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Abstract
The abilities of humans to understand the world in terms of
cause and effect relationships, as well as to compress informa-
tion into abstract concepts, are two hallmark features of human
intelligence. These two topics have been studied in tandem
in the literature under the rubric of causal abstractions theory.
In practice, it remains an open problem how to best leverage
abstraction theory in real-world causal inference tasks, where
the true mechanisms are unknown and only limited data is
available. In this paper, we develop a new family of causal
abstractions by clustering variables and their domains. This ap-
proach refines and generalizes previous notions of abstractions
to better accommodate individual causal distributions that are
spawned by Pearl’s causal hierarchy. We show that such ab-
stractions are learnable in practical settings through Neural
Causal Models (Xia et al. 2021), enabling the use of the deep
learning toolkit to solve various challenging causal inference
tasks – identification, estimation, sampling – at different levels
of granularity. Finally, we integrate these results with repre-
sentation learning to create more flexible abstractions, moving
these results closer to practical applications. Our experiments
support the theory and illustrate how to scale causal inferences
to high-dimensional settings involving image data.
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1 Introduction
Humans understand the world around them through the use
of abstract notions. Biologists can study the function of the
liver without understanding the interactions between its sub-
atomic particles studied by physicists. Economists find it
more practical to consider macro-level behavior through con-
cepts like aggregate supply and demand rather than studying
the purchasing behavior of individuals. At home, we choose
to interpret the object in the television as a dog or a car as op-
posed to a collection of photons or pixels. Humans are highly
capable of learning through interacting with the environment
and understanding cause and effect between different con-
cepts. Understanding causality is considered a hallmark of
human intelligence and allows humans to plan a course of
action, determine blame and responsibility, and generalize
across environments. It follows that the ability to abstract
concepts and study them causally is a key ability expected
from modern intelligent systems.

AI systems are built on a foundation of generative mod-
els, which are representations of the underlying processes

from which data is collected. Standard generative models
simply model some joint density of a set of variables of
interest, while causal generative models further model dis-
tributions involving causal interventions and counterfactual
relations. In this paper, we study the problem of learning a
causal generative model from data, which can be useful for
many purposes such as sampling novel causally-consistent
data points (i.e. from interventional or counterfactual distri-
butions). One major challenge is that data is often provided
in complex low level forms (e.g., pixels), while it would be
more useful in applications to focus on higher level concepts
(e.g., dog or car). We would therefore like to learn a more ab-
stract causal generative model at a higher level of granularity,
while guaranteeing that the queries from the coarser model
match the ground truth.

To formalize this problem, we build on the semantics of
a class of generative models called structural causal models
(SCMs) (Pearl 2000). An SCMM∗ describes a collection of
mechanisms and distribution over unobserved factors. Each
SCM induces three qualitatively different sets of distributions
related to the human concepts of “seeing” (called observa-
tional), “doing” (interventional), and “imagining” (counter-
factual), collectively known as the Ladder of Causation or the
Pearl Causal Hierarchy (PCH) (Pearl and Mackenzie 2018;
Bareinboim et al. 2022). The PCH is a containment hierar-
chy in which each of these distribution sets can be put into
increasingly refined layers, where observational distributions
go in layer 1 (L1), interventional in layer 2 (L2), and counter-
factual in layer 3 (L3). In typical tasks of causal inference, the
goal is to obtain a quantity from a higher layer when given
data only from lower layers (e.g. inferring interventional
quantities from observational data). Still, it is understood
that this is generally impossible without additional assump-
tions since higher layers are underdetermined by lower layers
(Bareinboim et al. 2022; Ibeling and Icard 2020).

Generative models can often be implemented in practice as
neural networks. Deep learning models have achieved promis-
ing success in a variety of applications such as computer vi-
sion (Krizhevsky, Sutskever, and Hinton 2012), speech recog-
nition (Graves and Jaitly 2014), and game playing (Mnih
et al. 2013). Many of these successes are attributed to rep-
resentation learning (Bengio, Courville, and Vincent 2013),
in which the learned representation can be thought of as an
abstraction of the data. Further, there has also been grow-
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ing interest in the idea of incorporating causality into deep
models1. Prior work introduced one such model, the Neural
Causal Model (NCM), which incorporates the same causal
assumptions encoded in a causal diagram to identify and es-
timate interventional and counterfactual distributions (Xia
et al. 2021; Xia, Pan, and Bareinboim 2023). 2 Despite the
soundness of this approach in theory, current NCM-based
methods face challenges when applied to complex real-world
settings for various reasons: (1) optimization is difficult when
scaled to high dimensions, (2) unprocessed data can come in
complicated forms (e.g. images, text, etc.), and (3) the causal
diagram is difficult to fully specify in some high-dimensional
settings. In this paper, we address these challenges by study-
ing how representation learning and causal reasoning are
related to each other and by building on this understanding to
develop a neural framework for causal abstraction learning.

Existing works that study causal abstractions set a solid
foundation by defining various mathematical notions of ab-
stractions (Rubenstein et al. 2017; Beckers and Halpern 2019;
Beckers, Eberhardt, and Halpern 2019; Geiger, Potts, and
Icard 2023; Massidda et al. 2023). In App. B, we explain
some of the foundational results and discuss their drawbacks.
In particular, we note that existing definitions are declara-
tive; that is, if the lower and higher level models are given,
one can use the definition to decide whether the higher level
model is indeed an abstraction of the lower level one. How-
ever, neither models are available in practice, and one would
want to use limited lower level data to learn a higher level
causal abstraction. We will expand on the current generation
of causal abstractions in two ways. First, given that the true
SCM is almost never available in practice, nor entirely learn-
able from data, we introduce a relaxed notion of abstractions
that applies on the layers of the PCH. Second, we develop
algorithms to systematically learn abstractions in practice
given some structural information about the data, which can
then be used for downstream inferential tasks such as causal
identification, estimation, or sampling.

The general problem tackled by this paper is summarized
in Fig. 1. The ground truth modelML (left) is defined over
low level variables VL (e.g., pixels), while it may be prac-
tical to work in their high level abstract counterparts VH

(e.g., dog or car).ML induces distributions from the three
layers of the PCH (i.e. L∗1, L∗2, L∗3), defined over VL. In
this work, we introduce a new type of abstraction func-
tion τ that maps distributions over VL to ones over VH

(i.e. τ(L∗1), τ(L∗2), τ(L∗3)). Furthermore,ML is unobserved,
and only limited data is given (e.g., observational data from

1Many successful approaches have been developed to estimate
causal effects from observational data under the backdoor or condi-
tional ignorability conditions (Shalit, Johansson, and Sontag 2017;
Louizos et al. 2017; Li and Fu 2017; Johansson, Shalit, and Sontag
2016; Yao et al. 2018; Yoon, Jordon, and van der Schaar 2018;
Kallus 2020; Shi, Blei, and Veitch 2019; Du et al. 2020; Guo
et al. 2020), and also to answer causal queries through neural-
parameterized SCMs (Kocaoglu et al. 2018; Goudet et al. 2018).

2The literature also includes non-neural approaches for such
problems, including estimators with stronger statistical properties
such as double robustness and convergence guarantees, for example,
(Jung, Tian, and Bareinboim 2020a,b, 2021).

Figure 1: Overview of this paper. High-level SCM M̂H (right)
is trained on available data to serve as an abstract proxy of
the true, unobserved, low-level SCMML (left).

L∗1). The goal is to learn a high-level SCM M̂H (right) over
the high-level variables VH that encodes the given causal
constraints (GC in the figure) and matchesML on the avail-
able data across τ (e.g. L̂1 = τ(L∗1)). Then, we investigate
when and how the resulting model M̂H can be used as a
surrogate, allowing one to make interventional and counter-
factual inferences about the higher layers ofML through the
higher layers of M̂H .

As an example, suppose an economist is studying the ef-
fects of spending trends of various countries on their average
income Y . In addition to Y , she has collected observational
data on several variables of spending trends, such as con-
sumer spending C, investments I , government spending G,
imports M , and exports E. She wants to understand the
causal effect of increasing general spending on average in-
come of the population, and one way to do this is to study the
causal effect of collectively increasing C, I , G, M , and E on
Y . However, the economist notes that C, I ,G,M , and E can
be aggregated together into a single abstract variable called
gross domestic product (GDP). The tools that we introduce in
this paper allow her to proceed by constructing a high-level
model M̂H over the variables GDP and Y , encoding the re-
quired causal assumptions, and training the model over the
given observational data. Despite the high-level variables not
matching the original low-level variables (i.e., C, I , G, M ,
E), the causal effect of GDP on Y can be queried from the
model M̂H to solve the problem.

More specifically, our contributions are as follows: In
Sec. 2, we define a new class of abstractions based on clusters
of variables (intervariable) and their domains (intravariable).
Building on this new class, we define a notion of abstraction
consistency on the layers of the PCH. We then show how
to systematically construct an abstraction consistent with all
three layers of the PCH and then relate these abstractions to
existing definitions. In Sec. 3, we show how to leverage NCM
machinery to perform interventional (layer 2) and counter-
factual (layer 3) inferences across these abstractions when
the true SCM is unavailable. In Sec. 4, we introduce a vari-
ant of the NCM that learns representations of each variable
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and encodes causal assumptions on the representation level,
allowing us to learn abstractions even in settings where the
assumption of the availability of clusters is relaxed. Experi-
ments in Sec. 5 corroborate with the theory.

1.1 Preliminaries
We now introduce the notation and definitions used through-
out the paper. We use uppercase letters (X) to denote ran-
dom variables and lowercase letters (x) to denote correspond-
ing values. Similarly, bold uppercase (X) and lowercase (x)
letters denote sets of random variables and values respec-
tively. We use DX to denote the domain of X and DX =
DX1
×· · ·×DXk

for the domain of X = {X1, . . . , Xk}. We
denote P (X = x) (often shortened to P (x)) as the probabil-
ity of X taking the values x under the distribution P (X).

We utilize the basic semantic framework of structural
causal models (SCMs) (Pearl 2000), following the presenta-
tion in Bareinboim et al. (2022).

Definition 1 (Structural Causal Model (SCM)). A structural
causal modelM is a 4-tuple ⟨U,V,F , P (U)⟩, where

• U is a set of background (exogenous) variables that are
determined by factors outside the model;

• V is a set {V1, V2, . . . , Vn} of variables, called endoge-
nous, that are determined by other variables in the model
– that is, variables in U ∪V;

• F is a set of functions {fV1
, fV2

, . . . , fVn
} such that each

fVi
is a mapping from exogenous parents UVi

⊆ U and
endogenous parents PaVi

⊆ V \ Vi to Vi;
• P (U) is a probability function defined over DU. ■

Definition 2 (Causal Diagram (Bareinboim et al. 2022,
Def. 13)). Each SCMM induces a causal diagram G, con-
structed as follows:

1. add a vertex for each Vi ∈ V;
2. add a directed arrow (Vj → Vi) for every Vi ∈ V and
Vj ∈ PaVi ; and

3. add a dashed-bidirected arrow (Vj L9999K Vi) for every
pair Vi, Vj ∈ V such that UVi and UVj are not indepen-
dent (Markovianity is not assumed). ■

Our treatment is constrained to recursive SCMs, which
implies acyclic causal diagrams, with finite discrete domains
over endogenous variables V.

Counterfactual (and also interventional and observational)
quantities can be computed from SCMM as follows:

Definition 3 (Layer 3 Valuation (Bareinboim et al. 2022,
Def. 7)). An SCM M induces layer L3(M), a set of
distributions over V, each with the form P (Y∗) =
P (Y1[x1],Y2[x2],...) such that

PM(y1[x1],y2[x2], . . . ) =∫
DU

1
[
Y1[x1](u) = y1,Y2[x2](u) = y2, . . .

]
dP (u) (1)

where Yi[xi](u) is evaluated under Fxi := {fVj :Vj ∈ V \
Xi}∪ {fX ← x :X ∈ Xi}. L2 is the subset of L3 for which
all xi are equal, and L1 is the subset for which all Xi = ∅. ■

Each Yi corresponds to a set of variables in a world where
the original mechanisms fX are replaced with constants xi

for each X ∈ Xi; this is also known as the mutilation pro-
cedure. This procedure corresponds to interventions, and we
use subscripts to denote the intervening variables (e.g. Yx)
or subscripts with brackets when the variables are indexed
(e.g. Y1[x1]). For instance, P (yx, y′x′) is the probability of
the joint counterfactual event Y = y had X been x and
Y = y′ had X been x′.

We use the notation Li(M) to denote the set of Li dis-
tributions from M. We use Z to denote a set of quanti-
ties from Layer 2 (i.e. Z = {P (Vzk

)}ℓk=1), and Z(M)
denotes those same quantities induced by SCM M (i.e.
Z(M) = {PM(Vzk

)}ℓk=1).
We also build on Neural Causal Models (NCMs), in partic-

ular for performing causal inferences:

Definition 4 (G-Constrained Neural Causal Model (G-NCM)
(Xia et al. 2021, Def. 7)). Given a causal diagram G, a G-
constrained Neural Causal Model (for short, G-NCM) M̂(θ)
over variables V with parameters θ = {θVi

: Vi ∈ V} is an
SCM ⟨Û,V, F̂ , P (Û)⟩ such that

• Û = {ÛC : C ∈ C(G)}, where C(G) is the set of all
maximal cliques over bidirected edges of G;

• F̂ = {f̂Vi
: Vi ∈ V}, where each f̂Vi

is a feedforward
neural network parameterized by θVi

∈ θ mapping values
of UVi

∪ PaVi
to values of Vi for UVi

= {ÛC : ÛC ∈
Û s.t. Vi ∈ C} and PaVi = PaG(Vi);

• P (Û) is defined s.t. Û ∼ Unif(0, 1) for each Û ∈ Û. ■

2 Abstractions of the Pearl Causal Hierarchy
The discussion of abstractions begins with defining causal
variables. In many established causal inference tasks, it is
typically assumed that there is a well-specified and known set
of endogenous variables of interest V, and nature is modeled
by a collection of mechanisms that assign values to each of
these variables. However, in practice, the definition of V may
not always be clear. In particular, the variables of interest may
not align with the features of the data. For example, in an eco-
nomic system, perhaps data on each individual consumer is
collected, but the variable of interest is an aggregate measure
like gross domestic product (GDP). In image data, perhaps
the pixel values are collected, but the variables of interest are
related to the objects of the image, not the individual pixels.

Acknowledging that the data is not always provided in the
best choice of granularity, the causal abstraction literature
typically defines two sets of variables, VL and VH , which
describe the lower level and higher level settings, respectively.
For example, VL might describe the pixels of an image, while
VH might describe its structural content. They are typically
modeled by corresponding causal models ML and MH ,
respectively.

In this section, we study on the distinction between low
level variables VL (e.g. pixels) and their higher level coun-
terparts VH (e.g. image) from the perspective of individual
distributions of the PCH. We consider nature’s underlying
SCMML defined over low level variables, VL, and the goal
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is to reason about the higher level variables VH given data
on VL

3.

2.1 Constructive Abstraction Functions
The connection between VH and VL can be described
through a mapping between their domains, τ : DVL

→ DVH
.

Here, we consider a family of abstraction functions where τ
is based on clusters of the variables and values of VL:

Definition 5 (Inter/Intravariable Clusterings). LetM be an
SCM over variables V.

1. A set C is said to be an intervariable clustering of V if
C = {C1,C2, . . .Cn} is a partition of a subset of V.
C is further considered admissible w.r.t. M if for any
Ci ∈ C and any V ∈ Ci, no descendent of V outside
of Ci is an ancestor of any variable in Ci. That is, there
exists a topological ordering of the clusters of C relative
to the functions ofM.

2. A set D is said to be an intravariable clustering of variables
V w.r.t. C if D = {DCi : Ci ∈ C}, where DCi =
{D1

Ci
,D2

Ci
, . . . ,Dmi

Ci
} is a partition (of size mi) of the

domains of the variables in Ci, DCi
(recall that DCi

is the Cartesian product DV1
× DV2

× · · · × DVk
for

Ci = {V1, V2, . . . , Vk}, so elements ofDj
Ci

take the form
of tuples of the value settings of Ci). ■

In words, V is divided into n subsets or clusters
C1, . . . ,Cn (variables that are not put into one of the clusters
are projected away), and they are called intervariable clusters
because the variables themselves are divided apart. Admis-
sibility implies that the recursivity assumption of SCMs is
retained through the intervariable clusters. Then, the joint do-
mains of each of these n clusters are further partitioned. For
example, for a specific intervariable cluster Ci, the domain
DCi

contains the set of all tuples of values of Ci, and DCi

describes a partition D1
Ci
, . . . ,Dmi

Ci
of size mi over this set

of values (i.e. each Dj
Ci
⊆ DCi

). The intravariable clusters
are the set of the value partitions over each intervariable clus-
ter, and the term “intravariable” denotes that the clustering
is within the variable domains. Intuitively speaking, inter-
variable clusters partition the low level variables to describe
each high level variable as a collection of low level variables.
Intravariable clusters then describe the domains of these high
level variables by partitioning the corresponding value spaces
of these intervariable clusters.

Example 1. Consider a study on the effects of certain food
dishes on body mass index (BMI), inspired by nutrition stud-
ies like Gamba et al. (2014). Data is collected on individuals
eating at restaurants, including the restaurant (R), dish or-
dered (D), the amount of carbohydrates (C), fat (F ), and
protein (P ) in the dish, and the BMI of the customer (B).
That is, VL = {R,D,C, F, P,B}. One food scientist argues
that any nutritional impact of the food on BMI could be ab-
stracted based on how many calories are in each dish. One
may then be tempted to cluster the variables C, F , and P

3For concreteness, we assume that ML is an SCM, but the
underlying generative model can be left implicit as explained in
Appendix D.1.

Figure 2: Example of a constructive abstraction function τ
w.r.t. corresponding inter/intravariable clusters. Top (inter-
variable): The low-level variables, dish (D) and BMI (B),
are in their own clusters while restaurant (R) is abstracted
away. Carbohydrates (C), fat (F ), and protein (P ) are clus-
tered together and are mapped to a single variable, calories
(Z). Bottom (intravariable): The intravariable clustering
for C2 = {C,F, P} is shown. Calories Z can be computed
from C,F, P using the formula Z = 4C + 9F + 4P . This
means that the domain is partitioned such that two different
values, (c1, f1, p1), (c2, f2, p2) are in the same intravariable
cluster if 4c1 + 9f1 + 4p1 = 4c2 + 9f2 + 4p2.

together into one variable, named calories, labeled Z. This is
an example of intervariable clustering.

To denote this formally, we may choose C = {C1 =
{B},C2 = {C,F, P},C3 = {D}} as the intervariable clus-
ters. In this case,B andD are placed in their own clusters, C1

and C3, respectively. C, F , and P are all clustered together
into C2. R is not included and is abstracted away, which may
be desirable if R is not relevant to the study. Collectively,
C1, C2, and C3 form a partition of the subset of VL without
R. Each of the clusters of C will correspond to a high level
variable of VH . In this case, for example, let Z denote the
high level variable corresponding to cluster C2, interpreted
as calories. This is shown at the top of Fig. 2 (red).

The domain of C2 contains every tuple ofC, F , and P , but
the domain of Z can be simplified. After all, the computation
of calories can be specified as Z = 4C + 9F + 4P , which
means that two sets of values, (c1, f1, p1), (c2, f2, p2) are
considered equivalent if 4c1 +9f1 +4p1 = 4c2 +9f2 +4p2.
This clustering of domain values is an example of intravari-
able clustering, shown at the bottom of Fig. 2 (blue). More
formally, the intervariable clusters would be denoted D =
{DC1 ,DC2 ,DC3}, where each DCi is a partition of DCi . In
the case of DC2 , we may define DC2 = {D1

C2
,D2

C2
, . . . },

where each Dj
C2

is a collection of tuples (c, f, p) ∈ DC2 cor-
responding to some specific value 4c+9f +4p. In Fig. 2 for
example,D1

C2
= {(c, f, p) : 4c+9f +4p = 200, (c, f, p) ∈

DC2
}. Each of the intravariable clusters correspond to a do-

main value of the high level variable. For example, D1
C2

corresponds to a value of Z = 200. ■
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For the remainder of this paper, we consider settings where
the intervariable clusters are admissible. Collectively, given
an intervariable clustering C and intravariable clustering D
of VL, an abstraction function τ can be defined as follows.

Definition 6 (Constructive Abstraction Function). A function
τ : DVL

→ DVH
is said to be a constructive abstraction

function w.r.t. inter/intravariable clusters C and D iff

1. There exists a bijective mapping between VH and C such
that each VH,i ∈ VH corresponds to Ci ∈ C;

2. For each VH,i ∈ VH , there exists a bijective mapping
between DVH,i

and DCi
such that each vjH,i ∈ DVH,i

corresponds to Dj
Ci
∈ DCi

; and
3. τ is composed of subfunctions τCi

for each Ci ∈ C
such that vH = τ(vL) = (τCi

(ci) : Ci ∈ C), where
τCi

(ci) = vjH,i if and only if ci ∈ Dj
Ci

. We also apply
the same notation for any WL ⊆ VL such that WL is
a union of clusters in C (i.e. τ(wL) = (τCi

(ci) : Ci ∈
C,Ci ⊆WL)). ■

In words, through the subfunction τCi , each low level clus-
ter Ci ∈ C maps to a single high level variable VH,i ∈ VH ,
and the value ci ∈ DCi maps to a corresponding high level
value vjH,i ∈ DVH,i

. Specifically, τCi(ci) maps to vjH,i if ci
is in the intravariable cluster Dj

Ci
. Then, the overall function

τ is simply composed of the subfunctions τCi
. Intuitively, τ

is a constructive abstraction function if it maps VL to VH

by first grouping the variables w.r.t. their corresponding in-
tervariable cluster in C (red maps to yellow in Fig. 2 (top)),
followed by assigning each cluster a value based on which
intravariable cluster they belong in D (blue maps to green
in Fig. 2 (bottom)). As a result, VH can be interpreted such
that VH = C and DVH,i

= DCi
for each VH,i ∈ VH

4. This
construction of τ means that τ is unique given the clusters C
and D (up to a renaming of the variables VH and its values
DVH

).

Example 2 (Example 1 continued). Suppose the high level
variables are denoted as VH = {DH , Z,BH}, where DH

and BH represent the high level counterparts of D and B
that remain unchanged across the abstraction. Each high-level
variable (i.e. DH , Z, BH ) corresponds to an intervariable
cluster (i.e., C1, C2, C3, respectively), establishing a bijec-
tive connection between VH and C. Each of their domains
also correspond to an intravariable cluster in D. For exam-
ple, each value of Z = z corresponds to the choice of Dj

C2

such that 4c + 9f + 4p = z. The constructive abstraction
function τ constructed from the clusters C and D would map
(DH , Z,BH)← τ(R,D,C, F, P,D), which can be decom-
posed as

τ(R,D,C, F, P,D)

= (τC1
(D), τC2

(C,F, P ), τC3
(B)) (2)

= (D, 4C + 9F + 4P,B). (3)

4For another example of abstractions constructed from clusters,
see App. E Ex. 18. For examples of abstraction functions that are
not constructive, see Ex. 20.

Observe that τ is broken down into τC1 , τC2 , and τC3 , which
maps the variables of each intervariable cluster to their corre-
sponding high level variable DH , Z, and BH , respectively.
D and B are not affected by the abstraction in this exam-
ple, so τC1

and τC3
are the identity function, directly setting

DH ← D and BH ← B. However, the calories, Z, is com-
puted through τC2

(C,F, P ) = 4C +9F +4P . This ensures
that all values from DC2

= DC ×DF ×DP that are in the
same intravariable cluster are mapped to the same value of
Z. This mapping is illustrated in Fig. 2. ■

Note that the relationship between VL and VH modeled
by τ is not causal. Rather, the contents of VL constitute VH

5.
Intuitively, two variables of VL are mapped to the same inter-
variable cluster if they constitute the same high level variable
(e.g. two pixels of the same dog), and two values are mapped
to the same intravariable cluster if, from a higher level per-
spective, they are functionally identical (e.g. same image of
the dog but rotated or cropped). In this sense, intravariable
clustering can be thought of as invariances in the data, since
downstream functions are invariant to values that are in the
same intravariable cluster6.

This paper will focus on abstractions based on construc-
tive abstraction functions τ created from intervariable and
intravariable clusters. This is in contrast with the previous
works on causal abstractions discussed in App. B, which
leave the functional form of τ implicit.7 One benefit of mak-
ing τ concrete is that it allows for a rigorous definition of
equivalence between the distributions of a low level model
and that of a high level model, as will be elaborated next.

2.2 Layer-Specific Abstractions
Ultimately, we would like to study causal properties of VL

through their higher level counterparts VH . A sensible goal
is, therefore, to learn an SCMMH over VH , which can then
be queried for causal inference tasks. Still, even if VH and
VL are connected through some function τ , this alone does
not imply thatMH is an abstraction ofML. This is the case
since the distributions over VH induced by MH may not
have any clear connection with the distributions over VL.
To explain this point with a simple example, suppose VL =
{X,Y } and VH = VL (i.e., τ is the identity function).
However, inML, fX takes Y as an argument, while inMH ,
fY takes X as an argument. These two models are obviously
unrelated despite sharing the same set of variables.

When two SCMs are defined over the same space of vari-
ables, one can verify that they are similar if they induce
the same distributions. For example, an SCM M′ is L2-
consistent with M if L2(M′) = L2(M), that is, M and
M′ match in every interventional distribution (Bareinboim
et al. 2022; Xia et al. 2021). However, when two SCMs are

5The distinction between causal and constitutional relationships
is important and is explained in detail in Appendix D.1.

6This analogy is explored further in Apps. D.2 and D.3.
7In a related setting, there may be cases where information about

MH is provided while τ is unknown. In such cases, there are works
in the literature that aim to learn τ (Zennaro et al. 2023; Felekis et al.
2024) such that desired abstraction properties hold. Such functions
may or may not be constructive, refer to App. B.2 for further details.
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defined over different variable spaces, comparing their distri-
butions is no longer well-defined. Hence, a different notion
of consistency is needed to compare an SCM over VL with
another over VH through τ .

We first note that not all low-level quantities have a clear
interpretation in the high-level setting. For instance, in Ex-
ample 1, the low-level quantity P (C = 5) does not have
a counterpart in VH because C is clustered together with
F and P in the intervariable clusters. As another example,
P (C = 5, F = 0, P = 0) also does not have a counter-
part in VH because τ maps (C = 5, F = 0, P = 0) to the
same value of Z as other quantities such as (C = 0, F =
0, P = 5). In both cases, Z = 4C + 9F + 4P = 20. Hence,
P (C = 5, F = 0, P = 0) is not equivalent to P (Z = 20),
which, in a sense, represents all values of (C,F, P ) such that
4C + 9F + 4P = 20.

To define the low-level counterfactual quantities that have
high-level counterparts through τ , first denote YL,∗ as a set
of counterfactual variables over VL. That is,

YL,∗ =
(
YL,1[xL,1],YL,2[xL,2], . . .

)
, (4)

where each YL,i[xL,i] corresponds to the potential outcomes
of the variables YL,i under the intervention XL,i = xL,i.
Each YL,i and XL,i must be unions of clusters from C
(i.e. YL,i =

⋃
C∈C′ C for some C′ ⊆ C) such that

τ(YL,i) and τ(XL,i) are well-defined (i.e. τ(YL,i) =(∧
C∈C′ τC(C)

)
). For instance, from Ex. 1, one term could

be YL,i = {D,C, F, P} = C1∪C2, but YL,i = {D,C, F}
would be invalid since C and F are clustered together with
P . For the high-level counterpart, denote

YH,∗ = τ(YL,∗) (5)

=
(
τ(YL,1[τ(xL,1)]), τ(YL,2[τ(xL,2)]), . . .

)
. (6)

For any value yH,∗ ∈ DYH,∗ , denote
DYL,∗(yH,∗) = {yL,∗ : yL,∗ ∈ DYL,∗ , τ(yL,∗) = yH,∗},

(7)
that is, the set of all values yL,∗ such that τ(yL,∗) = yH,∗.
Considering again Ex. 1, if yH,∗ refers to the value of Z =
20, then DYL,∗(yH,∗) is the set of all tuples (c, f, p) ∈ DC2

such that τ(C = c, F = f, P = p) = (Z = 20) (i.e.,
4c+ 9f + 4p = 20).

We can now define a notion of consistency relating low
level counterfactual quantities to high level counterparts.
Definition 7 (Q-τ Consistency). Let ML and MH be
SCMs defined over variables VL and VH , respectively. Let
τ : DVL

→ DVH
be a constructive abstraction function

w.r.t. clusters C and D. Let
Q =

∑
yL,∗∈DYL,∗ (yH,∗)

P (YL,∗ = yL,∗) (8)

be a low-level Layer 3 quantity of interest (for some yH,∗ ∈
DYH,∗ ), as expressed in Eq. 4, and let

τ(Q) = P (YH,∗ = yH,∗) (9)
be its high level counterpart, as expressed in Eq. 6. We say
thatMH is Q-τ consistent withML if∑

yL,∗∈DYL,∗ (yH,∗)

PML(YL,∗ = yL,∗)

= PMH (YH,∗ = yH,∗),

(10)

that is, the value of Q induced byML is equal to the value
of τ(Q) induced byMH

8. Furthermore, ifMH is Q-τ con-
sistent withML for all Q ∈ Li(ML) of the form of Eq. 8,
thenMH is said to be Li-τ consistent withML. ■

In words, suppose Q is a quantity from VL in the form
of Eq. 8. That is, it is a counterfactual quantity such that
the variables of each term YL,i and each intervention XL,i

are unions of clusters in C, and it is summed over values of
yL,i that map to one specific set of high level variables yH,i.
Then, a query of this form has a counterpart τ(Q), obtained
by applying τ on each term, shown in Eq. 9. We say thatMH

is Q-τ consistent withML if the value of τ(Q), computed
fromMH , is equal to the value of Q computed fromML

(i.e. Eq. 10 holds). Note that Def. 7 naturally applies to the
L2 case (i.e. all xL,i are identical) and the L1 case (i.e. all
XL,i = ∅).

Def. 7 delineates the formal connection between quantities
of ML and MH . Intuitively, MH can only be viewed as
an abstraction of ML for the quantities in which they are
τ -consistent. Consider the following example to ground the
discussion.

Example 3. Consider a study on a new cancer drug. The
drug is given in two doses, and patients take the second dose a
month after the first dose. The variables observed are whether
the individual takes the first dose (A), whether they take the
second dose (B), whether they recover (Y ), and whether
they come from a wealthy background (R) and therefore
have better nutrition and medical care. The SCMML is as
follows:

UL = {URY , UA, UB , UY } (11)
VL = {R,A,B, Y } (12)

FL =



R← fLR(uRY ) = uRY

A← fLA(r, uA) = r ⊕ uA
B ← fLB(r, a, uB) = (r ∧ a)⊕ uB
Y ← fLY (a, b, uRY , uY )

= ((a ∧ b) ∧ uRY )⊕ uY

(13)

P (UL) =


P (URY = 1) = 0.5

P (UA = 1) = P (UB = 1) = 0.2

P (UY = 1) = 0.1

(14)

In words, people are more likely to take both doses if they are
rich, and most people will only take the second dose if they
have already taken the first dose. Also, people who take both
doses are more likely to recover, but only if they came from
a high socioeconomic background (URY = 1). The values
computed fromML are shown in Figure 3.

The rows of the figure can be used to compute quantities
of the PCH fromML. Denote pi as the probability of the
ith row of the table. Then, for example, the quantity P (Y =
1 | A = 1, B = 1), or the probability that someone recovers
given that they took both doses of the drug is

PML(Y = 1 | A = 1, B = 1)

8Note that the equality in Eq. 10 is consistent with the push-
forward measure through τ .

6



URY UA UB UY R A B Y YA=0,B=0 YA=1,B=1 P

0 0 0 0 0 0 0 0 0 0 0 p0 = 0.288
1 0 0 0 1 0 0 0 1 1 1 p1 = 0.032
2 0 0 1 0 0 0 1 0 0 0 p2 = 0.072
3 0 0 1 1 0 0 1 1 1 1 p3 = 0.008
4 0 1 0 0 0 1 0 0 0 0 p4 = 0.072
5 0 1 0 1 0 1 0 1 1 1 p5 = 0.008
6 0 1 1 0 0 1 1 0 0 0 p6 = 0.018
7 0 1 1 1 0 1 1 1 1 1 p7 = 0.002
8 1 0 0 0 1 1 1 1 0 1 p8 = 0.288
9 1 0 0 1 1 1 1 0 1 0 p9 = 0.032
10 1 0 1 0 1 1 0 0 0 1 p10 = 0.072
11 1 0 1 1 1 1 0 1 1 0 p11 = 0.008
12 1 1 0 0 1 0 0 0 0 1 p12 = 0.072
13 1 1 0 1 1 0 0 1 1 0 p13 = 0.008
14 1 1 1 0 1 0 1 0 0 1 p14 = 0.018
15 1 1 1 1 1 0 1 1 1 0 p15 = 0.002

Figure 3: Values computed fromML in Example 3.

=
PML(Y = 1, A = 1, B = 1)

PML(A = 1, B = 1)

=
p7 + p8

p6 + p7 + p8 + p9

=
0.002 + 0.288

0.018 + 0.002 + 0.288 + 0.032

≈ 0.853. (15)
The causal quantity P (YA=1,B=1 = 1), or the probability

that someone recovers when forced to take both doses of the
drug, can be computed as

PML(YA=1,B=1 = 1)

= p1 + p3 + p5 + p7 + p8 + p10 + p12 + p14

= 0.032 + 0.008 + 0.008 + 0.002

+ 0.288 + 0.072 + 0.072 + 0.018

= 0.5. (16)
Indeed, one may be misled to think that the drug is extremely
effective when only looking at the conditional quantity in
Eq. 15, as opposed to the causal effect, as in Eq. 16. In reality,
the causal effect of the drug is not as high.

Suppose the researchers decide that this much detail in the
study is unnecessary, and they consider working in a more
abstract model. One way to simplify the model is to reduce
the amount of variables. Perhaps they decide that wealth (R)
is irrelevant and can be abstracted away, and the two doses (A
and B) can simply be abstracted into one variable, treatment
(X). This can be represented using the intervariable clusters
C = {C1 = {A,B},C2 = {Y }}, where A and B are in the
same cluster, Y is in a separate cluster, and R is not included.

Further, the treatment X is only considered complete if
both doses are taken, so we can further perform an intravari-
able clustering, where the domains are:

DC1
=


x0 = {(A = 0, B = 0), (A = 0, B = 1),

(A = 1, B = 0)}
x1 = {(A = 1, B = 1)}

(17)

We denote X as the higher level variable corresponding to
C1, and we define its domain DX = {0, 1} to be binary,
where x0 corresponds to 0 and x1 corresponds to 1. We leave
Y as is in the lower level space.

We can then define the constructive abstraction function τ
based on C and D, where VH = {X,Y }. For example,

τ(R = 1, A = 0, B = 1, Y = 1) = (X = 0, Y = 1), (18)

and

τ(R = 1, A = 1, B = 1, Y = 0) = (X = 1, Y = 0). (19)

Now defineMH over the newly defined VH = τ(VL) as
follows.

UH = {UX , UY 0, UY 1} (20)
VH = {X,Y } (21)

FH =


X ← fHX (uX) = uX

Y ← fHY (x, uY 0, uY 1) =

{
uY 0 x = 0

uY 1 x = 1

(22)

P (UH) =


P (UX = 1) = 0.34

P (UY 0 = 1) = 0.1

P (UY 1 = 1) = 0.852941

(23)

Interestingly, note that PMH (Y = 1 | X = 1) =
P (UY 1 = 1) ≈ 0.853, which is equal to PML(Y =
1 | A = 1, B = 1) computed in Eq. 15. In fact, if
Q = P (Y = 1, A = 1, B = 1), then the corresponding
τ(Q) from Def. 7 is P (Y = 1, X = 1), since τ(Y = 1, A =
1, B = 1) = (Y = 1, X = 1). Since they are equal, we
would say thatMH is Q-τ consistent withML.

Now suppose Q′ = P (YA=1,B=1 = 1). The correspond-
ing τ(Q′) would be P (YX=1 = 1). However, note that
PMH (YX=1 = 1) = P (UY 1 = 1) ≈ 0.853, which is not
equal to PML(YA=1,B=1 = 1) = 0.5 computed from Eq. 16.
Then,MH is not Q′-τ consistent withML.
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It turns out thatMH is Q-τ consistent withML for every
Q ∈ L1, making MH L1-τ consistent with ML. On the
other hand, this is not the case for L2, the interventional layer.
In fact, it seems thatMH is equating correlation with causa-
tion and fails to capture the nuances of interventions inML.
Still, such a model could be useful if the queries of interest
are on L1. One could argue thatMH is a suitable abstraction
ofML on Layer 1, but not on Layer 2. The concept of Q-τ
consistency allows us to define “partial” abstractions based
on the specific quantities of the PCH that match. ■

It turns out that when MH is Q-τ consistent with ML

on all three layers of the PCH (i.e. L3-τ consistent), then
MH can be considered an abstraction ofML on the SCM-
level, which coincides with the definition of constructive τ -
abstractions (Def. 17 from App. B) from Beckers and Halpern
(2019), shown below.

Proposition 1 (Abstraction Connection). Let τ : DVL
→

DVH
be a constructive abstraction function (Def. 6).MH is

L3-τ consistent (Def. 7) withML if and only if there exists
SCMsM′L andM′H s.t. L3(M′L) = L3(ML), L3(M′H) =
L3(MH), andM′H is a constructive τ -abstraction ofM′L.

■

All proofs are provided in Appendix A. This proposition
provides the connection between the abstractions defined in
this work and established definitions from previous works9.

2.3 Algorithmic Abstraction Construction

With the abstraction function τ defined, the notion of Q-τ
consistency allows for comparisons of distributions between
the low level modelML and the abstractionMH . Still, it
would be desirable to be able to systematically constructMH

givenML and τ such thatMH is Q-τ consistent withML

for as many queries Q as possible. Moving in this direction,
we first note that as a subtlety, for some cases ofML, there
are certain choices of C and D (and corresponding τ ) for
which Q-τ consistency (for some queries Q) is impossible to
achieve in any choice ofMH . This impossibility is illustrated
in the following example, inspired by Spirtes and Scheines
(2004).

Example 4. Consider a study that aims to understand the
effects of diet on heart disease. Having a poor diet (X) is
known to cause heart disease (Y ) depending on its cholesterol
content. Cholesterol comes in two forms, called high-density
and low-density lipoproteins (HDL and LDL, respectively).
The HDL is believed to lower heart disease risk while LDL
increases it (Steinberg 2007; Truswell 2010). Suppose the
study is simplified to binary variables, and the true model

9Note that one subtlety of this result is that it is notMH that
is directly a constructive τ -abstraction ofML, but rather their L3-
equivalent counterparts,M′

H andM′
L. Indeed, the definition of

constructive τ -abstractions is stronger than L3-τ consistency (see
proof for more details), but in tasks where we are only concerned
with the layers of the PCH, this distinction is inconsequential.

ML is:

UL = {UX , UC1, UC2, UY } (24)
VL = {X,HDL,LDL, Y } (25)

FL =


X ← fLX(uX) = uX
HDL← fLHDL(x, uC1) = x⊕ uC1

LDL← fLLDL(x, uC2) = x⊕ uC2

Y ← fLY (hdl, ldl, uY ) = (ldl ∧ ¬hdl)⊕ uY
(26)

P (UL) =


P (UX = 1) = 0.5

P (UC1 = 1) = 0.1

P (UC2 = 1) = 0.1

P (UY = 1) = 0.1

(27)

AsML indicates, a person is more likely to get heart disease
if their diet consists of high LDL levels but low HDL levels.
For example, note that PML(YLDL=1,HDL=0 = 1) = 0.9
while PML(YLDL=0,HDL=1 = 1) = 0.1.

Now, suppose a data scientist decides to abstract HDL and
LDL together into a variable called “total cholesterol” (TC).
Say that TC is defined as

TC = HDL+ LDL. (28)

In fact, this leads to a choice of intervariable clusters

C = {C1 = {X},C2 = {HDL,LDL},C3 = {Y }},
(29)

and then for intravariable clusters, they would choose

DC2
=


tc0 = {(HDL = 0, LDL = 0)}
tc1 = {(HDL = 0, LDL = 1),

(HDL = 1, LDL = 0)}
tc2 = {(HDL = 1, LDL = 1)}.

(30)

For the other clusters, simply use the same variables. Let τ be
the constructive abstraction function defined with this choice
of C and D (i.e. τC2(hdl, ldl) = hdl + ldl).

An issue arises due to the grouping of values (HDL =
0, LDL = 1) and (HDL = 1, LDL = 0) into the same
intravariable cluster. To witness, note that τC1

(HDL =
0, LDL = 1) = τC2

(HDL = 1, LDL = 0) = (TC = 1).
Now, consider two queries Q1 = P (YHDL=0,LDL=1 = 1)
and Q2 = P (YHDL=1,LDL=0 = 1), and observe that

PML(YHDL=0,LDL=1 = 1) = P (UY = 0) = 0.9, (31)

PML(YHDL=1,LDL=0 = 1) = P (UY = 1) = 0.1. (32)

However, since τC1
(HDL = 0, LDL = 1) =

τC2
(HDL = 1, LDL = 0) = (TC = 1), both Q1 and

Q2 have the same high-level counterpart. That is, τ(Q1) =
τ(Q2) = P (YTC=1 = 1). No choice ofMH over VH can
be both Q1-τ consistent and Q2-τ consistent withML be-
cause PMH (YTC=1 = 1) cannot both be equal to 0.9 and
0.1. ■

Intuitively, Ex. 4 shows two values that cannot be grouped
into the same intravariable cluster because the function fLY
(from Eq. 26) produces different results depending on which
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value is used. Grouping the two values in the same cluster
would imply that the two values are “equivalent” and hence,
there would be an inevitable loss of information. Indeed,
real-world studies that consider total cholesterol instead of
separating it into LDL and HDL often have conflicting results,
indicating an invalid abstraction. This phenomenon can be
described formally through the following condition.
Definition 8 (Abstract Invariance Condition (AIC)). Let
ML = ⟨UL,VL,FL, P (UL)⟩ be an SCM and τ : DVL

→
DVH

be a constructive abstraction function relative to C
and D. The SCMML is said to satisfy the abstract invari-
ance condition (AIC, for short) with respect to τ if, for all
v1,v2 ∈ DVL

such that τ(v1) = τ(v2), ∀u ∈ DUL
,Ci ∈

C, the following holds:

τCi

((
fLV (pa

(1)
V ,uV ) : V ∈ Ci

))
= τCi

((
fLV (pa

(2)
V ,uV ) : V ∈ Ci

))
,

(33)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2. Then, p̃aV is used to denote any arbitrary value
s.t. τ(p̃aV ) = τ(pa

(1)
V ) = τ(pa

(2)
V ). ■

In words, the AIC enforces that if two low level values
v1,v2 ∈ DVL

map to the same high level value (i.e. τ(v1) =
τ(v2)), then for each cluster Ci ∈ C, the functions of those
clusters should map to the same value regardless of UL

(i.e. the outputs of fLV (pa
(1)
V ,uV ) for each V ∈ Ci should

map to the same result as the outputs of fLV (pa
(2)
V ,uV ) when

passed through τCi
). Intuitively, this implies that two values

in the same intravariable cluster have the same functional
effect in the higher level setting.

In Ex. 4, the AIC is not satisfied since (HDL =
0, LDL = 1) and (HDL = 1, LDL = 0) cannot be
grouped into the same intravariable cluster. As established,
τC1(HDL = 0, LDL = 1) = τC2(HDL = 1, LDL =
0) = 1. However, observing fLY (from Eq. 26) given these
inputs, note that fLY (HDL = 0, LDL = 1, uY ) = ¬uY ,
while fLY (HDL = 1, LDL = 0, uY ) = uY , which give
opposite results for either choice of uY .

In contrast, we consider a different abstraction that does
satisfy the AIC next.
Example 5 (Example 4 continued). Consider a different
choice of clusters that does not violate the AIC. Although
somewhat unintuitive, we can actually abstract the cholesterol
values in the givenML by taking their difference instead of
their sum!10 For example, defineZ = LDL−HDL. In terms
of clusters we would keep the same intervariable clusters C =
{C1 = {X},C2 = {HDL,LDL},C3 = {Y }}, but for
intravariable clusters, we choose DC2 = {z−1 = {(HDL =
1, LDL = 0)}, z0 = {(HDL = 0, LDL = 0), (HDL =
1, LDL = 1)}, z1 = {(HDL = 0, LDL = 1)}}. Define τ
as the constructive abstraction function defined over C and
D (i.e. τC2

(hdl, ldl) = ldl − hdl).
10This is true given the simple definition ofML in this example.

In more complex descriptions, such as in cases where the variables
are continuous, the clusters would have to be chosen more carefully
to avoid violations of the AIC.

Algorithm 1: ConstructingMH fromML.
Input : SCMML = ⟨UL,VL,FL, P (UL)⟩,

admissible inter/intravariable clusters C and
D satisfying abstract invariance condition

Output : SCMMH and τ : DVH
→ DVL

s.t.MH

is L3-τ consistent withML

1 UH ←UL, P (UH)← P (UL)
2 VH ← C,DVH

← D
3 τ ← AbsFunc(C,D) // from Def. 6
4 for Ci ∈ C do
5 fHi ← τ

(
fLV (p̃aV ,uV ) : V ∈ Ci

)
6 FH ← {fHi : Ci ∈ C}
7 return τ ,MH = ⟨UH ,VH ,FH , P (UH)⟩

The difference now is that instead of clustering together
the values (HDL = 1, LDL = 0) and (HDL = 0, LDL =
1), it is the values (HDL = 0, LDL = 0) and (HDL =
1, LDL = 1) that are clustered together. When looking at
fLY (Eq. 26) under these two values, we see that fLY (HDL =
0, LDL = 0, uY ) = fLY (HDL = 1, LDL = 1, uY ) = uY
for any choice of uY , satisfying the AIC.

Intuitively, fY no longer changes behavior between these
two values, or in other words, fY is invariant between these
two values. With no other downstream variables to consider,
this implies that these two values are functionally identical in
the model and can be abstracted together into a single value
without loss of information. ■

It turns out that the AIC describes precisely when an ap-
propriateMH exists as an abstraction of the low level model
ML, as shown by the following result.

Proposition 2 (Abstraction Conditions). For any SCMML

and constructive abstraction function τ relative to C and D,
there exists an SCMMH over variables VH = τ(VL) such
that MH is L3-τ consistent with ML if and only if there
existsM′L such that L3(ML) = L3(M′L) andM′L satisfies
the abstract invariance condition with respect to τ . ■

This critical property guarantees the existence of a higher
level SCMMH such that L3-τ consistency holds, so we will
assume that the AIC holds for the rest of this work. Still, see
App. D.2 for further discussion on its implications and for
possible relaxations in cases where L3-τ consistency is not
required.

With the notion of abstractions well-defined, we study how
MH can be obtained fromML. Interestingly, when given the
admissible clusterings C and D, the procedure for recovering
τ and convertingML toMH can be done as shown in Alg. 1.
Intuitively, one can obtain an abstractionMH ofML by first
constructing the abstraction function τ using the clusterings
C and D (lines 2-3), followed by designing the functions of
MH to wrap the original functions ofML with τ (lines 4-6).
This can be verified using the following result.

Proposition 3. Let τ and MH be the function and SCM
obtained from running Alg. 1 on inputsML, C, and D. Then,
MH is L3-τ consistent withML. ■
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See below for an example of running Alg. 1

Example 6 (Example 3 continued). We will run Alg. 1 on
ML and clusters C and D described earlier in Ex. 3. Follow-
ing the algorithm, we first set UH = UL and P (UH) =
P (UL). We construct τ via Def. 6, as shown in the earlier
example. Then, we can compute the function fHX as follows.

fHX (uRY , uA, uB)

= τC1
(fLA(r, uA), f

L
B(r, a, uB))

= τC1
(r ⊕ uA, (r ∧ (r ⊕ uA))⊕ uB)

= τC1(uRY ⊕ uA, (uRY ∧ (uRY ⊕ uA))⊕ uB) (34)

For fHY , denote ã and b̃ as an arbitrary setting of A and B
such that τ(ã, b̃) = x, as indicated in line 5 of the algorithm.

fHY (x, uRY , uY )

= τC2(f
L
Y (ã, b̃, uRY , uY ))

= τC2
(((ã ∧ b̃) ∧ uRY )⊕ uY )

= τC2
((x ∧ uRY )⊕ uY ) (35)

Putting everything together, we obtainMH as follows.

UH = UL = {URY , UA, UB , UY } (36)
VH = {X,Y } (37)
FH = { (38)

X ← fHX (uRY , uA, uB)

= τC1(uRY ⊕ uA, (uRY ∧ (uRY ⊕ uA))⊕ uB)
Y ← fHY (x, uRY , uY ) = τC2

((x ∧ uRY )⊕ uY )
P (UH) = P (UL) (39)

It is not difficult to see that MH is L3-τ consistent
with ML. As an example, note that PMH (YX=1 =
1) = P (URY = 1, UY = 0) + P (URY = 0, UY =
1) = (0.5)(0.9) + (0.5)(0.1) = 0.5, which matches
PML(YA=1,B=1 = 1) from Eq. 16. ■

Ex. 6 shows how Alg. 1 can be used to systematically
obtain an abstractionMH of the low-level modelML, so
long as ML is provided alongside the clusters C and D.
SinceML is almost never available in practice, the following
sections show how this requirement can be relaxed.

3 Inferences Across Abstractions
As demonstrated by Alg. 1, converting a low level model
ML to a high level model MH is somewhat immediate
when given full observability of the underlying SCMML.
However, in real applications, it is rarely the case that the full
specification ofML is known. Typically, one will only be
given partial information ofML in the form of data, such
as samples of the observational distribution P (VL). The
question we investigate in this section is: is it still possible to
“learn” someMH given the observed data?

We first note the impossibility result described by the
Causal Hierarchy Theorem (CHT) (Bareinboim et al. 2022,
Thm. 1), which states that a model trained to match another
SCM on lower layers of the causal hierarchy (e.g. L1) will

Figure 4: Illustration of the Abstract CHT. Without additional
information, a high-level model M̂H trained to be L1-τ con-
sistent withML is not guaranteed to be L2 or L3-τ consis-
tent.

likely not match on higher layers (e.g. L2 or L3). Naturally,
the same is true when it comes to inferring causal quanti-
ties across abstractions. One may be tempted to believe that
MH can be learned given L1 data from ML by instanti-
ating some expressive parametric model M̂H on VH , and
then training M̂H on P (VH) = P (τ(VL)) such that M̂H is
L1-τ consistent withML. Unfortunately, this strategy will
fail in general since even under perfect training, M̂H is not
guaranteed to be L2-τ (or L3-τ ) consistent withML. This
means that any causal quantities induced by M̂H will likely
bear no relationship with causal quantities induced byML.
This phenomenon is described by the following proposition.

Proposition 4 (Abstract Causal Hierarchy Theorem (Infor-
mal)). Given constructive abstraction function τ : DVH

→
DVL

, even if MH is Li-τ consistent with ML, MH will
almost never be Lj-τ consistent withML for j > i. ■

In words, matching across abstractions on lower layers
does not guarantee the same will hold for higher layers. This
idea is illustrated in Fig. 4. The left of the figure shows the
unobserved true SCMML, which induces distributions from
the three layers of the PCH. Observational data from L1 is
provided, and one may train a high-level model M̂H (right)
such that it is L1-τ consistent withML. However, even if
training is perfect, it is not guaranteed that M̂H is L2 or L3-
τ consistent withML. That is, queries from the L2 or L3

distributions of M̂H are not expected to match the equivalent
queries inML in general. (See further details in App. A.)

The consequence of this result is that causal assumptions
will be necessary to make progress. In particular, the class of
plausible models must be constrained through assumptions
about the generating model. Given this necessity, one type
of assumption prevalent throughout causal inference litera-
ture is the availability of a causal diagram (Pearl 1995), a
graphical structure that qualitatively describes the functional
relationships between variables in a non-parametric manner.
This assumption is weaker than having the entire generat-
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Figure 5: The causal diagram G over variables VL for the
nutrition study in Ex. 1 is on the left. Clusters C = {DH =
{D}, Z = {C,F, P}, BH = {B}} are outlined in blue. The
corresponding C-DAG GC is on the right.

ing SCM, since it only encodes qualitative information of
the functional dependences between exogenous and endoge-
nous variables (as in Def. 2) rather than full detail of the
generating mechanisms and exogenous distributions. Still, it
has been shown that having the causal diagram allows cer-
tain inferences across layers, determined through the causal
identification problem (Pearl 2000; Bareinboim and Pearl
2016).

In the context of abstractions however, specifying the
causal diagram for the true modelML requires describing
the relationships between every low-level variable in VL.
This may be unrealistic in many practical settings since there
are typically too many low-level variables (e.g. 128 × 128
pixels in an image) to expect a description of the relationship
between every pair, and many of these relationships may not
be well-defined in a causal manner. Instead, it may be more
reasonable to specify a causal diagram over VH (or inter-
variable clusters C). The amount of information required is
reduced when |VH | ≪ |VL|, and the causal relationships be-
tween variables may be more clear given that the higher-level
variables tend to be more explainable. The causal diagram
over VH can be viewed as a graphical abstraction of the
causal diagram over VL. The relationship can be formalized
through the concept of cluster causal diagrams (C-DAGs)
(Anand et al. 2023), as described next.
Definition 9 (Cluster Causal Diagram (C-DAG) (Anand et al.
2023, Def. 1)). Given a causal diagram G = ⟨V,E⟩ and an
admissible clustering C = {C1, . . . ,Ck} of V, construct a
graph GC = ⟨C,EC⟩ over C with a set of edges EC defined
as follows:
1. A directed edge Ci → Cj is in EC if there exists some
Vi ∈ Ci and Vj ∈ Cj such that Vi → Vj is an edge in E.

2. A dashed bidirected edge Ci ↔ Cj is in EC if there
exists some Vi ∈ Ci and Vj ∈ Cj such that Vi ↔ Vj is
an edge in E. ■

In words, the nodes of the C-DAG GC simply correspond
to the clusters of C, and edges connect clusters Ci and Cj

if they connect some Vi ∈ Ci and Vj ∈ Cj in the original
causal diagram G. Interestingly, the C-DAG definition aligns
with the concept of intervariable clusters, providing a way for
encoding constraints in the smaller space of VH . Revisiting
the nutrition study in Ex. 1, Fig. 5 shows the corresponding
causal diagram G (left) and the simpler C-DAG GC (right).
With the constraints of GC, we now introduce a notion of iden-
tification across abstractions to determine precisely which
queries can be inferred.

(a) When Q is τ -ID from GC and Z, all SCMs over VH that induce
GC and is Z-τ consistent withML are also Q-τ consistent with
ML for any choice ofML.

(b) When Q is not τ -ID from GC and Z, then there exist choices
ofML such that some SCMMH over VH that induces GC and is
Z-τ consistent withML is not Q-τ consistent withML.

Figure 6: Examples of τ -ID and τ -nonID cases. The space
of models over VL, ΩL, is shown in dark red (left), and
the subspace that induces C-DAG GC is shown in light red.
The blue dot within this space is an arbitrary choice ofML.
The space of models over VH , ΩH , is shown in dark yellow
(right), and the subspace that induces the causal graph GC
and is also Z-τ consistent withML is shown in light yellow.

Definition 10 (Abstract Identification). Let τ : DVH
→

DVL
be a constructive abstraction function. Consider C-DAG

GC, and let Z = {P (VL[zk])}ℓk=1 be a collection of available
interventional (or observational if Zk = ∅) distributions
over VL. Let ΩL and ΩH be the space of SCMs defined
over VL and VH , respectively, and let ΩL(GC) and ΩH(GC)
be their corresponding subsets that induce C-DAG GC. A
query Q is said to be τ -ID from GC and Z iff for every
ML ∈ ΩL(GC),MH ∈ ΩH(GC) such that MH is Z-τ
consistent withML,MH is also Q-τ consistent withML.
■

This definition establishes a notion of identification be-
tween two different spaces of SCMs, ΩL and ΩH , that are
connected through τ . The concept of τ -ID is illustrated in
Fig. 6. In words, τ -identifiability implies that in every pair
of SCMsML over VL andMH over VH , “matching” in
graph GC and data Z implies a match in query Q. SinceML

andMH are defined over different spaces of variables, the
term “match” has some nuance. Specifically, “matching” in
GC implies that GC is a C-DAG forML and is a causal dia-
gram forMH . “Matching” in Z (resp. Q) implies thatMH

is Z-τ consistent (resp. Q-τ consistent) withML. As shown
in Fig. 6a, τ -ID implies that for any choice of ML over
VL that induces C-DAG GC (blue dot in light red space), all
SCMsMH over VH that induce GC and are Z-τ consistent
withML (light yellow space) are also Q-τ consistent with
ML. As a consequence, τ(Q) can be evaluated from any of
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R A B Y P

0 0 0 0 0.288
0 0 0 1 0.032
0 0 1 0 0.072
0 0 1 1 0.008
0 1 0 0 0.072
0 1 0 1 0.008
0 1 1 0 0.018
0 1 1 1 0.002
1 0 0 0 0.072
1 0 0 1 0.008
1 0 1 0 0.018
1 0 1 1 0.002
1 1 0 0 0.072
1 1 0 1 0.008
1 1 1 0 0.032
1 1 1 1 0.288

(a) PML(VL).

R

A

B

Y

(b) Causal diagram G. Intervariable clusters C are grouped
by the dashed-blue lines.

X Y

(c) C-DAG GC.

VH term Corresponding VL term P

P (X = 0, Y = 0)
∑

r

∑
a,b:(a,b)̸=(1,1) P (R = r,A = a,B = b, Y = 0) 0.594

P (X = 0, Y = 1)
∑

r

∑
a,b:(a,b)̸=(1,1) P (R = r,A = a,B = b, Y = 1) 0.066

P (X = 1, Y = 0)
∑

r P (R = r,A = 1, B = 1, Y = 0) 0.05
P (X = 1, Y = 1)

∑
r P (R = r,A = 1, B = 1, Y = 1) 0.29

(d) τ(PML(VL)).

Figure 7: Dataset quantities computed fromML and graphs for Example 7.

these choices ofMH to compute Q.

On the other hand, τ -nonidentifiability implies that there
exist a pair of models ML over VL and MH over VH

such that ML and MH match in both GC and Z yet still
do not match in Q. As shown in Fig. 6b, τ -non-ID implies
that there exists some ML over VL that induces C-DAG
GC (blue dot in light red space) such that there is someMH

over VH that induces GC and is Z-τ consistent with ML

(light yellow space) but is not Q-τ consistent withML. This
means that despite the constraints added through the C-DAG
GC, there are still queries that cannot be inferred across τ due
to nonidentifiability. This is more acute when there is a large
amount of unobserved confounding. Consider the following
example where this is the case.

Example 7 (Example 3 continued). The data scientist team
may be interested in computing the causal effect of taking
both stages of the drug on the recovery rate of the disease,
Q = P (YA=1,B=1 = 1). However,ML is not observed, and
instead, the observational data from P (VL) (Z = {P (VL)})
and the C-DAG GC from Fig. 7c are given. Is Q τ -ID from Z
and GC? It turns out the answer is no. To witness, consider
the following pair of models.

M1 =



U1 = {UXY , UY 0, UY 1}
VH = {X,Y }

F1 =


X ← f1X(uXY ) = uXY

Y ← f1Y (x, uXY , uY 0, uY 1)

=

{
x ∨ uY 0 uXY = 0

uY 1 uXY = 1

P (U1) =


P (UXY = 1) = 0.34

P (UY 0 = 1) = 0.1

P (UY 1 = 1) = 0.852941

(40)

M2 =



U2 = {UXY , UY 0, UY 1}
VH = {X,Y }

F2 =


X ← f2X(uXY ) = uXY

Y ← f2Y (x, uXY , uY 0, uY 1)

=

{
¬x ∧ uY 0 uXY = 0

uY 1 uXY = 1

P (U2) =


P (UXY = 1) = 0.34

P (UY 0 = 1) = 0.1

P (UY 1 = 1) = 0.852941

(41)

Every value of PML(VL) can be computed using the table
in Fig. 3, producing the table in Fig. 7a. The corresponding
values of τ(PML(VL)) can then be computed as shown in
Fig. 7d via Eq. 10. One can verify that both PM1(VH) and
PM2(VH) match the values in Fig. 7d, implying that both
M1 andM2 are P (VL)-τ consistent withML. Moreover,
M1 and M2 also induce GC from Fig. 7c: fY takes X as
input, and fX and fY share UXY as a confounding variable.
Also, fX does not contain Y as an input.

However, computing τ(Q) = P (YX=1 = 1) leads to two
different answers, i.e.:

PM1(YX=1 = 1)

= P (UXY = 0) + P (UXY = 1, UY 1 = 1)

= 0.66 + (0.34)(0.852941) = 0.95, (42)

and

PM2(YX=1 = 1)

= P (UXY = 1, UY 1 = 1)

= (0.34)(0.852941) = 0.29. (43)

These values are not only different, but also neither are equal
to the true value PML(YA=1,B=1 = 1) = 0.5, as computed
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X Y

(a) C-DAG GC.

VH term Corresponding VL term P

P (R = 0, X = 0, Y = 0)
∑

a,b:(a,b)̸=(1,1) P (R = 0, A = a,B = b, Y = 0) 0.432
P (R = 0, X = 0, Y = 1)

∑
a,b:(a,b)̸=(1,1) P (R = 0, A = a,B = b, Y = 1) 0.048

P (R = 0, X = 1, Y = 0) P (R = 0, A = 1, B = 1, Y = 0) 0.018
P (R = 0, X = 1, Y = 1) P (R = 0, A = 1, B = 1, Y = 1) 0.002
P (R = 1, X = 0, Y = 0)

∑
a,b:(a,b)̸=(1,1) P (R = 1, A = a,B = b, Y = 0) 0.162

P (R = 1, X = 0, Y = 1)
∑

a,b:(a,b)̸=(1,1) P (R = 1, A = a,B = b, Y = 1) 0.018
P (R = 1, X = 1, Y = 0) P (R = 1, A = 1, B = 1, Y = 0) 0.032
P (R = 1, X = 1, Y = 1) P (R = 1, A = 1, B = 1, Y = 1) 0.288

(b) τ(PML(VL)).

Figure 8: Updated items given the new choice of C in Example 8

in Eq. 16. A scientist using modelM1 may conclude that
the treatment is extremely effective, while a scientist using
modelM2 may conclude the opposite: the treatment is not
only ineffective, it is even harmful. The query is not τ -ID in
this case, and no further inferences of this query should be
made at this stage. ■

Now consider the following τ -ID example.

Example 8 (Example 3 continued). The data scientist team
is studying causal inference and notes that Example 7 showed
that the query Q = P (YA=1,B=1 = 1) is non-ID from
the available data. However, suppose instead, a different
set of clusters is used that includes R, i.e. C = {C1 =
{A,B},C2 = {Y },C3 = {R}}. The domain of R would
remain the same, so τC3

(R) = R. Constructing τ with
these clusters, the high level variables are revised to VH =
{R,X, Y }, and τ(PML(VL)) can be computed as shown in
the table in Fig. 8b. The C-DAG GC would be updated to the
one in Fig. 8a.

It turns out that now, Q = P (YA=1,B=1 = 1) is τ -ID, and
this can be shown by applying the backdoor-criterion (Pearl
2000, Thm. 3.3.2), adjusting over the variable R as follows.

P (YA=1,B=1 = 1)

=
∑
r

P (Y = 1 | r,A = 1, B = 1)P (r)

=
∑
r

P (Y = 1 | r,X = 1)P (r). (44)

Then
∑

r P (Y = 1 | r,X = 1)P (r) could immediately
be computed from P (VH).

As an example, consider the following choice of MH ,
designed in a systematic way to match τ(PML(VL)).

UH = {URY , UX0, UX1, UY 0, UY 1, UY 2, UY 3} (45)
VH = {R,X, Y } (46)

FH =



R← fR(uRY ) = uRY

X ← fX(r, uX0, uX1) =

{
uX0 r = 0

uX1 r = 1

Y ← fY (x, uRY , uY 0, uY 1, uY 2, uY 3)

=


uY 0 x = 0, uRY = 0

uY 1 x = 0, uRY = 1

uY 2 x = 1, uRY = 0

uY 3 x = 1, uRY = 1

(47)

P (UH) =



P (URY = 1) = 0.5

P (UX0 = 1) = 0.04

P (UX1 = 1) = 0.64

P (UY 0 = 1) = 0.1

P (UY 1 = 1) = 0.1

P (UY 2 = 1) = 0.1

P (UY 3 = 1) = 0.9

(48)

One can verify that, indeed, PMH (VH) matches
τ(PML(VL)) from Fig. 8b. It is also clear thatMH induces
GC. Further, we can compute the query to find that
PMH (YX=1 = 1)

= P (URY = 0, UY 2 = 1) + P (URY = 1, UY 3 = 1)

= (0.5)(0.1) + (0.5)(0.9)

= 0.5, (49)

which matches the true value PML(YA=1,B=1 = 1) = 0.5
from Eq. 16.

■
The definition of τ -ID provides rigorous semantics to an-

swer whether a query can be inferred across abstractions.
The next step is to establish an approach to determine τ -ID
when given the available data and graph. For this purpose,
one fundamental result is that the notion of τ -ID is actually
equivalent to classical identification in the higher level space,
as shown by the following proposition.
Theorem 1 (Dual Abstract ID). Consider a counterfactual
query Q over VL, a constructive abstraction function τ
w.r.t. clusters C and D, a C-DAG GC, and data Z from VL.
Q is τ -ID from GC and Z if and only if τ(Q) is ID from GC
and τ(Z). ■
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In words, τ -ID and classical ID on the high level space
are equivalent. This is a powerful result since it implies that
inferences can be made about the low level space by using
existing results in the high level space. Our goal is to learn a
higher level SCMMH to make inferences aboutML, and
we build on the machinery of Neural Causal Models (NCMs)
(Xia et al. 2021) toward this goal. NCMs allow one to take
the graph GC as an inductive bias (a GC-NCM as described in
Def. 4) and leverage gradient-based methods to fit any SCM
within the constrained space. Indeed, identification in NCMs
can be shown to be equivalent to classical identification when
considering models of the same granularity (Xia, Pan, and
Bareinboim 2023, Thm. 3). When combined with Thm. 1,
this implies the following result.

Corollary 1 (Abstract ID with NCMs). Q is τ -ID from GC
and Z iff τ(Q) is Neural-ID from Ω̂(GC) and τ(Z). Moreover,
if it is ID, then Q can be computed by τ(Q) from any GC-
NCM M̂ that is τ(Z)-consistent. ■

In words, determining τ -ID is equivalent to determining
neural identification (identification in the space of NCMs) on
the higher level space. Further, to evaluate Q in identifiable
cases, τ(Q) can be queried from any GC-NCM M̂ that is
τ(Z)-consistent. Corol. 1 implies that we can perform causal
identification and estimation across abstractions using the
NeuralID algorithm (Xia, Pan, and Bareinboim 2023, Alg. 1)
on the high level space. This procedure is shown in Alg. 2.
First, τ is constructed as described in Def. 6 given the clusters.
Then, a GC-NCM is constructed over high-level variables
VH . Two parameterizations of the NCM are created. Both
are optimized to fit the transformed data τ(Z), but one is
optimized to maximize the transformed query τ(Q) while the
other is optimized to minimize it. If both parameterizations
return the same result, then it must be the true value of the
query; otherwise, the query is not identifiable.

To implement this algorithm in practice, we leverage the
GAN-NCM approach introduced in Xia, Pan, and Barein-
boim (2023); see details in Appendix C. Alg. 2 is sound and
complete for solving the abstract identification problem, as
shown below.

Corollary 2 (Soundness and Completeness). LetML be the
low-level SCM, C and D be inter/intravariable clusters of
VL, GC be a C-DAG, Q be a query, and Q̂ be the result from
running Alg. 2 with inputs Z(ML) > 0, C, D, GC, and Q.
Then, Q is τ -ID from GC and Z if and only if Q̂ is not FAIL.
Moreover, if Q̂ is not FAIL, then Q̂ = Q(ML). ■

While Alg. 2 solves the abstract ID problem, the conse-
quences of the results in this section are more general. No-
tably, if Q is indeed τ -ID (which can be verified through
Alg. 2), the algorithm produces a neural model M̂ that serves
as a proxy SCM that is Q-τ consistent with the true model
ML. Such an SCM could serve as a generative model of the
distribution Q, which has many uses. The samples generated
from such a model could be used to estimate the query, or,
in more complex settings such as with image data, it may be
desirable to simply have novel generated samples consistent
with the causal invariances embedded in the system.

Algorithm 2: NeuralAbstractID – Identifying and
estimating queries across abstractions using NCMs.

Input : query Q, L2 datasets Z(ML), C-DAG GC,
and admissible inter/intravariable clusters C
and D satisfying invariance condition

Output : Q(ML) if identifiable, FAIL otherwise.

1 VH ← C,DVH
← D

2 τ ← AbsFunc(C,D) // from Def. 6

3 M̂ ← NCM(VH , GC) // from Def. 4

4 θ∗min←argminθ τ(Q)(M̂(θ)) s.t.
τ(Z)(M̂(θ))=τ(Z(ML))

5 θ∗max←argmaxθ τ(Q)(M̂(θ)) s.t.
τ(Z)(M̂(θ))=τ(Z(ML))

6 if τ(Q)(M̂(θ∗min)) ≠ τ(Q)(M̂(θ∗max)) then
7 return FAIL
8 else
9 return τ(Q)(M̂(θ∗min)) // choose min or

max arbitrarily

4 Representations in Learning Abstractions
In many applications, the choice of intervariable clusters
C is natural and can be made in tandem when deciding
the assumptions of the C-DAG GC11. On the other hand,
fully specifying the intravariable clusters D is usually chal-
lenging when working with high-dimensional data like im-
ages. If an intervariable cluster contained three binary vari-
ables from VL, then specifying its intravariable cluster
would require specifying some partition over its eight val-
ues, (0, 0, 0), (0, 0, 1), . . . , (1, 1, 1), which is not difficult.
However, if an intervariable cluster contained, for example,
128×128 pixels, each with 256 possible values, then the size
of the domain of this cluster would be 256128×128. Specify-
ing an arbitrary partition over this many values is infeasible,
as doing so would require an enumeration of every possi-
ble image along with some label designating each one to a
cluster. In this section, we investigate the problem of learn-
ing abstractions when the intravariable clusters D are left
unspecified.

While coarser clusters tend to be better in practice due to
the dimensionality reduction, the theory in this paper can be
applied for any choice of D so long as the AIC (Def. 8) holds.
Hence, a possible constraint when learning D is to find a set
of clusters such that the AIC is not violated. To this effect,
the following result can be leveraged.
Proposition 5. Consider a low level SCM ML and con-
structive abstraction function τ w.r.t. clusters C and D.
ML is guaranteed to satisfy the AIC w.r.t. τ if and only
if DCi

= {{ci} : ci ∈ DCi
} for all Ci ∈ C. ■

In words, the AIC is satisfied when the intravariable clus-
ters are maximal (i.e. each value is assigned to its own clus-
ter). Consequently, this means that Alg. 2 can be applied in

11Please refer to App. D.1 for best practices on how to choose or
learn intervariable clusters when they are not given.
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any case where τCi is a bijective mapping between DCi and
DVH,i

. Also implied by this result is that, without additional
information, one cannot choose any coarser clustering with-
out potentially violating the AIC12. For some intuition on
why this is the case, consider the following example.

Example 9 (Example 1 continued). Consider once again
the nutrition example where carbohydrates (C), fat (F ), and
protein (P ) were combined to form the high-level variable,
calories (Z). Calories was defined to be Z = 4C+9F +4P ,
resulting in a set of intravariable clusters where (c1, f1, p1)
and (c2, f2, p2) were clustered together if 4c1+9f1+4p1 =
4c2 + 9f2 + 4p2.

It turns out that, without additional information, it is pos-
sible that this choice of clustering violates the AIC. For ex-
ample, it could be the case that in the true modelML, the
function for BMI fB depends heavily on protein, since mus-
cle density may affect BMI more than fat. In an extreme
example, suppose

B ← fB(c, f, p, uB) = p+ uB , (50)

that is, fB only depends on protein out of the three macronu-
trients. In this case, (C = 0, F = 0, P = 20) and (C =
20, F = 0, P = 0) would result in different values of B de-
spite being clustered together in the same intravarable cluster,
therefore, violating the AIC. Without information about fB ,
it is not known whether any given two tuples, (c1, f1, p1) and
(c2, f2, p2), would witness this violation, so the only option
is to leave all values of (C,F, P ) in their own intravariable
clusters. ■

This example illustrates that without further information
about the functions of the underlying SCM, it is, in general,
impossible to cluster two intravariable values together with-
out potentially violating the AIC. This is also the case with
the cholesterol discussion in Ex. 4 and 5. Without knowing
fY , it would be impossible to determine whether the cluster
choice in Ex. 5 would work better than the one in Ex. 4.

Still, Prop. 5 states that the intravariable clustering which
leaves every value in its own cluster will always satsify the
AIC. While this choice of D does not reduce the dimen-
sionality of the abstracted space, this means that we are not
restricted to the original space of VL and can choose any
VH with the same cardinality. In practice, this means that we
can choose the option for VH that is the most beneficial for
a given task. For example, some choices of VH and corre-
sponding domains DVH

may have desirable properties such
as simpler gradient computation, disentangled variables, or
compatibility with arithmetic operations. In order to leverage
this insight, we introduce the representational NCM.

Definition 11 (Representational NCM (RNCM)). A represen-
tational NCM (RNCM) is a tuple ⟨τ̂ , M̂⟩, where τ̂(vL;θτ )
is a function parameterized by θτ mapping from VL to
VH , and M̂ is an NCM defined over VH . A GC-constrained

12In many cases, there may be additional information in the form
of invariances (e.g. rotational invariance in image data). In such
cases, this information can be leveraged to learn coarser clusters.
See Appendix D.3 for more details.

Figure 9: Example using graph GC shown in (a) to compare
(b) the GC-NCM and (c) GC-RNCM. Functions of the NCM
directly output values of the lower level variables (grouped
by clusters in C), while functions of the RNCM output values
of their higher level counterparts, mapped by τ̂ .

RNCM (GC-RNCM) is an RNCM ⟨τ̂ , M̂⟩ such that τ̂ is com-
posed of subfunctions τ̂Ci

for each Ci ∈ C (each with its
own parameters θτCi

), and M̂ is a GC-NCM (Def. 4). ■

In words, an RNCM is a pair of a parameterized abstraction
function τ̂ and an NCM M̂ defined over the space of high
level variables VH obtained from τ̂(VL). The GC-RNCM
is simply an RNCM constrained over the C-DAG GC, where
τ̂ must use the intervariable clusters specified by C. Fig. 9
illustrates the difference between a GC-RNCM and a standard
GC-NCM. Given GC in (a), the GC-NCM (b) directly defines
the domains of the inputs and outputs of the functions to be
the space of the variables VL. On the other hand, the GC-
RNCM (c) defines the domains over VH = τ̂(VL) instead.

Training can be done as a two-step process, where first τ̂
is trained to map to an optimal task-specific space, and then
M̂ can be trained on τ̂(VL) (e.g., through Alg. 2). In the first
step, τ̂ (parameterized by θτ ) can be trained according to a
loss such as

Lτ̂ (vL) =
∥∥τ̂−1(τ̂(vL, θτ ); θτ−1)− vL

∥∥2
+ λrLr(vL), (51)

where τ̂−1 is a neural network parameterized by θτ−1 that
attempts to invert τ̂ and recover the original vL, Lr is a sep-
arate representation regularizer, and λr is its regularization
strength. The first term in Eq. 51 is used to enforce bijectivity
between DCi and DVH,i

, as required by Prop. 5. In words,
one can train τ̂ in an autoencoder-like setup (Kramer 1991;
Kingma and Welling 2014) with a reconstruction loss. The
second term is left open-ended and can be used to impose
a desired form on the output of τ̂ . The following example
helps to ground this point.
Example 10. Consider a simple example with VL = X ∪
{Y }, where X is the collection of pixels representing an im-
age of a cat or dog, and Y is a binary label (caused by X)
predicting whether the animal depicted in X is aggressive
or docile. Suppose researchers are studying the relationship
between X and Y and would like to work in a more abstract
space. Denote XH as the high-level counterpart of X. More-
over, suppose the researchers are given another set of labels
of X, say Z, which state whether the animal in the image is
a cat or dog. Z is not included in the study with VL, but it
could potentially be used for learning the space of XH .
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Specifically, the researchers would like to train τ̂X :
DX → DXH

such that the AIC is satisfied from Prop. 5,
and XH additionally encodes some information about Z.
One clever approach is to introduce another neural network
g(xH ; θg) parameterized by θg that aims to classify Z from
XH . The researchers could train τ̂X with the loss Lτ̂ from
Eq. 51 such that Lr is the classification loss of g. This would
result in XH encoding both enough information to recon-
struct X and also to classify Z. Although XH may not have
lower dimensionality than the original X , it may be more
useful in a downstream task, such as building a classifier for
Y (i.e. XH may be a more well-behaved set of features for a
classifier of Y than the original set of pixel values X). ■

In general, τ̂ can be thought of as a function mapping to a
representation space, where the second term in Eq. 51 can be
used to regularize the representation space for a desired task.
The flexibility of this approach makes it amenable to the wide
developments of the representation learning literature (Ben-
gio, Courville, and Vincent 2013). We empirically demon-
strate this approach below in the experiment of Sec. 5.2.

5 Experiments
In this section, we empirically evaluate the effects of utilizing
abstractions in causal inference tasks. More details on the
data-generating models and architectures can be found in
Appendix C. Implementation code is publicly available at
https://github.com/CausalAILab/NeuralCausalAbstractions.

5.1 Nutritional Study
We follow up on the nutrition study discussed in Ex. 1. Since
a BMI of 25 or over is considered overweight, the goal is to
identify and estimate the query Q = P (BD=d ≥ 25), the
causal effect of diet on weight, given the available graphical
constraints and observational data P (VL) using Alg. 2. R
and D are 32-dimensional one-hot vectors, and the others
are real-valued, so the query may be difficult to answer given
such high-dimensional variables. Instead, it may be more
effective to work in an abstract space with the proposed inter-
variable clusters C = {DH = {D}, Z = {C,F, P}, BH =
{B}}. The original graph G and corresponding C-DAG GC
are shown in Fig. 5. We are also given intravariable clusters
D such that all values of DH , Z, and BH are clustered into
binary categories. Specifically, DH = 1 denotes unhealthy
dishes, Z = 1 denotes high calorie count, and BH = 1
denotes an overweight BMI (≥ 25).

We compare the effectiveness identifying and estimating
Q with NCMs in three different settings, with results shown
in Fig. 10. The first approach (red) attempts to solve the prob-
lem directly in the space of VL by identifying and estimat-
ing Q from the original causal diagram G and observational
dataset from P (VL). The second approach (yellow) solves
the same task but first normalizes each variable13 of the data
between 0 and 1. The third approach (blue) is the newly

13This normalization approach is equivalent to using a construc-
tive abstraction function τ over the full set of clusters C = VL and
D = DVL (with a bit of abuse of notation). That is, each variable
and value are placed in their own cluster, and all values are simply
remapped to different values.

(a) Gaps between max and min
query across 1000 training itera-
tions when running Alg. 2.

(b) Mean absolute error (MAE)
v. dataset size (in log-log scale)
for query estimation.

Figure 10: Results of the nutrition experiment. Our approach
(blue) is compared with a GAN-NCM trained on raw data
(red) and one trained on normalized data (yellow).

C

D I

(a) GC for Colored MNIST.

(b) Image samples. Digits are
highly correlated with the corre-
sponding gradient color.

Figure 11: Colored MNIST Experimental Setup

proposed approach and leverages the concept of τ -ID, iden-
tifying and estimates Q from the C-DAG GC and high level
data τ(P (VL)). The model is trained over the abstract space
of VH computed using the constructive abstraction function
τ defined on C and D. All three approaches are implemented
in the style of GAN-NCM (Xia, Pan, and Bareinboim 2023).
Since Q is identifiable, the gap between the max and min
queries computed in Alg. 2 are expected to be as small as
possible. As shown in Fig. 10a, the proposed approach (blue)
converges quickly while others fail to close the gap between
the max and min queries. Fig. 10b also shows that the pro-
posed approach can estimate Q with significantly lower error.
Furthermore, since the proposed approach uses the C-DAG
GC instead of the original causal diagram G, the approach
operates under fewer assumptions of domain knowledge.

5.2 Colored MNIST Digits
We evaluate the RNCM in a high-dimensional image dataset
of colorized MNIST (Deng 2012) digits. Each image (I) has
a corresponding digit (D) and color (C) label, and their rela-
tionships are shown in the C-DAG GC in Fig. 11a. Color and
digit are highly correlated (e.g. 0s are typically red, while
5s are cyan), as shown in Fig. 11b. We evaluate three ap-
proaches in the task of sampling images from causal queries.
The first approach is a naïve conditional GAN that does not
take causality into account. The second is a standard GAN-
NCM as described in Xia, Pan, and Bareinboim (2023). The
third is called a GAN-RNCM, a GAN implementation of the
representational NCM following the approach described in
Sec. 4.

Samples of the results are shown in Fig. 12. All models
are capable of producing digit images, as shown in the first
column. The second column illustrates P (I | D = 0), the
images conditioned on digit = 0. Many red 0s are expected
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Figure 12: Colored MNIST results. Samples from various causal queries (top) are collected from competing approaches (left),
with the ground truth samples from the data generating model shown in the bottom row. The left column simply shows image
samples from P (I) from each of the models, while the second, third, and fourth columns show samples generated from an L1,
L2, and L3 query, respectively.

since most 0s are red in the dataset. The third column il-
lustrates the interventional query P (ID=0), the images with
digits forced to be 0 through intervention. As interventions
ignore the spurious correlations between color and digit, 0s of
all colors are expected. Finally, the fourth column illustrates
the counterfactual query P (ID=0 | D = 5), indicating what
the digits would have looked like had they been 0, given that
they were originally 5. Since 5s tend to be cyan, the samples
are expected to be 0s that retain the cyan color of the 5s.

In all cases, GAN-RNCM (new approach) produces results
closer to the expected outcomes, as shown by the ground
truth. The conditional GAN fails to distinguish causal queries
from conditional queries, and samples appear similar in the
2nd, 3rd, and 4th columns. The standard GAN-NCM faces
challenges disentangling color from digit, as shown from the
presence of several non-zero digits in the 3rd column and sev-
eral digits that resemble 5s in the 4th column. Further, both
the conditional GAN and the GAN-NCM face challenges in
capturing the relationship between color and image in more
complex distributions, as evident from the mosaic coloring
in many of the samples. The GAN-RNCM significantly out-
performs the other approaches in terms of sample quality for
the causal queries.

6 Conclusions
In this paper, we developed a new framework of abstrac-
tions based on the PCH’s layers with the goal of learning
a high-level causal model at a coarser granularity. In each
section of the paper, we relaxed certain assumptions that are
not easily achievable in practice, and showed how to obtain
the high-level model under these particular settings. These
increasingly more refined results are summarized in Fig. 13.

We started by noting that previous works on causal ab-
stractions, such as Beckers and Halpern (2019), set a strong
foundation of defining abstractions in rigorous terms. (A
detailed discussion is provided in Appendix B.) The main
drawback is that these definitions are declarative, meaning
that given a low level SCMML, high level SCMMH , and
an abstraction function τ , the definitions in these works can
be used to decide whetherMH is an abstraction ofML or
not. Still, solving this decision task requires a substantial
amount of input information, as highlighted in the first row of

Fig. 13, and which is unavailable in many practical settings.

We then examined in Sec. 2 the challenge of obtaining the
abstract modelMH when the same is unavailable, as shown
in the second row of Fig. 13. We provided a systematic way
of constructing τ given inter/intravariable clusters (Defs. 5
and 6). Building on this, we developed Alg. 1, which allows
one to obtain the higher level abstraction MH given ML

and the constructive abstraction function τ .

Still, these results can be hard to apply sinceML is not
commonly available in some real world settings. Rather, par-
tial information aboutML through its data distributions may
be available. We then described in Sec. 3 how to obtainMH

under these restrictions, as shown in the third row of Fig. 13.
Causal inferences on higher levels of the PCH cannot be re-
alized using lower layers alone, as shown by Prop. 4, which
means that assumptions are needed. The assumptions con-
sidered in this paper take the form of C-DAGs (Def. 9), an
abstract version of causal diagrams leveraging the intervari-
able clusters. Then, given the data Z, the C-DAG GC, and the
abstraction function τ constructed from the clusters, Alg. 2
can be used to learn the abstract NCM M̂H . Then, M̂H can be
used for tasks such as identification, estimation, or sampling.

We showed in Sec. 4 how to learn τ , noting that acquiring
intravariable clusters D may be challenging in practice. The
fourth row of Fig. 13 highlight this task. Specifically, we
introduced the representational NCM or RNCM (Def. 11),
which parameterizes τ̂ as a neural network. We then devel-
oped a learning procedure for intravariable clusters, consider-
ing task-specific objectives. Whenever additional information
about the problem is available in the form of invariances (e.g.,
translational, rotational, permutation), coarser clusters can be
learned, as elaborated in Appendix D.3.

Finally, although not shown in the table, additional tech-
nical content can be found in Appendix D. Specifically, Ap-
pendix D.1 discusses how to make the best choice of intervari-
able clusters C when it is not given. Appendix D.2 describes
possible ways to relax the AIC (Def. 8), which is an assump-
tion that is made throughout the paper. We encourage further
research on the topics covered in this paper, such as on the
best way to learn τ̂ in an RNCM.
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Approach SCMML Abstraction τ SCMMH OutputML Data Z Graph G C-DAG GC τ C D MH

Existing works ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Abstraction: Yes/No
Sec. 2 ✓ ✓ ✓ ✓ - ✓ ✓ - L3-τ consistentMH

Sec. 3 - ✓ - ✓ - ✓ ✓ - Z-τ / GC consistentMH

Sec. 4 - ✓ - ✓ - ✓ - - Z-τ / GC consistentMH

Figure 13: Summary table of contributions of each section in terms of input assumptions and outputs. A checkmark (✓) indicates
that the corresponding information is assumed to be available in that section. A gray checkmark indicates that it is implied by a
stronger assumption (e.g. data Z can be sampled fromML ifML is available). A dash (-) indicates that the information is not
assumed. An approach that has fewer checkmarks makes fewer assumptions and is therefore more applicable in practice.
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A Proofs
A.1 Counterfactual Axioms and Properties
The proofs in this work will rely on the following counter-
factual axioms from Galles and Pearl (1998) and Halpern
(1998):
Fact 1 ((Galles and Pearl 1998, Thms. 1,2)). The following
properties hold in SCMs:

1 (Composition). For any two singleton variables Y and W ,
and any set of variables X in a causal model, we have

Wx(u) = w =⇒ Yx,w(u) = Yx(u)

2 (Effectiveness) For all variables X and W, Xxw(u) = x.

■

As a consequence of these axioms, we can prove the fol-
lowing result:
Corollary 3. For any set of variables Y and X, we have

Yx(u) = Y
pa

(1)
Y ,Pa

(2)

Y[x]
(u)

(u) = YPaY[x](u)(u),

where Pa
(1)
Y = PaY∩X, pa(1)Y are its corresponding values

of x, and Pa
(2)
Y = PaY \Pa

(1)
Y . ■

Proof. We have

Yx(u) = Y
pa

(1)
Y ,x′(u) (52)

= Y
pa

(1)
Y ,Pa

(2)

Y[x]
(u),x′(u) (53)

= Y
pa

(1)
Y ,Pa

(2)

Y[x]
(u)

(u) (54)

= Y
Pa

(1)

Y[x]
(u),Pa

(2)

Y[x]
(u)

(u) (55)

= YPaY[x](u)(u). (56)

Here, x′ denotes the values of x corresponding to X \Pa
(1)
Y .

Eq. 52 holds by definition. Eq. 53 holds by the composition
property, which can be applied iteratively to each variable
in Y and Pa

(2)
Y . Eq. 54 holds because the value of Y is

deterministic once PaY and U, the inputs to its functions,
are fixed. Eq. 55 holds by the effectiveness property. Finally
Eq. 56 holds by definition.

We also leverage the following results from Correa, Lee,
and Bareinboim (2021):
Definition 12 ((Correa, Lee, and Bareinboim 2021, Def. 3)).
The set of (counterfactual) ancestors of Yx w.r.t. graph G, de-
noted An(Yx), consist of each Wz such that W ∈ An(Y )GX
(which includes Y itself), and z = x ∩An(W )GX

. ■

Fact 2 ((Correa, Lee, and Bareinboim 2021, Thm. 1)). Let
W∗ be an ancestral set, that is, An(W∗) = W∗, and let w∗
be a vector with a value for each variable in W∗. Then,

P (W∗ = w∗) = P

( ∧
Wt∈W∗

WpaW
= w

)
,

where each w is wt and paW is determined for each Wt ∈
W∗ as follows:

(i) the values for variables in PaW ∩T are the same as in t,
and

(ii) the values for variables in PaW \T are taken from w∗,
corresponding to the parents of W .

■

For the proofs in this work, we leverage a key concept of
counterfactuals which we define as functional counterfactu-
als.

Definition 13 (Functional Counterfactuals). For any SCM
M = ⟨U,V,F , P (U)⟩, denote

F =

{
V
i[pa

(j)
Vi

]
: Vi ∈ V,pa

(j)
Vi
∈ DPaVi

}
(57)

as the functional counterfactual set ofM, a set of counterfac-
tual variables containing each variable intervened on every
possible instantiation of its parents. Denote f and DF as its
instantiation and domain respectively14. If PaVi = ∅, then
Vi ∈ F with no intervention. ■

The idea behind this definition is to establish a standard
family of counterfactual quantities which generalizes all other
counterfactuals. We will see the power of functional counter-
factuals through the following lemmas.

Lemma 1 (Functional Counterfactual Uniqueness). Let
M = ⟨U,V,F , P (U)⟩ be an SCM with functional coun-
terfactual set F. Let DU(f) ⊆ DU be the set of values of
U such that for every u ∈ DU(f), we have F = f when
evaluatingM with U = u. Then, for any u ∈ DU, there
exists a unique f ∈ DF such that u ∈ DU(f). ■

Proof. Note that for any u ∈ DU, we can construct the value
of f such that u ∈ DU(f) as follows. For every Vi ∈ V and
pa

(j)
Vi
∈ DPaVi

, choose v(j)i = fVi
(pa

(j)
Vi
,u). Collectively,

these values of v(j)i can be used to form f . It is clear that
u ∈ DU(f) because V

i[pa
(j)
Vi

]
(u) = fVi(pa

(j)
Vi
,u) = v

(j)
i for

all i and j, implying that F = f . Further, f is unique, since
V
i[pa

(j)
Vi

]
(u) can only be equal to one unique deterministic

value once u is fixed.

Lemma 2 (Functional Counterfactual Completeness). Let
M = ⟨U,V,F , P (U)⟩,M′ = ⟨U′,V,F ′, P (U′)⟩ be two
SCMs both defined over V and with the same functional
counterfactual set F. Then PM(F = f) = PM

′
(F = f) for

all f ∈ DF if and only if L3(M) = L3(M′). ■

Proof. The backward direction of this proof is trivial since
all functional counterfactuals belong to the set of all coun-
terfactuals (i.e. PM(F = f) ∈ L3(M) and PM

′
(F = f) ∈

L3(M′) for all f ∈ DF). Therefore, L3(M) = L3(M′)
implies PM(F = f) = PM

′
(F = f) for all f ∈ DF.

14We intentionally use the notation of F because this set of coun-
terfactual quantities is heavily related to the functions of the SCM,
F . Notably, the behavior of a function fVi ∈ F w.r.t. U can be

specified fully by the joint counterfactual P
(∧

pa
(j)
Vi

V
i[pa

(j)
Vi

]

)
.

This property is leveraged in the proof of Lem. 2.
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To prove the forward direction, we must show that
PM(F = f) = PM

′
(F = f) for all f ∈ DF implies

L3(M) = L3(M′). Consider any arbitrary L3 query from
M,

Q = PM(y1[x1],y2[x2], . . . ) ∈ L3(M).

Denote Q′ as the equivalent value from M′. Denote Y∗
as the set of all of the counterfactual terms of Q. For each
term yi[xi], consider its ancestral set An(yi[xi]), and denote
An(Y∗) as the union of all of these sets. Then note that

Q =
∑

a∈An(Y∗)\Y∗

PM(An(y1[x1]), An(y2[x2]), . . . ),

that is, Q is equal to the joint distribution of its ancestral set
with all of the terms not in the original query marginalized
away. Then, by Fact 2, we have

Q =
∑

a∈An(Y∗)\Y∗

PM

 ∧
Wt∈An(Y∗)

WpaW
= w

 , (58)

where w and paw are defined as specified in Fact 2. This
ancestral set factorization leaves every term with a single
variable under the intervention of its parents. If there are
duplicate terms (i.e. WpaW

appears multiple times for the
same W and paW ), then either they can be reduced to a
single term if every value of w is equal (since p ∧ p = p for
any proposition p), or, if w is not equal for every term, then
Q = 0 for bothM andM′ since WpaW

cannot be equal to
two values at once.

Finally, we note that the probability term is simply a
marginalized quantity from the functional counterfactual,
so we see that

Q =
∑

a∈An(Y∗)\Y∗

 ∑
f ′∈F\W∗

PM(F = f)

 ,

where W∗ refers to the set of WpaW
terms in Eq. 58, and f

is defined for each value of VpaV
∈ F as w if VpaV

∈W∗
or the value from f ′ otherwise.

Therefore, since PM(F = f) = PM
′
(F = f), this im-

plies that Q = Q′. With this being true for all values of
Q ∈ L3(M), this means that L3(M) = L3(M′).

A.2 Proofs of Sec. 2
The abstractions in this work follow the theory developed
by Beckers and Halpern (2019). We first note that Beckers
and Halpern (2019) utilizes the idea of “allowed interven-
tions”. Specifically, for an SCMML over variables VL, the
notation IL is used to indicate a set of interventions on VL

that are “allowed” in ML. This is relevant when defining
interventions across abstractions, since not all interventions
on the lower level will have a corresponding intervention on
the higher level, as will be shown. Further, the notation I∗L is
used to define the set of all possible interventions over VL.

We use the following definitions, translated to use the
notation in our work15.

15Note that there can be at most one such possible intervention
XH ← xH such that ωτ (XL ← xL) = XH ← xH . It is possible
that no such intervention exists, but for this work, we only consider
cases where there ωτ (XL ← xL) exists for all XL ← xL ∈ IL.

Definition 14 ((Beckers and Halpern 2019, Def. 3.12)).
Some relevant notation is defined as follows:
• Given a set of variables V, X ⊆ V, and x ∈ DX, let
Rst(V,x) = {v ∈ DV : v is consistent with x}.

• Given variables VL and VH , mapping τ : DVL
→ DVH

,
and value set T ⊆ DVL

, denote τ(T) = {τ(vL) : vL ∈
T}.

• Given allowed interventions IL and IH over VL and VH

respectively, define ωτ : IL → IH such that ωτ (XL ←
xL) = XH ← xH , where τ(Rst(VL,xL)) =
Rst(VH ,xH).

Definition 15 (τ -Abstraction (Beckers and Halpern 2019,
Def. 3.13)). LetML = ⟨UL,VL,FL, P (UL)⟩ andMH =
⟨UH ,VH ,FH , P (UH)⟩ be two SCMs. Let IL and IH
be the sets of allowed interventions respectively. Given
τ : DVL

→ DVH
, we say that (MH , IH) is a τ -abstraction

of (ML, IL) if:
1. τ is surjective;
2. There exists surjective τU : DUL

→ DUH
that is compat-

ible with τ , i.e.

τ(ML[XL←xL](uL)) =MH[ωτ (XL←xL)](τU(uL)),
(59)

for all uL ∈ DUL
and all (XL ← xL) ∈ IL;

3. IH = ωτ (IL).
■

Further, we will assume that if (MH , IH) is a τ -
abstraction of (ML, IL), then P (UH) = τU(P (UL)) =
P (τU(UL)), that is, the distribution of P (UH) can be ob-
tained from P (UL) via the push-forward measure through
τU. While it is not explicitly stated in the definition, this
property aligns with the intention of linking the spaces of
UL and UH through τU.
Definition 16 (Strong τ -Abstraction (Beckers and Halpern
2019, Def. 3.15)). We say thatMH is a strong τ -abstraction
of ML if (MH , IH) is a τ -abstraction of (ML, IL) and
IH = I∗H . ■

Definition 17 (Constructive τ -Abstraction (Beckers and
Halpern 2019, Def. 3.19)). MH is a constructive τ -
abstraction ofML ifMH is a strong τ -abstraction ofML,
and there exists a partition of VL, C = {C1,C2, . . . ,Cn+1}
(where n = |VH |) with nonempty C1 to Cn, such that τ
can be decomposed as τ = (τC1

, τC2
, . . . , τCn

), where each
τCi : DCi → DVH,i

maps the ith partition to the ith variable
of VH . ■

In typical causal inference settings where nature is mod-
eled by an SCM, every possible intervention is well-defined.
In practice, some interventions may not intuitively corre-
spond to an explicit action. For example, in a medical dataset,
perhaps cholesterol level is measured from each person in
the dataset. It may not make sense to consider interventions
on cholesterol level, since it is not clear how, in practice, one
would fix or change someone’s cholesterol level to specific
values. Nonetheless, it is still possible to theoretically study
the effects of such an intervention through the semantics of
SCMs. Therefore, the notion of “allowed interventions” is
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not typically discussed outside of works of abstractions as
every intervention is well-defined.

This no longer holds true in the discussion of abstractions,
which is why definitions of abstractions like Def. 15 explicitly
require the allowed interventions to be specified. Notably,
since every intervention in an SCM involves the creation of a
submodel through the mutilation procedure, an intervention
on a lower level SCM may not have an obvious counterpart
in the higher level SCM. For an in depth understanding of
the intricacies of this, we defer readers to read Beckers and
Halpern (2019). In this work, given that one would like to use
the higher level SCMMH for downstream inference tasks,
we provide the maximum possible flexibility and assume that
IH = I∗H .

Defining IL is somewhat trickier, since in any nontrivial
abstraction, there are cases where an intervention on the
lower level does not have an equivalent intervention on the
higher level. To decide on a criteria of which interventions
are allowed on the lower level model, consider the following
lemmas.
Lemma 3. Let τ be a constructive abstraction function
w.r.t. C and D. If XL is a union of clusters in C (that is,
there exists C′ ⊆ C such that XL =

⋃
Ci∈C′ Ci), then

ωτ (XL ← xL) exists and is equal to τ(XL)← τ(xL). ■

Proof. If XL is a union of clusters in C, then without loss
of generality, suppose it can be decomposed as XL =
(C1,C2, . . . ,Ck), and VL \XL = (Ck+1,Ck+2, . . . ,Cn).
By Def. 6, we can then compute, for any vL ∈ Rst(VL,xL),

τ(vL) = τ((xL,vL \ xL))

= τ((c1, . . . , ck, ck+1, . . . , cn))

= (τC1
(c1), . . . , τCk

(ck), τCk+1
(ck+1), . . . , τCn

(cn))

= (τ(xL), τ(vL \ xL)) ∈ Rst(τ(VL), τ(xL)).

Moreover, for any vH ∈ Rst(τ(VL), τ(xL)), there ex-
ists vL ∈ Rst(VL,xL) such that τ(vL) = vH . Specif-
ically, if vH = (Dj1

C1
,Dj2

C2
. . . ,Djn

Cn
), then any vL =

(c1, c2, . . . , cn) satisfies this relationship if ci ∈ Dji
Ci

for
all i. Hence, by definition, ωτ (XL ← xL) exists and is equal
to τ(XL)← τ(xL).

Lemma 4. Let τ be a constructive abstraction function over
C and D. For any intervention XH ← xH ∈ I∗H , there
exists XL such that XL is a union of clusters of C, and
ωτ (XL ← xL) = XH ← xH . ■

Proof. Without loss of generality, suppose that
XH = {X1, X2, . . . , Xk}, corresponding to clus-
ters {C1,C2, . . . ,Ck} respectively. Then, choose
XL =

⋃k
i=1 Ci, a union of clusters. The proof holds

if for each Ci, there exist values ci ∈ DCi
such that

τCi
(ci) = xi. Note that by definition, xi corresponds to

some Dj
Ci

such that τCi
(ci) = xi for all ci ∈ Dj

Ci
. As Dj

Ci

is an element of a partition of DCi
, it must be nonempty.

Hence, the claim holds, and xL can be constructed by
taking the one such value ci for each i. Lemma 3 can then
be used to show that ωτ (XL ← xL) = τ(XL) ← τ(xL),
concluding the proof.

In other words, by Lemma 3, an intervention on a union
of intervariable clusters will always have an intuitive well-
defined corresponding intervention. Moreover, Lemma 4
shows that all high level interventions are accounted for on
the lower level model16. Hence, we make the assumption that
IL is defined such that XL ← xL ∈ IL if and only if XL

is a union of clusters of C. If, for some reason, this choice
of IL is not desirable for some application, it may indicate
that the choice of clusters, C and D, should be revised. Under
these assumptions, the work in the main text can be presented
without the need to explicitly consider allowed interventions,
simplifying the discussion.

We now show the main connection between this work and
established works by proving Prop. 1.

Proposition 1 (Abstraction Connection). Let τ : DVL
→

DVH
be a constructive abstraction function (Def. 6).MH is

L3-τ consistent (Def. 7) withML if and only if there exists
SCMsM′L andM′H s.t. L3(M′L) = L3(ML), L3(M′H) =
L3(MH), andM′H is a constructive τ -abstraction ofM′L.

■

Proof. For this proof, defineML = ⟨UL,VL,FL, P (UL)⟩
andMH = ⟨UH ,VH ,FH , P (UH)⟩.

We first show the forward direction: if MH is L3-τ
consistent with ML, then there exists SCM M′H such
that L3(M′H) = L3(MH) and M′H is a constructive τ -
abstraction ofML.

We will start this proof by first attempting to show that
MH itself is a constructive τ -abstraction ofML. We first
note that the intervariable clustering C is defined to be a parti-
tion of a subset of VL, and τ is constructed by Def. 6, which
is specifically defined to be decomposed into subfunctions
τCi mapping cluster Ci to a corresponding VH,i for each
i ∈ {1, . . . , n}. If we further define Cn+1 = VL\

⋃
Ci∈C Ci

(variables that are projected out through the abstraction), then
we see that {C1,C2, . . . ,Cn+1} forms a partition over VL.

What remains is to show thatMH is a strong τ -abstraction
ofML. As IH = I∗H by assumption, this reduces to showing
that it is a τ -abstraction. We show that the three requirements
of Def. 15 hold:

1. Consider any vH ∈ DVH
. For all VH,i ∈ VH , note

that VH,i must correspond to some Ci, and vH,i must
correspond to some Dj

Ci
by definition. Since Dj

Ci
is part

of a partition, it must be nonempty, so τCi(ci) = vH,i for
any choice of ci ∈ Dj

Ci
. Hence, τCi

is surjective for all i,
implying that τ is surjective as it is simply a collection of
all τCi

.
2. Consider the functional counterfactual set FH ofMH (as

defined in Eq. 57). For every fH ∈ DFH
, consider the

16There are some contrived settings in which ωτ (XL ← xL) still
exists even when XL is not a union of clusters, but it is inconsequen-
tial to omit these cases since all possible high level interventions are
covered by Lemma 4.
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counterfactual quantity

P (FH = fH) =

P

 ∧
VH,i∈VH

∧
pa

(j)
VH,i
∈DPaVH,i

V
H,i

[
pa

(j)
VHi

] = v
(j)
H,i

 .

By Eq. 10, this is equal to

P (FH = fH) =∑
∀i,jc(j)

L,i∈DVL
:τ(c

(j)
L,i)=v

(j)
H,i

P

∧
i,j

C
L,i

[
x
(j)
L,i

] = c
(j)
L,i


for all choices of x(j)

L,i such that τ(x(j)
L,i) = pa

(j)
VH,i

. Recall
that DUH

(fH) ⊆ DUH
is the set of values of UH such

that uH ∈ DUH
(fH) if and only if FH = fH when

UH = uH . Similarly, define DUL
(fH) ⊆ DUL

as the set
of values of UL such that uL ∈ DUL

(fH) if and only if∧
i,j CL,i

[
x
(j)
L,i

] = c
(j)
L,i when UL = uL.

Note that there may exist uL ∈ DUL
that do not be-

long to DUL
(fH) for any choice of fH . However, the

total probability measure of all such cases must be 0,
since P (UL ∈ DUL

(fH)) = P (UH ∈ DUH
(fH)), and

{DUH
(fH) : fH ∈ DFH

,DUL
(fH) ̸= ∅} forms a par-

tition over DUH
by Lemma 1 and must therefore have

probability 1. Hence, we can define U′L with domain
DU′

L
that is equivalent to DUL

but with these cases omit-
ted. Correspondingly, we can define F ′ as F but exclud-
ing the outputs when UL takes a value not in DU′

L
. We

can then define M′L = ⟨U′L,VL,F ′L, P (U′L)⟩, where
L3(M′L) = L3(ML) because only a measure zero por-
tion of P (UL) was removed.
Define U ′ as a random variable with domain DU ′ =
{u′fH : fH ∈ DFH

,DUL
(fH) = ∅}, that is, a value for

each choice of fH with a nonempty DUL
(fH). Define

P (U ′ = u′fH ) = P (FH = fH). Choose τU : DU′
L
→

DU′ such that τU(u′L) = u′fH if and only if u′L ∈
DUL

(fH). Note that this function is surjective because
u′fH ∈ DU ′ only if DUL

(fH) is nonempty. Furthermore,
P (U ′ = u′fH ) = P (FH = fH) = P (uL ∈ DUL

(fH)),
so the probability distributions are consistent.
It is not necessarily the case that property 2 of
τ -abstractions holds between MH and ML, but
we can create a new SCM M′H = ⟨U′H =
{U ′},VH ,F ′H , P (U′H)⟩ such that the property holds
between M′H and M′L. Define F ′H = {f ′HVH,i

:

VH,i ∈ VH} such that each f ′HVH,i
(paVH,i

, u′fH ) =

fHVH,i
(paVH,i

,uH) if and only if uH ∈ DUH
(fH). Given

that P (U ′ = u′fH ) = P (FH = fH) = P (uH ∈
DUH

(fH)), this implies that PM
′
H (FH = fH) =

PMH (FH = fH), further implying that L3(M′H) =
L3(MH) by Lemma 2.
We now show that τ(M′L[XL←xL](u

′
L)) =

M′H[ωτ (XL←xL)](τU(u′L)), for all u′L ∈ DU′
L

and

all (XL ← xL) ∈ IL. For the rest of the proof, assume
that any notation involving subscripts L and H refers
toM′L andM′H rather thanML andMH . By Lemma
3, we know that ω(XL ← xL) = τ(XL) ← τ(xL),
so let xH = τ(xL). Assume on the contrary that
there exists u′L ∈ DU′

L
and (XL ← xL) ∈ IL

such that this claim does not hold. Then there
must exist CL,i (and VH,i = τ(CL,i)) such that
τ(CL,i[xL](u

′
L)) ̸= VH,i[xH ](τU(u′L))). Let fH be the

value of FH such that this value of u′L ∈ DUL
(fH).

We show using proof by induction that this poses a
contradiction.
There must be a topological ordering to VH as M′H
is recursive. In the base case, assume that PaVH,i

=
∅. This means that τ(CL,i[xL](u

′
L)) = τ(CL,i[∅](u

′
L))

and VH,i[xH ](τU(u′L))) = VH,i[∅](τU(u′L)))). Note that
τ(CL,i[∅](u

′
L)) = τ(c

(j)
L,i) = v

(j)
H,i = VH,i[∅](τU(u′L))

by definition of fH , contradicting the claim that
τ(CL,i[xL](u

′
L)) ̸= VH,i[xH ](τU(u′L))).

Now assume for the sake of induction that
τ(CL,i′[xL](u

′
L)) = VH,i′[xH ](τU(u′L))) for all

VH,i′ ∈ PaVH,i
. Note that τ(CL,i[xL](u

′
L)) =

τ(CL,i[PaCL,i[xL](u
′
L)](u

′
L)) and VH,i[xH ](τU(u′L))) =

VH,i[PaVH,i[xH ](τU(u′
L))](τU(u′L)))) due to Corol. 3.

However, τ(PaCL,i[xL](u
′
L)) = PaVH,i[xH ](τU(u′L))

by the inductive hypothesis. This means that
τ(CL,i[PaCL,i[xL](u

′
L)](u

′
L)) = τ(c

(j)
L,i) =

v
(j)
H,i = VH,i[PaVH,i[xH ](τU(u′

L))](τU(u′L)))) from
fH , once again contradicting the claim that
τ(CL,i[xL](u

′
L)) ̸= VH,i[xH ](τU(u′L))).

Therefore, it must be the case that
τ(M′L[XL←xL](u

′
L)) =M′H[ωτ (XL←xL)](τU(u′L)), for

all u′L ∈ DU′
L

and all (XL ← xL) ∈ IL.
3. IH = ωτ (IL) holds by the assumption of IL and Lemma

4.

This completes the forward direction of the proof.
We now show the backward direction: if there exists SCMs

M′L andM′H such that L3(M′L) = L3(ML), L3(M′H) =
L3(MH), andM′H is a constructive τ -abstraction ofM′L,
then MH is L3-τ consistent with ML. It is sufficient to
simply show thatM′H is L3-τ consistent withM′L, since
if L3(M′L) = L3(ML) and L3(M′H) = L3(MH), this
would also imply thatMH is L3-τ consistent withML.

This can be proven by showing that Eq. 10 holds, that is∑
∀iyL,i∈DYL,i

:τ(yL,i)=yH,i

PM
′
L(yL,1[xL,1],yL,2[xL,2], . . . )

= PM
′
H (yH,1[τ(xH,1)],yH,2[τ(xL,2)], . . . )

for all choices of yH,i and xH,i. Denote Q as the l.h.s. of the
equation and τ(Q) as the r.h.s. Denote DQ ⊂ DU′

L
as the set

of values of u′L such that
∧

i YL,i[xL,i] = yL,i[xL,i] for all
yL,i such that τ(yL,i) = yH,i. Similarly, denote Dτ(Q) ⊆
DU′

H
as the set of values of u′H such that

∧
i YH,i[τ(xL,i)] =

yH,i[τ(xL,i)]. Note that Q = P (U′L ∈ DQ) and τ(Q) =

24



P (U′H ∈ Dτ(Q)). We claim that u′L ∈ DQ if and only if
τU(u′L) ∈ Dτ(Q).

By definition of constructive τ -abstractions, there
must exist τU such that τ(ML[XL←xL](u

′
L)) =

MH[ωτ (XL←xL)](τU(u′L)), for all u′L ∈ DU′
L

and all
(XL ← xL) ∈ IL, and further that P (U′H) = P (τ(U′L))
by assumption. This implies that τ(YL,i[xL,i](u

′
L)) =

YH,i[ωτ (xL,i)](τU(u′L)) = YH,i[τ(xL)](τU(u′L)) for all
i by Lemma 3. Hence, if YL,i[xi](u

′
L) = yL,i, where

τ(yL,i) = yH,i, then YH,i[τ(xL)](τU(u′L)) = yH,i. Con-
sidering this for all values of i, it must be the case that
u′L ∈ DQ if and only if τU(u′L) ∈ Dτ(Q).

Since P (U′H) = P (τ(U′L)), this implies that τ(Q) =
P (U′H ∈ Dτ(Q)) = P (U′L ∈ DQ) = Q, concluding the
proof.

We note that the theorem does not claim L3-τ consistency
is equivalent to constructive τ -abstractions, rather making
a weaker claim that there must exist a pair of (potentially
different) SCMs that are L3-equivalent and fit the definition
of a constructive τ -abstraction. The reason is that, in fact, the
definition for constructive τ -abstraction is stricter than L3-τ
consistency, but as evident in the proof, the only restriction
is on the domains of UL and UH . In the case of UL, there
may be a measure zero portion of the domain DUL

that do
not translate to the higher level functional counterfactuals,
and in the case of UH , it is possible that the space of DUH

may not allow for τU to be surjective. However, the theorem
still essentially states that they are equivalent, at least on
the three levels of the PCH. We therefore argue that, given
the unobserved nature of the exogenous variables and the
generating SCM, these two concepts are equivalent on a
practical level.

We now prove that Alg. 1 successfully returns an L3-τ
consistent model.

Proposition 3. Let τ and MH be the function and SCM
obtained from running Alg. 1 on inputsML, C, and D. Then,
MH is L3-τ consistent withML. ■

Proof. We can show this result by first showing that the
output of Alg. 1, MH , is a constructive τ -abstraction of
ML. By Def. 6, it is clear by construction that τ can be
decomposed as τ = (τC1

, τC2
, . . . , τCn

), and each τCi
maps

the ith partition to the ith variable of VH , as established
on line 2. Hence, we must simply show that MH is a τ -
abstraction ofML. Out of the three properties of Def. 15,
properties 1 and 3 can be proven similarly to how it is done in
the forward direction of Prop. 1. Then, to prove property 2, we
must simply show that there exists surjective τU : DUL

→
DUH

such that P (UH) = τU(P (UL)) = P (τU(UL)), and
τ(ML[XL←xL](uL)) =MH[ωτ (XL←xL)](τU(uL)), for all
uL ∈ DUL

and all (XL ← xL) ∈ IL.
The choice of τU is simple—we can use the identity

function as by construction in line 1, UH = UL and
P (UH) = P (UL). Further, note that ωτ (XL ← xL) =
τ(XL)← τ(xL) by Lemma 3. Hence, we must simply show
that τ(ML[XL←xL](uL)) =MH[τ(XL)←τ(xL)](uL).

We start by showing that Vi[τ(xL)](uL) = τ(Ci[xL](uL))
for every Vi ∈ VH and corresponding Ci ∈ C. Note that for
every Vi ∈ VH , line 5 dictates that

Vi ← fHi (paVi
,uVi

) = τ
(
fLV (p̃aV ,uV ) : V ∈ Ci

)
,

which implies that

Vi[τ(xL)](uL) = τ
(
fLV (p̃aV ,uV ) : V ∈ Ci

)
, (60)

where uV is compatible with uL and p̃aV refers to any
value paV ∈ DPaV

such that τ(paV ) = PaVi[τ(xL)](uL).
Note that sinceML satisfies the abstract invariance condition
(AIC) w.r.t. τ , the value of fLV will not change based on this
choice of paV .

We continue using proof by induction. SinceMH is re-
cursive, this implies there is a topological ordering of the
functions ofMH . In the base case, if PaVi = ∅, then

Vi[τ(xL)](uL) = Vi[∅](uL) = τ
(
fLV (uV ) : V ∈ Ci

)
= τ(Ci(uL)),

which aligns with the claim. For the inductive hypothesis,
assume that Vj[τ(xL)](uL) = τ(Cj[xL](uL)) for every Vj ∈
PaVi . Then we have

Vi[τ(xL)](uL) = Vi[PaVi[τ(xL)](uL)](uL)

by Corol. 3
= Vi[τ(PaCi[xL](uL))](uL)

by inductive hypothesis

= τ
(
fLV (PaCi[xL](uL),uV ) : V ∈ Ci

)
by Eq. 60
= τ(Ci[xL](uL))

simplification,

proving the claim. Since Vi[τ(xL)](uL) = τ(Ci[xL](uL)) for
every Vi ∈ VH , this implies that τ(ML[XL←xL](uL)) =
MH[ωτ (XL←xL)](τU(uL)), proving thatMH is a construc-
tive τ -abstraction ofML. Finally, Prop. 1 proves thatMH

must therefore be an L3-τ abstraction ofML.

We leverage this property to prove that the abstract in-
variance condition (AIC) is necessary and sufficient for the
existence of an abstraction.
Proposition 2 (Abstraction Conditions). For any SCMML

and constructive abstraction function τ relative to C and D,
there exists an SCMMH over variables VH = τ(VL) such
that MH is L3-τ consistent with ML if and only if there
existsM′L such that L3(ML) = L3(M′L) andM′L satisfies
the abstract invariance condition with respect to τ . ■

Proof. If M′L satisfies the AIC w.r.t. τ , then one can use
Alg. 1 to obtain an example of a model that is L3-τ consistent
withM′L (and therefore withML), as proven in Prop. 3.

We now consider the other direction. If MH is L3-
τ consistent with ML, then by Prop. 1, there must ex-
ist some M′L and M′H such that L3(M′L) = L3(ML),
L3(M′H) = L3(MH) and M′H is a constructive τ -
abstraction of M′L. For the rest of this proof, assume
that any terms with a subscripts of L or H refer to M′L
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or M′H instead of ML and MH . The constructive τ -
abstraction property implies that there exists surjective
τU : DU′

L
→ DU′

H
such that τ(M′L[XL←xL](u

′
L)) =

M′H[ωτ (XL←xL)](τU(u′L)), for all u′L ∈ DU′
L

and
all (XL ← xL) ∈ IL. By Lemma 3, this means
τ(M′L[XL←xL](u

′
L)) =M′H[τ(XL)←τ(xL)](τU(u′L)).

Assume for the sake of contradiction that it is not the case
that M′L satisfies the AIC w.r.t. τ . Then there must exist
v1,v2 ∈ DVL

such that τ(v1) = τ(v2), yet

τ
((
fLV (pa

(1)
V ,u′V ) : V ∈ Ci

))
̸= τ

((
fLV (pa

(2)
V ,u′V ) : V ∈ Ci

))
for some value of u′L ∈ DU′

L
and Ci ∈ C.

This would imply that τ

(
C

i[pa
(1)
Ci

]
(u′L)

)
̸=

τ

(
C

i[pa
(2)
Ci

]
(u′L)

)
, so τ

(
M′

L[pa
(1)
Ci

]
(u′L)

)
̸=

τ

(
M′

L[pa
(2)
Ci

]
(u′L)

)
. By the τ -abstraction definition,

we have τ

(
M′

L[pa
(1)
Ci

]
(u′L)

)
= M′

H[τ(pa
(1)
Ci

)]
(τU(u′L))

and τ

(
M′

L[pa
(2)
Ci

]
(u′L)

)
= M′

H[τ(pa
(2)
Ci

)]
(τU(u′L)).

However, since τ(pa
(1)
Ci

) = τ(pa
(2)
Ci

), this implies that

τ

(
M′

L[pa
(1)
Ci

]
(u′L)

)
= τ

(
M′

L[pa
(2)
Ci

]
(u′L)

)
, contradicting

the earlier statement. Therefore,M′L must satisfy the AIC
w.r.t. τ , completing the proof.

A.3 Proofs of Sec. 3
We start by noting the impossibility of performing causal
inferences without additional assumptions, as implied by the
Causal Hierarchy Theorem.

Fact 3 (Causal Hierarchy Theorem (CHT) (Bareinboim et al.
2022, Thm. 1)). Let Ω∗ be the set of all SCMs. We say that
Layer j of the causal hierarchy for SCMs collapses to Layer
i (i < j) relative toM∗ ∈ Ω∗ if Li(M∗) = Li(M) implies
that Lj(M∗) = Lj(M) for allM∈ Ω∗. Then, with respect
to the Lebesgue measure over (a suitable encoding of L3-
equivalence classes of) SCMs, the subset in which Layer j of
SCMs collapses to Layer i is measure zero. ■

Given this result, we note that the same principle applies
to performing causal inferences across abstractions.

Lemma 5. Let ΩL and ΩH be the space of SCMs defined
over VL and VH respectively, and let τ : DVH

→ DVL

be a constructive abstraction function defined over clusters
C and D. Let Ω′L be the subset of ΩL that satisfies the AIC.
Define ψτ : Ω′L → ΩH such that ψτ (ML) =MH , where
MH ∈ ΩH is L3-τ consistent withML (while there could
be many such SCMs, they are all L3-equivalent, so we can
arbitrarily choose the output of Alg. 1 on inputs ML and
τ , which must exist due to Prop. 3). Then, ψτ is surjective
(i.e. {ψ(ML) :ML ∈ Ω′L} = ΩH ). ■

Proof. For any SCM MH = ⟨UH ,VH ,FH , P (UH)⟩ ∈
ΩH , one can construct SCM ML =
⟨UL,VL,FL, P (UL)⟩ ∈ Ω′L such that MH is L3-τ
consistent asML as follows:

1. Choose UL = UH and P (UL) = P (UH).
2. For each VL ∈ VL, let C ∈ C be the intervariable cluster

such that VL ∈ C, and let VH = τ(C). Define PaVL
⊆

VL as the set of variables such that τ(PaVL
) = PaVH

.
Define UVL

⊆ UL as UVH
.

3. For all C ∈ C, note that for any pair V1, V2 ∈ C,
PaV1 = PaV2 and UV1 = UV2 . Denote VH = τ(C).
For each V ∈ C, choose fLVL

∈ FL arbitrarily such that
τ({fLVL

(paV ,uV ) : VL ∈ C}) = fHVH
(τ(paVL

),uVL
).

There must exist at least one such setting since for any
possible input paVH

,uVH
to fHVH

, there is at least one set
of inputs paVL

,uVL
to fLVL

such that τ(paVL
) = paVH

(due to surjectivity of τ ) and uVL
= uVH

.

One can easily verify that running Alg. 1 on this choice of
ML will returnMH , implying thatMH is L3-τ consistent
withML and that ψτ is surjective.

Proposition 4 (Abstract Causal Hierarchy Theorem (Formal
Version)). Let ΩL and ΩH be the space of models defined
over VL and VH respectively, and let Ω′L be the subset of
ΩL such that the abstract invariance condition holds. Let
τ : DVH

→ DVL
be a constructive abstraction function. We

say that Layer j of the causal hierarchy for ΩH τ -collapses
to Layer i (i < j) relative toML ∈ ΩL if Li-τ consistency
implies Lj-τ consistency ofMH withML for allMH ∈
ΩH . Then, w.r.t. Lebesgue measure over (a suitable encoding
of L3-equivalence classes of) Ω′L, the subset in which Layer
j of ΩH τ -collapses to Layer i has measure zero. ■

Proof. We first show that Layer j of ΩH τ -collapses to Layer
i relative toML ∈ Ω′L if and only if Layer j of ΩH collapses
to Layer i relative to ψτ (ML) ∈ ΩH (as defined in Lem. 5).
If Layer j of ΩH τ -collapses to Layer i relative toML, then
that implies that all SCMs in ΩH that are Li-τ consistent
withML are also Lj-τ consistent, including ψτ (ML). This
is only possible if they are all Li- and Lj-consistent with
each other, implying regular collapse relative to ψτ (ML).
Conversely, if Layer j of ΩH collapses to Layer i relative to
ψτ (ML), then all SCMs in ΩH that are Li-consistent with
ψτ (ML) must also beLj-consistent. By definition, ψτ (ML)
is L3-τ consistent withML, so this implies that all SCMs in
ΩH that are Li-τ consistent withML are also Lj-τ consis-
tent.

Fact 3 states that the subset of ΩH in which Layer j of ΩH

collapses to Layer i is measure 0. Hence, the subset of Ω′L
(under the same encoding w.r.t. the set {ψ(ML) : ML ∈
Ω′L} = ΩH (as proven in Lem. 5)) in which Layer j of ΩH

τ -collapses to Layer i is also measure 0.

As a consequence, causal assumptions are necessary to
make causal inferences. For this work, we leverage cluster
causal diagrams (C-DAGs), from Def. 9.

For the following proofs, consider the classical definition
of identifiability.
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Definition 18. Let Ω∗ be the space containing all SCMs
defined over endogenous variables V. We say that a causal
query Q is identifiable (ID) from the available data Z and
the causal diagram G if Q(M1) = Q(M2) for every pair of
modelsM1,M2 ∈ Ω∗ such thatM1 andM2 both induce
G and Z(M1) = Z(M2). ■

We can now prove that abstract identification is equivalent
to classical identification on the higher level.
Theorem 1 (Dual Abstract ID). Consider a counterfactual
query Q over VL, a constructive abstraction function τ
w.r.t. clusters C and D, a C-DAG GC, and data Z from VL.
Q is τ -ID from GC and Z if and only if τ(Q) is ID from GC
and τ(Z). ■

Proof. Let ΩL and ΩH be the space of SCMs defined over
VL and VH respectively, and let ΩL(GC) and ΩH(GC) be
their corresponding subsets that induce graph GC. IfQ is τ -ID
from GC and Z, then every pair ofML ∈ ΩL(GC),MH ∈
ΩH(GC) such thatMH is Z-τ consistent withML must have
MH beQ-τ consistent withML. For all suchMH , Z-τ con-
sistency and Q-τ consistency withML implies thatMH is
τ(Z)-consistent and τ(Q)-consistent by Def. 7. For any pair
M1,M2 ∈ ΩH that induce GC, τ(Z)(M1) = τ(Z)(M2)
therefore implies that bothM1 andM2 must be Z-τ consis-
tent withML and must therefore both be Q-τ consistent, so
τ(Q)(M1) = τ(Q)(M2). Hence, τ(Q) is ID from GC and
τ(Z) by Def. 18.

Conversely, if τ(Q) is ID from GC and τ(Z), then for any
M1,M2 ∈ ΩH that induces GC such that τ(Z)(M1) =
τ(Z)(M2), it must be the case that τ(Q)(M1) =
τ(Q)(M2). For every ML ∈ ΩL(GC), Prop. 3 states that
there exists some MH ∈ ΩH(GC) that is L3-τ consistent
withML, implying thatMH is both Z-τ consistent and Q-τ
consistent withML. Since allMH ∈ ΩH(GC) that match
in τ(Z) must also match in τ(Q), it must be the case that all
suchMH that are Z-τ consistent withML must also beQ-τ
consistent withML. Hence, by definition, Q is τ -ID from
GC and Z.

We also connect this result to the results of neural identifi-
cation with NCMs.
Definition 19 (Neural Counterfactual Identification (Xia, Pan,
and Bareinboim 2023, Def. 4)). Consider an SCMM∗ and
the corresponding causal diagram G. Let Z = {P (Vzk

)}ℓk=1
be a collection of available interventional (or observational
if Zk = ∅) distributions fromM∗. The counterfactual query
P (Y∗ = y∗ | X∗ = x∗) is said to be neural identifiable
(identifiable, for short) from the set of G-constrained NCMs
Ω(G) and Z if and only if P M̂1(y∗ | x∗) = P M̂2(y∗ | x∗)
for every pair of models M̂1, M̂2 ∈ Ω(G) s.t. they match
M∗ on all distributions in Z (i.e. Z(M∗) = Z(M1) =
Z(M2) > 0). ■

Fact 4 (Counterfactual Graphical-Neural Equivalence (Dual
ID) (Xia, Pan, and Bareinboim 2023, Thm. 3)). Let Ω∗,Ω
be the spaces including all SCMs and NCMs, respectively.
Consider the true SCMM∗ and the corresponding causal
diagram G. Let Q = P (y∗ | x∗) be the target query and
Z the set of observational and interventional distributions

available. Then, Q is neural identifiable from Ω(G) and Z if
and only if it is identifiable from G and Z. ■

Fact 5 (Neural Counterfactual Mutilation (Operational ID)
(Xia, Pan, and Bareinboim 2023, Corol. 1)). Consider the
true SCMM∗ ∈ Ω∗, causal diagram G, a set of available
distributions Z, and a target query Q equal to PM

∗
(y∗ |

x∗). Let M̂ ∈ Ω(G) be a G-constrained NCM such that
Z(M̂) = Z(M∗). If Q is identifiable from G and Z, then Q
is computable via Eq. 1 from M̂ . ■

The connection between abstract identification and neural
identification follows naturally.

Corollary 1 (Abstract ID with NCMs). Q is τ -ID from GC
and Z iff τ(Q) is Neural-ID from Ω̂(GC) and τ(Z). Moreover,
if it is ID, then Q can be computed by τ(Q) from any GC-
NCM M̂ that is τ(Z)-consistent. ■

Proof. This is a direct consequence of Thm. 1, Fact 4, and
Fact 5.

Corollary 2 (Soundness and Completeness). LetML be the
low-level SCM, C and D be inter/intravariable clusters of
VL, GC be a C-DAG, Q be a query, and Q̂ be the result from
running Alg. 2 with inputs Z(ML) > 0, C, D, GC, and Q.
Then, Q is τ -ID from GC and Z if and only if Q̂ is not FAIL.
Moreover, if Q̂ is not FAIL, then Q̂ = Q(ML). ■

Proof. Lines 1-2 of Alg. 2 constructs τ given C and D. Lines
3-9 checks that τ(Q) is neural identifiable from Ω̂(GC) and
τ(Z). Lines 4 and 5 find the two parameterizations θ∗min
and θ∗max that minimize and maximize τ(Q) while simulta-
neously guaranteeing τ(Z)-consistency. Hence, if the two
parameterizations result in the same value for τ(Q), then all
such NCMs must match in τ(Q), guaranteeing neural iden-
tifiability. Otherwise, the two parameterizations provide the
counterexample for two NCMs that do not match in τ(Q).
Finally, Corol. 1 states that neural identifiability implies ab-
stract identifiability.

A.4 Proofs of Sec. 4
We first start by showing the following result.

Lemma 6. For any choice of intravariable clusters D such
thatML satisfies the AIC w.r.t. the corresponding τ ,ML

will also satisfy the AIC w.r.t. any finer clustering D′ (i.e. for
all DCi

∈ D and all D(j)
Ci
∈ DCi

, D(j)
Ci

is a subset of some

D(j′)
Ci
∈ D′Ci

). ■

Proof. Fix intervariable clusters C and denote τ and τ ′ as
the constructive abstraction function defined w.r.t. (C,D) and
(C,D′) respectively. IfML satisfies that AIC w.r.t. τ , that
implies that for all v1,v2 ∈ DVL

such that τ(v1) = τ(v2),
all u ∈ DUL

, and all Ci ∈ C,

τ
((
fLV (pa

(1)
V ,uV ) : V ∈ Ci

))
= τ

((
fLV (pa

(2)
V ,uV ) : V ∈ Ci

))
,
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where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2 respectively. If D′ is a finer clustering than D, then
that means that τ(v1) = τ(v2) implies τ ′(v1) = τ ′(v2) for
all values v1,v2 ∈ DVL

, implying that the above must also
hold for τ ′.

This property implies that the constraints of D are one-
sided, and although finding the most coarse set of clusters
may be impossible, any finer set will also work. In the worst
case, choosing D such that DCi

= DCi
(i.e. every value in

their own cluster) would still result in a valid abstraction, as
shown below.
Proposition 5. Consider a low level SCM ML and con-
structive abstraction function τ w.r.t. clusters C and D.
ML is guaranteed to satisfy the AIC w.r.t. τ if and only
if DCi

= {{ci} : ci ∈ DCi
} for all Ci ∈ C. ■

Proof. The first claim is directly implied by Lemma 6, since
this choice of D simply clusters each value to its own cluster,
resulting in a finer clustering than any other clustering.

Without any additional information aboutML, it is possi-
ble for any other choice of clustering to result inML failing
to satisfy the AIC. This can be shown by constructing an ad-
versarial example ofML for any other choice of intravariable
clustering D′. Since D′ ̸= D, this implies that there exists at
least one pair of c1, c2 ∈ Ci for some Ci ∈ C such that c1
and c2 are in the same cluster D(j)

Ci
∈ DCi

for some j.
Let Ck ∈ C be a cluster such that there exists at least

one pair V1 ∈ Ci, V2 ∈ Ck such that V1 ∈ PaV2 . Since
there are no restrictions on ML aside from basic assump-
tions like recursiveness, we can construct one such that such
a Ck exists. Consider the set of functions FCk

= {fLV :
V ∈ Ck} ⊆ FL, from ML, and denote FCk

(ck,uL) =
(fLV (ck,uL) : V ∈ Ck). Provided that the domains of VH

are nontrivial (each variable can take at least two values),
there must exist v1, v2 ∈ DVk

, where Vk = τCk
(Ck), such

that v1 ̸= v2, and there exists ck,1, ck,2 ∈ DCk
such that

τCk
(ck,1) = v1 and τCk

(ck,2) = v2. Hence, we can con-
struct each function of FCk

such that for some setting of
UL = uL, τCk

(FCk
(c1,uL)) ̸= τCk

(FCk
(c2,uL)), vio-

lating the AIC.

B Background on Causal Abstractions
In this section, we discuss some of the prior works in causal
abstractions (Rubenstein et al. 2017; Beckers and Halpern
2019; Beckers, Eberhardt, and Halpern 2019; Geiger, Potts,
and Icard 2023; Massidda et al. 2023). In many established
causal inference tasks, it is typically assumed that there is a
well-specified and known set of variables of interest V, and
nature is modeled by a collection of mechanisms that assign
values to each of these variables. However, the definition
of V may not always be clear in practice. In particular, the
variables of interest may not align with the features of the
data. For example, in an economic system, perhaps data on
each individual consumer is collected, but the variable of
interest is an aggregate measure like gross domestic product
(GDP). In image data, perhaps the pixel values are collected,
but the variables of causal interest are related to the objects
of the image, not the individual pixels.

Acknowledging that the data is not always provided in
the best choice of granularity, existing works of causal ab-
stractions typically define two sets of variables, VL and VH ,
which describe the lower level and higher level settings, re-
spectively. For example, VL might describe the pixels of an
image, while VH might describe its structural content. They
are typically modeled by corresponding causal modelsML

andMH , respectively. In this section, we describe some rel-
evant works in this context and will employ our notation for
consistency purposes when their notation differs.

The connection between VH and VL can be described
through a mapping, τ : DVL

→ DVH
, between their do-

mains. However, even if τ is known, it is not guaranteed that
a model over VH ,MH , is an abstraction of a model over
VL,ML. In short, while τ connects the domains of the vari-
ables, there is nothing guaranteeing any kind of connection
between the modelsMH andML, be it the functions, the
exogenous noise, or the induced distributions.

One of the earliest works that formally discuss abstractions
in the context of causal models is Rubenstein et al. (2017),
which establishes the idea of exact transformations, where a
high-level SCMMH could be considered an “abstraction” of
a low-level SCMML ifMH is an exact τ -transformation of
ML. In addition to τ , which connects the domains of VH and
VL, exact transformations connect the two modelsML and
MH through their induced interventional distributions. This
requires mapping the set of low level interventions IL (over
VL) to their corresponding high-level counterparts IH (over
VH ), which is done through another function ω : IL → IH .
This idea leads to the following definition.
Definition 20 (Exact Transformation (Rubenstein et al. 2017,
Def. 3)). Let ML and MH be SCMs and τ : DVL

→
DVH

be a function. We say that (MH , IH) is an exact τ -
transformation of (ML, IL) if there exists a surjective order
preserving map ω : IL → IH such that

P (τ(VL[XL=xL])) = P (VH[ω(XL=xL)]). (61)
■

In this definition, the variables and corresponding distribu-
tions ofML are linked to those ofMH through the function
τ , and corresponding causal interventions are linked through
the function ω.

The interventional sets IL and IH are called the “allowed”
interventions of ML and MH , respectively. They can be
specified to contain any possible intervention and exclude
others. Since Eq. 61 only applies in cases where the inter-
vention XL = xL is contained in IL, any intervention that
is not in IL or IH is deemed irrelevant in the context of
exact transformations, and no restrictions are placed on their
corresponding interventional distributions according to the
definition. In an extreme case, if IL and IH only contained
the empty intervention (i.e. IL = IH = {∅}), then Eq. 61
would only require that P (τ(VL)) = P (VH) and makes no
statements about any interventional distributions from L2. As
opposed to requiring IL and IH to contain all interventions,
this flexibility allows one to specify which interventions are
well-defined, which is important since not every interven-
tion may translate well across an abstraction. Consider the
following example for concreteness.

28



Example 11. Suppose a two-branch government is voting
on a law, where Y is a binary variable denoting whether
the law is enacted, and X1 and X2 are the binary variables
representing the votes of the two branches. In this case, VL =
{X1, X2, Y }. The law is only considered if both branches
vote “yes”, so instead of representing the two branches’ votes
separately, one could introduce a new variable

XH ← (X1 = “yes”) ∧ (X2 = “yes”) (62)

as an abstraction of X1 and X2, with VH = {XH , Y }.
In this case, the low level intervention (X1 ←

“yes”, X2 ← “yes”) (simultaneously intervening on both X1

and X2), would map to a high level intervention (XH ← 1).
Eq. 61 then dictates that

P (τ(VL[X1=“yes”,X2=“yes”])) = P (VH[XH=1]). (63)

However, an intervention like (X1 ← “yes”), which only
intervenes on X1, does not have a corresponding high level
counterpart. The value of XH under this intervention would
still depend on X2. Hence, the intervention (X1 ← “yes”)
should be excluded from IL, which implies no restrictions
on P (τ(VL[X1=“yes”])). ■

For any interventional set I, there exists a natural partial
ordering ≤ such that i ≤ j for i, j ∈ I if and only if the
interventional values of i are a subset of those in j (e.g.,
(A ← a,B ← b) ≤ (A ← a,B ← b, C ← c)). Given the
orderings ≤L and ≤H of IL and IH , respectively, the order
preserving property of ω is defined to mean that i ≤L j for
i, j ∈ IL implies ω(i) ≤H ω(j). This property enforces
a kind of regularity condition on ω ensuring that low-level
interventions are still related when translated to the higher
level. For example, an intervention of (A← a,B ← b, C ←
c) on the low level may map through ω to an intervention
(X ← x, Z ← z) on the high level. If we consider the
same intervention, but with one more added value, such as
(A ← a,B ← b, C ← c,D ← d), we would expect that ω
would map it to a similar intervention, possible with more
values on the high level, such as (X ← x, Z ← z, Y ← y).
The order preserving property of ω prevents it from mapping
the intervention to one with fewer values such as (X ← x)
or ones with different values like (X ← x, Z ← z′).

With all of these properties, exact τ -transformations es-
tablish an important foundational property expected from all
abstractions, namely, that the abstraction mapping τ com-
mutes with applied interventions (Eq. 61), as illustrated in
Fig. 14.

Example 12. Consider a low level SCM ML =
⟨UL,VL,FL, P (UL)⟩ that models an alarm system. Sup-
pose VL = {E,S,A}, all binary, where the alarm rings
(A = 1) if either there is an earthquake (E = 1) or smoke
from a fire (S = 1), with some possible noise. Formally, the
causal mechanisms are described as follows:

Figure 14: Illustration of interventional commutativity. Ap-
plying low-level intervention X← x followed by abstraction
τ is equivalent to first applying τ , followed by applying high-
level intervention ω(X← x).

UL = {UE , US , UA} (64)
VL = {E,S,A} (65)

FL =


E ← fLE (uE) = uE
S ← fLS (uS) = uS
A← fLA(e, s, uA) = (e ∨ s)⊕ uA

(66)

P (UL) : P (UE=1)=P (US=1)=P (UA=1)=0.5 (67)

Now suppose instead of considering both earthquake and
fire individually, we would like to abstract both of these
events into a less granular variable D, representing whether
or not some disaster has occurred. That is, D = E ∨ S. To
be precise, this means the high level variables can be defined
as VH = {D,AH}, and τ can be defined such that

(D,AH)← τ(e, s, a) = (e ∨ s, a). (68)

Now consider the following SCMM(1)
H defined over these

variables:

U1 = {UD, UA} (69)
VH = {D,AH} (70)

F1 =

{
D ← f1D(uE) = uD
AH ← f1AH

(d, uA) = d⊕ uA
(71)

P (U1) : P (UD = 1) = 0.75, P (UA = 1) = 0.5 (72)

Further suppose that the lists of allowed interventions are

IL ={∅, (E ← 1), (S ← 1), (E ← e, S ← s),

(A← a), (E ← 1, A← a),

(S ← 1, A← a), (E ← e, S ← s,A← a)},
(73)

and

I(1)H = {∅, (D ← d), (AH ← a), (D ← d,AH ← a)},
(74)

for all settings of e, s, a, d. The partial ordering of these
interventions are in the listed order.

One can verify that (M(1)
H , I(1)H ) is an exact τ -

transformation of (ML, IL). For ω, we can choose one
that maps any combination of E ← e, S ← s,A ← a to
D ← e ∨ s,AH ← a. Any case with E ← 1 or S ← 1 auto-
matically maps to D ← 1. We note that it is order preserving
(e.g., (E ← 0, S ← 0) ≤L (E ← 0, S ← 0, A ← 0) and

29



(D ← 0) ≤H (D ← 0, AH ← 0)), and one can verify that
Eq. 61 holds. For example,

P (τ(E = 1, S = 0)) = 0.75 = P (D = 1) (75)

and

P (τ(AE=1,S=0) = 1) = 0.5 = P (AH[D=1] = 1). (76)

One notable property that allows this to occur is that E ← 0
and S ← 0 are not valid interventions according to IL, since
the corresponding intervention mapped by ω is ambiguous
as discussed earlier in Ex. 11.

Now consider an alternative model M(2)
H , described as

follows:

U2 = {UD, UA} (77)
VH = {D,AH} (78)

F2 =

{
D ← f2D(a, uE) = uD
AH ← f2AH

(uA) = uA
(79)

P (U2) : P (UD = 1) = 0.75, P (UA = 1) = 0.5. (80)

It turns out that, if I(2)H = I(1)H , then (M(2)
H , I(2)H ) is an

exact τ -transformation of (ML, IL) for the same choice of
τ , even though inM(2)

H , the causal relationship between D
andAH no longer exists. In fact, consider another case where
IL = I(2)H = {∅}, that is, only the empty intervention is
allowed on either level, and ω(∅) = ∅. Perhaps surprisingly,
in this case, (M(2)

H , I(2)H ) is an exact τ -transformation of
(ML, IL) for several other counterintuitive choices of τ as
well. For instance, we can choose (D,AH) ← τ(e, s, a) =
(¬e ∨ a, s), which does not even map A to AH . We can even
choose one that is not consistent across variables, for exam-
ple τ(e, s, a) can map (0, 1, 0), (0, 0, 1), (1, 0, 1) to (1, 0);
(0, 0, 0), (0, 1, 1), (1, 1, 0) to (1, 1); (1, 1, 1) to (0, 0); and
(1, 0, 0) to (0, 1). One can verify that, in both cases, this
still results in an exact τ -transformation. Furthermore, one
can imagine changing the names of the variables to describe
something arbitrarily different. In fact, it seems thatM(2)

H
andML are completely unrelated. ■

The heart of the issue raised in the previous example is
that in cases where several choices of vL have the same
probability, one can still obtain a valid abstraction without
violating Eq. 61 by rearranging values mapped by τ that
have the same probability, even if the resulting rearrange-
ment has no causal interpretation. Further when the allowed
interventions are sparse, Eq. 61 is required to hold on fewer
distributions, resulting in a weaker connection between the
high and low-level models. In these cases, the definition of ex-
act τ -transformations becomes weak and can often no longer
be used to define abstractions in any intuitive sense.

Building on the work of Rubenstein et al. (2017), Beckers
and Halpern (2019) introduced several refined definitions that
resolved these issues, including the notion of τ -abstractions.
We rewrite the definitions as shown below.
Definition 14 ((Beckers and Halpern 2019, Def. 3.12)).
Some relevant notation is defined as follows:

• Given a set of variables V, X ⊆ V, and x ∈ DX, let
Rst(V,x) = {v ∈ DV : v is consistent with x}.

• Given variables VL and VH , mapping τ : DVL
→ DVH

,
and value set T ⊆ DVL

, denote τ(T) = {τ(vL) : vL ∈
T}.

• Given allowed interventions IL and IH over VL and VH

respectively, define ωτ : IL → IH such that ωτ (XL ←
xL) = XH ← xH , where τ(Rst(VL,xL)) =
Rst(VH ,xH).

Definition 15 (τ -Abstraction (Beckers and Halpern 2019,
Def. 3.13)). LetML = ⟨UL,VL,FL, P (UL)⟩ andMH =
⟨UH ,VH ,FH , P (UH)⟩ be two SCMs. Let IL and IH
be the sets of allowed interventions respectively. Given
τ : DVL

→ DVH
, we say that (MH , IH) is a τ -abstraction

of (ML, IL) if:

1. τ is surjective;
2. There exists surjective τU : DUL

→ DUH
that is compat-

ible with τ , i.e.

τ(ML[XL←xL](uL)) =MH[ωτ (XL←xL)](τU(uL)),
(59)

for all uL ∈ DUL
and all (XL ← xL) ∈ IL;

3. IH = ωτ (IL).
■

Definition 16 (Strong τ -Abstraction (Beckers and Halpern
2019, Def. 3.15)). We say thatMH is a strong τ -abstraction
of ML if (MH , IH) is a τ -abstraction of (ML, IL) and
IH = I∗H . ■

We discuss each point of Def. 15 in detail:
1. The surjectivity of τ does not add any mathematical bene-

fits but is required as a property because VH is expected
to be less “complex” than VL ifMH is to be called an
abstraction ofML.

2. The addition of τU is the major constraint added to τ -
abstractions when compared to exact transformations. By
establishing a connection between the lower and higher
level exogenous variables, τU ensures that the distribu-
tions of VH meaningfully correspond to those of VL.
This, in fact, fixes the issue described earlier in Ex. 12,
since even if Eq. 61 holds, it is not necessarily the case
that Eq. 59 will hold unless the values of UL that are used
to compute the l.h.s. of Eq. 61 match those of τU(UL)
that are used to compute the r.h.s. This point is illustrated
in Ex. 13 below.

3. With IL and ωτ fixed, IH should be fixed to ωτ (IH) to
remain consistent.

Def. 16 further fixes the issue of IL containing too few
interventions. When IH is maximal, then every submodel
MH[xH ] has a corresponding submodelML[xL] such that
ωτ (XL ← xL) = XH ← xH , as described in Eq. 59.
Example 13 (Example 12 continued). Consider the high
level models M(1)

H and M(2)
H from Ex. 12. Using the def-

inition of τ(e, s, a) = (e ∨ s, a), ωτ is forced to take the
mapping as specified earlier where

E ← e, S ← s,A← a (81)
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maps to
D ← e ∨ s,AH ← a. (82)

Note that in this case, (M(1)
H , I(1)H ) is still a τ -abstraction of

(ML, IL). Specifically, choose τU such that

(UD, UA)← τU(uE , uS , uA) = (uE ∨ uS , uA). (83)

One can verify, for example, that

τ(ML[E=e,S=s](uL)) =M(1)
H[D=e∨s](τU(uL)) (84)

for all values of e, s, and uL, aligning with Eq. 59.
On the other hand, (M(2)

H , I(2)H ) is not a τ -abstraction of
(ML, IL). For example, Eq. 59 states that

τ(ML[E=0,S=0](uL)) =M(2)
H[D=0](τU(uL)) (85)

and

τ(ML[E=1,S=0](uL)) =M(2)
H[D=1](τU(uL)). (86)

However, note that

τ(AE=0,S=0(uA)) ̸= τ(AE=1,S=0(uA)). (87)

For example, when E = 0, S = 0, UA = 0, then fLA will
assign A = 0, but when E = 1, S = 0, UA = 0, fLA will
assign A = 1. On the other hand,

A
(2)
H[D=0](τU(uA)) = A

(2)
H[D=1](τU(uA)) (88)

for any choice of τU because f2AH
does not take D as an

input. This contradicts the equalities enforced by Eqs. 85 and
86.

■

The definitions introduced so far are effective at describing
one SCM as an abstraction of another. For example, if two
SCMsMH andML are provided, as well as the function
τ , Def. 15 can be used to decide whetherMH is indeed an
abstraction ofML. However, this may not be particularly
useful in cases where the higher level model MH is not
known in advance, and one would like to find or learn such an
abstraction. Beckers and Halpern (2019) makes an important
step in the direction of applying such works by defining a
more concrete class of abstractions that can be obtained by
construction.
Definition 17 (Constructive τ -Abstraction (Beckers and
Halpern 2019, Def. 3.19)). MH is a constructive τ -
abstraction ofML ifMH is a strong τ -abstraction ofML,
and there exists a partition of VL, C = {C1,C2, . . . ,Cn+1}
(where n = |VH |) with nonempty C1 to Cn, such that τ
can be decomposed as τ = (τC1

, τC2
, . . . , τCn

), where each
τCi

: DCi
→ DVH,i

maps the ith partition to the ith variable
of VH . ■

In this definition, variables of VL are specifically parti-
tioned into clusters C1, . . . ,Cn+1, and τ is defined such that
each cluster Ci maps to a high level variable Vi ∈ VH . The
definition of τ and corresponding high level space VH are
concretely defined in this definition. We leverage a similar
concept in this paper, allowing the higher level variables VH

(and correspondingly, τ ), to be defined by construction based
on predetermined clusters of lower level variables.

B.1 Comparisons with Sec. 2
The approach used in this work leverages similar ideas to
constructive τ -abstractions (Def. 17) for the purpose of ob-
taining the high level modelMH constructively. Notably, the
intervariable clusters in Def. 5 partition the variable space
in the same way, and the corresponding choice of τ from
Def. 6 is defined around these clusters, by utilizing a differ-
ent subfunction τCi for each intervariable cluster Ci, similar
to Def. 17. For these reasons, any choice of τ that follows
Def. 6 is called a constructive abstraction function.

Still, the major difference is that Def. 17 focuses on the
relationship between the full modelsML andMH , while
Def. 6 only defines the mapping τ that connects the vari-
able spaces VL and VH . That is, Def. 6 by itself makes no
claims about how other aspects of ML (such as the func-
tions FL or exogenous noise P (UL)) relate toMH , other
than the variables VL and VH . This is a new approach to
abstraction work. Note that exact transformations (Def. 20)
and τ -abstractions (Def. 15) place no requirements on the
definition of τ , and Def. 17 only requires that τ can be decom-
posed relative to a partition. Indeed, placing requirements on
τ reduces its generality, but ensuring that τ follows the form
illustrated in Def. 6 has several advantages:

1. [Query-Specific Abstractions] The primary purpose of
Def. 6 is to introduced a relaxed notion of abstractions that
are defined on specific distributions of the PCH. As op-
posed to exact transformations and τ -abstractions (includ-
ing constructive ones), which focus on the entire SCMs
ML andMH , the concept of Q-τ consistency (Def. 7)
allows one to define “partial” abstractions. For instance, a
choice ofMH can be considered an abstraction ofML

forQ1 but notQ2 ifMH isQ1-τ consistent withML but
not Q2-τ consistent. This subtlety is lost in τ -abstractions
for example, where any mismatch of Eq. 59 disqualifies
MH from being considered an abstraction ofML. See
Example 14 below for a more concrete explanation on
this distinction. Indeed, when MH is L3-τ consistent
with ML, that is, MH is Q-τ consistent with ML on
every possible counterfactual query, then it turns out that
MH behaves like a constructive-τ abstraction of ML

(see Prop. 1).17

Defining abstractions on the level of individual queries
enables a more practical approach to learning abstractions.
The true modelML is rarely available in practice, and
instead, one is often given data fromML from its induced
distributions (e.g., the observational distribution P (VL)).
As discussed in Sec. 3, one would ideally be able to con-
struct a high-level modelMH that is Q-τ consistent with
the available distributions. Such a model may not be Q-τ
consistent withML on choices of Q that were not pro-
vided in the data, but through Alg. 2, one can determine
precisely which choices of Q do indeed match across ab-
stractions.MH can be considered an abstraction ofML

for those cases.
17Note that all τ -abstractions are exact τ -transformations, a result

from Beckers and Halpern (2019). However, exact transformations
are not necessarily L3-τ consistent because Eq. 61 is focused on
L2 and is oblivious to the counterfactual level.
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2. [Natural Interventional Mapping] As opposed to ex-
act transformations and τ -abstractions, the concept of
a function ω that maps between intervention spaces IL
and IH is no longer required since the corresponding
high-level intervention of a low-level one is straightfor-
ward. Specifically, the intervention XL ← xL maps to
τ(XL)← τ(xL) (see Lem. 3). Additionally, the concept
of “allowed interventions” is no longer needed. One can
simply set IH as the set of all high level interventions I∗H ,
and choose IL as the set of corresponding interventions
that map to I∗H (interventions of unions of clusters, as
shown in Lem. 4). For these reasons, the presentation in
Sec. 2 does not include any references of IL, IH or ω,
leaving the focus of the discussion on the abstraction of
the variables VL.

3. [True Constructiveness] Despite the progress that con-
structive τ -abstractions (Def. 17) make in the direction
of constructively buildingMH fromML, the definition
alone does not accomplish this task. By defining τ as a
mapping across clusters of both variables and values, one
can leverage Alg. 1 from this paper to obtain the high
level modelMH when given the low levelML. When
ML is not provided, and data fromML is provided in-
stead, one can use Alg. 2 to obtain a modelMH which
is still an abstraction ofML on identifiable queries. This
approach is implementable in practice leveraging neural
optimization approaches, and the experiments provided
in Sec. 5 demonstrate their applicability.

4. [Intuitive Abstractions] Abstractions that are con-
structed with a choice of τ that does not follow Def. 6 can
be quite esoteric (see Ex. 20 in App. E). The concept of
clustering is intuitive, and the relationship between VH

and VL when τ is a constructive abstraction function is
straightforward and interpretable. Intervariable clusters
can be determined based on the needs of the task or con-
structed algorithmically via Alg. 3 (in App. D.1). These
clusters also have a natural connection with cluster causal
diagrams (Anand et al. 2023), as illustrated in Sec. 3. In-
travariable clusters are strongly tied to invariances in the
data (two low-level values that are clustered together will
map to the same high-level value), leading to a strong
connection with representation learning (see Sec. 4 and
App. D.3).

Consider the following example comparing constructive
τ -abstractions to the concept of Q-τ consistency.
Example 14 (Example 12 continued). Recall from Example
12 that the SCM M(1)

H as described by Eqs. 69 to 72 is a
τ -abstraction (and therefore also an exact τ -transformation)
ofML described by Eqs. 64 to 67.

It turns out that this choice of τ , defined such that

(D,AH)← τ(e, s, a) = (e ∨ s, a), (89)

is actually a constructive abstraction function with the inter-
variable clusters

C = {C1 = {E,S},C2 = {A}} (90)

and intravariable clusters

D = {DC1
,DC2

}, (91)

where

DC1
=


d0 = {(E = 0, S = 0)},
d1 = {(E = 0, S = 1), (E = 1, S = 0),

(E = 1, S = 1)},
(92)

and DC2 retains the same values of DA.
It is then easy to verify thatM(1)

H is also L3-τ consistent
withML. For example, PML(AE=0,S=0 = 1 | A = 1, E =
0, S = 1) = 0, which is the counterfactual probability that
the alarm would ring had neither earthquake nor fire occurred,
given the reality that the alarm indeed rang when there was
a fire but no earthquake. It is also true that the equivalent
query mapped across τ (from Def. 7) is consistent, that is,
PM

(1)
H (AH[D=0] = 1 | A = 1, D = 1) = 0. This L3-τ

consistency is a consequence of Prop. 1.
Now consider another high level modelM(3)

H also defined
over VH from the same τ .

U3 = {UD, UA0, UA1} (93)
VH = {D,AH} (94)

F3 =


f3D(uE) = uD

f3AH
(d, uA0, uA1) =

{
uA0 d = 0

uA1 d = 1

(95)

P (U3) : P (UD = 3) = 0.75, (96)
P (UA0 = 1) = P (UA1 = 1) = 0.5 (97)

Note that PM
(3)
H (AH[D=0] = 1 | A = 1, D = 1) =

P (UA0 = 1) = 0.5, which is inconsistent with the result
from ML. Hence, M(3)

H is not L3-τ consistent with ML,
nor is it a τ -abstraction. Still, careful analysis ofM(3)

H re-
veals that it is still L2-τ consistent withML. For example,
PM

(3)
H (AH[D=1] = 1) = 0.5 = PML(AE=1,S=0 = 1).

Therefore,M(3)
H may still be a valid abstraction ofML if

used to infer layer 2 or interventional quantities. This high-
lights the limitations of a definition of abstractions that works
on the level of the SCM, such as τ -abstractions. If the user
of the model is only interested in interventional quantities, it
may be premature to discountM(3)

H as an invalid abstraction.
■

B.2 Learning Abstraction Functions
The previous section discussed the benefits of defining the
abstraction function τ to be a constructive abstraction func-
tion from Def. 6, with many of the reasons leading to the
ability to learn the higher-level model MH . Nonetheless,
there are works that solve the inversion version of this prob-
lem, namely, where information aboutMH is given but the
function τ is unknown.

For example, Zennaro et al. (2023) solves the problem
where, given both low and high-level modelsML andMH ,
as well as intervariable clusters C, the goal is to learn subfunc-
tions τ̂Ci

for each Ci ∈ C that satisfies desired properties
of abstractions. Notably, the key properties required in this
case are the commutativity of interventions, as illustrated in
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Fig. 14, as well as surjectivity of the functions. While a blind
search over possible choices of τ is intractable, the paper
cleverly models the commutativity property as a continuous
error term that decreases as commutativity is closer to be-
ing achieved. They further model τ̂ as a neural network and
train it to minimize the error term using gradient descent,
while regularizing the objective to enforce surjectivity. This
approach allows for a more robust solution to the issue of
intractability of specifying intravariable clusters, as discussed
in Sec. 4, albeit with the additional requirement that data is
available from the high-level modelMH .

More recently, Felekis et al. (2024) solved a similar prob-
lem with the requirement of having the full specification of
ML and MH relaxed. The proposed approach leverages
principles of optimal transport to acquire the abstraction map
τ̂ using only interventional data from the two models. Since
ML andMH are not provided, the optimization procedure
instead enforces do-calculus constraints. In this setting, it is
desirable to provide as much expressiveness as possible in
the modeling of τ̂ (e.g., with universal approximators such
as neural networks), and the optimization may output a re-
sult for τ̂ that is not necessarily a constructive abstraction
function.

C Experimental Details
This section provides details about our experimental setup
and models. Our pipeline is primarily built with PyTorch
(Paszke et al. 2017), and training is facilitated using PyTorch
Lightning (Falcon and Cho 2020).

C.1 Nutrition Experimental Setup
The nutrition experiment in Sec. 5.1 is a toy study of var-
ious individuals and their diets, performed over variables
VL = {R,D,C, F, P,B}, where R is restaurant attended,
D is dish ordered at that restaurant, C is carbohydrates of
the dish in grams, F is fat of the dish in grams, P is pro-
tein of the dish in grams, and B is the BMI of the indi-
vidual. R and D have domains of size 32, indicating 32
different options of restaurant and dishes. C, F , P , and
B are real valued numbers. The data generating model
ML = ⟨UL,VL,FL, P (UL)⟩ is described below.

UL = {UR, UD, URB , UN1, UN2, UN3, UB}
VL = {R,D,C, F, P,B}
FL = {

fLR(uR, uRB) = (uR + 16 · uRB)%32

fLD(r, uD) = (r + uD)%32

fLC (d, uN1, uN2, uN3) = 216 · uN1[d%3]

·
(
0.25

(⌊
f

16

⌋
⊕ uN3

)
+ 1

)
+ 9 · uN2

fLP (d, uN1, uN2, uN3) = 216 · uN1[(d+ 1)%3]

·
(
0.25

(⌊
f

16

⌋
⊕ uN3

)
+ 1

)
+ 9 · uN2

fLF (d, uN1, uN2, uN3) = 96 · uN1[(d+ 2)%3]

·
(
0.25

(⌊
f

16

⌋
⊕ uN3

)
+ 1

)
+ 4 · uN2

fLB(c, f, p, uB , uRB) =((
c

9
+
f

4
+
p

9
+ 3 · uRB

)
− 30

)
· (−1)uB + 25

P (UL) =



P (UR = uR)

=


3
64 uR ∈ {0, 1, . . . , 15}
1
64 uR ∈ {16, 17, . . . , 31}
0 otherwise

P (UD = uD)

=

{
1
7 uF ∈ {−3,−2,−1, 0, 1, 2, 3}
0 otherwise

URB ∼ Bernoulli(0.25)

UN1 ∼ Dirichlet(4, 1, 1)

UN2 ∼ Unif(0, 1)

UN3 ∼ Bernoulli(0.1)

UB ∼ Bernoulli(0.1)

where % indicates the “modulo” operator, ⊕ is the binary
XOR operator, and uN1[i] denotes the ith index of uN1,
which is a 3-dimensional variable. In the experiments, R
and D are formatted as one-hot vectors.

For the abstraction ofML, we choose intervariable clus-
ters C = {DH = {D}, Z = {C,F, P}, BH = {B}},
where R is abstracted away, D and B are put into their own
clusters, and C, F , and P are clustered into a new variable Z,
called “calories”. Intravariable clusters D are chosen such that
the values of each intervariable cluster are divided into two
sets (i.e. DH , Z, BH are all binary variables). Specifically,

τDH
(d) =

{
0 d ∈ {0, 1, . . . , 15}
1 d ∈ {16, 17, . . . , 31}

τZ(c, f, p) = 1{4c+ 9f + 4p ≥ 1080}
τBH

(b) = 1{b ≥ 25}
For example,

τ(R = 7, D = 24, C = 80, F = 70, P = 40, B = 32)

= (DH = 1, Z = 1, BH = 1).

The high level variables VH = τ(VL) are defined to be
{DH , Z,BH}.

The causal diagram G over VL and the corresponding C-
DAG GC over VH are shown in Fig. 5. The query of interest
is Q = P (BF=f ≥ 25), where f is any arbitrary unhealthy
food option f ∈ {16, 17, . . . , 31}. The query can be inter-
preted as the probability of someone being overweight if they
are forced (intervened) to eat unhealthy food. The correspond-
ing query on the higher level is τ(Q) = P (BH[DH=1] = 1),
computed from Eq. 10 in Def. 7. The task is to identify and
estimate the query Q given observational data P (VL) and
causal diagram G. We test three approaches:
1. The first approach is to directly identify and estimate Q

from PML(VL) and G. The NeuralID algorithm (Xia,
Pan, and Bareinboim 2023, Alg. 1) is used on these
inputs. In this approach, the G-NCM M̂ is fitted over
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the variables VL and graph G and is trained on the
data from PML(VL). It is optimized for the identifica-
tion/estimation tasks, and Q is directly queried from M̂ .

2. The second approach is to identical to the first, except
values of VL (specifically C, F , P , and B) are all nor-
malized between -1 and 1. The query is reformulated to
Q = P (BD=d ≥ 0), and the NCM M̂ is modified to use
these normalized values18.

3. The third approach is the abstraction approach, which
instead identifies and estimates τ(Q) from τ(PML(VL))
and GC, running Alg. 2 on these inputs. That is, the GC-
NCM M̂ is fitted over variables VH and graph GC and is
trained on the data of PML(VL) passed through τ . Note
that this approach already requires fewer assumptions by
using the C-DAG GC instead of the full causal diagram
G. The end result should be theoretically equivalent to
identifying and estimating Q due to Corol. 1.

The experimental results are shown in Fig. 10, where the
first approach is shown in red, the second in yellow, and the
third in blue.

C.2 Nutrition Models and Hyperparameters
All three models used in the nutrition experiment are GAN-
NCMs from Xia, Pan, and Bareinboim (2023), which lever-
age generative adversarial networks (GAN) (Goodfellow et al.
2014). The GAN-NCMs for the first two approaches with-
out abstractions are SCMs M̂ = ⟨Û,VL, F̂ , P (Û)⟩ fitted
to the graph G (Fig. 5 (left)). Each function f̂V ∈ F̂ is a
feedforward neural network with 3 hidden layers of width
32, with layer normalization applied (Ba, Kiros, and Hinton
2016). Each exogenous variable Û ∈ Û is a 2-dimensional
vector, with each dimension sampled independently from a
uniform distribution between -1 and 1. The discriminator is
a feedforward neural network with 3 hidden layers of width
64. The GAN-NCM for the third approach with abstractions
has the exact same parameter settings but is modeled over
VH instead. Consequently, the NCM for the third approach
has fewer parameters since it only requires three functions
for VH , compared to the six functions for VL.

The GAN-NCMs are trained in the style of Wasserstein
GANs (Arjovsky, Chintala, and Bottou 2017), where the
objective is to minimize the Earth-Mover distance via the
Kantorovich-Rubenstein duality (Villani 2009):

min
G

max
D∈DD

Ex∼Pr
[D(x)]− Ex̃∼Pg

[D(x̃)], (98)

where G is a generating model (e.g. the NCM M̂ ), D is a
discriminatory model, also called a critic (not to be confused
with the variable D ∈ VL), DD is the set of 1-Lipshitz
functions, Pr is a real distribution (i.e. fromML), and Pg is
the distribution induced by G.

18In fact, this second approach can also be considered abstracting
the space of VL. Specifically, the intervariable and intravariable
clusters are all singleton clusters, but the values of VH are renamed
such that optimization is easier (similar to the ideas discussed in
Sec. 4).

For identification experiments, models were trained for
1000 epochs on datasets with n = 104 samples. 10 trials
were performed with each approach, with 4 reruns for each
trial for hypothesis testing purposes. In a single run, two
parameterizations of the NCM are initialized with one aiming
to minimize the query and one aiming to maximize it. In each
iteration, a batch of real data is provided, and a batch of
fake data is generated by the NCM. Given these two batches,
the discriminator is trained to minimize the loss following
Eq. 98:

LD = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)],

where Pg and Pr refer to the fake and real datasets respec-
tively. In words, the loss is computed by taking the expected
score of the critic on fake samples subtracted by the expected
score of the critic on real samples, indicating better perfor-
mance if the critic gives higher scores to real samples. After
each training iteration, the gradients of the discriminator D
are clamped between [−0.01, 0.01] to enforce the Lipschitz
constraint.

Following an iteration of the discriminator, another batch
of fake data is sampled from the generator (NCM M̂ ), and
the weights of the generator are updated with the loss

LG = −Ex̃∼Pg
[D(x̃)] + λLQ. (99)

The first term is the expected score of the critic on the fake
samples, which should be maximized by the generator to
create as convincing samples as possible. The second term is
a query loss, intended to push the model to simultaneously
maximize or minimize the query. In practice, this is done
by calculating the distance between the intended value of
the query and query samples from the generator using some
distance function. For example, for the GAN-NCM in the
first non-abstraction approach, LQ is defined as:

LQ(b̂) = ±

 1

|b̂|

∑
b̂∈b̂

b̂− 25

 ,

where b̂ is a batch of samples from P M̂ (BD=d) computed
from Xia, Pan, and Bareinboim (2023, Alg. 2). If this quantity,
which is simply a mean over the batch samples, is maximized
(resp. minimized), then that would also maximize (resp. min-
imize) the query Q = P M̂ (BD=d ≥ 25). For the second
approach with normalized data, the 25 is not subtracted as
it is already centered around 0. For the third approach work-
ing in the abstracted space, the log loss is calculated instead,
since values of BH are binary. λ is a hyperparameter to indi-
cate the strength of the query loss term; in our experiments
it was set to 10−4 and decreased logarithmically to 10−8 by
the end of training.

For the visualization of the results in Fig. 10a, the query is
estimated from both the model which optimized to maximize
it (denote as Qmax) and the model which optimized to mini-
mize it (Qmin). Since the query is identifiable (see Sec. C.5),
we expect Qmax − Qmin = 0 under perfect optimization.
However, as optimization is not perfect, a hypothesis testing
procedure must be used to check if Qmax − Qmin < ε for
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some threshold ε. As suggested by Xia, Pan, and Bareinboim
(2023), we rerun each trial 4 times and take the upper 95%
confidence bound of the mean of Qmax −Qmin from the 4
reruns. Then the means of these upper confidence bounds
across 10 trials are plotted in Fig. 10a with 95% confidence
intervals.

For estimation experiments, models were trained for 200
epochs on datasets. 10 trials were performed for each ap-
proach and each setting of sample size varying logarithmi-
cally from n = 103 to 105 samples. The training procedure
is performed identically to the identification experiments, ex-
cept only one parameterization is trained, and the query loss
in Eq. 99 is not added. After training, queries are estimated
from each of the models using Xia, Pan, and Bareinboim
(2023, Eq. 4) with 105 Monte Carlo samples, and they are
compared with the ground truth value calculated fromML

as described in App. C.1. The mean absolute error (MAE)
is computed between the two values and plotted in Fig. 10b
with 95% confidence intervals across the 10 trials for each of
the sample size settings.

All NCMs are trained with a learning rate of 10−4, and
discriminators are trained with a learning rate of 2 × 10−4.
Models are optimized with the RMSProp optimizer (Hinton,
Srivastava, and Swersky 2018), recommended by the WGAN
paper. Estimation experiments are performed with a batch
size of 128, and identification experiments are performed
with a batch size of 1000 (larger size for more representative
sample is important in identification). All feedforward net-
works are initialized with Glorot initialization (Glorot and
Bengio 2010). Hyperparameter tuning was done by hand with
the suggestions from referenced sources. Similar hyperpa-
rameters did not have noticeable effects on performance, so
more rigorous hyperparameter tuning was not conducted.

C.3 Colored MNIST Experimental Setup
The Colored MNIST experiment in Sec. 5.2 is performed
on a modified version of the MNIST dataset of handwritten
digits (Deng 2012). The setting is modeled over variables
VL consisting of a digit label D, a color label C, and the
pixels consisting of a 3× 32× 32 MNIST image with color
channels. Both D and C take integer values from 0 to 9,
formatted as one-hot vectors in the data. However, the mech-
anisms for which the image is generated is unknown, since
we do not know all of the details of how humans handwrite
digits. Instead, we directly work on the high level space of
variables VH = {D,C, I}, obtained by clustering all of the
pixels into one variable, called image I . Samples from the
observational distribution P (VL) are generated using the
following approach:

1. A sample is drawn from exogenous variable UCD, which
takes values from 0-9, indicating what the intended digit
is.

2. With probability 0.85, set C ← UCD. Otherwise, choose
uniformly at random from the 10 values. Similarly, but
independently from C, set D ← UCD with probability
0.85, otherwise choose uniformly at random.

3. GivenC andD, sample an image from the MNIST dataset

with label D, then color the digit with the color corre-
sponding to C on the gradient in Fig. 11b.

The causal diagram G over VL is unknown because it is un-
clear how individual pixels are related. However, the C-DAG
GC over VH is shown in Fig. 11a, which is compatible with
the data generating process mentioned above. Specifically,
image I is caused by color C and digit D, which are highly
correlated through unobserved confounding.

The task is to train a model M̂H over variables VH con-
strained by the graph GC such that M̂H induces the distribu-
tion τ(PML(VL)) (i.e. it is perfectly trained to match the
observational data sampled from PML(VL)), and then use it
to produce realistic digit samples from three different causal
queries:

1. P (I | D = 0): the distribution of images conditional on
digit = 0. In the dataset, the digit 0 is highly correlated
with the color red, so samples from this distribution should
be images of handwritten 0s, most of which are red.

2. P (ID=0): the distribution of images when intervened on
digit = 0. When an intervention is performed, spurious
correlations are ignored. The color is sampled like normal,
but then the digit is forced to become 0 regardless of the
color. Hence, samples from this distribution should be im-
ages of handwritten 0s but with colors evenly distributed.

3. P (ID=0 | D = 5): the counterfactual distribution of im-
ages of what they would have been had digit been forced
to be 0 given that the digit was originally 5. When con-
ditioning on D = 5, the samples are filtered such that
only ones with D = 5 remain, but then these samples are
intervened and forced to take the digit 0 instead. Conse-
quently, samples from this distribution should be images
of handwritten 0s that retain the color of the 5s, which are
typically cyan.

Three different approaches are compared:

1. The first is a basic conditional GAN that learns the cor-
relation between digit D and image I . The conditional
GAN ignores the information in GC and therefore is naïve
to the causal invariances in the data.

2. The second is a GAN-NCM (Xia, Pan, and Bareinboim
2023) that is constrained by GC and is directly fitted on
the data τ(PML(VL)). In this case τ simply clusters the
pixels together into the image I , but the mapping between
domains of VL and VH is the identity mapping. In other
words, the intravariable clusters D can be thought of as
the singleton partition of all domains, and as a result the
space of VH is identical to VL.

3. The third is a GAN version of the RNCM from Sec. 4,
called GAN-RNCM. The GAN-RNCM is also con-
strained by GC but learns its own abstraction function
τ̂ . Specifically, in a typical instantiation of the GC-RNCM
in this case, we would have τ̂ = (τ̂C , τ̂D, τ̂I), where each
subfunction learns a mapping to a representation space
(akin to learning intravariable clusters). For this experi-
ment, we only parameterized τ̂I , since C and D are low-
dimensional and are already easy to learn. τ̂I is trained to
map to a space that preserves bijectivity (as demanded by

35



Prop. 5) as well as maximizing information retained about
C and D. See the next subsection for specific details.

The results are illustrated in Fig. 5.2. The GAN-RNCM
clearly outperforms the other two approaches, and we even
observed a shorter runtime. Although the GAN-NCM is, in
theory, supposed to be able to capture the intended distri-
butions, we believe its failure is a result of the difficulty
of simultaneously optimizing two different tasks: (1) image
generation is already a challenging task with a lot of atten-
tion in the deep learning community, and (2) learning a joint
distribution with causal constraints is also challenging. The
GAN-RNCM breaks the problem into two parts. The repre-
sentation learning of τ̂ solves the problem of dealing with
high dimensional images, reducing the space to a much sim-
pler space in which the distribution with causal constraints
can be learned more easily.

C.4 Colored MNIST Models and
Hyperparameters

The GAN-NCM used in the Colored MNIST experiment
is different from the ones used in the Nutrition experiment
since it is fitted on a different graph, specifically GC from
Fig. 11a. Since the function for the image, f̂I , is responsible
for generating an entire image, we leverage the technology
of convolutional neural networks to produce higher quality
results. Specifically, we use the state-of-the-art research on
conditional image generation implemented by Brock, Don-
ahue, and Simonyan (2019), called BigGAN. f̂I is designed
by first mapping the inputs, color C and digit D, through
a feedforward neural network to an internal representation,
which is then piped into the 32×32 image-size architecture
with 64 feature maps implemented by the BigGAN authors.
The functions f̂C and f̂D are simply feedforward neural net-
works. In this model, all feedforward nets have 3 hidden
layers, with widths that depend on the size of the inputs and
outputs using the formula 2× i× o, where i is the total di-
mensionality of all endogenous and exogenous inputs, and o
is the output dimensionality (number of channels for images).
Each exogenous variable Û ∈ Û is a δ-dimensional vector,
where δ is the sum of the dimensions of all variables in the
confounded clique represented by Û , and each dimension is
sampled independently from a uniform distribution between
-1 and 1. The discriminator first pipes image inputs through
a deconvolutional component like implemented in BigGAN,
before combining the internal representation with other vari-
ables to pipe through a feedforward neural network with 3
hidden layers of width 128. Layer normalization is applied
between layers of feedforward nets, and batch normalization
(Ioffe and Szegedy 2015) is applied between convolutional
layers.

The conditional GAN approach is implemented similarly,
but without f̂C . Training is done identically to the Wasser-
stein GAN approach in the Nutrition experiment (described
in App. C.2), but without the query loss in Eq. 99, as identifi-
cation is not performed.

The GAN-RNCM ⟨τ̂ , M̂⟩ is trained in a two part pro-
cedure, first training τ̂ and then training M̂ on the space

defined by τ̂ . Only the abstraction function for the image, τ̂I ,
is trained for this experiment. It is modeled in two parts: (1) a
convolutional neural network with three convolutional layers
(with 64, 128, and 256 feature maps respectively) mapping
the image to a 128-dimensional vector, and (2) a feedforward
neural network with 3 hidden layers of width 128 mapping
the convolutional output to a 64-dimensional representation
space.
τ̂I is trained for 500 epochs. In each epoch, a batch of the

colored MNIST digits is sampled and passed through τ̂ to
obtain a representation. Then, τ̂ is trained with the loss

LτG (̂iH , iL, cL, dL) =
∥∥∥τ−1(̂iH ; θτ−1)− iL

∥∥∥2 (100)

+ λgLg(g(̂iH ; θg), cL, dL), (101)

where îH is the 64-dimensional representation output from
τ̂H(iL); and iL, cL, dL are the original data points19. The
first term (Eq. 100) is a reconstruction loss that ensures that
Prop. 5 holds. τ−1 is another neural network (parameterized
by θτ−1) in the style of BigGAN that upscales the represen-
tation îH back to an image of size 3 × 32 × 32. The term
is simply the MSE of the reconstruction with the original
image, ensuring that both the encoder τ and decoder τ−1
are trained to be able to reproduce the input. Later, when
sampling images of I , τ−1 is also used to reconstruct image
samples. The second term (Eq. 101) is a classification loss
added to improve the learned representation to differentiate
between different values of c and d. g is feedforward neural
network parameterized by θg with 3 hidden layers of width
128, which outputs a prediction for c and d given the rep-
resentation îH . Any classification loss can be used for Lg,
and we choose binary cross-entropy loss since C and D are
one-hot vectors. λg is a regularization term which takes a
value of 0.1 in our experiments.

After training τ̂I , the NCM M̂ of the RNCM is trained
similarly to the other approaches, but it is instead trained on
top of τ̂(VL) instead of VL. That is, instead of outputting
an image from f̂I , it outputs a 64-dimensional real vector,
representing τ̂I(I). Hence, in the RNCM, f̂I is replaced with
a feedforward neural network with 3 hidden layers of width
2× i× o, as with the other functions.

For the training of τ̂I , as well as the training of all three
generative models, 105 samples are provided in the dataset
P (VL). All models are trained with a learning rate of 10−4,
and discriminators are trained with a learning rate of 2×10−4.
GAN models are optimized with the RMSProp optimizer,
and the training procedure for τ̂I is optimized with Adam
(Kingma and Ba 2015). All training is performed with a batch
size of 128. All feedforward networks are initialized with Glo-
rot initialization. Hyperparameter tuning was done by hand
with the suggestions from referenced sources. Similar hyper-
parameters did not have noticeable effects on performance,
so more rigorous hyperparameter tuning was not conducted.

Samples from the three competing approaches, as well
as the original data generating ground truth, are collected

19Although C and D are not part of the cluster with I , they can
still be used in the training process for τ̂I as long as they are not
used as inputs to τ̂I .
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from the three queries discussed in Sec. C.3 and compared in
Fig. 12. Queries are sampled via Xia, Pan, and Bareinboim
(2023, Alg. 1).

C.5 Proofs of Identifiability
In this section, we show proofs that the queries in the experi-
ments are identifiable, leveraging do-calculus (denote R1, R2,
and R3 as the three rules) and counterfactual axioms (Pearl
2000).
Proposition 6. P (BD=d = b) is identifiable from P (VL)
and G from Fig. 5 (left). ■

Proof.
P (BD=d = b)

=
∑
r

P (bd | rd)P (rd)

=
∑
r

P (b | r, d)P (rd) R2

=
∑
r

P (b | r, d)P (r) R3,

and the final result can be computed from observational
P (VH) as there are no more interventional terms.

Proposition 7. P (BH[DH=d]) is identifiable from P (VH)
and GC from Fig. 5 (right). ■

Proof.
P (BH[DH=d] = b)

=
∑
z

P (zd)P (bd | zd)

=
∑
z

P (z | d)P (bd | zd) R2

=
∑
z

P (z | d)P (bdz) R2

=
∑
z

P (z | d)P (bz) R3

=
∑
z

P (z | d)
∑
d′

P (bz | d′z)P (d′z)

=
∑
z

P (z | d)
∑
d′

P (b | d′, z)P (d′z) R2

=
∑
z

P (z | d)
∑
d′

P (b | d′, z)P (d′) R3,

and the final result can be computed from observational
P (VH) as there are no more interventional terms.

Proposition 8. P (I = i | D = d) is identifiable from
P (VH) and GC from Fig. 11a. ■

Proof. This result is trivial, as P (I = i | D = d) is an
observational quantity and can therefore be computed as

P (I = i | D = d)

=
P (i, d)

P (d)
=

∑
c′ P (i, c

′, d)∑
i′,c′ P (i

′, c′, d)
=

∑
c P (vH)∑
i,c P (vH)

.

Proposition 9. P (ID=d = i) is identifiable from P (VH)
and GC from Fig. 11a. ■

Proof.

P (ID=d = i)

=
∑
c

P (id | cd)P (cd)

=
∑
c

P (i | c, d)P (cd) R2

=
∑
c

P (i | c, d)P (c) R3,

and the final result can be computed from observational
P (VH) as there are no more interventional terms.

Proposition 10. P (ID=d | D = d′) is identifiable from
P (VH) and GC from Fig. 11a. ■

Proof.

P (ID=d = i | D = d′)

=
P (id, d

′)

P (d′)

=

∑
c P (id, d

′, c)

P (d′)

=

∑
c P (idc, d

′, c)

P (d′)
C1

=

∑
c P (idc)P (d

′, c)

P (d′)
C2

=

∑
c P (i | d, c)P (d′, c)

P (d′)
R2

=
∑
c

P (i | d, c)P (c | d′)

where “C1” refers to the counterfactual axiom of composition,
and “C2” refers to the C-factor decomposition of counterfac-
tual variables (Correa, Lee, and Bareinboim 2021). The final
result can be computed from observational P (VH) as there
are no more interventional terms.

C.6 Hardware
All models were trained on NVIDIA Tesla V100 GPUs pro-
vided by Amazon Web Services, totalling approximately
2000 GPU hours for the final results.

D Further Discussion
D.1 The Constitution Hierarchy and Learning

Intervariable Clusters
This section provides a detailed discussion on intervariable
clusters C, on the relationship of clusters at different levels
of granularity, and best practices on how to choose the right
level of granularity when several options are available.

On the intervariable level, one could cluster several lower
level variables together and call the cluster a variable itself.
The low-level variables do not cause the high level variable,
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but rather they constitute it (as discussed in Chalupka, Perona,
and Eberhardt (2015), and similar to discussions in probabilis-
tics relational models on part-whole relationships (Winston,
Chaffin, and Herrmann 1987)). In other words, they are two
interpretations of the same content. The difference is impor-
tant: the relationship is bidirectional, and one cannot directly
intervene on one without simultaneously intervening on the
other.

When comparing variables at different levels of granu-
larity, a hierarchy arises, which we call the constitutional
hierarchy. That is, any phenomenon can be viewed across
another dimension that determines the level of granularity
of interpreting the variables. This is illustrated in Fig. 15.
Variables can be organized by what constitutes what, and, in
a proper abstraction, causal properties should be preserved
across different levels of granularity. Generally speaking,
most studies focus on one specific level of abstraction, so the
task of choosing the most appropriate level of granularity can
be important. This is precisely the problem of choosing inter-
variable clusters, as the coarseness of the clusters induces a
natural interpretation of the variables.

If the data scientist finds themselves in a situation where
they have to construct the causal diagram themselves, or if a
provided causal diagram is not at the right level of abstraction,
then refining the abstraction level becomes a nontrivial task.
The decision of whether to cluster variables together depend
on various factors, which we list and elaborate in the sequel:

C1. Non-causal relationships should not be visible.
C2. The resulting clustering should be admissible.
C3. The queries of interest should be answerable.
C4. The queries of interest should be identifiable.
C5. The result should be as coarse as possible.

Each of these conditions can be formalized to enable a
systematic discussion on how to choose an appropriate inter-
variable clustering.
Condition C1. When considering models at extremely low
levels of abstraction, there may be too much detail to properly
label every relationship as a causal one.20 For example, like
in the top level of Fig. 15, at the atom or molecule level,
there are interactions between particles that are studied in
the physical sciences such as bonds. That is, two particles
may have linked behavior, but it is not accurate to call such a
relationship causal. As another example, suppose we consider
images at the pixel level. In many tasks, one may be interested
in the local dependences between pixels, and it may therefore
be reasonable to model pixels using an undirected model (e.g.,
like a Markov random field). Once again, the relationship
between the pixels may not necessarily be considered causal.

We note importantly that “non-causal” in this context does
not refer to spurious effects, nor does it mean anti-causal in

20We do not provide an exact definition of a causal relationship,
as this is a deeply philosophical topic that is out of the scope of this
work. Still, we acknowledge that there may be cases where two low-
level variables are be related in a way that is not well-defined with
respect to interventions in an SCM. We use the term “non-causal”
as a bucket term for all such cases and make no assumptions about
the natures of these relationships.

Figure 15: A visual example of the constitution hierarchy.
Green edges indicate causal relations, blue edges indicate
constitutional relations, and black edges are undefined, low-
level relationships. The same objects are shown at three levels
of granularity: molecules (top), parts (middle), and complete
objects (bottom). A causal relationship might indicate that a
car is the cause of Bob’s injury, but it would be inaccurate to
say that the molecules of a car “cause” the car. A particular
study should focus on the variables from one specific level
of granularity, and choosing the most appropriate one is the
goal of the problem of choosing intervariable clusters.

the sense that the direction of causality is reversed, as these
are still well-defined from a causal perspective. For example,
in a scenario modeled by Fig. 16, the relationship between X
and Y is not considered a non-causal relationship. Despite Y
not causingX , their relationship is still considered causal due
to the cause from X from Y . Further, although there is spu-
rious correlation through the unobserved confounding, this
is still considered a causal type of relationship since there is
some causal effect from the unobserved confounder to X and
Y . “Non-causal” relationships refer to relationships between
variables that cannot be defined in a causal manner. When
considering non-causal relationships, the SCM framework
is no longer compatible since it is not defined how to model
such relationships. Nonetheless, the framework presented in
this paper can still be used as long as C1 is satisfied.

The term “non-causal” is very broad and could encompass
many different types of relationships. Studying specific types
of non-causal relationships is out of the scope of this work,
so we will treat these relationships in the same way. For
every subset of variables (say Z ⊆ VL) related through some
non-causal relationship, we will assume that there is some
function fZ that takes as input variables from UL and VL

and maps it jointly to the space of Z. We note that this is a
general encoding of such relationships that makes minimal
assumptions. For example, perhaps the relationship between
three variables,X ,Z, and Y can be described using a Markov
random field like shown in Fig. 17, where X ⊥⊥ Y | Z. Our
assumption states that the behavior of these three variables
can be abstracted into one function f{X,Z,Y } which outputs
values of X , Z, and Y , therefore losing the independence
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information. (It is possible, however, that these could be
implicitly encoded through the intravariable clusters). These
non-causal relationships can be expressed graphically.

Definition 21 (Non-causal Graph). Let VL be a set of vari-
ables and G = ⟨VL,E⟩ be an undirected graph with nodes
representing VL. Then, an edge (V1, V2) is in E if and only
if there is some non-causal relationship between V1 and V2.
■

We will assume that, in settings which intervariable clus-
ters must be learned, we are given knowledge of the existence
of non-causal relationships through a non-causal graph of
the lowest level variables VL. This information could be
acquired simply as an assumption of the user, as they are typ-
ically only present at the lowest levels of abstraction (e.g. the
relationship between pixels in an image or between atoms of
an object). Under this assumption, distributions over VL can
be treated as if variables in the same connected component in
G share a common cause, and they can be factorized as such.

Condition C2. By definition of admissibility, two variables
should not be in the same intervariable cluster if doing so
forms a cycle in the order of the functions or graph. This
condition can be verified given causal diagram G of the low
level variables VL.

Condition C3. C3 and C4 depend on the user’s needs based
on the queries of interest, Q, in downstream tasks. The ideal
level of abstraction can be determined by the groupings of
variables in these queries. C3 essentially enforces that the
level of abstraction should be kept low enough to retain the
ability to differentiate the nuances between individual vari-
ables of interest in the queries. For example, if one would
like to study the causal effect of a drug X on recovery rate
Y , but Y was clustered with another variable Z representing
blood pressure, then it no longer becomes possible to answer
queries specifically about Y without including Z. This is
formally defined below.

Definition 22 (Cluster Answerability). A counterfactual
query Q = PML(Y1[x1],Y2[x2], . . . ) is answerable from
intervariable clusters C if and only if for all Yi (and Xi),
there exists Ci ⊆ C such that Yi =

⋃
C∈Ci

C. ■

In other words, all queries should be written in terms of
unions of clusters.

Condition C4. Even if answerability is not violated, clus-
tering variables together or projecting them out will always
result in a loss of information. Such a loss may affect the
identifiability of the queries. Ideally, one would not want to
drop information that would change the status of an already
identifiable query, and this is enforced by C4.

Condition C5. Finally, C5 is usually desirable following the
idea of Occam’s razor, i.e., all else being equal, simplicity
should be preferred. We define coarseness as follows.

Definition 23 (Coarseness). Let C1 and C2 be two inter-
variable clusterings of VL. C1 is said to be coarser than
C2 (equivalently, C2 is finer than C1) if and only if for ev-
ery C2 ∈ C2, either C2 ∩

⋃
C1∈C1

C1 = ∅, or there exists
C1 ∈ C1 such that C2 ⊆ C1.

X Y

Figure 16: Example of spurious relationships.

X Z Y

Figure 17: Example of non-causal graph.

With this definition, the goal is to find a maximally coarse
clustering C that satisfies conditions 1-4. That is, there should
not exist a coarser clustering C′ that also satisfies the con-
ditions, although the coarsest clustering is not necessarily
unique.

It turns out that the set of all possible maximally course
clusterings can be “bounded” in a sense using C1, C2, and
C3. The “minimally” coarse clustering can be described with
the following lemma.

Lemma 7. Let G be a non-causal graph over VL. Let Cmin

be the intervariable clustering of VL composed of the con-
nected components of G. Then, any clustering C′ violates
condition C1 if and only if it is not equal to or coarser than
Cmin. ■

Proof. We first note that Cmin does not violate condition
C1 because by construction, if there exists a noncausal edge
between V1 and V2 in G, then they must be in the same cluster.
Any coarser clustering has the same property.

If C′ is not equal to or coarser than Cmin, that means that
there exists C ∈ Cmin such that C ̸⊆ C′ for all C′ ∈ C′.
This implies that there exists V1, V2 ∈ C such that belong to
different clusters C′1 and C′2 in C′. However, since V1 and
V2 were in the same cluster in Cmin, there must exist some
non-causal path from V1 to V2 in G. This means that there is
a noncausal connection between clusters C′1 and C′2, so C′
violates condition C1.

Intuitively, the minimally coarse clustering must at least
cover the connected components of G to abstract away the
non-causal relations and satisfy condition C1. Additionally,
admissibility (C2) adds another constraint.

Lemma 8. Let C be a set of intervariable clusters that are
not admissible w.r.t. G. Let C∗ be the set of clusters that is
coarser than C such that C1 and C2 in C are merged in C∗
if and only if C1 and C2 are in a cycle in GC. Then, any set
of clusters that are coarser than C and are admissible w.r.t. G
are equal to or coarser than C∗ ■

Proof. First, we note that C∗ is admissible w.r.t. G by con-
struction, since all cycles have been merged. If C′ is a clus-
tering that is coarser than C but not C∗, then there must
exist C∗ ∈ C∗ such that C∗ ⊊ C′ for all C′ ∈ C′. Then,
there must exist V1, V2 ∈ C∗ such that V1 and V2 are in
different clusters in C1,C2 ∈ C′. However, this implies that
there is still a cycle between C1 and C2 in GC′ , breaking
admissibility.

39



A T

G

H1 H2

O1 O2

O3 O4

P1 P2

P3 P4

(a) The full set of variables without cluster-
ing. Not a valid choice because condition
C1 is violated (red noncausal relationships
between O and P variables.

A T

G

H1 H2 H3

I

(b) Graph with O1, O2, O3, O4

clustered into H3 and
P1, P2, P3, P4 clustered into
I . This cluster is the Cmin obtained
from Lem. 7 and is a valid cluster-
ing that satisfies C1-4.

A

G M

I

(c) Graph with H1, H2, H3

clustered into M . This clus-
ter is also valid and is coarser
than the graph to the left.

X

I

(d) Graph with A,G,M
clustered into X . This clus-
ter is no longer valid because
C3 is violated. The queries
are no longer answerable.

Figure 18: Graphs for Example 16. Blue outline illustrates changes in clustering between each graph.

On the other hand, the maximally coarse clustering is
related to the concept of maximally answerable clusters, de-
fined below.
Definition 24 (Maximally Answerable Clusters). Let Q be a
set of counterfactual queries over variables VL, and let VQ
be the set of all subsets of VL that are used in a term in Q
(i.e. for every counterfactual term Yx in any of the queries,
both Y and X should be included in VQ). Denote V∗Q as the
extension of VQ closed under intersection, that is, VQ ⊆ V∗Q,
and V1, V2 ∈ V∗Q ⇒ V1 ∩ V2 ∈ V∗Q. Then, an intervariable
clustering Cmax is called the maximally answerable cluster
w.r.t. Q if and only if Cmax is the set of atoms of V∗Q, or in
other words, Vi ∈ Cmax if and only if Vi ∈ V∗Q and there
exists no Vj ∈ V∗Q such that Vj ⊊ Vi. ■

The concept of maximally answerable clusters can be best
shown through an example.
Example 15. Suppose

VL = {A,B,C,D,E, F,G,H, I,X,Z}
and the queries of interest Q = {Q1, Q2, Q3} are as follows:

Q1 = P ({a, b, c, d, e}x)
Q2 = P ({c, d, e, f, g, h}x,z)
Q3 = P ({e, f, h, i, z}x).

We first dissect the terms in the queries, including the sub-
scripts, to obtain VQ. Doing so yields

VQ = {{A,B,C,D,E}, {C,D,E, F,G,H},
{E,F,H, I, Z}, {X}, {X,Z}}.

These sets are shown at the top of Fig. 19. Note that many
of the sets overlap. The set of nonoverlapping subregions
becomes the maximally answerable clusters, as shown at the
bottom of Fig. 19. In this case, this means

Cmax = {{A,B}, {C,D}, {E}, {F,H},
{G}, {I}, {X}, {Z}}.

Note that no set in Cmax overlaps with each other, but all sets
are subsets of some set in VQ. ■

It turns out that the set of maximally answerable clusters
is also the maximally coarse clustering that does not violate
condition C3, as shown below.
Lemma 9. Let Cmax be the intervariable clustering of VL

that is the maximally answerable cluster with respect to a set
of counterfactual queries Q. Then, any clustering C′ violates
condition C3 if and only if it is not equal to or finer than
Cmax. ■

Proof. We first note that Cmax does not violate condition C3,
since if there existed a query with a term set Z such that Z
is not a union of clusters of Cmax, then either there exists
Z ∈ Z such that Z is not in any set of Cmax, or Z ∈ C
for some C ∈ Cmax such that C ⊊ Z. However, the first
case is impossible since if Z ∈ Z, then Z must be added
to some set in VQ. The second case is not possible either
because then Z ∩C ̸= ∅, which means that the clusters of
Cmax could be divided further, contradicting its definition. If
Cmax does not violate condition C3, then no finer clustering
can violate it either because a union of clusters in Cmax can
always translate to a union of clusters in a finer clustering.

If C′ is not equal to or finer than Cmax, then there exists at
least one cluster C′ ∈ C′ such that C′ ⊊ C for all C ∈ Cmax.
This means that there exist V1, V2 ∈ C′ such that V1 and V2
are not in the same cluster in C′. This implies that there exists
at least one query such that one of its terms contains one of V1
or V2 but not the other, in which case, such a term cannot be
described as a union of clusters from C′, violating condition
C3.

Intuitively, we cannot simply cluster all variables together
because we may want to answer queries that require separate
consideration of different sets of variables. At best, we can
only cluster together terms that always appear together in
all queries. Additionally, we note that finding the maximally
answerable clusters can be done in polynomial time. One
simple approach is to add one set of VQ at a time, repeatedly
computing the intersection with the existing clusters. At any
point, there can be at most n = |VL| clusters.
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Figure 19: Top: A venn diagram of all of the variables and
what set of VQ to which they belong. Bottom: The collec-
tion of nonoverlapping intersections of all sets that form the
maximum answerable clusters.

With these points in mind, we provide Alg. 3 for learning
intervariable clusters. We note that Alg. 3 returns a maximally
course clustering satisfying all conditions.
Proposition 11. Alg. 3 returns a maximally course clustering
that satisfies C1-4, or returns FAIL if one does not exist. ■

Proof. We first note that if FAIL is returned, then there does
not exist a clustering that satisfies all four conditions. Notably,
if Cmax is not coarser than Cmin at the beginning, then FAIL
is returned, as a consequence of Lemmas 7, 8, and 9. FAIL
is also returned if Cmin does not satisfy identifiability of all
queries, since further clustering will only remove edges and
nodes and cannot make a non-ID query turn ID.

If C is returned at the end, then C must satisfy all four
conditions. It satisfies conditions C1 and C3 because it will
always be coarser than Cmin but finer than Cmax. It satisfies
conditions C2 and C4 because C is never updated unless the
“valid” subroutine returns True, which implies that C2 and
C4 hold.

Finally, C must be maximal. If a clustering violates C4,
then there is no coarser clustering that does not violate C4
since clustering only further reduces information. If a clus-
tering does not violate C2, and a coarser clustering exists
that also does not violate C2, then there must exist a way to
either merge pairs of clusters or remove variables (namely in
reverse topological order) such that each intermediate cluster-
ing also does not violate C2. Then, the loop ensures that if a
variable could be removed, or two clusters could be merged
without violating the conditions, then it will be done.

Finally, we note that Alg. 3 runs in polynomial time in
terms of n = |VL| and |Q|, as long as checking identifica-
tion takes polynomial time. Finding Cmin from Lem. 7 takes
polynomial time because finding connected components in
an undirected graph takes polynomial time. Checking admis-
sibility simply requires checking cycles, which can also be
done in polynomial time. Finding the maximally answerable
clusters can also be done in polynomial time, as discussed
earlier.

Consider the following example for intuition on choosing
the best set of clusters.
Example 16. Consider a setting of annotated image data
where

VL = {A, T,G,H1, H2, O1, O2, O3, O4, P1, P2, P3, P4},

Algorithm 3: Choosing intervariable clusters.
Input :Variables VL, causal diagram G, noncausal

diagram G, queries of interest Q
Output :Maximally coarse clustering C such that all

criteria are satisfied, or FAIL if none exist.

1 Function valid(C, G, Q):
2 if not admissible(C,G) then
3 return False // C2 violated

4 forQ ∈ Q do
5 GC ← CDAG(G,C) // from Def. 9
6 if not ID(Q,GC) then
7 return False // C4 violated

8 return True

9 Cmin ← minCluster(VL,G) // from Lem. 7
10 Cmin ← mergeCycles(Cmin,G) // from

Lem. 8
11 Cmax ← maxCluster(VL,Q) // from Lem.

9
12 if not Cmax.coarserThan(Cmin) then
13 return FAIL // either C1, C2, or C3

violated

14 if not valid(C,G,Q) then
15 return FAIL // C4 cannot be

satisfied

16 C← Cmin

17 while C keeps updating do
18 for V ∈VL do
19 if V ∉ C for all C ∈ Cmax then
20 C′ ← C.remove(V )
21 if valid(C′,G,Q) then
22 C← C′

23 for C1,C2 ∈ C do
24 for C ∈ Cmax do
25 if C1,C2 ⊆ C then
26 C′ ← merge(C,C1,C2)
27 if valid(C′,G,Q) then
28 C← C′

29 return C
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and the causal diagram G (and noncausal diagram G) are
given in Fig. 18a. The data is collected from people, and
the variables are age (A), gender (G), testosterone level
(T ), mustache hairs (H1, H2), atoms of other mustache
hairs (O1, O2, O3, O4), and pixels of an image of the per-
son (P1, P2, P3, P4). The queries of interest are Q =
{Q1, Q2, Q3}, where

Q1 = P ({p1, p2, p3, p4}h1,h2,o1,o2,o3,o4)

Q2 = P ({p1, p2, p3, p4}h1,h2,o1,o2,o3,o4,g)

Q3 = P ({p1, p2, p3, p4}a).

Evidently, the variables depicted in Fig. 18a are too com-
plex, and some intervariable clustering is needed. For starters,
there are interactions between the atom variables (O) and the
pixel variables (P ) that are too low-level to be considered
causally. They should be clustered together, as described in
Lemma 7. This provides the graph in Fig. 18b, in which all
of the O variables are clustered into another hair variable H3,
and the pixel variables P are clustered into a single image
variable I . Formally, this clustering is

C1 = {{A}, {T}, {G}, {H1},
{H2}, H3 = {O1, O2, O3, O4}, I = {P1, P2, P3, P4}}.

While this choice of C1 is valid in that it satisfies condi-
tions C1-4, there exists a coarser clustering that satisfies the
conditions, shown in Fig. 18c. This one is obtained by further
clustering H1, H2, H3 into a single “mustache” variable M .
Formally, this clustering is

C2 = {{A}, {T}, {G},M = {H1, H2, O1, O2, O3, O4},
I = {P1, P2, P3, P4}}.

The corresponding queries of τ(Q), under this choice of C,
would be

Q1 = P ({p1, p2, p3, p4}h1,h2,o1,o2,o3,o4) = P (im)

Q2 = P ({p1, p2, p3, p4}h1,h2,o1,o2,o3,o4,g) = P (im,g)

Q3 = P ({p1, p2, p3, p4}a) = P (ia).

If for some reason we decide to try to cluster C2 fur-
ther, such as by clustering A,G,M into a single variable
X (Fig. 18d), we violate condition C3, the answerability of
the queries. How could we distinguish between queries like
P (IM=m = i) and P (IA=a = i) if M and A are grouped
in the same cluster? For this reason, we cannot proceed any
further than C2, and, in fact, C2 is actually the maximally
answerable clusters from Lemma 9. ■

D.2 Discussion on the Abstract Invariance
Condition

Recall the abstract invariance condition (AIC):

Definition 8 (Abstract Invariance Condition (AIC)). Let
ML = ⟨UL,VL,FL, P (UL)⟩ be an SCM and τ : DVL

→
DVH

be a constructive abstraction function relative to C
and D. The SCMML is said to satisfy the abstract invari-
ance condition (AIC, for short) with respect to τ if, for all

(a) When the AIC holds, two val-
ues of VL that are in the same
intravariable cluster are mapped
to the same output in VH for any
downstream function fL after ap-
plying τ .

(b) When the AIC does not hold,
two values of VL that are in the
same intravariable cluster may
map to different outputs in VH

for some downstream function
fL after applying τ .

Figure 20: Visualization of the AIC (Def. 8).

v1,v2 ∈ DVL
such that τ(v1) = τ(v2), ∀u ∈ DUL

,Ci ∈
C, the following holds:

τCi

((
fLV (pa

(1)
V ,uV ) : V ∈ Ci

))
= τCi

((
fLV (pa

(2)
V ,uV ) : V ∈ Ci

))
,

(33)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2. Then, p̃aV is used to denote any arbitrary value
s.t. τ(p̃aV ) = τ(pa

(1)
V ) = τ(pa

(2)
V ). ■

The AIC intuitively ensures that there is no loss of informa-
tion when clustering two values together in the intravariable
clusters D. Specifically, it states that clustering two values
together is safe whenever these values are interchangeable
with respect to the behavior of downstream functions. That
is, the functions are invariant to changes between values in
the same intravariable cluster. This is illustrated in Fig. 20.
Examples 4 and 5 from Sec. 2 illustrate the subtleties of the
AIC both when it holds and when it does not hold.

If the AIC is violated, then two functionally different val-
ues were placed in the same cluster. Hence, assuming that the
AIC holds is reasonable provided that the intravariable clus-
ters were chosen reasonably. For example, in a study where a
drug X is reasonably expected to affect blood pressure levels
Y , it would not make sense to cluster the values X = 0 (drug
not taken) and X = 1 (drug taken) together since, by design,
they have different downstream effects on Y and cannot be
treated similarly.

On the other hand, in an image recognition setting, per-
haps it does not matter for the task if the image is scaled
or rotated, so these invariances can be modeled in the in-
travariable clustering. For example, if one image is a scaled
version of another but they are otherwise the same, the two
images might be placed in the same intravariable clustering
without violating the AIC. Sec. 4 and Appendix D.3 discuss
this phenomenon in more detail.

If a data scientist finds the AIC too strict for her settings,
one option is to revise the intravariable clusters, perhaps
making them less coarse. Otherwise, the abstraction may be
too strong and some important information is lost.

Still, there are alternatives if weaker assumptions are de-
sired. The AIC ensures that an L3-τ consistent model exists,
as demonstrated by Alg. 1, but it is not a necessary condition
in applications that do not require full L3-τ consistency. For
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example, if one only works on the interventional level (L2),
one may not necessarily care if consistencies between L3

quantities are lost.
In the strictest form, making as minimal assumptions as

needed for the task, a query-specific AIC can be assumed.
That is,
Definition 25. Let Q be a set of queries of the form
PMH (yH,1[xH,1],yH,2[xH,2], . . . ). For all Q ∈ Q, we have∑
∀iyL,i∈DYL,i

:τ(yL,i)=yH,i

PML(yL,1[xL,1],yL,2[xL,2], . . . )

=
∑

∀iyL,i∈DYL,i
:τ(yL,i)=yH,i

PML(yL,1[x′
L,1]

,yL,2[x′
L,2]

, . . . ),

for all xL,i,x
′
L,i such that τ(xL,i) = τ(x′L,i) = xH,i. ■

In words, τ satisfies Def. 25 if and only if there exists
MH that is Q-τ consistent withML for all Q ∈ Q, since
all such variations of Q have the same probability. Still, it
may be more useful to have a general criterion that is not
query-dependent.

It turns out that the study of weaker forms of the AIC
is not new and is sfirst discussed in Chalupka, Perona, and
Eberhardt (2015). Broadly, the paper studies a similar ab-
straction setting in which causal macro-variables are learned
from observational data from the low-level micro-variables.
Similar to the intravariable learning problem posed in Sec. 4,
the paper aims to learn intravariable clusters of a low-level
high-dimensional variable I (e.g., an image), which causes
some other variable T , possibly with unobserved confound-
ing. However, while the results of Sec. 4 focus on satisfying
the AIC in Def. 8, Chalupka, Perona, and Eberhardt (2015)
focuses on satisfying weaker conditions that are verifiable
through data.

More specifically, consider the setting proposed in
Chalupka, Perona, and Eberhardt (2015) illustrated by the
causal diagram in Fig. 21. Note that Eq. 33 in Def. 8 requires
that

τ(fT (i1,uT )) = τ(fT (i2,uT )), (102)
for any i1, i2 ∈ DI that are chosen to be clustered in the
same intravariable cluster. This condition is a requirement
on the SCM function fT , which, as demonstrated by Lem. 5,
implies that one cannot cluster together any two values i1, i2
without further information about fT , which may be difficult
to acquire due to the unobserved nature of the SCM. Instead,
the paper proposes two other properties. Notably, two val-
ues i1 and i2 are part of the same observational partition
(Chalupka, Perona, and Eberhardt 2015, Def. 1) if

P (t | i1) = P (t | i2), (103)

and they are part of the same causal partition (Chalupka,
Perona, and Eberhardt 2015, Def. 3) if

P (ti1) = P (ti2). (104)

Values of DI can easily be clustered according to Eq. 103
using the observational data. However, Eq. 104 may be a
more desirable property if the goal of downstream tasks is to
perform causal inferences from I to T .

I T

Figure 21: Problem setting in Chalupka, Perona, and Eber-
hardt (2015).

It turns out that a clustering learned according to Eq. 103
typically also satisfies Eq. 104 according to a major proven re-
sult of the paper, the Causal Coarsening Theorem (Chalupka,
Perona, and Eberhardt 2015, Thm. 5), which states (in infor-
mal terms) that the maximally coarse clustering that satisfies
Eq. 104 is almost always a coarser clustering of the maxi-
mally coarse clustering that satisfies Eq. 103. This essentially
implies that, under certain faithfulness conditions, one can
achieve the property of Eq. 104 simply as a consequence of
achieving Eq. 103, which can be accomplished with observa-
tional data alone.

The concepts of the partitions described by Eqs. 103 and
104 can be generalized to the general SCM/graph case. Sup-
pose we are given the inter/intravariable clusters C and D.
Consider a variant of the AIC applied on conditional proba-
bilties:
Definition 26 (Conditional Abstract Invariance Condition).
Let P (VL) be an observational distribution over VL, and
let τ : DVL

→ DVH
be a constructive abstraction function

relative to C and D. P (VL) is said to satisfy the conditional
abstract invariance condition (conditional AIC, for short)
w.r.t. τ if, for all XL where XL is a union of clusters of C, all
x1,x2 ∈ DXL

such that τ(x1) = τ(x2), and all vH ∈ DVH
,

we have ∑
vL∈DVL

:τ(vL)=vH

P (vL | x1) =
∑

vL∈DVL
:τ(vL)=vH

P (vL | x2). (105)

■

That is, two values can be clustered together as long as
their conditional probabilities do not change in the space
of VH . Note that this condition is entirely focused on the
observational distributions P (VL) and P (VH) and make no
requirements over any distributions from the higher layers,
L2 and L3.

Now consider an interventional variant:
Definition 27 (Interventional Abstract Invariance Condition).
Let L2(ML) be a collection of interventional distributions
over VL, and let τ : DVL

→ DVH
be a constructive ab-

straction function relative to C and D. We say that L2(ML)
satisfies the interventional abstract invariance condition (in-
terventional AIC, for short) w.r.t. τ if, for all XL where
XL is a union of clusters of C, all x1,x2 ∈ DXL

such that
τ(x1) = τ(x2), and all vH ∈ DVH

, we have∑
vL∈DVL

:τ(vL)=vH

P (vL[x1]) =
∑

vL∈DVL
:τ(vL)=vH

P (vL[x2]). (106)

■

This states that two values can be clustered together as
long as the corresponding interventional distributions do not
change in the space of VH .
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These two definitions may be useful when looking to find
abstractions while working on lower layers of the PCH. When
given the C-DAG GC, these can be refined to specific queries
based on parent-child relationships in the graph. Although
not shown formally here, it is likely that a more general vari-
ant of the Causal Coarsening Theorem could be proven for
these two definitions. Nonetheless, using these definitions
in place of the full AIC from Def. 8 has its limitations; for
example, it may no longer be possible to perform counter-
factual inferences on the high-level model. We encourage
further research on this topic, comparing the relationships
between variations of the AIC.

D.3 Representation Learning with Intravariable
Clusters

Recall the following proposition from Sec. 4:

Proposition 5. Consider a low level SCM ML and con-
structive abstraction function τ w.r.t. clusters C and D.
ML is guaranteed to satisfy the AIC w.r.t. τ if and only
if DCi

= {{ci} : ci ∈ DCi
} for all Ci ∈ C. ■

When learning intravariable clusters, Prop. 5 states that
without extra information, each value needs to be put in its
own cluster. However, if extra information is available for use,
this can be leveraged to improve the choice of D. In practice,
this is common, and is generally provided in the form of
invariance assumptions. As a intuitive example, suppose that
X is an image of an animal, Y is the corresponding label,
and fY (x, uY ) describes the mechanism that humans use to
classify X (here, uY is the exogenous noise). Suppose that
g(x, ϕ) is a function that rotates x by ϕ degrees. It is the case
that the classification of animals is rotationally invariant, that
is, fY (g(x, ϕ), uY ) = fY (x, uY ) for all x, ϕ, uY . Then, in
fact, D can be defined such that values of x1, x2 are clustered
together if g(x1, ϕ) = x2, as shown by the following result.

Proposition 12. For each Ci ∈ C, suppose that there exists
function gCi

: DCi
×DϕCi

→ DCi
(with parameters ϕCi

)
such that

fLV (ci,uV ) = fLV (gCi
(ci, ϕCi

),uV ) (107)

for all V that are children of Ci and all ϕCi
∈ DϕCi

. Then,
ML satisfies the AIC w.r.t. any constructive abstraction func-
tion with D such that c(1)i , c

(2)
i being in the same intravari-

able cluster implies that gCi
(c

(1)
i , ϕCi

) = c
(2)
i for some ϕCi

.
■

Proof. Consider the proposed set of intravariable clusters D.
Let v1,v2 ∈ DVL

be two values such that τ(v1) = τ(v2).
The goal is to show that for all u ∈ DUL

and Ck ∈ C, we
have

τ
((
fLV (pa

(1)
V ,uV ) : V ∈ Ck

))
= τ

((
fLV (pa

(2)
V ,uV ) : V ∈ Ck

))
,

(108)

where pa
(1)
V and pa

(2)
V are the values corresponding to v1

and v2 respectively. If τ(v1) = τ(v2), that implies that for
all Ci ∈ C (where c

(1)
i and c

(2)
i correspond to the values of

v1 and v2 respectively), c(1)i and c
(2)
i must be in the same

intravariable cluster in DCi
(this includes the case where

c
(1)
i = c

(2)
i ). By construction of D, this is only possible if

gCi
(c

(1)
i , ϕCi

) = c
(2)
i for some ϕCi

.
For gV = {gCi : Ci∩PaV ̸= ∅}, denote gV (pa

(1)
V , ϕ) as

the collection of outputs of gCi
(c

(1)
i , ϕCi

) for the functions
of gCi ∈ gV , which, as established earlier, is equal to pa

(2)
V .

Then we have

τ
((
fLV (pa

(1)
V ,uV ) : V ∈ Ck

))
= τ

((
fLV (gV (pa

(1)
V , ϕ),uV ) : V ∈ Ck

))
= τ

((
fLV (pa

(2)
V ,uV ) : V ∈ Ck

))
,

completing the proof.

For intuition, consider the following simple example.

Example 17. Consider a situation where Y is some bi-
nary variable that is a (noisy) bitwise AND of two other
binary variablesX1 andX2. For example, perhaps Y denotes
whether a law is enacted, and X1 and X2 denotes the votes
of the two branches of government, like in Ex. 11. Formally,
letML be defined as follows:

UL = {UX1
, UX2

, UY }, all binary
VL = {X1, X2, Y }, all binary

FL =


X1 ← fLX1

(uX1
) = uX1

X2 ← fLX2
(uX2) = uX2

Y ← fLY (x1, x2, uY ) = (x1 ∧ x2)⊕ uY

P (UL) =

{
P (UX1

= 1) = P (UX2
= 1) = 0.5

P (UY = 1) = 0.1

Now suppose we want to create an abstraction ofML us-
ing the intervariable clusters C = {C1 = {X1, X2},C2 =
{Y }}. The domain DC1 has four values as X1 and X2 can
both be either 0 or 1. However, as emphasized by Prop. 5,
the only intravariable clustering we can choose without ad-
ditional information is the one where each value is in its
own cluster. In other words, DC1

= {{(X1 = 0, X2 =
0)}, {(X1 = 0, X2 = 1)}, {(X1 = 1, X2 = 0)}, {(X1 =
1, X2 = 1)}}.

However, suppose we are given additional information that
fY is permutation invariant to its endogenous inputs, i.e.,

fY (x1, x2, uY ) = fY (x2, x1, uY ). (109)

In the notation of Prop. 12, we can define ϕC1
to be a bi-

nary variable such that 0 means original order and 1 means
reversed. Then we can define g(x1, x2, ϕC1

) = (x1, x2) if
ϕC1

= 0 or (x2, x1) if ϕC1
= 1. Then, this implies that

fY (x1, x2, uY ) = fY (g(x1, x2, ϕC1
), uY ) for any choice of

ϕC1 .
By Prop. 12, this implies that (X1 = 0, X2 = 1) and

(X1 = 1, X2 = 0) can be placed in the same intravari-
able cluster without violating the AIC. Indeed, the function
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fLY (x1, x2, uY ) = (x1 ∧ x2)⊕ uY does not change when x1
and x2 are swapped, so we have

τ
((
fLY (X1 = 0, X2 = 1,uV ) : V ∈ Ck

))
= τ

((
fLY (X1 = 1, X2 = 0,uV ) : V ∈ Ck

))
,

confirming that the AIC still holds when (X1 = 0, X2 = 1)
and (X1 = 1, X2 = 0) can be placed in the same intravari-
able cluster. ■

In practice, this invariance information can be incorporated
in the process of learning the intravariable clusters while
training τ̂ in an RNCM, as described in Def. 11. To take into
account Prop. 12, the training objective could include a term
to enforce the invariance specified by gCi

(e.g. through a
penalty on τCi

(ci,θCi
)− τCi

(gCi
(ci, ϕCi

),θCi
)).

In fact, it turns out that the idea of intravariable clusters
works in tandem with techniques in deep representation learn-
ing when it comes to incorporating invariances in the data.
In the case of image data for example, many works in com-
puter vision have already leveraged general patterns found
in images (e.g. rotations, crops, flips, etc. do not affect clas-
sification) to achieve faster training with less data (Shorten
and Khoshgoftaar 2019). Permutation invariance concepts
(Zaheer et al. 2017; Murphy et al. 2019) have been used as
pooling functions for convolutional neural networks (LeCun
and Bengio 1998). Existing frameworks for representation
learning such as through contrastive methods (Chen et al.
2020) can be used for learning τ .

E Additional Examples

This section contains examples to improve the clarity of
concepts in the paper.

E.1 Sec. 2 Examples

We provide more examples of the concepts in Sec. 2, namely,
abstractions constructed through inter/intravariable clusters.
In addition to Example 1 within the section, we provide a
more involved example below.

Example 18. Suppose an economist is studying the effects of
implementing a new type of government policy on recession
prevention. The economist records data on several variables
of interest: whether the policy is implemented (X); whether
the policy is lobbied (W ); economic spending in terms of
consumption (C), investment (I), government spending (G),
imports (M ), and exports (E); and whether or not there is a
recession (Y ). Out of these variables, Z,X , and Y are binary,
and C, I , G, M , and E are numerical values representing
how much the spending has .changed relative to the previous
year (in billions of dollars).

Suppose the true SCMM∗ =ML is defined as follows:

UL = {UW , UX , UXY , UC , UI , UG, UM , UE , UIG,

UCM , UEM}
VL = {W,X,C, I,G,M,E, Y }
FL = {

W ← fW (uW ) = uW

X ← fX(w, uX , uXY ) = w ⊕ uX ⊕ uXY

C ← fC(x, g, uC) = 5x− 0.2g + uC + uCM

I ← fI(x, uI) = −5x+ uI + uIG

G← fG(x, uG) = 10x+ uG + uIG

E ← fE(uE) = uE + uEM

M ← fM (c, uM ) = 0.2c+ uM + uCM − uEM

Y ← fY (c, i, g, e,m, uXY ) =

1{c+ i+ g + e−m ≤ 0} ⊕ uXY

P (UL) =


UW , UX ∼ Bernoulli(0.5)

UXY ∼ Bernoulli(0.1)

UC , UI , UG, UM , UE ∼ N(0, 10)

UIG, UCM , UEM ∼ N(0, 2)

To summarize, the policy has some impact on the con-
sumption, investment, and government spending. Whether or
not there is a recession depends on imports and exports in ad-
dition to all of these factors. Indeed, despite the fact that this
is a toy example, the SCMM∗ is already quite complex to
describe with this many variables and functions, and perhaps
this level of detail is not needed to achieve the inference we
desire. We will see how utilizing abstractions can help with
this.

We first note that perhaps VL contains too many micro-
level variables that can be summarized with a smaller set of
abstract higher-level variables. Further, perhaps using real-
valued variables is overly complex, and the same phenomena
can be described without loss of generality using a lower-
dimensional space. For entertaining these considerations, we
utilize the idea of intervariable and intravariable clusters.

Suppose we are only interested in the causal effect of the
policy X on recession Y . We could study the same phe-
nomenon under a simpler set of variables. To do so, we can
cluster variables of VL to form a new set of macro-level
variables. First, note that although we may have data on C,
I , G, E, and M , it may make more sense to simply cluster
them together and consider them as one variable (e.g. GDP).
Further, perhaps we may decide that W is not relevant to
the analysis and exclude it from the study. We leave these
clustering decisions at the discretion of the data scientist (e.g.
the economist in this example).

By the definition of intervariable clusters from Def. 5,
we can choose clusters C = {C1 = {X},C2 =
{C, I,G,E,M},C3 = {Y }}. We leave X and Y in their
own clusters while grouping all of C, I , G, E, M into one
cluster C2. W is excluded from all of the clusters and is
effectively projected out of the system. We can then treat C1,
C2, and C3 as our new variables. Let us relabel them X , Z,
and Y respectively, where Z. We can define our higher level
variables as VH = {X,Z, Y }.
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Further, it is not immediately clear what the domain of Z
is. Certainly, it could be left as a tuple (C, I,G,E,M) ∈ R5.
However, this would be an overly complex representation of
Z, and we do not need to retain all of the joint information of
C, I,G,E,M . In other words, DZ does not have to be equal
to DC2

and can be represented more compactly. Instead, we
may choose to define Z as the GDP, or Z = C+I+G−E−
M . This can be described through the use of intravariable
clusters.

By the definition of intravariable clusters from Def. 5,
we must choose D = {DC1 ,DC2 ,DC3}, where DCi is a
partitioning of the domain DCi . Since X and Y are already
binary variables, we will not be able to group their values
together, so we simply define DC1 and DC2 as {{0}, {1}}.
For C2 however, we must cluster values of (C, I,G,E,M)
such that (c1, i1, g1, e1,m1), (c2, i2, g2, e2,m2) ∈ DC2

are
in the same cluster if and only if c1+i1+g1+e1−m1 = c2+
i2+g2+e2−m2. In other words, we can, for example, define
DC2

= {Dj
C2

: (c, i, g, e,m) ∈ DC2
, c+i+g+e−m = j}.

Now, with the intravariable clusters D defined, we can
choose the domains of VH as simply their corresponding
clusters in D. That is, each value of Z corresponds to some
Dj

C2
. In fact, we can simply set Z = j, where j = C +

I +G+ E −M , which intuitively corresponds to the idea
that Z represents the annual change in GDP. Note that the
domain of Z, DZ becomes smaller than DC2

in some sense.
First, it is lower dimensional (R instead of R5), and second,
there are clearly values of (C, I,G,E,M) that are mapped
to the same value of Z. For example, (C = 1, I = 2, G =
3, E = 4,M = 2 maps to the same value as (C = 3, I =
2, G = 1, E = 5,M = 3) because 1 + 2 + 3 + 4 − 2 =
3 + 2 + 1 + 5− 3 = 8.

However, perhaps this level of dimensionality reduction
is insufficient. In terms of cardinality, DZ is the same size
as DC2

as the cardinality of R and R5 are the same. Per-
haps the domain of Z could be compressed further. In-
deed, we could turn Z into a binary variable by defin-
ing DC2

= {D0
C2
,D1

C2
}, where (c, i, g, e,m) ∈ D0

C2
if

c + i + g + e −m > 0 or it is in D1
C2

otherwise. In other
words, we drop all information about the annual change in
GDP except whether it is positive or negative. We will use
this clustering for the rest of the examples, and we will see
in later examples why this clustering is allowed and makes
sense. Sec. 4 expands on the general discussion of which
intravariable cluster choices are allowed.

With the idea of inter/intravariable clusters, the concept
of constructive abstraction functions can be established as in
Def. 6. From Example 18, the function τ constructed from
C and D is clear. For example, consider the value vL =
(W = 0, X = 1, C = 2.6, I = −1.2, G = 10.2, E =
0.4,M = 1.2, Y = 0). We can compute vH = τ(vL) and
find that vH = (X = 1, Z = 0, Y = 0). In this case,
τ = (τC1

, τC2
, τC3

), where τC1
and τC3

are the identity
function on X and Y respectively, and τC2

(C = 2.6, I =
−1.2, G = 10.2, E = 0.4,M = 1.2) = 1{2.6−1.2+10.2+
0.4−1.2 ≤ 0} = 0. That is, for C2, the intravariable clusters
are defined such that values of (c, i, g, e,m) are divided into
two categories depending on whether c+ i+ g+ e−m ≤ 0,

which we can arbitrarily choose as the binary values 0 and 1.
This provides a mapping from every value of DVL

to some
value of DVH

. ■

Note that τ alone does not define an abstraction. While τ
provides a well-defined mapping from VL to VH , not every
SCM defined over VH can be considered an abstraction of
M∗. Consider the following example.
Example 19. Consider the SCMMH defined as follows:

MH =



UH = {UX , UZ , UY }
VH = {X,Z, Y }

FH =


X ← fX(uX) = uX
Z ← fZ(uZ) = uZ
Y ← fY (uY ) = uY

P (UH) = UX , UZ , UY ∼ Bernoulli(0.5)

One could argue thatMH is defined over VH , constructed
via τ from Example 18. However, it is trivial to see thatMH

retains none of the meaning of the variables of VH intended
by τ and is clearly oblivious ofML. After all, there is not
even any causal relationship between the variables defined in
MH . Intuitively,MH is clearly not an abstraction ofM∗,
and this is reinforced by the fact thatMH does not match
common definitions of abstractions, such as Def. 15.

However, assuming that we do not have access toMH or
M∗, and can only observe them through their distributions of
the PCH, how could we tell thatMH is not an abstraction of
M∗? Certainly, there are inconsistencies in the distribution
too. For example, note that

PM
∗
(C + I +G+ E −M > 0 | X = 1)

= P (5− 0.2g + uC + uCM − 5 + uI + uIG + 10 + uG

+ uIG + uE + uEM − 0.2c− uM − uCM − uEM > 0)

= P (5− 0.2(10 + uG + uIG) + uC + uCM − 5 + uI

+ uIG + 10 + uG + uIG + uE + uEM

− 0.2(5− 0.2(10 + uG + uIG) + uC + uCM )

− uM − uCM − uEM > 0)

= P (7.4 + 0.84uG + 1.8uIG + 0.8uC − 0.2uCM

+ 1.04uI + uE − uM > 0)

= P (N(0, 7.056) +N(0, 6.48) +N(0, 6.4) +N(0, 0.08)

+N(0, 10.816) +N(0, 10) +N(0, 10) > −7.4)
= P (N(0, 50.832) > −7.4) ≈ 0.85.

On the other hand, we see that PMH (Z = 0 | X = 1) =
PMH (Z = 0) = P (UZ = 0) = 0.5. We would expect that
ifMH were an abstraction ofM∗, then PMH (Z = 0 | X =
1) should match PM

∗
(C + I +G+E −M > 0 | X = 1),

which is evidently not the case.
The intuition behind this connection is that τ directly maps

cases of C + I + G + E − M > 0 to cases of Z = 0,
so their corresponding probabilities should be the same. If
Q = PM

∗
(C + I +G+ E −M > 0 | X = 1), we would

say thatMH is not Q-τ consistent withM∗, via Def. 7. ■

Not all functions mapping between two spaces of variables
are constructive abstraction functions. Some abstraction func-
tions, while not being constructive, may still have qualities
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that are expected from abstractions. However, the lack of
structure in these functions make certain features of the ab-
straction models difficult to define, such as the concept of
Q-τ consistency. The following example describes a few such
cases.
Example 20. To start, we note that when fixing the inter-
variable and intravariable clusters C and D, the correspond-
ing constructive abstraction function τ is deterministic, and
the corresponding VH is fixed, up to a bijective mapping
of its domain. For example, suppose C = {A,B,C}, and
DA = {a1,a2},DB = {b1,b2},DC = {c1, c2}. However,
let VH = {X,Y, Z,W}, where DX = DY = DZ = {0, 1}
and DW = {0, 1, 2}. While a function could be constructed
from D and C, it could not be a valid mapping to VH . First
of all, there are four variables in VH but only three clusters
in C, so the mapping could not be one-to-one.

Even if X were removed, all of the intervariable clusters
have values clustered into two sets, but W is a ternary vari-
able, so a one-to-one mapping is not possible with any of
the intervariable clusters. However, if W were removed from
VH , then τ could be a valid constructive abstraction mapping
between VL and VH , since the other three variables are bi-
nary. The number of variables of VH and their domain sizes
match the number of clusters of C and the number within
each cluster of D, respectively. In fact, at least without con-
sidering the model distributions, any cluster of C could map
to any of the variables of VH \ {W} as they are isomorphic.

In other words, τ fails to be a constructive tau abstraction
for any choice of VH that is incompatible with C and D.
Intuitively, this means that when given C and D, the function
τ and high level variables VH are already fixed, which is how
the rest of this paper is framed. However, there can exist cases
with some function τ mapping from VL to VH such that τ
cannot be considered a constructive abstraction function for
any choice of C and D. Some cases may even appear to be
valid abstractions intuitively.

Consider an example of a company board setting. Suppose
in a company, the board consists of the CEO, Alice (A), and
two vice presidents, Bob (B) and Charlie (C). When voting
on company policies, each board member can choose to vote
for (+1), vote against (−1), or abstain (0). In other words,
A, B, and C are ternary variables with domain {−1, 0,+1}.
While data can be collected on each of the members’ voting
behaviors (VL = {A,B,C}), it may be more sensible to
aggregate the votes into a more useful quantity. Suppose two
high level variables are computed (VH = {X,Z}) through
some abstraction function τ = (τX , τZ), defined as follows.

τX(a, b, c) =


+1 a+ b+ c > 0

0 a+ b+ c = 0

−1 a+ b+ c < 0

τZ(a, b, c) =


a a ̸= 0

+1 a = 0, b+ c > 0

0 a = 0, b+ c = 0

−1 a = 0, b+ c < 0

In words, X is the aggregate vote that is simply the majority
vote of all three members. On the other hand Z is an ag-

gregate vote that prioritizes Alice’s vote, as she is CEO. If
she abstains, then it is an aggregate of the votes of the vice
presidents. For example, τ(A = +1, B = −1, C = −1) =
(X = −1, Z = +1).

Perhaps in company matters, it is more useful to use the
variables X and Z over the individual votes of the board
members. However, τ cannot be considered a constructive
abstraction function for any choice of clusters C and D. This
is because both X and Z change values depending on all of
the values of A, B, and C, so the variables of VL cannot be
cleanly separated into two different clusters.

Even so, this choice of τ seems like it could result in a valid
abstraction. The difficulty lies with the analysis of causal
quantities after τ is fixed. Without the notion of clusters, the
definition of Q-τ consistency fails to work, so it is no longer
clear what causal quantities correspond to what. For example,
what would an intervention of A = +1 imply on the VH

level? Or, what would an intervention on Z = +1 imply on
the VL level? The answer might change depending on the
setting, or there may not even be an answer that makes sense
at all. This is why prior works like Rubenstein et al. (2017)
define the mapping between interventions separately from τ ,
which maps the variables.

In this particular case, provided that queries do not require
separation of X and Z (e.g. queries like P (XZ=z = x) are
not needed), then it may be sensible to cluster A, B, and
C together into one intervariable cluster and then simply
have one variable in VH used for downstream tasks. This
allows for the theory in this paper to be applied, significantly
reducing the complexity of defining the abstractions. ■

See the following for a negative example of an abstraction
of the drug example in Ex. 3.

Example 21. Continuing Example 3, consider the following
SCMMH .

UH = {UX , UY }
VH = {X,Y }

FH =

{
X ← fHX (uX) = uX
Y ← fHY (uY ) = uY

P (UH) =

{
P (UX = 1) = 0.5

P (UY = 1) = 0.2

Indeed, this choice ofMH is defined over X and Y . How-
ever, it does not seem like there is any connection between
MH and ML from Example 3, even if VH = τ(VL).
To verify this, we can compare the distributions induced
by the two models. Note that while PML(Y = 1 | A =
1, B = 1) ≈ 0.853, we see that PMH (Y = 1 | X = 1) =
PMH (Y = 1) = PMH (UY = 1) = 0.2. It seems that these
two quantities should be related, as τ maps (A = 1, B = 1)
to X = 1, yet they are clearly not equal in the two models.
This is similar for the causal effect PML(YA=1,B=1 = 1).
Computing PMH (YX=1 = 1) = PMH (Y = 1) = 0.2 actu-
ally yields the same result, which is clearly incorrect. In fact,
it even seems that the causal relations are incorrect, as fHY
does not use X as an input.

■
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Example 21 shows an example ofMH that is a poor ab-
straction ofML despite the fact that it is defined over the
space of VH mapped by τ . From the example, intuition tells
us that a proper abstraction ofML should matchML in cer-
tain quantities, including observational, interventional, and
counterfactual quantities. Specifically, there are quantities
induced byML that appear to have matching counterparts in
MH based on τ . This notion is made concrete through the
concept of Q-τ consistency (Def. 7).
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