for a more detailed discussion, where we propose an iterative algorithm
designed to find the worst-case occupancy measure efficiently.

4 Experiments

In this section, we validate the theoretical findings presented in Thm. 1 and illustrate the applications
of the proposed CAIL algorithms (Alg. 1 and Alg. 2) on various causal imitation learning tasks.
Such tasks range from synthetic causal models to real-world scenarios. To summarize, when
both the transition and the reward are confounded, there always exists a worst-case MDP instance
M̂ compatible with the expert demonstrations, but the imitator consistently fails to match expert
performance, aligning with the proof provided in Sec. 2.1. When either the transition or the reward is
confounded, we systematically evaluate our algorithms against the standard BC and GAIL methods,
highlighting the importance of optimizing within the worst-case SCM. Standard BC mimics the
expert’s nominal behavior policy P (X|S) via supervised learning; standard GAIL learns a policy by
solving a min-max game [17].

MDPobs – Random Instances. This experiment aims to empirically validate the theoretical findings
discussed in Thm. 1. Consider SCM instances compatible with Fig. 2b including binary observed
variables St, Xt, Yt 2 {0, 1}. 1000 random discrete MDPs are sampled, in other words, the reward
functions and the transition probabilities are generally different among these models. The expert is
able to observe the state St, the unobserved variable Ut. However, the imitator, lacking access to both
Ut or the reward E⇡[Yt], makes decisions solely on St. As shown in Fig. 4a, imitators consistently
failed to match expert performance. Specifically, prevalent negative performance gaps indicate that
most of imitators were consistently worse than experts; only in rare cases did the performance gaps
near �0.5, supporting our theoretical insights in Thm. 1. In summary, imitators fail to achieve the
expert’s performance when both the reward and the transition are confounded.

MDPobs-Y – Driving. To demonstrate the proposed framework, as outlined in Alg. 1, we consider a
scenario when an autonomous vehicle (‘ego vehicle’) aims to learn optimal driving strategies from
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Figure 4: Simulation results for our experiments. Fig. 4a illustrates the performance gap histogram for
the experiment MDPobs, where negative values indicate performance worse than expert performance.
Fig. 4b shows the convergence plot for CAIL, GAIL, and BC performance. Fig. 4c shows the final
performance, where y-axis represents the expected return.

expert demonstrations. The state St contains some critical driving information, e.g., the velocities
of the ego vehicle and the leading vehicle and the spatial distance between them. The action Xt

represents acceleration or deceleration decisions the ego vehicle makes. The unobserved variable Ut

represents some information accessible to the expert but inaccessible to the imitator, e.g. slippery road
conditions [24]. The reward Yt is designed to reflect multiple realistic driving objectives, e.g., safety,
comfort, efficiency, and so on. Ut has an effect on the reward Yt. Unlike the scenarios described in
[37, 38], due to UCs between Xt and Yt at each step t, it is impossible to find a ⇡-backdoor admissible
set. BC, GAIL, and CAIL utilize the same policy space ⇡(x | s). The major difference between
CAIL and GAIL lies in that CAIL optimizes the imitator by the weighted reward generated from
the discriminator – P (x | s) log(1�D(s, x)). As illustrated in Fig. 4b, where means and standard
deviations are computed over 100 trajectories, CAIL consistently outperforms BC and GAIL.

MDPobs-S – Medical Treatment. Consider the challenge of providing medical treatment to acutely
ill patients, where the primary goal is to learn a policy so that the morality rate can be decreased.
We utilize the real-world medical treatment dataset, i.e., Medical Information Mart for Intensive
Care III (MIMIC-III) dataset [20]. MIMIC-III consists trajectories of clinical information (e.g.,
heart rate, oxygen saturation, and so on) recorded at various time intervals. However, due to privacy
concerns, certain essential variables are masked or not properly recorded [40], e.g., socioeconomic
status or the experience levels of caregivers [9, 49]. Specifically, the state St encapsulates the
critical health information for the patients, e.g., prolonged elevated heart rate (peHR). The action Xt

represents whether to treat the medicine or not. The reward Yt is designed to represent the intent of
the doctor as much as possible, e.g., avoiding the patient’s mortality. The unobserved confounded
Ut simultaneously affects the action Xt and the next state St+1. Simulation results are illustrated in
Fig. 4c, which shows that the proposed framework performs the best among all strategies. BC and
IRL fail to obtain an imitating policy that could match expert performance.

5 Conclusion

This paper investigates imitation learning in Markov Decision Processes where the unobserved
confounding bias cannot be ruled out a priori. We establish theoretically that when such unobserved
confounders generally exist, it is infeasible to obtain a robust imitating policy that can perform
at least as well as the expert across all possible environments compatible with the demonstration
data and prior knowledge. Departing from this critical realization, our research diverges into two
distinct problem settings – one where only the transition distribution is unconfounded, but the
reward function is non-identifiable due to unobserved confounding; and the other where the reward
function is unconfounded and the transition distribution is non-identifiable. We then propose novel
imitation learning algorithms using partial identification techniques, which allow the imitator to
obtain effective policies that can achieve expert performance for both problem settings. Through
extensive experiments, we empirically validate the theoretical findings and systematically evaluate
our algorithms on different scenarios, ranging from simulated causal models to real-world datasets.
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A Proofs

In this section, we provide proofs for the theoretical claims delineated in the paper. Throughout this
paper, it is important to note that detailed parametrizations of the underlying SCM are not known to
the agent. Instead, the agent has access to the expert’s demonstrations, which are summarized as the
observational distribution P (X,S,Y ).

We begin by revisiting the distribution of state visitation. Specifically, ⇢⇡(s) can be calculated by:

⇢⇡ (s) = P (s) + �
X

s0,x

T (s0, x, s)⇡(x | s0)⇢⇡(s
0) (23)
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where P (s) represents the initial state distribution, � represents the discount factor, T represents the
transition probabilities for the imitator. Subsequently, we are able to develop the occupancy measure
for the policy ⇡:

⇢⇡(s, x) = ⇢⇡(s)⇡(x | s) (24)

It is important to note that, although the format of the occupancy measure ⇢⇡(s, x) shares a formal
resemblance to the one presented in GAIL [17], ⇢⇡(s, x) specifically represents an interventional
distribution with policy do(⇡). The identifiability of the transition T (s, x, s0) directly impacts the
identifiability of P⇡ (st). If P⇡ (st) is not identifiable, ⇢⇡(s) and ⇢⇡(s, x) are consequently not
identifiable.

Theorem 1. Given any positive observational distribution P (X,S,Y ) > 0, there exists an MDP
model M̂ compatible with the causal graph of Fig. 2b such that P (X,S,Y ; M̂) = P (X,S,Y )
and for any policy ⇡, any time step t = 1, 2, . . . , any state s 2 S ,

V⇡

⇣
s; M̂

⌘
< E

h
Rt | St = s; M̂

i
. (11)

Proof. Without loss of generality, the reward Y is normalized so that it has a range of [0, 1] Based on
the value function defined in Eq. (8), we first show how to expand it into a recursive version:

V⇡(st) = E⇡

" 1X

k=0

�kYt+k | st

#
(25)

= E⇡[Yt | st] + E⇡

" 1X

k=1

�kYt+k | st

#
(26)

= E⇡[Yt | st] + �E⇡

" 1X

k=1

�k�1Yt+k | st

#
(27)

= E⇡[Yt | st] + �
X

st+1

P⇡(st+1 | st)E⇡

" 1X

k=0

�kYt+1+k | st, st+1

#
(28)

= E⇡[Yt | st] + �
X

st+1

P⇡(st+1 | st)V⇡(st+1) (29)

From the second last line to the last line is justified by the experimental markovian property (discussed
in Sec. 2. More details could be found in [47].), following the graph Fig. 2a. E⇡[Yt | st] = E[Yt |
st, do(⇡)] represents the expected reward obtained by the agent when employing the policy ⇡.
Similarly, the transition probability

P⇡(st+1 | st) =
X

xt

Pxt(st+1 | st)⇡(xt | st), (30)

and Pxt(st+1 | st) = P (st+1 | st, do(xt)) = T (st, xt, st+1). Generally speaking, when any
unobserved confounder exists between St+1 and Xt, the causal query P⇡(st+1 | st) is not identifiable.
Therefore, we are able to obtain the ultimate target recursive expression:

V⇡(st) =
X

xt

R (st, xt)⇡(xt | st) + �
X

st+1

T (st, xt, st+1)⇡(xt | st)V⇡(st+1) (31)

=
X

xt

⇡(xt | st)

0

@R (st, xt) + �
X

st+1

T (st, xt, st+1)V⇡(st+1)

1

A . (32)

Next, to establish the validity of the preceding claim, we employ mathematical induction. Suppose
there are |S| distinct states.
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Base case t = T . For the final timestep T , for each state index j where 8j, 1  j  |S|, the value
function V⇡(s(T,j)) cane be defined as follows:

V⇡(s(T,j)) = E⇡

⇥
YT | ST = s(T,j)

⇤

=
X

xt

Ext

⇥
YT | ST = s(T,j))

⇤
⇡(xt | s(T,j))

(33)

where s(T,j) refers to the scenario where the state at the final timestep ST is equal the specific state j.

In order to obtain the worst-case SCM M̂ , we need to minimize V⇡(sT )� V (sT ) compatible with
the observational distribution, by establishing its lower bound. To this end, we employ the natural
bound [27] directly:

min
M

V⇡(s(T,j);M)� V (s(T,j);M)

= min
M

X

xt

Ext

⇥
YT | ST = s(T,j)

⇤
⇡(xt | s(T,j))� V (s(T,j);M)

=
X

xt

E
⇥
YT | s(T,j), xt

⇤
P (xt | s(T,j))⇡(XT = xt | s(T,j))�

X

xt

E
⇥
YT | s(T,j), xt

⇤
P (xt | s(T,j))

< 0
(34)

The last step is justified because P (X,S,Y ) > 0 and 0  ⇡(XT = xt | s(T,j))  1. Therefore,
this confirms the validity of the inequality for the base case.

Induction case. Suppose at t + 1, V⇡(st+1) < V (st+1), we need to prove V⇡(st) < V (st).

V⇡(st) = E⇡[Yt | st] + �
X

j

P⇡(s(t+1,j) | st)V⇡(s(t+1,j))| {z }
<V (s(t+1,j))

(35)

Without loss of generality, we assume that the state with the minimal value at t + 1 is denoted as
s(t+1,|S|). Our approach is founded on the premise that in obtaining the worst-case SCM M̂ , it is
strategic to allocate the lowest possible transition probabilities to the state with the highest value,
while preferentially assigning higher probabilities to states demonstrating smaller values. Specifically,
one starts with the estimate P (St+1 = s(t+1,1), xt | St) for Pxt(St+1 = s(t+1,1) | St). Following
this logic, we systematically allocate probability masses for indices 1  j  |S|� 1 as follows:

Pxt(St+1 = s(t+1,j) | St) P (St+1 = s(t+1,j), xt | St)

In accordance with the established properties of probability distributions, it follows that:

|S|X

j=1

Pxt(St+1 = s(t+1,j) | St) = 1.

Considering the state s(t+1,|S|), the corresponding probability can be assigned as:

Pxt(St+1 = s(t+1,|S|) | St) = 1�
|S|�1X

j=1

Pxt(St+1 = s(t+1,j) | St).

By plugging in the assigned values, we get:

Pxt(St+1 = s(t+1,|S|) | St) 1� P (s(t+1,1), xt | St)� P (s(t+1,2), xt | St) · · ·� P (s(t+1,|S|�1), xt | St)

 1�

0

@
|S|�1X

j=1

P
�
s(t+1,j), xt | St

�
1

A

 1� P (xt | St) + P (s(t+1,|S|), xt | St)
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It is established that the expression 0  1� P (xt | St) + P (s(t+1,|S|), xt | St)  1 holds true. This
inequality is supported by the following equation:

|S|X

j=1

P (s(t+1,j), xt | St) = P (xt | St).

Next, we expand the expert value function:

V (st) = E
" 1X

k=0

�kYt+k | St = st

#

= E[Yt | st] + �
X

j

P (s(t+1,j) | st)V (s(t+1,j))
(36)

In accordance with the established properties of probability distributions, it follows that:

|S|X

j=1

P (St+1 = s(t+1,j) | St) = 1.

Without loss of generality, suppose the policy is a deterministic policy. Subsequently, we analyze the
gap between V⇡(st) and V (st) as follows:

V⇡(st)� V (st)

=

0

@E⇡[Yt | st] + �

|S|X

j=1

P⇡(s(t+1,j) | st)V⇡(s(t+1,j))

1

A

�

0

@E[Yt | st] + �

|S|X

j=1

P (s(t+1,j) | st)V (s(t+1,j))

1

A

=

0

@E⇡[Yt | st] + �

|S|X

j=1

X

xt

Pxt(s(t+1,j) | st)⇡(xt | st)V⇡(s(t+1,j))

1

A

�

0

@E[Yt | st] + �

|S|X

j=1

P (s(t+1,j) | st)V (s(t+1,j))

1

A

< E⇡[Yt | st]� E[Yt | st] + �

|S|�1X

j=1

�
P (s(t+1,j), xt | st)� P (s(t+1,j) | st)

�
V (s(t+1,j))

+ �

0

@1�

0

@
|S|�1X

j=1

P
�
s(t+1,j), xt | st

�
1

A� P (s(t+1,|S|) | st)

1

AV (s(t+1,|S|))

= E⇡[Yt | st]� E[Yt | st]| {z }
<0

+

|S|�1X

j=1

�
P (s(t+1,j), xt | st)� P (s(t+1,j) | st)

�
| {z }

<0

�
V (s(t+1,j))� V (s(t+1,|S|))

�
| {z }

>0

< 0

(37)

In some degenerated cases when E⇡[Yt | st] = 0 and E[Yt | st] = 0, it might coincidentally follow
that V⇡(st) = 0, which is equal to V (st) = 0. Such occurrences are highly impossible in practical
scenarios, especially when P (X,S,Y ) > 0.
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B Derivation for Causal GAIL Algorithms

Theorem 2. Given an MDP M compatible with the causal graph of Fig. 3a, let R be a parametric
family containing the conditional reward E[Yt | st, xt]. Consider the following optimization program,

⌫⇤ = min
⇡

max
eR2R

X

s,x

eR(s, x)P (x | s) (⇢(s)� ⇡(x | s)⇢⇡(s)) (14)

When the gap ⌫⇤  0, the solution ⇡⇤ is an imitating policy satisfying E⇡⇤ [R1] � E[R1].

Proof. Based on Eq. (13), we have:

E⇡ [R1] =
X

s,x

R (s, x)⇡(x | s)⇢⇡(s)

It follows from Eq. (10) that parametrization of R(s, x) can be bound from the observational
distribution. The imitator’s expected return could thus be lower bounded as

E⇡ [R1] �
X

s,x

eR (s, x)P (x | s)⇡(x | s)⇢⇡(s)

Note that the expert’s expected return could be similarly decomposed as

E [R1] =
X

x,s

eR(s, x)P (x | s)⇢(s),

where ⇢(s) =
P1

t=0 �
tP (St = s) is the expert’s occupancy measure.

⌫⇤ = min
⇡

max
M

E [R1;M ]� E⇡ [R1;M ] (38)

= min
⇡

max
eR,R

X

x,s

eR(s, x)P (x | s)⇢(s)�
X

s,x

R (s, x)⇡(x | s)⇢⇡(s) (39)

= min
⇡

max
eR

X

s,x

eR(s, x)P (x | s) (⇢(s)� ⇡(x | s)⇢⇡(s)) , (40)

which is the ultimate target expression.

Next, we will show the derivation details for matching weighted occupancy measures between
the imitator and the expert. Suppose  ⇤ = maxR a>R �  (R) is a conjugate function of  .
Following a similar logic in [17], we utilize a smiliar cost regularizer  GA, leading to the formulation
of Alg. 1. Basically, Alg. 1 minimizes Jensen-Shannon divergence between P (x | s)⇢(s) and
P (x | s)⇡(x | s)⇢⇡(s).

First, we reformulate the equation into state-action occupancy measures:

 ⇤ (P (x | s)⇢(s)� P (x | s)⇡(x | s)⇢⇡(s)) =  ⇤ (⇢(s, x)� P (x | s)⇢⇡(s, x)) (41)

Based on the definition of  ⇤, we have:

 ⇤ (⇢(s, x)� P (x | s)⇢⇡(s, x)) (42)

= max
R

X

s,x

(⇢(s, x)� P (x | s)⇢⇡(s, x))R(s, x)�
X

s,x

P (x | s)⇢⇡(s, x)g�(R(s, x)) (43)

=
X

s,x

max
R

⇢(s, x)R� P (x | s)⇢⇡(s, x)�
�
���1(�R)

�
(44)

=
X

s,x

max
R0

⇢(s, x)(��(R0))� P (x | s)⇢⇡(s, x)�
�
���1(�(R0))

�
(45)

=
X

s,x

max
R0

⇢(s, x)(��(R0))� P (x | s)⇢⇡(s, x)� (�R0) (46)
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where we make the change of variables R ! ��(R0). Suppose D 2 S ⇥ X 7! (0, 1) is a
discriminator classifier (e.g, a neural network). Using the logistic loss �(x) = log (1 + e�x), we can
get:

 ⇤ (⇢(s, x)� P (x | s)⇢⇡(s, x)) (47)

=
X

s,x

max
R0

⇢(s, x) log

✓
1

1 + e�R0

◆
+ P (x | s)⇢⇡(s, x) log

✓
1� 1

1 + e�R0

◆
(48)

= max
D2(0,1)S⇥X

E[log(D(S, X))] + E⇡ [P (x | s) log(1�D(S, X))] , (49)

which is the ultimate target expression.
Theorem 3. Given an MDP M compatible with the causal graph of Fig. 3b, let R be a paramet-
ric family containing the conditional reward E[Yt | st, xt], and T be a parametric family over
conditional probabilities P (st+1 | st, xt) defined in Eq. (19). Consider the following program,

⌫⇤ = min
⇡

max
R2R

max
T 2T

X

s,x

R(s, x) (P (x | s)⇢(s)� ⇡(x | s)⇢⇡ (s; T )) (21)

When the gap ⌫⇤  0, the solution ⇡⇤ is an imitating policy satisfying E⇡⇤ [R1] � E[R1].

Proof. Based on Eq. (13), we have:

E⇡ [R1] =
X

s,x

R (s, x)⇡(x | s)⇢⇡(s)

=
X

s,x

R (s, x) ⇢⇡(s, x)| {z }
Non-ID

The reward function R is identifiable and must be contained in the parametric space of the expert’s
nominal reward R. In other words,

R (s, x) = eR (s, x) . (50)
The transition distribution T can be bounded from the demonstration data using Eq. (9). Therefore,
we get:

⌫⇤ = min
⇡

max
M

E [R1;M ]� E⇡ [R1;M ] (51)

= min
⇡

max
T , eR,R

X

s,x

eR(s, x)P (x | s)⇢(s)�R (s, x) ⇢⇡(s, x; T ) (52)

= min
⇡

max
T ,R

X

s,x

R (s, x) (P (x | s)⇢(s)� ⇢⇡(s, x; T )) (53)

= min
⇡

max
T 2T ,R2R

X

s,x

R(s, x) (P (x | s)⇢(s)� ⇡(x | s)⇢⇡ (s; T )) (54)

which is the ultimate desired expression.

Consider again the expected return decomposition in Eq. (13). The reward function R is identifiable
and must be contained in the parametric space of the expert’s nominal reward R. The transition
distribution T can be bounded from the demonstration data using Eq. (9). One could thus obtain a
lower bound over the imitator’s performance by reasoning about the worst-case occupancy measure
compatible with demonstrations. Formally, with the fixed reward function R and the fixed policy ⇡,
the imitator’s return is bounded by

E⇡ [R1] � min
T ,⇢⇡

X

s,x

R(s, x)⇡(x | s)⇢⇡(s) (55)

subject to: ⇢⇡(s) � 0, and
X

s

⇢⇡(s) =
1

1� �

⇢⇡ (s) = P (s) + �
X

s0,x

T (s0, x, s)⇡(x | s0)⇢⇡(s
0)

Obs. Constraints T :

(P
s T (s0, x, s) = 1, and T (s, x, s0) � eT (s, x, s0)P (x | s)

T (s, x, s0)  eT (s, x, s0)P (x | s) + P (¬x | s)
(56)
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Algorithm 3: Find Worst-Case Discounted Future Reward
1: Input: P (st+1, xt|st), the value function Vxt(st)
2: Output: Assignments for non-ID transitions T
3: WLOG, assume Vxt(s(t+1,|S|)) is found to have the minimal relative value
4: Set

Pxt(St+1 = s(t+1,j) | st) := P (St+1 = s(t+1,j), xt | st), where j 6= |S|

Pxt(St+1 = s(t+1,|S|) | st) := 1�

0

@
|S|�1X

j=1

P (St+1 = s(t+1,j), xt | st)

1

A

5: return

The above optimization problem is similar to the classic linear program for planning in MDPs [34].
The main difference is that the transition distribution T is no longer fixed but bounded in a convex
space T specified from the observational data. Similar to the previous setting, we could solve an
imitating policy by minimizing the performance gap between the imitator and the expert in the
worst-case environment compatible with the observational data and prior knowledge.

Next, we will provide a heuristic algorithm to solve the optimization program presented in Eq. (18)
and Eq. (19). Specifically, as discussed in Eq. (9), we are able to bound the transition distribution T
by:

T (s, x, s0) 2
h
eT (s, x, s0)P (x | s), eT (s, x, s0)P (x | s) + P (¬x | s)

i
. (57)

The intuition for Alg. 3 is: in order to find the worst case, we need to put as less transition probability
mass as possible to the state with maximal values, and allocate higher transition probabilities to states
with smaller values. Without loss of generality, suppose Vxt(s(t+1,|S|)) is found to have the smallest
relative value. For all other states j 6= |S|, we need to allocate as less transition probability mass as
possible. Therefore, we take the lower bound:

Pxt(St+1 = s(t+1,j) | st) := P (St+1 = s(t+1,j), xt | st) (58)
:= P (St+1 = s(t+1,j) | st, xt)P (xt | st). (59)

For the state s(t+1,|S|), we have:

Pxt(St+1 = s(t+1,|S|) | st) := 1�

0

@
|S|�1X

j=1

P (St+1 = s(t+1,j), xt | st)

1

A . (60)

To illustrate the idea above, let’s consider a numerical instance. Suppose there are only two states.
The value function Vxt(st+1) has 2 values: Vxt(s(t+1,1)) = 0.8 and Vxt(s(t+1,2)) = 0.2. Be-
cause Vxt(s(t+1,1)) > Vxt(s(t+1,2)), to find the worst-case discounted future reward, we allocate
Pxt(s(t+1,1) | st) P (s(t+1,1), xt | st) and Pxt(s(t+1,2) | st) 1�P (s(t+1,1), xt | st). As such,
we are able to collect trajectories from the imitator, although P⇡(st+1 | st) is not identifiable.

Following a similar logic in Alg. 1: we reformulate the equation into state-action occupancy measures:
 ⇤ (P (x | s)⇢(s)� ⇡(x | s)⇢⇡(s; T )) =  ⇤ (⇢(s, x)� ⇢⇡(s, x; T )) (61)

Based on the definition of  ⇤, we have:
 ⇤ (⇢(s, x)� ⇢⇡(s, x; T )) (62)

= max
T ,R

X

s,x

(⇢(s, x)� ⇢⇡(s, x; T ))R(s, x)�
X

s,x

⇢⇡(s, x; T )g�(R(s, x)) (63)

=
X

s,x

max
T ,R

⇢(s, x)R� ⇢⇡(s, x; T )�
�
���1(�R)

�
(64)

=
X

s,x

max
T ,R0

⇢(s, x)(��(R0))� ⇢⇡(s, x; T )�
�
���1(�(R0))

�
(65)

=
X

s,x

max
T ,R0

⇢(s, x)(��(R0))� ⇢⇡(s, x; T )� (�R0) (66)
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Suppose D 2 S ⇥ X 7! (0, 1) is a discriminator classifier (e.g, a neural network). Using the logistic
loss �(x) = log (1 + e�x), we can get:

 ⇤ (⇢(s, x)� ⇢⇡(s, x; T )) (67)

=
X

s,x

max
T ,R0

⇢(s, x) log

✓
1

1 + e�R0

◆
+ ⇢⇡(s, x; T ) log

✓
1� 1

1 + e�R0

◆
(68)

= max
T ,D

E[log(D(S, X))] + E⇡ [log(1�D(S, X)); T ] . (69)

Therefore, we are able to obtain the ultimate target expression:

⌫⇤ = min
⇡

max
T 2T ,D2(0,1)S⇥X

E[log(D(S, X))] + E⇡ [log(1�D(S, X)); T ] . (70)

C More Details for the Experiments

All experiments were conducted using Intel Cascade Lake processors, with 30 vCPUs and 120 GB
memory on a system running Ubuntu 18.04. Upon acceptance of this manuscript, we intend to make
the source code available in the camera-ready version of the paper.

MDPobs Previously, 1000 random discrete causal models are sampled and all the performance gaps
are less than 0. In other words, when both the reward and the transition are confounded, all imitators
fail to match expert performance.

Specifically, let’s take a look at one example instance of those randomly sampled SCM instances. Its
detailed parameterization is provided as follows:

P (s0) = 0.5, P (s1) = 0.5

P (x0, y0, s
0
0 | s0) = 0.1888, P (x0, y0, s

0
1 | s0) = 0.2099,

P (x0, y1, s
0
0 | s0) = 0.0294, P (x0, y1, s

0
1 | s0) = 0.2116,

P (x1, y0, s
0
0 | s0) = 0.1465, P (x1, y0, s

0
1 | s0) = 0.0226,

P (x1, y1, s
0
0 | s0) = 0.0645, P (x1, y1, s

0
1 | s0) = 0.1267,

P (x0, y0, s
0
0 | s1) = 0.1762, P (x0, y0, s

0
1 | s1) = 0.1775,

P (x0, y1, s
0
0 | s1) = 0.0290, P (x0, y1, s

0
1 | s1) = 0.1786,

P (x1, y0, s
0
0 | s1) = 0.1761, P (x1, y0, s

0
1 | s1) = 0.0893,

P (x1, y1, s
0
0 | s1) = 0.1472, P (x1, y1, s

0
1 | s1) = 0.0261,

(71)

where s0 denotes the next state; P (x0, y0, s00 | s0) is the abbreviation format for P (Xt = x0, Yt =
y0, St+1 = s00 | St = s0).

The expert is able to observe the state St, the unobserved variable Ut, and the reward Yt. However,
the imitator, lacking access to both Ut or the reward E⇡[Yt], makes decisions solely on St. In
other words, all methods utilize the same policy scope ⇡(x | s). As shown in Fig. 4a, imitators
consistently failed to match expert performance. Prevalent negative performance gaps indicate that
most of imitators were significantly worse than experts; only in rare cases did the performance gaps
near �0.5, supporting our theoretical insights presented in Thm. 1. Furthermore, as depicted in
Fig. 5a, CAIL does not achieve expert-level performance, specifically, E⇡ [Rt]� E [Rt] = �1.9019.
However, although CAIL performs worse than the expert, CAIL still consistently outperforms BC
and GAIL by effectively learning from the constructed worst-case MDP instances.

MDPobs-Y: Additional Experiment. Consider an SCM instance compatible with Fig. 3a including
binary observed variables St, Xt, Yt 2 {0, 1}. St represents the state at each time step. Xt denotes
the action. The unobserved variable Ut represents some information accessible to the expert but
inaccessible to the imitator. Additionally, the imitator lacks access to the reward E⇡[Yt]. Its detailed
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Figure 5: Simulation results for experiments that are not included in the main manuscript.

parameterization is provided as follows:

P (s0) = 0.5, P (s1) = 0.5

P (x0, y0, s
0
0 | s0) = 0.1775, P (x0, y0, s

0
1 | s0) = 0.2029,

P (x0, y1, s
0
0 | s0) = 0.0001, P (x0, y1, s

0
1 | s0) = 0.0001,

P (x1, y0, s
0
0 | s0) = 0.0993, P (x1, y0, s

0
1 | s0) = 0.0199,

P (x1, y1, s
0
0 | s0) = 0.2001, P (x1, y1, s

0
1 | s0) = 0.3001,

P (x0, y0, s
0
0 | s1) = 0.2859, P (x0, y0, s

0
1 | s1) = 0.1359,

P (x0, y1, s
0
0 | s1) = 0.0001, P (x0, y1, s

0
1 | s1) = 0.0001,

P (x1, y0, s
0
0 | s1) = 0.2969, P (x1, y0, s

0
1 | s1) = 0.2809,

P (x1, y1, s
0
0 | s1) = 0.0001, P (x1, y1, s

0
1 | s1) = 0.0001,

(72)

where s0 denotes the next state; P (x0, y0, s00 | s0) is the abbreviation format for P (Xt = x0, Yt =
y0, St+1 = s00 | St = s0). As depicted in Fig. 5b, CAIL performs the best among all strategies. Both
BC and GAIL fail to match expert performance. Such result shows the effectiveness of Alg. 1.

D Broader Impacts

This paper investigates the theoretical framework of causal imitation learning from confounded
demonstrations. Our framework is versatile, applicable to various real-world domains such as
autonomous driving, robotics, industrial automation, and medical decisions modeling. One of the
positive impacts of this study is the exploration of the risks associated with training IRL algorithms
when demonstrations are generally contaminated by unobserved confounders. We theoretically prove
that when both the transition distribution T and reward function R are not identifiable, there is no
policy ⇡ learnable from confounded demonstrations that is guaranteed to perform at least as the expert
in all possible scenarios. Such theoretical findings have been validated through extensive randomly
generated causal models. When either the reward function or the transition distribution is confounded,
we augment the GAIL framework by utilizing partial identification techniques, so that the imitator
is optimized within the worst-case scenarios. Specfically, the worst-case reward function in Alg. 1
and the worst-case occupancy measure in Alg. 2. By mitigating the risks associated with unobserved
confounders in expert demonstrations, our framework supports the development of more transparent
and accountable AI systems. This transparency is crucial in high-stakes areas such as healthcare and
transportation, where decision-making errors can have significant repercussions. More broadly, our
framework significantly enhances the reliability and safety of autonomous systems in various fields,
which prioritize safety and robustness during their decision-making processes. They are increasingly
important because black-box AI systems, – whose internal workings remain opaque – become more
and more prevalent, and our understandings of their potential implications remain limited.
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E Impossibility Result in Two-Stage MDPs

In this extension of the MAB model introduced in Sec. 1, we explore a two-stage framework (see
Fig. 2b). Our previous discussions demonstrated that in MAB settings affected by unobserved
confounders, the expert consistently outperforms the imitator; that is, i.e., Ex [Y ] < E[Y ].

We now extend our analysis to the two-stage MDPs. Specifically, the agent first observes the state S1,
selects an action X1, and subsequently, it receives a reward Y1. The process then progresses to the
second stage, where the agent transitions to state S2. It chooses an action X2, and then it receives a
further reward Y2. A pivotal distinction between this scenario and prior examples lies in the transition
probability P⇡1(S2 | S1). Therefore, we investigate their cumulative reward:

E⇡1,⇡2 [Y1 + Y2] and E[Y1 + Y2]. (73)

As a motivating example, we assume that all variables are binary. Our analysis begins by comparing
the performance at the final stage, specifically, E⇡1,⇡2 [Y2].

Suppose f(S2) = E[Y2 | S2, X2]P (X2 | S2). Without loss of generality, we assume an ordering
in the functional values associated with different states: f(S2 = 0) > f(S2 = 1). To address the
non-identifiability issue caused by the transition distribution P⇡1(S2 | S1), as discussed in Eq. (9), we
formulate the worst-case SCM by allocating f(S2 = 0) with probability mass P (S2 = 0, X1 | S1).
In other words, we assign the lower bound P (S2 = 0, x1 | Z1) to the non-identifiable query
Px1(S2 = 0 | Z1). As such, we are able to rewrite the expert’s rewards as follows:

E[Y2] = f(S2 = 0) ⇤ P (S2 = 0, X1 = 0|Z1)P (Z1) (74)
+ f(S2 = 0) ⇤ P (S2 = 0, X1 = 1|Z1)P (Z1) (75)
+ f(S2 = 1) ⇤ P (S2 = 1, X1 = 0|Z1)P (Z1) (76)
+ f(S2 = 1) ⇤ P (S2 = 1, X1 = 1|Z1)P (Z1) (77)

and the imitator’s reward can be written as

E⇡1,⇡2 [Y2] = ⇡1(X1 = 0|Z1) · A + ⇡1(X1 = 1|Z1) · B (78)
A = f(S2 = 0) ⇤ P (S2 = 0, X1 = 0|Z1)P (Z1) (79)
+ f(S2 = 1) ⇤ (1� P (S2 = 0, X1 = 0|Z1))P (Z1) (80)
B = f(S2 = 0) ⇤ P (S2 = 0, X1 = 1|Z1)P (Z1) (81)
+ f(S2 = 1) ⇤ (1� P (S2 = 0, X1 = 1|Z1))P (Z1) (82)

where is E⇡1,⇡2 [Y2] a convex combination of the quantities A and B. Therefore, E⇡1,⇡2 [Y2] 
max{A, B}. Given that f(S2 = 0) > f(S2 = 1), we are able to establish that A < E[Y2] and
B < E[Y2]. Therefore, E⇡1,⇡2 [Y2] < E[Y2]. Using a similar rationale introduced in Sec. 1, we get
E⇡1 [Y1] < E[Y1]. Consequently,

E⇡1,⇡2 [Y1 + Y2] < E[Y1 + Y2]. (83)

In other words, the imitator is unable to learn a policy that can obtain the expert’s performance in the
worst-case 2-stage MDP compatible with the observational distribution P (X1, X2, S1, S2, Y1, Y2).
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